
SUBJECT

MULTICS FORTRAN
TTSER'S r!TTTn~ u '-" '-' .L~.L:..I

Information Concerning the Creation and Execution of FORTRAN Programs in
a Multics System, with Suggestions for Efficient Coding, Use of the 110 System,
and an Introduction to Basic Multics Concepts

SOFTWARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

CC70-01 December 1979

Honeywell

PREFACE

The purpose of this manual is to supplement Multics FORTRAN,
Order No. AT58.

Anyone faced with the prospect of learning to use an
unfamiliar computer system is likely to experience some
frustration in trying to get information out of the manuals that
are supposed to explain it all. The inexperienced or occasional
user is often at a loss for where to start understanding it all,
especially since the manual explaining it all seems to assume
everything. You want to know where there is a manual explaining
how to use the manual that is supposed to explain it all.

The FORTRAN User's Guide is written in the hope that all of
you who want to write FORTRAN programs on the Multics system can
get answers to basic questions both about the system and about
the the FORTRAN dialect embodied on it.

If you are new to the system, whatever your level of
sophistication as a programmer, the first section, "Introduction
to Multics," provides a general overview of the system from the
standpoint of FORTRAN programming. You are strongly encouraged
to read through this section carefully before reading any other
part of the manual.

Sections are so designed as to make them independent of each
other. Depending on what you want to know, you can read the rest
of the manual in any order you choose.

The FORTRAN language on Multics is a superset of ANSI
Standard FORTRAN, 1966. As such it contains features not defined
by the standard of 1966, either in the form of extensions to the
standard (especially in regard to Input/Output processing), or in
the form of nonstandard features that are familiar to most users
of other systems. In some cases, Multics FORTRAN extends the
standard of 1966 to meet that of 1977.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

© Honeywell Infonnation Systems Inc., 1983 File No.: lL13 CC70-00

The FORTRAN language on Multics is a superset of ANSI Standard
FORTRAN, 1966. As such, it contains features not defined by the
standard of 1966, either in the form of extensions to the standard
(especially in regard to Input/Output processing) or in the form
of nonstandard features that are familiar to most users of other
systems. In many cases, Multics FORTRAN now extends the standard
of 196-6---tom-eetthat of- 197Y~

Some but not all of the features of FORTRAN 77 are available
only if the program is compiled with the ansi77 option in effect.
Only those features that are incompatible with the ansi66
interpretation are under control of the ansi 77 option. Almost
all of the FORTRAN 77 standard features have now been inplemented.

For a formal description of the FORTRAN language embodied on
Multics, see the Multics FORTRAN manual, Order No. AT58. The user
is assumed to have a working knowledge of FORTRAN. No attempt is
made to provide instruction in the writing of FORTRAN programs,
although some suggestions are offered about how to make them more
efficient.

Throughout this manual, references are made to portions of
the MPM. For convenience, these references are shortened as follows:

Document

lieterence Guide
(Order NOe AG91)

Introduction to Programming
on Multics
TOrder No. AG90)

Commands and Active Functions
(Order No. AG92)

Subroutine
(Order No. AG93)

Subsystem Writers' Guide
(Order No. AK92)

Communications Input/Output
(Order No. CC92)

12/81

Referred to in Text as

MPM Reference Guide

Introductory Users' Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

MPM Communications I/O

iii CC70-01A

*

Significant Changes in CC10-01C

Implementation of Large Arrays and Very Large Arrays
Addition of managed storage

Addition of -long profile control argument
Several machine-dependent global optimizations now performed by

compiler:
Global Pointer Register Use
Global Index Register
Processor Instruction Fetch Padding

For purposes of clari ty and ease of use, the MPM set has
been reorganized. The six former MPM manuals, the Tools manual,
and the RCP Users' Guide have been consolidated into a new set of
three manuals.

Multics Programmer's Reference Manual (AG91)
contains all the reference material from the former eight
manuals.

Multics Commands and Active Functions (AG92)
contains all the commands and active functions from the
former eight manuals.

Multics Subroutines and InputlOutput Modules (AG93)
contains all the subroutines and 1/0 modules from the
former eight manuals.

The following manuals are obsolete:

Name

MPM Peripheral InputlOutput
MPM Subsystem Writers' Guide
Programming Tools
MPM Communications 1/0
Resource Control Users'Guide

Order No.

AX49
AK92
AZ03
CC92
CT38

References to these manuals still exist on pages not published
with this addendum. When this manual is revised, the references
in the text to the old manuals will be changed to reflect the new
organization.

12/83 iv CC70-01C

Section 1

12/83

CONTENTS

Introduction to Multics •••••••
Directory Hierarchy • • •

Segments •••.•••• •••
Directories • • • • • •
Entries and Entrynames • • • • • •
Pathnames • • • • • • • • • • • • •
Example of a Pathname • • •
\~orking Di rectory • • • • ..

Absolute Pathname • • • • • • •
Relative Pathname •••••••
Home Directory • • • • •
Directory Hierarchy = File

System • • • • • • • •
Pathnames vs. Entrynames •••••
Search Rules • • • • • • • • • • •
Commands and Command Level ••••

The Multics Programming Environment
The Basic Data Structures • • • • •

The Stack •• • • • • • • • • •
Free Storage Region
Managed Storage • • • • • •

Load Modules, Object Segments, and
Linking • • • • • • •

Load Module ••• •
Object Segment _ _ • • • • •
The Linkage Section • 0 .. •

Reference Names and Entrypoint
Names •• • • • • • • • • • ..

Ttie Reference Name Table • • •
Consequences of Dynamic Linking • •
The Main Program Con0ept e 9 -

Common Block References • • • • • •
Permanent Common Blocks
Common Statement • • .. • • • • •

Storage Classes • • • •• •••
Automatic Variables ••• • • •
Program Units Compiled Together

Quick Calls • • • • • • •
Separately Compiled Program

Units • • • • • • • • • • • • •

v

Page

1-1
1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4

1-4
1-5
1-5
1-5
1 '7
I-I

1-7
1-7
1-8
1-8 I
1-8
1-8. 1
1-8.2
1-9

1-10
1-10
1-11
1-12
1-12
1-14
1-15
1-15
1-17
1-17
1-18

1-19.1

CC70-01C

Section 2

Section 3

Section 4

12/83

CONTENTS (cont)

Failure to Initialize Automatic
Variables • • • • • • • • •

Initialization
Undefined Variables • • •
Save Statement • • •
Automatic Statement
Data Statement • • • • .

Run Units •••••••••••••
Use of the Run Command •
Quit, Start, Release.
Pause, Start, Release, Stop

Automatic Storage in Stack Frames •
. Binding FORTRAN Programs • • •

Entering Your FORTRAN Source Program
Login • • • • • • • •• • • •
Creating a Source Segment .•••
Input Format • • • • • • . • • • •

Uppercase and Lowercase Letters • •
Names in the FORTRAN Program

Free-Form Format ••••
Comments • • • • . • • • • •
Continuation Lines • •
Semicolon ••• • • •
Line Numbers • • • • •

Card-Image Format • 0..
Comments • .• •••••••
Continuation Lines • • • • • • •
Line Numbers . • • •

Compiling and Executing the FORTRAN
Program . • • • •

Invoking the Compiler • • • .
Error Diagnostics • • • • • . •
Control of Error Messages ••.
Language Opt ions • • • •
Subscript Checking • . . • •
Relocation • • • • •• .••
Listing Segment ••.•••

Format of listing Segment
Optimization • • •• .•••
Improving Program Speed
Card-Image and Free-Form Source

Programs • • • • . • • • • • •
Debugging • • • • • . • • • • •

Executing a FORTRAN Program •

Constraints • • •

vi

Page

1-19.2
1-20
1-20
1-20
1-21
1-21
1-22
1-23
1-23
1-23. 1
1-26
1-31

2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-3
2-5
2-5
2-7
2-7
2-8
2-8
2-8

3-1
3-1
3-2
3-4. 1
3-5
3-6
3-7
3-7
3-7
3-9
3-10

3-10. 1
3-11
3-12

4-1

CC70-01C

Section 5

12/83

CONTENTS (cont)

Length and Form of Records • • • • • •
F i 1 es- -_.-. • • • • • -. • • • • • •.• •
10 Transfer Limits • • • •
Programs ••••• • • • • • •
Statements and Line Numbers • • • •
Arrays and Common Blocks •••••
Binder • • • • • • • • • • • • • •
Stack Segment • • • • • •• • •
Normal Storage vs. Large Arrays

and Very Large Arrays ••••
Large Arrays and Very Large

Arrays • • • • • • • • • • • •
Accuracy of Real Numbers • • • • • • •
Overflows in Integer Multiplications

Input/Output in Multics FORTRAN ••
Introductory Comments • • • • •

Fundamentals of Input/Output
Implicit Connection •••••
The Use of Implicit Connection
Input Data Transfers • •
Output Data Transfers • • • •
Explicit Connection •••••
Using the Open Statement

. . .

What Is in This Subsection • • •
Terminal Read/Write (Unit 0) e e

Terminal Read (Units 5 and 41) •
Terminal Write (Units 6 and 42)
Formatted Sequential I/O to
Storage System Files • • •

Unformatted Sequential I/O to
Storage System Files •••••

Direct Access Formatted I/O to
Storage System Files .• • • • ~

Direct Access Unformatted I/O to
Storage System Files •••

Binary Stream Files ••••
Connecting Nonstandard Units to
the Terminal •••••••••

Connecting a Default Terminal
Unit to a File ••• • • • ••

Connecting 6 or 42 for Terminal
Input, 5 or 41 for Terminal
Output ••••••••••••

Connections to Tape Files •••
Using the Inquire Statement • • • •

io call attach for Device Independence

vii

Page

4-1
4..,.2
4-2 I
4-2
4-2
4-3 I
4-3
4-3

4-4 I 4-5
4-6
4-6

5-1
5-1
5-1
5-2
5-4
5-4
5-4
5-5
5-5
C' t:.
:J-V

5-8.1
5-9
5-9

5-10

5-11

5-12

5-13
5-15

5-16

5-16

5-17
5-17
5-18
5-18.1

CC70-01C

Section 6

Appendix A

Appendix B

I
12/83

CONTENTS (cont)

Page

io call open for Complete External
Connection • • • • • • • • • . 5-20

What's a I/O Switch? • • •• ••• 5-22

Conversion to Fortran 77 • • • • • • 6-1
FORTRAN 77 on Multics • • • 6-1
Conversions • • • •• •••• •• 6-2

Character-Mode Variables in Common
Blocks • • • • • • • • • •

Equivalencing Character-Mode Data •
Default Character-String Length ••
Packed Character-String Layout
Zero-Trip Do Loops •••
Blank Lines • • • •

Debugging • • . • • • • . • • • . • .
Specifications for Tic-Tac-Toe Program
How the Program Works ••• • • •

A Program to Play Tic-Tac-Toe •
Script of Debugging Session • •
Corrected Program to Play

Tic-Tac-Toe • • • •

Optimization . •• ••••
Local Optimizations •• • •

Machine-Independent Local
Optimizations • • •

Machine-Dependent Local
Optimizations • • • • • •

Quick Subprogram Call ••.
Implied Do-Loops • • . • • .

Global Optimizations • • • . •
Machine-Independent Global

Optimizations • • . • • •
Non-Loop-Oriented Optimization

Removal of Common Subexpressions
Constant Propagation • • . . . •
Loop-oriented Optimizations
Removal of invariant expressions

from loops •• • • • • . . • •
Strength Reduction • • • • .
Test Replacement • . . . • •
Removal of Dead Assignments

Machine-Dependent Global
Optimization • • • • • • • • •

Global Pointer Register Use
Global Index Register • • •

viii

6-2
6-2
6-2
6-3
6-3
6-4

A-1
A-1
A-1
A-3
A-a
A-19

B-1
B-1

B-1

B-2
B-2
B-3
B-4

B-4
B-4
B-4
B-6
B-7

B-7
B-8
B-9
B-10

B-10
B-10
B-1 O. 1

CC70-01C

Appendix C

Appendix D

Index

Figure 1-1 •
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure ~_1 .J - I •

12/83

CONTENTS (cont)

Processor Instruction Fetch
Pad-<ling • .•. ••• • • • • •

Pointers for Efficient Coding Style
using the FORTRAN Optimizer • • • • •

Compatibility with Non-FORTRAN Programs •

Error Messages •••••••••••
Compile-Time Error Messages •••
Runtime I/O Error Messages • • • • • •

.

ILLUSTRATIONS

Directory Entries · · . · · · · · Dynamic Linking . · · · · State of Stack . · . . 0 . · · · Allocation of Stack Frames · . · .. · · · State of Stack in Program Compiling · Control Arguments .. e e e .. · · · ·

ix

Page

B-1O.l I
B-l1

C-l

D-l
D-1
D-20.1

i-1

1-2
1-9
1-24
1-27
1-30
3-4. 1

CC70-01C

SECTION 1

INTRODUCTION TO MULTICS

This section provides basic information about the Multics
environment. This information is background to an understanding
of the Multics system, and is provided as a bare introduction to
the new user. More introductory information is in the New Users'
Introduction to Multics-Part I. If you are an experienced
Multics user, you can skip this section and go directly to
Section 2 or Section 3.

DIRECTORY HIERARCHY

S'egrnents

The basic unit of storage in Multics is the segment. (A
FORTRAN source program, the compiled object code, and the data it
uses are all stored in segments.) The attributes of a
segrnent--such as name and size--are recorded in the "catalogues"
of the directory hierarchy.

Directories

The directory hierarchy is organized in~o a tree-structure
of catalogues, or as they are called in Multics, directories.
Directories contain descriptions of segments, of other
directories, and of cross-references called links.

1-1 CC70-01

a

Figure 1-1. Directory Entries

In the figure above, "a" is a directory. The entryname of
the segment, "b," appears as part of the directory entry, b, in
directory a. The entryname is also associated with the contents
of the segment named b - that is (in FORTRAN terms), the file
stored in that segment.

Entries and Entrynames

The descriptions of segments and directories are called
entries. An entry in the directory hierarchy is just a set of
attributes, including a list of names called entrynames. Each
entryname is unique in anyone directory; no two entries in the
same directory can have the same name. However, any entry can
have several entrynames.

Examples of Entrynames:

Pathnames

test.list
test.fortran
file06
test
extremely long entrynames occur
data.input.08/15/78-1430 -

To understand the form and function of pathnames it is
useful to think of them first as the names of segments. Each
segment is uniquely identified in the directory hierarchy by its
pathname. A pathname is a series of entrynames separated by the

1-2 CC70-01

")" character. The sequence of these entrynames reflects the
position in the hierarchy of the directory in which the segment
is catalogued. An entryname is always relative to some directory
in the hierarchy -- that is, to the directory containing the
entry (sometimes called the "parent" directory). The final
entryname in a pathname may designate either a directory or a
segment. If the final entryname refers to a directory, the
pathname is the name of a directory; otherwise it is the name of
a segment.

Example of a Pathname

The pathname for a segment named x in Tom Smith's directory
might be:

)udd)ProjA)TSmith)x

In the example above, the user has a directory that is given his
name, TSmith; the entryname TSmith is in turn catalogued in the
directory of the project Smith is registered under (ProjA), and
the entryname ProjA is catalogued in the system directory udd,
which contains an entry for each project. (The directory in
which udd is contained is called the root; by convention this
level of the hierarchy is omitted because it would appear at the
beginning of every pathname.) The specified segment, x, is
catalogued in the directory TSmith. Notice that the pathname
represents a series of entries for directories, each within a
parent directory down to the entry for the segment x. The entire
pathname shows the "path" from the root to that segment.

Working Directory

The directory hierarchy, as so far described, may seem to be
no more thah a collection of different kinds of names. In fact,
this is one important way to understand the hierarchy, because it
affords both you and the system a way to locate data using names
that are free of ambiguity.

ABSOLUTE PATHNAME

A pathname that begins with the n)" character is an absolute
pathname, which means that the segment or directory it identifies
is designated completely and unambiguously -- the name is all the
information the system needs to locate the designated segment or
directory.

1-3 CC70-01

RELATIVE PATHNAME

By convention, a pathname that does not begin wi th the ">,,
character is a relative pathname. It completely specifies the
position of a segment relative to your working directory.

HOME DIRECTORY

At any time, your environment has one working directory. It
is the directory whose absolute pathname the system prepends to
any relative pathname you use. Your initial working directory is
your user directory--usually the one with your name--and it is
known as your home directory.

DIRECTORY HIERARCHY = FILE SYSTEM

Not only is the directory hierarchy a collection of names;
it is also a filing system, and like any filing system it is an
orderly and convenient way of arranging pieces of information.
You can extend the hierarchy under your own directory, creating a
hierarchy of your own within the larger one. This ability gives
you a way to organize your work, to isolate part of it from the
rest of the system, and ul timately to tailor for yourself the
shape of your working environment. Finally, the hierarchy schema
gives you a conceptual "space" to work in--for many programming
tasks, it frees you from the necessi ty of thinking in terms of
actual physical storage location. Usually, we say that we are
"in" the working directory, and that some segment is in the
such-and-such directory--you know it is actually in some physical
location but where does not matter because the pathname fully
defines the location for most purposes.

2/83 1-4 CC70-01B

Pathnames vs. Entrynames

The name of a segment (segname) is a pathname or an entryname.
An absolute pathname is all the information the system needs to
locate the designated segment. The system interprets the relative
pathname as an absolute pathname that includes your working
directory; so as long as you know what working directory you are
in, a relative pathname is unambiguous. The si tuation changes
somewhat when the name of a segment is an entryname. An entryname
alone is not enough to designate a particular segment or its
position in the hierarchy, since there might be several segments
with the same name but in different positions in the hierarchy.
Given only an entryname, the system has to find out what segment
you have in mind.

Search Rules

To find the segment, the system follows certain conventions
known as the search rules. The system looks first in the list of
segments you have used since logging in, and if the entryname
appears there the search ends. Otherwise it looks in your working
directory. If the entryname is not in your working directory, it
looks in the system library where Mul tics commands are stored.
Multics commands invoked by entrynames are found by the dynamic
linker--for details on the linker, see "Reference Names and Entry
point Names" later in this section.

The search rules permi t you to invoke standard Mul tics commands
by their entrynames. But if you have a program catalogued in
your working directory under the same name as the entryname of a
Multics system command, typing the entryname invokes the program
in your working directory instead of the Mul tics command. It is
possible to modify the search rules if you need to do so (see the
set search rules and the add search paths commands in the MPM
Commands) .- --

Commands and Command Level

When a ready message is printed on your terminal, the system
is ready to execute programs. The standard ready message consists
of the letter "r n followed by the time of day and two numbers
that reflect system resource usage, namely, central processor time
and pages used.

r 19:44 4.375 3845

2/83 1-5 CC70-01B

After the ready message appears on your terminal, the next
line you type must begin with the name of a segment containing an
executable procedure. In many cases thi s 1 ine incl udes a number
of arguments, as:

segname arg1 arg2 arg~

The name of the segment, and the associated arguments (if
any), order the system to execute the procedure designated by the
name. An executable procedure is in a segment stored somewhere
in the directory hierarchy. An example of such a proc .. dure is a
Multics system command, in which case the name of the segment and
its associated arguments comprise a command line.

Since commands are invoked after the ready message is printed,
the system at ready is said to be at command level. From command
level you invoke a Mul tics system command by typing a command
line on the terminal. The basic form of a command line is:

command_name <arguments>

The command name is the entryname of a segment that contains the
object code of a procedure, and the arguments consist of one or
more character strings. These arguments may be of two types:
required arguments (simply called arguments) and optional arguments
(called control arguments). A control argument is an optional
parameter that may specify a variation on the basic action performed
by a command. Arguments of both types are separated from the
command name and from each other by blanks or tabs. (For information
on the argument of the fortran command, see" Invoking the Compiler,"
in Section 3, and for a list of control arguments that may be
suppl ied wi th the fortran command, see "Control Arguments," in
Section 3.)

2/83 1-6 CC70-01B

THE MULTICS PROGRAMMING ENVIRONMENT

The remainder of this section describes the fundamental data
structures and the system conventions for dealing with these data
structures that together go to make up the Mul tics programming
environment. Because the Mul tics environment is unique among
computer-systems, youro-ay-find it confusing at the-outset ,-e-spe-ci-al1y­
because of two important features: dynamic linking and the use
of a stack segment as storage for program variables. Both these
topics ·are discussed below in such detail as is needed to make
the material clear from the perspective of the FORTRAN programmer;
if you are interested in learning more about Mul tics, refer to
the Programmer's Reference Manual (AG91). I

The Basic Data Structures

THE STACK

Three large storage regions underlie the Multics programming
environment--the stack segment, the free storage area, and managed
storage. The stack segment consistSOf a header 'C'ti1e details are
in "Object Segment Format," in Section 4 of the Programmer's
Reference Manual) followed by a series of stack frames. A new
stack frame is added to the stack whenever a compilation unit--that
is, a number of program units compiled into one object segment--is
called, and removed from the stack (that is, completely discarded)
when the compilation unit returns to its caller. (The stack frames
are entirely managed by the system, and there is no need for you
to take any action with regard to them.)

Each stack frame contains two kinds of information: control
information and program-specific information. The control
information, which consists of such i terns as stack threads and
frame size, is not needed for programming. The program-specific
information, which includes the name of the associated program
and storage for certain classes of variables, may be of interest
to you ei ther for debugging or as an aid in determining how to
assign variables to the different FORTRAN storage classes (see
"Storage Classes," below).

12/83 1-7 CC70-01C

FREE STORAGE REGION

The free storage region is a large storage area used both by
the system and by the programmer. It contains linkage sections,
the reference name table (RNT), and other system data (see "Linkage
Section" and "Reference Name Table" below). The user data in the
free storage region consists of common blocks and other FORTRAN
variables that are allocated static storage. The methods of forcing
variables into the various storage regions and the reasons for
choosing one or another region are described below under "Storage
Classes."

MANAGED STORAGE

Managed storage is used to hold Large Arrays and Very Large
Arrays in automatic, static, and common. This storage is allocated
on demand and freed on request. Managed storage used to hold
automatic storage is freed when the corresponding stack frame is
freed, managed storage used to hold static storage is filed when
the program is terminated or deleted, and managed storage used to
hold common is freed when a dev command for that common block is
executed.

The process directory is normally used to contain managed
storage, but the directory that will hold managed storage can be
specified by setting the variable "fsm dir dir path" in either
the your per-process value segment or your permanent value segment
to the pathname of the directory that will hold managed storage.
This enables you to use some other directory to get managed storage
quota when you do not have a particularly high process directory
quota.

Load Modules, Object Segments, and Linking

A standard Multics object segment is the segment created by
the compiler. It contains the compiled program, varying amounts
of symbolic information, the initial values of variables, and the
information necessary to enable the system to resolve at run time
external addresses that the compiler itself cannot resolve. An
external address, in this context, is the address of an object
outside the segment in which a call originates. The resolution
of external addresses at run time, whether the reference is to a
common block or to another program, is what is known as dynamic
linking. What makes it dynamic is that the system makes no attempt
to learn the address until the external object is actually referenced
during the execution of the program. Roughly speaking, an external
reference is a call from one segment--however many program units
it contains--to another segment. Calls between program units in
a single se gment are, in cant ras t, "i.n t ernal . "

12/83 1-8 CC70-01C

LOAD MODULE

Most other computer systems employ a utility program called
a 1 inkage ed i tor (or linking loader) to resol ve all addresses
before execution begins, creating what is generally called a load
module. A typical load module contains. executable code, local
va-riabl-es-,--c-o-mmen bl-o-cks-,-a-n-d- vary-i-n-g- -amo-un-t-s of -sym-bolic- d-e-bugging
information. When you encounter Multics for the first time, you
may wonder: "How do I load my program?" and "How do I figure
out all the addresses in core?" The structure of Mul tics makes
these questions misleading, as the rest of this section will make
clear. For now, it is enough to say that in Multics, any object
segment is "loaded" as soon as it· exists, and that there is no
core.

The main difference between the execution of a FORTRAN program
embodied in a load module and a FORTRAN program embodied in Multics
is the allocation (and as a result, initialization) of storage.
The dynamic resolution of external addresses as such is probably
not so important to FORTRAN users, in tha t the effect is nearly
always the same whether resolution occurs at link-edit time or
dynamically as in Multics. In what follows below, linking is
discussed in somewhat fuller detail. If you are satisfied by the
explanation of dynamic linking already given, you can skip ahead
to "Consequences of Dynamic Linking," below, where essential
information about linking appears.

12/83 1-8. 1 CC70-01C

OBJECT SEGMENT

The FORTRAN compiler creates an object segment whose contents
the hardware uses directly. It is not necessary for you to make
a copy that is loaded into main memory before execution (a "core
image"). No code relocation is required, and you do not patch
the code with the addresses of external objects (such as subprograms)
unknown at compile time. In particular, in contrast to some other
systems, there is no need to find space in main memory and put
your program (i. e., load module) into it. The Mul tics virtual
memory means that an object segment (if it exists) can be considered
to be in main memory all the time.

The ex e cut a b I e cod e in the M u I tic sob j e c t s e gm e n t can be
shared in real time, which permits many users to execute the same
program at the same time. What makes this sharing of executable
code possible is that the code is isolated from data that cannot
readily be shared, such as the values of variables and the addresses
of external objects~ The addresses of external objects cannot be
shared because in Multics these addresses vary from user to user.
All such information is stored separately for each user and remains
stable for the life of the run, and even beyond. (See "Consequences
of Dynamic Linking" below.") Since the actual addresses are unknown
at compile time, the compiler generates a list of place-holders
(known as the linkage section of the object segment, described
further below). Each place-holder contains two items for each
address, corresponding to the two parts of the actual address.
The first item is a fault tag that causes the program to stop
running and sends a call tOThe operating system for action (a
fault) when the address is referenced during the execution of the
program. The second is a pointer to information elsewhere in the
object segment itself, describing in symbolic form what the program
references. When the central processor reaches an unresol ved address
during the execution of a program, execution hal ts temporarily
and a call goes to a system module known as the linker. The
linker transforms the symbolic address referenced in the program
into a real address, and execution of the program resumes just as
if the address had always been in the place held for it. (See
Figure 1-2 for a graphic representation.) All subsequent references
to that address require no further intervention from the system
because the address has been written into the place reserved for
it.

12/83 1-8.2 CC10-01C

SEG

OBJECT

CODE I I THE REFERENCE IS A 1 FAULT. STOP! CALL
CALL: THE LINKER!

,. .. -_ ... _----- . .. _-
p t

I SYMBOLIC LINKER LOOKS IN SEG
I INFORMAT ION .. FOR NAME OF OBJECT I
I CALLED.
I

t
FINDS ADDRESS AND REPLACES
PLACE-HOLDER WITH IT.
EXECUTION RESUMES.

Figure 1-2. Dynamic Linking

The fault just described is called a linkage fault, and the
process of resolving addresses through such faults is known as
dynamic linking. It is dynamic because the resolution of
external addresses is left until the last possible moment; that
is, until execution actually reaches the external reference in
the program.

THE LINKAGE SECTION

The list of place-holders for external addresses is the
linkage section of the object segment. Since in the course of
execution the linker must fill in place-holders with real
addresses, which vary ~sei by uSer, the linkage 8ection is copied
into the free storage region before execution of the program.
When the external address is actually resolved, the linker writes
the address into the appropriate place-holder in your copy of the
linkage section. Each of these place-holders is known as a link.
(The unfortunate use of the word link in so many different
contexts in Multics is a regrettable accident of history;
however, it is usually possible to determine unambiguously from
context what kind of link is implied.) Whenever one program is
called in your environment for the first time, its linkage

1-9 CC70-01

section is copied into free storage. This goes for the first
time one program references another program as well. The linkage
section of the second program is copied into free storage as a
result of the linkage fault. (For more detailed information on
the object segment and on linking, see the MPM Reference Guide.)

Reference Names and Entrypoint Names

The linker must be able to change a symbolic address into a
real address of the form required by the hardware. Since the
hardware uses a two-dimensional address consisting of segment
number and offset within the segment (word number), the linker
has to write into the place-holder an address in that form. Each
link in the linkage section of the object segment contains a
pointer to a symbolic name recorded elsewhere in the object
segment (in the symbol section). This symbolic name is what the
linker uses in finding the real address that it ultimately writes
into the place-holder.

This symbolic name is in two parts: a reference name (which
identifies the segment) and an entrypoint name (which tells
where, in terms of offset location, the segment is entered). The
linker takes the reference name and searches a set of directories
for an entry with a matching name. If it finds the reference
name, the linker then searches the corresponding segment for the
entrypoint with the specified entrypoint name. If both searches
are successful, the appropriate address is written into the link
in the coPY of the linkage section. (The link is said to be
"snapped.") If either search fails, the linkage fault also fails.

In Multics the reference name and entrypoint name are
combined, with a dollar sign character ($) between them as in
hcs $make seg. In this case, hcs is the reference name and
make seg -is the entrypoint name~ If an external reference
contains no dollar sign, as in ioa, both reference name and
entrypoint naT.e are understood to be the same. As far as the
linker is concerned, ioa is the same thing as ioa $ioa .

The Reference Name Table

Since searching directories is a fairly expensive task, the
Multics system keeps track of all the reference names that the
linker has successfully matched for you. These names and the
necessary identification to locate the associated segment are
held in a special table (allocated in your free storage region)
called the reference name table (RNT). By first searching the
RNT, the linker significantly reduces the search time needed to
locate a segment referenced in a program, because if you have
already referenced the segment elsewhere it will appear in the
RNT. This preliminary search of the RNT is the default and
standard action in Multics.

1-10 CC70-01

The search rules specify a list of directories to be searched
by the linker and the order in which they are to be searched. In
fact, the search rules may contain one thing that is not a
directory--the RNT. By specifying the search rules
appropriately, you can control the order in which directories are
searched, as well as what directories are searched.

When a reference name is placed in the RNT and associated
wi th °a segment, we say that the name is ini tiated for that
segment. The initiate command (see the MPM Commands manual) does
just that--it explicitly associates a reference name (or names)
with a specified segment. The set of names in the RNT refer to
the initiated segments of your environment. (It is also known as
the table of initiated segments.)

Names can
terminate refname
initiating.

be removed from the
command. Terminating

RNT by
is just

use of the
the inverse of

The search rules in force can be manipulated by the three
search rule commands: set search rules, add search rules, and
print search rules. For more information on these commands, see
the MPM Commands manual.

Consequences of Dynamic Linking

One interesting consequence of the reference name table
strategy is that after a reference name is associated with a
particular segment, all subsequent references to that name are
resolved to that segment. The result of an external reference
may be different from what you expect if one program calls
another program by a given name--say, rollow--and there is
already another program associated with the name rollow. There
are several ways in which such an a~biguous reference might
occur. The system, which uses these same mechanisms and shares
the RNTwith you, may have used the name already, or the
association may have been made explicitly outside the calling
program (see the initiate command in the MPM Commands), or the
association may have been made implicitly by another program
executed earlier and unknown to you, or which you have forgotten.
This unexpected and usually unwanted situation can be avoided by
the manipulation of search rules or by the use of the run command
or the where command.

Usually load modules do not allow such ambiguous references,
so if you are new to Multics you should take precautions to
account for, and remove, potentially misleading references in
advance of the program run.

1-11 CC70-01

The Main Program Concept

The Multics command processor (the system module that deals
with commands) uses the linker to find the address of the
entrypoint in the program the command calls. The command
processor is subject to the same conventions as apply when one of
your programs references any other program, i.e., the dollar sign
convention, search of the RNT (if the search rules so specify),
and initiation of the associated reference name at command level.
In addition, a fourth convention applies at command level: if
there is no dollar sign character in the command name (the name
of your FORTRAN program, for example, rollow), and if there is no
entrypoint a in segment a (that is, the rollow$rollow convention
is not satisfied), then the segment is searched for an entrypoint
with the name main (in this case rollow$main). Multics system
commands are understood to be of the form rollow$rollow. User
programs are invoked as commands, but the naming is as follows:
The FORTRAN compiler sets up entrypoint names in the. object
segment in such a way that the main unit in the program has the
entrypoint name main. Since a main program must be the first
unit in a FORTRAN source program, there can be at most one such
in any compilation. (If the first program is a subroutine or
block data program, no main entrypoint name is created.) Note
that two main programs originally compiled apart cannot be
recompiled together since an object segment may contain only one
main program. You could compile a main program and some or all
of its accompanying subroutines independently, deciding later to
combine them in one object segment (either by copying the source
text into one segment, or by binding the compiled object code,
for which see "Binding FORTRAN Programs," below). There would be
no reason to compile or bind different main programs together,
however.

NOTE: the name main is reserved for system use, and you
cannot use it-as your own name for a program or as
any other kind of symbolic name.

This main mechanism means that you can give the segment
containing a FORTRAN program any other name you wish, or rename
such a segment at your discretion, and the linker will still find
the main entrypoint without the need of a dollar sign entrypoint
name.

Common Block References

When a FORTRAN program references a common block, the
standard linkage mechanism resolves the reference, but a special
link is placed in the linkage section and the search rules are
bypassed unless there is a "$" in the name. The linker searches
the list of external variables currently defined in your
environment.

1-1 2 CC70-01

Common blocks, as they are called in FORTRAN, in Mul tics
terms are external variables. External variables are a special
class of variable-allocated storage in the free storage region.
The name of the external variable corresponding to a common block
is identical to the name of the common block declared in a FORTRAN
program. The amount of storage allocated for normal common blocks
can ---be -up- -t-o---l-6- --MW--i--f the V-e-r-y-La-r-geArray----c-o-mpi1-a t ion --fe-ature--ts
selected; otherwise, common block length is limited to nearly the
size of a segment (255K). In any case, the size of a permanent
common block is limited to the size of a segment (255K). Common
blocks in Multics are either permanent-named common blocks with a
name that ends in the "$" character (a dollar sign name)--such a
common block must exist before a program references it--or common
blocks that are allocated and initialized at run time as specified
in the program.

In many FORTRAN implementations on other systems, programs
get one core load per run, wi th the resul t that both local and
common storage are released at the end of the run. In the Multics
system, normal (not permanent) common storage remains allocated
until it is explicitly released.. You might expect new common
storage to be allocated at every run. For a discussion of the
problems that arise and how to control them, see "Run Uni ts,"
below ..

The first program unit that references a common block should
be compiled or bound ltlith the block data subprogram that initializes
the common block; otherwise there is no guarantee that the block
is initialized correctly. Only a block data subprogram may contain
data statements to initialize the variables in a common block.
Data statements for common variables in other subprograms are in
error.

The initial data placed in a common block when it is allocated
depends on the declaration of the common block in the block data
subprogram, assuming there is one. If there is no block data
subprogram associated with the link that triggers allocation of a
common block, the entire block of storage is initialized to zeroes.
In order to associate a block data subprogram with a program in
which common variables are referenced s you have 8 choice of three
options. First, you can compile the program with the block data
subprogram, that is, from the same source segment.. Second, you
can bind the program with the block data subprogram (see "Binding
FORTRAN Programs," below). Third, you can use the set fortran common
command to explicitly initialize (and, if necessary, allocate)
the common block.

12/83. 1-13 CC70-01C

The set fortran common command i~ given the names of objects
segments as arguments. Every object segment that is part of the
FORTRAN run should be supplied on the command line to ensure that
the common blocks are properly initialized. The command searches
the segment for any common block definitions. For all such that
it finds, it allocates and initializes the common blocks as
appropriate.

If· a common block is created as a resul t of action by the
dynamic linker (that is, if it is not a preexisting named command
block), all further references to the common block must be consistent
with the first reference. For instance, if the first reference
is from a program that declares only some of the variables in the
common block, storage will be allocated only for these variables.
Subsequently executed programs that reference the same common block
cannot declare more variables than declared in the first program.
If a second program is run in which other variables in the common
block are declared, an error occurs because the program may attempt
to reference beyond the storage allocated for the common block.
The linker refuses to resolve the subsequent linkage fault.

To get around this problem, the simplest thing to do is to
use identical declarations for one common block in all the program
units that reference it. Another solution is to use the
set fortran common command to specify the program for which the
lar~est com~on block is declared. The set fortran common command
should then be issued before any such FORTRAN programs are run.

PERMANENT COMMON BLOCKS

Permanent segments used as common blocks are identified in
programs by a dollar-sign character ($) in the names of the common
blocks and are located by the Multics linkage mechanism. Thus a
segment called "name" in the storage system would be referred to
as "name$" by a FORTRAN program.

2/83 1-14 CC10-01B

Mul tics FORTRAN allows programs to reference permanent segments
in the storage system directly rather than as files accessed by
input/output statements. In many applications, this feature means
a significant gain in performance. To make a direct reference to
a permanent common block, the dollar-sign character ($) is used I
in the name of the common block, as described above. When the
I ink-er is asked to -resolve an external reference to such a common
block, - the block is located through the search rules. If the
name consists of a single name followed by a dollar sign (for I
example, name$), the entire segment associated with the reference
name is treated as the common block. That is, the common block
starts at offset zero in the segment. When the common block name
has two components (for example, name$first), the segment must I
have an already defined entrypoint, but the standard linker
conventions generate the real value for the offset defined by
first.

Data in permanent segments must be generated by a FORTRAN I
program in order to comply with the internal format requirements
for FORTRAN data.

Note that when information is stored in a permanent common
block, the segment will continue to show a bit count of zero
until the bit count is updated. To find out how much storage a
segment is actually using, check the record count by using either
the -records used control argument with the status command or the
-record control argument with the list command.

2/83 1-14.1 CC10-018

I

This page intentionally left blank.

2/83 CC70-01B

COMMON STATEMENT

Use of the common statement causes variables to reside in
common storage. Variables in each common block are ordered within
the block in the order in which they are listed in the common
statements of the subprogram. Double-precision and complex
variaoTEfs are always allocated on aneven-wo-rdboundary.As a
result, a word of fill may precede a variable in the common block.
The declarative statements used to define the common block need
not be the same, but they must specify the same total amount of
storage, including any fill added by the compiler. If the modes
of the variables do not match, you must be aware of the mapping
you obtain and the possible bad effects on the correctness of
your program should you err, since the FORTRAN language generally
requires that the modes match.

Initial ization of unlabeled common is not permitted. Different
subprograms may define different lengths for unlabeled common.
Different subprograms must define identical lengths for the same
named common block.

Storage Classes

There are basicall y four kind s of storage avail able to FORTRAN
programmers (other than files used through input/ output statements) .
These are:

automatic storage
static storage
normal common storage
permanent common storage

Automatic storage is normally allocated in the stack frame
associated with a program. It is initialized when the stack frame
itself is allocated, and again each time new storage for those
variables is required; that is, for every new invocation of the
associated program unit or units. It is the default storage class
in Multics FORTRAN for local variables. A variable not declared
to be in common storage is in local storage by default, and local
storage is automatic by default. Local variables can be explicitly
declared automatic with the automatic statement. Automatic
variables are undefined when the corresponding program unit completes
execution.

2/83 1-15 CC70-01B

When Large Array or Very Large, Array automatic storage is
used, storage for arrays is allocated in managed storage, wi th
pointers to this storage left in the stack frame. In such a
case, that stack frame level (as known by the stack pointer)
"owns" that managed storage. When the stack frame is released,
the managed storage is also released.

If you are familiar with other operating systems, you may
expect local variables to be static. That is, on other systems,
local storage is allocated before execution, initialized once,
and not initialized again during the program run. Consequently,
in these other systems, variables in local storage hold their
values after a subprogram returns. If that subprogram is called
again, at the start of execution local variables have the values
they held at the time of the previous return. To convert programs
written on these other systems to Multics, you should add a save
statement or a %global or %options static statement. (See the
Multics FORTRAN manual for a full description of these statements.)

Static storage is normally allocated in the free storage
region and is initialized when the linkage section of the program
is copied into the free storage region--in other words, when the
program is referenced in your environment for the first time.
Static storage is allocated for the life of a FORTRAN run. For
run units (see "Run Units," below), the life of the run is until
the run unit terminates. For all other program runs, the life of
the run is until a new proc or logout command is issued. Static
storage is initialized only when it is allocated, and is not
initialized again however many times the referencing program is
called during a run. Static variables, once defined, remain defined.

When Large Array or Very Large Array static storage is used,
storage for arrays is allocated in managed storage, with the pointers
to the storage left in the static section within the free storage
region. In such a case, that linkage section "owns" that managed
storage. When the program I s linkage section is released by deletion
or termination, the managed storage is also released.

Local variables can be declared static with the save statement
or the %global or %options static statement. Local variables not
explicitly declared automatic, in the case where some variables
are explicitly declared automatic with the automatic statement,
are static by default. You should declare local variables static
when their values must be saved from call to call.

Normal common storage is allocated at first reference or with
the set fortran common command (see "Common Block References,"

I above). Common variables are always static. When Very Large

12/83 1-16 CC70-01C

Common (VLC) is used, it is allocated, in the managed storage area
and is initialized and allocated when the compilation is first
called or when the first reference in a bound-unit is made to a
non-VLC block with the same name as a VLC block bound in the same
bound unit. In this case, the VLC is allocated in the managed
storage area and initialized through the link-snapping mechanism.

AUTOMATIC VARIABLES

Most of you are familiar with the common and local static
forms of storage in FORTRAN. As long as you restrict variables
to these storage classes--declaring variables common or specifying
them for local static storage with the save statement (or the
%global or %options static statement) --you should experience no
surprises. Automatic storage, however, is a concept alien to
many FORTRAN users, and it can lead to a great deal of confusion
because the compiler handles it in different ways. Program units
compiled together reside in the same obj ect segment. Automatic
storage is allocated for the whole segment whether it contains
one program unit or several. To understand the problems connected
with automatic storage, you must first understand the significance
of compiling many programs together from a single source segment.

PROGRAM UNITS COMPILED TOGETHER

If all the program units in a program are compiled together,
you get something that resembles a load module: the system makes
no distinction between the files that comprise the segment, and
they all occupy contiguous storage. This has the added effect of
increased efficiency of execution.

12/83 1-17 CC70-01C

Quick Calls

The FORTRAN compiler attempts to create an object segment
that executes as fast as possible. In so doing, it uses a very
fast internal call/return protocol that takes advantage of the
fact that FORTRAN is not a recursive language. In particular,
when program units are compiled together, no separate stack frames
are generated for the different program uni ts, and thus stack
frames are not created and destroyed in calls between such program
units. This means automatic storage works differently when distinct
program units are compiled together and when they are not. When
distinct program units are compiled together in a single object
segment, the automatic variables remain defined until control leaves
the 0 b j e c t s e gm e n t . The y are all 0 cat e d s tor age an din i t i ali zed
only at the beginning of execution, and if a subprogram compiled
wi th other subprograms is called repeatedly in the course of a
run, the variables retain at each call the values they held at
the previous return. So it goes until the subprogram returns to
its caller for the last time.

When distinct program units are not compiled together, the
values of automatic variables become undefined when a subprogram
returns and are not retained for a later reentry to the subprogram.

The compiler sets up all entries to subprograms compiled
together using the fast call/return protocol. The main significance
of this fact is that automatic variables in subprograms so compiled
are initialized only when the stack frame is created. Moreover,
because the calling program and the subprogram it calls are in
the same object segment, there is no new allocation of storage
when the subprogram is called from within the segment. When the
two program units are in different segments, by contrast, storage
is allocated for all program units in the segment that contains
the program unit being called. Thus, for the sake of programming
efficiency, you should compile together programs that call each
other, so as to minimize calls between segments. The treatment
of automatic variables in subprograms compiled together is in
direct contrast to the treatment of automatic variables in
independently compiled subprograms. (In the case of subprograms
compiled together, the designers of the compiler could have decided
to have all automatic variables of a given subprogram initialized
every time the subprogram is called--and the compiler may indeed
do this in the future. At present, automatic variables in programs
compiled together retain their values through successive calls
and returns as long as the stack frame exists. The stack frame
goes when the program returns to a caller outside the segment,
such as an independently compiled program.)

Programs that work when compiled in a block may not work if
broken apart and recompiled separately if they do not adhere to

12/83 1-18 CC10-01C

the definition of automatic storage. (The ANSI Standard definition
of automatic storage states that the values of automatic variables
become undefined when a subprogram returns.) The same goes for
programs that are first compiled separately and later compiled as
a unit. Therefore, if you want to debug a particular program
unit independently of other units in a program, you should compile
it by itself first, and only after testing compile ~t in a block
with the other units of the program. If the program is in full
conformance with the ANSI Standard, it will work no matter how it
is compiled.

Any subprogram or function that is passed to a routine as a
parameter uses the long calling sequence rather than the quick
calling sequence, whether it is within the same compilation unit
or not. This causes a new stack frame to be laid down and all
necessary initializations to be performed. The effect of such a
calling sequence may noticeably degrade execution of the program.
The only optimization possible for this situation is to compile
separately all routines to be passed in such a manner into their
own compilation unit, thus limiting the initializations performed.
In addition, since a new stack frame is laid down, the automatic
variables known wi thin the calling program are not initialized
within the called program, even if it is within the same compilation
unit, unless they are formal parameters passed by the calling
routine.

SEPARATELY COMPILED PROGRAM UNITS

"'Then program units are compiled separately, automatic variables
are allocated storage at the beginning of execution of each
subprogram. When a subprogram returns to its caller, automatic
variables are released and their values become undefined. Storage
is allocated anew at each subsequent call, and ceases to exist at
each return. Automatic variables exist, in this case, only for
the execution time between call and return" These automatic
variables are initialized to zero each time the program referencing
them is invoked, unless the program contains a %global no auto zero
statement or explicitly initializes variables with a data-statement
or an assignment statement. As a matter of good programming practice,
it is best to initialize all variables in assignment statements,
to ensure that thev will behave the same wav no matter how the
program units are compiled. (See "Failure to -Initialize Automatic
Variables," below). Programs written to depend on the initialization
to zero of automatic variables that have no specified ini tial
values may not work on other systems if transferred from Multics.
However, the most efficient way to initialize ::s in bulk at allocation
time. If a program's variables are to be in it ial ized, and performance
is the issue, that is the time to do it. If portability is the
issue, use static variables. (See "Undefined Variables," below,
for some further factors to consider.)

12/83 1-19 CC70-01C

FAILURE TO INITIALIZE AUTOMATIC VARIABLES

In the Multics system, an automatic variable whose value has
become undefined after a return is initialized to zero the next
time it is referenced, unless the program that references the
variable explicitly initializes it to some other value (unless
%global no auto zero is specified). Thus when an independently
compiled subprogram is invoked, uninitialized automatic variables
are set to zero, and their values become undefined after a return.
Since the standard specifies that variables in local storage become
undefin~d after a return, variables given zero values by Multics
when storage is allocated for them are, strictly speaking, undefined
throughout execution until defined in an executable statement. A
program that references variables whose values are undefined is
not a valid program. Programs consisting of separately compiled
program units that reference automatic variables of undefined value
may work in the Multics system, but to expect that they will is a
programming mistake. Moreover, it is not recommended that you
count on variables in independently compiled program units to be
initialized to zero, primarily because the same group of program
units will execute differently if they are later compiled together.
In particular, it is a mistake to expect automatic variables in
separately compiled program uni ts to retain their values from
call to call. A separately compiled program unit written in the
expectation that local variables retain their values over a
succession of calls is in error. The compiler will correct the
error when program units are compiled together. You are encouraged
to declare variables that are to be retained static by using the
save statement (see below), and to explicitly initialize automatic

I variables in the subprograms in which they are referenced. (All
Large Array and Very Large Array automatic storage is automatically
zero at all times, since the segment is truncated when returned
to the storage manager.)

Initialization

If a program relies on the compiler to initialize automatic
variables to zero (or initializes automatic variables with a data
statement) in the expectation that the variables will be initialized
at every call, the program must not be compiled in one segment
with any programs that call it. The reason is that automatic
variables are not initialized every time a program unit is called
within the segment, but only when the call originates "externally,"
that is, from a program unit in another segment. Another way of
saying the same thing is that the behavior of the program will
vary as a function of how the program was compiled. This situation
is extremely undesirable, and you are encouraged to avoid it either
by explicitly initializing all automatic variables by the use of
assignment statements or by declaring variables static either with
the save, %global save, or %options save statements or in common
blocks ..

12/83 1-20 CC70-01C

UNDEFINED VARIABLES

All variables in automatic local storage become undefined
when their storage is released. In implementations where storage
is allocated only once for a program run, the values of local
variables can be expected to stay around from call to call. In
Multics, stor~ge f6r program units bo~pil~d together is released
after the last return, and storage for separately compiled program
units is released each time a program unit returns. The values
of variables, after release, are truly undefined. There is no
way to ·control with certainty what values variables contain once
they have become undefined.

It cannot be overemphasized that programs wri t ten to take
advantage of the fact that, on other systems, local storage is so
allocated that in fact variables do not become undefined may not
run on Multics. Such programs are in error according to the ANSI
Standard, which states that unini tialized variables in local storage
become undefined after a return. If you add a generalized save
statement to such programs, however, they will execute as expected.
Such programs do not work as effectively with the optimizer as
those that do not save variables globally, however. In the Multics
system, automatic variables become undefined 1) when their storage
is released; 2) when a program run terminates.

SAVE STATEMENT

In local storage, you can explicitly declare variables to be
static with the save statement. A save statement in a subprogram
without an accompanying list of variables causes all variables in
the subprogram to be declared static. These static variables are
allocated for the entirety of the program run, no matter how many
times a subprogram is called and returns.

12/83 1-20. 1 CC70-01C

This page intentionally left blank.

12/83 CC70-01C

If you wish to specify a number of variables for static
storage, use a save ~tatement. All variables not specified will
have the automatic storage class attribute. If you use a save
statement to specify a list of variables in a subprogram, only
those variables are static and only in that subprogram; in this
way, for example, you can declare a counter variable to index the
number of times a subprogram is called in a particular run.

Th~ saVe statement is standard in Fortran 77.

Example:

subroutine x
save c
c:c+1
return
end

AUTOMATIC STATEMENT

The automatic statement makes it possible for you to specify
a set of variables for automatic storage. Its effect is to change
the defaul t to static; that is, variables not specified in the
list of the automatic statement are declared for static storage.
Variables declared automatic should be explicitly initialized in
the subprograms in which they are referenced.

The automatic statement is an extension to standard FORTRAN.
It is included in Multics FORTRAN for the sake of convenience; if
you want to save most of a long list of variables, but wish to
declare a few to be automatic, the automatic statement enables
you to specify the automatic variables and thus to save all the
others.

DATA STATEMENT

Automatic variables are initialized by the data statement
whenever new storage is allocated. For subprograms compiled with
a main program, storage remains allocated until the run terminates.
For subprograms compiled separately, storage is allocated every
time the subprogram is called. For subprograms compiled together
with the main program, the data statemeDt initialize3 a~toillatic

variables only once per run. After the first time such a subprogram
is called, the data statement has no effect on the values of
variables. A data statement in an independently compiled subprogram
initializes automatic variables every time execution enters the
subprogram. In other words, when a data statement is used to
initialize variables in a separately compiled subprogram, the
variables get initialized values at every call because the allocation
is thrown away at every return.

12/81 1-21 CC70-01A

In the case of programs compiled together, the use of a data
statement to initialize automatic variables in subprograms is not
recommended. Whether or not you compile your programs together,
you should explicitly initialize automatic variables with an
assignment statement in the subprogram in which they are referenced.
In the case of an independently compiled program unit, that data
statement is sufficient, but, again, if that program unit is later
compiled with others, the effect of the data statement may change.
It is therefore recommended that you use the assignment statement
to initialize automatic variables unless there is some important
reason not to do so.

The data statement is chiefly useful for the initialization
of static variables, whether local or common (see "Common Storage"
below). Local variables initialized with the data statement should
be declared static with a save statement.

Run Units

As already mentioned, the inclusion of the RNT among the
entities searched when the linker is looking for a reference name
can lead to the linker's finding a segment other than the one you
have in mind. There are three reasons why this unexpected and
confusing error can occur. First, you may be unaware that the
reference name has already been initiated for another entirely
independent segment. Second, you may have forgotten that the
name has already been initiated. Third, you may have several
programs with the same name, in the expectation that the system
will find the "right" one each time.

Nearly all these problems can be solved with the run command,
which in essence sets up a new FORTRAN environment, called a run
unit. The run unit carries with it none of the history of your
environment before the run. (This history includes initiated
reference names in the RNT, common block storage, and static storage.)
The new environment brings with it a new free-storage region and
a new, empty RNT. All storage allocated in the free-storage region
is effectively reinitialized, including normal common blocks and
storage declared static with the save statement.

Permanent common blocks, being segments in the Multics storage
system at large, may not be the same before or during a run unit,
depending on how the search rules for the two environments are
set up. Automatic storage is always initialized when the stack
frame containing the storage is allocated.

12/81 1-22 CC70-01A

If the first program to reference a common block is not
compiled or bound with the block data'subprogram that initializes
the common block, the common block may not be successfully
initialized. The set fortran common command circumvents this
possibility by initialiZing common storage for a FORTRAN run.

USE OF THE RUN COMMAND

The run command has a powerful but very simple user interface.
In its simplest form, it takes a single argument--the name, including
the entrypoint name, of the main program of the run. A new environment
is established and the main program is called. On return from
the main program--when execution terminates in an end line or a
return or stop statement--the environment is cleaned up and
discarded. The only lasting effects that FORTRAN programs can
have if run in this environment, therefore, are in the use of
input / out put statements that change files or in the use of permanent
common blocks. All automatic, local static, and normal common
storage is discarded at the end of the program run. The prior
environment is reestablished, with the result that the values in
common and local static storage, and the reference names in the
RNT, are backed up to their state just before invocation of the
run command.

The ini tial RNT used by
-copy reference names control
selected; -

QUIT, START, RELEASE

a run unit
argument of

is empty unless the
the run command is

Programs in execution or waiting for input can be interrupted
with the Multics quit facility. You press the ATTN or BREAK key
(whatever it is called on the terminal you use). The program is
then suspended and a new command-level environment established 0;

The old environment is not destroyed and can be restarted if
desired via the start command. If you do not want to retain the
old environment you can discard it and return to the original
command level by use of the release command. If you issue the
release command after a QUIT, unless the program is run within a
run unit, the files used by the program are left in an inconsistent
state. To clean up such files, use the close files command. When
the program runs within a run unit, files are-automatically closed
where appropriate.

12/83 1-23 CC10-01C

I Issuing a quit while running in the FAST or DFAST subsystems
aborts the program completely, just as issuing a quit and then a
release does in the normal Multics environment. All input/output
files are closed and common blocks freed.

I
Due to the manner of implementation of fortran io and its

method of stack frame use, it may not be possible to restart
programs in all instances, since it is possible to lose the stack
frame information for fortran io through unwinding of the stack.

PAUSE, START, RELEASE, STOP

If a pause statement is executed in a FORTRAN program in the
FAST or DFAST subsystem, then the message "PAUSE NNN" is printed
out (where NNN is the optional argument). If the pause statement
is not executed in FAST or DFAST, then the fortran pause condition
is signalled and the info string associated with the condition is
set to the pause argument~ if an optional argument exists. This
condition is fully restartable and can be managed either through
PL/I signal handlers or at command level, using the on command.
If no signal handlers exist for the condition, the current program
is suspended and a new command level established. At the new
command level, you can issue normal commands. The two most relevant
to the execution of the FORTRAN program are start and release.
Issuing the start command after execution of a pause causes the
FORTRAN program to resume execution of the statement immediately
after the pause statement. Issuing a release command after execution
of a pause statement causes the current FORTRAN program stack
environment to be discarded and a return to the previous command
level. Unless the program is run wi thin a run uni t, releasing
the program in this way leaves the files used by the program in
an inconsistent state. To clean up such files, use the close file
command. When running programs within a run unit, the files are
automatically closed, if appropriate, whether the run is terminated
normally, abnormally, or by the action of the release command. A
stop statement in the program terminates execution and returns
the program to its caller.

12/83 1 -23. 1 CC10-01C

When the pause statement is executed in an absentee environment,
the for'tran pause condition is signal'led and the message "PAUSE
NNN" is prInted out (where NNN is the optional argument).. If
there is no condition handler established for the pause signal in
absentee, then the program continues; a new command level is not
established.

Figure 1-3 gives a pictorial view of what the stack segment
might look like at different times during a FORTRAN program run:
in Figu"re 1-3a, the last frame of the stack is for the command
level programs. From command level, you can type commands at the
terminal. Once a command is typed, for example the name of a
FORTRAN program, that program is called and a stack frame immediately
allocated for it (Figure 1-3b). The stack remains in this state
for the duration of execution of the FORTRAN program.

12/83 1-23.2 CC70-01C

a

Header Header Header

initial initial initial
program program program

first first first
command command command
level level level

FORTRAN FORTRAN
program program

b
(signal
overhead)

second
command
level

c

Figure 1-3. State of Stack

(a) State of Stack after Login
(b) State of Stack after Command is invoked
(c) State of Stack after Quit

quit
information

Figure 1-3c depicts the stack after a quit is signalled (or
equivalently, after a pause is executed). Here a second command
level is established. The first command level, and the FORTRAN
program itself, have been suspended but nothing has been thrown
out.

At this point you may issue further commands. The start
command would cause the FORTRAN program to resume execution; and
the stack to revert to the state illustrated in Figure 1-3b. The
release command would cause the stack frame (and hence the execution
state) of the FORTRAN program to be discarded, and the stack to
revert to the state depicted in 1-3a.

1-24 CC70-01

Note that it would be possible at the second command level
(Figure 1-3c) to invoke the same FORTRAN program called at the
first command level. This re-entrant execution of FORTRAN
programs is ill-advised, since if the program references static
local storage, common storage, or input/output statements there
will probably be troublee In fact, the files opened and used
during the first invocation of the FORTRAN program would be used
again in the second invocation. In the event that the first
invocation is ever resumed, unexpected behavior is likely to be
the result, since many variables, attributes, and so on have been
changed· during the second invocation of the program--unknown, of
course, to the first invocation.

1-25 CC70-01

Automatic Storage in Stack Frames

Figure 1-4 illustrates several of the states of the stack
during execution of a FORTRAN program consisting of several
subprograms. The call/return sequence depicted is:

Program A calls program B
Program B calls program C
Program C returns to B
Program B calls program D
Program D returns to B
Program B returns to A
Program A returns to command processor

These diagrams illustrate the behavior of four separately
compiled programs, each allocated a new stack frame each time it
is called. (Recall that, in the absence of a %global
no auto zero, this form of allocation initializes the automatic
variables either to zero or to values specified in data
statements.)

1-26 CC70-01

Header Header Header

initial initial initial
program program program

first first first
·command command command
level level level

a I A-auto I I A-auto I
A A

b

I

I B-auto I
B/

c

I I I I A A A

I B I B I "0 I

I II I I
.lJ

I ~ Ii

e f

A A

B

g h i

Figure 1-4. Allocation of Stack Frames

1-27 CC70-01

(a)
(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

User at command level
A is invoked and gets stack frame, in which automatic
variables are allocated and initialized.
A calls B. B gets stack frame, in which automatic
variables are allocated and initialized.
B calls C, C gets stack frame, in which automatic
variables are allocated and initialized.
C returns to B, the stack frame for C is discarded, and
storage is released.
B calls D, D gets stack frame, in which automatic
variables are allocated and initialized.
D returns to B, the stack frame for D is discarded, and
storage is released.
B returns to A, the stack frame for B is discarded, and
storage is released.
A returns to command level. All program-specific
automatic storage is released.

1-28 CC70-01

Figure 1-5 illustrates the states of the stack when the
program calling sequence is the same as in Figure 1-4, but here
programs A and B were compiled together and programs C and D were
compiled together. Note that there is no change in the stack
when programs compiled with other programs are called. (Since
there is no change of state, the automatic variables are not
initialized on these calls.)

Header Header Header

initial initial initial
program program program

first first first
command command command
level level level

I A-auto I I A-auto I
(B-auto I

A

I B-auto I
I

a c

A,B A,B

I C-auto I I C-auto I
-- - "--_ .. - -----

EJ
d e f

1-29 CC70-01

A,B •

A,B.

I

Detail of state d

Header

initial
program I A-auto I I A-auto I

first command
level I B-auto I I B-auto I

A,B A
g fi

A-automatic

B-automatic

A,B

C-automatic
i

D-automatic

C

d

Figure 1-5. State of Stack in Program Compiling

1-30 CC70-01

(c)

(d)

(e)
(f)

(g)

(h)
(i)

User at command level.
A is invoked, and gets stack frame, in which automatic
variables of both A and B are allocated and
initialized.
B is invoked. No new stack is created for it, because
the automatic variables were allocated on previous
call.
B calls C, C gets new stack frame, variables for both C
and Dare allocated and initialized. Note that in
state d, the automatic variables stored for D are never
used. They are allocated anyway since the stack frame
is the same.
C returns to B, stack for C and D is released.
B calls D, D gets stack frame back, variables for both
C and D are allocated and initialized. Note that in
state f, the call to D does not imply any usage of the
variables stored for C, just as in state d.
D returns to B. The stack frame for C and D is now
released.
B returns to A. There is no change in stack frame.
A returns to command processor. The stack frame for A
and B is now released.

Binding FORTRAN Programs

The Multics bind command
FORTRAN object segments into one.
thing in Multics to a load module,
analogous to a link-edit program,
many external references as it can

can be used to merge several
The end product is the nearest
and the binder is in some ways
since it actually resolves as

in order to avoid the linkage
-Pr<t.,,1 --1- +.'L-.t..r"\+ T_"r", ... 1 ~ "-I-,,,",",...,T_'I""; r..", ",.,. "".. -1- "..,... -1-"; YYIII" Q 'J,." "-+'"".."".. ,,,....
.LQ.I.A...I..lIO lIUQ.lI WVI.A...I..I.L VlIlJ.Ci W.LOC vvvl.A.i Q.lI i l.A.ii lI.LillC. Ul.A.VU iC.LCiCUvCO

are resolved by the binder without recourse to the search
rules--the binder looks only in the programs that are being
bound, and rejects any programs in which there are ambiguous
external references. Hence, many of the unexpected consequences
(or side effects) of dynamic linking disappea~ when the binder is
brought into play. This procedure offers the advantages of
taking up less storage for the object code and avoiding many
linkage faults that would otherwise occur if the bound programs
referenced each other from separate segments. The object
segments to be bound must not have been created using the
-non relocatable control argument.

The behavior of automatic variables is in no way changed by
the binder. They are initialized according to the way they were
originally compiled.

Because of the addressing
object segments and the binder's
it is impossible for the binder
local static storage in excess
FORTRAN programs are limited to

1-31

methods used by most Multics
knowledge of these techniques,
to bind together programs with
of 16,384 words. Hence, bound

this amount of local static

CC70-01

storage. If there is a need for more storage, you can use
automatic variables where appropriate, or common blocks. If you
initialize a common block in a block data subprogram, the block
data subprogram should be bound with subprograms that reference
the commo~ block, and, in particular, with the subprogram that
first references it. A template of initial values for each
initialized common block goes into the bound segment that
contains the block data statement; hence it may be that a large
initialized common block cannot be bound.

1-32 CC70-01

SECTION 2

ENTERING YOUR FORTRAN SOURCE PROGRAM

LOGIN

To log into the Multics system, type the command:

login <person)

The system types back a prompt for your password:

Password:

Then you type your password, which is either masked by characters
output to your terminal, or simply suppressed. When you receive
a ready message, you are logged in.

CREATING A SOURCE SEGMENT

Once you have successfully logged into the system, a ready
message prints out on the terminal. You are now at command
level, and the system is ready to accept commands. To create a
source segment containing the ASCII text that represents a
FORTRAN program, you must invoke an editor.

Those unfamiliar with time-sharing systems, and Multics in
particular, may not have experience with an online text editor.
A simplified introduction to the Multics text editors is found in
the New Users' Introduction to Multics. The essential
information for creating a FORTRAN source segment is provided
below.

2-1 CC70-01

To create a FORTRAN source named test. fortran that prints a
simple message, you could invoke the qedx text editor as follows
(exclamation points indicate lines you type):

qedx
a

! \f

write(O,1)
format("What is the output of this program?")
end

w test.fortran
q

Typing the Multics command qedx invokes the editor; the append
request (a) signifies that the lines to follow are input to the
editor; on succeeding lines the actual text of the program follows.
(Since the Multics system differentiates between upper- and
lower-case alphabetic characters, examples of FORTRAN text in this
manual will be, for the most part, in lower case.) At the end of
input, type \f, which terminates input and makes it possible to
issue further requests to the editor. The write request (w) with
the relative pathname test.fortran saves the input in a segment.
A quit request (q) returns you to command level. A source segment,
named test. fortran, is now created and listed in your working
directory. The suffix ".fortran" is required.

In addition to these simple editor requests, qedx supplies

means of altering and replacing character strings line by line,
changing lines, deleting and inserting text. A basic subset of
editor requests, as described in the New Users' Introduction to
Multics, is a necessity for effective interactive use of the Multics
system.

At this point, you may wish to edit or to compile your program.
To edit, type qedx and read the segment into the editor using the
read request (r) (see the MPM Commands manual for a complete
description of qedx requests). To compile, see Section 3 of this
manual.

INPUT FORMAT

Two formats can be used for source-program text: freeform
and card image. In freeform format, each line is interpreted as
a sequence of characters without consideration of column fields.
Freeform format is a nonstandard option in Multics FORTRAN that
makes it difficult to transfer a program to another system.
Conversion of card-image programs to freeform programs is not
recommended if the program is to be moved from Multics to another
system. In card-image format, each line is interpreted as fields
of characters that are defined by column positions.

12/81 2-2 CC70-01A

Uppercase and Lowercase Letters

The FORTRAN compiler distinguishes between uppercase and
lowercase characters (in particular, the compiler expects all
keywords of the FORTRAN language to be lowercase), but since many
other computer systems use only uppercase characters, an option
is provided by which you can instruct the compiler to treat all
characters (except those in character-string constants) as if
they were lowercase. This option, specified at command level
with the -fold control argument of the FORTRAN command (see
Section- 3), is useful in compiling programs brought over to
Multics from other systems. It also makes it possible to write
new programs that are intended to be portable to other systems
entirely in uppercase characters. The -fold control argument is
assumed when the -card control argument is specified (i.e., for
card-image files); when the -fold control argument alone is
specified, the uppercase source program is assumed to be in
free-form format (see "Free-Form Format" and "Card-image Format,"
below. For a complete list of control arguments available with
the compiler, see Section 3 of this manual.)

NAMES IN THE FORTRAN PROGRAM

Symbolic names in Multics FORTRAN programs may be from 1 to
256 characters long. Use of the underscore character () in such
names is a Multics system convention and makes the program
nonportable and nonstandard; so does the use of more than 6
characters. The dollar sign character ($) should appear only in
names that reference external objects; the dollar sign character
has a special meaning in Multics, and only one dollar sign
character is permitted in a name (it cannot be the first
character). (For information about dollar-sign names, see
Section 1 of this manual.) Use of the dollar sign in a name
within a program makes the program nonportable and nonstandard.
External names must have no more than 32 characters before the
dollar sign"

Free-Form Format

There
comment and
numbers.

COMMENTS

are special conventions in free-form format for
continuation lines, the use of semicolons, and line

If the first character on a line is an uppercase or
lowercase c, text on that line is interpreted as a comment. An
asterisk (*) or exclamation mark (!) that appears as the first
nonblank character on a line can also be used to signify a
comment. The appropriate use of the * and! characters can
enhance the readability of a listing: for example, comments can
be grouped toward the right margin to distinguish them from code.

2-3 CC70-01

The effect of marginal notation can be further enhanced with the
! character, which is interpreted as the beginning of a comment
wherever it occurs outside a character string constant. All text
on the containing line after an exclamation mark is interpreted
as a comment and is ignored by the compiler except for listing
purposes.

Example:

475 p = p+1

c the first subscript in the array is assigned
c a value, since we have a prime number

primes(p)=iprime

Example:

data primes(1),primes(2)/2,3/ !First two elements

Example:

data primes(1), primes(2)/2,3/

*

!of array are initialized
!with data statement

* data statement initializes first two array elements
*

Note that in free-form format any line with c as the first
character is interpreted as a comment:

integer i
complex c
c = 0
print, "type the number"
input, i
c=cmplx(O.O,float(i»
i= int (aimag(c))
print,i
end

This example, in which all lines begin in column 1, will
fail to compile because it contains three lines that the compiler
interprets as comments. To be certain of obtaining the desired
results in free-form format, you should make a practice of
reserving column 1 for comments. To make the source program more
readable, as well as to avoid the ambiguity exemplified here, it
is recommended that all lines other than comments and those

2-4 CC70-01

containing statement labels be
character.

typed with an initial TAB

CONTINUATION LINES

If the first nonblank character of a line is an ampersand
character (&), subsequent text is interpreted as a continuation
of the previous line and concatenated to the text on the
preceding line. There is no limit to the number of continuation
lines in a FORTRAN source text (although there is a limit to the
actual size of the statement. See Section 4 of this manual,
"Constraints").

Example:

y=array(k)*vect(k)/array(k+1)-O.7/array(k+1)
& +array(k+1)*array(k-1)*x

Note that an initial ampersand in column
interchangeably as a continuation indicator
card-image format~

SEMICOLON

6 can be used
in free-form or

The semicolon character (;) can be used to separate
statements on a single line, with the restriction that statements
after the semicolon and on the same line cannot be labelede (An
end line must not contain a semicolon.) In general, the use of
semicolons may make a listing difficult to read, and is sO$etimes
regarded as a poor programming practice.

2-5 CC70-01

Examples:

Recommended

if(j.ge.i) goto 300
if(mod(i,j) .eg. 0) goto 100
goto 200

Not Recommended

if(j.ge.i)goto 300;if(mod(i,j).eq.0)goto100;goto 200

This sequence of statements is logically connected in a way
that might tempt you to type them all on one line. Yet the
result is that the actual flow of control is obscured.

If a source program contains an end followed by a semicolon,
as

end;

the compiler will return an error message indicating that there
is no end line in the program and that one is being supplied. If
an end is followed by a semicolon and some other statement, the
program might compile, but fail to run properly.

2-6 CC70-01

lINE NUMBERS

If you specify the -line numbers control argument (see
Section 3 of this manual), the compiler expects a line number at
the beginning of each line. A line number is an unsigned integer
of five or fewer digits, the highest permitted being 16383. The
line number is terminated by the first nonnumeric character on
the line (which may be a blank). Programs written in the FAST
environment automatically have line numbers in the source
segment. A compilation listing (see "Listing" in Section 3 of
this manual) produces a line-numbered segment when the program is
compiled. The line numbers in this case are not on the source
segment before compilation. Each separately compiled program
unit that has line numbers as input to the compiler is restricted
to 16383 lines. Programs that do not have line numbers are not
so restricted, but the probe and debug commands will fail to work
on compilation units longer than 16383 lines. (The term
compilation unit refers to any group of one or more program units
compiled in one invocation of the compiler.) If the entire
program is more than 16383 lines long, it might be convenient for
debugging purposes to compile the individual units separately,
and compile or bind them together afterward. (See the MPM
Commands for a description of the bind command, or "Bindign
FORTRAN Programs" in Section 1 of this manual.)

Card-Image Format

Source segments originally in the form of card decks can be
compiled in card-image format using the -card control argument.
With the -card control argument, the -fold control argument is
assumed, and uppercase and lowercase characters in the source are
not distinguished except in character-string constants. In
card-image format, every source line is treated by the compiler
as being 80 characters long, of which the first 5 characters
(except for comments) either are blank or contain a statement
label. The sixth character either is a blank or indicates a
continuation. Lines shorter than 72 characters are padded on the
right by the compiler with enough blanks to fill out the line to
72 characters. Characters in columns 73 through 80 are ignored.
A correct FORTRAN source segment moved to Multics from systems
using card decks may not compile in free-form format, but will
usually compile correctly if you use the -card control argument.
Conversion from card-image format to free-form format requires
that all Hollerith and character-string constants affected by the
format change be examined, since if a Hollerith field or a quoted
character string of blanks continues to a new line, the blanks
may disappear if you do not ensure that they are retained.

2-7 CC70-01

The following program gives an example of a character string
in a Hollerith field that is continued:

write(6,10)
10 format (56h

&,x
&,x)

stop
end

If you compile this program as a free-format program -- that is,
without the -card control argument -- its output looks like this:

,x

If you compile the same program with -card, it will produce blank
lines as output. The point is that in card-image format,
statements get paded on the right out to column 72. Thus in
card-image format, the 56h eats up the first 56 characters of the
",x,x,x ... "string. Further, the use of the horizontal tab
character in card-image source is strongly discouraged. The tab
is a single column. Multics FORTRAN considers a tab to occupy a
single column, even though on the terminal it may appear to use
up more column depending on tab settings and where on the line
the tab appears.

Card-image format differs from free-form format in certain
details with respect to comments, continuation, and line numbers.

COMMENTS

If the first character in a line is c, C, or an asterisk
(*), the line is interpreted as a comment. The actual comment
can be typed anywhere on a line after an initial comment
character. The "*" character is a nonstandard comment indicator.

CONTINUATION LINES

If the sixth character on a line is nonblank and nonzero the
line is interpreted as a continuation line.

LINE NUMBERS

Line numbers are not an option in card-image format.

2-8 CC70-01

SECTION 3

COMPILING AND EXECUTING THE FORTRAN PROGRAM

Invoking the Compiler

The FORTRAN compiler is invoked by the fortran command. The
only argument required by the fortran command is the name of a
FORTRAN source segment. The name of the source segment must end
with the .fortran suffix.

source.fortran

Hence, to compile a source program named test.fortran, the
command line

fortran test

is sufficient. The compiler automatically adds the .fortran
suffix, if it is not specified in the command line, before trying
to access the source segment. If you give only the entryname,
the source segment is assumed to be in your working directory,
and the object segment that is created will be listed there.

The example above illustrates the simplest kind of
compilation. When, as above, you select no optional features,
the only output the compiler produces is the . executable object
segment itself and messages describing any errors the compiler
detects. The compiler itself never tries to execute the FORTRAN
program.

3-1 CC70-01

The object segment is created
directory under the name test,
argument to the compiler. If you
of your working directory, you
entrynames:

test
test.fortran

and catalogued in your working
i.e., the name given as an

were to list out the contents
would now find in it the

A program mayor may not compile successfully. If it fails
to compile, the compiler prints error messages that describe
errors in the source program, and notifies you that translation
has failed. For example:

ERROR 116, SEVERITY 3 ON LINE 5
Syntax error. Decimal point missing from end of logical constant.

ERROR 104, SEVERITY 2 ON LINE 19
Missing end line. One will be supplied by the compiler.
new fortran: translation failed. test.fortran

The compiler returns, and you are again at command level,
where a ready message is printed on the terminal. To correct the
source progr&~, invoke one of the Multics text editors. This
edit/compile cycle -typically continues until there is an
error-free compilation. (For more information about object
segments see Section 1 of this ~anual. For a complete list of
error messages see Appendix A of this manual.)

ERROR DIAGNOSTICS

Since in the early stages of the development of a program
there may be many errors, even when a program compiles, you have
the option of identifying errors in the source before the
compiler creates an object segment.

3-2 CC70-01

By compil ing the program wi th the -check control argument,
you request the compiler to diagnose' errors in the source, and
print error messages, wi thout creating an obj ect segment. The
time and expense of creat ing an obj ect segment that cannot be
executed successfully are thereby avoided, while you have the
opportunity to identify and correct errors that can be corrected
wi thout consideration of the obje-et segment. Note that the -cheek
control argument is intended for use when the source segment might
reasonably be expected to cause some object code to be generated,
even if not a complete obj ect segment. Thus it saves you the
expense of code generation until you have removed errors the compiler
can detect.

The compiler performs the syntax checks and produces error
messages whether or not you select the -check control argument.
The -check control argument, in other words, only prevents the
creation of an object segment. Also, programs compiled with the
-check control argument must be compiled again without it before
execution is possible. There is a class of semantic errors that
are not checked if an object segment is not created. Therefore
it is possible to compile a program wi th the -check control argument
and receive no diagnostics, only to have new errors reported when
the program is compiled without it. Of course, the program may
simply not work. There are errors that can never be detected by
the compiler or the FORTRAN runtime I/O routines; these errors
will. manifest themselves during execution of the program.

3-3 CC70-01

The following control arguments specify the options available
with the FORTRAN compiler:

-ansi66
compiles the program using the 1966 ANSI standard interpretation
of incompatible constructs.

-ansi77
compiles the program using the FORTRAN 77 standard interpretation
of incompatible constructs.

-auto
makes automatic the default storage class. Ignored if a save
or automatic statement is used in the program.

-auto zero
inItializes to zero automatic storage for local variables when
they are allocated.

-no auto zero
leaves initial values of variables undefined.

-brief, -bf
prints error messages in short form.

-brief table, -bftb
generates statement table for debugging.

-card
specifies card-image format.

-check, -ck
performs only a syntax check of FORTRAN program (no object
segment is created).

-check multiply
checks for single-preci sjon overflows in integer multiplications.
Conflicts with -no check multiply. This is the default unless
optimization is requested.

I -no check, -nck
produces an object segment.

-no check multiply
Inhibits checking for single-precision overflows in integer
multiplications.

-default full, -dff
sets -the default optimizer to "full_optimize" (see also
-optimize). (Default)

-default safe, -dfs
sets -the default optimizer to "safe_optimize" (see also
-optimize).

-fold
maps uppercase to lowercase.

-no fold
uppercase letters are not mapped into lowercase form.

-free
specifies that the source segment is in free form format.

-full optimize, -full ot
invokes the full optimizer to speedup program execution and
reduce its size.

-large array
specifies that the compiler is to take all arrays in static
and automatic and collect them for Large Ar-ay processing.

12/83 3-4 CC70-01C

-no large array, nla
specifIes that large array support'is not needed. (Default)

-line numbers, -In
I

expects line numbers on input source.
-no line numbers, -nln I

indicates that the source segment does not contain line numbers.
-list, -Is

produces source listing, including assembly listing.
-long profile I

enables actual timing of execution speed according to the system
realtime clock and does actual page fault counts.

-map
produces source listing without assembly listing.

-no map
specifies that no program listing is to be produced.

-non relocatable, -nrlc
makes relocation impossible.

I
-optimize, -ot

invokes the default optimizer (or the full_optimizer) to reduce I
object code size and increase execution speed.

-no optimize, -not
specifies that optimizations are not to be performed.

-profile, -pf
permits metering execution of statements.

-relocatable, -rIc
generates relocation bits for use by the binder.

-round
uses rounded arithmetic for real and double-precision
computations.

-safe optimize, -safe ot
performs like -full optimize, except that some code movement I
is inhibited. -

-severityN, -svN
suppresses error messages at terminal.

-static
makes static the defaul t storage class for variables in the
program. Ignored if a save or automatic statement is used in
the program.

-stringrange, -strg
produces range checking code for all substring references.

-no stringrange, -nstrg
specifies that substrings are not to be checked to see if they
lie eotirely within string bounds.

-subscriptrange, -subrg •
checks for subscript values exceeding declared dimension.

-no subscriptrange, -no subrg
specifies that subscripts are not to be checked to see if
lie within array bounds.

they I

12/83 3-5 CC70-01C

-table, -tb
generates full symbol table for debugging. This is the default
unless optimization is requested.

-no table
inhibits generation of full symbol table.

-time, -tm
prints table giving compilation time.

I -time ot
prints out timing information on the sub-phases of the optimizer.

-truncate

I

use truncated arithmetic for real and double-precision
computations.

-version
prints out the version of the FORTRAN compiler before compiling.

-no version
specifies that version of the current compiler is not to be
printed out.

-very large array, -vIa
specifies that the size of individual arrays may exceed a segment
in length.

-no very large array, -nvla
specifies that very large array support is not needed.

-vIa parm
specifies that the size of parameters passed may exceed a segment
in length and that vIa addressing must be used for parameters.

-no vIa parm
specifies that the size of parameters passed may not exceed a
segment in length and that vIa addressing must not be used for
parameters. (Default)

Figure 3-1. Control Arguments

CONTROL OF ERROR MESSAGES

All warnings and errors output by the compiler are grouped
into five classes or levels of severity as follows:

12/83

Warning only. Compilation continues without ill effect.

2 Correctable error. The compiler attempts to remedy the
situation and continues, possibly without ill effect.
(As in the example above, where the compiler supplies a
missing end line. Correction of the source segment by
the compiler does not guarantee correct results, however.)

3 An uncorrectable but recoverable error. That is, the
program is in error and cannot be corrected during
compilation, but the compiler continues processing up
to the point just before the creation of an object segment.
Any further errors in the source are diagnosed. If the
error is detected during code generation, code generation
is completed although the resulting object segment is

3-5. 1 CC70-01C

12/83

incorrect and is not executable. After compilation, a
message is printed on the 'terminal informing you that
an error of severity 3 has occurred.

4 An unrecoverable error. The compiler cannot continue
beyond this point, and compilation aborts. Such an error
is usually a result of implementation limits or errors
in the compiler itself.

5. An unrecoverable error. Invalid control arguments are
specified or the source program is not found. The compiler
is not invoked.

3-5.2 CC70~01C

You can set the "severity level" with the -severityN control
argument so as not to be bothered by minor error messages; it is
up to you to determine what severity level you wish to ignore.
(The -severityN control argument affects only the compilation it
iss p e c i f i ed fo r .) 1ft he s ever i t Y 1 ev eli sse t to 4, for e x am pIe ,
all error messages are suppressed except severity 5 errors. Errors
of severity 5 cannot be suppressed. Use of the -severityN control
a r gum en t d uri n g the deb ug gin g ph a s e s 0 f pr 0 gram d ev e 10 pm en tis
not recommended, since these error messages can prov ide help in
uncovering bugs. If, during the course of an editing/debugging
session, . you suppress error messages below a certain level of
severity, new error messages below that level will not be printed
on your terminal, and you would not know about any such errors
that crop up as a result of debugging changes. As an alternative,
you can specify the -brief control argument in the event that you
want to see the messages in some form but also want to save time
at the terminal. The -brief control argument causes the compiler
to print a shortened form of all error messages. In the example
above, the error message whose long form was:

ERROR 116, SEVERITY 3 ON LINE 5
Syntax error. A binary operator is required in place of

the name goto 30

would appear in its shortened form as

ERROR 116, SEVERITY 3 ON LINE 5

Once an error message appears on your terminal in long form,
all further instances of that error message for a single compilation
appear in a shortened form, whether or not you specify the -brief
con t r 0 1 a r g urn en t . Th e - b r i e f con t r 0 1 a r gum en tis pro b a b 1 Y m 0 r e

. useful than the -severityN control argument.

I LANGUAGE OPTIONS

Multics FORTRAN is being brought into conformance with the
1977 ANSI standard for FORTRAN (FORTRAN 77). As this process is
carried out, certain incompatible changes to the language must be
introduced. To red uce the impact of these changes, two options
are available for controlling the interpretation of constructs
whose meanings are different under FORTRAN 77.

I
Under the ansi66 option, the "old" interpretation of

incompatible constructs is used. The interpretation corresponds
to the 1966 ANSI standard for FORTRAN with many extensions specific
to Multics FORTRAN.

3-6 CC70-01

LISTING SEGMENT

Use the -map or -list control arguments when you need a
listing of the program. Both control arguments produce a complete
1 ine-numbered source program listing, and the -list control argument
produces an assembly-like listing of the compiled program. Use
of the -list control argument significantly increases compilation
time (and the cost of yourlistinK) and should be avoided whenever
possible wi th the -map control argument. The -map control argu-ment
produces enough information to allow you to debug most problems
online. It creates a listing segment giving the correspondences
between 1 ine numbers and object locations, the correspondences
between names and octal object locations, and a list of statements
and object locations. It does not provide an assembly-like listing
of the object code itself. Both types of listing will appear in
a segment with the .list suffix

test. list

in the working directory. This segment can be printed online, on
the high-speed printer via the dprint command, or examined with a
text editor.

Format of listing Segment

The listing segment created by the fortran command invoked
with the -map or -list control argument begins with header lines
specifying the absolute pathname of the source segment, the version
of the FORTRAN compiler used, the date and time of compilation, I
the control arguments requested ~ and the options specified by I
%global statements. This information is particularly useful in I
the event that a bug turns up in a program that has been in use
over a period of time.

2/83 3-7 CC70-01B

After the header line, the following information is provided
for each program unit in the compilation:

2/83

• A line-numbered ASCII listing of the source segment of
each program unit. The compiler provides line numbers
if you do not.

• An alphabetical table of all names, except statement
labels, used in each program unit. Each· name appears
wi th its attributes, such as mode, storage class, and
location, and a list of all lines on which it is used.
If the code generator is not invoked, that is, the compiler
is invoked only with the -check control argument, only
names, except statement labels, appear in this table.

3-7 . 1 CC70-01B

• An alphabetical table of all names, except statement
labels, declared in the program but not used. If the
name is not a member of a common block, that name is
not allocated storage. Each name appears with its
attributes and the line on which it is declared.

• A table, in ascending numeric order, of all statement
labels in the program unit. Each label appears with
the type of statement with which it is associated, its
location if it is associated with an executable
statement, the line on which it is declared, and a list
of lines on which it is used.

• A table associating each executable source line with an
object location. The table is arranged by aGcending
line number. It is available only if the code
generator is invoked.

• A list of error messages for the program unit. All
error messages appear in their long form.

• An assembly-like listing of the object segment. Each
executable statement appears followed by the executable
instructions generated for that statement. Each
instruction appears on a line with the octal
representation of the instruction word, and an
assembly-like representation of the word including
operation-code, pointer-register, and modifier
mnemoni9's. All offsets in the assembly representation
are decimal numbers. If the address field of the
instruction uses the IC (self-relative) modifier, the
absolute text locations corresponding to the relative
address is printed in the remarks field of the line.
If the reference is to a constant or name you have
declared, the name is printed in the remarks field of
the line. The assembly-like listing is provided only
if you specify the -list control argument.

• An assembly-like listing of all constants allocated in
the object segment. This is provided only if you
specify the -list control argument. .

• A table showing the storage requirements for the object
segment. This table gives the size and offset for each
section of the object segment. The size of the stack
frame of the object segment is also given.

• An alphabetized list of all entrypoint names defined in
the compilation. Each entrypoint name appears with the
object segment offset for its external entrypoint, the
program unit in which it appears if it is not a main
entry point, the line on which it appears, and all
external reference names in other program units that
are resolved by it.

3-8 CC70-01

reference names in other program units that are resolved
by it ..

• An alphabetized list of all external references made
that are not resolved within this compilation, including
the lines on which they are referenced.

• An alphabetized list of all common blocks, the lines on
which they are declared, and the declared length for
each declaration.

• A list of all source segments used in the compilation,
including the source program specified in the fortran
command line, as well as any source segments referenced
by %include statements. (See the Multics FORTRAN manual
for a description of the %include statement.)

OPTIMIZATION

Use of the optimizer tends to reduce the execution time and
size of the program, while increasing compilation time. The
-optimize control argument should be used only after a program is
fully debugged. The -optimize control argument performs the
following global optimizations: removal of common subexpressions,
removal of invariant expressions from loops, strength reduction,
test replacement, constant propagations, and removal of assignments
made dead by other optimizations. (See Appendix B of this manual
for further information on these and other optimizations.)

The -safe optimize control argument prevents some code from
being taken out-of loops by the optimizer. All other optimizations
implied by the -optimize control argument are performed. Invariant
operations that are not always executed on entry into a loop are
not removed if it is possible that these operations could cause
the fixedoverflow, underflow, or overflow condi tions to be signalled.
Assignments and operations that could cause the zerodivide or
error conditions to be signalled are never removed from the
above-mentioned portions of a loop, whether or not the -safe optimize
control argument is specified. (See Appendix B of this manual
for information about the optimizer.)

The =optimize centrol argumeDt will give correct results for
most programs compiled without the -safe optimize control argument.
Only under the following--and very unusual--circumstances will
the -safe optimize control argument be necessary: if the -optimize
control argument causes a valid program to signal the fixedoverflow,
underflow, or overflow conditions, when such conditions were not
signalled for a nonoptimized program.

3-9 CC70-01

Optimization requires some additional room in the operand
region for the converter to store certain temporaries it creates.
Thus, some large programs will not compile with the -optimize
control argument. To circumvent this difficulty, the program may
be divided and placed into two segments. To maintain the speed
of calls under this circumstance, as many of the subroutines as
possible should be made local.

The -optimize control argument should not be used with the
-table 'control argument, since the optimizer may remove information
that would otherwise appear in the symbol table. Debug programs
before optimization.

IMPROVING PROGRAM SPEED

The FORTRAN compiler supports two types of program profiling.
The -profile control argument enables you to generate additional
code that meters the number of times each individual statement is
executed. The -long profile control argument enables actual timing
of execution speed -according to the system realtime clock a.nd
does actual page fault counts. The -long profile control argument
produces a more accurate representation- of execut ion speed and
overhead, but a program compiled with -long profile takes
considerably longer to execute than one compiled- wi th -profile
due to the overhead of actual measurement at runtime, as opposed

I
to time estimation at profiling time. The -long profile control
argument is also capable of showing 10 overhead and the time
taken by called routines, which -profile is unable to do.

After you have developed a program that compiles and executes
correctly, it may be desirable to speed the program up. The

I profiling arguments enable you to determine what parts of the
program, and the associa ted subprograms, take up the greatest
amount of execution time. After execution of a program, use the
profile command to print the execution count (see the description

I in the Commands and Acti ve Functions manua 1) • Statement costs
shown for optimized programs may be misleading, in that code may
be moved by the optimizer from one statement to another, and be
charged to the statement it is moved to rather than being charged
to the statement for which the code was created. See Appendix B
of this manual for more details about optimization.

12/83 3-10 CC70-01C

CARD-IMAGE AND FREE-FORM SOURCE PROGRAMS

The -card control argument is used for compiling source programs I
wri tten according to ei ther the ANSI66 or ANSI77 standard; that I
is, source programs that are not freeform. It specifies that the
source program is in card-image format, and it implies the -fold
control argument, which maps all uppercase letters not occurring
wi thin character-string constants to their lowercase form. The
-fold control argument alone is also useful for compiling source
programs that are input either partly or wholly in uppercase
characters. Programs with FORTRAN keywords in uppercase and
variables in lowercase, for example, will not execute correctly
in Mul tics unless compiled wi th the -fold control argument. If
you need to modify an existing program by adding new material,
such as a subroutine, in lowercase (typing it in from the terminal) ,
the program as a whole will not execute correctly if the older
stratum of the code is in uppercase characters and the modifications
are in lowercase. The -fold control argument is the only way to
accommodate situations like those just described, short of typing
the whole source over in lowercase, since the -fold control argument
distinguishes character-string constants from the rest of the code.
The -fold control argument is particularly useful, in short, for
compiling uppercase source programs as free-form format segments,
as if they were typed consistently in lowercase characters.

2/83 3-10.1 CC10-01B

DEBUGGING

There are two Multics system commands that are used in
debugging: the probe command and the debug command. (For more
information about debugging, see Appendix A of this manual, in
which debugging is described in detail; and the description in
the MPM Commands manual of the probe and debug commands.)

The -table control argument generates a full symbol table
giving the correspondences between source line numbers and object
locations, and a table with the name and location of each
variable. The presence of such information in the object segment
makes it possible to ask the debugger for variables by name. The
-table control argument is useful with the probe command and with
the debug command. Note, however, that the I-table control
argument adds significantly to the size of the object segment
created.

The -brief table control argument generates a partial symbol
table that gives the correspondences between line numbers and
object locations. Perhaps the most important function of the
-brief table control arg~~ent is that it permits runtime error
messages to get the line number where the error occurs. Also,
with either probe or debug, you can set "breakpoints" at
different lines of the program. A program compiled with the
-brief table control argument could also be debugged with the
debug command, but not with the probe command since with the
debug command it is possible to locate variables by octal address
(such information is available in the listing segment, if one
exists). It should be emphasized, however, that the debug
command is useful chiefly for machine-oriented debugging, and
that the probe command is useful chiefly for source-oriented
debugging. For debugging FORTRAN programs, the probe command is
recommended. The -brief table control argument is not useful for
debugging with the probe command because probe does not use
machine-level symbolic information.

In general, it is desirable to have a listing segment online
for a program that is to be debugged. If storage considerations
make this impossible, a hard copy of the source listing will
serve as well. If there is no such hard copy, debugging can
still be accomplished using a hard copy of the source program
alone if the program was originally compiled with the -table
control argument. If the program was not compiled with this
control argument, recompilation may be necessary, with
modification of the object code a possible result.
Debugging--even with probe--in the absence of some form of source
listing is not recommended practice. Although the probe command
itself looks at the program online, it is in general a good idea
to have a printed listing ready at hand for quick reference

3-11 CC70-01

during interactive debugging sessions at
Appendix A for a more detailed discussion
debugging issues.)

the terminal. (See
of these and other

The -table control argument may not produce the results you
expect if the -optimize control argument is specified in the same
compilation, since the optimizer may re~ove some of the
information that would otherwise appear in the full symbol table.
In the development stage, a 'program should be debugged thoroughly
before you compile it with the -optimize control argument. (See
"Improving Program Speed" and "Optimization," above.)

Note that the -list and -map control arguments (see "Listing
Segment," above) have no effect on the object code, and that in
order to use the debug and probe commands in debugging, the
-brief table or -table control arguments must be specified in
order to make the information presented in the listing available
to the debuggers.

Executing a FORTRAN Program

FORTRAN programs that are executed in the standard Multics
environment can take advantage of (and are governed by) the
powerful conventions of the Multics system. A FORTRAN program
can be called directly from command level, like any command,
mArely by glvlng its name to the command processor. (The
language at present does not easily handle arguments.) For
example, if test prime is a program that reads a number from the
terminal and determines whether it is prime, the program would be
invoked from command level as follows:

test prime

Input number to test:

4617

The number is not prime.

r 14: 1 6 O. 1 37 3. 1 42 1 8

If the program accesses storage system files or external'
storage devices, some advance preparation prior to execution may
be needed (see Section 5, Input/Output in Multics FORTRAN), but
the name of the program is always the means of executing it.

3-12 CC70-01

SECTION 4

CONSTRAINTS

The following paragraphs give the limitations imposed in Multics
FORTRAN on the size of redords, files, programs, statements, arrays,
common blocks, bound segments, and stack segments.

LENGTH AND FORM OF RECORDS

The length and form of a formatted record is determined by
the format specification and the output data transfer list used
to create the record. The number of records input by a formatted
read statement is a function of the number of list elements and
of the content of the format specification. The formatted read
may be either sequential or direct access. The number of records
output by a formatted write statement is a function of the number
of list elements and of the format specification.

On input, formatted records are padded on the right with as
many blanks as are required by the specified input format. A
record delimiter (slash) in the format statement causes a new
record to be read when it is processed.

The total number of computer words represented by the items
in an unformatted input list must not exceed the total number of
words represented by the unformatted output list that originally
created the record. The elements in both lists should be of the
same mode. The data modes must match; if you use mixed modes in
unformatted data transfer lists your program is in error and you
must be aware of the internal representations of the items involved,
as well as the difficul ties that stem from such use of mixed
modes.

Unformatted read and write statements read or write a single
unformatted record to or from the file. The maximum record length
allowed for an unformatted record is close to the size of a segment,
allowing for the overhead requirements imposed by the associated
1/0 module.

4-1 CC70-01

Files

In general, files contain records of varying length. There
is no default maximum record length. A maximum record length can
be attributed to a vfile blocked file (see Section 5 for a
description of attributes). In such a case all the records allocated
are of the same size, as far as the storage they occupy, although
the record may not take up all the storage available for it. You
must take care to ensure that the records in an existing file for
which you specify a maximum record length attribute are not longer
than the value specified. A write statement that creates a record
longer than the specified maximum is in error.

I 10 Transfer Limits

Multics FORTRAN 10 works through Multics 10 DIM (Device
Interface Module), which actually performs the 10 operations. To
this date, all DIMs are capable of transferring a segment or less
in a single operation. This limits the size of a binary 10 operation,
which is record oriented, to a segment or less. Thus, you may
not be able to do binary 10 of arrays, or combinations of arrays
that exceed this single-oper~tion size limit. This will be
particularly noticeable when you are using Very Large Arrays.

Programs

The maximum segment size is 261, 1 ~O words of storage. An
object segment (the compiled version of a main program and all
the associated subprograms) may not exceed this length.

Statements and Line Numbers

The maximum size of a single statement is 1320 characters.
The maximum number of statements in a single compilation should
not exceed 16383. This figure is the highest line number acceptable
tot h e com p i I era n d tot he in t era c t i v e deb u g gin g ut iIi tie s • Pro gram s
more than 16383 lines long can of course be compiled, and listing
segments created for them, but the lines above 16383 will not be

I accessible to the debuggers. This constraint is system-wide and
independent of FORTRAN. In addition, the debuggers cannot display
source lines located more than 262,144 characters from the start
of the source segment.

12/83 4-2 CC10-01C

Arrays and Common Blocks

For programs compiled with neither the la nor vIa options,
the limits of storage are: the combined size of the stack frame
(which contains automatic) of the compilation unit cannot exceed
62,000 words, and the size of the combined linkage section (which
contains static) cannot excee-d 128K. (N-ote that the agg-re-gate
size of static for binding is 16K.)

When the la option has been selected, individual array sizes
of 255K are supported in both static and automatic, with the
compiler collecting storage items and allocating storage areas
external to both the stack and area linker.. When the vIa parm
option has been selected, individual array parameters are limited
to 2**24 words of storage. When the vIa option is in effect, any
numeric array or numeric common block can be up to 2**24 words in
length, and character arrays can be up to 255K words. (The vIa
option turns on the la option as well, while the vIa parm option
does not.) -

Binder

The size of a program bound into a single segment by the
bind command (including storage for all variables, local or common,
that are bound with the program) must not be in excess of 261,120
words ..

When you bind a program--a main program and all its associated
subprograms--in a single obj ect segment wi th the bind command,
all the static variables must fit into 16,384 words of storage.
(For more information on the binder, see Section 1 of this manual
and the description of the bind command in the Commands and Active I
Functions manual.)

Stack Segment

The maximum stack frame size allowed by the FORTRAN compiler
is 62,000 words of storage. (See Section 1 of this manual for a I
description of the stack segment.) The automatic variables in a
program must therefore fit into 64K words of storage. The maximum
stack size is 261,120 words of storage, but when you exceed 60,000
words of storage, the storage condition is signalled. Each time
the storage condition is signalled an error message is printed.
If the user types "start," the stack is extended by an additional
48K words. When the maximum stack size is exceeded, the user's
process terminates.

12/83 4-3 CC70-01C

Normal Storage vs. Large Arrays and Very Large Arrays

Mul tics FORTRAN release 10.2 provides two extensi ve
enhancements to the intrinsic language storage capacity of FORTRAN.
Two storage forms, Large Arrays (LA) and Very Large Arrays (VLA),
provide the programmer with language addressable arrays that
individually may be up to 2**24 words in length, and you may have
aggregate storage available to your program in the range of 2**29
words.

12/83

Previous limits in force were:

Stack Frame Length

The stack frame, which holds all automat ic variables,
and compiler temporary variables, was previously limited
to 62,000 words per compilation unit.

Internal Static Length

Internal static is part of the combined linkage section
of the compilation/bind unit. The total length of a
combined linkage section is 128K words. Static (save
variables exist within static) is a portion of this
area, which also contains initialization and linkage
information. (Note that the aggregate size of static
for binding is 16K.)

Common block length

Two forms of common block length were in force. Named
common could be up to 255K (261120) words in length,
while blank common was 255K-50 words in length (261070
words). Blank common was always allocated by the system
at this maximum length.

The size limits for common, automatic, and static storage
were for the aggregate as expressed by the total size
for automatic of all temporaries and all automatic
variables for the compilation. Static was the aggregate
of all save variables, the linkage section, and the
definition/initialization section for the compilation
unit. Common was the aggregate storage size as assigned
by the programmer for each named common block, or the
total size of blank common within the compilation unit.

4-4 CC70-01C

LARGE ARRAYS AND VERY LARGE ARRAYS

Large Arrays are a compiler collection of the variables for
automatic and static storage into units that are individually
within the hardware addressing limits of the processor (255K),
but that may in total require an aggregate space larger than the
previous automatic and/or static lim~ts.

Wi th the la option in force, all arrays become members of
externally allocated storage areas and are managed by the compiler
for storage collection and the runtime system for allocation,
release, and initialization. There will be one or more segments
allocated by a fortran storage manager , either within the process
directory or a specified "quota" directory, for each static or
automatic variable. In the case of automatic variables, this
will occur on the same basis as the allocation of stack frames--the
automatic Large Arrays will be synonymous wi th the stack frame
that "owns" them.

With the vIa option in force, arrays may be declared to be
larger than a single segment of storage, and thus incapable of
being directly addressed by the hardware of the processor. in a
simple manner. This option enables the generation of extended
addressing code to permi t normal FORTRAN array addressing in a
language-transparent fashion. The current size limit for each
individual VLA is 2**24 words.

VLAs may exist for automatic, static, and common, with certain
restrictions. A VLA cannot contain characters, since the EIS
instruction set is incapable of crossing segment boundaries, and
Multics 10 system limits may restrict the size of a single binary
10 operation to less than 255Kwords. The last restriction limits
the ability to use implied do-loops on VLAs and prohibits their
unsubscripted use in a binary 10 list.

Automatic storage space allocated in LAs and VLAs is allocated
upon entry to a compilation unit and is released upon exit from
the compilation unit, either through a normal program return, a
stop statement, or a release back to a command level below the
start of the stack frame that "owns" the storage.

Static storage space allocated in LAs and VLAs is allocated
upon first entry to a compilation unit and is released by the
termination of the "owning" compilation unit or bind unit, through
either a delete or terminate command, or the supported system
subroutines.

12/83 4-5 CC70-01C

I

Common storage space allocated in VLAs is allocated upon
first entering a compilation unit and is released either by process
termination, or by the delete external variables or
set fortran common commands. At this time;-there is no binder/linker
support to enable binding and dynamic common creation of VLA common.

Permenent common storage cannot be used wi th VLAs because
permanent common storage can only be one segment in length.

ACCURACY OF REAL NUMBERS

Multics' hardware operations may sometimes cause equivalent
arithmetic expressions to produce slightly different computational
results. (Two arithmetic expressions are mathematically equivalent
if their mathematical values are equal for all possible values of
their primaries.)

This can be demonstrated with double-precision numbers. The
floating-point register (EAQ) represents a mantissa with 12 bits,
whereas double-precision numbers in storage have only 63 bits of
mantissa. Thus, the "same" number may have slightly different
values in the register and in storage, though this difference
will always be less than one part in 2**21 for single-precision
numbers and less than one part in 2**63 for double-precision numbers.

OVERFLOWS IN INTEGER MULTIPLICATIONS

The hardware instruction that performs integer multiplication
returns a double-precision integer resul t, but only the least
significant half of that resul t is stored. Thus, in a simple
assignment statement such as "i=j*k","i" wil: receive the expected
value only if the product of "j" and "k" fits in a single-precision
integer. Otherwise, "i" will get an unexpected value, but no
error will be diagnosed.

If you are willing to accept a slight increase in the object
size and execution time of your program, the compiler will insert
extra code after each integer multiplication to see if the result
exceeds single preclslon. When this option is chosen, the
"fixedoverflow" condition will be signalled whenever the result
of an integer multiplication is too large. (This is the same
thing that happens when the sum of two int.egers exceeds single
precision.) You may choose to ignore the condition and restart
the program, in which case the most significant half of the product
is merely discarded.

12/83 4-6 CC10-01C

Checking for single-precision overflows in integer
multiplication can be enabled by the -check multiply control argument
of the fortran command or by the check multiply option of a %global
or %options statement. This checking can be disabled by the
-no check mul tiply control argument or by the no check mul tiply
optlon. By default, checking is enabled unless optimization is
requested. (See Section 3 above for a description of the fortran
command and Section 1 of Multics FORTRAN for a description of the
%global and %options statements.

12/83 4-7 CC70":'01C

SECTION 5

INPUT/OUTPUT IN MULTICS FORTRAN

INTRODUCTORY COMMENTS

It is useful, for most purposes, to look at input/output
processing in Multics FORTRAN entirely in FORTRAN terms. The
Multics FORTRAN implementation takes advantage of the design of
the I/O system, which is intended to be, to a high degree,
transparent--invisibly at work behind the scenes, doing
input/output for you automatically. Your FORTRAN program doesn't
know anything about the I/O system, and in many common
programming situations you don't have to either. In fact, the
Multics IIO system can be ·seen as a group of commands issued
outside FORTRAN programs. These commands can be called in
conjunction with FORTRAN programs (see "Connection Outside the
Program," below for a discussion of that subject). More
typically, input/output processing is handled with little or no
direct intervention from you. The actual work of input/output:
which can vary a great deal in nature, is performed by a
subsystem called the FORTRAN runtime I/O routines, which is
completely transparent. What you need to know is that it is the
job of the FORTRAN runtime I/O routines to do input/output as
directed by your program.

If you do not know anything about the Multics I/O system,
and do not want to know anything about it, you can still do a lot
with Multics FORTRAN. The next part of this section, in fact, is
a guide to what you can do with little or no knowledge of the I/O
system itself. Later parts cover the use of the open statement
in FORTRAN, and hence describe some features of the I/O system;
and finally there is a description of the command interface to
the I/O system. If you are already familiar with the basics of
Multics FORTRAN input/output, you may want to skip ahead to the
subsection "Explicit Connection," which covers the use of the
open statement and connection outside the program, i.e., from
command level. If you are new to Multics, however, even a quick
scan of the fundamentals will be instructive.

5-1 CC70-01

Fundamentals of Input/Output

The unit number in the FORTRAN program is the means of
referring to a file from within the program. When FORTRAN was
first developed, a unit was a particular physical device, such as
a tape drive. Today, in Multics FORTRAN particularly, the unit
has no ironclad association with a particular device. Even the
units associated with devices by default can be explicitly
connected to any files you choose. In general, then, a unit is
something that has the property of being connected to or
disconnected from a file. Connection is simply the association
of the unit mentioned in your program with some physical storage
medium.

Many systems require you to take explicit action in order to
establish the connection between unit and file--often outside the
program itself. While Multics offers various ways of connecting
a unit outside the program, it is also possible for you to use
the defaults in a way that requires neither external connection
nor connection with open statements. If you are new to Multics
or new to FORTRAN or both, you may find it useful to stick to the
defaults and use only implicit connection at first. However,
input/output tasks may require you to tell the system what to do
in such detail that it is desirable to specify much of the
connection explicitly; so you can also connect with an open
statement or connect outside the program, as the standard
requires. What follows describes the various ways to connect a
unit in Multics FORTRAN, in terms of what you type at the
terminal or what instructions you must include in your programs.
There is only as much discussion of implementation details as is
absolutely necessary for clarity. (If you want to know more
about the implementation, especially of the FORTRAN runtime I/O
routines, see the Multics FORTRAN manual, Section 10.) "Implicit
Connection" below explains 1tlhat happens when programs do
input/output without using open statements to establish or change
connection. "Explicit Connection" explains the use of the open
statement, as well as preconnection from command level.

Implicit Connection

A unit is connected when a file is open and attached. In
Multics, connection is either implicit or explicit. The FORTRAN
Standard specifies that a unit is connected either by an open
statement or by preconnection. Preconnection may be a result of
job control language action or may be by processor-dependent
defaults. Implicit connection is an example of the latter.
Multics requires no job control action in connecting a unit.
Instead, in implicit connection, Multics does the work for
you--that is, the system takes all the steps necessary to connect
a unit. (This method of connection is an extension of Standard
FORTRAN.) Implicit connection takes place when there is no open
statement in the program and no external, explicit preconnection.

5-2 CC70-01

(External preconnection is discussed below under "io call attach
for Device Independence.")

A program that contains data transfer statements, but no
open statements, and which is not externally connected, results
in implicit connection of the units specified by the unit numbers
in the data transfer statements. The unit numbers 5 and 41
default to the terminal for input, ana unit nu-mbe-rs6 and 42
default to the terminal for output. Unit 0 is always considered
preconnected to the terminal for input/output, and cannot be
connected to any other device.

Input output

unIt number 5, 41 b, 4~

default
connection tty tty

The default connection in the absence of an open statement
has the same effect as if the program contained an open statement
of the proper form for the file or device which is associated
with the unit number, and the type of I/O which is being
requested in the I/O statement causing the default opening. The
basic examples given later in the section show approximately what
the "default open" looks like.

The really important point is that you need not take any
action outside the program itself in order to connect the unit.
If your program uses the default unit numbers, you need do
nothing to ,;onnect the unit other than to include a data transfer
statement in your program. But, to restrict yourself to the
default unit numbers is little better than it would be to have no
unit numbers at all. You have a hundred unit numbers available
in all (0 through 99). You could create a catalogue in your
hierarchy--for example a catalogue for input, and a catalogue for
output, each with a hundred files 0 through 99. Multics provides
greater flexibility still, since you can give files any names you
choose, just so long as they conform to the naming conventions
described in Section 1.

When you do not want to do input/output at the
terminal--which is probably most of the time--it is not
convenient to use default unit numbers. Implicit connection is
possible, however, with all one hundred unit numbers. Implicit
connection, when it is not to the terminal, is to a file in the
storage system. Therefore when you use any unit number other
than the five mentioned above, Multics connects by default to a

5-3 CC70-01

storafe system file - a file in virtual storage, by which is
usual y meant a segment in the hierarchy.

The Use of Implicit Connection

There are two main reasons to connect a unit implicitly:

• You want to do input/output from the terminal directly
and therefore use the default unit numbers

• Your program uses temporary files discarded at the end
of a run

NOTE: If the reason your program does not contain an open
statement is that it was written in accordance with
the FORTRAN Standard of 1966, we don't suggest that
you rewrite it merely to insert open statements. We
do suggest that you avoid doing input/output via
implicit connection, but rather connect the unit
externally (as explained below under "io call attach
for Device Independence"). If y'ou connect a uni t
outside the program you must disconnect it outside
the program also.

Input Data Transfers

When implicit connection is established by a read statement,
such as:

read (35, 100) i, j, k

if a file corresponding to unit 35 and containing data exists in
your working directory, the read will occur automatically; but
you must have done something to create the file prior to the
read, and it must have a name that corresponds to the unit
number--a name of the form filenn (with nn being the two-digit
representation of the unit numberT. In the case illustrated in
the read statement above r the file in the storage system would be
file35. If no such file exists, the read fails, and Multics
prints an error message that says you have attempted a read on a
file that isn't to be found. If for some reason there is a file
with the right name, but it is an empty file, a read statement
referencing it will also be in error.

Output Data Transfers

The handling of output data transfers is symmetrical with
that of input data transfers, but there is a difference. If a
file corresponding to the unit does not already exist, Multics
will create one, and data can be written into it. So files
referenced by output data transfer statements need not exist

5-4 CC70-01

beforetimes. If no file exists to write the output to, the one
Multics creates gets a name that corresponds to the unit number.
If an appropriately named file exists before the unit is
referenced in the program, the implicit connection takes place
just as in the case of an input data transfer from an existing
file, as explained above.

Explicit Connection

It may not always be convenient for you to write programs
that depend on the defaults for implicit connection. Units used
in existing programs written in accord with the ANSI Standard of
1966 (which did not allow open statements) may be connected from
outside the program at command level. When you write the program
using an open statement, you can specify the details of
connection with great precision within the program itself.

There are, broadly speaking, two ways to establish explicit
connection: 1) You can connect outside the program; 2) You can
use the open statement within the program. Because connection
outside the program requires greater knowledge of the Multics I/O
system than other methods do, it is postponed until the end of
this section. However,

IF YOUR PROGRAM MUST BE CONNECTED EXTERNALLY

because it was written that way, without open statements but
requiring something other than the standard system input/output
defaults, read "io call attach for Device Independence" and
ii'Whatis a I/O Switch~ii, below.

Using the Open Statement

The main use of the open statement is to connect a unit
explicitly within the program. You are encouraged to use it for
another reason: its presence in the source program can help to
make your intentions clearer to any later programmers who need to
maintain the code--such as yourself, two days from now.

Ordinarily, you will use the open statement to connect,
explicitly, units that are not con~ected to the terminal by
default. It is possible to use the open statement to connect any
unit to the terminal, but in general:

USE IMPLICIT CONNECTION FOR TERMINAL I/O

and reserve explicit connection with the open statement for units
that have no special default association.

5-5 CC70-01

*

Unit numbers other than 0, 5, 6, 41, and 42 are assumed to
identify storage-system files.

The open statement provides a great deal of power and flexibility
for input/output processing, but as a resul tit appears to be
very complicated to use. In fact, in order to use all the powerful
options of the open statement. you must have a more detailed
knowledge of the Multics I/O system than it is within the scope
of this manual to provide. Most FORTRAN programmers, however, do
not need such detailed knowledge of the inner workings of Multics,
and it is possible to get along perfectly well with a simple
subset of open statement options, such as that described in the
following pages.

WHAT IS IN THIS SUBSECTION

The examples and explanations that follow describe the forms
of the open statement minimally necessary for getting the results
obtained by the FORTRAN runtime I/O routines in doing implicit
connection for each of the types of FORTRAN input/output- There
are then examples of how to connect any FORTRAN unit (not only 0,
5. 6, 41, and 42) to the terminal. as well as how to connect
units 5, 6. 41, and 42 to storage-system files. Next. there are
some examples of how to use the open statement to connect tape
files.

In most of these examples, files opened for write are opened
with mode=iiinout", while files opened for read are opened with
mode="in". (The meanings of the various mode values are described,
along with other unit attributes, in the Multics FORTRAN manual,
and will not be repeated here unless required in order to make an
example completely clear.) This and other keywords specifying
attributes are listed below, before the examples begin.

2/83 5-6 CC70-01B

W-RITE READ

I DEFAULT MODE inout in

Shown above are the default and standard opening modes for
implicit connection. In most of the examples below, except in
opening units 5, 6, 41, and 42 for connection to the terminal,
you can substitute "out" for "inout," or "inout" for "in," with
no effect on the resul ts. If you plan to do both reads and
writes on the same file within one program, it is more efficient
to open the file once for mode:" inout" than to open it for one
mode, close it, and then reopen it for the other. Moreover, if
you want to open a file for inout, you can omit the mode:"inout"
specifier altogether, since "inout" is the default mode for open.
(Some of the more rarely used IIO modules do not allow "inout"
openings--an attempt to do it will get you an error message at
runtime saying "invalid mode specified for device," and you will
have to change the open statement to specify the particular mode
required.)

In the examples below, the open statement includes specific
unit numbers. In all cases, any other unit number might just as
well have been used, and in your own programs you may use any
valid number, except as noted and with the general exception that
no other unit may be substituted for examples using unit number
0; nor may unit 0 be substituted in examples using other numbers.
Unit 0 must be used to refer to the terminal.

Many examples show how to use the file specifier to designate
a storage-system file by pathname when the default file name is
not wanted. Use of a pathname to designate a file is usually not
a good idea, for you will have to edit your program if the file
is moved (for absolute pathnames) or if you change working directories
(for relative pathnames). However, when the file is to be created,
closed, and reopened later in the same run, and not used otherwise,
it may be appropriate to designate a file by pathname. Another
use of a pathname to designate a file is in applications in which
it is certain that the file will stay in the same place forever.
Finally, since the value given with the file specifier can be a
character expression, it can be uSed in cases where the FORTRAN
program asks for the name of a file, reads it into a character
variable, and then uses that variable as the file name
(file:char_variable_containing_name).

In examples that show how to turn on the standard carriage-control
conventions, the full form is used. If the + (overprint) carriage
control is not used in the program, the defer specifier can be
omitted.

12/81 5-7 CC70-01A

The err and iostat specifiers can be used in any open statement
except when specifying unit number 0, and these specifiers do not
appear in any of the examples.

If the associated file exists and is not empty, whether the
program reads from it or writes into it, the attributes expressed
in the open statement must correspond to the actual attributes of
the file. The main thing to keep in mind as far as your FORTRAN
program is concerned is that the file must be defined with attributes
that are consistent with the type of input/output processing you
plan to do. You would not, for example, attempt to do unformatted
input/output on the terminal, and an attempt to do so would produce
an error message from the FORTRAN runtime I/O rout ines. Consistency
of attributes does not in all cases mean identity--a full knowledge
of the vfile I/O module (beyond the scope of this manual) would
provide you with ways to change the apparent attributes of a file
for differing purposes. It should also be mentioned here that.
references, below, to the vfile I/O module and its control orders
describe operations performed by these runtime I/O routines. The
information is offered for clarity. Nothing in the sections on
the open statement requires you to take explicit action with respect
to vfile or any other I/O module. The attach specifier is supplied
with the-open statement, for use by those with sufficient knowledge
of the I/O system to use it, but no information about its use is
provided in this manual.

It is recommended that in general you use the open statement
when writing new programs, since it makes explicit in the source
what you intend your program to do~ It will in many instances do
little or nothing else; but while the presence of the open statement
may not materially alter the behavior of a program in execution,
the open statement is helpful to you for future reference and
will be similarly helpful to the next generation of programmers
to use your programs. The open statement supplements the implicit
method of connection in essentially two ways: 1) it allows you
to include in your program explicit instructions to do what the
FORTRAN runtime I/O routines would otherwise do for you; 2) it
allows you to alter the default connection.

12/81 5-8 CC70-01A

with
"I/O

the open
Control

A complete list of specifiers available
statement appears, with explanations, under
Statements" in Section 5 of Multics FORTRAN.
themselves are listed for quick reference below.

The specifiers

access

binary stream
blank
carriage
defer
err
file

form
iostat
ioswitch
mode
prompt
recl
status
unit

The following are some examples
statements, showing which forms to
connection.

TERMINAL READ/WRITE (UNIT 0)

of standard forms
use for what

of open
kind of

Unit 0, which is used in print and input statements, and in
read statements that do not specify a unit number, is the easiest
to use. To use the open statement to open unit ° explicitly in
the same way the FORTRAN runtime I/O routines do it in implicit
connection, use the statement:

12/81 5-8.1 CC70-01A

I

This page intentionally left blank.

12/81 CC70-01A

open (0)

The defer, carriage, and prompt specifiers are the only
others that may appear. To open unit 0 with standard carriage
control conventions, use:

open (0, defer=.true., carriage=.true.)

TERMINAL READ (UNITS 5 AND 41)

When you use one of these units in a read statement, the
FORTRAN runtime I/O routines assume that the unit number refers
to the terminal unless you open the unit explicitly for
connection to some other file or device. To use the open
statement to open unit 5 explicitly in the same way that the
FORTRAN runtime I/O routines do it in implicit connection, use an
open statement of the form:

open (5, mode="in", form="formatted", access="sequential")

Substitute 41 for 5 to open unit 41.

You may use the prompt specifier
prompting is required.

(prompt=.true.) if

TERMINAL WRITE (UNITS 6 AND 42)

When you use one of these units in a write statement, the
FORTRAN runtime I/O routines assume that it refers to the
terminal unless you explicitly use the open statement to connect
it to some other file or device. To use the open statement to
connect unit 6 explicitly the same way that the FORTRAN runtime
I/O routines do it in implicit connection, use an open statement
of the form:

open (6, mode="out", form="formatted", access="sequential")

The defaults for these units are defer=.false. and
carriage=.true., which means that all the standard carriage
control characters except + will work. For full carriage
control, including +, use an open statement of the form:

open (6, mode="out". form="formatted" ..
access="sequential", defer=.tru~.)

To completely disable carriage control, use
statement of the form:

open (6, mode="out", form="formatted",
access="sequential", carriage=.false.)

Substitute 42 for 6 to open unit 42.

5-9

an open

CC70-01

FORMATTED SEQUENTIAL I/O TO STORAGE SYSTEM FILES

Formatted sequential input/output to a storage system file
is what the FORTRAN runtime I/O routines assume you want when you
use a simple formatted read or write such as:

read (45, 1 00) i, j, k

NOTE: The examples below apply to all units except 0, 5, 6,
41, and 42.

For input, use an open statement of the form:

open (45, mode="in", form="formatted")

For output, use an open statement of the form:

open (45, mode="inout", form="formatted fl
)

You may include the specifier access="sequential" for
clarity if you wish. Carriage control is normally disabled on
storage system files, but you can turn it on by using the
specifiers defer=.true. and carriage=.true. Carriage control is
not normally useful or desirable when writing to a storage system
file, however.

The examples given above refer to a file in your working
directory named file45. If you open for out or inout when the
file does not exist, a vfile stream unstructured file is created
with that name. The vfile control order -extend is vsed to
allow you to append new output to the file by positioning first
to the end (that is, by reading until you get to the end of the
file) and then writing; you should open the file for
mode="inout" if you intend to make use of this feature.

If you wish to open a file under a name other than file45,
you may use the specifier file="<pathname>", where the pathname
is the relative or absolute pathname of the desired file, as in

open (45, mode="in", form="formatted",
file=">udd>Proj>Person>datafile")

You may use the recl specifier to define a maximum record
length if you so desire. If you use the recl specifier when the
file exists, the file must already have a defined maximum record
length, and the length specified in the open statement must match
the length already associated with the file. The file is opened
with the vfile controls -no end and -extend, so that information
already in the file will no~ be destroyed by the opening. You

5-10 CC70-01

must position to the end of file as described above if you want
to append data to the file.

If you use the recl specifier when the file does not exist,
and it is being opened for out or inout, it is created as a
vfile blocked file with a maximum record length as specifiede
(See the MPM Subroutines manual for a complete description of the
vfile I/O module. If you do not understand the relationship
between files and I/O modules, see "What's a I/O Switch?" below.)

UNFORMATTED SEQUENTIAL I/O TO STORAGE SYSTEM FILES

Unformatted sequential I/O to a storage system file is what
the FORTRAN runtime I/O routines assume when you use a simple
unformatted read or write, such as:

read (47) i, j, k:

This form of read statement gives the most compact representation
of data for temporary files, but it is machine-dependent and
recommended only if the data need not be transported from Multics
to other systems. This form of the read statement also places a
heavier burden on the programmer, since there is no checking of
data types (see the Multics FORTRAN manual for fuller details).
The examples below a~ply to all units except 0, 5, 6, 41, and 42.

For input, use an open statement of the form:

" , '" (A'7 "~e-".;V'I'"
VJ:Jcu \"tl, lUVU. - .Ll.L J

For output, use an open statement of the form:

open (47, mode=" inout")

You may use the specifiers access="sequential" and
form="unformatted" for the sake of clarity. You may not use the
carriage, defer, or prompt specifiers.

The example given refers to a file named file47 in your
working directory. If you open a file for out or inout when l~
does not exist, a vfile sequential file is created with that
name. When the file already exists, the vfile control order
-extend is used, so that you can add output to the file by
positioning first to the end (that is, by reading until you get
~o the end of the file), and then writing; you should open the
file for inout if you plan to do this.

5-11 CC70-01

If you wish to open a file with a name other than file47,
you may include the specifier file="<pathname)", where pathname
is the absolute or relative pathname of the desired file, as in

open (47, mode="inout", file="mydata")

which refers to a file named mydata in your working directory.

You may use the recl specifier to specify a maximum record
length. If you use the recl specifier when the file exists, the
file must already have a defined maximum record length, and the
length specified in the open statement must match the length
already associated with the file. The file is opened with the
vfile controls -no end and -extend, so that information already
in the file will not be destroyed by the opening. You must
position to the end of file as described above if you want to
append data to the file.

If you use the recl specifier when the file does not exist,
and you are opening it for out or inout, it is created as a
vfile blocked file with a maximum record length as specified.
(See the MPM Subroutines manual for a complete description of the
vfile I/O module. If you do not understand the relationship
between files and I/O modules, see "What's a I/O Switch?" below.)

DIRECT ACCESS FORMATTED I/O TO STORAGE SYSTEM FILES

Direct access formatted I/O is what the FORTRAN runtime I/O
routines assume when you use direct access formatted reads or
writes such as:

read (49' 2, 1 00) i, j, k

NOTE: The examples below apply to all units except 0, 5, 6,
41, and 42.

For input, use an open statement of the form:

open (49, mode="in", access="direct", form="formatted")

For output, use an open statement of the form:

open (49, mode="inout", access="direct", form="formatted")

The example refers to a file named file49 in your working
directory. If you open the file for out or inout when it does
not exist, a vfile keyed sequential indexed file is created with
that name. If the file-exists, the vfile control -extend is
used so that the data in it will not be destroyed by the opening.

5-12 CC70-01

If you wish to open a file with a name other than file49,
you may use the specifier file="(pathname)" where pathname is the
relative or absolute pathname of the desired file, as in:

open (49, mode="in", access="direct",
form="formatted", file=">udd>Proj>Person>data")

which refers to
>udd>proj>Person.

a file named data in the directory

You may use the recl specifier to specify a maximum record
length, if you desire. If you use the recl specifier when the
file exists, the file must already have a defined maximum record
length attribute, and the length specified in the open statement
must match the length already associated with the file. The file
is opened with the vfile controls -no end and -extend so that
information already in the file will not be destroyed by the
opening.

If you use the recl specifier when the file does not exist,
and it is being opened for out or inout, it is created as a
vfile blocked file with a maximum record length as specified.
(See the MPM Subroutines manual for a complete description of the
vfile I/O module. If you do not understand the relationshi~
between files and I/O modules, see "What's a I/O Switch?" below.)

The use of recl is recommended if all records are known to
be about the same size, since blocked files can be manipulated
more efficiently than indexed files. If the records differ in
size, use of recl will waste space but speed processing. You
will have to decide for yourself which alternative gives better
overall use of resources for each particular case. If the
maximum record length is unknown, recl cannot be used.

DIRECT ACCESS UNFORMATTED I/O TO STORAGE SYSTEM FILES

Direct access unformatted I/O is what the FORTRAN runtime
I/O routines assume when you use a direct access unformatted read
or write, such as:

read (51 '4) i, j, k

This version of the read statement gives a fairly compact
representation of data for temporary files, but it is
machine-dependent and so is recommended only if the data will not
be transported from Multics to other systems. This read
statement also places a heavier burden on the programmer, since
there is no checking of data types (see the Multics FORTRAN
manual for fuller details).

5-13 CC70-01

NOTE: The examples below apply to all units except 0, 5, 6,
41, and 42.

For input, use an open statement of the form:

open (51, mode="in", access="direct")

For output, use an open statement of the form:

open (51, mode="inout", access="direct")

You may add the specifier form="unformatted" for clarity. You
may not use the carriage, defer, and prompt specifiers.

The example above refers to a file named file51 in your
working directory. If you open a file for out or inout when it
does not exist, a vfile keyed sequential indexed file is created
with that name. The vfTle control order -extend is used so that
if the file already exists the data in it will not be destroyed
by the opening.

If you wish to open a file with a name other than file51 •
you may use the specifier file="<pathnname)" where pathname is
the relative or absolute pathname of the desired file, as in

open (51, mode="in", access="direct", file="my_data")

which refers to a file named my_data in your working directory.

You may use the recl specifier to specify a maximum record
length, if you desire. If you use the recl specifier when the
file exists, the file must already have a defined maximum record
length attribute, and the length specified in the open statement
must match the length already associated with the file. The file
is opened with the vfile controls -no end and -extend so that
information already in the file will not be destroyed by the
opening.

If you use the recl specifier when the file does not exist
and is being opened for out or inout, it is created as a vfile
blocked file with a maximum record length as specified. (See the
MPM Subroutines manual for a comnlete descrintion of the vfile
I/O module. If you do not understand the relationship between
files and I/O modules, see "What's a I/O Switch?" below.)

The use of recl is recommended if all records are known to
be about the same size, since blocked files are processed with

5-14 CC70-01

less cpu time than indexed files. If the records differ in size
use of recl will waste space, but speed processing. You will
have to decide for yourself which alternative gives better
overall use of resources for each particular case. If the
maximum record length is unknown, recl cannot be used.

BINARY STREAM FILES

Binary stream files are a Multics-specific file type. They
provide a way of getting 36-bit words of data from a file in the
storage system to your program and back. The use of binary
stream files is not recommended--they are, moreover, usually
unnecessary, in that there is little you can do with them that
you can't do with FORTRAN unformatted files. In any case, only
files created as binary stream files by FORTRAN should be read as
binary stream files. Essentially, if you have to look up the
information on how to open a binary stream file, you shouldn't be
using it. However, for those of you who insist upon finding new
and different ways to get yourselves in trouble, here goes:

You may open a binary stream file for either direct or sequential
I/O. If you open it for direct I/O, each word is considered a
separate record.

For sequential input, use an open statement of the form:

open (99, mode="in", binary stream=.true.)

For direct input, use an open statement of the form:

open (99, mode="in", access="direct", binary stream=.true.)

For sequential output, use an open statement of the form:

open (99, mode="inout", binary_stream=.true.)

For direct output, use an open statement of the form:

open (99, mode="inout". access="direct".
binary stream = ~true.) .

The examples refer to a file named file99 in your working
directory. If you open a file for out or inout when it does not
exist, a vfile unstructured stream file is created with that
name. If the -file already exists, the vfile control order
-no trunc is used, so that information in the fTle will not be
des~royed by the open statement. This allows you to append new
output to the file, by positioning to the end (that is, by
reading until it gets to the end of the file) and then writing;

5-15 CC70-01

the file should be opened for inout if you intend to use this
method.

If you wish to open a file with a name other than file99,
you may use the specifier file="(pathname)", where pathname is
the relative or absolute pathname of the desired file, as in:

open (99, mode="in", binary stream=.true., file="bad_idea")

which refers to a file named bad idea in your working directory.

CONNECTING NONSTANDARD UNITS TO THE TERMINAL

The easiest way to connect a nonstandard unit (that is, a
unit other than 0, 5, 6, 41, or 42) to the terminal is to use

open (55, form="formatted", io_switch="user_i/o")

This opens FORTRAN unit 55 connected to the terminal for input
and output. The specifiers access="sequential" and mode="inout"
may be added. If you want to open the unit for input only, you
may specify mode="in", in which case io switch="user input" may
be used; if you want to open only for output, you may specify
mode=tlout", in which case the io switch may be either
"user output" or "error output". All- four named io switches
usually refer to the terminal, but if you are using fiTe output
or discard_output commands the distinction may matter. -

If you want to be truly fancy, you can use

open (55, form="formatted", attach="syn_ user_i/o n)

Again, you may use the other io switch names if mode is set to
correspond.

When you open a nonstandard file as connected to the
terminal, carriage control for terminal I/O is disabled. To get
standard carriage control, add the specifiers carriage=.true. and
defer=.true. to the open statement. You may also use the prompt
attribute if you desire.

CONNECTING A DEFAULT TERMINAL UNIT TO A FILE

The default terminal units are 0, 5, 6, 41, and 42. Unit 0
must always be connected to the terminal; units 5, 6, 41, and 42
may be connected to files. Heaven only knows why you would want
to connect one of these to a file, as there are 95 other units
available. On the other hand, since there's always someone, this
section describes how to do it. Simply use the normal form

5-16 CC70-01

described above for the particular type of I/O you want, using
the unit number (5, 6, 41, 42) desired, but add one of the
specifiers file="<filename>" or attach="vfile <filename>", where
filename is the name of the file you want. This will let FORTRAN
know that you want the unit to refer to a file rather than to the
terminal. Note that the normal rules for carriage control for
these unit numbers apply. If you use unit 6 Or 42, and you don't
want carriage control, or the opening is not for sequential
formatted output, include the specifiers defer=.false. and
carriage=.false. If you are opening unit 6 or 42 for sequential
formatted output and you want carriage control, include the
specifiers defer=.true. and carriage=.true. For example:

open (5, access="direct", form="unformatted", mode="in",
attach="vfile file05")

open (6, access="sequential", mode="iriout",
form="formatted",

carriage=.false., defer=.false.,
file=">udd>myproj>me>foo")

CONNECTING 6 OR 42 FOR TERMINAL INPUT, 5 OR 41 FOR TERMINAL OUTPUT

Don't be ridiculous. If you really want to do this, you'll
have to figure it out for yourself. We won't be a party to such
foolishness.

CONNECTIONS TO TAPE FILES

Each of the tape I/O modules is different, and has different
capabilities. The examples given below are intended as skeletons
only, not as complete cookbook statements to suit every need.
Before using a tape I/O module you should read the documentation
for it in the MPM Peripheral I/O Guide, to determine whether any
additional arguments are needed in the attach description. These
are to be placed in the examples where the marker <ADDED ARGS>
appears.

Note that some of the tape I/O modules impose restrictions
upon you beyond those imposed on a given opening by FORTRAN. For
example, tapes can be opened only for sequential I/O. As this is
FORTRAN's default, the access specifier can be omitted. In
addition, at the time of this writing, tape nstd requires that
all records be an integral number of words (a -multiple of 4
characters) long; tape ibm and tape ansi do not allow certain
positioning operations,- in-particular, the backspace operation;
and tape ibm , tape ansi, and tape mult do not allow inout
opening. - ThIs list of restrictions is not meant to be
exhaustive, and may change in any case, so you should check MPM
Peripheral I/O.

5-17 CC70-01

The form specifier may be given as either "formatted" or
"unformatted." with unformatted the default. Formatted tape ansi
is recommended if you intend to transport the tape to a non-Multics
system.

For input use an open statement of the form~

open (1 D , mode="in", attach="tape ansi volDD1 -nm file name
<ADDED ARGS>") - -

open (1 D , mode="in", attach="tape ibm volDD1 -nm file name
<ADDED ARGS>") - -

open (1 0 , mode="in", attach="tape_mult volDD1
<ADDED ARGS>") -

open (10, mode="in", attach="tape_nstd_ volOD1
<ADDED ARGS>")

For output, use an open statement of the form

open (11, mode="out", attach="tape_ansi_ volD01 -nm
file name

-cr -ring <ADDED_ARGS>")

open (11, mode="out", attach="tape ibm volDD1 -nm file name
-cr -ring <ADDED_ARGS>") -

open (11, mode="out", attach="tape mult volDD1 -write
<ADDED ARGS>")

open (11, mode="inout", attach="tape_nstd volDD1 -write
<ADDED ARGS>")

Using the Inquire Statement

Some files cannot be read or written by direct access in a
FORTRAN program. The inquire statement enables you to determine,
from wi thin the program f the opening modes for a file. When a
file is already connected to a uni t, the inquire statement can
ascertain the attributes of the unit. Use of the inquire statement
is explained in detail in the Multics FORTRAN manual.

2/83 5-18 CC70-D18

io call attach for Device Independence

Full coverage of this subject is beyond the scope of this
manual. A quick overview should be given, though. For this example 1

formatted sequential input is assumed. The methods are the same
for other types of 1/0, but you must make sure that the file or
device you attach externally can support the type of 1/0 you
intend to do. For example, you cannot open a uni t for direct access
1/0 if it has been attached to a tape file. and you cannot-open a
unit forunform-atted 1/0 if it has been attached to the termih-al.-

In the examples for tapes the flag <ADDED ARGS) means that
you may need to supply additional arguments. yOU should read the
tape module documentation in MPM Peripheral 1/0 Manual before
using a tape module; that will tell you what the possible arguments
are.

2/83 5-18.1 CC70-01B

This page intentionally left blank.

2/83 CC70-01B

One feature of the Multics FORTRAN runtime I/O package is
that when it closes a file it only undoes those things which it
did. Thus, if you externally attach unit 20 to a vfile named
>udd>proj>me>foo, all FORTRAN programs which you run which use
unit 20 will reference that same file, until you detach unit 20
using the iocall command, until YQur run uni:r--(if you t re using
them) ends, or until your process terminates. Be sure you detach
anything which you attach, unless this file-sharing is what you
want.

All the examples use unit 20. You may substitute any other
unit you like. The file and attach specifiers cannot be used in
the open statement inside the program if you attach the file
externally.

Example 1: Using FORTRAN unit names

If the program contains the statement:

open (20, form="formatted", mode="in", prompt=.true.)

or uses unit 20 for formatted sequential input with implicit
opening, then executing the command:

io_call attach file20 syn_ user i/o

before running the program will cause read statements referencing
unit 20 to take input from the terminal (with prompting, if the
open statement was used); the command:

io call attach file20 vfile >udd>proj>me>data

will cause :ead statements referencing unit 20 to take input from
the storage system file named >udd>proj>me>data; and the command:

io call attach file20 tape_ansi vol475 -nm data
<ADDED ARGS>

will cause read statements referencing unit 20 to take input from
the file named data on the ANSI Standard format tape with the
label vo1475. Don~t forget to say:

io call detach file20

when you're done.

Example l: Using mnemonic io switch names

If you don't want to have to remember what file20 is, as
compared with file19 and file21, you can use more mnemonic names,

5-19 CC70-01

by using the ioswitch specifier in the open statement. Assuming
the same files as example 1, you could say, in the program:

open (20, form="formatted", mode="in", prompt=.true.,
ioswitch="input_data")

Then, to take data from the terminal, you would use the
command:

io call attach input_data syn_ user_i/o.

before running the program. To use the storage system file, use:

io call attach input_data vfile >udd>proj>me>data

Finally, for the tape file, use:

io call attach input data tape_ansi vol475 -nm data
<ADDED ARGS>-

When you do it this way, references to unit 20 in other
FORTRAN programs won't get the same connection (unless the other
programs also open with ioswitch="input_data"); but you should
still remember to say:

io_call detach input data

when your program ends.

A vfile or tape file need not exist at the time you execute
io call to attach to it, so this method can also be used to gain
device independence for files which you plan to create in the
run. If you're creating the file on a tape, remember to check
MPM Peripheral I/O to see what arguments you need. In
particular, you need at least -ring (for tape ansi and tape ibm)
or -write (for tape mult and tape nstd) before you can wrTte on
the tape at all. vfile- also can take added arguments, but in
most circumstances you'll meet in FORTRAN you shouldn't need
them. If you are curious, see the vfile documentation in MPM
Subroutines.

And don't forget "io call detach".

io call open for Complete External Connection

It is possible to use the io call command to open a file
outside the program. You may wish- to perform all the steps of
connection from command level, using the io call attach and
io call open commands. (Use io_call open only after first

5-20 CC70-01

invoking io call attach; you cannot open a file that has not been
attached, any more than you can open a door without a handle.
And watch your parking meters!) If you intend to do the I/O by
hand, however, it is imperative that you be fully familiar with
the details of the FORTRAN runtime I/O routines, described in
Section 10 of the Multics FORTRAN manual, as well as with the
Multics I/O system as described in the MPM Reference, before
using the io_call open command.

Although a complete discussion of the io call open command
is beyond the scope of this manual, an introductory sketch is
called for. What is offered below presents the bare essentials
only.

You might invoke the io call open command for input/output,
as follows:

io call open user io sequential_input_output

This invocation of io call open is the one appropriate for
formatted sequential read or write statements in your program.
An open statement in the same program may specify the mode
attribute as inout, in, or out.

Why do you have the option of giving two distinct and even
slightly differing mode specifications for one program, one in
the io call open command and one in the open statement within the
program itself? The question must receive two answers.

First, for most programming purposes, it is completely
unnecessary to use the io call open command in conjunction with
the open statement, since what the open statement specifies, will
be faithfully carried out by the FORTRAN runtime I/O routines.
So why bother? In explicitly specifying both attachment and
opening through the medium of the io call command, you get direct
control of and the steps of connection, but you also greatly
increase your chances of making a programming error. The general
philosophy behind these comments is "What Multics can do for you,
let it do for you." That's what Multics is all about, so the
first answer to the question of why you have all these options
is, "never mind, don't do it." The second answer is more
pragmatic. If you must open with the io ca~~ open command, use
an opening mode that is identical to or-broader than what your
program specifies in a data transfer or an open statement. If
your program does input and output on the same file, open the
file for input/output. That is the answer to why the modes, as
specified in the io call open command and in the open statement,
may differ.

5-21 CC70-01

To get an idea of the difficulty associated with opening the
file with the io call open command, consider the following
example. You invoke io call open more narrowly than in the first
example above, i.e.:

io call open user_output sequential_output

or

io_call open user_input sequential_input

In either case the open mode is too restrictive to permit an
opening within your FORTRAN program for ANY of the other modes.
The first case is appropriate for a program that does output
only; the second for a program that does input only. You could
use two invocations of io call open, one for input, one for
output, on two different fIles. The mode specified for a file
outside the program, however, must always either be less
restrictive than or the same as the modes specified for a file
inside the program.

MAKE YOUR OPENING MODES CONSISTENT

The opening mode specified in the io call open command must
not be more restrictive than the mode specified in the
corresponding open statement, and it must not be in direct
conflict with it either (out vs. in, for example.)

Also, if the open statement specifies a more restrictive
mode than that specified in the io call open command (in vs.
inout, for example), subsequent data- transfers on the file are
limited to the mode specified in the open statement. The fact
that the mode specified in the io call open command is less
restrictive than that specified in the open statement, that is to
say, does not determine the mode for your program. To change the
mode specified in an open statement you must include a close
statement, and then a new open statement specifying the new mode.

Finally, it should be clear that you are
use the io call open command. But if you must
to use io call close at the end!

WHAT'S A I/O SWITCH?

The Multics I/O system, rather than
directly to files, connects devices to files
of I/O switches and I/O modules.

5-22

not encouraged to
use it, remember

connecting devices
through the medium

CC70-01

I a
MOD------

I
DEVICE UNIT

Each of these items has a name, and connection may be
regarded as the association--in your programming environment, and
yours only--of one such collection of names. The unit number in
the FORTRAN program is associated with the name of a file or a
device, which is in turn associated with the name of an I/O
switch. This association is called attachment. The I/O switch
(and hence the associated file or device) is associated by name
with the I/O module, and the I/O module with some device. (From
the viewpoint of the Multics I/O system, the storage system--or
more precisely, any segment in virtual storage--is a device.
Devices are physical storage of some kind.)

In simplest terms, the unit number is the number used in a
FORTRAN I/O statement to specify a device or a file. The device,
or file is a real device such as your terminal, or a file in the
storage system or on some other medium such as tape. The I/O
module is a system program designed to operate on data in or on
such a file or device, and to provide a standard interface to the
user I/O routines--in this case, the FORTRAN runtime support
package. Aside from knowing that these I/O modules exist, you
need not normally know anything more about them. The io switch
can be viewed as nothing more than a sort of note from Multics to
itself, telling it which unit number in your program refers to
which I/O module/device or I/O module/file combination, and
keeping track of the state of the file or device and of some of
its characteristics.

5-23 CC70-01

SECTION 6

CONVERSION TO FORTRAN 77

FORTRAN 77 ON MULTICS ------- -- -- -------
The FORTRAN 77 language is being implemented on Multics by

extending the current Multics FORTRAN compiler. The ultimate
goal of this extension is to produce a compiler that accepts
programs that conform to the FORTRAN 77 standard, that continues
to accept existing Multics FORTRAN programs with no modification,
and that attempts to smooth the transition from 1966 FORTRAN to
FORTRAN 77.

To help meet this goal, two new options have been
introduced--ansi66 and ansi77. Any particular program unit is
compiled with one of these options in effect. Program units
compiled under the ansi66 option will be interpreted as they have
been interpreted by Multics FORTRAN in the past. Program units
compiled under the ansi77 option will be interpreted according to
the FORTRAN 77 standard wherever it differs from the existing
Multics FORTRAN language. The default is ansi66a

It is important to note that the distinction between ansi66
and ansi77 does not affect all new features of FORTRAN 77, nor
does it affect all features of Multics FORTRAN that are
extensions to the 1966 standard. Instead~ the distinction serves
only to control the interpretation of constructs that have
different, incompatible meanings or implementations in Multics
FORTRAN and FORTRAN 77.

As many features from Multics FORTRAN and from FORTRAN 77 as
possible are available under both the ansi66 and ansi77 options.
The benefit of this approach is twofold. First, it allows
existing programs to use some of the new features in FORTRAN 77
without full conversion. Second, it allows programs to be easily
converted to FORTRAN 77; only the particular constructs that are
incompatible need be changed.

12/81 6-1 CC70-01A

CONVERSIONS

Certain FORTRAN 17 features differ from Multics FORTRAN in
such ways that existing programs must be converted in order to
run under the ansi17 option with the same semantics. Described
below are six of the most useful conversions to make. All the
differences between the ansi66 and ansi77 options are listed in
Appendix B of the Multics FORTRAN manual.

Character-Mode Variables in Common Blocks

Under the ansi77 option, character-mode variables cannot be
mixed with variables of other modes in a common block. Common
blocks in ansi66 programs that contain both character and
noncharacter data must be split into two separate common blocks,
one for character data and one for noncharacter data.

Equivalencing Character-Mode Data

Under the ansi17 options, character-mode variables cannot be
equivalenced with variables of other modes. Such equivalencing
in ansi66 programs should be replaced with explicit assignment
statements. For complex and double-precision data, the
corresponding character variable should be given the length 8.
For integer, real, and logical data, the corresponding character
variable should be given the length 4~

Whenever the storage in question is to be viewed as
noncharacter data, the program should explicitly assign the
character value to an integer, real, double-precision, or complex
variable. Whenever the storage is to be viewed as character
data, it may be inspected directly.

Default Character-String Length

Under the ansi77 option, the default length for character
variables has changed from 8 to 1. To avoid ambiguity, all
character statements in the program should be inspected to ensure
that every character mode variable has an explicitly declared
length.

12/81 6-2 CC70-01A

Packed Character-String Layout

The representation of character data in storage is different
under the ansi?7 option. In the ansi66 implementation, all
character variables and array elements are stored as aligned
character strings, that is, starting on a word boundary in the
computer memory. In the ansi77 implementation, character
variables may be stored as unaligned character strings; that is,
each array element follows the preceding element with no
intervening paddfng. --Thus, ele-ments-may -beg-In at character
positions that are not word boundaries. This change will most
seriously affect programs that use permanent common blocks (those
whose names end with "$") or unformatted files that contain
character data and that were written by an ansi66 program.

An ansi?1 program can access character data in ansi66 format
as follows:

1) For each character datum in ansi66 format, the ansi??
program should declare a corresponding character datum.
The length of the character datum in the ansi66 program
should be the smallest multiple of 4 that is greater
than or equal to the length declared in the ansi66
program. For example, a character*15 variable becomes
character*16, and a character*32 variable remains
character*32.

2) The next step is to use the substring notation wherever
an ansi?1 variable is used to access ansi66 data. If
the variable is declared character*15 in the ansi66
program, the ansi77
character*i6 variable
(1:15).

program should reference a
with the substring notation

This technique can be used in converting old format data to
the new format by reading the data as described above and writing
it to a new file or common block with an ansi17 program.

Zero-Trip Do Loops

For ansi66 programs being converted to ansi11, each do loop
must be examined. If the logic of the program depends on the
loop being executed at least once in all circumstances, the final
loop value should be changed to use the max or min intrinsic
function. That is because under the ansi11 option loop counts
that are zero or negative cause the loop to be skipped entirely,
whereas under ansi66, loops are always executed at least once.

12/81 6-3 CC10-01A

I

For an example of this conversion,

do 100 I = J,K

might be changed to

do 100 I = J, max (J,K)

to ensure that the loop is executed once. If you know the increment
to be negative, the min intrinsic function should be used instead
of max.

Blank Lines

Under the ansi11 option, blank lines are treated as comment
lines and thus ignored. The ansi66 option treats them as initial
lines. Hence, when a blank line precedes a continuation line,
the latter is treated as a continuation of the blank line

The following program demonstrates this difference:

" options card;
program blank line
integer foo, 100got05, k
data foo /66/, foogot05 /111
k = foo

& goto 5
100 format ("This was compiled with the ansi", i2, "option.")

5 write (6,100) k
step
end

If you compile this program with the ansi66 option, the blank
line is interpreted as an initial line, so the n&goto 5" is a
continuation of the blank line and k is set to foo, i.e., 66. If
you use the ansi 11 option, the blank line is ignored, and the
value of k is set to foogot05, i. e., 11, because the "goto 5" is
treated as a continuation of the line "k = foo".

To convert ansi66 programs to ansi 11, take out the continuation
marker (e. g ., "&") so that the 1 ine so marked is treated as an
initial line.

2/83 6-4 CC10-01B

APPENDIX A

DEBUGGING

This section covers the debugging of FORTRAN programs in the Multics
system, with the emphasis on interactive debugging with the probe command.

First, there is a description of the specifications for a program that
plays tic-tac-toe, followed by discussion of the way this program works. Next
follows a version of the source program, with comments. The first version of
the program is incorrect and doesn't play fair. Following this version of the
program is a script of a debugging session. The script provides an example of
the use of the probe command and some of its major re~uests, but you are
encouraged to read the description of the probe command in the MPM Commands as
well. Finally there is a version of the corrected source program.

SPECIFICATIONS FOR TIC-TAC-TOE PROGRAM

The program plays optimally--that is, it wins if it is possible to win,
otherwise it draws. (Either player can always force a draw in tic-tac-toe.)

After each machine move the board is printed, showing the moves on the
board.

The cells of the board are numbered from 1 to 9, from
cell to the lower right hand cell. The numbered board is
invocation of the program, and not again.

the upper left hand
printed at the first

Your moves are c~refully checked for validity. A valid move must be in a
cell where there is not a move already, and it must be a digit from 1 to 9. End
of file causes a draw.

The program detects wins or draws, prints the winner, and the final state
of the board.

Only one game is played at each invocation of the program.

HOW THE PROGRAM WORKS

A listing of the
three program units,
subprogram.

source program appears below. The program consists of
main_, mover, and won. There is also a block data

The main program performs all the input/output for the program, checks the
player's moves, and calls the subprograms, mover and won. Its first action, if

A-1 CC70-01

this is the first invocation of the program in the player's current environment,
is to print the numbering scheme and the instructions. It then enters the main
loop at statement 5. This loop reads the player's moves, validates them, checks
for a win by the player, gets a machine move from the subroutine, checks for a
win by the machine, displays the board, and continues in this vein until the
game ends. Statements executed for a draw (97), a win by the player (99), a win
by the machine (100) print the result (who wins, or "Cat's game" if there is a
draw) and the final board.

A few details: the board is represented as an integer array (board), with
one array element for every cell. The state of a cell (empty, x, or 0) is
recorded in the corresponding array element, which is assigned a different
integer for each state. The particular integer values used to represent the
states are chosen for convenience and have no significance apart from their use
in selecting array elements elsewhere in the program.

The array is stored in the
program units can reference it.
51) used to print the board.

named common block tic tac toe, where all the
Note, also, the complicated format (statement

The subroutine, mover, sets its parameter to the nu~er of the square into
which the machine moves, or to zero if there is no empty square left (the game
is a draw). Two two-dimensional arrays, paths and paths thru cell, contain
invariant information about the game. - -

The term path means three cells in the same row, column, or diagonal. The
array, paths, aerrnes the eight paths in the game by giving the cell numbers of
the cells in the path, and the array, paths thru cells, gives the path numbers
of the paths that pass through each cell. -The center cell (5) has four paths
through it, the corner cells have three, the rest two; zero is used to indicate
the absence of a path.

The first group of statements in the subroutine, a loop ending at 10,
calculate the pathsum of each path. The pathsum is an integer value that gives
the state of each path. A unique weight is assigned to each state of a cell.
The pathsum of a path is the sum of the weights of each of its cells. The
values used to represent the weight of each state of a cell can be chosen
arbitrarily, as long as each interesting state of a path has its own unique
value. The paths of interest are those that have: two o's and no x, one 0 and
no x, one x and no 0, and two x's and no o.

The subroutine determines what move to
in order of priority (they appear in order
that determines the move the machine makes.
next rule. Except in the case of a draw, at
will be applicable. The rules are:

make by trying five strategic rules
below). If 'a rule is applicable,
If not, the program goes to the

least one of the first four rules

1. Search for a path with two o's and no x. This path can be completed
to give the machine a win. A three-statement loop (98-100) must be
executed to find the empty cell, since pathsum does not tell which
cell of a path is empty.

2. Search for a path with two x's and no 0, and block to keep the player
from winning. The loop in rule 1 is executed for rule 2 as well.

3. Search for a square common to at least two paths, of which each
contains only an o. If the square common to both paths is moved into,
creating a fork, this presents the player with the impossible
requirement of blocking two paths at once.

4. Search for a square that would present the machine with a fork if the
player moved into it. The search in rule 4 differs from that in rule
3 only in respect to the pathsum of interest. In each case, the

A-2 CC70-0i

5.

subroutine looks at each cell and all the paths through it (stored in
wins thru cell), keeps a count (integer k) of the number of paths in
the desired state (depending on whether the rule being applied is 3 or
4). There is a special check to discard path zero, which indicates
the absence of a path. If count (k) is greater than 1, the cell being
inspected is the one to move into. Note that the searches in rule 3
and rule 4 are over each cell, while those in rule 1 and rule 2 are
over each path.

Search the board, in order of the priority of the cells, for an empty
cell. The order of priority is: center, corner cells, and other
cells.

6. No empty means draw.

The function won takes as input the cell number of the move last made,
determines whether the move is by the player or the machine, and returns .true.
if the move won the game for the player, .false. otherwise. The cell number of
the move last made is then transformed into an x, y pair, used to address the
3-by-3 array, brd, which uses the same storage as the array, board. This
procedure allows examination of all cells in the same row or column, because all
will have either the same x or Y 90ordinate. For the cells on a diagonal, an
equivalent procedure is adopted to locate all the cells on the same diagonal.
The function checks both diagonals, and therefore, unless the cell is in the
center, a path that does not contain the cell; but this is safe since if there
were a win on the other diagonal the function would have found it in a previous
call.

The faulty version of the program follows, with explanatory comments.

A Program to Play Tic-Tac-Toe

c A program to play tic-tac-toe.
c This version has bugs in it

c

*

c
c
c
c
c
c
c
c

common Itic tac toel board(9)
integer board -
parameter empty=1
parameter hj.s=2
parameter mine=3

Logical function won determines whether moves are winners or not.

logical won

Defines the characters used to print the board

character*1 symbol(3) I" ", "x", "0"1
logical polite
data polite l.true.1

Start up.
As game opens, polite is true (as initialized in data statement),
so the rules of the game are printed and the board
is printed out showing the numbering scheme.
The variable is set to .false.,
and subsequently the rules
and numbered board
are not printed out.

A-3 CC70-01

5

*
*

50

8

c
c
c
c
c
c

6

1 1
I I

if (.not.polite) go to 5
polite = .false.
print, "Play tic-tac-toe. Type 1-9 to play."
print
print, " 1 :2:3"
print, " 4T5Tb"
print, " 7T8T9"
print

print, " Your move?"

The next statement reads the player's move from the terminal,
typed in response to query above.

read(5, 50, end=97, err=8) move
format(v)
if(move .gt. 0 .and. move .le. 9) go to 6
print, "Invalid input."
go to 5

The value of move has been checked to see if it is
on the board--that is, between 1 and 9.
The program must
now make sure the move is to an empty square.
The variables empty, his, and mine
are initialized by the block data subprogram.

if (board(move) .eq. empty) go to 17
if (board(move) .eq. his) print 11, "You", move
if (board(move) .eq. mine) print 11," In, move
format(1x, a3, " have already played It, i1, ".")
go to 5

c The player's move is to an
c empty square, so put it on the board.

17 board(move) = his

c See if this move won game for the player.

c
c
c

c

c
c

c

52

if (won(move)) go to 99

The player hasn't won yet, and it is
the machine's turn, so it is necessary to get
a machine move from the subroutine, mover.

call mover(move)

Check move to see if game is drawn.

if (move .eq. 0) go to 97

Game is not drawn, so inform player of machine's move
and put move on board.

print 52, move
format(" My move is ", i1)
board(move) = mine

Check whether machine has just won. (The won function does it.)

A-4 CC70-01

if (won(move)) go to 101

c Since there is no winner yet, print the board and continue play.

print 51, (symbol(board(i)). i = 1, 9)
51 format(/2(1x,2(1x,a1 ,1x,1hl} ,1x,a1/1x,11 (1h-)/)

& ,1x,2(1x,a1 ,1x,1hl) ,1x,a1/)
go to 5

97 print," Cat's game."
go to 100

99 print," You win!"
go to 1 00

101 print," I win."
100 continue

c Come here at game's end, regardless of outcome.

print 51, (symbol(board(i)), i = 1, 9)
continue
stop
end

c This subroutine will figure out the next move for a game of
c tic-tac-toe. The strategy involves looking for an offensive
c move and then looking for a defensive one of the same priority.

c
c
c
c
c

*
*
*

&
&
&
&
&
&
&

subroutine mover(move)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3
automatic i, j, k, 1, m

All possible paths in the game. Each path has three cells.
Each number represents a cell. The numbers are ordered
to correspond to the paths along which a game can be won.

integer paths(3,8)
data paths /1,2,3, !path 1

4,5,6, !path 2
7,8,9, !path 3
1,4,7, !path 4
2,5,8, !path 5
3,6,9, !path 6
1,5,9, !path 7
3,5,8/ !path 8

The numbers of the paths that pass through a given cell.
No cell has more than
4 paths through it (center).
The corner cells each have 3 paths through them.
The rest have 2. ° represents "no path".

integer paths thru cell (4,9)
data paths tnru cell /1,4,7,0,

& - - 2,4,0,0,
& 3,4,8,0,

1,5,0,0,
2,5,7,9,
3,5,0,0,

1,6,8,0,
2,6,0,0,
3,6,7,0/

!cells 1,2,3,
!cells 4,5,6,
!cells 7,8,9.

*
*

Holds the pathsum, or the sum of the weights of the different
states of a cell.

integer pathsum(8)

A-5 CC70-01

* weights for the three states of a cell,
* in order "empty", "his", and "mine".

*

in t e ge r we i gh t (3) /0, 1 ,4/

* Order in which we will choose a cell when using rule S.

9
10

*
*
*

integer cells(9)
data cells /5, 1, 3, 7, 9, 2, 4, 6, 8/

c.alculate the pathsums. The variable k is a counter.

do 10 i = 1,8 ! for each path
pathsum(i) = 0
do 9 j = 1, 3 ! for each cell in a path

k = board(paths(j,i))
pathsum(i) = pathsum(i) + weight(k)

continue

Find a path with two in a row for me,
and play a third cell to win
(offensive move, rule 1).

do 20 j = 1,8
20 if (pathsum(j) .eq. (weight(mine)*2)) go to 98 ! is pathsum right?

*
*

Find a path with two in a row for his, and playa third cell to block
the path (defensive move, rule 2).

25

*
*
*
*
*
*
*
*

do 25 j = 1, 8
if (p at h sum (j) . eq. (wei gh t (his) * 2)) go t 0 98

Try to make two two-in-a-rows for me (offensive move, rule 3).
For each cell, start counting at 0 for each path thru cell,
If there is no path, escape for each cell; --
count the number of paths through the cell that have
a pathsum of 4. If it finds two or more
such paths through one cell,
the machine
moves into that cell.

do 40 move = 1, 9
k = 0
do 45 1 = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 45
if (pathsum(paths thru cell(l,move)).eq.weight(mine))k=k + 1

45 continue --
40 if (k • gt. 1) go to 100

* Try to block two two-in-a-row for player (defensive move, rule 4)

do 49 move = 1, 9
do 47 1 = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 47
if (pathsum(paths thru cell(l,move)).eq.weight(his))k=k + 1

47 continue --
49 if (k .gt. 1) go to 100

* No offensive or defensive move so just pick a cell (rule 5).

A-6 CC70-01

':0 60 i = 1,9
move = cells(i) ! look through cells in order of priority
if (board(move) .eq. empty) go to 100 ! is cell empty?

60 continue

* No move is found so the game is a draw

move = 0 !O means "draw" to caller
go to 100

98 do 99 i = 1, 3
move = paths(i j)

99 if (board(move~ .eq. empty) go to 100

*

100 return

*
*

end

logical function won(pos)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

integer pos, brd(3,3), x or 0, x, y
logical horizontal, vertTcaT, diagonal 1, diagonal 2
automatic x or 0, i, x, y, horizontal,-vertical, dIagonal 1,

& diagonal 2- -
equivalence Tbrd, board)

horizontal = .true. ; vertical
x_or_o = board(pos)

x is the row
y is the column

x mod(pos, 3)
y (pos-1) /3+ 1

.true.

* Check horizontal and vertical simultaneously.

10

20

30

do 10 i = 1, 3
if (brd(x,i).ne.x or o)horizontal=.false.
if (brd(i,y).ne.x=or=o)vertical=.false.

!found a cellon this
!path that is in
!different state

continue

Is the cellon a diagonal?

diagonal 1 = x .eq. y
diagonal-2 = x + y .eq. 4
if(.not:diagonal 1 .and.
do 20 i = 1, 3 -

!is cellon left-to-right downward diagonal?
!is cellon left-to-right upward diagonal?

.not.diagonal_2) go to 30 !not on diagonal

if (brd(i, i) .ne. x or 0) diagonal 1 = .false.
if (brd(i, 4-i) .ne.-x or 0) diagonal 2 = .false.

won = horizontal .or. vertIcal .or. diagonal 1 .or. diagonal 2
return --
won = horizontal .or. vertical
return
end

block data
common /tic_tac_toe/ board(9)
parameter empty=1
parameter his=2
parameter mine=3
integer board/9*empty/
end

A-7 CC70-01

Script of Debugging Session

The following is a line by line script of a debugging session.
in the form given above is debugged with the probe command. The
mark (!) indicates input lines, and the unmarked lines are output.
brackets explain features of the probe command; comments in
programmer's thoughts in the course of debugging.

bug
Play tic-tac-toe. Type 1-9 to play.

1 1213
4T5Tb
718:9

Your move?
1

My move is 1~--------~----------------------------'

o I

I I
I I

Your move?
2

The program is cheating!
You have already played 1.

My move is 1~ • .-------~r---------------------------,

o : x 1

Your move?
4

My move is 2

o I 0 l

x 1

I I
I I

Your move?
3

It seems stuck on eell 1.

Error: subscriptrange condition by
>user dir dir>Multics>JRDavis>doc>fug>bug$main 11315 (line 284)
A subscript value has exceeded array bounds. -
system handler for error returns to command level

r 1301 0.355 28.102 346 level 2, 13

probe [YOU invoke the probe command.]

Condition subscriptrange raised at line 284 of won.

The program
exclamation
Comments in
boxes show

[
When probe is invoked after an error it tells]
you what the error is and where it occurred.

source [ThiS request displays the source at line 284]

if (brd(x, i) .ne. x or 0) horizontal = .false.
! found a cellon this-path that is in different state

value brd (x,i)
subscript 1 outside range (1 :3)
Cannot get address of brd.

A-8 CC70-01

v x

o The calculation of x is wrong when pos is 3,6,or 9
v pos~------~it ought to be x = mod(pos -1,3) + 1.

3
v y

1

let x = 3 [x is set to the correct value]

after 277 [ThiS breakpoint will cause x to have the correct value]

: if X.= 0 : let x = 3
Break set after line 277 of bug.

continue
[

After an error, continue returns to the command level]
from which probe was invoked.

r 1303 0.729 68.508 876 level 2, 13

start

My move is 5

o : 0 : x

x : 0 :

I I
I I

Your move?
8

My move is 9
I win.

o : 0 : x

x : 0 :

x t 0

STOP

r 1303 0.363 41.725 381

[
After a subscript range error'J
start retries the line where
error occurred.

probe bUg~ Explicitly say what program to examine;

use mover~ Explicitly indicate sUbProgram.1

before $40:if k > 1 halt ~ Stop when using rule 3.1

[

Even though you specify a FORTRAN]
Break set before line 225 of bug. STATEMENT LABEL the probe command

gives you information in terms
of source line number.

A-9 CC70-01

b $49:if k > 1: halt~ Stop when using rule 4.

Break set before line 235 of bug.

! .. bug [The program is called using the" "escape request]
Play tic-tac-toe. Type 1-9 to play.

1 : 2: 3
4T5Tb~------------~

7:8:9

Your move?

5~----------------------~

Your move?
1

It printed the rules again.
This is a bug.

I have already played 5.
It mistakenly thinks it has played 5.

I have already played 1 ~ Is this the same board as before?

Your move?
8

You have already played 8.

Your move?

QUIT

If so, none of my moves will work, so--

r 1304 0.324 22.529 410 level 2, 19
probe

Condi tion qui t raised at block: 1 54. [blOCk is a routine called by the read.J

use bug
where [

The where request shows: 1) where bug was when it]
"called out"; 2) stack level and name of program;
3) where control returns when execution resumes
after a "continue." .

Current line is line 47 of bug.
Using level 11: main.
Control at block:154.-

! v board(*)
board(1) 3

["*,, may be used to display every element of the array]

board(2) 3
board(3) 2
board(4) 2
board(5) 3
board(6) 1
board(7) 1
board(8) 2

board(9) 3
I board(*) = 1~ This IS the board from last game
c so set every cell to empty.

r 1310 0.452 54.132 583 level 2, 19

A-10 CC70-01

sr

5 « This time the move is accepted.

Stopped before line 235 of mover.
! v k

2
v move

2
! v board(move)
board(2) 1

v I

Program plans to move into cell 2. The cell is
empty as a look at the board shows. All four
paths through the cell have been examined.

5~------~The next step is to check paths-thru-cell to
ensure correct data, then pathsums of paths
through cell 2 and finally the board.

! v paths thru cell(*,move)
paths thru celI(1 ,2) 1
paths-thru-cell(2,2) 5
paths-thru-cell(3,2) 0
paths-thru-cell(4,2) 0

! v pathsum(1)
pathsum (1) 0

! v pathsum(5)
pathsum(5) 1

! v board(*)
board (1) 1
board(2) 1
board(3) 1
board(4) 1
board(5) 2
board(6) 1
board(7) 1
board(8) 1
board(9) 1

The~e is no reason why k should be 2. The board,
paths, and pathsum are correct--therefore counting
must be wrong. Set a break that will halt before
counting.

b 233:if pathsum(paths thru cell(l,move))
Break set before line 233 of bug.

! ps 30
if (.not.polite) go to 5

weight(2):halt

b: let board(*) = 1~ • .-__ ~IMake board empty before each game. I

Break set before line 32 of bug.

quit
q

[
Each time you type 'quit', one level of invocation]
of the probe command falls away

r 1314 0.767 66.092 873
bug

Play tic-tac-toe. Type 1-9 to play.

A-11 CC70-01

Your move?
5

Stopped before
! v move

line 233 of mover.

1
v I

3
v k ~~------~This is a legitimate instance of a path with

o one "0" on it. It is correct to count it.
c Keep going!

Stopped before line 233 of mover.

v move
2

v I
2 III This one is correct too.

c

Stopped before line 235 of mover.

v k
2 ~ ____________ ~K is 2? But each move so far had only one

v move path through it with one "0".

2~------------~

status
Break before line 233.
Break before line 32.
Break before line 235.
Break before line 225.
Break after line 277.

r b 233; r b 235

K is not being reset to 0 for each move. You set
the appropriate break to fix. List all breaks
to see which can be reset.

Break reset before line 233 of bug.
Break reset before line 235 of bug.

b 236:let k = 0
Break set before line 231 of bug.

c

My move is 2 ~ ______ ~It persists with the move it had decided to make. I
o I

I x I

A-12 CC70-01

Your move?
8

My move is 3

010

I x I

I x I
Your move?

1
My move is 9

x I 0 I 0

: x :

: x : 0
Your move?

6
My move is 4

x : 0 : 0

o : x : x

: x : 0

Your move?
7

Cat's game.

x : 0 : 0

o : x : x

x : x : 0

STOP Perhaps all bugs are now fixed?

r 1326 1.949 208.147 2833
bug

Play tic-tac-toe. Type 1-9 to play.

Your move?
5

My move is 5 ~. ____

: 0 :

NO

A-13 CC70-01

Your move?

QUIT~ __ ~ ... and release the failing invocation of bug.

r 1327 0.331 22.717 260 level 2, 15
rl

r 1327 0.035 3.896 62
probe bug

a $40:if k > 1 :(v move; halt)
Symbol 40 not declared

Breaks were reset too soon.
Replace them.

use mover
[

You must set the pointer to the desired sUbroutine]
or it won't be. possible to find the label.

a $40:if k > 1 : (v move; halt)
Break set after line 225 of bug.

! a $49:if k > 1 : (v move; halt)
Break set after line 235 of bug.

use main

b 33 [set a break to find out why board is printed each time.]

Break set before line 33 of bug.
q

r 1330 0.281 39.723 716
! bug
Stopped before line 33 of main .

v polite [
FORTRAN logical variables are printed as !!1 !!b when]
they are .true. and "O"b when .false.

"1 "b

sb polite Why didn't polite keep its value from last time?

logical autcmatic
Declared in main

r ~ ______ ~It is an automatic variable, in~tead of a 'save'.
Now that we know, the break is useless.

Break reset before line 33 of bug.
! c
Play tic-tac-toe. Type 1-9 to play.

1 1213
4T5Tb
71819

Your move?
5

My move is 5 ~4~----~ Why didn't it hit the break?

1 0 I

Your move?

A-14 CC70-01

Stupped before line 225 of mover. ~ Hit the rule 3 break. I
st

Break after line 235.
Break before line 231.
Break before line 32.
Break before line 225.
Break after line 225.
Break after line 277.

r The list of breaks shows breaks both before 1

l
and after line 225, and after 235. The J
breaks ought to be before, because breaks
after a line aren't executed if the line
does a goto.

st at 235
Break after line 235:if k > 1 : (v move

r a 235
Break reset after line 235 of bug.

! b 235:if k > 1: (v move; halt)
Break set before line 235 of bug.

q
r 1335 0.506 45.840 592

bug
Play tic-tac-toe. Type 1-9 to play.

Your move?
5

5

halt)

Stopped before line 235 of mover. I This time it hit the break. ~ ______ ----a

v k
4

v board(*)
board (1) 1
board(2)
board(3) 1
board(4) 1
board(5) 2
board(6) 1
board(7) 1
board(8) 1
board(9) 1

! v paths thru cell(*,5)
paths thru cel1(1 ,5) 2
paths-thru-cell(2,5) 5
paths-thru-cell(3,5) 7
paths=thru=cell(4,5) 8

v pathsum(*) The board, paths, and pathsums are correct. You
pathsu~(1) 0 ~ealize that the code doee~'t check to see if the
pathsum(2) 1 cell is empty. Rule 4 is stated as 'Find a cell
pathsum(3) 0 that is the intersection of two paths, each of
pathsum(4) 0 which has one "0"; it should be 'Find an empty cell
pathsum(5) 1 that is ' You can't patch this bug with a probe
pathsum(6) 0 break, so you must edit the source and recompile.
pathsum(7) 1 List all the breaks, as a reminder of where the
pathsum(8) 1~----~source needs correction.

! st

Break before line 235.
Break before line 231.
Break before line 32.
Break before line 225.

A-15 CC70-01

Break after line 277.
Break after line 225.

st b 32
Break before line 32:let board(*) =

st a 277
Break after line 277:if x = 0 : let x = 3

q
r 1337 0.751 51.764 736

twO~ • .-----~IThe edited program is now named 'two'.

Play tic~tac-toe. Type 1-9 to play.

Your move?
5

My move is

o :

: x :

I
I

Your move
3

Should be 7. Rule 2 is not working.1 My move is 8 ~ • .-------~
0: : x

: x :

: 0 :
Your move?

7
You win!

0: : x

: x :

x : 0 :

probe two

use mover
b $98~------~Set a break at the beginning of the loop

transferred to by rule 2.

Break set before line 259 of two.
! q
r 1422 0.152 29.289 387

two
Your move?

5
My move is

o :

: x :

A-16 CC70-01

Your move?

stopped before line 259 of mover.

v j~.~----~IWhat path is it trying to block you on?1

8
! v pathsum(8)
pathsum(8) 2

! v board(*)
board(1) 3
board(2) 1
board(3) 2
board(4) 1
board(5) 2
board(6) 1
board(7) 1

board(8)
board(9)

1

1 • Ipath 8 is right, as is pathsum and board. I

v paths (*,8)

3 paths(1,S)
paths(2,8)
paths(3,S)

5 The path was not defined right. Must have
S~-~------~made a typing error.

1 paths(3,S) = 7

q
r 1428 0.057 10.033 105

! two
Your move?

5
My move is

- I
U I

I I
I I

Your move?
3

Stopped before line 259 of mover.
! r b 259
Break reset before line 259 of two.

c
My move is 7

0: : x

0: :
Your move?

6
My move is 4
I win.

0: : x

o : x : x

o :

A-17 CC70-01

STOP

r 1429 0.309 35.534 512
two

Y~ur move?~ • .---------~IMaYbe all bugs are fiXed?1

My move is 5

x I

I 0 I
I I
I I

Your move?
4

My move is 1

o I x I

x I 0 I
I I
I I

Your move?
9

My move is 3

o I x I 0

x I 0 I

I x
Your move?

7
My move is 8

o : x : 0

x I 0 I

x I 0 I x
Your move?

6
Cat's game.

o I x I 0

x I 0 I x

x I 0 I x

STOP

r 1429 0.324 18.500 333

~~'-------------------11 One more test casel two

Your move?
1

My move is 5

x I

I 0 I
I !
I I

Your move?

A-18 CC70-01

9
My move is 3

x: : 0

: 0 :

: I x
Your move?

7
My move is 8

x: I 0

: 0 :

x I 0 : x
Your move?

4
You win!

x I I 0

x I 0 I

x I 0 I x

STOP

The algorithm itself is defective. Correction is left to the interested
reader. Hint: the blocking strategy used by rule 4 is the incorrect part.

Corrected Program to Play Tic-Tac-Toe

c A program to play tic-tac-toe.

common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

logical won
* defines the characters used to print the board

character*1 symbol(3) /" "~ "x"~ "0"/
integer i
logical polite
save polite
data polite /.true./

c Start up.

*
2

clear the board for a new game
do 2 i =·1 9

board(i) = empty

A-19 CC70-01

c
c

c

c

c

c

c

c

c

c

if (.not.polite) go to 5
polite = .false.
print, "Play tic-tac-toe. Type 1-9 to play."
print
pI' i nt, " 1 : 2 : 3"
print, " 4T5'6"
print, " tt-at9'''
print

5 print," Your move?"
read(5, 50, end=97, err=8) move

50 format(v)
if(move .gt. 0 .and. move .le. 9) go to 6

8 print, "Invalid input."
go to 5

6

11

17

52

51

97

99

101
100

move has been checked it is on the board.
make sure it is an empty square

if (board(move) .eq. empty) go to 17
if (board(move) .eq. his) print 11, "You", move
if (board(move) .eq. mine) print 11," I", move
format(1x, a3, " have already played" i1, ".")
go to 5

move is to an empty square, so put it in the board
board(move) = his

see if user has won
if (won(move)) go to 99

user hasnt won, get a machine move
call mover(move)

see if game is really drawn
if (move .eq. 0) go to 97

game isnt drawn, so tell user what machine did, and put move in
print 52, move
format(" My move is ", i1)
board(move) = mine

see if machine has just won
if (won(move)) go to 101

no winner yet, print board and continue to play
print 51, (symbol(board(i)), i = 1, 9)
format(/2(1x,2(1x,a1 ,1x,1h:),1x,a1/1x,11 (1h-)/)

& ,1x,2(1x,a1,1x,1h:),1x,a1/)
go to 5
print, " Cat's game."
go to 100
print, " You win!"
go to 100
print, " I win."
continue

come here at games end, regardless of outcom~
print 51, (symbol(board(i)), i = 1,9)
continue
stop
end

c This subroutine will figure out the next move for a game of
c tic-tac-toe. The strategy involves looking for an offensive
c move and then looking for a defensive one of the same priority.

subroutine mover(move)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

automatic i, j, k, 1, m

A-20 CC70-01

*

&
&
&
&
&
&
&

*

&
&

*

*

*

All possible paths in the game.
integer paths(3,8)

data paths /1,2,3, !path 1
4,5,6, !path 2
7,8,9, !path 3
1,4,7, !path 4
2,5,8, !path 5
3,6,9, !path 6
1,5,9, !path 7
3,5,7/ !path 8

The numbers of paths which yass
integer paths thru cell (4,9

through a given

data paths_thru_cell /1,4,7,0, 1,5,0,0,

Holds the pathsum
integer pathsum(8)

2,4,0,0,
3,4,8,0,

2,5,7,8,
3,5,0,0,

weights for the three states of a cell
integer weight (3) /0,1,4/

1,6,8,0,
2,6,0,0,
3,6,7,0

Order in which we will choose a cell. (rule 5)
integer cells(9)
data cells /5, 1, 3, 7, 9, 2, 4, 6, 8/

cell.

2,4,0,0,

* calculate the pathsums
do 10 i = 1, 8

pathsum(i) = °
do 9 j = 1, 3

k = board(paths(j,i))
9 pathsum(i) = pathsum(i) + weight(k)
10 continue

* Find two in a row for me, and win.

do 20 j = 1, 8
20 if (pathsum(j) .eq. (weight(mine)*2)) go to 98

* Find two in a row for his, and block it.

do 25 j = 1, 8
25 if (pathsum(j) .eq. (weight(his)*2)) go to 98

* Try to make two two-in-a-rows for me (offensive).

45
40

*

47
49

*

do 40 move = 1, 9
k = °
II (board(move)· .ne. empty) go to 40
do 45 I = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 45
if (pathsum(paths thru cell(l,move)).eq.weight(mine)) k

continue --
if (k .gt. 1) go to 100

try to b100k tW0 two-i~-a-row for user

do 49 move = 1, 9
k = ° if (board(move) .ne. empty) go to 49
do 47 I = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 47
if (pathsum(paths thru cell(l,move)).eq.weight(his)) k

continue --
if (k .gt. 1) go to 100

No offensive or defensive move so just pick a cell.

A-21

k + 1

k + 1

CC70-01

do 60 i = 1,9
move = cells(i)
if (board(move) .eq. empty) go to 100

60 continue

* no move is found so the game is a draw
move = 0
go to 100

98 do 99 i = 1, 3
move = paths(i, j)

99 if (board(move) .eq. empty) go to 100
100 return

end
logical function won(pos)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

integer pos, brd(3,3), x or 0, x, y
logical horizontal, verticaI, diagonal 1, diagonal 2
automatic x or 0, i, x, y, horizontal,-vertical, diagonal 1,

& diagonal 2- -
equivalence Tbrd, board)

horizontal = .true. ; vertical = .true.
x or 0 = board(pos)

* x is the row
* y is the column

x = mod(pos -1 ,3) +
y = (pos-1) /3+ 1

* Check horizontal and vertical simultaneously.

do 10 i = 1, 3
if (brd(x, i) .ne. x or 0) horizontal = .false.
if (brd(i, y) .ne. x=or=o) vertical = .false.

10 continue

* Check diagonal if possible.

diagonal 1 = x .eq. y
diagonal-2 = x + y .eq. 4
if(.not~diagonal 1 .and .. not.diagonal 2) go to 30
do 20 i = 1, 3 - -

if (brd(i, i) .ne. x or 0) diagonal 1 = .false.
20 if (brd(i, 4-i) .ne.-x or 0) diagonal 2 = .false.

won = horizontal .or. vertical .or. diagonal 1 .or. diagonal 2
return -. -

30 won = horizontal .or. vertical
return
end

A-22 CC70-01

APPENDIX B

OPTIMIZATION

This chapter describes many of the optimizations performed
by the Multics FORTRAN compiler when you specify the -optimize or
-safe optimize control arguments. The information in this
section is of primary interest to advanced users.

LOCAL OPTIMIZATIONS

Local optimizations are those that improve the code
generated for a particular statement without considering or
affecting the rest of the program. "Improved code" is code that
is executed more efficiently, or faster, than code that is not
optimized.

Machine-Independent Local Optimizations

IMPROVEMENT OF LOGICAL if STATEMENTS

This optimization improves the code
statement so that expressions not needed
outcome of the statement are not evaluated.
makes the more readable

if(m .It. 4 .and. n .gt. 5) i=3

as efficient as

if (m .ge. 4) goto 100
if (n .le. 5) goto 100
i=3

100 continue

for a logical if
in determining the
This optimization

Note that in this case, function references contained in
logical expressions in a logical if statement are not necessarily
evaluated. Programs that depend on the evaluation of the entire

B-1 CC70-01

expression in a logical if statement are in error, and may not
execute as desired if you compile them with the -optimize control
argument.

Machine-Dependent Local Optimizations

The following machine or implementation dependent
optimizations are of special interest.

QUICK SUBPROGRAM CALL

If subprogram A and subprogram B are compiled seperately and
A calls B, a full Multics calling sequence is generated,
executing many instructions and requiring the creation of a
Multics stack frame for both subprograms. If subprograms A and B
are compiled together (in the same invocation of the fortran
command), the compiler optimizes the call from A to B. Thus,

subroutine a

call b

end

subroutine b

end

is much more efficient than

subroutine a subroutine b

call b end

end

See Sections 3 and 5 for discussions of these issues from a
different viewpoint.

B-2 CC70-01

IMPLIED DO-LOOPS

Doing I/O on an array using a reference to the array as a
whole is normally more efficient than doing I/O on an array using
an implied do-loop with an array element, because the former
executes one call to the I/O system for the entire array, for
every data transfer, while the latter executes one call to the
I/O system for every array element. However, the compiler
attempts to recognize implied do-loops that do I/O on a vector (a
contiguous area of storage) and replaces these loops with I/O
calls for the entire vector. Thus the data transfer statement

write(6)(a(i), i=1,100)

with this optimization can become as efficient as

write (6) a

assuming that "a" is an array of 100 elements. The optimizing
algorithm processes nested implied do-loops from inside out. A
partial list follows of the constraints that must be satisfied at
each level in order for this optimization to take place:

• The item to be transmitted must be subscripted

• The subscript at a particular level must be the same as
the index of the do at the same level

• The increment of the do-loop must be 1

• The array element must be the only item In the data
list of the implied do-loop at this level

• The subscript at a particular level must not be a
potential alias of any other subscript

• Inner implied do-loops must cover a complete dimension

Since in FORTRAN an array
subscripts vary most rapidly, the
innermost dimension. Thus, given

dimension a(20,30)

the optimization occurs for

is allocated so that
inner loops should

write (6) ((a(i,j), i=1,20), j=1,30)

but not for

write (6) ((a(i, j), j=1 ,30), i=1,20)

B-3

leftmost
match the

CC70-01

GLOBAL OPTIMIZATIONS

Global optimizations are those that optimize code over more
than one statement and/or consider conditions over an entire
program unit. This type of optimization is performed for every
program unit in a compilation if you invoke the compiler with the
-optimize or -safe_optimize control argument.

Machine-Independent Global Optimizations

Most of the global optimizations done by the Multics FORTRAN
optimizer are machine-independent, except that it is assumed that
an addition executes faster than a multiplication does. These
global optimizations can be classified according to whether they
are meant to improve the execution of a loop or are more general
in their effect. The more general optimizations are discussed
first in what follows.

Non-Loop-Oriented Optimization

REMOVAL OF COMMON SUBEXPRESSIONS

This optimization attempts to avoid repeated evaluation of
the same expression. ·When the expression first occurs, its value
is saved in a temporary compiler-created variable, and that value
is used when the expression occurs again instead of its being
reevaluated. The optimization occurs for two instances of the
same expression only if all the following constraints are
satisfied.

• the first instance of the expression must always be
executed before the second

• none of the input operand values can change between the
two instances

• all operators in the expression, including functions,
yield a given result with given operands (e.g., 2+2 is
always 4, not sometimes 4 and sometimes 3)

• no operators in the expression have "side-effects." A
side-effect means doing I/O or changing the value of a
variable other than by means of the assignment
operator.

B-4 CC70-01

In the following case

a + b*c

a + b*c

the value of a + b*c is calculated only once and
other instances of that expression as long
constraints are satisfied. Note that in the case

is used in all
as the above

b + c

a + b + c

there is no common expression to eliminate because
FORTRAN require the second expression to be seen as
If you write

b + c

a + (b + c)

the rules of
(a + b) + c.

The expression b + C becomes common and is evaluated only once.

CONSTANT PROPAGATION

This optimization causes expressions with constant operands
to be evaluated at compile time, and causes the known constant
values of variables to be propagated to where the variable occurs
in other expressions. This latter case might result in the
recognition of other constant expressions. For example,

i = 3*4 gives i = 12
j = i+5 gives j = 17

This optimization is not applied to arrays or to array elements.
Most built-in functions with constant arguments are not, as of
MR7.0, evaluated at compilation time.

B-5 CC70-01

LOOP-ORIENTED OPTIMIZATIONS

All loop-oriented optimizations are made under the
assumption that code inside a loop is executed more often than
code outside the loop. These optimizations, therefore, try to
replace computations inside a loop with other computations
outside the loop. Wherever the basic assumption does not hold,
the optimizer will not succeed in speeding up execution.

REMOVAL OF INVARIANT EXPRESSIONS FROM LOOPS

This is the most obvious loop-oriented optimization. If an
expression is loop-invariant, it is evaluated ahead of the loop
itself, and its value is then used inside the loop. In order for
this optimization to be performed on a particular expression, the
following constraints must be satisfied:

• all input operands must not change their values within
the loop

• all operators must produce the same value for the same
set of inputs

• if the -safe optimize control argument is specified, or
if the operation is likely to cause an interrupt to
occur if given bad inputs (e.g., /,**,sqrt, asin), then
the expression must be in a part of the loop that is
always executed if the loop is entered.

For example, take the following loop:

do 100 i=1,10000
array(i) = i+x**y

100 continue

This would be transformed into

T = x**y
do 100 i = 1,10000
array(i) = i+T

100 continue

where T is a temporary, with a substantial decrease in execution
time.

Assignment statements may also be removed from loops. To
remove an assignment statement from a loop, the above mentioned
constraints must hold for the expression on the right hand side
of the equal sign. In addition, the following constraints must
be satisfied:

B-6 CC70-01

is

• The target of the assignment must not be referenced in
the loop before the assignment statement is referenced

• The value of the target of the assignment must not be
changed elsewhere in the loop

•
For

100

The assignment statement must be in a part of the
that is always executed if the loop is entered.

example, the following loop

do 100 i = 1,10000
a = x**y
array(i) = a*i
continue

transformed by the optimizer to

a = x**y
do 100 i = 1 ,10000
array(i) = a*i

100 continue

with no change in the meaning of the program, but the following
loop is not transformed because it violates the above constraints
and would change the meaning of the program:

do 100 i = 1,10000,2
a = x**-:[
array(i) = a*i
a = x/y
a "''''a'TT('; +1' = a. *.J....; J \.J. I I

100 continue

In this case, the assignment statements setting "au could
not be removed, although x**y and x/y could be removed.

-safe_optimize VS. -optimize

It is a goal of a good optimizer that a valid program should
produce the same results given the same inputs, whether optimized
or not. Obviously, if optimization causes a fault to occur when
an optimized program is run, and running the unoptimized program
does not cause a fault, this goal is not met. This unfortunate
situation could occur if the optimizer removed an expression from
a part of the loop that is not always executed if the loop is
entered. For example, removing x/y from the following loop would
be a mistake:

do 100 i = 1,10000
array(i) = i
if (y .ne. 0) array(i) = (x/y)*i

B-7 CC70-01

I

100 continue

because a zerodivide fault would occur if y were equal to zero.
Therefore operations such as /, •• , and most buil t-in function
references are not removed from loops unless they are in the part
of the loop that is always executed, whether or not the -safe optimize
control argument is specified. The operators +, -, and * present
a different case. They are extremely unlikely to cause a fault,
no matter what inputs they receive. Therefore, if the -optimize
control argument is specified, these operators may be removed
from a loop even if not in the part of the loop that is always
executed. This raises a very slight possibility that a
fixedoverflow, overflow, or underflow fault might occur with the
optimized program that would not occur with the unoptimized program.
For this rare case, the -safe optimize control argument is available.
If the -safe optimize control argument is specified, the
"always-executed n constraint is rigidly enforced for the +, ,
and * operators. It is recommended that you not specify the
-safe optimize control argument unless you really have to, since
it inhibits much valuable optimization and the likelihood that it
is needed is extremely low. (A better way to get the effect of
specifying the -safe optimize control argument is to specify the
safe keyword in a %options or %global statement. This statement
has the added advantage of making it explicit in the source that
the "always-executed" constraint must be rigidly enforced. Again
this is not recommended unless testing shows it to be necessary.)

STRENGTH REDUCTION

An induction variable is one that is altered within a loop
only by incrementing it by a constant or loop-invariant variable.
The index variable of a do-loop is an example of an induction
variable. The optimizer also recognizes induction variables that
are altered by assigning to them a simple linear function of
another induction variable and loop-invariant expressions or
constants. Induction variables are frequently mul tiplied by or
added to constants or loop-invariant expressions, and these
operations can be "reduced" to cheaper additions by introducing
new induction variables. This form of optimization is called
strength reduction.

12/81

For example, consider the program fragment:

common a(50,50)
do 100 i = 1,500
a(1,i) = a(1,i) + 3.0

100 continue

B-8 CC70-01A

In its internal representation, the compiler sees this as
equivalent to:

1" IV

i = 1
a(50*i) = a(50*i)+ 3.0
i = i + 1
if (i .le. 500) goto 10

To replace 50*i by a new induction variable TI, we initialize
TI to 50*i before the loop and increment TI by 50 after i is
incremented:

10

i = 1
TI = 50*i
a(TI) = a(TI) + 3.0
i = i + 1
TI = TI + 50
if (i .1 e • 500) goto 10

The resulting program
eliminated multiplications.
the fragment even further.

TEST REPLACEMENT

fragment is faster because of the
Further optim i zations will speed up

It is quite likely that strength reduction will have eliminated
from a loop all references to an induction variable except the
incrementing of the var iable and, po ssibl y, a test of that variable
against a loop constant to exit the loop. If this is true, and
if the val ue of the induction variable is not needed after the
loop is executed, the incrementing of the induction variable is
deleted and the test, if any, is changed to use one of the newl y
created induction variables.

For example, if we take the program fragment described in
the strength reduction section and apply test replacement to it,
we get:

10

12/81

i = 1

a(TI) = a(TI) + 3.0
TI = TI + 50
if (TI .le. 25000) goto 10

B-9 CC70-01A

I

I

I

REMOVAL OF DEAD ASSIGNMENTS

The optimizer applies its algorithms to loops from the inside
out. If we take the program fragment described above, and apply
constant propagation to the outer loop, we get:

i = 1
TI = 50

10 a(TI) = a(TI) + 3.0
TI = TI + 50
i f (T I • 1 e • 25000) go to 1 0

Notice that this has made the assignment to "i" useless since
its value is never used. This is called a "dead assignment."
The optimizer then removes this dead assignment giving:

TI = 50
10 a(TI) = a(TI) + 3.0

TI = TI + 50
if (TI .le. 25000) goto 10

for a tremendous improvement in efficiency over the original program
fragment.

At present, the optimizer removes only those assignments made
dead by a combination of test replacement and constant propagation.

Machine-Dependent Global Optimization

As of MR10.2, several machine-dependent global optimizations
are performed by the compiler.

GLOBAL POINTER REGISTER USE

Pointer register management attempts optimal use of pointer
registers allocated across loops. During the first pass of the
optimizing code generator, an analysis of potential pointer register
use is made, usage counts are determined, and the most frequently
used global pointers are set up to be loaded at the start of
loops, scanning from the innermost to the outermost loops.

12/83 ,B-10 CC70-01C

GLOBAL INDEX REGISTER I
Index register management attempts optimal use of index

registers allocated across loops. During the "first pass of the
optimizing code generator, an analysis of potential index register
use is made, usage counts are determined, and the most frequently
used global indexes are set up to be loade"d at the start of
loops, scanning from the innermost to the outermost.

PROCESSOR INSTRUCTION FETCH PADDING

Both the optimizing and nonoptimizing code generators pad
the entry label within do-loops in order to start them on an
even-word boundary. This optimization causes the processor to
have always two executable instructions available from the fetch
at the start of the loop, which produces as much as an eight
percent improvement over starting at an odd-word boundary. The
optimizing code generator does this only for the innermost loops
in order to reduce code size, while the nonoptimizing compiler
does this to all loops.

12/83 B-1 O. 1 CC70-01C

This page intentionally left blank.

12/83 CC70-01C

By applying the optimization described here to the program I
segment used in the previous section, the following object code
results:

epp7 pr4/q,* addr (common block)
Ixl2 50,dl

$10: fld pr7/-50,2 a
fad =3.0,du
fstr pr7/-50,2 a

adlx2 50,du
c-mpx2 25000,du
tmoy $10

POINTERS FOR EFFICIENT CODING STYLE USING THE FORTRAN OPTIMIZER

12/81

• When using arrays in loops, have the leftmost subscripts
vary most rapidly. This decreases paging.

• If a set of subprograms is called during the execution
of a program, compile the subprograms and the main program
together in the same source segment. This method of
compilation produces faster calling sequences, as
described above in the beginning of this section under
"Quick Subprogram Call."

• If no arguments in a quick call to a subroutine or
function are subscripted, or are formal parameters or
are in common storage, the calling sequence will be
shorter ..

• Avoid the
parameters
Because of
expressions
inhibited.

use of equivalenced variables and formal
as do-loop indexes and array subscripts.
potential aliasing, the optimization of
containing these variables is partially

• Avoid the use of variables in common as do-loop indexes
and as subscripts in loops that contain subroutine calls,
function references, or references to formal parameters.

• Code programs in a straight-line manner and avoid
circuitous and involved logic with many goto statements.
use do-loops for looping rather than if statements.
Although the optimizer recognizes all loops whether or
not they are do-loops, optimization is often better with
do-loops because, topologically, they tend to be
well-formed loops.

• Avoid extended range do-loops.

B-11 CC70-01A

I
I

I

12/81

• Avoid use of assigned goto statements. Besides making
a program more obscure to the reader, assigned goto
statements are not handled well because they obscure
the program flow.

• Avoid end= or err= branches to points wi thin loops.
These branches are best used to points outside of all
loops in a program unit.

• Control all do-loops with integer variables rather than
real or complex variables. Strength reduction is applied
only to integer variables.

• Use a save statement to name local variables whose values
must be saved across successive invocations of a program
uni t. Otherwise, do not use a save statement. Use
automatic variables when values need not be saved.

• Order the terms in a complicated logical expression in
a logical if statement such that the most likely relational
expression to decide the result comes first.

• Attempt to do I/O on whole arrays or vectors rather
than scattered array elements when inputting or outputting
arrays.

B-12 CC70-01A

APPENDIX C

COMPATIBILITY WITH NON-FORTRAN PROGRAMS

FORTRAN programs can reference PL/I procedures exactly as
they would reference subroutine or function subprograms. There
are no restrictions on the types of arguments passed from a
FORTRAN subprogram to a PL/I procedure. The following table
indicates the proper PL/I declaration for each FORTRAN data type.

WARNING: As a result of differences between PL/I and FORTRAN
languages, bit(1) aligned in PL/I is not equivalent
to logical in FORTRAN.

FORTRAN

integer i,j,k
real a,b
double precision d,e
complex c
logical r,s
character*7 cs

call subr (x,y,z,$10,$5)

subroutine subr (a,b,c,*)

return 5

PL/I

declare (i,j,k) fixed bin(35);
declare (a,b) float bin;
declare (d,e) float bin(63);
declare c float bin complex;
declare (r,s) bit(36) aligned;
declare cs char(7) aligned;

integer value=O;
call subr (x,y,z,integer value);
I*if integer value>O and <=number of
label args, then go to label array
(integer value)*1

subr: procedure(a,b,c)returns
(fixed bin);

return (~ , . , ~, ,

FORTRAN subprograms may be called by PL/I procedures and may
receive arguments of any FORTRAN data type.

Multidimensional PL/I arrays can be passed to FORTRAN and
vice versa if the dimensions are reversed and the subscripts are
reversed. This is because FORTRAN stores arrays in column-major
order while PL/I stores them in row-major order.

C-1 CC70-01

Example:

dimension q(5,10),r(10)
real q,r,s

call x(q,r,s)

x: proc(a,b,c);
dcl a(10,5) float,
b(10) float,
c float;

Note: q(2,3) is referenced in x as a(3,2).

The FORTRAN call is identical to a PL/I call and is fully
compatible with Multics standards. FORTRAN subprograms can call
and be called by programs written in any language that obeys
these conventions and implements Multics standard data types that
correspond to the FORTRAN data types. FORTRAN subprograms may
call any of the Multics system entries whose arguments are
restricted to the data types available in Multics FORTRAN.

Three classes of procedure require descriptors in PL/I: (1)
all procedures declared "options (variable) ," (2) all procedures
declared with star extents, and (3) all Multics commands. A PL/I
procedure is considered to have star extents if its declaration
(or Usage Description) contains the character "*,,

If a called PL/I procedure expects descriptors, the calling
FORTRAN program must declare the entry name in an external
statement with the "(descriptors)" attribute.

Example:

external ioa (descriptors), sort_seg (descriptors)

call ioa ("Error retype the values")

.
call ioa ("Job "'a,"d lines completed", job_name, line count)

call sort seg ("temp_file")

C-2 CC70-01

Example:

nr IT r ~I .L

dcl a entry(fixed bin, char (5»;
dcl b entry(fixed bin, char (*»;

FORTRAN

external b (descriptors)

call a (5, "Hello")

call b (-4, "Bye")

In the example above the declarations on the left are PL/I
and the code on the right shows how the declaration is written in
FORTRAN. Notice that b requires descriptors; a does not.

C-3 CC70-01

APPENDIX D

ERROR MESSAGES

A complete list follows of compilation-time error messages
and runtime 1/0 error messages. In the case of the compilation-time
messages, xxx indicates the point in the message where specific
information about the actual error is inserted by the compiler.
The runtime 1/0 messages would also be more specific in real
cases.

All error messages that begin with "Compiler error:" are
errors in the compiler itself and should never occur. If such an
error message dOes occur, you should report it to maintenance
personnel at your site, and save the source so that the error can
be duplicated and corrected by the developers.

COMPILE-TIME ERROR MESSAGES

ERROR
NUMBER

001

002

003

004

005

006

007

12/81

SEVERITY

3

3

3

2

3

2

MESSAGE

This segment contains no FORTRAN statements,
just comment lines.

Extra end statement encountered.

Main program must
in the segment.

be the first program 1\"'" ; f­
lAiJ..1.. v

Executable statements cannot appear in a block
data subprogram.

This statement is preceded by an unconditional
transfer of control and cannot be referenced.

Syntax error in xxx statement. Text follows
logical end of statement.

This subprogram must contain at least one

D-1 CC70-01A

I

008

009

010

011

012

013

014

I 015

016

017

018

I 019

020

021

022

023

024

12/81

3

2

3

3

3

3

3

3

2

3

3

3

3

3

3

3

executable statement.

The do loop ending wi th xxx has not been
terminated.

Return value of function xxx has not been set.

Syntax error. A variable name is required in
place of xxx.

Syntax error. A right parenthesis is required
in place of xxx.

The label xxx has been referenced but not
declared.

Syntax error.
of xxx.

A slash is required in place

xxx is declared with variable bounds but is
not a parameter.

More than one unnamed block data subprogram.

A xxx statement cannot terminate a do loop.

, A xxx statement cannot appear in a main program.

xxx is the index of two or more nested implied
do loops.

xxx, which is a bound of xxx, is not an scalar
integer, parameter, constant, or in_common.

xxx cannot be declared as a member of the
common block xxx.

xxx cannot be referenced as a subroutine.

Syntax error. A left parenthesis is required
in place of xxx.

Syntax error. A statement label is required
in place of xxx.

Syntax error. An unsigned integer constant
is required in place of xxx.

D-2 CC70-01A

025

026

027

028

029

030

031

032

033

034

035

036

-037

038

039

040

041

042

043

12/81

3

3

3

3

2

3

3

3

3

3

3

3

3

3

3

3

3

Syntax error. A reference to a scalar variable
is required in place of xxx.

Syntax error.
of xxx.

A comma is required in place

Implementation restriction: Do loop and block
if nesting has exceeded xxx.

Syntax error. An equivalence group must contain
at least two members.

An xxx statement file must be a variable, ~rray, ,
or array element of arithmetic or character
type.

The xxx attribute is redundant or conflicting
for xxx and is ignored.

A xxx statement must have a xxx specification. I

This is not an assignment statement and xxx
is not a known keyword.

A global save statement must be the only save
statement in a program unit.

Syntax error. A left parenthesis encountered
that does not delimit an implied do loop.

A xxx statement cannot appear in a main program.

The real constant xxx has more than xxx digits
and has been converted to double precision.

Syntax error. A format statement must have a
statement label.

A program unit cannot contain both automatic
statements and save statements.

xxx can only appear in this parameter 1 ist
once.

Syntax error. A keyword is required in place
of xxx.

Syntax error. A label, variable name, or list
of labels is required in place of xxx.

A xxx statement cannot be the second part of
a logical if statement.

xxx has been referenced but not set.

D-3 CC70-01A

044

045

046

047

I 048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

12/81

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Syntax error. The keyword xxx is required in
place of xxx.

Syntax error. A single letter is required in
place of xxx.

Syntax error. The letter range specified must
be in ascending alphabetical order.

Syntax error. The letters in the letter range
must be in the same case.

The xxx keyword has been specified more than
once in this statement.

Syntax error. An equals sign is required in
place of xxx.

Syntax error. A constant is required in place
of xxx.

Syntax error. Only arithmetic constants can
be signed.

Syntax error. The characters xxx are out of
place.

Syntax error. A character string constant is
required in place of xxx.

Pathname in library statement is not acceptable.

Implementation restriction: A statement
function is limited to xxx arguments.

This xxx statement is out of sequence and is
ignored.

Adding a word to common block xxx in order to
store xxx on a double word boundary.

xxx is a member of common and cannot have
variable bounds.

Storage class for xxx conflicts with storage
class of the equivalence group.

Attempt to equivalence xxx to more than one
location.

Attempt to change the address of common block
xxx.

Cannot equivalence a member of a common block,
xxx, to another common block, xxx.

D-4 CC70-01A

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

12/81

3

3

3

3

4

2

3

3

3

3

3

3

3

3

3

3

Alignment requirements for equivalence group
containing xxx cannot be resolved.

xxx cannot appear in an equivalence group.

xxx cannot appear in an equivalence group
because it has variable bounds.

Syntax error. xxx is not a valid keyword for
the xxx statement.

Implementation restriction: xxx has overflowed
its limit of xxx words.

xxx, which is a formal parameter of the statement
function xxx, has not been referenced.

The statement label xxx is less than
greater than 99999.

or

The statement label xxx has been previously
defined. This definition is ignored.

This executable statement label is used as a
format specification.

This format statement label is used in an
executable context.

The statement label on this statement cannot
be referenced.

A reference to an executable statement label
is required in place of xxx.

A reference to a format statement label is
required in place of xxx.

A subscripted reference to xxx is not possible.

This reference to xxx is not valid because it
has variable bounds.

The subscript xxx exceeds the corresponding
xxx bound for xxx.

A reference to xxx has xxx subscripts.

D-5 CC70-01A

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

I 096

097

098

099

12/81

3

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Initialization of common blocks can only occur
in a block data subprogram. xxx not
initialized.

More than one initial value assigned to an
element of xxx.

Fewer constants than variables in a data
specification.

The mode of xxx is not compatible with the
mode of xxx.

More constants than variables in a data
specification.

Implementation restriction: Format
specification is longer than xxx characters.

Syntax error in a format specification. xxx

Implementation restriction:
length of xxx exceeds xxx.

The character

Syntax error. A format or namelist reference
is required in place of xxx.

Implementation restriction: Implied do loop
nesting exceeds xxx.

Syntax error. Parentheses do not balance.

Syntax error in an implied do loop.

xxx is not a keyword or variable name and
cannot start a FORTRAN statement.

xxx cannot be declared as a builtin function.

Syntax error. An operand is required in place
of xxx.

Only scalar variables and array elements may
appear in a set context.

The fun ct ion xxx cannot appear in a set cont ext.

xxx is followed by a parenthesized list but
is not dimensioned and cannot be a function.

xxx is dimensioned and must appear in this
context with subscripts.

xxx is an entry value and cannot appear in
this context.

D-6 CC70-01A

100

101

102

103

104

105

106

107

108

109

·110

111
I I I

112

11 3

114

115

116

117

118

119

120

12/81

3

3

3

2

2

3

3

2

2

3

3

3

3

3

3

3

3

3

3

3

xxx cannot appear in this context.

Syntax error. A binary operator is required
in place of xxx.

Syntax error. Unexpected occurrence of xxx.

Implementation restriction: The line number
xxx must be less than 16384.

Missing end statement. One will be supplied
by the compiler.

Syntax error. Statement consisting of only a
statement label.

The character xxx is not a member of the FORTRAN
character set or is out of place.

Invalid use of xxx.

Character string constant whose length is zero.

A character string constant has been terminated
by the end of the statement.

Implementation restriction: More than xxx
constants in this statement.

Text of this statement exceeds xxx characters.

A continuation line was encountered that was
not preceded by an initial line.

There is no line number on this line: xxx

The rightmost six digits of xxx will be used
as the line number.

The line number xxx is not greater than xxx.

Syntax error. Decimal point missing from end
of an operator or logical constant •

• xxx. is not an operator or constant known
to this compiler.

Missing or incomplete exponent field. The value
zero will be used.

Integer constant xx·x cannot be represented
internally.

More than xxx digits in the floating point
constant xxx.

D-7 CC70-01A

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

. 1136

137

138

12/83

3

3

3

3

2

3

3

3

2

3

3

3

2

3

3

3

3

Exponent overflow while converting the floating
point constant xxx.

Exponent underflow while converting the
floating point constant xxx~

Implementation restriction:
tokens in this statement.

More than xxx

Implementation restriction: Tokens are limited
to xxx characters.

The data type of xxx must be the same as that
of xxx.

xxx cannot be assigned an initial value.

The name xxx cannot be used as an entry point
name.

xxx is a member of blank common and cannot be
assigned an initial value.

The letter range specified in this statement
overlaps a previous range.

xxx is contained in an octal constant but is
not an octal digit.

A statement label appears on a line wi thout
any other text.

This statement contains a line with more than
80 characters.

A nonnumeric character was encountered in a
label field.

Text appears after the closing right parenthesis
of a format specificatione

The variable xxx must be the index variable
of a containing implied do loop •

Implementation restriction: The xxx of xxx
exceeds 262143.

A prefix minus cannot precede xxx.

Implementation restriction: There are more
than xxx arguments in this reference to xxx.

D-8 CC70-01C

139

140

141

142

143

144

145

146

147

1 JI Q
I -rv

149

150

151

152

153

154

155

12/83

2

3

2

3

3

3

3

2

3

3

3

3

3

A character constant used to initialize xxx
is longer than xxx characters.

Variable xxx has already been defined and cannot
appear in a xxx statement.

xxx must be a scalar integer reference.

The named constant xxx must not appear in this
context.

The expression starting wi th xxx must be a
scalar or subscripted variable.

Warning: the meaning
exponentiation has been
previous release.

of
changed

multiple
from a

This xxx statement cannot have an input/output
list.

This xxx statement must have an input/output
list.

Variable xxx was declared with *-length, but
is not a parameter or external
function--length has been set to xxx.

Line xxx was interpreted as a comment, but a I
legal non-space character follows the initial I
c.

Asterisks designating external units are not
permitted in xxx statements.

Unknown keyword xxx found in %global statement.

Unknown keyword xxx found in %options statement.

The terminating semicolon is missing from a
%options or %global statement.

The concatenation operator may only be l!sed
if the ansi 77 control argument or option
was specified.

The substring operation may only be used if
the ansi 77 control argument or option was
specified.

Invalid substring of xxx.
be applied to simple
elements.

D-9

Substring may only
variables or array

CC70-01C

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

I 111

12/83

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

3

xxx cannot contain both ansi77 character
variables and other data types.

An equi valence group cannot contain both ansi 77
character variables and other data types.

Star-extent character strings may only be used
if the ansi 77 control argument or option
was specified.

This statement contains a substring reference
to xxx, which is not of the character data
type.

The %include statement does not contain a file
name.

The include file name xxx is longer than 19
characters. Statement ignored.

Include file xxx not found. Statement ignored.

Implementation restriction: only 255 include
files allowed per compilation. Include file
xxx ignored.

Implementation restriction: include file xxx
exceeds the nesting limit of 32. Statement
ignored.

This reference to xxx would cause infinite
recursion of include files. Statement
ignored.

An assumed-size array is not permitted in an
xxx statement.

The array xxx has an assumed-size declarator
in other than the upper bound of the last
dimension.

A lower dimension bound of xxx is greater than
the corresponding upper bound.

A dimension bound of xxx is neither a constant
expression nor a scalar integer variable.

Compiler error: An invalid data type has been
encountered during evaluation of a parameter
expression.

A non-constant operand xxx was found while
evaluating xxx.

D-10 CC70-01C

172

173

174

. 175

176

177

178

179

180

1 81

1Q')
, vc....

183

184

185

186

187

188

189

12/83

3

3

3

3

3

4

3

3

3

3

3

3

3

2

3

2

2

An operator whose operands are of invalid type
was found while evaluating xxx •

An at tempt was made to use an unimplemented
operation while evaluating xxx.

The xx~ condition was raised during evaluation
of xxx.

An invalid operator was found during evaluation
of xxx.

An operand of invalid data type was found during
evaluation of xxx.

Compiler error: the parameter statement work
area has overflowed.

The block if beginning at line xxx has not
been terminated.

The keyword xxx is missing in a xxx statement.

There is no block if statement corresponding
to this xxx statement.

This xxx statement has followed an else
statement in the same block if.

The do loop ending at xxx must be ended before
this xxx statement.

This statement ends a do loop, but the do
loop ending at xxx must be ended first.

This statement ends a do loop, but the block
if at line xxx must be ended first~

The label xxx is on a statement that must not
be referenced.

xxx is not the name of a common block.

Invalid specification or combination of
specifications in a xxx statement: xxx.

The compiler is unable to get status information
on source or include file xxx. The object
segment will be nonstandard.

Implementation restriction: There are more I
than xxx arguments in this parameter list.

D-11

I 191

I
I

192

193

200

201

202

203

204

205

206

229

300

301

302

303

304

305

306

12/83

2

2

2

4

4

4

3

3

4

4

3

3

3

3

3

2

3

The xxx xxx supercedes xxx.

The control argument xxx supercedes the %global
option xxx.

An invalid %global has been found and will be
ignored. All % global must be at the beginning
of the program.

Compiler error: the converter has encountered
an unexpected operator with the op_code xxx.

Compiler error! attempt to increment polish
beyond end of polish input stack. -

Compiler error: the converter work segment
has overflowed while adding an entry to the
xxx list.

Compiler error: an sf dummy arg has been found
that does not match a known invocation.

Implementation restriction: an operator cannot
use more than xxx operands.

Compiler error: converter work stack pointer
has become negative.

Compiler error: converter work stack pointer
has exceeded its upper bound of xxx.

Constant type not implemented.

xxx must be a scalar integer variable.

xxx must be a scalar integer variable.

The data type of a file expression, xxx, must
be integer.

An internal file must have the character data
type.

The record number expression, xxx, must be
integer.

The encode or decode string may not be of
logical data type.

Error detected in the definition of the
statement function xxx.

D-12 CC10-01C

307

308

309

310

311

312

313

314

315

316

317

319

320

321

322

323

324

325

12/83

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Insufficient number of arguments in a reference
to the statement function xxx.

Too many arguments supplied in a reference to
the statement function xxx.

The data type of xxx is not compatible with
its use.

The data type of xxx is not compatible wi th
its use.

xxx is complex and xxx is double precision in
an expression.

xxx is double precision and xxx is complex in
an expression.

The data type of xxx must be logical.

The arguments to the builtin function xxx must
have the same data type.

xxx does not have an arithmetic data type.

The do-loop control variable xxx cannot be
complex.

xxx in a do statement must be arithmetic •

~~~ A~'~~~ ~~~~~~1 
J.llC UV-.LVV~ I.,.;Vl1v.LV.L 

........... ~~ -'"',--va..L·.La.U.Lt: xxx _ •• _L. 
UlUo::>l, be 

arithmetic. 

Wrong number of arguments in a reference to 
the builtin function xxx. 

The builtin function xxx has an argument, xxx, 
that is not arithmetic. 

Error in the use of the builtin function xxx. 
xxx has an invalid data type. 

Error in the use of the builtin function xxx. 
xxx and xxx are complex values. 

The complex value xxx cannot be used in this 
comparison. 

xxx in a logical if, block if, or else if 
statement must be a logical value. 

xxx in an arithmetic if statement must be an 
arithmetic value. 

D-13 CC70-01C 



326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

12/83 

3 

3 

3 

2 

4 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

xxx in a computed if statement must be an 
arithmetic value. 

Insufficient number of labels in a computed 
goto statement. 

The complex values xxx and xxx cannot be used 
in this comparison. 

The format item xxx must be an integer array 
or a character variable. 

Compiler error: obsolete macro xxx occurs in 
the text. 

The margin setting xxx must have the integer 
data type. 

The filename xxx must be a character string. 

The filetype xxx must be a character string. 

In the use of the statement function xxx, xxx 
does not have the correct data type. 

The file to be chained to xxx must be a character 
string or an integer array. 

The system to be chained to xxx must be a 
character string or an integer array. 

The character variable xxx cannot be assigned 
to an arithmetic variable. 

xxx cannot be assigned to xxx, because it is 
not a logical variable. 

The logical value xxx cannot be an operand of 
a relational operator. 

The arithmetic value xxx can only be compared 
to another arithmetic value or a hollerith 
constant. 

xxx does not have the character or integer 
data type and cannot be compared with xxx. 

Error in processing the label list in a computed 
goto statement. 

The data type of the sta tement function xxx 
must be arithmetic or logical. 

D-14 CC70-01C 



344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

380 

381 

382 

12/83 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

2 

3 

4 

4 

Cannot convert a double precision expression 
to complex in the statement function xxx. 

Cannot convert a complex expression to double 
precision in the statement function xxx. 

Cannot convert the defining expression to the 
data type of the statement function xxx. 

The statement function xxx does not have the 
proper data type. 

This reference to xxx contains a character 
argument that may require descriptors. 

An error has been detected in the processing 
of an open field. 

The iostat variable xxx must have the integer 
data type. 

The argument xxx used in this field must have 
the character data type. 

The argument xxx used in this field must have 
the integer data type. 

The argument xxx used in this field must have 
the logical data type. 

xxx is used in a character expression but does 
not have the character data type. 

The character valued function parameter xxx 
may not be declared to have *-length. 

An error has been detected in the processing 
of an inquire statement field. 

Compiler error: Invalid field number xxx 
encountered in inquire statement. 

The format 
Array. 

i tern xxx cannot be a Very Large I 
An undefined label has been found in this 

program. 

Compiler error: the output from the optimizer 
overwrites the next statement. 

Compiler error: xxx does not agree with xxx. 

D-15 CC70-01C 



4 

I 384 

385 4 

386 4 

388 4 

389 

390 4 

391 4 

I 400 2 

I 401 2 

402 4 

403 4 

404 4 

405 4 

406 4 

12/83 

Compiler error: The optimizer has encountered 
an unexpected operator with the op_code xxx. 

The code from LINE xxx to LINE xxx is unreachable 
or unnecessary. It will not be compiled. 

Implementation restriction: optimization has 
terminated due to lack of available bits in 
the masks. 

Compiler error: Inconsistency found between 
an operator and the inputs chain of one of 
its inputs. 

This loop has been eliminated because, after 
optimization, it has no effect on the result 
of the program. 

Implementation restriction: flow unit table 
overflow. Simplify flow of control: use 
do statements for looping. 

This loop has no exit. 

Implementation restriction: optimizer has 
created too many new operators. 

Compiler error: an expression unthreaded by 
strength reduction is input to other 
expressions. 

xxx has been called with an inconsistent number 
of arguments. 

xxx is inconsistent wi th the corresponding 
argument type used in xxx. 

Compiler error: an invalid index has been 
used with a xxx macro. 

Compiler error: 
arguments has 
func. 

a return macro 
been used to return 

without 
from a 

Compiler error: a return macro with an argument 
has been used to return from a proc. 

Compiler error: an exit macro has been used 
to return from a func. 

Compiler error: an exit macro has been used 
in a proc not invoked by scan. 

D-16 CC70-01C 



407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 
I r 

II" 0 
<-flU 

419 

420 

421 

422 

423 

12/83 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

3 

3 

Compiler error: xxx overflows its maximum of 
xxx words. 

Compiler error: an s return has been used 
when no matching s_ciil exists. 

Compiler error: an ind jump macro was used 
when the eaq was not in an indicator substate. 

Compiler error: 
was used when 
state. 

an if ind or unless ind macro 
the eaq was in an invalid 

Compiler error: an add to address macro was 
used with non-rel constant xxx. 

Compiler error: 
the character 
operand xxx. 

an attempt was made to get 
length of the noncharacter 

Compiler error: there was an attempt to execute 
a nonexecutable macro. 

Implementation restriction: xxx has overflowed 
its limit of xxx words. 

Compiler error: the reference count of xxx 
has become less than O. 

Compiler error: 
field. 

xxx has an invalid address 

Compil er € l~;'-C;': :::::~::-:. ~~~ 0 ~ po int er regist er 
for addressing, but is neither a parameter 
nor in common. 

Compiler error: no index or pointer registers 
are available for allocation. 

Compiler error: the offset of xxx cannot be 
found in storage. 

Co~piler error: a~ attempt was made to update 
the eaq with xxx to the ind state. 

Compiler error: an attempt was made to load 
xxx into an invalid eaq state. 

The subscript xxx of xxx is out of range. 

The number of subscripts of xxx does not equal 
the number of its bounds. 

D-17 CC70-01C 



424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

43'7 

438 

439 

440 

441 

12/83 

4 

4 

4 

3 

2 

3 

2 

4 

4 

4 

4 

4 

4 

4 

4 

Compiler error: xxx not implemented. 

Compiler error: operand stack in improper state 
at end of subprogram. 

The length for common block xxx has been 
increased to xxx words. 

Compiler error: the address of xxx has been 
lost. 

The entry point xxx has been mul tiply declared. 

Mul tics restriction: The common block name 
xxx contains a dollar sign and cannot be 
initialized. 

Compiler error: the value of xxx should be 
in the index register, but it has been lost. 

The subscript xxx of parameter xxx is out of 
range. 

The common block xxx is initialized more than 
once8 The first initialization is used. 

Implementation restriction: the product of 
xxx and xxx cannot be stored in the stack. 

Common block xxx is declared wi th more than 
one length. 

Compiler error: xxx must be a temporary or 
an array ref. 

Compiler error: obsolete macro xxx occurs in 
the text. 

Compiler error: a var pr.oc is invoked by a 
call macro. 

Compiler error: proc arg count not equal to 
actual arg count. xxx xxx 

Compiler error: eaq not loaded by load_for test 
macro. 

Compiler error: eaq not loaded correctly for 
xxx. 

Compiler error: operand xxx in return macro 
is not a temporary node. 

D-18 . CC70-01C 



442 4 

1l1l':2 
, '..J 

444 4 

445 4 

446 4 

447 4 

448 4 

449 4 

450 4 

451 

452 4 

453 4 

454 4 

455 4 

3 

457 3 

458 3 

12/83 

Compiler error: 
address. 

temporary already has an 

Only the first xxx characters of xxx can be 
used. 

Compiler error: This statement cannot have a 
machine state associated with it. 

Compiler error: xxx has an invalid xxx field. 

Compiler error: 
address field. 

xxx has an uninitialized 

Compiler error: an increment cannot be added 
to the address of xxx. 

Compil er error: Could not put operand into 
EAQ machine state. 

Compiler error: Both A and Q found already 
locked by eaq_man. 

Compiler error: An operand that should be in 
the eaq was not found by get_eaq_name. 

Implementation restriction: Global xxx table 
overflows. Optimization may be degraded. 

Compiler error: data type xxx undefined for 
a call to create constant. 

Compiler error: attempt to load global item 
in a reserved register. 

Compiler error: attempt to set up xxx while 
it has a nonpositive reference count. 

Compiler error: 
polish that 
quadruples. 

an opera tor appears in 
should only appear in 

the 
the 

Compiler error: the reference count of xxx 
was left too high. 

The xxx appears in a substring reference to 
xxx, but falls outside the range of a legal 
character index. 

The xxx which appears as a subscript of xxx I 
does not have a numerical data type. 

D-19 CC70-01C 



I 459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

I 469 

500 

501 

502 

503 

I 523 

12/83 

3 

3 

3 

4 

4 

4 

4 

4 

4 

3 

2 

2 

2 

2 

2 

4 

The xxx which appears in a substring reference 
to xxx does not'have a numerical data type. 

A substring reference to xxx has a constant 
length that is less than 1. 

The xxx intrinsic function may not be used as 
an external function. 

Compiler error: No integer constant was present 
on the operand stack when the int to char1 
macro was invoked. 

Compiler error: No character constant was 
present on the operand stack when the 
char1 to int macro was invoked. 

Compiler error: The optimizing code generator 
encountered the xxx intrinsic function. 

Compiler error: The output of an operator 
called from a scan is not a temporary. 

Compiler error: An emi t eis macro wi th the 
equal lengths flag was encountered in which 
the length of the second operand was nonzero. 

Compiler error: base man store temp cannot 
find a usable pointer register:-

xxx requires argument descriptors and may not 
be passed the assumed size array xxx. 

Implementation restriction: Cannot initialize 
/xxx/ the definition section would overflow 
its limit of xxx words. 

Cannot get pointer to subsequent source segment. 

Number of symbols exceeds xxx. Symbol table 
will be processed in sections. 

Compiler Error: Unknown node xxx discovered 
in symbol table. 

The symbol xxx cannot be chained to others of 
the same name because the symbol table is 
too large. 

Compiler error: VLA xxx has been encountered 
which is neither auto, static, common, nor 
parameter. 

D-20 CC10-01C 



524 

525 

3 

4 

Development compiler error: xxx 

Compiler error: unknown error xxx. 

RUNTIME I/O ERROR MESSAGES 

In a real situation, the messages listed below would occur 
accompanied by varying amounts of supplementary information, which 
might include: 

(1) the specific item that is in error 

(2) a description of the processing attempted by the FORTRAN 
runtime I/O routines when the error occurred 

(3) where in the program the error occurred, and 

(4) where in the file the error occurred. 

Error messages include brief descriptive comments. 

fortran io: Error in access field. 

fortran io: This open attribute cannot be supplied if the file 
is already connected. 

fortran io: This open attribute cannot be supplied if the file 
is already opened. 

fortran io: Error in the attach description field. 

fortran io: Invalid or unexpected character in external data field. 

fortran io: Error in the blank field. 

fortran io: This file cannot be backspaced or rewound. 

fortran io: This file cannot be read. 

fortran io: This file cannot be opened with the requested mode. 

fortran io: This file opening does not permit file truncation. 

fortran io: This file opening does not permit output operations. 

fortran io: Error in the close statement attributes. 

fortran io: External data field cannot be converted. 

fortran io: Double word binary files are limi ted to double precision 
data. 

12/83 D-21 CC70-01C 



fortran io: Error in the filename field. 

fortran io: FORTRAN I/O Error. 
personnel. 

Contact FORTRAN maintenance 

fortran io: Error in the form field. 

fortran io: Error in format specification. 

fortran io: Infinite loop in format. There is a list item but 
the format has no field descriptors. 

fortran io: Formatted files are limited to formatted records. 

fortran io: The file opening is not compatible with the existing 
file. 

fortran io: An attempt has been made to access a record beyond 
the end of an internal file. 

fortran io: Only prompt, defer, and carriage attributes are allowed 
for file O. 

fortran io: Only the print or terminal file type can be specified 
for file o. 

fortran io: This operation is not allowed for file O. 

fortran io: Invalid value for the maximum record length. 

fortran io: The value of a scale factor must be between -8 and 8 
inclusive. 

fortran io: Error in the I/O switch field. 

fortran io: Maximum record length exceeded. 

fortran io: Namelist input must begin with a header. 

fortran io: Error in the mode field. 

fortran io: File must be empty in order to set maximum record 
length. 

fortran io: Error in namelist I/O. 

fortran io: This file is not a blocked file. 

fortran io: This file opening does not permit direct access I/O. 

fortran io: File must be open before being used. 

12/83 D-22 CC10-01C 



fortran io: This file was not created, opened, and at tached by 
FORTRAN 1/0 .. 

fortran io: This file opening 
1/0. 

does not noY>m;r 
tJ"-.L LU..,L v access 

fortran io: These two open attributes are mutually exclusive. 

fortran io: The open attributes are incomplete. 

fortran io: Maximum format parenthesis level exceeded. 

fortran io: Attem~t to read more data than the record contains. 

fortran io: Error in status field. 

fortran io: Syntax error in the external data field. 

fortran io: Unformatted files are limited to unformatted records. 

fortran io: The file type of the external file is not recognized. 

fortran io: The 1/0 switch was not opened by FORTRAN and it does 
not support the requested mode. 

12/83 D-23 CC70-01C 



MULTICS FORTRAN USER'S GUIDE 
ADDENDUMC 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the third addendum to CC70, Revision 1, dated December 1979. Refer to 
the Preface for ~~Significant Changes." 

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover. Throughout the manual, change bars in the 
margins indicate technical additions; asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum C. 

SOFTWARE SUPPORTED 

Multics Software Release 1002 

ORDER NUMBER 

CC70-01C 

39098 
11183 
Printed in U.S.A. 

December 1983 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove 

iii through viii 
ix, blank 

1-6.1, blank 
1 -7, 1-8 

1-13, 1-14 

1-15 through 1-20 

1-23, blank 
1 -23 • 1, 1 -24 

3-3 through 3-6 

3-9, 3-10 

4-1 through 4-4 

B-9, B-10 

D-7 through D-22 
D-23, blank 

i-1 through i-8 

The infonnation and specifications in this document are subject to change without notice. This 
document contains infonnation about Honeywell products or services that may not be available 
outside the United States. Consult your Honeywell Marketing Representative. 

Insert 

iii through viii 
ix, blank 

1-7, 1-8 
1-8 • 1, 1 -8 . 2 

1-13, 1-14 

1-15 through 1-20 
1-20.1, blank 

1 -23, 1 -23 . 1 
1 -23 • 2, 1 -24 

3-3, 3-4 
3-5, 3-5.1 
3-5.2, 3-6 

3-9, 3-1 0 

4-1 through 4-6 
4-7, blank 

B-9, B-10 
B-1 0 • 1, b 1 an k 

D-7 through D-22 
D-23, blank 

i-1 through i-8 
i-9, blank 

o Honeywell Information Systems Inc., 1983 File No.: 1L13, 1U13 

12/83 CC70-01C 



LEVEL 68 

MULTICS FORTRAN 
USERS' GUIDE 
ADDENDUMB 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the second addendum to CC70, Revision 1, dated December 1979. Refer to 
the Preface for ··Significant Changes." 

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover. Throughout the manual, change bars in the 
margins indicate technical additions; asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum B. 

SOFTWARE SUPPORTED 

Multics Software Release 10.1 

ORDER NUMBER 

CC70-01B 

36163 
7.5C183 
Printed in U.S.A. 

February 1983 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove Insert 

iii through ix, blank 
1-3 through 1-6 

.1-13,1-14 

3-3 through 3-6 

3-7 through 3-10 

4-1 through 4-4 
5-5 through 5-6 
5-17,5-18 

6-3,6-4 
i-I thorugh i-8 

The information and specifications in this document are 
subject to change without notice. This document contains 
information about Honeywell products or services that may 
not be available outside the United States. Consult your 
Honeywell Marketing Representative. 

© Honeywell Information Systems Inc.,-1983 
2/83 

iii through ix, blank 
1-3 through 1-6 
1-6.1, blank 
1-13,1-14 
1-14.1, blank 
3-3,3-4 
3-5, blank 
3-5.1,3-6 
3-7, blank 
3-7.1,3-8 
3-9,3-10 
3-10.1, blank 
4-1 through 4-4 
5-5,5-6 
5-17,5-18 
5-18.1, blank 
6-3,6-4 
i-I through i-8 

File No.: ILI3, I UI3 
CC70-01B 



SERIES 60 (LEVEL 68) 

MULTICS FORTRAN 
USERS' GUIDE 
ADDENDUM A 

SUBJECT 

This is the first addendum to CC70-01 (dated December 1979). 

Insert the attached pages into the manual according to the collating 
instructions on the back of this cover. 

Section 6 is new. In other sections, change bars indicate new and changed 
information; asterisks denote deletions. These changes will be incorporated into 
the next revision of this manual. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum A. 

SOFTWARE SUPPORTED 

Multics Software Release 9.1 

ORDER NUMBER 

CC70-01A 

33573 
5C182 
Printed in U.S.A. 

December 1981 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove 

title page, preface 

iii through vii, blank 

1-13 through 1-24 

2-1, 2-2 

3-3 through 3-6 

4-3, blank 

5-5 through 5-8 

8-7 through 8-12 

D-1 through D-14 

i-1 through i-8 

The information and specifications in this document are 
subject to change without notice. This document contains 
information about Honeywell products or servi.cea that may 
not be available outside the United States. Consult your 
Honeywell Marketing Repreaentative. 

~ Honeywell Information Systems Inc., 1981 

12/81 

Insert 

title page, preface 

iii through ix, blank 

1-13 through 1-23, blank 
1-23.1, 1-24 

2-1, 2-2 

3-3 through 3-6.2 

4-3, blank 

5-5 thro"gh 5-8.1, blank 

6~1 through 6-4 

8-7 through 8-12 

D-1 through D-23, blank 

i-1 through 1-8 

File No.: 1L13 

CC70-01A 



PREFACE 

The purpose of this manual is to supplement Multics FORTRAN, 
Order No. AT58. 

Anyone faced with the prospect of learning to use an unfamiliar 
computer system is likely to experience some frustration in trying 
to get information out of the manuals that are supposed to explain 
it all. The inexperienced or occasional user is often at a loss 
for where to start understanding it all, especially since the 
manual explaining it all seems to assume everything. You want to 
know where there is a manual explaining how to use the manual 
that is supposed to explain it all. 

The FORTRAN Users' Guide is written in the hope that all of 
you who want to write FORTRAN programs on the Multics system can 
get answers to basic questions both about the system and about 
the the FORTRAN dialect embodied on it. 

If you are new to the system, whatever your level of 
sophistication as a programmer, the first section, "Introduction 
to Multics," provides a general overview of the system from the 
standpoint of FORTRAN programming. You are strongly encouraged 
to read through this section carefully before reading any other 
part of the manual. 

Sections are so designed as to make them independent of each 
other. Depending on what you want to know, you can read the rest 
of the manual in any order you choose. 

12/81 CC10-01A 



INDEX 

2-3 

$ 1-10, 2-3 

2-5 

2-5 

Addressing 

A 

and linking 1-8.2 

Ampersand character 2-5 

ansi66 
selection 3-5, 6-1 

ansi77 
selection 3-5, 6-1 

Arrays 
dimensions 4-3 
large arrays 1-8, 1-16, 

1~19.2 

size 1-13, 4-3 
very large arrays 1-8, 1-13, 

1-16, 1-19.2 

Assembly listing 3-8 
see also Listing and Source 

listing 

i-1 

Asterisk character 2-3 

B 

Binder 
allocation of storage for 

variables 4-3 
analogous to linkage editor 

1-31 
and -relocatable 3-7 
and block data subprograms 

1-13 
automatic variables 1-31 
block data subprogram 1-13 
common 4-3 
common storage 1-13, 1-32 
effect on dynamic linking 

1-31 
local 4-3 
search rules 1-31 

Block data subprogram 
common variables 1-13 

Block data subprograms 1-13 

Bound segment 4-3 

CC70-01C 



C 

Calling sequence 1-15, B-2 

Card-image format 
see Format 

Command level 1-5, 2-1 
defined 1-5 

Commands 
add search rules 1-11 
bind 1-31 
debug 2-7, 3-12 
fortran 3-1 
initiate 1-11 
list 1-14.1 
new proc 1-16 
print search rules 1-11 
probe- 2-7, 3-12 
release 1-23.1 
run 1 -22, 1 -23 
set fortran common 1-13, 

1-14 
common block definitions 

1-13 
set search rules 
start 1-23. 1 
status 1-14.1 
terminate refname 

1 -11 

1 -11 

Comment character 
card-image format 2-8 
free-form format 2-3 

Common blocks i-i2, i-i5, 3-9 
allocation of 1-13 
declaration of 1-14 
initialized by block data 

subprogram 1-13, 1-32 
initialized to zero 1-13 
initialized with 

set fortran common 
1-13 

permanent 1-13, 1-14 
size 4-3 
storage of 1-8 
very large common 1-17 

i-2 

Common storage 
unlabeled 1-15 

compatibility 
with non-FORTRAN programs 

C-1 

Compiler 3-3 
control arguments 

see Control arguments 
error messages 3-2, 3-4.1 
invocation of 3-1 
listing 3-7 
metering 3-10 
optimizing 3-9 
options 

see Control arguments 
output of 3-1 
program units compiled 

separately 1-15, 1-21, 
1-26, 1-19.1, 1-19.2 

program units compiled 
together 1-15, 1-19.2 

relocation 3-7 
required argument 3-1 
subscript checking 3-6 
symbol table 3-11 

connection 
explicit 
implicit 
of a unit 

Constants 

5-5, 5-18.1 
5-2 

5-2 

Character-string 
card-image format 2-7 

Hollerith 
card-image format 2-7 

optimization 3-9 

Continuation character 
card-image format 2-5, 2-8 
free-form format 2-5 

Control arguments 3-4 
-brief table 3-11 
-card -2-7, 3-10.1 
-check 3-3 
-check_multiply 4-7 

CC70-01C 



Control arguments (cont) 
-fold 3-10.1 
-large array 3-4 
-line numbers 2-7, 3-1 
-list- 3-1, 3-8, 3-11, 3-12 
-long~profile 3-4 
-map -3-1, 3-12 
-no check multiply 4-1 
-optimize- 3-9, 3-12 
-profile 3-10 
-relocatable 3-1 
-safe optimize 3-6 
-severityN 3-3 
-subscript range 3-6 

with -optimize 3-6 
with -table or -brief 

table 3-6 
-table 3-1, 3-8, 3-11, 3-12 
-time ot 3-9 
-vla -3-4.1 
-vla parm 3-4.1 
compIler options 3-1, 3-3, 

3-6, 3-1, 3-8, 3-11 
safe_optimize 3-9 

Conversion 
card-image to free-form 

format 2-1 

Data types 
complex 1-15 

D 

double precision 1-15 

Debugging 
-brief table 3-11 
-table- 3-11 
and -brief table 3-11 
and -subscriptrange 3-6 
debug 3-11 
full symbol table 3-11 
interaction of -table and 

-optimize 3-12 
line numbers 2-1, 4-2 
probe 3-11 

Directory 

i-3 

as segment 1-2 
segments listed in 1-2 
working 3-2 

Directory hierarchy 
defined 1-2 
file system 1-4 
pathnames in 1-2, 1-5 
search rules and 1-5 
see also Search rules 
segment located by entryname 

1-5 

Dollar-sign character 1-10, 
2-3 

Dynamic linking 
ambiguous references 1-5, 

1-11 
common blocks 1-14 
consequences of 1-11 
defined 1-9 
initiated segments 1-11 
linker 1-8.2 
reference names and 1-10 
resolution of external 

references 1-8 

E 

Efficiency B-10 

End line 2-6 

Entryname 
defined 1-2 

Entrypoint name 
defined 1-10 
main i - -j 2 

Error messages 
severity control 

Exclamation mark 

3-4. 1 

2-3 

CC10-01C 



Executable code 
sharing of 1-8.2 

External addresses 
patching unnecessary 1-8.2 

External references 
see Dynamic linking 

F 

Fault, linkage" 1-9, 1-14, 
1-8.2 

Faults 
linkage 1-31 

File 
defined 1-2 

Files 4-2 

Format 
card-image 2-1, 3-10.1 

comments 2-8 
compiling 2-7 
continuation 2-8 
line numbers 2-8 

free-form 2-3, 2-5, 3-10.1 
comments 2-5 
continuation 2-5 
conversion to 2-7 

FORTRAN 
binder 1-31 
compiler 2-6, 3-2, 3-6, 3-7, 

3-8, 3-9, 3-10, 3-11 
source program 

card-image and free-form 
format 3-10.1 

card-image format 2-1 
compiling of 3-1 
correcting 3-2 
creating and editing of 

2-1 
free-form format 2-3, 2-5 
input formats 2-3 

FORTRAN (cont) 
source program 

listing 3-1 
source segment 3-3 

creating 2-1 
creating and editing of 

2-1 
name of 3-1 

storage classes 1-15, 1-21, 
1-19.1 

valid programs 1-18, 1-20, 
1-19.2 

FORTRAN source program 
free-form format 2-3 

Free-form format 
see Format 

H 

Home directory 
as initial Working directory 

1-3 
see Directory 

I/O switch 
defined 5-22 

I 

implicit connection 5-2 

Initializing variables 
to zero 1-19.1 

Input data transfers 5-4 

Input format 
control arguments 2-3 

Input/Output 
as comments 5-1 
implicit 5-1 
input 5-4 

i-4 CC10-01C 



Input/Output (cont) 
open statement 5-5, 5-8.1 
,.... •• ~ ....... ~ t:: 11 
UUV}.JUl" :';-"'T 

Inquire statement 5-18 

Integer multiplications 4-6 

Large Arrays 
see Arrays 

Line number 
defined 2-7 
maximum 2-7 

L 

Linkage fault 1-9, 1-14, 1-31, 
1-8.2 

Linker 1-10, 1-14 
addressing 1-10 
entrynames 

search 1-10 
entrypoint names 

search 1-10 
reference name 1-22 
standard linkage mechanism 

1-12 

Listing 3-7 
-line numbers 3-7 
-table 3-7 
assembly-like 3-8 
contents of 3-7 
control arguments 

-brief table 3-11 
-list -3-7 
-map 3-7 
-table 3-7 

header 3-7 
see also Source listing, 3-7 
statement labels 3-7 
symbolic names 3-8 

Listing segment 3-7 

i-5 

Load module 
vs Multics 1-8.1 

M 

Main program 1-12 

o 

Object segment 1-8.2 
contents of 1-8 
linkage section 1-8 
standard Multics 1-8 

open statement 
binary stream files 5-15 
default terminal unit to 

file 5-16 
nonstandard units 5-16 
reversing defaults 5-17 
storage system files 5-10, 

5-11, 5-12, 5-13 
tape connection 5-17 
terminal read 5-9 
terminal write 5-9 

open statements 
terminal read/write 5-8.1 

Optimization 
common sub expressions 3-9, 

T'\ II 
.0-'-+ 

constant propagation 3-9 
dead assignments 3-9, B-10 
efficient coding B-10 
global B-4, B-10 
implied do-loops B-2 
i~varia~t 2xpressions 3=9, 

B-7 
invariant operations 3-9 
local B-1 

machine-dependent 
quick call B-2 

machine-independent B-1 
logical if statements B-1 

CC70-01C 



Optimization (cont) R 
operand region 3-10 
strength reduction 3-9, B-8 

Optimizations 
global B-4 

Optimizer 3-9 
evaluation of function 

references B-1 

Pathname 
absolute 1-2 
relative 1-2 

P 

see also Directory hierarchy 

Pathnames 
entrynames as components of 

1-2 

PL/I 
argument transmission C-1 
declaration for FORTRAN data 

types C-1 

preconnection 
see implicit connection and 

explicit connection 

Program units 
compiled separately 1-18 

main 1-12 
compiled together 1-12, 

1-18 

Programs 
size of 4-2 

Q 

quit and start 1-23 

Ready message 1-5 

Records 
length and form 4-1 

Reference name 
and entrypoint names 1-10 
defined 1-10 

i-6 

dynamic linking and 1-10 
initiated 1-22 
state at end of run 1-23 

Reference name table 1-8 
defined 1-10 

Relocation 
of code, at run time 1-8.2 
see also Binder 

Run un i t 1 -1 6 
and reference names 1-22, 

1-23 
as new environment 1-23 
defined 1-22 
discarded storage at end of 

run 1-23 
effect on automatic storage 

1-22 
effect on permanent common 

blocks 1-22 
free storage area 1-22 
initialization of free 

storage area 1-22 

Run units 
resolution of external 

references 1-8 
see also Dynamic linking 

S 

Search rules 
defined 1-11 
manipulation of 1-11 

CC70-01C 



Segment 
attributes 1-2 
defined 1-2 
executable object 
listing 3-7 
object 1-12, 3-2, 

addressing 1-10 
linkage section 
merged by binder 
. 1-31 

3-1 

3-8 

1-8, 1-10 
(bound) 

one main per 1-12 
source 3-3 
stack 4-3 
standard Multics object 1-8 

Semicolon 2-5 

set fortran common command 
1-14, 1-23 

Source listing 
contents of 

2-5, 3-7 
3-7 

control arguments 
-brief table 3-11 
-list -3-7 
-map 3-7 
-table 3-7 

header 3-7 
see also listing 
statement labels 3-7.1 
symbolic names 3-8 

Source program 3-2 
-line numbers 3-7 
card-Tmage 2-7 
creating and editing of 2-1 
free-form format 2-3, 2-5 

Source segment 
creating and editing of . 2-1, 

2-2 

Special characters 
ampersand 2-5 
asterisk 2-3 
comment 2-3, 2-8 
comments 2-3 
continuation 2-5, 2-8 
dollar sign 1-10, 1-15, 2-3 

i-7 

Special characters (cont) 
exclamation mark 2-3 
semicolon 

in free-form format 2-5 
underscore 2-3 

Stack Segment 4-3 
defined 1-7 
header 1-7 
illustrated 1-24 
size 4-3 
stack frames 1-7 

defined 1-7 
illustrated 1-24 

Standard Multics object 
segment 3-1 

Statement labels 2-5 

Statements 
%global 1-20, 4-7 
%options 1-20, 4-7 
automatic 1-21 
common 1-15 
data 1-13, 1-21 
data transfer 

input 5-4 
output 5-4 

number allowed 4-2 
open 

examples of 5-8.1 
how to use 5-5 

pause 1-23.1 
save 1-20, 1-21, 1-22, 

1-19.2 
optimizer and 1-21 

size 4-2 
stop 1-23.1 

Storage 
al.l.OCa~lOn of 1-20, '1-21, 

1-8.1, 1-19.2 
automatic 1-15 
common 1-15 
static 1-15 

automatic 1-15, 1-17, . -26 
allocation of 1-15 

CC70-01C 



Storage (cont) 
automatic 

in programs compiled 
separately 1-20 

in programs compiled 
together 1-20 

large and very large 
arrays 1-16, 1-19.2 

quick call 1-17 
classes 1-15 

automatic 1-15 
default 

local 1-15 
normal common 1-15 
permanent common 1-15 
static 1-15 

common 1-13,1-22 
allocation of 1-16 
state at end of run 1-23 

common blocks 1-32 
constraints on local static 

size 1-32 
default 1-21 
free storage area 1-7, 1-8 

common blocks 1-8 
linkage section 1-8, 1-9, 

1-12 
links 1-9 
of external variables 

1-13 
reference name table 1-8 
run unit 1-22 
static variables 1-8, 

1-16 
initialization of 1-15, 

1 -8. 1 
local 1-20, 1-21, 1-22, 

1-19 .. 1 
see automatic/static 1-15 
static 1-20 

local static 
at end of run 1-23 

managed storage 1-7, 1-8, 
1-16, 1-17 

normal common 1-15 
permanent common 1-15 
release of 1-20 
Stack segment 1-7 
static 1-8, 1-15 

i-8 

Storage (cont) 
static 

allocation of 1-16 
common and local 1-17 
large and very large 

arrays 1-16 
very large common 1-17 

Storage system 
directory hierarchy 1-1 
segment 1-2 

Subscript errors 3-6 

Symbolic names 2-3 
common blocks 3-9 
dollar sign entrypoint name 

1-12 
dollar sign in external 2-3 
entrypoint names 3-8 
external 3-8 

T 

terminal I/O 5-5 

Text editor 2-1 
qedx 2-2 

U 

Underscore character 2-3 

unit 
connection to file 5-1 
default connection 5-3 
defined 5-1 
open statement 5-5 

v 

Variables 
automatic 1-15, 1-20, 1-21 

CC70-01C 



Variables (cont) 
automatic 

allocation of 1-19.1 
explicit initialization of 

1-20 
in programs compiled 

separately 1-20 
in programs compiled 

together 1-20 
initialization of 1-15 

programs compiled 
separately 1-18 

programs compiled 
together 1-18 

uninitialized 1-19.2 
external 1-12 

in free storage area 1-13 
initial values 

zero 1-20 
initial values of 1-13, 

1-21, 1-22, 1-19.2 
and data statement 1-21 
zero 1-19.2 

initial values of zero 
1-19.1 

initialized in data 
statement 

programs compiled together 
1-20 

local 1-20 
static 1-20 

static 1-15, 1-20, 1-22 
allocation of 1-20, 1-21 
initialization of 1-16 
storage of 1-8 

storage allocation of 1-8.1 
undefined 1-20, 1-19.1, 

1-19.2 

Very Large Arrays 
see Arrays 

Very Large Common 
see Common blocks 

W 

Working directory 3-2 
defined 1-3 
see Directory 

i-9 CC70-01C 



w 
Z 
....J 

CJ 
z 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

I 
TITlE I 

I 

SERIES 60 (LEVEL 68) 
MULTICS FORTRAN 
USERS' GUIDE 

o ERRORS IN PUBLICATION 
....J 
<t: 
r­
:J 
u 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. D 

FROM: NAME -----

TITLE _____________ _ 

COMPANY 

ADDRESS _________________________ __ 

ORDER No.1 
I 

I 
DATED I 

DATE 

CC70-01 

I 
DECEMBER 19791 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 

I 
I 
I 
I 
I 
I 

( 
-' 
l:) 
z 
o 
-' 
<t: 
f-­
~ 
U 

I 
I 
I 
I 
I 
I ~ 
I -' 
I l:) 

I Z 
-1IIlS 

« 

<t: 
o 
-' 
o 
1..1.. 

UJ 
Z 

-' 
l:) 
Z 

....... 0 

I ~ 
I 0 

I ~ 
I 1..1.. 

I 
I 



Together. we can find the answers. 

Honeywell 
Honeywell information Systems 

U.S.A.: 200 Smith St., MS 486, Waltflam, MA 02154 
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 

U.K.: Great West. Rd., Brentford, Middlesex TW8 90H naly: 32 Via Pirelli, 20124 Milano 
Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo 

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

26434, 3.5C983, Printed in U.S.A. CC70-01 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08.0
	1-08.1
	1-08.2
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14.0
	1-14.1
	1-14.2
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20.0
	1-20.1
	1-20.2
	1-21
	1-22
	1-23.0
	1-23.1
	1-23.2
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05.0
	3-05.1
	3-05.2
	3-06
	3-07.0
	3-07.1
	3-08
	3-09
	3-10.0
	3-10.1
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08.0
	5-08.1
	5-08.2
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18.0
	5-18.1
	5-18.2
	5-19
	5-20
	5-21
	5-22
	5-23
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10.0
	B-10.1
	B-10.2
	B-11
	B-12
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	_001
	_002
	_003
	_004
	_005
	_006
	_007
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8
	i-9
	replyA
	replyB
	xBack

