
H()NEYlVILL .

I MULTICS EMACS
i

EXTENSION
WRITER'S

I GUIDE

S()FTWARE

MULTICS

EMACS EXTENSION WRITER'S GUIDE

SUBJECT

Guide for Programmers Writing Extensions and Terminal Control Modules
(CTL) in the LISP Programming Language for the Emacs Text Editor

SPECIAL INSTRUCTIONS

This manual presupposes thorough familiarity with the Emacs Text Editor,
which is described in the Emacs Text Editor User's Guide (Order No. CH27).
Extensions and CTI1s ·can be written by those Without programming experience,
but familiarity with some programming language is valuable. Experience with
LISP is useful, but not necessary.

This document supersedes the previous edition, Order No. CJ52-00, dated Jan­
uary 1980 and its addendum CJ52-00A, dated July 19~1. Throughout the docu­
ment change bars are used to indicate technical changes and additions;
asterisks denote deletions.

SOFTWARE SUPPORTED

Multics Software Release 10.1

Includes update pages issued as Addendum A in February 1983.

ORDER NUMBER

CJ52-01 July 1982

Honeywell

PREFACE

This manual d~~c~ibes how to write user extensions to the
Multics Emacs edito~. The reader should be thoroughly familiar
with the Emacs editor, proficient in its use, and acquainted with
its visible organization. The Emacs Text Editor User's Guide,
Orde~ No. CH27, provides this necessary information. The
methods for writing terminal control modules (CTLs) to support
additional terminal types are also described here.

Programming knowledge is not necessary to write extension~
successfully, although it is helpful. Section 1 is a short
introduction to extension writing. Section 2 provides a short
course in Lisp, the programming language used for writing
extensions, and the language in which the Emacs editor itself is
written. Basically, the extension writer only needs to learn
enough about Lisp to be able to imitate examples .

. Section 3 shows, by example, how to write extensions. It
includes the functions and forms most likely to be needed by the
extension writer. Section 4 describes LDEBUG mode, the Emacs
mode for debugging the Lisp code used in extensions. Finally,
Section 5 demonstrates how to write a CTL to support a new
terminal type. Again, the CTL writer uses existing CTLs to learn
to write his own.

The information and specifications in this document are subject to change without notice. This doc­
ument contains information about Honeywell products or services that may not be available out­
side the United States. Consult your Honeywell Marketing Representative.

@Honeywell Information Systems Inc., 1983 File No.: 1L33, 1 U33

CJ52-01

This manual contains sufficient information to effectively
write and debug Multics Emacs extensions. However, it is not
intended to be a reference document for either Lisp, in general;
or Multics MacLisp. Reference documentation for MacLisp is
available from:

MIT Information Processing Center
Publications Office
60 Vassar Street
Cambridge, MA 02139

Significant Changes in CJ52-01A

New Emacs functions include:

kill-pop
kill-ring-top
reverse-regexp-search
rotate-kill-ring

New defcom keywords include:

&cleanup
&epilogue
&inverse
&numeric-function

.,
I
I
I ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

For purposes of clarity and ease of use, the MPM set has I
been reorganized. The six former· MPM manuals, the Tools manual, I
and the RCP Users' Guide have been consolidated into a new set of I
three manuals: I

Multics Programmer's Reference Manual (AG91)
contains all the reference material from
eight manuals.

the former

Multics Commands and Active Functions (AG92)
contains all the commands and active functions from the
former eight manuals.

Multics Subroutines and Input/Output Modules (AG93)

2jff3

contains all the subroutines and I/O modules from the
former eight manuals.

iii CJ52-01A

I
I ,
I
I
I
I
I
I
I

I
I
I

2/83

The· following manuals are obsolete:

Name

MPM Peripheral Input/Output
MPM Subsystem Writers' Guide
Programming Tools
MPM Communications I/O
Resource Control Users' Guide

iv

Order No.

AX49
AK92
AZQ3
CC92
CT38

CJ52-01A

Section 1

Section 2

Section 3

2/83

CONTENTS

Introduction
An Introduction to Lisp s. • ••••

Predicates • . . • • . . • • • • • s •

Predicate for Numbers • .• •.
Predicates for Strings • •
Predicates for· Any Objects

Lisp Special Forms • . ••••
The if Special Form ••••••
The setq Special Form • • • • •
The do-forever and stop-doing
Special Forms • • • • • • • •

The let Special Form •••••
The prog and go Special Forms •••
The or And and Special Forms, And

not • • • . .. • • •• •
The progn, prog1, and prog2 Special

Forms • • • • • • • .
Symbols • • • • • • • • •

.Lisp Lists • • • • • • • •
Other list Primitives • . •••

Lisp Macros • • • • • ••
List Structure as Code • • • •
Using Lisp Macros • •• ••

Printed Representation of Lisp Objects
read-from-string •.••.••

Writing Emacs Extensions ••.•••
Using Emacs Requests in Extension

Coding • • • • • • • • • • • • •
Marks and Their Management • • • •

The set-mark, release-mark and
wipe-point-mark Functions

The with-mark Special Form
The save-excursion Special Form ..
The save-excursion-on-error Special

Form
Killing, Saving, and Modifying in
Extension Code .• . • . . • . .

Cleanup Handlers . • . . • • . . •
The unwind-protect Special Form ••

v

Page

1-1

2-1
2-5
2-5
2-6
2-6
2-6
2-7
2-8

2-9
2-9
2-10

2-11

2-11
2-12
2-13
2-15
2-16
2-16
2-17
2-18
2-19

3-1

3-2
3-5

3-5
3-6
3-7

3-7

3-8
3-8.1
3-9

CJ52-01A

Section 4

2/83

CONTENTS (cont)

Useful Predicates •.
Whitespace Management •• e • • •

Extracting Text From the Buffer . • .
Talking to the Use~ ~ • • e ~ ~ •

Message Printing Functions
Variables ...,~. II" ' •

de-fvar • •. .. • .' e' .' e

Provided Global Variables • .. •
Per-Buffer Variables •• • • e • •

Example of Local, Variables .
Registered Variables .. ~ •
Mod~ Hooks • . ~ ~ ~ •

Other Use~ Hooks • .. •
La~ge Scale Output • • • • • • .' •
Manipulating Buffers • .. • • •

Creating a Temporary Buffer • •
do n t.-n 0 tic e ~mod i fie d - bu f fer

Variable for Buffer Manipulation
The save-excursion-buffer Special

Form • • .. • .. • .. e • • •

Calling the Redisplay • .. • .. • •
Positioning Text on the Screen

EIS Tables • • ~ • •• . . • • • •
Functions Using the Charscan Table

Options • • • •• ••••••••
Name Scope Issues •
Modes • • • . •. .. • •

Major Modes
Minor Modes • •

Character Dispatching . . . • • . • •
Reading Characters from the Terminal •
Program Development

Coding Problems • . . • . . • •
Compilation ...•.....
Documenting Requests ...•.•.
Window Man~gement • . . .• •••
writing Searches
Calling Multics Commands •
Multics Error Table • . .
Emacs Error System • • •

Defining Requests with defcom .
Undoing a Request
A Detailed Example of a Function
Definition

Ldebug Mode
LDEBUG Buffer
LDEBUG Buffers

vi

Page

3-10
3-13
3-1.4
3-15
3-~7
3'-18
3-19
3-19
3-20
3-21
3-22
3-23
3-24
3-24
3-26
3-27
3-29
3-29

3-29
3-31
3-33
3-33
3-33
3-35
3-36
3-37
3-37
3-39
3-40
3-43
3-44
3-47
3-48
3-50
3-52
3-57
3-58
3-59
3-60
3-61
3-67

3-68

4-1
4-1
4-1

CJ52-01A

Section 5

Appendix A

Appendix B

Index

2/83

CONTENTS (cont)

Page

Emacs and Lisp Debug Mode • . 4-2
Error Trap Entries to LDEBUG . 4-3
Code Breakpoints • 4-4
Function Tracing with LDEBUG . • • 4-5

Writing Emacs Terminal Control Modules
(CTLs) • • . . • • . • • • • • . 5-1

The Backquote Facility A-I

Quick Reference . • B-1

i-I

vii CJ52-01A

SECTION 1

INTRODUCTION

An editor extension is a user-provided capability, which is
added to the editor to extend its power. It is different from a
macro, which is simply a collection of editor requests gathered
up and -(perhaps) given a name. Extensions are programs; they are
written in the language of the Multics Emacs environment. An
extension is a body of code that augments the editor's
capability, but does not embed or require knowledge of how data
in the editor is stored or manipulated. In this sense, all of
the word, sentence, paragraph, and Lisp-list requests; and the
various "modes" (e.g., PL/I mode) are extensions.

The person who wishes to add to his Emacs environment any
powerful or sophisticated capability must learn to write
extensions. The keyboard macro facility (AX(, AX» is not
intended Lor such usage. This manual explains how to write
extensions.

One of the guiding design principles in the Emacs editor was
that the creation of editor extensions, either by the editor
implementors or end users, should be in a programming language of
established elegance and power. Lisp was the language chosen.
This primer gives you a starting point for writing Lisp code to
run as editor extensions in the Emacs environment. If you have
some knowledge of Lisp already, it will be of value. However, it
is assumed in this manual that the reader has no familiarity with
Lisp, but does, perhaps, with PL/I or BASIC.

For examples of extension coding, the extension writer's
ultimate reference material will be the Emacs source. The Emacs
mail system (RMAIL), FORTRAN and PL/I modes, and the code for the
word, sentence, and paragraph requests (along with most of the
other code in the Emacs module e macops .lisp) are standard
examples of extension code. Techniques, styles, and subtleties
difficult to convey in print may be gleaned by careful study of
this code.

1-1 CJ52~Ol

SECTION 2

AN INTRODUCTION TO LISP

Lisp programs are built of functions, which are similar to
procedures or subroutines in other languages, although more akin
to PL/I and ALGOL functions. You write a Lisp program by
creating a file full of function definitions. A function
definition specifies the name of a function, and what it does.
Here is a sample function definition:

(defun addandmult (a b c)
(* (- a b)

(+ abc}»

iThis i's a comment

This defines a function named addandmult that takes three
arguments, called a, b, and c. The addandmult function computes
the result of multiplying the difference of a and b by the sum of
a; b; and C; and returns that number as a result; or valuee The
semicolon on the first line above begins a commenti comments
throughout the examples provide some additional information about
the code.

Here is another function definition:

(defun squareprint (arg)
(print "The square of")
(print arg)
(print "is")
(print (* arg arg»
5)

This function prints the message "The square of", prints the
value of its argument, prints the word "is", and prints the value
of the square of its argument. In addition, it returns the value
5. The function "squareprint" has side effects: it causes
output on the terminal. It also returns a value, the number 5.
Note that all Lisp functions produce a value; only some produce
side effects. The first function defined returns the product of
those numbers as a value; the second returns 5.

2-1 CJ52-Q1

If you look at squ~reprint, you see that it consists of
several statements, the "print. statements" that pr int things.
These statements are called forms, and they are, in fact, calls
to other functions, in this case the builtin print function. In
the form:

(print "The square of")

the. string "The sq~ar-e- of" is· being passed as an argument to the­
print function. Li.ke- a.ll. func.tio.ns, print returns a value, which
is not used in thi.s CaSe".. The side effect of printing something
does occur~ In the form~

(+ abc:)

you are' invoking the "'+"' function, which is also builtin. The
values of the parameter variables a, b, and c are passed to it as
arguments. It returns· a value, which is the· requested sum, and
produces no. side e·ffects ..

There are
sgua-reprint:

five: forms in

(print "The squa~e of")
(print arg)
(print "is")
(print (* arg arg»
5·

the function-definition for

Forms immediately inside a function definition are ex·ecuted
sequentially, Ii ke sta.tements in other' programming languages.
The value produced by the last form is the one the function
itself returns. What does it mean - to "execute" a 5? Execute is
not exactly the right term: what really happens is that these
forms are evaluated. This means that a value is produced from
them. Evaluating a 5 produces the number 5; evaluating the form::

(+ a b c)

calls the "+" function with the appropriate arguments, and
produces whatever value the "+" function returns. The value
produced by the "print" function is something that is not
interesting, but a value is produced.

2-2 CJ52-Ql

Numbers, like 5, and strings, like "The square of", are said
to evaluate to themselves. Things between parentheses, like:

(+ a b c)
(print "The square of")

are calls to functions, which are evaluated by calling the
function indicated, and producing the value it returns.

Function calls have the syntax:

(FUNCTIONNAME ARGFORMl ARGFORM2 ARGFORM3 •.• ARGFORMn)

where FUNCTIONNAME is the name of the function to call and the
ARGFORMs are themselves forms, which are evaluated to produce the
arguments to give to the function. Thus, to evaluate (i.e.,
"execute" and find the value returned) a form like:

(+ (* a b)
15
c)

B evaluate the inner form (* a b) to produce a value

B evaluate the 15 to produce 15 (remember, numbers and
strings evaluate to themselves)

B evaluate the variable c to produce its value

B pass these three values on to the "+" function, and
return what it returns~

The newlines are ignored.

Thus, forms are either numbers like 5, str-ings like "is",
variables like b, or function calls like (* a b).

Variables are much like variables in other languages. A
variable has a value, which is called its binding. At this
stage, assume that this value must be a string or a number. When
a function is invoked, the parameter variables (like a, b, and c
above) of the function acquire the arguments of the function call
as bindings. Evaluating a variable produces its binding as a
value. For instance, if someplace in a function you evaluate the
form:

(addandmult 2 (+ 3 2) 6)

2-3 CJ52-Ql

a, b, and C' will have the bindings 2, 5, and 6 while the f'o·rms in
the definition of addandmult are being evaluated. This is not
unlike the subroutine parameter mechanism in other languages. It
is different insofar as it specifies what value a variable has
during "subroutine" execution. In PL/I or FORTRAN, a paramet'er
is associated'with a variable in the calling pr-ogr'am, not a
value, during s'ubroutin-e exe'cution.

There are: paralllet-er variables, as used above, temporary
variables., de'scribed below, and global variables., Regardless of
the; kind o·f variable... thev' all have- bi"ndinas (values), and:
e·valuation' of the v~ri~ble'- produces that value

T'o summarize::

L. Lisp programs are built of functions.

2. Function definitions consist of the word "defun", the
function's name, a paramet'er list, and a number of
forms, which are to be sequentially evaluated at
function call ~ime, with a pair of parentheses around
.L...'L._ ... '-.-, _ 'L..!
I;.ue wUUJ.C t,..UJ.U~.

3.. The value of the- last form in a function is the value
returned. by that function.

4 .. Forms can
functions.
which are
results'.

be strings, numbers, variables, or calls to
Forms are evaluated to produce values,

passed between. functions as arguments and

s. Strings and numbers evaluate to themselves.

6. Variables evaluate to the datum to which they are
bound, which, for a parameter, is the corresponding
argument to the containing function.

7. Function calls contain the name of a function to call
and forms that are evaluated to produce the arguments
to the function. Function calls may produce side
effects. Like any form, when a function call is
evaluated, it produces a value.

2-4 CJ52-01

PREDICATES

Programming languages need conditional execution. In order
to control conditional execution, you need things upon which to
base a decision. Two data objects in the Lisp world correspond
to truth and falsity, for the purposes of parts of the Lisp
system that deal with conditions. A set of functions called
predicates return these objects as values. For instance, a
function called ">", invoked as:

(> 4 6)

returns the indicator of falsity, and when invoked as:

(> 4 1)

returns the indicator of truth. Predicates work just like other
builtin and nonbuiltin functions, like print, addandmult,
squareprint, and +. They take arguments, and produce a result.
In the case of predicates, however, the result is not a string or
a number, but an indication of truth or falsity. The result of a
predicate can be used by the if special form (see below) to
control the execution of a function.

The following are some of the most useful Lisp predicates.
In all of these examples, Al, A2, 51, 01, etc., stand for forms,
which means they can be 12, (+ 6 q), (myfun 33 (- a b», etc.
"Al is a number," below, means that Al is some form which
evaluates to a number, such as 3, (+ 6 2), or x49, if x49's value
is indeed a number.

Predicate for Numbers

Ai and A2 are numbers:

Predicate

=
>
<

Example

(= Ai A2)
(> Ai A2)
« Ai A2)

Returns TRUTH if . . . , otherwise falsity.

Ai and A2 are the same number.
Ai is a bigger number than A2.
Ai is a smaller number than A2.

2-5 CJ52-0i

Predicates for Strings

5~ and 52 are strings:

samepnamep.
(samepnamep 51 52)

51 and 52 are
"same string".
strings are the

strings of identical content, i.e., the
This is the standard way to see if two
same r as in (samepnamep test "-hold")

alphalessp
(alphalessp S~ 52)

S~ collates before 52 alphabetically, e.g.,
(alphalessp "Able'" "Baker") returns truth, but
(alphalessp "Zeke" "Joe") does not~

Predicates .for Any Objects

01 is some object, of perhaps unknown type (objects are
discussed later):

eq (eq: 01 02) 01 and 02 are the same symbol
or the same cons.

fixp (fixp 01) 01. is a. number·, as opposed to
some other kind of object.

stringp (stringp 01) 01 is a string, as opposed to
anything else.

symbolp (symbolp 01) 01 is a symbol, as opposed to
anything else.

null (null 01) 01 is not only a symbol, but
the important and
critical symbol named "nil"e

LISP SPECIAL FORMS

A number of special forms in Lisp do not go by the simple
rules given above. You have already seen one. The
function-defining form, which begins with the word "defun", is
not simply a function call with forms to produce the function's
arguments. By all rights, a form like:

(defun square (x)
(* it x»

should evaluate, in order, to produce arguments for "defun":

1. A variable named "square".

2-6 CJ52-01

2. The form, (x), calling a function named "x" with no
arguments.

3. The form, (* x x), multiplying the value of a variable
named "x" by. itself,

This form should then pass these three values on to the defun
function. This, however, is not what actually happens.
Evaluating the defun form causes a function named square to be
defined, whose parameter list and "body" are as given. Defun is
a special form, and when Lisp sees "defun" as the function name
in a form, it acts in a special way. In this case, Lisp defines
a function built out of this form itself. The above is not a
call to defun with arguments. rr--may seem unusual, but you-;Ust
have at least one such special form in order to have an operative
Lisp system.

The if Special Form

A special form in the Multics Emacs Lisp environment, called
if, controls conditional evaluation. An example of its use:

(defun which-is-greater (first second)
(if (> first second)

(print "The first one is the greater.")
else
(if (> second first)

(print "The second one is greater")
else
(print "They are equal"jj)

The syntax of if is as follows:

(if <PREDICATE>
<THEN-FORM-I>
<THEN-FORM-2>

<THEN-FORM-m>
else

<ELSE-FORM-I>
<ELSE-FORM-2>

<ELSE-FORM-n>)

Any number, including none, of THEN-FORMs can be supplied.
Similarly, any number, including none, of the ELSE-FORMs can be
given. If there are no ELSE-FORMs, then the keyword "else" may
be omitted, too. .

2-7 CJ52-Ql

Note that all the forms in the if are not sequeritially
evaluated: the word else is not even intended to be a form. If
all of the forms- inside the if were evaluated, it would be
useless, for evaluation would not be conditional. That is why if
is a special form; there are special rules about how forms inside
it are to be evaluated. The rule for all nonspecial forms is the
same: you, evaluate all the subforms sequentially to produce the
arguments to the function. Each speciaL form has its own rules.

The if special form evaluates the' PREDICATE': if it results­
in' truth,- the, THEN-FORMs; are' sequentially evaluated, and the
value of the last on~ is returned as th& value of the if.
Otherwise, the ELSE'-FORMs are evaluated sequentially, and the
value of the last returned. If there are none, the symbol nil
(see below) is returned~

There are two global- variables
"nil"r whose bindings are always
indicators, respectively~ Thus:

(if t.
{nrint- "'T'rl1rh"\ '1:"- -' .• -, - - ---- I

else
(print "Not so truth"»

when evaluated, always prints "Truth".

in Lisp, called
the truth and

"t" and
falsity

The actual object used as the indicator of falsity is the
symbol named nil (see "Symbols~ below). All predicates return
this symbol to indicate falsity. The usual indicator of truth is
the symbol named t; however, all special forms and functions that
test predicates consider any object, other than nil, to be an
indicator of truth. Thus, many functions return the symbol named
nl~, to indicate failure and some "good" value (not nil) to
indicate success.

The setg Special Form

Variables acquire values by being parameters, and acqulrlng
values at function call time. In addition, variable values can
be changed by the special form setg:

(defun adder-of-one (x)
(print "The value of x is")
(print x)
{"And the value of x plus one
(seta x (+ xl))
(print x»

2-8 CJ52-Ql

A setg form has the word "setg", the name of a variable, and an
inside form. The inside form is evaluated, and that value
assigned to the variable. It is like an assignment statement in
other languages.

The do-forever and stop-doing Soecial Forms

The construct for loooina in the Emacs Lisp environment is
also a special form, called-do:forever:

(do-forever
(print "Yay Multics")
(print "scitluM yaY"»

When evaluated, it prints these two sayings forever.· The way you
stop doing in a do-forever is to evaluate the stop-doing special
form:

(defun print-n-times (n)
(do-forever

(if (= n O)(stop-doing»
(print "foo")
(setq n (- n 1»»

This function, given a number as an argument, prints "foo" that
many times. The ":" builtin function/predicate compares its two
arguments, which must be numbers, and returns truth or falsity
-depending on whether or not they are numerically equal. The
arguments to = are not nand 0, but rather, the numbers that are
the bindings of nand O. The number which is the binding of n is
different each time around the loop; that is the point of the
program. ·It is setg that changes the value of n each time
around, as do-forever executes the loop. A do-forever form
generally returns something useless (nil), unless you exit by
saying (return 5) or (return nil), or (return a). In the latter
case, the value of the variable a is returned.

The let Special Form

You can acquire temporary variables via the let special
form:

(defun sumtimesdif (x y)
(let «sum (+ x y»

(dif (- x y»)
(print "Sum times difference is ")
(print (* sum dif»
(print "Sum squared is")
(print (* sum sum»»

2-9 CJ52-Ql

This function has two temporary variables, sum and dif, which are
initialized to the values of (+ x y) and (- x y). The general
syntax of let is:

(let {(VARl VALl)
(VAR2 VAL2)
•••• ' ' e· •

(VARn VALn»
<FORMi>
<FORM2>
<FORMm»

The temporary variables VAR1 ••• VARn exist only within the
let. They get the initial values of VALl through VALn, which are
forms that will be evaluated. All the VALs are evaluated before
any of their values are assigned to the VARs. Then, with all
these- temporary variables set up and initialized, each FORMi is
evaluated sequentially, and the- value of the last FORMi is
returned by let.-

The prog and go Special

Another, less useful way of acqulrlng temporary variables is
via the special form~. Forms inside a prog are evaluated
sequentially, like forms 1n a function definition. However, the
first form in a prog is not really a form at all, but a list of
temporary variables used in the prog, such as "(a b c)". That is
why prog is a special form. The value returned by prog is
usually useless, unless (return •••) is used to return something
meaningful.

Inside a prog, you can put labels, to use for go-to's:

(defun bar2 (x y)
(prog () ;note the empty variable list

(if « x 1)(go lab1»
(print "X is not less than Y")
(return nil) ;return "false" indication

labi
(print "so be it!")
(return t») ;return "true" indication

In the special form S2" its operand (not argument) is a label to
which to go, i.e., continue sequential evaluation of forms in the
prog. Labels are rarely needed, due to the powerful if and
do-forever constructs.

2-10 CJ52-Q1

The or And and Special Forms, And not

There are special forms for or-ing and and-ing predicate
results: they are special because they stop evaluating their
operands (from which arguments are produced) when they "know"
their answer for certain:

(if (and (not (= x 0»
(> (II 10 x) 5»

(print "Quotient too large."»

The not function inverts truth and falsity. The double slash
indicates division, because slash is the escape character in
Lisp.

The and does not attempt to evaluate the second form within
it if the-lirst produces falsity. This prevents an error that
would result if an attempt were made to divide by zero.
Sequential execution and stopping at an intermediate result are
defined and useful features here, as opposed to the logical

'operators of, say, PL/I.

The progn, prog1, and prog2 Special Forms

Three more special forms are progn, prog1, and prog2. To
force sequential execution of forms and return the value of the
last, use progn. For instance:

(if (and (> x 3)
(progn (print "Oh dear this is getting serious")

(> y 5»
(print "Fatal difficulty"»):

In the above, progn returns the value of its last form. Thus,
the and tests whether x is greater than 3, and y is greater than
5, before the "print" of "Fatal difficulty" is evaluated. The
printing of "Oh dear ••• " occurs as part of the evaluation of the
progn, but the and sees only the second value in the progn. The
progn is used to force evaluation of the print form.

2-11 CJ52-01

A progl is just like progn, except that it returns its first
argument, evaluated, rather than its last. It must have at least
two arguments. It is useful for saving some value that is
subsequently going to be destroyed. The following form, when
evaluated, interchanges the values of x and y:

(setq x (progl y

(setq y x-}})

~ the- value of y is obtained here,
~ and remembered as it is here.
; x is evaluated, and that value
; assigned- to y. The value of
~ setq form is that value.

rn the above, however, th~ value of prog~ is that value of y as
it was before it was assigne~ into y, and now the outer setq
assigns that to x. A prog2 1S an older form of progl and is
similar, except it returns its second argument.

SYMBOLS

Another type of data object in Lisp is called the symbol.
Symbols are named data objects kept in a registry of symbols (the
obarray), by Lisp. For current purposes, there is only one
symbol of any name. Symbols are used in Emacs to represent
buffer names, and various quantities associated with buffers.
Lisp uses symbols to keep track of functions, and internally to
keep track of global variables.

To use a symbol in a program, give the name (the printname)
of the symbol preceded by an apostrophe ('). For instance, the
form:

(setq x 'Brunhilde)

assigns the symbol named Brunhilde to x.
different from:

Note that this is

(setq x "Brunhilde")

which assigns the string Brunhilde to x, and from:

(setq x Brunhilde)

which assigns the value of the variable Brunhilde to x.

2-12 CJ52-Ql

LISP LISTS

The final Lisp data type of importance in writing extensions
is the cons (for construct), and the larger data type built out
of it, the list. A cons is a block that relates to two (usually
other) objects in the environment, known as its ~ and its cdr.
The function cons, given two objects, produces a new cons, whose
car and cdr, respectively, are the two objects given. For
instance, if the variable x has a value of the string
"Brunhilde", as above, then:

(cons 7 x)

produces a cons whose car is the number 7 and
string "Brunhilde", returning it as a value.
and cdr can be used to obtain the car and cdr
set the. variable c to the result of the form
then:

(car c)

produces the number 7 as a value.

whose cdr is the
The functions car

of a cons. If you
(cons 7 x) above,

Usually, you make larger and larger structures out of
conses, by setting up conses whose car and cdr are more conses,
and so forth, until you have a large enough structure to
represent all the values you need. The resulting construction
serves the same purpose as a PL/I structure: .its various parts
have meaning assigned by the programmere

The most common construction of conses is the list. A list
is defined as a chain of conses, each of which has the next one
in the chain as its cdr, except the last one, which has the
symbol "nil" as its cdr. A list built in this way of n conses is
called a list of n elementS;--the elements being the n objects
that are the cars of the conses. The cons at the head of the
list is identified as being "the list": its car is the first
element in the list, its cdr is the cons whose car is the second
element of the list, and so forth. To construct a list of the
numbers 2, 4, 5, and 7, in that order, and set the variable b to
it, you would need:

{setq b (cons 2 {cons 4 {cons 5 (cons 7 nil»)})

(Note that the variable "nil" is peculiar insofar as its value is
always the symbol "nil", thus you need not say 'nil.)

2-13 CJ52-Q1

A function that simplifies the writing of such forms, fo~
constructing lists, builds lists directly and accepts any number
of arguments. It p~oduces the same result as the type of
construction shown above. It is called "list":

(setq b (list 2 4 5 7»

To get the third element of the list, once this form is
evaluated, you could evaluate the form:

(car {cdr (cdr b)))

(i.e~, th~ car of the cons that is the cdr of
the cdr of the cons that is the value of b).
Lisp functions to simplify such constructions.
equivalent to:

(caddr b)

the cons that is
Again, there are

The above form is

In general, for up to 4 cars and cdrs deep, total, functions like
cadr~ cdar, caddr, cadar, and so forth, are provided (up through
caaaar and cddddr). The first four elements of ~ list are gotten
by car', c'adr, caddr, and cadddr (i t is a good exercise to work
+- ""' ~ ""' ... '" 1 "'9 ""' a " ~ U' "'" - ~ 4!." 7.11 h • ." .. "" ~,. ..,. .. "" - - - - - \ "" ... " ... "" """" .. "' ':t ... '" ,,- v'\;_ .. J.J. """"J. I."".~ .~ I.J.,U; C1;:)C; J •

When lists are printed out by Lisp, they are represented as
a ~air of parentheses around the printed representations of all
of the elements, in sequence, separated by spaces. Thus, if Lisp
printed out the list that was b's value above, it would appear:

(2 4 5 7)

A cons whose cdr is the symbol nil can always be viewed as a list
of one item, and is so printed out by Lisp, unless it is in the
process of printing a larger list of which the cons at issue is a
chain-link. A cons whose cdr is neither nil nor another cons is
printed with a dot preceding the cdr. Thus:

(cons 'a 'b) => (a. b)
(cons 'a nil) => (a) ;a list of one element
(cons 'a (cons 'b 'c» => (a b. c)
{cons 'a (cons 'b nil» => (a b) ;list of two elements
(cons 'a (cons (cons 'b 'c) (cons 'd nil»)

=> (a (b. c) d) ;list of three elements

2-14 CJ52-01

Lists can be put into programs, by quoting them, as symbols
are quoted:

(setq bi '(this is (a list)(of lists»)

Two functions are provided to redefine the car or cdr of an
existing cons. They can be very dangerous if misused, especially
if they alter a list as in the form above, which is written into
a program as a constant. The rplaca function (replace car) and
the rplacd function (replace cdr) each take two arguments. The
first is the cons that is to be altered, and the second is the
new car or new cdr, respectively. The returned value is the cons
itself.

Other list Primitives

A variant of list, list*, is just like list except its last
argument becomes the cdr of the last cons constructed. That is,
list*, given n arguments (n > 2)'1 constructs a list of its first
n-1 arguments; the same as -list given those n-1 arguments, but
instead of the last cons having nil as its cdr, the nth argument
is made its cdr. Thus,

(list* :2 3 5 7) => (2 3 5 . 7)

Note that:

(list 2 3 5 7) => (2 3 5 7 . nil)
=> (2 3. 5.7)

and:

(list 2 3 5) => (2 3 5 . nil)
=> (2 3 5)

Another function for manipulating Lisp lists is append. It
accepts any number of arguments, each of which is a list of zero
or more elements, and constructs a list containing all the
elements of all the lists, in order. Thus,

(a ppe n d '(a (b) c) '(a b 1 e ba k e r) '(2 3 j)
=> (a (b) c able bake~ :2 3)

2-15 CJ52-01

The append function constructs a new list. A "destructive"
form of append, called ncone, creates the result it returns by
"patching" its input arguments to create a longer list, i.e., it
changes the cdr of the last cons of each input list to be the
first cons of the next list. The nconc function must be used
with caution: e.g., it is always an error to give a constant
(i.e., a quoted piece of list structure) as an argument to nconc.

Another Lisp function for dealing with Lisp lists is
reverse. Given a list, it returns a list with the sam~ elements
as the input list but in reversa order. The nreverse function is
similar ~o reverse but, lik~ nconc, does its work by
destructively modifying the input list.

A superlative method for writing code that builds list
structure is provided by the Lisp "backquote" facility. The
backquote facility is described in Appendix A.

LISP MACROS

List Structure as Code ---
One of the most powerful features of Lisp is the ability of

Lisp programs to manipulate Lisp programs easily. The internal
representation of Lisp programs during compilation and debugging
is that of Lisp lists. You may have noticed that Lisp lists
strongly resemble pieces of Lisp programs. For example, the
form:

(setq x (+ y z»

is simply a printed representation of a list of three elements:
the symbol setq, the symbol x, and the list (itself of three
elements) of the symbols +, y, and z. Thus, a form is simply a
piece of Lisp structure that is intended to be evaluated. In
fact" the eval function does precisely that: given a piece of
list structure, i.e., a form, as an argument, eval evaluates it
and returns the value of that form. Note how symbols represent
both functions and variables, depending upon where they appear in
forms. Symbols have bindings, which represent the binding of the
variable represented by the symbol, and functional properties via
which the associated function or code for a special form can be
found. Thus, if the symbol (and thus variable) f is bound to:

(setq x (+ y .., , ,
... J I

and y is bound to 3, and z is bound to 4, then evaluation of the
symbol (variable) f would produce:

2-16 CJ52-01

(se tq x (+ y z»

a list of three elements. Evaluation of:

(eval f)

would pass that list of three elements as an argument to eval,
causing its evaluation, which would cause x to have a binding of
7 and return 7· as a resul t.

In some sense, the basic action of Lisp is that of
evaluation. However, user programs, other than Lisp debuggers or
interpreters, rarely use the eval function. If you think you
have to use eval (except sometimes in macros: see below), you are
probably having difficulty with the concept of evaluation.

Using Lisp Macros

Lisp macros. allow a user to specify the translation of code
with a syntax of his choosing into code representing the meaning
he assigns to that syntax. A macro is defined just like a
function, except that the word (symbol) "macro" (without
quotation marks) appears between the function name and the
parameter list. For instance:

(defun t-return macro (x)
(append (cons 'progn (cdr x»

'(t»)

defines a macro named t-return. When the compiler or interpreter
sees a form whose car (i.e., where the function name belongs) is
a symbol that has a macro definition (as above) associated with
it, it passes the entire form to the macro as an argument, runs
the macro (i.e., calls it--wIth that argument), and reconsiders
the result as if it were encountered in place of the original
form. Thus, if a program contains a form:

(and (> xiS)
(t-return (setq flag nil»
(return x»

at the time this form lS evaluated or compiled, in place of the
second form, the form:

(progn (setq flag nil) t)

will be evaluated or compiled. This is because t-return has been
defined as a macro: the funct·ion defined by t-return, when called
with:

(t-return (setq flag nil»

2-17 CJ52-Ql

as an argument, produces:

(progn (setq flag nil) t)

as a value. The fact that t-return has been defined as a macro
causes the compiler to invoke t-return to translate the t-return
form into its meaning, so that can be compiled or evaluated in
its place.

The backquota facility (see Appendix A) is extremely useful
f~r defining macros. Using backquote, you could define- the macro
abov~ as:

(defun t-return macro (x)
'(progn ,@(cdr x) t»

See Appendix A for another example of a macro. Additional
examples of macro definitions are contained in the
e-macros.incl.lisp include file (after the first two pages if you
dprint it). Bear in mind when studying them, however, that they
reference internal Emacs variables and functions or embed certain
knowledge that they are designed to hide.

PRINTED REPRESENTATION OF LISP OBJECTS

Lisp objects exist in the Lisp or Emacs environment. They
relate to each other, and they denote each other. The calling of
functions, whether built-in, Emacs-provided, or user-provided,
creates new objects and changes the relationships among existing
objects.

Objects are symbols, conses, and strings in the ~isp
environment; they are not parentheses and words on paper or 1n a
buffer. However, you often need to obtain the printed
representation of a Lisp object or generate a Lisp object based
upon its printed representation. This is most commonly the case
with numbers; in Emacs, the decimal-rep function obtains the
printed representation of a decimal number as a string.

The Lisp explode function creates a list of the
single-character symbols representing the printed representation
of the argument that was given. Passing such a list to the Lisp
maknam primitive produces a symbol whose printname is that
printed representation: that symbol is as good as a string for
any purpose in ~i~p. or Emacs. Instead of maknam, the Emacs
apply-catenate prlmltlve can be used to produce a string and may
be more efficient.

2-18 CJ52-Q1

The conversion of numbers by explode is controlled by two
global variables, base and *nopoint: base is the output radix,
which is eight by default, indicating octal; *nopoint is nil,
indicating that numbers are to be converted with a decimal point
if base happens to be ten. Thus:

(1 e t ({ ba s e 1 a •)
(*nopoint t»

(apply-catenate (explode x»)

obtains the printed representation of the value of x, with
numbers converted as decimal, without decimal points.

read-from-string

The Lisp read-from-string function constructs Lisp objects
from strings (or symbols with a meaningful printname). Given a
valid printed representation of a Lisp object, read-from-string
recursively constructs (for lists), creates (for numbers or

,strings), or finds on the obarray (for symbols) the appropriate
objects. Thus, if x is bound to the string "(a bc)", the form:

(read-from-string x)

would produce as a value a list of the three symbols a, b , and c.
In converting numbers with read-from-string, integers followed ~Y
a decimal point (e.g., 6., 27., and 259., but not 5.0, which 1S
floating point) are converted as decimal. Unpointed integers are
converted as per the value (as radix) of the ibase global
variable, which is normally eight. Thus,

(let «ibase 10.})
(read-from-string x»

converts the value of x with all unpointed numbers assumed
decimal. ,

2-19 CJ52-01

SECTION 3

WRITING EMACS EXTENSIONS

Writing extensions is basically a matter of building new I
functions out of the standard functions provided in the Emacs I
Lisp environment. These new functions can be hooked up to keys I
in the same fashion as standard Emacs functions, via the set-key I
and set-permanent-key functions. I

Many useful extensions can be made simply by stringing I
together groups of Emacs requests. For instance, to go to the I
beginning of a line, delete all whitespace there, go to the end
of the line, do the same, and then return to the beginning of the
line, you could type:

Alternatively, you could write a function, called shave-line
here, to do the same:

(defun shave-line () : keystroke functions take no args.
(go-to-beginning-of-line) · function hooked to "A key ,
(delete-white-sides) · function hooked to ESC \ key ,
(go-to-end-of-line) function hooked to "E key
(delete-white-sides) · ESC \ ,
(go-to-beginning-of-line» · "A ,

I
I
I
I
I

Write this function into a file. When in Emacs, type ESC X
loadfile PATHNAME CR, to load it in as code. Then hook it up,
perhaps by typing (when typing this, type the caret key for ", I
not the control key): I

ESC X set-key "XA shave-line CR

Thereafter, hitting "XA (control X
function to be run.

3-1

A) causes your new shave-line I
I

CJ52-Q1

I If you want a function that goes to the beginning of a line
I and deletes all words that start with "foo" from the beginning of
I the line, for example, you need to use Emacs conditionals and
I variables.

(%include e-macros)

(defun foodeleter ()
(go-to-beginning-of-line)
(do-forever

(if (look-ing-at "faa"")
(delete=word)
(delete-white-sides)

else (stop-doing»»

The (%include e-macros) must be at the beginning of any file that
uses the Emacs environment Lisp macros. The e-macros.incl.lisp
file should be in your "translator" search path in order to do
any Emacs extension development work.

What this function does in essence is type AA, and as long
as the first three characters on the line are "foo", does an ESC
D, followed by ESC \ to remove the whitespace after the word.
When the first three characters are no longer "foo", it returns.
The "looking-at" is an Emacs predicate (to be described in detail
below) that tests whether a given string is to the right of the
current "~ursor". For this function and any others that you
write, you could set a key as described above (AXA for
shave-line) •

of printing,
The scre~n or

by the Emacs
about in coding

The code for the foodeleter makes no mention
output, or displays - because it does not need to.
printing terminal is managed automatically
redisplay. The display need never be thought
Emacs extensions.

USING EMACS REQUESTS IN EXTENSION CODING

Many of the Emacs requests can and should be used in coding
extensions, for example, go-to-end-of-line, forward-char,
go-to-beginning-of-buffer, delete-word and skip-over-indentation.
Some requests, however, should not be used in extension code.
For example, if you want to search for some string, you do not
want to invoke string-search (AS), since that prompts the user in
the minibuffer for a search string. The following table lists
some important keystroke requests whose command names you should
not use and gives alternative functions to use.

3-2 CJ52-Ql

KEY DO NOT USE USE INSTEAD -----
~N next-line-command next-line

The next-line-command function is unnecessarily
expensive in considering screen position, and handles
numeric arguments. The next-line function always goes
to the beginning of the next line.

Ap prev-line-command prev-lin~
Same reasons as above. The prev-line function always
goes to the beginning of the previous line.

~K kill-lines kill-to-end-of-line
delete-char (at eol)

The kill-lines function is complex, has many cases, and
handles numeric arguments.

~S string-search forward-search
The forward-search function takes a string as a Lisp
argument, does not prompt, moves the cursor if the
search succeeds, and returns truth or falsity to
indicate result.

AR reverse-string-search reverse-search
Same as AS.

AXAR read-file read-in-file
The read-in-file function takes a Lisp argument for
pathname, does not prompt.

AXAW write-file write-out=file

AW' wipe-region wipe-point-mark
Use local marks, see below.

ESC W copy-region point-mark-to-string
does not require modifying the user-visible mark or the
kill stack.

ESC / regexp-search-command regexp-search
Same issues as AS. Takes a Lisp argument, no slashes.
Returns falsity if not found or moves cursor to after,
and returns mark to before, matched string= Be careful
to release this mark (see below).

~XB select-buffer go-to-or-create-buffer
Takes an argument, does not prompt.

~XAF find-file find-file-subr
Takes an argument, does not prompt.

3-3 CJ52-01

"L. redisplay-command full-redisplay
redisplay-current-window-relative

Two separate functions, less dealing with numeric
arguments.

Requests that accept a positive numeric argument as meaning
repeat that number- of times, e.g., "B, "0, "F , ESC B, ESC 0, ESC
P, ~, ESC i, etc., ar~ acceptable in extensions; they do not
inspect their arguments. They are invoked multiple times by the
Emacs: listener if appropriate'... Requests' whose- names include· the
word.. "command"" are usually' not intended to be- used. in c.ode.

The value of a numeric argument, e.g., 5 in ESC S "B, is
available- as the binding of the global variable "numarg"; if no
numeric argument is given, this variable is set to the symbol
"nil"" (not to be confused with the global variable nil, whose
binding ia the symbol nil), which is the representation of
falsity.

The normal printing characters are bound to the self-insert
function, which inserts the last physical character typed at the
current point in the buffer. This is clearly unusable from code,
if your desire is to insert text into the buffer. For this
purpose, the Emacs environment provides the insert-string
function, whose argument is a string to be inserted into the
buffer at the cursor. As in typing in text manually, the cursor
is left after the inserted text:

(defun make-a-point ()
(go-to-beginning-of-line)
(insert-string "CASE IN POINT: "»

This make-a-point function, when invoked, goes to the
beginning of the line, and inserts the string "CASE IN POINT: "
in the buffer. The cursor is left after the inserted string.

As used here, phrases like, "the cursor is moved around" or
"a string is inserted" in a function, do not imply that the user
watching the screen can see all these things happen. No action
on the screen occurs until the entire function has finished
running, at which time the screen is updated all at once, showing
the cumulative effect of what has happened, regardless of how it
happened.

3-4 CJ52-Ql

MARKS AND THEIR MANAGEMENT

Like the cursor, a mark is a conceptual pointer to the
posi~ion between two characters in the current buffer. Marks
remaln between these two characters regardless of other
insertions or deletions in the same buffer, even on the same line
as the mark. Marks are valuable because regions of text in the
buffer are specified as the extent between the current conceptual
cursor, (the point)r and a. given mark. Marks are a type of data
object in the Emacs Lisp environment, like strings, numbers, and
symbols. The value of any variable can be made to be a mark.
The value of several variables might even be the same mark. The
words "the-mark" used in Emacs descriptions designate one mark
that is the value of a global variable that many supplied
functions know about. Emacs functions use many temporary marks.

The set-mark, release-mark and wipe-point-mark Functions

The set-mark function creates a new mark, which points to
the current point in the current buffer. It stays around, and is
updated by the editor, any time text is inserted or deleted in
this buffer. This is expensive, so you must take care to
discard, or release marks when you are done using them. This is
don~ by giving them to the release-mark function~ An example of
a function which deletes three words and everything between them
follows:

(defun delete-three-words ()
(let «temp-mark (set-mark»)

(do-times 3 (forward-word»
(wipe-point-mark temp-mark)

(release-mark temp-mark»)

;make a mark in
:a temp var.
;3 words forward
;wipe out the stuff
;between point and
iwhere point was.

The variable temp-mark is set to a mark representing the point at
the time delete-three-words is entered. The "do-times" is a
special form that repeats the evaluation of one or more forms a
given number of times. Its syntax is:

(do-times <HOWMANY> <FORMi> <FORM2> <FORMn»

The wipe-point-mark is a function that, given a mark, takes all
the text between point at the time it is invoked and that mark
(i.e., point at the time that mark was created) and deletes it
from the buffer. It is pushed onto the kill ring, so that Ay can
be used to retrieve it. After the computation, the mark is
freed, (for better performance).

3-5 CJ52-Qi

The with-mark Special Form

The sequence of setting a mark, using it, and releasing it
is so common that a special construct in the Emacs Lisp
environment is provided that takes care of all of this, including
the creation ?f a temporar¥ variable, so no Ei£s or let is
needed. It 1S called w1th-mark. The delete-three~words
function, rewritten to use it, looks like this:

(defun delete-three-words ()
(with-mark m jm is usually used for the name of a mark

(do-times 1 (forward-word»
(wipe-paint-mark m»)

The syntax of the with-mark construct is:

(with-mark <MARKNAME>
- <FORM1>

<E'ORM2> ...
<FORMn>)

I t means: "Where- I am now, call tha t <MARKNAME>. Eval ua te the
f.orms <FORM1> to <FORMn>, sequentially, returning the value of
the last one as a value. Before returning anything, however,
free the mark I made."

Marks allow you to return easily to where you were at the
time you started something. The following function truncates a
line longer than 50 print positions, and handles backspaces and
tabs properly:

(defun trunc-50 ()
(with-mark m

(go-to-end-of-line)
{if (> (cur-hpos) 50.)

(go-to-hpos 50.)

;remember where you started

;dot is for decimal
;default is octal

(kill-to-end-of-line» jwhat AK does at not e.o.l.
(go-to-mark m») ;return to where you were

A function that tells you the horizontal position (on a
dprint, not on the screen) of the current point is cur-hpos (the
left margin is considered to be 0). It takes no arguments. The
function go-to-hpos moves point to a position on the current line
whose horizontal position is its argument. If the line is
shorter than that horizontal position, the point goes to the end
of the line and go-to-hpos returns nil. Otherwise: if it
succeeds in moving point to the specified position, it returns
the number gone to. Thus, this function can be used as a
predicate. Therefore, the "if" in the above example could

3-6 CJ52-01

instead be:

(if (go-to-hpos 50.)
(kill-to-end-of-line)}

The " (go-to-mark m)" above tells the
current point in this buffer to the point
time the mark called "m" was created.

,
The save-excursion Special Form

editor to move the
where it was at the

Although moving the editor's point to previously saved marks
is extremely useful, you often use marks simply to return to the
place where you were before you began a sequence of requests.
This case is so common that a special mechanism is provided just
for this: it is called save-excursion, and it takes care of all
the problems of temporary variables and releasing the mark when
done. The sample function trunc-50 recoded to use save-excursion
looks like this:

(defun trunc-5Q ()
(save-excursion

(go-to-end-of-line)
(if (> (cur-hpos) 50.)

(go-to-hpos 50.)
(kill-to-end-of-line»»

The save-excursion. special form does the following: remembers
where you are, Vla a mark saved in an internal variable,
evaluates all of the forms within the save-excursion, and returns
as a value the value of the last one. Before returning anything
however, it moves the editor point back to where it was when the
save-excursion was first entered, and releases the mark used to
remember this place.

If point were at print position 75 at the time trunc-5Q was
called, it winds up at position 50, even though the mark to which
it wants to return points to what was at position 75. No ~rror
is indicated, or has occurred. Marks remain even if characters
to the right or left of them are deleted.

The save-excursion-QQ-error Special Form I

The special form, save-excursion-on-error, is used in the I
same way as save-excursion. It returns to the original point J
only if an error occurs while executing the functions. I

3-7 CJ52-01

KILLING, SAVING, AND MODIFYING IN EXTENSION CODE

Most Emacs functions that delete text from the buffer save
the text on the kill ring. Functions that you define that use
these standard functions (such as delete-three-words, above),
therefore, also save the deleted text.

To prevent deleted text from being' saved, wrap the code that
will delete text in the wLthout-saving spec ial. form. For
example::

(without-saving (wipe-point-mark m»

deletes: all the- text between the current. point and the posi tion
designated by the mark m without saving it on the kill ring. Any
text deleted by an internal deletion primitive while the code
contained within a without-saving special form is executing will
not be pushed onto the kill ring.

The without-modifying special form is similar to
without-saving. It is used to enclose code that deliberately
modifies read-only buffers, such as those used by the directory
and buffer editors. For example:

(without-modifying
(go-to-beginning-of-line)
(delete-char)
(insert-string "X"»

might appear in a menu-type editing subsystem
change the space at the beginning of some line
user selects an object for deletion.

within Emacs to
to an X when the

Text can be explicitly pushed onto the kill ring by the
killsave-string function. It takes a single argument, which is a
Lisp string or symbol, and pushes it in the usual way onto the
top of the kill ring.

2/83 3-8 CJ52-Q"lA

Other functions which interface to the kill ring include
kill-ring-top, kill-pop, and rotate-kill-ring. The kill-ring-top
function returns the first item on the kill ring (as does Ay).
The kill-pop function returns. the first item on the kill ring and
rotates the kill ring (as does ESC Y). The first item becomes
the last item, the second item becomes the first item, and so on.
The rotate-kill-ring function just rotates the kill ring.

CLEANUP HANDLERS

You may have wondered, in the previous section, what happens
if an extension encounters an error while executing, and never
gets to release a mark it has set. When errors occur (for
example, moving past the end of the buffer), Emacs aborts
execution of request functions, returns to its listener, and
beeps (as when a AG is performed).

2/83 3-8.1 CJ52-Q1A

The unwind-orotect Special Form

Since the releasing of marks is important, a facility like a
cleanup-handler is needed. to make sure that marks get released
when code is aborted. There is ·such a facility in Lisp that is
useful for many other things, too: save-excursion returns the
cursor to the point at which it found it if aborted through;
save-excursion-buffer returns to the buffer where it found the
editor if aborted through; all the mark-handling forms release
their mark, and so forth. These Emacs-environment primitives use
the cleanup-handler facility internally, so you need not worry
about cleanup-handlers if you use them. However, occasionally
(see the code for columnating the Emacs wall chart, for example)
you must use cleanup-handlers explicitly. The Lisp form
unwind-protect is the primitive cleanup-handler. Its syntax is:

(unwind-protect
<SUBJECTFORM>
<CLEANUPFORM1>
< CLEANUPFORM2 >

<CLEANUPFORMn»

The <SUBJECTFORM> is evaluated, and then <CLEANUPFORM1> to
<CLEANUPFORMn> (any number of cleanup forms are permissible), and
the value of the <SUBJECTFORM> returned. So far, unwind-protect
is much like prog2 or progn. The difference, however, is that
<CLEANUPFORM1> to <CLEANUPFORMn> are executed even i.f the
execution of <SUBJECTFORM> fails and aborts. Similarly, the
cleanup forms are executed even if things like a return from a
prog inside the <SUBJECTFORM> causes its execution to terminate
prematurely.

Thus, the cleanup forms are executed after every termination
of the <SUBJECTFORM>, whether normal or abnormal. The following
use of unwind-protect (which could be done in simpler ways, but
is here for illustrative purposes) performs "complex-function",
and returns the cursor to the beginning of the buffer, even if
"complex-function" explodes:

(unwind-protect
(complex-function)
(go-to-beginning-of-buffer»

If you want more than one <SUBJECTFORM>, you should use progn to
encompass them, and make you~ <SUBJECTFORM> this progn.

Unlike Multics PL/I cleanup handlers, unwind-protect cleanup
forms are executed upon normal termination of the subject form,
too.

3-9 CJ52-01

I The protect Special Form

I The e-macros special form, protect, can be used in place of
I unwind~protect. Its syntax is:

I (protect FORMl FORM2 FORM3 FORM4 •••
I &always CLEANUPl CLEANUP2 •••
I &success SUCCESSl SUCCESS2 •• ~
I. - &.failure E'AILURE~ E'AILURE2 •.• ,.,)

i

I
I

I
I
I

I
I
I

I
I
I

where:

FORMi

CLEANUPi

SUCCESSi

FAILUREi

are forms to be evaluated~

are forms to be evaluated after the FORMs, whether or
not an error occurs in evaluating the FORMs.

are forms to be evaluated only if no errors occur in
evaluating the FORMs.

are forms to be evaluated only if an error does occur
in e,valuating the FORMs.

I Any of the clauses &always, &success, or &failure can be omitted.
I Forms that were written using unwind-protect, e.g.,

I
I

I can

(unwind-protect (progn FORMl FORM2 •••)
CLEANUP 1. CLEANUP2 0 0 II)

now be written using protect as follows:

I (protect FORMl FORM2 ••• &always CLEANUPl CLEANUP2 •••)

USEFUL PREDICATES

The following predicates in the Emacs environment are basic
to all extension-writing; they are used to test various
hypotheses about point, marks, and the buffer:

(eolp)
t:' ~ ""i= 1 ~....,...~~~,.. +-~. "",...".a. ~; ~ ""+- ; e a+-~"""" \,I.. • ... us tJ.&. \"oa\..... ._..,.... to'".u\..w '- end of a
text line right before the newline character.

3-10 CJ52-Q1

(bolp)
Beginning of line predicate. True if point is at the
start of a text line, either before the first character
of the buffer, or after a newline.

(firstlinep)
First line predicate. True if point is on the first
text line of the buffer.

(lastlinep)
Last line predicate.
which is the line after
there is one.

True if on last buffer line,
the last newline character, if

(at-beginning-of-buffer)
True if point is right before the first character in
the buffer.

(at-end-of-buffer)
True if point is right before the newline on the last
line of the buffer. You cannot go past it.

{looking-at <STRING-VALUE>}
True if <STRING-VALUE> appears in the buffer
immediately to the right of point. Restriction:
<STRING-VALUE> can not contain a newline character,
except as its last character.

(at-white-char)
True if the character to the right of poin~ is a
newline, or tab.

(point>markp <MARK»
True if the current point is further in the buffer than
the position defined by <MARK>. This is expensive, and
should not be used casually in loops.

(mark-reached <MARK»
True if the current point is up to or beyond <MARK> in
the buffer. Intended for use in controlling
character-by-character loops; it expects that point
starts to the left of <MARK> and moves toward it. The
function (order-mark-last <MARK» can be used to switch
point and mark if needed at the start of such loops.
Doe.s not terminate unless executed wi th mark and point
on same line.

(mark-at-current-point-p <MARK»
True if the mark <MARK> represents the same position as
the.current point.

3-11 CJ52-Q1

I

(mark-on-current-line-p <MARK»
True if the mark <MARK> represents a position on the
same line as the current point.

(mark-same-line-p <MARK1.> <MARK2»
True if two marks that are arguments represent
positions on the same line.

(line-is-blank)
True if current line is all blanks or empty.

(empty-buffer:-p <BUFFER-SYMBOL»
~ • r: .L..'L L..~.e • ~ .L. • J!:. ..:i '- .., 'P~"P!ItP.t _ ,.,...,...,I'"'~-p:....... !_ -J,;rue 11:. -c.ne .ouJ:J:er l.o.en-Cll:l.eo.oy llUL'.t'J:ll't-~~l"lDVJ..i,...~::i
empty. The- form (empty-buffer-p current-buffer) can be
used to test the emptiness of the current buffer. See
below for a discussion of buffer symbols.

(at <QUOTED-CHARACTER»
True if the character given, e.g., (at "$"), appears in
the buffer immediately to the right of point. This is
more efficient than looking-at for single characters.
Note that:

(a t ft·

ft·)

is equivalent to (eolp). Use the latter. (See also
if-at.)

(back-at <QUOTED-CHARACTER»
Same as at, but deals with the character to the left of
the current point. See also if-back-at.

(null-stringp <STRING-VALUE»
True if its argument is a zero-length string or a
symbol with the zero-length printname.

(yesp <STRING-VALUE»
Asks the user a yes-or-no question in the minibuffer,
namely, <STRING VALUE>; accepts yes, y, no, or n as
answers and returns true if response is affirmative.

3-12 CJ52-01

This function that trims from the left (ltrims) all the
lines in the buffer demonstrates the use of these predicates:

(defun Itrim-all-lines ()
(save-excursion ;be polite, restore point'

(go-to-beginning-of-buffer)
(do-forever ilOOP on lines thru buffer
(do-forever :loop thru chars on line
{if (eolp) (stop-doing» ;stop at eol.
(if (at-white-char) (delete-char) :do the work

else (stop-doing») ;non-white char, next line
(if (lastlinep) (stop-doing»;quit when did last line
(next-line))» :leaves you at b.o.l.

WHITESPACE MANAGEMENT

Neatly formatted editor output and displays, as well as
program and document formatting, require good whitespace
management. The following functions exist to deal with
whi tespace:-

skip-over-whitespace
Takes no arguments. Moves point forward over all tabs,
blanks, and newlines until a non-white character or the
end of the buffer is reached.

skip-back-whitespace
Takes no arguments. Moves point backward over all
tabs 1 newlines, and blanks until the character to the
left of point is none of these, or the beginning of the
buffer is reached.

skip-to-whitespace
Moves forward until character to right of point is tab,
blank, or newline. Since last character in buffer must
be a newline, there is no special end condition-.

skip-back-to-whitespace
Moves backward until the character to the left of point
is a tab, blank, or newline, or the beginning of the
buffer is reached.

delete-white-sides
Deletes leading or trailing blanks from anything, or
deletes space between words.

skip-over-whitespace-in-line
Same as skip-over-whitespace, but stops before the
newline character at the end of the line (i.e., stops
at the end of the line) if it gets that far.

3-13 CJ52~Ol

skip-back-whitespace-in-line
Same as skip-back-whitespace, but does not proceed
backward beyond the beginning of the line.

You often need to generate whitespace to reach a given
horizontal position (column), for tabbing and page layouts. The
function whitespace-to-hpos performs this service; it generates
tabs and spaces as appropriate, moving point until the horizontal
positi.on that is its,argument is reached. The following function
move~ all lines in the buffer seven spaces over, regardless of
their originaL indentation, with th& right amount of tabs and
spaces:

(defun move-over-7 {}
{save-excursion
. (go-to-beginning-of-buffer) ;all do-for-all-lines
{do-forever ;start like this.

(skip-over-indentation) ;This is ESC M
(let {(hpos (cur-hpos)})

tlet hpos be the curr. pOSe
(delete-white-sides)

;close up all original space
(whitespace-to-hpos (+ hpos 7»)

- - ;make just enough
(if (lastlinep){stop-doing))
(next-line»»

A related need is to space to a given position, leaving a
single space if you are already there or beyond. This is useful
for producing columnar output where overlength fields must be
separated (as AXAB does in its local· display). The
whitespace-to-hpos does not do this; it stops if it is far
enough. However, format-to-col takes a single argument, a
horizontal position to be spaced to. If the current point is
already that far, it inserts a space.

EXTRACTING TEXT FROM THE BUFFER ---- ---- --- ------
The function point-mark-to-string gets a Lisp string whose

value is the string of characters between point and the mark that
is its argument. To demonstrate, a function that finds a
vertical bar (I) on a line, deletes it, and swaps the two
line-halves around it is defined below. For instance, the line:

An Indian with a zebra I never trips in the snow

comes out:

never trips in the snowAn Indian with a zebra

3-14 CJ52-01

The function is:

(defun swap-around-bar ()
(go-to-beginning-of-line)
(if (not (forward-search-in-line "I ""» ";check for one

(display-error "Hey, there is no ""I""!")}
(rubout-char) ;what # does
(with-mark m ;m in middle of line

(go-to-end-of-line)
(let {(temp (point-mark-to-string m») ;get

;middle
ito end

(without-saving (wipe-point-mark m»
(go-to-beginning-of-line)
(insert-string temp»» :put in text

The forward-search-in-line is just like forward-search, except
that it indicates failure if it cannot find its search string in
the current line. If the vertical bar is not found,
display-error lets you know and does a command-quit, (AG), which
stops the execution of this function. at once and returns to Emacs
command level (see below). This is useful by itself to search
for some string only in a given line. There is also a
reverse-search-in-line, and a'regexp-search-in-line, which are
similar in their relation to AR and ESC I.

TALKING TO THE USER ------- -- --- ----
You cannot use the Lisp liO system to print out messages

and/or query the user. The Emacs redisplay manages the screen
itself, entirely. Thus, you can not use "print", or "read", or
other Lisp functions that you may be familiar with~

A function called minibuffer-print prints all the messages
that Emacs outputs in the minibuffer screen area. It takes any
number of arguments, which must be strings. The function
decimal-rep is provided to convert numbers into strings for
inserting them in the buffer or handing them to display-error.
The following function counts the number of As in the current
line:

(defun a-counter ()
(let «n 0»

(save-excursion
(go-to-beginning-of-line)
(do-forever

;initial count
;why not?

(if (not (forward-search-in-line "A"»
(minibuffer-print "Found " (decimal-rep n) "As.")
(stop-doing»

(setq n (+ 1 n»») ;count them.

3-15 CJ52-01

The forward-search-in-line leaves the point to the right of
what it finds (like AS), so that it does not find the same
occurrence the next time.

To prompt the user for input in the minibuffer, use the
I function minibuffer-response. It takes one, two, or three
I arguments. The first argument is the prompting string. The
I second is the character to be used to terminate minibuffer input.
I It can be either ESC or NL; if not supplied, NL is the default.
I If the value of ESC is used, minibuffer input terminates on an
I ESC. If the value of NL is used (NL, not CR), minibuffer input
I terminates on a, carriage' return'. The thfrd argument·, when used,
I is a string to be inserted as the user's response. The user can
I edit this string~ Thus:

I (minibuffer-response "Type new division name: ")

I returns the user's response to this question when he terminates
I it with a carriage return. The value of minibuffer-response is a
I Lisp string. The carriage return does not appear in it, nor does
I the prompt.,

I The minibuffer-response
I last-minibuffer-response.
I remember-empty-response option
I last-minibuffer-reponse is not
I is given.

function sets a variable called
If the ESC X opt

is set off (it is on by default),
set to blank when a blank response

To display an error message in the minibuffer and then abort
execution of an extension, i.e., execute a command-quit (AG), use
display-error. The display-error is like minibuffer-print,
except that it does not return, but aborts to Emacs top level
immediately after printing its error message in the minibuffer.
Like minibuffer-print, it takes any number of string arguments.

I You can clear out the entire minibuffer
I minibuffer-clear-all function. It takes no arguments.

3-16

with the

CJ52-01

Message Printing Functions

Messages printed by minibuffer-print are
keyboard macro execution, just as search
displayed, and other gratui~ous messages are
following set of functions describes the
message-printing:

display-error

suppressed during
strings are not
suppressed. The

repertoire of

Prints a message in the minibuffer and aborts to editor
top level. It is intended for use in error message
printing.

display-error-noabort
Prints a message
execution. This
nonfatal errors
messages ••• ".

in the minibuffer and continues
function is intended for reporting

such as "User not accepting

minibuffer-print
Prints a message in the minibuffer, but not during
macro execution. This function is intended for use by
extensions that print messages in the normal process of
their execution, such as the line count from AX=. For
this function, as well as the others below, in
multiline minibuffer situations, an appropriate line is
chosen based upon availability of empty lines and
several other criteria.

minibuf~er-print-noclear
Prlnts a message in the IDifiibuffer \no~ during macro
execution}, but does not erase the orevious contents.
Output is appended to the last minibu~fer line used.

display-corn-error
Prints a message in the minibuffer and aborts to editor
top level. Its first argument is a Multics standard
error code. Its remaining arguments are character
strings or symbols. . See "Multics Error Table" below
for the technique used to get error_table_ values into
your program.

display-com-error-noabort
Prints a messaqe in
execution. Its-first
error code.

minibuffer-clear

the minibuffer and continues
argument is a Multics standard

Clears out the last minibuffer line that was written,
except during macro execution. This function should be
used to clear out minibuffers written in by
minibuffer-print and minibuffer-print-noclear at the
end of subsystem invocation.

3-17 CJ52-01

display-error-remark
Identical to display-error-noabort, except that the
particular minibuffer line on which this remark is
printed becomes the next orte overwritten for any
minibuffer remark or output. This function should be
used for transient remarks (such as "Writing",
"Modified", etc.), that you wish to remove from the
screen as soon as possible.

command-quit
Aborts to top- level (or to the minibuffer if one is
being entered) and rings the terminal bell. Execution
of the current extension code is irretrievably stopped.
This function is used by display-error and
display-com-error internally: since it is better to
print a message when an error occurs, generally use
these latter two functions instead of command-quit. Do
not use command-prompt-abort (what AG invokes) to error
abort out of code, since it would abort minibuffers as
well.

ring-tty-bell.

VARIABLES

Rings the terminal bell (or beeper) with no other
effect. AIL error aborts out of code, such as those
caused by display-error and display-corn-error, do this
by default ..

Many groups of Emacs requests need global variables to
communicate among themselves and the functions they call. A
global variable is a Lisp va~iable that is not the pa~ameter of
any particular function; its value can be accessed or set by any
function. Some of the global variables in Emacs are highly
user-visible, for' example, "fill-column", which contains the
column number of the fill column as set by AXF, and used by the
filling requests and fill mode. Similarly, the character string
that is the comment prefix is the binding of the global variable
"comment-prefix". Extensions often need global variables to
communicate among their parts.

Normally, global variables in Lisp are accessed just like
other variables, i.e., those that are parameters of functions or
E!2S or let variables. For instance, a function to set the fill
column to 30 if it is over 40, might contain the code:

I ! 1: I..... 1:':" ___ , •• __ "1"'1 \ I __ ~ _ .t:':" __ , ~ 1!" \ \
\ ~ .1. \ '" .L. ~ ..L. ..L. - I,.. U ..L. UUU 1 ~ U • I \ ;:)11:: I.. y J. J. '- v .. umu ..J V • J J

3-18 CJ52-01

When a global variable is used in your program, say one
named "my-global", the "declaration"

(declare (special my-global»

must appear in the program before its first use, to tell the
compiler about this "special" variable (the Lisp term for a
global variable). The e-macros include file declares many of the
provided global variables, which you need not declaree

defvar

An even more powerful way to declare your own global
variables is provided by the defvar declaration/special form. In
its simplest form:

(defvar my-global)

is equivalent to:

(declare (special my-global)}

but is simpler and more mnemonic.

Use defvar to specify an initial value to be assigned to the
global variable at the time the program is loaded. This value
will ~e assigned only if the variable has not already been
assigned a value; this makes it ideal for user-settable options.
For example;

(defvar magic-mode-debug-flag nil)

not only declares magic-mode-debug flag special, but gives it a
value of nil (remember that the binding of the variable nil is
the symbol nil) if the user has not assigned a value to it before
loading the magic-mode program, where this declaration presumably
appears.

PROVIDED GLOBAL VARIABLES

You have already encountered some of the global variables in
Emacs during the introduction to Lisp; for example, the glo~al
variables t and nil that contain the standard indicators of truth
and falsity. There are also global variables whose values are
symbols whose printnames (see "Character Dispatching") are
hard-to-type characters. Most of the interesting global
variables in Emacs are associated with given buffers, such as
variables containing the pathname and comment column (this is
discussed below).

3-19 CJ52-01

There are, however, a few truly global variables that Emacs
uses. Here are two of them you might need to use. You need not
declare them special, since they are declared in the e-macros
include file.

env-dir
a string that is the pathname of the directory
containing all the Emacs library programs.

process-dir-
a string~ that is, the: pathname
directory· ..

Per-Buffer Variables

of your process

The global variable situation is complicated by the fact
that editing activity is usually local to each buffer. That is,
if a set of global variables contains a set of values about what
is being edited, it usually pertains to what is going on in only
one editor buffer. If you switch to a different buffer, and use
the same editor facility, you do not want to use or change the
values of those global variables that pertained to activity in
the other buffe~~ At first, this would seem to make global
variables unusable, because all functions would have to keep
track of what buffer they are talking about before using any
global variables, and therefore maintain several sets of them.
Fortunately, it is a lot easier than that. The buffer-switcher
in Emacs saves and restores values of global variables as buffers
are switched, if you tell it what variables you want so saved and
restored, when the buffer you are operating in is exited and
reentered, respectively. Such a variable is called a ~-buffer
variable, and the act of telling the buffer-switcher about it,
thereby associating its current value with this buffer, is called
registering it. Once a variable has been registered in a given
buffer, the functions that use it can assume that its value will
be what it last was in that buffer whenever the editor enters
that buffer. Another term for a per-buffer variable is a local
variable. The following two primitives exist for registering
local variables; there are no primitives for setting or
retrieving their values, because the whole point of this
mechanism is to allow them to be accessed as normal Lisp
variables.

register-local-variable
Called with one argument, the symbol whose name is the
name of the local variable you wish to register.
Registers it in the current buffer, if not already
registered there, and the variable initially inherits
its "global value". If registered, its value is left
alone. If it has no global value, it acquires the
symbol "nil" as its value if this is its first
registration in this buffer.

3-20 CJ52-01

establish-local-var
Just like register-local-variable, but takes a second
argument, a default value to be initially assigned to
the variable the first time it is registered in this
buffer, if it has no global value.

The global value of a per-buffer variable i~ the value it
has in buffers in which it is not registered. It is this value
that is set if you set this variable while in a buffer in which
it is not registered. A local variable "inherits" its global
value when it is first registered in a given buffer. For
variables that have no global value (i.e., were never assigned
one), establish-local-var can be used to provide default
initialization.

EXAMPLE OF LOCAL VARIABLES

Three functions that maintain a "problem count" in a given
buffer are started up by typing ESC X monitor-problems CR. Once
started, use "XP to count a problem, and "XR to report the n.umber
of problems noted:

(defun monitor-problems () ;command-level function
(set-key '''XP 'note-a-problem) :set the keys needed,
(set-key '''XR 'report-problems) ;only in this buffer
(establish-local-var 'problem-count 0» ;register the

;local var, initial value 0 here.

(defun note-a-problem () ;executed on "XP
(setq problem-count (+ 1 problem-count») ;Increment the

;vari~ble

(defun report-problems () ion AXR
(minibuffer-print "There have been "

(decimal-rep problem-count)
" problems in this buffer."»

By calling establish-local-var on the symbol
"problem-count", the programmer here has ensured that the
problem-counts in each buffer in which he counts problems will be
maintained separately.

3-21 CJ52-01

REGISTERED VARIABLES

The following per-buffer variables are automatically
registered by the editor. Their values can be inspected or set
in extension code.

buffer-modified-flag
Contains t or nil, indicating that this buffer has or
has not been modified since last read in or written.
Set automatically by the editor. Modification of a
buffer executed within the special form!

<forml><form2> ••• <formn>}

does not set this flag.

read-only-flag
Contains t o~ nil indicating whether or not this is
read-only buffer. The editor does not set this flag;
it is set only by extensions. An attempt to modify the
text in this buffer produces an error and a quit to
edi.tor command level if this fLag is on and
buffer-modified-flag is off (nil). The buffer can be
modified, however, by functions executed from within
extension code within a "(without-modifying ..•)~.

fpathname
Contains the full Multics pathname associated with this
buffer by the last file read or written int%ut of it,
or by find-file. It is nil if there is none. Changing
it from extension code modifies or "forgets" the
pathname as you set it.

der-wahrer-mark
Contains the mark associated with the user-visible ma~k
that AXAX and other related requests see. Is nil if
the user set no mark in this buffer. Do not set this
variable; call set-the-mark to do so.

current-buffer-mode
Contains the major
value is a symbol.
construction is in
variable.

comment-column

mode in effect in this buffer. The
To state that a major mode of your

effect in a buffer, simply set this

Contains the comment column, measured from Q.

,.."'mmQn+--,""r~f;v
'-, , ••• 'W •• 'W z:- - - -~

Contains the string, which can be a null string, that
is the comment prefix.

3-22 CJ52-Ql

tab-equivalent
Contains the number of spaces for a tab. Initialized
to 10., the Multics standard, this can be set- either in
code or by ESC ESC to edit code from ~ther operating
systems. The redisplay obeys this variable too, but
not in two-window mode.

buffer-minor-modes
Contains the Lisp list of symbols representing the
minor modes in effect in this buffer.

MODE HOOKS

Emacs provides a set of global variables called mode hooks.
Most major modes currently have mode-hook variables. The
mode-hook variable for a major mode allows a user to run his own
code ~very time a certain major mode is entered. For instance, a
user might want to set certain key bindings every time he uses
PL/I mode. The mode-hook variable is generally named
XXX-mode-hook for XXX mode. The following are currently defined:

MODE­
RMAIL
MAIL
PL/I
FORTRAN
ALM
LISP
LDEBUG
TEXT

NAME OF HOOK VARIABLE
rmail=iiiode-hook
mail-mode-hook
pll-mode-hook
fortran-mode-hook
alm-mode-hook
lisp-mode-hook
Idebug-mode-hook
text-mode-hook

To use the mode hooks, write a function -that is to be
executed every time the mode is entered. (This function is
usually defined in the Emacs start_up.) For example:

(defun Mike-pll-mode-hook()
(set-key "ESC-+" 'search-for-journalization-notice»

In the start up, set the variable pll-mode-hook to the symbol
Mike-pll-mode=hook. This is done with a statement of the form:

(setq pll-mode-hook 'Mike-pl1-mode-hook)

Thus, every time Mike enters PLjI
Mike-pll-mode-hook is run, binding
journalization-notice finder.

mode,
ESC

the function
+ to Mike's

Modes use defvar to assign nil to their mode-hook variables
if the user (via his start up) has not assigned something else.

3-23 CJ52-01

• •

I Other User Hooks

I
I
I
I
I

Several additional hooks for functions to be called at
special times are available. In order to use them, write your
own function, of one argument, and use setq to set the
appropriate hook to the name of your function. The one argument
passed is the name of the hook being invoked. These include:

I buffer-creation-hook
I called when a buffer is created.
I buffer-destruct ion-hook
I: called when a buff~r i& destroyed.
I buffer-entrance-hook
I called when a new buffer is selected.
I buffer-ex it-hook
I called when a buffer is left.
1 close-line-hook
I called when the user moves to another line.

LARGE SCALE OUTPUT

Output of multiline information, . or information longer than
about 60 characters, should not be done via minibuffer printing,
but. via the local-displaY, or printout facility. This is the
facility with which buffer listings, global searches, apropos,
and other requests display their output. On video terminals, it
displays lines at the top of the screen, asking for "MORE?" as
each screen fills up. At the end of. the local display, it waits
for the user to type the next Emacs request, and then restores
the screen. On printing terminals, the data is simply printed
line by line, with no "MORE?" processing or pausing at the end.
The local display facility is an integral pari of the Emacs
redisplay.

Three functions used in generating local displays are:

init-Iocal-displays
Is called with no arguments to start a local display.
It sets up the necessary redisplay mechanism,
initializing it to the top of the screen.

local-display-generator
This function is called with a string, whose last
character must be a newline, and displays it as the
next line (or lines, if continuation lines are
required) of local output. If you do not have a
newline at the end of your string, calling
local-display-generator-nnl instead provides one
automatically. There must be no embedded newlines in
strings for local output. A null string causes an
empty line.

3-24 CJ52-Ql

end-local-displays
Finishes a local display, restoring the screen. Causes
the- next redisplay to be suppressed, so the local
display remains visible on the screen.

The sequence of calls:

(init-local-displays)
(local-display-generator{-nnl} •••)

(end-Iocal-displays)

correctly produces a local display.

;perhaps many
;times

The best way to generate a well-formatted local display is to
set up a temporary buffer (see "Manipulating Buffers" below),
build some text in it, and display its content, in part or in
whole, as a local display. Three functions are provided to
facilitate this:

local-display-current-line
Does a local-display-generator on the current editor
line in this buffer.

display-buffer-as-printout
Does an init-local-displays, and displays all lines of
the current buffer as local output. It does not do an
end-local-displays; you have to do that yourself,
hopefully after you have gotten out of your temporary
buffer and cleaned up whatever else you had to.

view-region-as-lines
Displays the entire point-to-user-visible-mark as local
display, making all the necessary calls, including
end-local-displays.

While in a function that has a local display in progress,
you must never call the redisplay (see "Calling the Redisplay"
below), or call minibuf-response or any other function that
causes redisplay, for that instantaneously restores the screen
contents to the windows on displaYi obliterating the local
display in progress.

3-25 CJ52-Ql

The following function locally displays all lines" in the
buffer that contain the string "defun":

(defun look-for-defuns() ;use ESC X look-for-defuns CR
(save-excursion ;remember where you are.

(go-to-beginning-of-buffer)
(init-local-displays) ;set up for printout.
(do-forever ;loop the buffer

(it (forward-search-in-line "defun") ;look for
;"defun"

(Iocal-display-current-line» ;cause printout
;"of it

(if (lastlinep) (stop-doing» ;check for EOB.
(next-line») ;Go to start of

;next line
(end~local-displays» ;wait for user, and

;next request

A special form, display-as-printout, is available. It
generates a new buffer, executes your contained forms, displays
the whole buffer as local display, destroys the buffer, and
returns. Its syntax is:

(display-as-printout
<FORMi>
<FORM2>

<FORMn»

MANIPULATING BUFFERS

Often, the easiest way to do string processing in the editor
environment, i.e., handle strings, catenating, searching, etc.,
is to use the primitives of the editor itself, since it is a
string-processing language. To do this, temporary buffers are
necessary. To create a buffer, you should use the primitive
go-to-or-create-buffer (what AXB uses), which goes to a buffer
associated with the symbol you give it as an argument.

Most symbols are kept in a registry: this registry is
called the obarray, and there is only one symbol of any given
name in it. A symbol registered in the obarray is said to be
interned. Only one interned symbol named "joe" exists, but you
can create many uninterned symbols named "joe~. If you refer to
a symbol named "joe" in a program, however, by saying "'joe", you
always get the interned one.

3-26 CJ52-Ql

A major feature of symbols in Lisp is that they can be given
properties, arbitrary' user-defined attributes. These attributes
are catalogued "In" the symbol via indicators, symbols that
indicate what property you want. The Lisp functions "putprop"
and "get" store and retrieve properties.

(putprop 'Fred 'blue 'eyes) ;Gives the interned symbol
;named "Fred" an "eyes"
;property of "blue".

(get 'Fred 'eyes) ;retrieves the property under the
;indicator "eyes", and thus returns
;the interned symbol "blue".

In Emacs, symbols represent buffers. All of the information
associated with a buffer is catalogued as properties of some
symbol whose name is the name of the buffer. Thus, it is
possible to have two buffers of the same name, which would imply
that of the symbols representing them, only one is interned. The
AXB req~est always uses the interned symbol of' the name given;
that is why you can AXB back to an existing buffer instead of
creating a new one each time.

Creating ~ Temporary Buffer

To create a temporary buffer, you must first create an
uninterned symbol, to make sure that you are not going to switch
to a buffer that is already real. To do this, you give a string
to be used in nami~g the symbol to the Lisp cliche:

{maknam (explodec "A string"»

The explodec blows the string apart into a Lisp list of
characters; the maknam builds a symbol out of it. The value of
this form is the new symbol. You can then go to a (guaranteed)
new buffer of that name, i.e.,

(go-to-or-create-buffer (maknam (explodec "A string"»)

and the global variable "current-buffer" will have that symbol as
its value. A temporary buffer is one that is destroyed
automatically by the editor upon switching out of it. To make a
buffer temporary, all you have to do is give the symbol that
represents it (the "buffer symbol") a "temporary-buffer" property
of the symbol "tn. This can be done by the Lisp form:

(pu~prop current-buffer t 'temporary-buffer)

3-27 CJ52-Ql

(The variable "tn' is always bound to the symbol "t"). Once this
has been done, you must be careful not to switch out of this
buffer until you ara done with it. If your code involves
manipulating many buffers, some of them temporary, you must give
the temporary buffers their temporary-buffer properties at the
end of your manipulations.

A better way to do ,this is via th~ set-buffer-self-destruct
function~ Callinq this function upon the buffer-symbol, as
be·low:-,

(set-buf.fer-self-destruct ~urrent-buffer)

schedules the buffer for deletion as soon as the buffer is
exited. Using this, you find out sooner i~ you mistype this
function name than if you mistype the temporary buffer property.

When a, new buffer is created, it contains one I ine', which
consists of a linefeed only. There are no truly empty buffers in
Ema,cs. The predicate" empty-buffer-p can be applied to a buffer
symbol to determine if that buffer is in this state. When
buffers are switched, all information related to the old buffer
is stored as properties of the buffer symbol: this includes not
only the local variables registered in that buffer, but the
location of point, the user-visible (and all other) marks, etc.
Thus, when buffers are switched back and forth, the cursor
retains its position in each buffer (as can be seen while
editing), although the redisplay might choose to display a screen
differently after visiting another buffer and coming back.

Some applicatio~s require
putting some text 1n it, and
Therefore, you might want to go
interned buffer symbol:

making a nontemporary buf~er,
going back there on occaS10n.

into a nontemporary buffer of an

(go-to-or-create-buffer 'name-and-address-buffer)

or perhaps keep a global (not per-buffer) variable that you set
once to an uninterned symbor:-

{setq name-and-address-keep-track
(maknam (explodec "Name and Address Buffer"»)

and switch into it by saying:

(go-to-or-create-buffer name-and-address-keep-track)

3-28 CJ52-Ql

The function buffer-kill can be called with a buffer symbol
to destroy a buffer. The function destroy-buffer-contents (of no
arguments) can- be called to reduce the current buffer to a single
"empty" line (buffer contents are not pushed onto the kill ring).

dont-notice-modified-buffer

When you create features and modes that interact with the
user either by placing "results" in a buffer, accepting user
input typed "into" a buffer, or both, these buffers will be
"noticed" when the user leaves Emacs, with the standard query
about modified buffers. However, you can prevent quit-the-editor
(what AXAC invokes) from taking notice of a given buffer even
though that buffer is modified. This is done by marking the
buffer concerned with the dont-notice-modified-buffer function.
It takes a - single argument, which is the buffer symbol of the
buffer concerned.

Variable for Buffer Manipulation

The following two
manipulation:

current-buffer

variables are relevant to buffer

The value of this variable is the buffer symbol of the
current buffer. Do not change it, or incorrect
operation results. Use go-to-or-create-buffer.

previous-buffer
The value of this variable is the buffer symbol of the
last buffe-r, which is returned to when AXB CR is typed.
It is acceptable to setq this variable.

The go-to-or-create-buffer function accepts a buffer-name of
"" as meaning go to that previous buffer.

The save-excursion-buffer Special Form

The special form save-excursion-buffer is invaluable when
writing functions that switch buffers. ~~ provides for
remembering which buffer you were in, and switching back to it
when you are done. It also saves and restores the state of
"previous-buffer". The save-excursion-buffer is like
save-excursion; it executes its contained forms while pushing the
buffer-state of the editor on an internal stack, and returns the
value of the last form within it.

3-29 CJ52-01

The following program, when invoked after typing somebody's
name (say you h.ook it up t.O a key), f.ollows it with his title in
pa:renthes.e·s. Assume t'he file >'udd>'FamNam>personnel data looks
like this: -

Washington, G. =Lumberjack
Duck, D. =Pessimist
Ni,e·tzs.c-he, F. =Exi stent ialis:t
Mouse, M. =Optimist
Ei:senhowe.r', D. D., =Golf.e.t"

(,de:fU!l in·sert-person-t.itle· (,)
('A-~ l.f·n,m,o.. (c!~~YO.-A-.v,...",...C!;I"\f't •... ~~.",- ,,... - ~-~ \-_.- .\\: n_ ,\ __ .. _ .. ~'-"_Wl''''·'''~~ .,.w,Q..Vl; ':t''"'l' ~ l:JV·.11 1-.

(s-kip:-back-whi te.spac:e) ; 9.e:t to end of w.o.rd
(wit:h-mar.k miID = end o·f wQ,rd

(backward-word) i9·0 to beg. of wd.
(catena~te (point-ma.rk~to-string m)

"' , "')))))
;return ·the word with a "," after it.

(ins.ert-s,tring .; in.sert
(catenate "" (" ;.e:pen paren and sp

.{ save-excursion-buffer ; save the old buf~f
(go-to-or-create-buf fe.t" 'name-pos it i.on-r.ecords)

;-qo to s·.tuff
{if .(empty-buffer-p curren:t,-buf fer) ; read i.t

;once
(read-in-f ile ">udd>FamNam>pe.rsonn.eldata·"»

(go-to-b.eginning-of-buffer) ;set up for search
(do-forever iscan lines
(if (looking-at name) ;ls point at

i"name,"?
(forward-search "=") ; look for the -.
(return (with-mark n ;get to the end.

(go-to-end-of-line)
(point-mark-to-string n»»

(if (lastlinep}(return "???"» ;couldn't

(next-line»
~) "»)})

3-30

;find him
;move on

CJ52-Ql

This function picks out the name you just typed by skipping
back over whitespace, and picking up all between there and the
start of the previous (current) word. It then inserts, between
parentheses, the portion of that line of the data file that
contains the sought name at. its front after the equals sign. The
buffer name-position-records is read into once, and contains the
data file thereafter.

The initial save-excursion remembers the user's point
location while the word is collected. The save-excursion-buffer
remembers what buffer and where in it all its modes, local
variables, etc., are, while you operate in the data file buffer.

The function catenate is a valuable one in
Emacs; .it takes any number of strings (or
printname will be used), builds a string by
first-to-last, and returns it •.

the context of
symbols, whose
catenating them

Another useful function in this context is apply-catenate,
which takes as an argument a list of any number of strings or
symbols and builds a string by catenating the strings and names
of the symbols, fJrst to last.

CALLING THE REDISPLAY

The Emacs redisplay decides what lines of the current buffer
should be shown on the screen, determines how to modify the
current screen to show the contents of those lines, and updates
the screen in an optimal manner~ It is called by the editor
whenever there is no more input available. It is very simple to
call. It takes no arguments, i.e., you just say:

(redisplay)

The redisplay does not know or care by what means the buffer
was modified; if you delete several words with ESC D, AD, or AW,
it is all the same to the redisplay, and it acts similarly in
updating the screen. Normally, the extension writer need not be
concerned at all about the redisplay. A major feature of Emacs
is that only the total effect of a complex manipulation is
displayed, not every small operation that the manipulation used
to achieve its effect.

3-31 CJ52-01

In some s.itua.tions:, ho.w.eve.I:·, it is: advantag.eous to call the
redi splay explic i tly from e.~tens:ion code. One example is a
function that takes a. tremendous ~ou.nt· of. comp.uter time and
might wish to update'the screen every so often as it finishes
some major section. You. do n.ot tell the redisplay what to
display or how t~ d~splay it: it displays some .excerpt of the
current buffer that contains' the current line., and shows the
cursor where the curr~nt point is. If you call it during a
buffer ~xcursion, ~. e •. , while in some spec.ia.l buffer in a
function, it displays. th~t buffer around its "point". As soon as
that. function l:E!;tur·n.$. to; ·ecUtorco~n.d leve:l, the: screen is.
overwritten- ~i til. the" 6.t;ic;inal buffe.r.'''~, . lines.. Thus., calling,
redisplay' lS not t~· be con.si~t;~q ~ aubS:ti tute fo~ local
displays •.

The most cO,mmon neeq. for callinq redisplay is in functions
that add text (or change' text} on a line, and move to another
line. E'or e.xample, the; elec.tric semicolon o.f electric PL/I mode
adds a semicolon to the current line and moves to the next. On a
printing terminal, the'u~er wo~ld never s~~ the semicolon unless
special action. wer~ ·t~ken.. 'l;he 1;e~t ~n the buf~er wou~d indeed
be right, but by the, ~i~e the n~xt z;:~display occurred (th~
electric semicolon request returned}, th. editor would be off
that line, and thus would display the next line, where the
electric semicolon r;.equest left it.' While. this is correct, the
printing terminal us.er looking at his type-~n would, wi th. some
validity, complain that "all the semicolon~ seem to be missing".
Thus, the· electric P~/I semicolon request calls the redisplay
immediately after it executes "(insert-string "in)".

The following is a function for a. "card.-numbering FORTRAN
mode", which when invoked (perhaps hook it up to CR)' puts a
sequence number in column 72 (71 from 0) and goes to column 7 of
the next line. It must call the redisplay so that, on a printing
terminal; the card numbers get shown:

{defun fortran-next-line ()
(whitespace-to-hpos 71.)
(insert-string (decimal-rep cardno»

{setq cardno (+ 1 cardno»

(redisplay)

(new-line)

(whitespace-to-hpos 6.»

3-32

;go to col 72.
;cardno i~ a local
ibuffer var
;up the next
;.card number
;let printing
iuser see.
iget to
;next line
;6 reI = card col 7.

CJ52-01

Another commonly called redisplay
full-redisplay, of no arguments, which clears
screen, as with AL with no arguments.

Positioni'ng Text 2!!. the Screen

function is
and rewrites the

Emacs usually positions text on the screen automatically.
When the cursor is moved to text already on the screen, it is
simply repositioned on the current screen. If the text is not
already on the screen, Emacs usually centers the line containing
the text positioned to in the current window. Sometimes, it is
desirable to have other than this default action. You may wish,
say, to position some text onto the top of the screen from
extension code; this is what ESC 1 AL does. The
redisplay-current-window-relative function is what
redisplay-command (AL) calls when given an argument. Thus,

(redisplay-current-window-relative 3)

redisplays the current window with the current line of the
current buffer on line 3 of the window.

EIS TABLES

The Emacs environment provides a facility for utilizing the
sophisticated Multics processor instructions for scanning for
characters in, or not in, a particular set of characters. These
operations correspond to the PL/I "search" and "verify" builtins.
The word requests operate using these facilities.

A set of characters is represented by a charscan table, a
compound Lisp object occupying about 200 words of storage. You
can get a charscan table by giving a set of characters, as a
string, to the function charscan-table. It returns a charscan
table representing that set of characters:

(setq number-verify-table (charscan-table "0123456789+-"»

Functions Using the Charscan Table

Given such a table, there are a set of functions that can be
called to utilize it to search for characters in or out of that
set, backward, forward, whole buffer, or only one line. All but
-the last of the following functions take one argument, a charscan
table representing a set of characters (called S here). They
return nil (falsity) if they hit the end of the buffer or line
(as appropriate) without finding what they are looking for. If
they succeed, they move point and return a truth indication. If
they fail, they do not move point.

3-33 CJ52-01

search-for-first-charset-line
Scans current" line forward from point.
stopping to the left of a character in S.

'" " ..

search-for-first-not-charset-line

Success is

Same as above, but success is stopping to the left of a
character not in s.

search-back-first-charset-line
Scans current line backward from point~
stopping to the right of a character in S~

. ",...,.''-':

search-back-<fi rst.-not.-charset-l ine

Success is

Sam~ as search-back-first-charset-line, but success is
stopping to the right of a ch~racter not in S.

search-charset-forward
Scans the buffer from point to the end of the buffer.
Success is stopping to the left of a character in s.

search-char set-backward
Scans the buffer backward from point to the beginning
ot the buffer. Success is stopping to the ri~ht of a
character in s. "

search-not-charset-forward
Scans the buffer forward from point to the end.
Success is stopping to the left of a character not in
s.

search-not-charset-backward
S'cans the buffer backward from point to the beginning
of the buffer. Success is stopping to the right of a
character not in S.

charset-member
A predicate; takes two arguments: a character and a
charscan table. The character can be a single
character string, a single-character-named symbol, or a
numeric ASCII value. Returns true if the character is
a member of the set of characters represented by the
charscan table.

The following function finds the first nonnumeric character
on the line it is invoked on:

(defun find-first-non-numeric ()
(establish-local-var numscan-table nil) ;does

;var exist
(if (not numscan-table) ;i£ nil, i.e., not init yet,

(setq numscan-table (charscan-table "0123456789"»)
(go-to-beginning-of-line)

3-34 CJ52-Ql

OPTIONS

(if (not (search-for-first-not-charset-line
numscan-table»

(minibuffer-print "Line is O.K.!"») ;failure
;is all are
;in charset

The Emacs option mechanism provides for user-settable
.variables in the Lisp environment. The only difference between
an "option" and any o~her global Lisp variable in the editor
(basic or extended) 1S that the options are listed at the
user-visible level by typing ESC X opt list CR, and can be set or
interrogated via the opt request. The option mechanism also
provides for checking that numeric variables stay numeric, and
that variables restricted to "t" or "nil" as values stay
restricted to those values.

Thus, options can control per-buffer or truly global
variables; the option mechanism imposes no restraints upon the
dynamic scope of the variables managed by it. The option
mechanism also provides for a default global value of variables
it manages.

A global variable is registered with the option mechanism by
invoking the . function register-option upon the Lisp symbol that
represents (has the name of) that variable, and its default
global value. If that value is a number, the option mechanism
restricts the variable's value to numbers; if it is one of t or
nil, the option mechanism restricts its values to t or nil (which
you indicate as "on" or "off").

The choice of whether a variable should be made an official
option or not depends upon whether or not you want the user to
see it when an "opt list" is done, and whether finer control than
that provided by the option mechanism over the values assigned to
it is necessary. It is acceptable to register an option the
first time some code is executed; only then does it appear in the
option list. It is usual to have forms invoking register-option
at "top-level" in a file full of code; i=e=i outside of any
function. Such code is executed when the code is brought into
the editor environment.

The following code registers an option describing default
paragraph indentation, and shows a function that creates a new
paragraph (that should probably be hooked up to a key). Like all
Lisp global variables, options must be declared "special" for the
Lisp compiler (see "Compilation" below):

3-35 CJ52-Ql

(declare (special paragraph-indentation» ifor compiler.

(register-option 'paragraph-indentation 10.) idefault is ten

(defun new-paragraph ()
(new-line) ;two new-lines
(new-line)
(whitespace-to-hpos paragraph-indentation» itab out

By issuing the request:

ESC: X, opt paragraph-indentation 5 CR

You can set the amount of indentation inserted by new-paragraph
to 5.

NAME SCOPE ISSUES

All of the functions and variables in the Lisp environment
are accessible to all functions running in it. At times, this
can be a problem. When adding your own extensions to the editor
----! ------..... __ loo.'L..! -- ---•• e- ,,"" .. ~,.." _lo..""""e!'~",", ~ "~m.o {:I"\'" I"\n.o ,...{: f::UVJ.l.UUU1Clll..., UUI..J.J.~l1'::t 1:-'J..C'V :Ul.o~ ~vu v,,' \,o4040 ... "' 'O;'.,,':t ~ ,uu, __

your functions that happens to be the name of some internal (or
user-visible) function in Emacs. Occasionally, there may be
reason to do this deliberately, e.g., writing your own version of
next-line to do something special. This is dangerous, and not
recommended.

In general, you want to make sure that none of your
functions or variables conflict with those of the editor. The
best way to do this is to choose some set of names that minimizes
the possiblity of conflict. To achieve this, use capital letters
anywhere (such as initial capitals) or use underscores in your
names, since almost no Emacs or Lisp system functions have
leading capitals or trailing underscores. Watch out for the few
exceptions: error table, e cline, Rtyo, Rprinc, ItoC, CtoI,
and the DCTL functions -for- writIng terminal control modules.
There are a few Lisp system functions with embedded underscores,
but other than make_atom, it does not hurt if you accidentally
redefine them. The Lisp compiler also warns you if you attempt
to redefine a system function. No functions in Emacs contain
underscores in their names.

Another technique is to use double hyphens in your names.

3-36 CJ52-01

Another wa¥ to avoid name scope conflicts is to prefix all
of your names 1n a given package with some prefix indicative of
the facility that you are trying to implement. For instance, if
you are implementing a SNOBOL edit mode, you might name your
functions "snobol~find-match-string", "snobol-get-branch-target",
etc. The same holds true for global variable names. This is the
standard, recommended, and most mnemonic way.

You can also be reasonably certain that names constructed
somewhat whimsically (e.g.,"Johns-special-tsplp-hack",
"find-third-foo", etc.) will not conflict.

MODES

The major and minor mode mechanism of Emacs is a way for the
user to switch in and out of large sets of key-bindings and
column settings, and to be informed of this via the mode line.

Major Modes

A major mode involves a large body of optional code (e.g.,
PL/I mode), sets up for editing code written in a particular
language, or sets up buffer for some highly specialized task
where very common keys (e.g., CR) do nonobvious things (e.g., the
Message mode buffers of the Emacs message facility). Minor modes
generally involve the way that whitespace or delimiters are
interpreted, e.g., fill mode and speedtype mode.

Although modes can be invoked by explicit user commands,
e.g., ESC X lisp-mode, modes are usually invoked via find-file
(AXAF) when a user reads in or creates a program and has elected
the find-file-set-modes option in his start_up. When you invoke
find-file with a suffixed file (and with find-file-set-modes
elected), a check is made to see if a function named XXX-mode
(where XXX is the suffix) has been defined. If such a function
has been defined, it is invoked. If not, a check is made to see
if the symbol XXX has a suffix-mode property; if so, the value of
this property is a symbol denoting a function to be invoked.
Thus, a form such as:

(putprop 'ec 'exec-com-mode 'suffix-mode)

in a startup causes all ".ec" segments to invoke the
(hypothetical) function exec-com-mode. The defprop special form
can be used to eliminate the quotes; thus,

(defprop ec exec-com-mode suffix-mode)

has the same effect as the form above.

3-37 CJ52-01

A major mode is set up by a user-visible function called
"XXX-mode" , where' XXX is the name of the mode. Thi s "mode
function" establishes key-bindings" (using set-key), and sets
columns (e.g., fill~column, comment-column) and prefixes as
necessary. The mode function establishes the mode by setting the
per-buffer-variable" "current-buffer-mode" to ~. symbol whose name
indicates the mod~. The name of the symbol appears in the mode
line when the redisplay is invoked while in this buffer. The
following function sets up a major mode for editing FORTRAN
programs:

(defun fortran-mode" () ; the mode function
(setq current-buffer-mode 'FORTRAN)

(setq fill-column 70.)
(setq fill-prefix" ")
(set-key 'CR 'fortran-new-line)
(setq comment-column 0)
(setq comment-prefix "C "")
(if fortran-mode~hook

(funcall fortran-mode-hook»)

; symbol
ifor mode
iset columns
;six spaces on CR
;set up CR key

;that begins cmts

The function fortran-new-line is assumed to be one that does
c:::nm~thi nn ;:tnnr"nnri ;:t+,o C:"l"'n.=c: ""rnhA,..i r"It"T ,..~,..~C! I'T''''.e. "C!& ",oF ... ~-------------'J -f:'r:'--1:"'-_ - ,, ":1 .. t.6_'-6we " w..,~ v ... -..&.t;'

function set-key" implies that this key binding (of the carriage
return key) is local to this buffer~ and will be reverted when
this buffer is exit~d.

The above code checks the variable fortran-made-hook to see
if it is other than nil and invokes the symbol to which it is
bound if it is indeed not nil.

The Li~p primitive funcall is used to call functions that
are the blndings of variables. It is like calling an entry
variable in PL/l. The funcall function accepts any number of
arguments; it's first argument is the function you wish to call,
and its second-through-Iast (optional) arguments are the
arguments that are to be supplied to the function being called.
Consider the statement:

(setq Z (funcall X 1 2 4»

Suppose X is bound to the symbol +. The effect of evaluating the
above statement would be to apply + to 1, 2, and 4, thereby
assigning a value of 7 to Z. However, were X bound to *
(multiply), a value of 1*2*4 (i.e., 8) would be assigned to Z.

3-38 CJ52-01

The above code in fortran-mode assumes that
fortran-mode-hook will be bound to nil if it has not been set by
the user. Of course, defvar elegantly provides for this. A
statement such as:

(defvar fortran-mode-hook nil)

should appear somewhere in the source of fortran-mode.

Calling the mode-hook-function should be the last thing done
by the mode function.

Minor Modes

Minor modes are less straightforward. Minor modes such as
speedtype and fill mode have different actions associated with
the keys they affect (for instance, all the punctuation keys),
and the minor modes have to have detailed and specialized
interaction between themselves. There is no way to generalize
the interactions between the minor modes; no completely adequate
solution to this problem has been developed.

Minor modes are asserted and turned off in a given buffer by
calling the functions "assert-minor-mode" and "negate-minor-mode"
while in that buffer, with an interned symbol that identifies the
mode (and appears in the mode line). A per-buffer variable
called buffer-minor-modes has as a value a Lisp list of all the
symbols identifying the minor modes in effect in this buffer.
The Lisp predicate memq can be used to test whether a given
interned symbol is a member of a list, and thus, whether a given
minor mode is in effect in the current buffer:

(memq 'fill buffer-minor-modes)

returns a truth indication if fill mode is in effect in this
buffer; otherwise, it returns "nil" (false). Functions
implementing the actions of keys in minor modes should check in
this way to see what other minor modes are in effect, and what
they ought do in that case.

The global variable fill-mode-delimiters is bound to a Lisp
list of keys that act as punctuation in many minor modes. By use
of the Lisp function mapc, all punctuation can be set to trigger
a given action. The mapc function takes two arguments, a
function and a Lisp list; the function is called upon each
element of the list:

3-39 CJ52-01

(defun no-punc-mode-word-on-a-line-mode-on () :mode function
(mapc 'word-on-a-line-setter fill-mode-delimiters) :set

;keys
(assert-minor-mode 'word-on-a-line» ;get in mode line

(defun word-on-a-line-setter (key) ;key is the key
(set-key key 'word-on-a-line-responder» iset these keys

(defun word-on-a-line-responder () ikey function
(delete-white-sides) iget rid of whitespace
(se-lf-insert.) ; in·sert the- typed character
(new-line)} ~start a. new line.

This set of functions establishes a minor mode in which each word
goes on a separate line as it is typed.

CHARACTER Dr SPATCHI NG·

Several special forms and functions facilitate the making of
decisions based upon the identity of the character to the right
(or left) of the current point. All of these functions and forms
accept either of two ways of describing characters: either a
single-character string (e.g., "."), or a symbol whose name is
that character (e.g., ia, as it would appear in a program). ~ne
first kind, is called the "string form", and the second kind,
"character objects".

The function curchar, of no arguments, returns the character
to the right of the current point as a character object (this is
done for storage efficiency; character objects are unique, while
strings require allocation). You can test for two character
objects being the same unique object (or any two objects, in
general) via the Lisp predicate eq:

(if (eq (curchar) 'a)
(display-error "You are looking at an ""a""."»

You could do this with the looking-at predicate
earlier, but for single characters, looking-at is a
efficient, in both time and storage.

described
lot less

You cannot use eq to test if two strings have the same
characters in them; Lisp strings are not uniquely defined in the
same way that symbols are uniquely defined via the obarray. Use
samepnamep instead.

3-40 CJ52-Ql

In order to facilitate the use of special characters (tabs,
linefeeds, spaces, quotes, etc.) in this way, several global
variables have values of the character objects for these
characters:

ESC
CRET
NL
SPACE
TAB
BACKSPACE
DOUBLEQUOTE
SLASH

ASCII ESC, Ascii 033.
ASCII carriage return (Ascii 015)
ASCII newline (linefeed), Ascii 012.

-ASCII blank! Ascii 040.
ASCII tab, Ascii 011.
ASCII backspace, Ascii 010.
", Ascii 042.
I, Ascii 057, hard to type in Lisp code.

A (eq (curchar) NL) is equivalent to (eolp).

A special form to test if the current {to the right of
point} character is a given character is called if-at:

(if-at "&" (display-error "You can't have an ampersand here!"»

Its syntax is the same as if, i.e., \t has one, none, or many
"then" and/or ,"else" clauses, separated by the keyword "else" if
there are any else clauses. However, instead of a predicate,
if-at takes either a single-character string or a character
object to be compared to the current character. If the current
character is that character, the then forms are evaluated, etc.
The if-at converts the character string to a character object at
Lisp compile time, if necessary. The specification of the
character must be a form that evaluates to the character of
interest (e.g., "a", 'a, variable-bound-to-an-a):

{if-at TAB (delete-char)
(whitespace-to-hpos next-field» ;tab to next field.

The exact effect (and actual implementation) of if-at is as
though it were shorthand for:

(if Ceq (curchar) ••••))

Similarly, a function called lefthand-char is like curchar
exceot that it returns the character to the left of the current
point: if the current point is at the beginning of the buffer, it
returns a character object for a newline (which is almost always
what you want). Similarly, an if-back-at special form exists,
whose syntax and semantics are identical to if-at, except that it
deals with the character to the left of the current point.

3-41 CJ52-01

Two special forms for dispatching on the current (lefthand
or righthand) character are called dispatch-on-current-char and
dispatch-on-lefthand-char they dispatch upon the character to the
right and the left of the current point, respectively:

(declare (special parentable» ;global variable
(setq parentable nil) ;done when code is

;loaded into editor

{defun count-parens-in-buffer ()
(if (not parentable) :if not initiali~ed

(setq parentable' (charscan-table: "()"») ; ini tit
ITa.+- I I 1 A 4=-+-_"",,,,,, r\'\I,....;~l..-+-,..,.."""' · f\\\ .~ ... ~ lo. ,..,.. #!'I
, , .. " \\ ... -. """",,'- V/\'"'.~~ "'''''u VII , ... u~,- I.oUI; """""",,1.00;;;,

(save-excursion ;be nice
(go-to-beginning-of-buffer)
(do-forever
(if (not (se~rch-charset-forward parentable»

:look for (or)
(stop-doing» ;exit the do

(dispatch-on-current-char :see which
("(" (setq leftcount (+ 1 leftcount»)
(~)~ (setq rightcount (+ 1 rightcount»»»

{minibuffer-print (decimal-rep leftcount) " opens, "
· (decimal-rep rightcount)

"closes."»))

The general syntax of dispatch-on-current-char and
dispatch-on-lefthand~char is as follows:

(dispatch-on-current-char
(CH~ . <CH1-forml>

(CH2

<CH1-form2>
<CH1.- f 0 rmn>)
<CH2-forml>
<CH2-form2> ~ . .
<CH2-formn2» .

(CHk

(else

<CHk-forml>
<CHk-form2>

<CHk-formnk»
<else-form1>
<else-form2>

<else-formn»)

3-42 CJ52-01

CHi can be any form that evaluates to a single-character
string or to a character object. When the current character
(left or right as appropriate) matches a CHi, all of the
<CHi-form> in that clause are evaluated sequentially, and the
value of the last returned as the value of the
dispatch-on-current-char (nil is returned l! there are no
<CHi=form». If no CHi matches, the else clause is evaluated as
though it were a matching clause. The else clause is optional;
if omitted, and no CHi matches, nil is returned.

READING CHARACTERS FROM THE TERMINAL
~----~ ~--------~ ---- ---

Some Emacs subsystems, such as query-replace, "read"
characters from the terminal, without echoing them, and base
their course of action ~pon the character read. This is not the
usual method of causlng characters to produce effects; the
key-binding mechanism (i.e., set-key) is the usual way of causing
requests to be invoked by the typing of characters. However, the
extension writer may encounter a situation where he expects a
single character response to some question, and this facility is
provided. Use this facility carefully: the correct way to
implemen.t functions like the directory and buffer edi tors is via
modes and key bindings, not loops that read characters from the
keyboard. Similarly, the minibuffer query functions (e.g.,
minibuf-response and yesp) should be used to ask questions.

The get-char function is provided to read the next input
character; get-char returns the numeric value of the ASCII
representation of the character. Bear in mind that the next
input character may well have already been typed, since input to
Emacs is treated as a stream of typed characters. Therefore,
get-char does not return to its caller until a character is
available. The get-char function also performs the necessary
services of maintaining the input traces displayed by help-on-tap
(A_L), . of handling keyboard macros, and of sampling for Emacs
interrupts, such as those used by the Emacs console message
system.

The following Lisp functions, of one argument each, are
provided to convert between numbers representing ASCII values of
characters, single-character strings, and "character objects"
(single-character symbols):

Function
ascii
ItoC
CtoI

Input
number
number
single-character
string or character
object

3-43

Output
single-character object
single-character string
number

CJ52-Ql

Occasionally, programs that read characters from the
terminal are designed to allow normal Emacs requests' to be
processed during these operations. This usually takes the form
of either an "escape character," which means that the next
character(s) are to be interpreted as a normal Emacs request, or,
alternatively, the interpretation. of all characters "not known"
to the program as Emacs requests (the former method is preferred
since it is much cleaner).

The process-char function receives as an argument a number
representing the ASCII value- of a single character to be
interpreted as the first character of an Emacs request, and so
interprets and executes it (including reading of another
character if necessary) according to the key bindings in the
current buffer.

In principle, the basic loop of Emacs can be expressed as:

(do-forever
(process-char (get-char»
(redisplay»

This is oversimplified; issues involving keyboard macros add some
complexity, and the calling of redisplay is suppressed if input
characters are available. Otherwise, the above code fragment is
a correct description of the basic action of Emacs.

PROGRAM DEVELOPMENT

The editor itself provides many powerful tools for
developing extension code and testing it while editing it. The
following is a typical scenario in the development of an
extension.

You decide to write an extension. You sit down and think
about it, and decide to code it. You enter Emacs. You do a AXAF
on the shaver.lisp file to go into a new buffer with a proper
file name and select Lisp major mode (assuming that you have the
option for find-file-set-modes "on"). Then type the form:

(%include e-macros)

at the top of your file; this is necessary to compile it (see
"Compilation" below), or to use the ESC X loadfile request,
described below. The file e-macros.incl.lisp should be in the
"translator" search rules for your process. For efficiency, put
a link to it in the directory-in which you do Emacs extension
development. Now begin to type in a function:

3-44 CJ52-Ql

(%include e-macros)

(defun shave-line ()
(go-to-beginning-of-line)

At this point, to type the next line, lining it up with the last
Lisp form, use the indent-to-lisp request, which is on ESC CR in
Lisp mode, and the next form automatically indents properly:

(delete-white-space) ;wrong name given deliberately here

When typing in Lisp in general, ESC CR (in Lisp mode) indents you
on the next line the right amount. So, continue with:

(go-to-end-of-line)
(delete-white-space)

Now you are looking at the buffer with the code for
"shave-line". To try it, load the code in the buffer into the
edi tor. ESC "Z in Lisp mode does this. Immedia.tely, you get the
message:

Unbalanced parentheses.

This means that there were not enough close parentheses
somewhere: Emacs could not find the boundaries of the Lisp form.
Fix the program problem. You are on the last line, so just type
the close parenthesis:

(delete-white-space»

Now do the ESC "Z again. The' cursor returns·to the function you
are trying to edit. To see if it works, invoke it from Lisp:

ESC ESC shave-line CR

ESC ESC puts parentheses around what you type, evaluates it, and
types out the Lisp value so returned. However, you find the
message:

lisp: undefined function: delete-white-space

printed in
must have
key, type:

the minibuffer, with the terminal bell rung, so you
the wrong function name. Since you know it is on a

ESC X apropos white CR

3-45 CJ52-01

and learn about delete-white-sides. Now go to the first line
that has the bad function name, do an @ to clear the line, ESC AI
to line up to retype the form, and:

(delete-white-sides)

Fix the other bad line, too, and again type:

ESC ESC shave-line CR

Surprisingly, it still says:

lisp: undefined function: delete-white-space

as though you had not changed anything. Indeed, fixing it in the
buffer is not good enough. You must reload it into the editor
environment; use ESC AZ again. Now try it again:

ESC ESC shave-line CR

and immediately your function on the screen changes appearance;
all the whitespace on the ends of the last line of the function
disappears. It works, but its appearance is messy. This is a
oroblem with editinq what you are testing: it must either be
innocuous, i.e., do-something harmless, or you must be prepared
to reconstruct damage your function does, or switch to a test
buffer before running it.

Fix your function, and you are almost done. Although it
exists in an editor buffer, and in the editor Lisp environment,
you must remember to write it out:

writes it out to shaver. lisp as you set up
you have an operative Lisp program that you
in a future invocation of the editor, you
type:

ESC X loadfile <path>shaver.lisp CR

for initially. Now
can use again. If,

need to use it, you

and get it into the environment.
this, however:

There are two problems with

1. Whoever loadfiles must have e-macros.incl.lisp in his
translator search rules.

2. The code lS eXecuted interpretively by the Lisp
interpreter in the Lisp subsystem; Emacs is compiled
Lisp, and compiled Lisp runs up to 100 times faster
than interpreted Lisp and has fewer problems.

3-46 CJ52-01

Thus, the file shaver.lisp should be compiled. Then, the
compiled object segment can be loaded into the editor with:

ESC X loadfile <path>shaver

See below for a description of how to compile Lisp programs.

Coding Problems

Some other problems are of immediate interest to the
extension wri ter.. I t is possible, and fairly common, to wri te
loops that do not terminate, or that generate infinite garbage.
If you invoke your request, and the cursor never leaves the
minibuffer, and AG seems to have no effect, you are in a loop.
Hit QUIT, and use the program_interrupt (pi) Multics command to
reenter Emacs. If you are singularly unfortunate, you get:

lisp: (nointerrupt t) mode, unable to accept interrupt

in which case you are stuck in the process of generating infinite
garbage. In this case, you must release, and your editing
session is lost. If you are more fortunate, you will get your
screen back, with the cursor at the place your function left it.
Often, by looking at exactly where it left it, you can get a good
idea of what kind of thing was giving your program a hard time.

-If you get messages from Multics that tend to indicate that
there i~ no mo~e ~o?m in your process directory, you are probably
generatlng an lnflnlte number of lines, i.e., an infinite buffer.

Another thing that can happen is you might expose some bug,
or what you believe to be a bug, in Emacs, or worse yet, Multics
Lisp. Use the trouble report forwarding mechanism to describe
what you encountered and why you think it is a bug.

You can also destroy the editor environment by bad coding.
This is particularly true in running compiled code that was not
checked out interpretively ·(i.e., via ESC AZ). Storing into
"nil" is one common way to do this. If the entire editor seems
broken, and the redisplay does not even show the screen i this is
what you have done. Quit and release and start allover again.

A function called debug-e is called as:

ESC X debug-e CR

3-47 CJ52-01

It sets "(*rset t)" mode and other Lisp debugging aids, and
unsnaps all "lisp links". It also reverts to native Maclisp
QUIT/pi handling. To use this, however, you· must be familiar
with the debugging features of Multics Maclisp.

To get the value of a global variable to be printed out,
say, fill-column, type:

ESC ESC progn fill-column CR

Be careful~ for values typed out are in octal.

A Lisp code debugging facility within Emacs, called LDEBUG,
or Lisp Debug mode, allows for the setting of breakpoints,
dialogue with Lisp within Emacs, tracing, and so forth. See
Section 4.

COMPILATION

All production Multics Lisp programs are compiled. This
results in a tremendous performance· improvement, both for the
user and the system. Compiled Lisp programs are executed
directly by the Multics processor~ interpreted programs are
interpreted by the Lisp interpreter. Emacs is compiled Lisp.

The Lisp compiler is a Multics program that can be invoked
from command level. It has the names lcp and lisp_compiler. To
compile a program named myfuns.lisp, you say:

lcp myfuns

to Multics, and you get an object program named "myfuns", which
can be loadfiled, in the working directory.

The compiler diagnoses Lisp syntax errors. It warns you of
implied special variables (if you did not declare a variable
special, and it is not a local variable in the function in which
it was referenced, you probably made a mistake. All global
variables should be declared for this reason; e-macros declares
the provided ones.)

At the end of compilation, the compiler prints out the names
of functions referenced in the code but not defined in the file~
This is normal; however, you should inspect the list it prints
out to see if any are ones that you thought you defined; if so,
you have a problem. Check also for ones that are obvious typing
errors.

3-48 CJ52-Ql

While editing a large extension program, you may wish to
load only the function that you are looking at on the screen into
the editor environment. The function compile-function, on ESC "C
in Lisp mode, compiles the function you are looking at (whose
start is found by ESC "A from where you are now) into a temporary
segment in the process directory. It then loads the object
segment, and displays the compiler diagnostics via local
printout. It should be used with the cautions noted below. When
using it, remember to write out your changes, and recompile your
whole program, because a program incrementally debugged in this
mode gives the impression that it is working properly when it is
only doing so in the current editor environment.

Compiling functions via ESC "C is often advantageous; the
compiler produces diagnostics that help locate errors that you
might not have encountered until your function ran, or perhaps
not even then. ESC "C effects compilation and loading of the
current Lisp function into your Emacs environment by loading the
Lisp programs that constitute the Multics Lisp Compiler into your
Emacs environment and invoking them. The loading happens only
the first time Lisp mode ESC "C is used in an invocation of
Emacs, and Emacs tells you when it is doing this. Emacs also
loads the correct version of the e-macros include file during
this first invocation.

Forms compiled by Lisp mode ESC AC are treated as though
they had been encountered by themselves in a source file being
process7d by the Lisp compiler. As viewed by the Emacs user,
succeSSlve compilations of functions via ESC "c appear to be
successive invocations of the Lisp compiler. This, however, is
not an accurate description of what is taking place. As viewed
by the Lisp compiler, which is then "living" in the Emacs
environment, it is compiling one large source program consisting
of many functions (i.e., successive uses of ESC "C); all editing
activity "between ESC ACS" is irrelevant to it. Thus, invoking
ESC AC for a Lisp macro definition defines that macro for all
functions compiled by ESC AC in that invocation of Emacs from
that point on. Therefore, you must ESC "C Lisp macro definitions
if you intend to compile or evaluate function definitions using
these macros. (In the case of macro definitions, ESC AC
(compilation) is equivalent to to ESC AZ (evaluation). Macro
definitions; whether ESC ACed or ESC AZed, are accessible to
functions ESC AZed or ESC ACed.)

3-49 CJ52-01

Similarly, Lisp "reader macro" character definitions must be
evaluated if they are to be utilized by ESC AC. Declarations of
special variables (other than those declared for you in
e-macros.incl.lisp) should also be ESC ACed (not ESC AZed) if
they are to be respected by fun<;tions being ESC ACed. Often, if.
you fail to do this, the compiler (ESC AC) automatically detects
undeclared use of special variables and warns you; however, in
certain cases (most notably binding them via let), it does not,
and erroneous code results. -

The compiler accumulates compilation diagnostics in the
buffer- named ftCompiler Diagnostics." Diagnostics for each
application of ESC AC ara displayed as local display.

DOCUMENTING REQUESTS

The automatic documentation system (apropos, ESC?)
provides customized Emacs request documentation. Documentation
for supplied requests is kept in a special file in the Emacs
environment directory~ You can provide documentation for your
own requests by placing a string, which is that documentation, as
the "documentation" property of the symbol t'hat is the request
being documented. For instance, if the symbol
remove-every-other-word has the documentation property of:

"Removes every other word from the sentence in which the
c·ursor appears."

this information is displayed by ESC? when used on some key set
to remove-every-other-word, or by:

ESC X describe remove-every-other-word CR

Documentation properties are assigned most conveniently via
the Lisp-special form "defprop", whose general syntax is:

(de£prop SYMBOL WHAT PROPERTY)

This assigns the symbol (SYMBOL) a property (PROPERTY) of WHAT.
The defprop is a special form because the actual symbols
appearing in the form are used: they are not variables, as in "(+
a b c)". Thus,

(de£prop Joe Fred father)

3-50 CJ52-01

gives the symbol "Joe" a "father" property of "Fred". (The
"defprbp" is a special-form way of doing the same thing as the
"putprop" function, but it is a special form because its
"arguments" are not forms to be evaluated to produce symbols
whose properties are to be dealt with, but the symbols
themselves). To use defprop to establish Emacs request
documentation, place forms like:

(defprop remove-every-other-word
"Removes every other word from the current sentence. will
not work on sentences endin~ in ""?"". For indented
sentences, use $$remove-other-word-from-indented-sentences$.
$$$ is a powerful, dangerous, command."

documentation)

Note several things about the documentation string:

1. It does not need to end in a newline, and can contain
newlines.

2. Quotes (") inside of it must be doubled.

3. The string "$$$" will' be replaced by the key being
asked about (e.g., "ESC AZ" or "ESC X
remove-every-other-word") at the time the documentation
is displayed.

4. The keys used to invoke other requests can be
referenced by stating two dollar signs, the name of the
request, and one dollar sign. Thus,
$$go-to-end-of-line$ appears as AE in most
environments; the point of this and the· previous
paragraph is to make documentation expansion
independent of a user's key-bindings.

The entire documentation string is "filled" (ESC Q) after
all command-name substitutions are made; thus, the placement of
newlines in the documentation string is ignored. Two consecutive
newlines, however, are preserved, and thus, lines can be set off
for examples, etc., by surrounding them with blank lines.

It is. slightly more efficient, but clearly less readable, to
place the defprop documenting a request before the defun defining
the request itself. The defcom fac.ility can also be used to
document requests; see "Defining Requests With defcom" below.

3-51 CJ52-Q1

WINDOW MANAGEMENT

Although buffers appear in windows on request, and are
switched between automatically by the redisplay when you switch
windows with ~XAO, AX4, etc., there are times when you may want
to take advantage- of mUltiple windows ~xplicitly. Good examples
in supplied code are RMAIL reply mode: and the comout-command
(AXAE).

Most of the ex.tensions of interest_ are ones in which the
extension writer wants ta place some information in a buffer, or
else' prepare- some buffer to have- informatLon placed in it (e.g.;
RMAIL- reply) and then display that information in a window.
Usually, all that is required is to "go to" that buffer (e.g.,
with go-to-buffer or go-to-or-create-buffer). The redisplay
"finds"- the editor in that buffer at the time of the next
redisplay, and replaces the contents of the selected window on
the screen. Such requests are called autophanic (self-showing).
Examples are AXB (select-buffer) and ~XAF (find-file).

""" However, some requests set up buffers in some window other
than the current window, usually for multi-window operations such
as mail reply, so as not to disturb the contents of the current
window. They ar~ called heterophanic (other-showing). The
standard examples are dired-examine, mail reply, and
comout-command (AXAE). All the examples given are sub-requests
of larger, autophanic requests.

Heterophanic buffer behavior is provided by the function
find-buffer-in-window., It takes as an argument a buffer-symbol
(Lisp symbol representing a buffer). That buffer is created if
it does not now exist, and is gone to, as if go-to-buffer had
been used. If Emacs is in single-window mode, the effect is the
same as that of go-to-or-create-buffer. In two-window mode, that
buffer is put on display as follows:

a If it is already on display in some window, it is left
there.

If it is not, it is put on display in some other
window, one-rfl which the cursor is not, and the cursor
moves to that window, as if a AXAO had been done. The
least-recently used window is chosen.

3-52 CJ52-01

Thus, on printing terminals and in single-window mode, the
effect of find-buffer-in-window is indistinguishable from that of
go-to-or-create-buffer. In multi-window mode, it is equivalent
to go-to-or-create-buffer, displaying that buffer in another
window.

You must not use find-buffer-in-window to place a buffer on
the screen once you have already gone to it; if you think of
find-buffer-in-window as a kind of go-to-or-create-buffer, you
will find no need for doing so.

An extension must establish multiple windows if it needs
them; no current Emacs code reguires multiple windows, although
the facilities mentioned above are more useful when already in
it.

Most extensions that place an auxiliary buffer on display
via find-buffer-in-window provide some request to return to the
"main" buffer (e.g., the RMAIL Incoming Message buffer, the
buffer from which AXAE was issued, etc.). If you enter a buffer
via find-buffer-in-window, you should probably return to the
buffer from whence you came via find-buffer-in-window as well;
the effect of this is to restore not only the original buffer,
but also the original window. Thus, save-excursion-buffer cannot
be used effectively to return from buffers entered via
find-buffer-in-window; an attempt to use save-excursion-buffer
results in both windows' showing the same buffer, since the
selected window (i .e •. , the cursor-bearing window) is changed and
a new buf fer selection means a new buf fer in that wind.ow.

The AXAQ key sequence should be used to exit auxiliary
buffers used by extensions to return to their main buffer, and
usually switch windows as well, if the multiple-window strategy
outlined above is used.

Pop-up window mode, in essence, makes all requests
heterophanic. Requests or subrequests that are naturally
heterophanic need not worry about pop-up window mode, because
find-buffer-in-window takes the appropriate aC~lon in either
pop-up or non-pop-up mode. However, if proper heterophanic
behavior under pop-up windows is desired, naturally autophanic
requests and subrequests must call a window-management primitive
to obtain heterophanic behavior in pop-up window mode. This
primitive is called select-buffer-window. It takes two
arguments, a buffer-symbol, and a "key" that- gives pop-up window
management a preferred window size.

3-53- CJ52-Ql

In non-pop-up window mode, select-buffer-window is
equivalent to go-to-or-create-buffer, and the key is ignored. In
pop-up mode, it is equivalent to find-buffer-in-window, with the
key ~uggesting the new window size.

The following values for the" key argument to"
select-buffer-window are accepted. They specify the window size
in pop-up mode if the w,indow does" not exist: already:

any- number
~ ~~at many lines~

'cursize
Make a choice based on the current number of lines in
the buffer.

nil
Chooses some reasonable fraction of the screen.

Icursiz~-not-empty
" " Same as nil if the buffer is empty: same as 'cursize if

it is not. For example, AXAF uses this, because you
ca"q'type into a new buffer.

'default-cursize
"'If"this buffer has never been displayed before, makes a
choice based on the number of lines. Otherwise, uses
the'same size was chosen last time.

The find-buffer-in-window can
"current buffer" heterophanically.

not be used to display the
If you attempt to do this:

(find-buffer-in-window current-buffer)

you find it appearing in both the old and new windows, for the
window man~ger finds that you were in this buffer in the current
window (a truth) before you went to another one (you had to go to
another one, as per heterophanic behavior), and indicates that"
the current buffer is to be displayed in the old window as well,
for that was the last buffer you were in in that window. To
avoid this, use select-buffer-find-window (of two arguments, the
buffer and a key as for select-buffer-window) if heterophanic
display of the current buffer is needed:

(~elect-buffer-find-window current-buffer nil)

This is rare, s nee you seldom go to a buffer and then want to
find-buffer in-w ndow it; in Emacs, only "X"E does this.

3-54 CJ52-01

Since all things using these features are moderately
sophisticated, only an outline of an extension using them is
given here. It is a typical sub-subsystem (e.g., dired) that
sets itself up in an autophanic buffer display, with specific key
bindings, etc., and has a heterophanic subdisplay by which it
displays a "menu" in addition to the main display:

{defun unusual-mode () ;Setup function for this mode ·
(go-to-or-create-buffer (maknam

(explodec "Unusual buffer"»)
(set-key 'ESC-AS 'unusual-mode-show-menu)
(select-buffer-window current-buffer nil)
(register-local-var 'unusual-mode-buffer-to-return-to) · ~ }

.
(declare (special unusual-mode-buffer-to-return-to»;for compiler
(defun unusual-mode-show menu () .

(setq unusual-mode-buffer-to-return-to current-buffer)
;save buffer

(find-buffer-in-window 'Unusual-Menu) ;Display menu
(set-key 'r 'unusual-mode-select-item) ;Set key bindings
(set-key 'AXAQ 'unusual-mode-menu-return)
(insert-string "Unusual menu delicacies") ;Fill it up
;; will not actually be displayed until request finishes.
·
(go-to-beginning-of-buffer)
(setq current-buffer-mode 'Unusual/ Menu

buffer-modified-flag nil read-only-flag t)

(defun unusual-mode-menu-return ()
(find-buffer-in-window unusual-mode-buffer-to-return-to»
;;Return to calling buffer.

The following are several primitives available to deal with
windows by window number. The topmost window on the screen is
window number 1; the next one down, if any, is number 2, etc.,
(the minibuffer and mode line do not count as windows). The
selected window is the one in which the cursor currently appears.

selected-window
This variable contains the number of the currently
selected window. Do not attempt to setq it to select- a
window; use select-window instead.

nuwindows
This variable contains the number of windows on the
screen; do not attempt to setq it to create or delete
windows; use- delete-window and the AX2 and AX3
functions to do these things.

3-55 CJ52-Q1

select-w.indow
This function (of one argument, a window number)
selects that window (as AX4 with an argument does).

delete-window·
This function (of one argument, a .window number)
removes that window from the screen, distributing its
space to the other windows.

buffer-on-display-in-windo~
This predicate function (o.f one argument, a
buffer-sYmbol) returns truth if the specified buffer is
on displiy in'som~ window on the screen. If used as a
function, i.e., th~ value returned is inspected, the
returned value the window number in which the specified
buffer is on display (if it is not on display, the
symbol "nil",. representing falsity,ls returned).

w.indo.w-info
This function (of one argument, a window number)
r'eturns information about that window. The information
is in the form of a piece of Lisp list structure, which
can ~e interpre~ed by the Lisp list destructuring
functlons;' assumlng that "info" has the result of
~indow-info, the following forms return the information
as. follows:

(caar" info) =>

{cdar info} =>
(caddr info) =>

(cadddr info) =>

window-adjust-upper

The top line-number on the screen of
the window. The topmos~ is O.
The number of lines in the window.
The buffer-symbol of the buffer on
display in the window.
A string duplicating the contents of
the "cursor line" of the window,
including its newline character. The
cursor line of a buffer is that line
where the cursor is (if it is in the
selected window) or would be if that
window became selected (e.g., with
AXC) •

A function of two arguments, the first a window number,
and the second a signed number of lines to move its
upper divider-line down (negative is up).

window-adj~st-lower
Same ·as window-adjust-upper, but deals with lower
divider line. .

3-56 CJ52-01

WRITING SEARCHES

Several functions aid in providing search-type requests.
These functions prompt for the search string, provide default
search strings, and announce search failure in a standardized
way. All supplied Emacs searches use them.

get-search-string
Takes one argument, the prompt. The prompt should
contain the word "search". The get-search-string
prompts the user for a search string, which the user
must terminate with a CR, and returns it as a string.
If the user gives a null string, the last search string
is used and echoed. The last search string is set to
the returned string for the next defaulting.

search-failure-annunciator
Causes the "Search Fails." message to appear in the
minibuffer, and a command-quit (AG) to be performed.

I This aborts any keyboard macro collection or execution
in progress.

When writing a search-type request, you should provide two
interfaces, a "command", which calls the above two primitives,
and a "search primitive", also called by the "command". The
search primitive should return t (truth) if the search succeeds,
leaving point at the proper place, as the search defines. If the
search fails, the primitive must return nil (falsity), and leave
point where it was when the primitive was invoked •

. A simple implementation of.a wraparound search, below, first
looks from point to the end of the buffer for the search string.
If that fails, it goes to the top and searches again. It is not
optimal because it needlessly scans farther than the original
point when starting from the top. Using point>markp and
searching a line at a time would be very expensive, due to
point>markp's expense. Searching a line at a time using
forward-search-in-line and mark-on-current-line-p would be
acceptable, but more complex than this example need be. For a
search that is probably going to be used only as a user interface
(i.e., not internally), this implementation is adequately
efficient. Recall that with-mark releases its mark and returns
it last value.

3-57 CJ52-Ql

Here is the in-ternal primitive for w.raparound search:

(defun wraparound-search-primitive' (string)
(w;ith-mark m rRemember starting point

(if (forward-search string}~Look to end of buffer
t ;Return truth
else
(go-to-beginning-of.-buffer}
(if (forward-search string) ;Look from top

1:
else
<ga-to--mark m} ;Return ta orig. place
nil}}}}} ;Return falsity

iF with-mark and this function
:: return the value of the outer "if~

The request for calling the primitive:

(defun wraparound-search ()
(if (not (wraparound-search-primitive

(get-search-string "Wraparound Search: "»)
(s.earch-failure-annunciator) »

The w-ra'paround-search request should have some key bound to
it if this type of search is to be made available from the
keyboard.

CALL I N.G- MULTI CS COMMANDS

In some extensions, especially those like DIRED that
manipulate the Multics environment, you must call Multics
commands, or execute Multics command lines.

Multics: command lines are strings submi tted to cu $cp for
execution. This is the Multics agency to which the "en ~equests
of the Multics edm and qedx editors, the " " requests of
read_mail, send_mail, and debug, and other subsystems submit
command lines. The two primitives for executing Multics command
lines are:

e cline
Taies one argument, a string, which is passed to cu $cp
for execution. No reattachment of output takes place-.
If the command line produces output, it messes up the
screen. This should only be used when no output is
anticipated, and should be used then in preference to
comout-get-output, since it is much faster.

3-58 CJS2-Ql

comout-get-output
Takes any number of arguments, which may be strings or
symbols, and catenates them with one space between them
to form a Multics command line, facilitating things
like:

(comout-get-output 'delete this-seg '-bf)

Reattaches user_output and error output during the
execution, rerouting them to a pro~ess directory file.
When the command e'xecution completes, the contents of
the current buffer are obliterated (1) and the
temporary file read in to it. This is the primitive
that comout-command (AXAE) uses; e cline is used by
comout-get-output internally. - -

These primitives set up a condition handler that catches all
abnormal Multics signals and aborts to a second Multics command
level with a message if one occurs. However, requests for input
by these command lines cannot at this time be dealt with wello
In the case of e cline , the user gets the query in raw teletype
modes, and has to answer it in raw, nonedited teletype modes. In
the case of comout-get-output, the query never appears, having
been routed to the temporary segment, and the user's process
hangs since the user, having never seen the query, does not know
to respond. '

MULTICS ERROR TABLE

To get the value of standard Multics error codes, from
error table, into a program'to see if a given Multics interface
has In fa~t returned it, the function "error table" (with
underscores, not hyphens) is used. Its single argument is a
symbol, whose name is the name of the error_table_ entry whose
value is sought, and the returned result is that value, or 1 if
it is not a valid entry.

The error table function optimizes finding the same name
over and over again,-so you need not go through machinations to
save an error table value computed by these means. An example
of the use of error_table_ follows:

(let ({status-result (hcs_sget_user_effmode dir entry""}»
(if (not (= (cadr status-result) O} ;the return code

(if-(= (cadr status-result)
(error table 'incorrect access»

(display-error-noabort "Warning: not checking
access")

else
(display-corn-error (cadr status-result) dir ">"

entry»»

3-59 CJ52-Ql

I EMACS ERROR SYSTEM

I
I
I
I
I

Emacs has its own error system, with several functions
available. They provide more error information than do the
display-error and display-error-noabort functions (which simply
take a string argument), because they are tied into the Emacs
Error- Table.

I report-error
I aborts the current computation and prints an error.
I report~error-noabort
I prints an error- wi thout aborting •.
I add-error-code
I adds an entry' to the Emacs Error Table
I error-table
I gets a standard Multics error code and returns the
I numeric. value.-

I Their syntax is:

I (report-error error-code error-information)

! (report-error-noabort error-code error-information)

I (add-error-code error-code error-string)

I (error-table segment offset)

I where:

I error-code
I is a symbol representing an entry in the Emacs Error
I Table (e.g., 'beginning-of-buffer), or is a standard
I Multics error code, or is a symbolic Multics error
I code, e.g., error_table_smoderr.

I error-information
I is any number of objects to print in the-error report.

I error-string
I is a string describing the error.

I segment
I is a Multics error table segment.

I
i • •

offset
is the symbolic name of an error
Nmoderr n in error_table_$moderr~

3-60

table entry,

CJ52-01

Defining Requests With defcom

The defcom (for define-command) facility simplifies the
definition of Lisp functions to be used as Emacs requests.
Defcom cooperates with the Emacs command reader to provide
prompting and defaulting of unspecified arguments, range-checking
of numeric arguments, automatic repetition for numeric arguments,
cross-connecting symmetrical functions via negative arguments,
and other features.

Defcom is a relatively new facility 1n the Emacs extension
environment; not all of Emacs' internal code has been converted
to use it. Perusing the Emacs source, you will find examples of
defcom's use intermixed with older examples using defun to define
request functions.

~ Defcom should only be used for defining functions actually
to be used as Emacs requests; internal and auxiliary functions to

,be used· by-these functions. should still be defined with defun.
Emacs requests defined with defun will work, but those defined
with defcom produce better diagnostics and offer more features.
Defcom is a technique whereby the necessary defuns are generated
automatically, so functions defined with defcom can be called
from other functions, as well~

To define a function with defcom i use defccm instead of
defufi, and supply .!l.2 Lisp argument list:

(defcom one-word-from-beginning
(go-to-beginning-of-buffer)
(forward-word»

This is the simplest form of defcom; optional features are
supplied br placing, between the function name and the function
code, varlOUS keywords, all of which begin with the "&"
character, and some of which take optional arguments, expressed
as lists.

The" most common optional specification is &numeric-a'rgument,
(or &na), which specifies what to do with a supplied numeric
argument. The keyword &numeric-argument must be followed by a
list of specifications, which must include one of the following
major processing types:

&reject
Any numeric argument is rejected as invalid. No other
specifications are valid in this case. This is the
default if &numeric-argument is not given.-

3-61 CJ52-Q1

&.ignore
A numeric argument is ignored.

&repeat

&pass

If the argument is positive, the request is repeated
that many times.

The- value of the Lisp var-iable "numarg" is set, as in
nondefcom requests:

In ~ddition to ~he major proc~ssing tyP&, optional bounds
can be specified by the keywords &upper-bound (&ub) or
&lower-bound (&lb). These, iri turn, ~ust be ~ollowed by ~ith~r
an int~ger r~presentinq the bound, or the k~yword &eva! follo~ed
by an expression to eva·luate at the time command execution is
attempted, which then produces a value (such an expression is
called an "&eval expression"~) Here are some examples of
&numeric-argument specifications:

&numeric-argument (&pass)

r;.n:nmA:~';' ~-:II''''''''l'''~"''' ,............. ~ j.

f&repeat &lower-bound 1
&upper-bound &eval (+ max-foos 2)")

&numeric-argument
(&pass &upper-bound 15.)

An'other opti:<?nal function which specifies what 'to do' with a
s.upplied numerlC argument is &numeric-function. The
&numeric-function function doesn't actually do anything with the
suppli~d argument. Instead, it causes a different request to be
executed if the original request is gi yen a' numer ic argument.

Here- is an­
def inition:-

example of

{d~Icom global-print

a &numeric-function function

&numeric-function global-regexp-print
... 4.,).:.

It ca~ be invoked as:

"u"xs-
1n which case the· global-regexp-print request is executed instead
of the· global-print request.

2/83 3-62 CJ52-Q1A

A request defined with defcom may elect to receive Lisp
arguments, values that are to be prompted for or supplied as
extended request arguments. They can be provided automatically,
and prompted for, by the Emacs command reader, and supplied as
Lisp arguments to the request function. Instead of a normal Lisp
argument list, the keyword &arguments (or &args or &a) are
followed by a list of argument specifications, one for each Lisp
argument to be supplied.

Each argument specification consists of the Lisp name of the
argument, i.e., the name of the variable to be referred to inside
the function, and any number of argument qualifiers, separated by
spaces. Each argument qualifier can consist of several tokens,
as necessary. Argument qualifiers specify the prompts, defaults,
etc., for an argument. An argument specification may also be
given as the name of the variable alone, as opposed to a list of
it and qualifiers. In this case, it is equivalent to having its
own name as a prompt for its value.

When a defcom-defined request is invoked as an extended
request, (i.e., via ESC X), the Emacs command reader checks the
type and number of request arguments supplied and necessary, and
prompts for those not supplied, or defaults them as specified.

When a defcom-defined request that has arguments is invoked from
a key, it is as if it were invoked as an extended request with no
request arguments given, and all are either prompted for or
defaulted.

2/83

The valid argument qualifiers are.:

&string
&symbol
&integer

Specifies how
prompted for,
Only one of
spec if icat.i on,
default.

&default

the argument, when read by ESC X or
is to be converted before being passed.
these is valid in a given argument
and &string (i.e., no conversion) is the

Must be followed by either a string, symbol, or
integer, as consistent with the expected data type for
this argument, or an &eval expression. Specifies the
default value to be used if this argument is not
supplied, or a null response is given to a prompt for
this argument, if any.

3-63 CJ52-Q1A

&:prompt
S'pecifies the prompt for this argume·nt, if not supplied
via ESC X. Prompts are put to the u-s'er' before defaul ts
ar'e evaluated or used: a null string causes the
&default value to be used. An &prompt is followed by a
prompt- string (in quot-es), or an &eval expression, and­
one of t-he 'two opt ion-al keywords NL _ o'r ESC, spec i f i y iog
t-he' prompt terminator (NL- is the. de-taul t) •

-&:rest-a s-l is t
Va:lid. o'nly fo-r the: last argument. CaUSl!'S t'hi s variable'
to; begive'-rr., a:s a va-rue-, a list of all of the' remai"ning
s:upplied arguments. If &-rest-a:s-list is used, the
calle-r- of this fun'ction ,fr'om Lisp (inc'luding start-ups
'written by not-Lisp-conscious us'ers) must know that the
numbe·r and 'or gan i za t i on of Lisp 'a-rgumen t sis d if fe r-en t
fr'om the: a:pparent arguine'nt array give·n to ESC X.

& r-est -a 5 -S tr i n g
Valid only for the. last argume-nt;· caus'e's all remaining
a·rguments to be supplied as a sin'gle st'ring t·o the
func:tion, as they appeared too ESC X, wi th spaces and so
for-t:h included. Same cautions as for &re-st-as-list
apply·~

A fun'etion definition that accept-s three a'rguments follows:

(de fe'om replac-e-n -t imes
&arguments
«old~tring &string &default &eval

(get-search-string "Old: ")
(rtewstring 'string 'prompt "New String: " NL)
(cbunt &integer &prompt "How many times? " NL

&default 1»

(do-times count
(if (hot (forward-search oldstring»)

(search-failure-annunciator»
(do-times (stringlength oldstring)(rubout~char»
(insert-string newstring»)

It can be invoked as:

ESC X replace-n-times Washington Lincoln 2 CR

or:

ESC X replace-n-times CR

in which case all arguments are prompted for, or:

set-perm-key AZ9 replace-n-times

2/83 3-64 CJ52-Q1A

followed by striking Az9 at some time, prompts for all arguments,
too. This function is defined so that it can be called from Lisp
as:

(replace-n-times "this" "that" 17)

or whatever, i.e., it is a Lisp function of three arguments.

When defcom-defined requests 'are reexecuted by AC, they are
repeated with identical arguments. This is what makes
search-repetition by AC work.

In addition to numeric arguments
defcom can be used to specify
documentation, cleanup functions, and
request functions.-

and request arguments,
prologues, epilogues,
negative functions of

Prologues are functions or code to be executed before any
arguments are prompted for, perhaps to check for valid
circumsta·nces for calling this request. Prologues are only
executed once. If the request is repeated because of a numeric
argument, prologues are not repeated with each iteration.
Prologues are specified by the keyword &prologue, and the name of
a prologue function or an &eval expression.

Eoiloaues are functions or code to be executed after each
invocation~of-the request. If the request is repeated because of
a numeric argument, epilogues are repeated after each iteration.
Epilogues are specified by the keyword &epilogue, and the name of
an epilogue function or an &eval expression. The epilogue
function takes three arguments and is called as follows:

(function prologue-info result lastp)

where:

prologue-info
is the value returned by the prologue function, or nil if
there isn't one.

result

lastp

2/83

is the value returned by the request itself on this
iteration.

is non-nil if this is the last (or only) iteration.

3-65 CJ52-01A

Documentation is specified by the keyword &documentation (or
&doc) followed by a documentation string subject to the same
rules as given abov~ under "Documenting Requests".

Cleanup functions are functions or code to be executed if
the reques~ is aborted.. Cleanup functions are specified by the
keyword &cleanup, and the name of a cleanup function or an &eval
expression. The cleanup function takes one argument and is
called as follows::

(fun~tion ~rologue-info)

where:

proiogue-info
is th~ value returned by the prologue function, or nil
if thete isn't one~

Negative functions are functions or code to be executed if
the request is given a negative numeric argument: the negative
function is given the negative numeric argument made positive.
Negative functions are sPecified by the keyword
&negative-f.unc.tion (&nf), followed. by the name of the appropriate
function, or forms, terminated by &end-code. The following is an
ekample of the use of some of these features:

(defcom for~ard-topic
&doc "Goes forward one or more topics. See also

$$backward-topic$."
&numeric-argument (&repeat)
&negative~function backward-topic
(with-mark m

(forw~rd-search "Topic::" •...•.••••.•

Emacs determines whether a character should stop echo
negotiation by checking a list named "nobreak-functions". The
defcom keyword &no-break adds the command being defined to the
list. Keys bound to symbols on the list are echoed by the FNP,
and do not interrupt the process (unless at end of line).

Another defcom keyword, &completions (or &completion, &comp)
provides minibuffer prompt completions. It allows any
defcom-defined command to define completions that should be in
effect for a given argument. The ESC SPACE request,
complete-command, uses these completions to complete minibuffer
input. An example of the &completions keyword is below:

2/83 3-66 CJ52-Q1A

(defcom new-function
&arguments «argl &prompt "What is arg one? "

&completions '"("one" "two"»
(buf &prompt "OK, and in what buffer? "
&completions known-buflist»

(minibuffer-print "Buffer is " buf ", argl " argl "."»
The argument ~fter the 'completions keyword is evaluated at the
runtime of the function. The current list of completions is kept
in the lisp variable completion-list.

UNDOING A REQUEST

The undo-prefix command, A\, sets the variable "undo" to t,
which causes the next function called to attempt to do the
reverse of its usual action. Defcom-defined requests make use of
this through the &undo-function (&undo, &inverse) k~yword. Its
syntax can take one of six forms:

&undo (&pass) [or the equivalent &undo 'pass]
&undo (&ignore) [or the equivalent &undo &ignore]
&undo ('reject) [or the equivalent &undo &reject]
&undo function-to-call
&undo (lisp expression to call)
&undo &code lisp expressions &end-code

If the defined request is prefixed by A\ when called, then the
special action is taken. Thus, if any of the last three forms is
used, the function specified after the keyword is called instead
of the defcom-defined request; if the first form is used, the
variable "undo" is set to t and no special action is taken. This
would mean, for example that "'undo &pass," used in the
definition of re-execute-command (Ae), causes the sequence A\AC
to attempt to undo the last request executed. The second form
causes the undo prefix to be ignored. The third form causes the
default action, rejecting any undo prefix given.

2/83 3-67 CJS2-Q1A

A DETAILED EXAMPLE OF A FUNCTION DEFINITION

The following example of a function definition for the
string-search c.ommand uses many of the keywords described in this
section:

(defcom string~search
&inverse reverse-string-search
&arguments «search-string &string &default

&eval (get-search~string
(search:numeric-prompt

~String search"»»
&pro Logue sea rc h :·command.-pro logue
&numeric-argument &repeat
&neqative-function reverse-string-search
&epilogue search:command-epilogue
&cleanup search:command-cleanup
(forward-search search-string»

The &inverse keyword indicat~s that
reverse-string-search command.

The &arguments keyword indicates that AS takes an argument
named "search-string" (the string to search for), which defaults
to calling the get-search-string function in order to get the
string from the user by a prompt.

The &prologue keyword indicates that the prologue function
named "search: command-prologue" runs before· the first call of the
forward-search command. In this example, the prologue function
returns a cons of the number 0 and a mark set at the place from
which the search began.

The &numeric-argument keyword indicates that ESC N AS calls
the forward-search command N times.

The &negative-function keyword indicates that ESC -N AS
calls the reverse-string-search command, with a numeric argument
of N.

2/83 3-68 CJ52-Q1A

The &epilogue keyword indicates that the epilogue function
named "search:command-epilogue" runs after each call of the
forward-search command. In this example, the epilogue function
does various bookkeeping operations for the forward-search
command, deciding whether the command should continue or not.
When the search rails, it aborts the command. The epilogue
function is called with three arguments, which are as follows:

prologue-info:
in this example, whatever the &prologue function
returns, which is a cons of a number and a mark; used
by the epilogue function to store the iteration count.

result:
in this example, whatever the forward-search function
returns, which is non-nil if the search was successful;
used by the epilogue function to decide whether to let
the function continue or not.

lastp:
in this example, non-nil if this' is the last iteration
of the forward-search function; used by the epilogue
function to decide whether to set a gratuitous mark if
the search failed.

The &cleanup keyword indicates that the cleanup function
named "search:command-cleanup" runs when the forward-search
command is aborted. In this example, the cleanup function
decides whether the forward-search command should go back to the
beginning or not. The cleanup function is called with one
argument, prologue-info, which -is modified by the epilogue
function as described above.

The forward-search command is the actual code in this
function definition of the string-search command. In this
example, it's just one function call, but it could be several.

You should note that most of the keywords are interpreted by
the Emacs command loop. This means that they can be ignored when
a command is called directly as a function, as it is in extension
code. The main exception to this is the &arguments keyword.
This keyword sets up an argument list for the function, so the
function requires that those arguments be given explicitly in the
function call.

In the example above, this means that calling string-search
is equivalent to calling forward-search, because all
string-search does is call forward-search with its arguments.
All of the other functions are executed before or after
forward-search is executed, without its knowledge.

2/83 3-69 CJ52-Q1A

SECTION 4

LDEBUG MODE

Emacs LDEBUG mode (Lisp Debug) provides an interactive Lisp
environment designed for the debugging of Emacs extension code.
Facilities are provided for tracing the Lisp stack, breakpointing
code, and interacting with the native MacLisp trace facility.
LDEBUG mode is specifically optimized for multiple-window
interaction.

LDEBUG BUFFER

The heart of the LDEBUG mode facilities is the LDEBOG
buffer. The buffer named LDEBUG, when created by ldebug mode
(either in response to a breakpoint's being executed, a trapped
Lisp error, or the explicit "ldebug" extended request), evaluates
any Lisp form typed into it when carriage return is struck after
it. The form must be on one line; an error occurs if the form
has syntactic errors (e.g., miscounted parentheses). The result
of the evaluation is placed iri the LDEBUG buffer on the next
line, following the sign "=>", which indicates the result of such
an evaluation. The Lisp variable "*" is set to the result of
each successive evaluation, as at raw Lisp top level; this may be
used to reference the last printed result.

Random Lisp forms such as "(+ 2 3)" or "current-buffer" can
be typed at LDEBUG buffers, and the resulting buffer contents
will in effect be a dialogue of an interaction with Lisp. Such
buffers are often dprintable for later perusal. The values of
variables can be set by evaluating the normal Lisp setq form r

e.g., (setq var (+ foo 27». As lines are placed into the LDEBUG
buffer by the LDEBUG facility, the window (if any) containing it
scrolls, if necessary.

4-1 CJ52-01

Lisp values "printed" into the LDEBUG buffer are by default
limited in length to ten and depth to six. The values of the
option variables "ldebug-prinlength" and "ldebug-prinlevel" can
be set to alter these defaults. The default input and output
radices are both 8: these can be altered as the option variables
"ldebug-ibase" and "ldebug-base". As with ESC ESC, "I"
represents elements deeper than the depth limit and " ••. "
elements longer than the length limit.

Most- Emacs requests can be used in LDEBUG buffers; they are­
in LisV Debug mode, which is an extension of ordinary Lisp mode,
with requests differing as detailed below~

EMACS AND LISP DEBUG MODE

The Idebuq (ESC X Idebug CR) extended request can be invoked
at any time, in the usual way Emacs extended requests are
invoked. It places Emacs in the LDEBUG buffer as described
above r and also sets up a system of Lisp error handlers "under" a
new invocation of the Emacs request loop. Should any Lisp error
occur while these handlers exist, the LDEBUG buffer is entered,
placed on display if not already on display, the terminal's bell
is: beeped, and the Lisp error message is entered in the LDEBUG
buffer. You are· then at a "second (or greater) level" of LDEBUG,
similar to being at Multics command level when an error occurs.
The level. number is. part of the message entered in the LDEBUG
buffer.

Recursive (level- greater than 1) LDEBUG buffers can be
relea·sed (aborting all executing code between the LDEBUG level
being released and the previous level) via the ESt G
(ldebug-return-to-emacs-top-level) request, the analogue of the
Multics release command. It beeps and types "$g" in the LDEBUG
buffer. The value of the variable Idebug-level tells the current
level of LDEBUG buffers.

ESC P (for proceed) is the analogue of the Multics start
command; more about its meaning for each different type of entry
to an LDEBUG buffer is described below. In general, it restores
the buffer and window from which the LDEBUG buffer entered.

4-2 CJ52-Ql

ERROR TRAP ENTRIES TO LDEBUG

When an error trap entry to the LDEBUG buffer has occured,
the Liso stack can be traced via the ESC T (ldebug-trace-stack)
request: and the value of variables can be inspected simply by
typing their names (since they are Lisp forms) to the LDEBUG
buffer. For this to work most effectively, at least one level of
LDEBUG should be in the stack before the error is encountered.

A value can be returned to the Lisp error handler by typing
it on a line, and instead of ending the line with carriage return
(which would evaluate and "print" the result), ending it with ESC
P. Lisp error handlers often want a list of the value to replace
some erroneous value. For instance, in the following dialogue,
an LDEBUG trap was entered because of the unbound variable
"stuff".: the programmer returned the symbol "value-i-wanted" as
the intended value of the unbound variable:

(myfun huff stuff)

Li'sp breakpoint unbnd-vrbl at level 1 in buffer LDEBUG:
lisp: undefined atomic symbol stuff

('value-i-wanted)$p

All correctable Lisp error breakpoints accept a retry value to be
used to retry the failing operation; the undefined function
breakpoint ("undf-fnctn") also accepts a list of a new value, in
this case a function to be used instead.

The "$p" is always printed by ESC P, to remind the user of
the $P which is used in raw Multics MacLisp to restart breaks.
ESC P can also be used alone on a line (i.e., no value to be
returned preceding it) to restart a break and let Lisp's default
action occur.

ESC G can be used as usual to release a level of errors to
the next lower LDEBUG level; AG (command-quit) does not release
past LDEBUG levels.

4-3 CJ52-01

/

CODE BREAKPOINTS

Breakpoints can be set in interpreted extension code being
debugged by typing ESC & in a Lisp Mode buffer with the cursor at
the point in some function being debugged where you would like
this break set. The LDEBUG mechanism creates this breakpoint by
putting a call to a tracing function ("%%") in the code in the
buffer, and evaluating the function definition it is looking at.
This break code is left in the function to let you know that it
is there: it includes· a break. number (they are assigned
sequentially) to which this breakpoint can be: referred by
requests: yet to be described.,

You should be in at least one level of LDEBUG buffers before
setting a break: thus, you should have said "ESC X ldebug CR"
some time before setting breaks.

Having set a break, you can run the code being debugged.
When the breakpoint is entered, the LDEBUG buffer is entered at a
new higher- level.. A message of the form:'

Break 4, in function testfun

is put in the buff~r, and the LDEBUG buffer is put on display.
As in all LDEBUG buffers, arbitrary forms can be evaluated
(including inspecting variables), and ESC T can be used to trace
the Lis-p stack. Again, ESC- G' releases a level of LDEBUG buffers.

ESC P is used to restart code breakpoints as well. A given
breakpoint can be set for- some number of ,proceeds (i . e., "3"
means proceed, and proceed this breakpoint the next two times it
is encountered automatically) by giving that number as a numeric
argument to ESC P (i.e., ESC 3 ESC Pl. A message indicating the
number of proceeds is inserted in the LDEBUG buffer. ESC P
should be used alone on a line (i.e., no retry value) when
restarting code (or trace) breaks.

When in a code break, ESC R (ldebug-reset-break) resets the
current breakpoint, before restarting or releasing. The break
code is removed from the function definition (visibly, if it is
on display), and the function definition is reevaluated. ESC R
with a numeric argument can be used to reset a break by number.

In an LDEBUG buffer, ESC L (ldeoug-list-breaks) 1 sts all
L-h- '-n---- --~- \.. ___ 1 ~ ~. +-,",,,,,,,~,.. ,,1'r'Ih.o,.~ +-'ho f"n""+-;l""In .n. \I1.11. __ il"'"_11._ 1:. l~ ~ lUWll \,,;UUC l..I1.CQhf:-/VJ.Ul.o:J. 1..0.1;.1.. u u _ .. w, ""' ••
each break appears, the buffer that function appears in, and the
status of each break.

4-4 CJ52-01

The source for the current breakpoint can be shown by
issuing the request ESC S (ldebug-show-bkpt-source). It is
placed in an available window (if in multiple window or
pop-up-window mode), and the cursor is moved to the break code.
Use AXO to get back, or, in one-window mode, AXB CR.

During function breakpointing, to determine where the editor
was (i.e., what was the current buffer, and where was the current
point) at the time the breakpoint was encountered use ESC AS
(ldebug-display-where-editor-was). It selects the appropriate
buffer, moving the cursor to the point in it where the current
point was when the breakpoint was taken. If the buffer is
already on display in some window (or pop-up windows are being
used), that window is selected, and AXO returns you to the LDEBUG
buffer for further probing or restarting. In one-window mode,
the correct buffer is switched to, and AXB gets you back. If the
current point is moved by you explicitly (i.e., via normal Emacs
requests) while visiting the buffer where the breakpoint was
taken, it has its new position when the breakpoint is restarted.
This is analogous to setting a variable before restarting with
usual Multics debugging.

Using two or three windows to contain the LDEBUG buffer, the
breakpoint source (function being debugged), and the buffer the
functions being debugged are working on, is highly effective.

FUNCTION TRACING ~ LDEBUG

The standard MacLisp trace package can be used while in
Emacs: extensibility features of' the former allow LDEBUG to take
control of the trace output and breakpointing provided by it.

All the facilities of the standard trace package can be
used, by invoking trace from ESC ESC minibuffers. The trace
package allows tracing of entries and exits to functions,
arguments, and return values, and breakpoints when functions are
entered. Some sample forms to trace the function testfun are
given here: these are in Lisp syntax, and can be typed as such
to LDEBUG mode. When typed to an ESC ESC minibuffer, the outer
set 0·£ parentheses should not be supplied.

(trace testfun)
Traces the input arguments and returns value of testfun
each time it is invoked.

(trace (testfun break « x 3»)
Traces input and returns value of testfun, enters a
breakpoint when entered and x (x can be an argument to
testfun) is less than 3.

4-5 CJ52-01

(trace (testfun break t»
Same, but enters a breakpoint at every entry to
testfun.

(trace (testfun entry (a b) exit (c»)
Traces input arguments and returns value. Also prints
out the values of a and b when testfun is entered and
the value of c when it is exited.

The general
indicate optional
variable-s) :-

sy·ntax. of
clauses r

trace invocations
and angle brackets

is (brackets
are syntactic

(trace <fnname-or-clause-l> ••• <fnname-or-clause-n»

where <fnna~e-or-clause> is either a function name to be traced
for input arguments only and return value, or:

«fnname> [break <break-condition>] [entry «entry-vals»1
[exi t «exi t-vals»]) I

When a function is traced within Emacs (it is not
recommended to· trace· internal Lisp or Emacs primitives, and no
part of the redisplay should be traced in this way), trace output
for entry and exit tracings are placed (and scrolled) directly
into the LDEBUG buffer if it is on display; if it is not on
display, this output is put in the LDEBUG buffer, and locally
displayed as it is produced. The line of dashes and asterisks of
local displays is not produced, as it cannot be known when the
end of trace output has been reached. Thus, traced functions
invoked from the minibuffer may often leave the cursor in the
minibuffer awaiting clearin~ of the local display via linefeed or
"L.

Trace output generally looks like:

(3 enter testfun (3 5 (a. b}) 1I1I (4 5»

The indentation level gives the depth in currently active traced
functions. The "3" is the recursion depth of the given function
(e.g., testfun) being traced. The "enter" is the type of trace
(enter vs. exit), (3 5 (a b» is the list of arguments (in
this case, three arguments). The 1I1I sets off the entry values
and exit values optionally selectable by the entry and exit
keywords in the trace-invoking form. Exit traces look like:

(3 exit testfun 17)

4-6 CJ52-01

If trace is used to set an entry breakpoint, the LDEBUG
buffer is trapped to at the time the traced function is entered,
in a way very much like a Lisp error break to LDEBUG. A message
such as:

Entry breakpoint to function testfun

is printed into the LDEBUG buffer, and the terminal beeped. As
with LDEBUG code breaks, ESC G releases, ESC P restarts, ESC R
resets, and ESC AS shows where the editor was at the time the
break was taken. When in entry breakpoints to interpreted
functions, the arguments can be inspected by name. ESC T can
trace the Lisp stack, but unless *rset t mode was in effect
(setting up an LDEBUG level does this automatically), trace
information may not be present.

It is not necessary to have invoked ldebug before invoking
trace in Emacs; LDEBUG is invoked automatically if an attempt is
made to use trace in Emacs. If some critical mechanism is being
debugged and normal trace handling (i.e., breakpointing/tracing
to user_i/o from Lisp, not the Emacs handling just described) is
necessary, the variables trace-printer and trace-break-fun should
be made unbound (e.g., ESC ESC makunbound 'trace-printer) before
the first reference to trace in a given invocation of Emacs.

4-7 CJ52-01

SECTION 5

WRITING EMACS TERMINAL CONTROL MODULES (CTLS)

Support of video (and printing) terminals in Emacs is
accomplished via terminal-dependent modules known as CTLs. There
are about two dozen supplied CTLs. Emacs attempts to locate an I
appropriate CTL by using the regular search rules, based upon the I
terminal type maintained by Multics, and optional Emacs control I
arguments. The list emacs ctls command is provided to list all I
the known terminal CTLS. - . I

To support a type of terminal not supported by a supplied
CTL, you must write a new CTL. A CTL is written as a Lisp source
program, named TTYTYPE.ctl.lisp, where TTYTYPE is the name of the I
terminal type to be supported. If this terminal type is in your I
site's Terminal Type File (TTF), the name chosen should appear
the same as it appears in the TTF! except that the name of the
CTL should be all lowercase (Emacs lowercases terminal types when
looking for CTLs).

CTLs are
Personnel with
successfully.
before it can
compiler, lcp.

usually written by example from supplied CTLs.
no knowledge of Lisp at all have achieved this
Once the CTL is written, it must be compiled
be used. Compilation is performed via the Lisp
A typical command line to compile a CTL is:

lcp super58.ctl

This produces an object segment, super58.ctl.

5-1 CJ52-01

I

I Two control arguments for setting the terminal type are
I recognized by Emacs when given as a command line argument. These
I are:

I
I
I
I
I
I
*.

emacs

emacs

-terminal type STR or emacs -ttp STR
where STR is your terminal type. The value of STR
can b~ any recognized editor terminal type. The CTL
is found via the user's search rules. The terminal
type given. by STR is set only for the current
invocation of Emacs; in subsequent invocations, Emacs
checks your Multics process terminal type if you have
not respecified it with -ttp.

-query
E~acs queries the user for the terminal type ~ithout
checking the Multics terminal type first. The answer
you give may be any STR accepted by the -ttp option.

Added names and links can be used to support· many TTF
terminal types via one CTL. When Emacs is given a terminal type
(either from Multics Communication System or the -ttp control

; argument) for which it cannot find a CTL, it asks you if you want
I to see the list_emacs_ctls list of known terminal CTLs.

I
I

I
I

I
I

The most effective method of writing a new CTL is to take
one that was written for a similar terminal and modify it.
Almost all of the extant CTLs were written in this way. The
sources are Lisp source segments, generally one or two printed
pages long. Good starting points are:

vip7200.ctl.lisp, typical of terminals that do not have
the ability to insert or delete lines or characters.

vip7800.ctl.lisp,
these abilities.
either one, both,
use of terminals
than 1200 baud may

typical of terminals that do have
The two facilities are independent,
or neither may be present, although
without insert/delete lines at less
be found to be unacceptable.

The interfaces (function definitions) in a CTL are
standardized. They have the same names in all CTLs. The Emacs
screen manager calls these interfaces anonymously after the
appropriate CTL has been loaded. The interface DCTL-init is
called at Emacs start-up time: it has the responsibility of
setting various flags, and initializing the terminal. It should
contain the statements:

5-2 CJ52-Ql

(setq idel-lines-availablep t)
if the terminal can insert/delete lines.

(setq idel-lines=availablep nil)
if it cannot.

(setq idel-chars-availablep t)
if the terminal can insert/delete/ characters.

(setq idel-chars-availablep nil)
if it cannot.

(setq tty-no-cleolp t)
if the terminal has no clear-to-end-of-line facility.
Such terminals are generally unsatisfactory at speeds
less than 2400 baud.

(setq region-scrool-availablep t)
if the terminal has region scrolling (see below).

(setq screenheight N.)
where N is the number of lines on the screen (note
the dot after the N).

(setq screenlinelen M.)
Where M is one less the number of characters in a
line on this terminal. Again, note the dot.

(setq tty-type 'TYPENAME)
Where TYPENAME is a word
identifies the terminal type.

like "super58" that

At the time DCTL-init is invoked, the variable ospeed is set
to the speed of the communications line in characters ~ second
(e.g., 1200 baud is 120 chars/sec). This can be used to perform
padding calculations. This value is usually computed from the
line speed maintained by the Multics Communication System. The
-line speed control argument can be used to specify terminal
speed-for users logged in via the ARPANET.

In addition, you can use the
control arguments to override the
for page and line lengths.

-page_length or -line_length I
terminal controller defaults I

I

5-3 CJ52-01

Also before DCTL-init is invoked, the variable
given-tty-type is set to the name by which the CTL was loaded
with the "ctl" suffix stripped. This variable can be used in
DCTL-init (and elsewhere) to enable and use different features of
a terminal dependent on the name used to reference that terminal.
To ensure that given-tty-type is different for various versions

I of a terminal, give the additional varieties of the terminal as
I added names on the. CTL segment. For example, the names
I vtl0Qw.ctl, vtl0Qws.ctl, and vt100.ctl are all associated with
I the same CTL segment. This. allows the VT100 CTL to distinguish

between' various. screen widths and heights.' by' using the value of
qiven-tty-type'~ Th~ ~eq" predicate (i.e., (eq given-tty-type
'dd4000)} can be used to check the value of this variable. The
variabl~ tty-type should be set by the CTL to a generic terminal
type, e.g., vt100 for all varIeties of VT100, as opposed to the
type given in given-tty-type.

The following functions are available to the CTL writer:

• Rtyo' takes one argument, a number (f ixnum), and outputs
that number as ASCII data. For example, (Rtyo 141)
outputs an "a~, and (Rtyo 33) outputs an ESC.

e Rprinc takes one argument, a character string, and
outputs it. For example, (Rprinc "]I") outputs a right
bracket and an I •.

Both of these functions buffer their output until the Emacs
screen manager dumps this buffer. This is" always done at the end
of any redisplay at all, and after DCTL-init is called.

The CTL writer must maintain the values of the special
(global) variables X and Y relative to a zero origin screen
position where the cursor was left. In return, you get to
inspect these variables to do positioning optimization.

The CTL writer must provide the following interfaces to be
called by the Emacs screen manager:

•• DCTL-init (no arguments). Must set
above, initialize the terminal (if
the terminal screen, and leave the
(0, 0) (home) •

5-4

the flags listed
necessary), clear

cursor at position

CJ52-Q1

DCTL-position-cursor (two arguments, a new X position
and a new Y position). Move the terminal's cursor to
the given position. Position 0, a is defined as the
upper left hand corner of the screen. This function
must check the variables X and Y, and output no
characters if the cursor is known to be already at the
desired position. Otherwise, it must use the values of
X and Y to determine what type of motion is necessary,
output characters to move the cursor, and update X and
Y to the input parameters (the delay of the buffered
output is not an issue).

Typically, DCTL-position-cursor determines which is the
optimal movement based upon the relative positions of the cursor
and the desired position. For terminals that have many forms of
cursor movement, some combination of backspaces, linefeeds, and
carriage returns may be adequate to effect some forms of cursor
movement. Sometimes the sequences generated by the arrow buttons
on the terminal may be used for relative positioning. Just about
all terminals include some form of absolute positioning. The
choice of optimal cursor positioning should be based upon which
will output the fewest characters to effect the desired move. I
See hp2645.ctl.lisp for an example of a very well optimized I
cursor positioner.

One useful trick in the writing of DCTL-position-cursor is
the use of recursion. See adds980.ctl.lisp for an example. If I
you choose to use terminal tabs, then your DCTL-init must set I
them, and you must take care not to clear them. No supplied CTLs
(other than the extremely special-case printing terminal
controller) use tabs.

B DCTL-display-char-string (cne argument, a character
string to be displayed). Must output this character
string to the terminal at the current assumed cursor
position. The string is guaranteed to contain no
control or other nonprinting characters, and each
character in it is guaranteed to take up only one print
position. Be careful to update cursor position after
printing the string; the lisp function stringlength may
be used to ascertain the length/printing length of the
string~

5-5 CJ52-01

a DCTL-kill-line (no arguments). Clear the line from the
current assumed cursor position to the end of the line,
and leave the cursor at that original assumed position.
Most video terminals have a clear-to-end-of-line
feature: it should be used here if available. Some
terminals do not, so the flag tty-no-cleolp must be set
to indicate this and DCTL-kill-line not defined. If
this' flag is set, the Emacs redisplay simulates
clear-to-end-of-iine by overwriting portions of lines
with spaces. This technique is tedious but necessary.

a: DCTL-cl.ear-rest.-of-screen (no arguments).. Clear the
scre.en from the- current assumed cursor:- p.osition to the
end. Leave the cursor where it was supplied. Some
terminals have a "~lear whole screen" function, but not
clear to end of screen. Currently, you can use the
clear whole screen function. If your terminal does not
even have a clear-whole-screen function, it is probably
not worth using with Emacs. If you choose to use tabs
in cursor positioning, be wary of clearing them via
this function.

Those ~re all the required functions. Some terminals
require control sequences to change modes between normal Multics
operation and operation within Emacs. (For example, a terminal
might be switched between line-at-a-time transmission and
character-at-a-time transmission.) Yet other terminals might use
features during the operation of Emacs that should be
disabled/reset when using Multics. (For example, the Digital
Equipment Corporation VT100 uses "scroll" regions to simulate
insert/delete lines. However, if a scroll region exists, it
makes parts of the screen unusable when using Multics.) It is
possible and quite common to switch between Multics and Emacs by
using the ATTN key and the program_interrupt command. In such
cases, the terminal is in the wrong mode at various times. If
the terminal for which you are writing a CTL exhibits this
behavior, you should add the following statements to DCTL-init:

(setq DCTL-prologue-availablep t)
to specify that certain functions must be performed
each time Emacs is entered from Multics.

(setq pCTL-epilogue-availablep t)
to specify that certain functions must be performed
each time Multics is entered from Emacs.

5-6 CJ52-01

In addition, you must then supply the following two functions:

B DCTL-prologue (no arguments). Perform any operations
that are required when Emacs is entered from Multics.
This function is invoked immediately after DCTL-init is
called and after Emacs is reentered after a QUIT via
either the Multics program interrupt or start commands.

DCTL-epilogue (no arguments). Perform any operations
that are required when Multics is to be entered from
Emacs. This function is invoked immediately before
Emacs is exited when the AXAC (quit-the-editor) request
is invoked, and immediately before Emacs is suspended
when the AZAZ (quit) request is invoked or the ATTN key
is hit on the terminal.

If you have stated that insert/delete lines is available,
via setting the flag idel-lines-availablep to t, you must supply
the following two functions. If you set this flag to nil, you
need not write these functions:

B DCTL-insert-lines (one argument, a number of lines to
be inserted). Open up the given number of lines on the
screen. There are that many blank lines (created by
DCTL-delete-lines) at the bottom of the screen at the_
time this function is invoked. The cursor is at
position 0 of some line at the time DCTL-insert-lines
is invoked. It must push the contents of that line
down the supplied number of lines, leaving the cursor
in the same place, and the line the cursor is on and
the n-l succeeding lines blank.

8 DCTL-delete-lines (one argument, a number of lines to be
deleted). Delete from the screen the supplied number
of lines, starting with the rine the cursor is on and
proceeding downward. The cursor is to be left in the
same place it was given. That many blank lines are
assumed to be pulled up on the bottom of the screen.

If the flag idel-chars-availablep is set to t, indicating
that insertion and deletion of characters is available, the
following two functions must be supplied:

B DCTL-insert-char-string (one argument, a character
string to be inserted at the current assumed cursor
position). Insert the character string supplied at the
current cursor position. Push to the right all
characters at, and to the right of, the current cursor
position. There are only blanks on the screen in the
region being pushed off. Leave the cursor (and so
updat) after the last character of the inserted string.

5-7 CJ52-Ql

DCTL~delete-chars (one argument, the number of
characters to be deleted). Physica·lly delete _from the
screen the supplied number of characters, starting with
the· character' at the cursor and on the right. Move all
characters to the right of these characters that many
positions to the left. That many blanks are assumed to
be moved in from the right edge. Leave the cursor
where it was supplied.

Some terminals:, such as the DEC VT100 and the Human Designed.
Syste~s Concept 100, offer a feature called region-scrolling,
which ~llows: groups of lines to be moved up or down at: once
without th~ two-step operation of delete-lines followed by
insert-lines. The Emacs redisplay can take advantage of this
feature~ the result is. scrolling without the "jumping
minibuffers" and ptilling and pushing associated with window
management via insert/delete lines. If your terminal has region
scrolling, do not define DCTL-insert-lines and DCTL-delete-lines
for your terminal. Instead, setq the special variable
region-scroll-availablep to t at DCTL-init time. The following
two functions must then be defined:

~. (defun DCTL-scroll-up-region (amount bottom) ...)

This operation will be invoked with the cursor at the beginning
of some line· of the screen.. It defines an operation affecting a
region that includes the current line down to, but not including,
the line- designated (by number, in the second argument) as the
<bottom> (where the first line on the screen is 0). This region
is scrolled up by <amount>, where amount is the number of lines
given as the first argument. The cursor is left where it is, at
the beginning of the ne~ly scrolled-up current line. So, in
efect, where <size> is the size of the reg~on (in lines), the
lower <size minus amount> lines of the reglon are moved up to
become the topmost <size minus amount> lines of the region. The
last <amount> lines of the region are left blank, and the
contents of what were the first <amount> lines depart
irretrievably from the screen. In the following example, assume
C represents the cursor and call:

(DCTL-scroll-up-region 2 7)

Before After

Foo Foo
Bar Bar

CQuux CLuux
Truux Buux
T_1"'V Bears ~w

Buux
Bears

5-8 CJ52-Ql

Cubes
Emacs

The second function is:

Cubes
Emacs

e (defun DCTL-scroll-down-region (amount size) •••)

This operation will be invoked with the cursor at the beginning
of some line of the screen. It defines an 'operation affecting a
region that includes the current line down to, but not including,
line number <bottom>, where the first line on the screen is o.
The size of this region, in lines, is <size> (the second
argument). This region is scrolled down by <amount> (the first
argument) lines, and the cursor left where it is at the beginning
of the current line of the screen. So, in effect, the upper
<size minus amount> lines of the region are moved down to be the
bottommost <size minus amount> lines of the region. The first
<amount> lines are left blank, and the contents of what were the
last <amount> lines departs irretrievably from the screen.

Again, in the following example assume C represents the
cursor and call:

(DCTL-scroll-down-region 2 7)

Before After

Foo Foo
Bar Bar

CQuux C
Truux
Luux Quux
Buux Truux
Bears Luux
Cubes Cubes
Emacs Emacs

Writing a CTL usually involves editing an existing one,
trying it, modifying it, and' iterating until it is solid. You
use the -ttp control argument many times to switch back and forth
between printing terminal mode and the new CTL when logged in
from rh~ terminal on which the CTL is being . developed. For
terminals with insert/delete features, it may be convenient to
debug the CTL first without these features (claim they are not
there in the DCTL-init), and add them later. Similarly, you are
encouraged to wrIte a better DCTL-position-cursor once you have
one that works at all, for the convenience of editing the CTL
with Emacs substantially reduces the effort of improving it.

5-9 CJ52-01

For some terminals, padding may be necessary for some
operations at some or all line speeds. If terminal behavior
appears random, or garbage is left on the screen after a AL or
AK, this may be the problem. Check the manual for your terminal
about padding req~irements. It may be convenient to define a
function called DCTL-pad, which takes a number of microseconds or
milliseconds as an argument, and issues enough pad characters to
perform this padding. (Rtyo 0) or (Rtyo 177) are common, but
check your terminal manual for what your terminal expects; (Rtyo
0) generally works. The variable ospeed gives the line speed in
chara~t~rs per se~ondr for use in such calculations. Getting the
padding right may involve quite' a bit of tink.ering on some
terminals~ one proven method in cases where padding is felt to be
a problem is-to specify a very large amount of padding- (e.g., a
second) and cut it down until it works. See dd4000.ctl.lisp for
an example of ter.minal padding.

The Lisp special forms cond and do are used heavily in CTLs.
Since Emacs· environment macr05(do-forever, if, etc) should not
be used in CTLs, the native- Lisp forms are necessary. Here are
the descriptions of cond and do: -

(cond «= this that) (thing1}(thing2})
«> a b) (second) (third) 27)
«< c ~5){other)}
(t (best 5)(chance»)

means:

"If this equals that, call thing1 of no arguments, then call
thing2 of no arguments, and return as the value of the cond
the· value returned by thing2. Otherwise, if a is greater
than b, call "second" with no arguments, then call ~third",
and return 27 as a value. Yet otherwise, if c is less than
15 (all numbers octal), return the value obtained by
applying "other" to no arguments. If none of the above are
true, call "best" with an argument of 5, and then return the
value obtained by calling "chance" with no arguments."

5-10 CJ52-Q1

The cond special form is much like PL/I's

if () then do;
·

end;
else if (. . . . then do;

·
end;
else if (.. then do;

·
end;
else do; ·
end;

The format of Lisp ndo n used in CTLs to iterate is:

(do VARIABLE INITIAL-VALUE REPEAT-VALUE TEST forml form2
form3..)

It is equivalent to PL/I's!

do VARIABLE = INITIAL-VALUE
repeat REPEAT-VALUE
while (" TEST);

forml; form2; •••
end:

which, itself, is equivalent to:

1:

e:

VARIABLE = INITIAL-VALUE;
if TEST then go to e:
forml; form2; •••
VARIABLE = REPEAT-VALUE;
go to 1; . ,

The variable VARIABLE is locally defined inside the do. It may
be used in the forms inside the do, in the "end test n TEST, and
in the repeat value REPEAT-VALUE.

5-11 CJ52-01

APPENDIX A

THE BACKQUOTE FACILITY

The backquote facility defines two characters with special
syntax to the Lisp reader: backquote ('--ASCII code 140) and
comma (,--ASCII code 54). These two "macro characters" can be
used together to abbreviate large compositions of functions like
cons, list, list*, and append. It is typically used to specify
templates for building code or other list structure and often
finds application in the construction of Lisp macros.

If you are in Emacs, backquote is automatically defined
correctly for you. ESC-ESC, LISP mode, and LDEBUG mode all
handle it properly. If you write extension code that uses
%include e-macros.incl.lisp (as all extension code should),
backquote is defined properly for you as well. If you are
writing Lisp code other than Emacs extensions, your program
should include the form (%include backquote) before the first-use
of backquote.

Backquote has a syntax similar to that of quote ('--ascii
47). A backquote is followed by a single expression. If the
expression does not contain any use of the comma macro character,
then the form will simply be quoted. For example:

'(a b c) => (quote (a be» => '(a b c)

The comma macro character can only be used within a form
following a baekquote. Comma also has a syntax like that of
quote. The comma is followed by a form, and that form. is
evaluated even though it is inside the backquote. For example:

'era b c) => (cons a (quote (b c»)
=> (cons a '(b c»

'(a ,b c) => (list* (quote a) b (quote (e»)
=> (1 i st * 'a b '(c))

A-1 CJ52-01

'\ (a b ,c) => (list (quote a) (quote b) c)
=> (list 'a 'b c)

'\ (a • ,rest) => (cons (quote a) rest)
=> (cons 'a rest)

Thus, to write the common macro "push" using backquote, proceed
from the standard definition:

(defun push macro (form)
(list 'setq (caddr f~rm) (list 'cons (cadr form) (caddr form

to:

{defun push macro (form)
, (setq ,. (caddr form) (cons , (cadr form) , (caddr form»»

Note how the code to build the macro's output code begins to look
more like the output code itself. In fact, using let, you can go
all the way to:

(defun push macro (form)
{let «datum (cadr form»

(list (caddr form)))
'\ {setq , 1 is t (con 5 , da turn, 1 i 5 t))))

and produce very legible code.

Backquote expands into forms that call cons, list, list*, or
whatever other functions it deems appropriate for the task of
constructing a form that looks like the one following the
backquote, but with the values of the forms following the commas
substituted in.

It a comma inside a baekquote form is followed by an at
sign (@-- ASCII code 100), then the form following the ",@"
should return a list. Backquote arranges that the elements of
that list will be substituted into the resulting list structure.
Frequently this involves generating a call to the append
function. For example:

'\ (, @a b c)

'(a ,@b c)

'\ 1_ \0.. t:I_\
\Q I.J ,1:: ,

=>
=>

=>
=>

=>
=>

(append a (quote (b c»)
(append a '(b c»

(cons (quote a) (append b (quote (e»»
(cons 'a (append b '(c»)

f\list* (1"'T"t"'\t-~ ~, (Quote b), C',l \ ~'-Io..., _ I ...

(list* 'a 'b c)

A-2 CJ52-Ql

Similar to following the comma by an at sign is following
the comma by a dot (.--ASCII code 56). The dot is a declaration
to backquote" telling it that the list returned by the form
following the ",." is expendable. This allows backquote to
produce code that calls functions like ncone that rplac the list.

Backquote examines the forms following the commas to see if
it can simplify the resulting code. For example:

'(a b • , (cons x y» => (list* (quote a) (quote b) x y)
=> (list* 'a 'b x y)

'(a 3 ,b c ,17) => (list* (quote a) 3 b (quote (c 17»)
=> (list* fa 3 b '(c 17»

'(a ,@b ,@nil) => (cons (quote a) b)
=> (cons 'a b)

'(a ,.b ,@(nconc cd» => (cons (quote a) (nconc b cd»
=> (cons fa (nconc b cd»

These examples should convince you not to depend on what the
code that backquote expands into will look like. Backquote's
contract is specified not in terms of the code that it expands
into but rather in terms of what that code produces when
evaluated. A simple backquote might expand (,@a ,@nil) into
(append a 'nil), but this cannot be used as a reliable way to
copy a list since a sophisticated backquote (like this one) can
optimize the copying away.

It is sometimes useful to nest one use of backquote within
another. This might happen when writing some code that will cons
up some more code that will in turn cons up yet more code. The
usual example is in writing macro-defining macros. When this
becomes necessary it is sometimes difficult to determine exactly
how to use comma to cause evaluation to happen at the correct
times. The following example exhibits all the useful
combinations:

"(a ,b "c ,',d)
=> (list 'list* "a ~b c (list 'quote (list d»)

A-3 " CJ52-01

When evaluated once, this yields:

(list* 'a h <c-at-time-i> '«d-at-time-l>l)

Which when evaluated yields:

{~ <b-at-time-2> «c-at-time-l>-at-time-2> <d-at-time-l>}

Thus ww means never evaluate, "," means evaluate only the second
time, ft,., w- mea.ns. evaluate both ti~e5~ and w-,', w- ~eans evaluate
only the first time... -

A-4 CJ52-Ql

APPENDIX B

QUICK REFERENCE

The following functions, special forms, predicates, and
global variables mentioned in this manual have been grouped below
according to the uses they serve in extensions. Following those
groupings is an alphabetized list that includes a brief
description of each function, special form, predicate and global
variable listed. The categories include:

Buffers
Calculations
Catenation
Character/Numeric Conversion
Charscan Table/Characters
Comments
Comparison
CTL
DebuQQinQ
Definingicalling a Command/Function/Property
Displays
Error Handling
Execution and Conditional Evaluation
Files
Killing
List Processing/Cons
Marks
Minibuffers/Prompts
Modes
Modified Flag
Multics Command Execution
Point Position
Searching
Variables
Whitespace
Windows
Miscellaneous

B-1 CJ52-01

Buffers

I buffer-creation-hook
I buffer-destruction-hook
I buffer-entrance-hook
I buffer-exit-hook

buffe-r-kill
buffer-minar-modes
buff~r-modified-flag
buffer-on-display-in-window
curren t-buff-e-r
curren t-buf fe r-mode
destroy-buffer-contents
display-buffer-as-printout
dont-notice-modified-buffer
empty-buffer-p
establish-local-var
find-buffer-in-window
find-file-subr
go-to-or-create-bufter
previous-buffer
read-only-flag
save-excursion-buffer

select-buffer-window
set-buffer-self-destruct

Calculations

*
+

II

Catenation

apply-catenate
catenate

Character/Number Conversion

*nopoint
ascii
base
CtoI
decimal-rep
ibase
ItoC

B-2 CJ52-Ql

Character Table/Characters

charscan-table
char set-member
explode
explodec
get-char
lefthand-char
process-char
search-back-first-charset-line
search-back-first-not-charset-line
search-char set-backward
search-charset-forward
search-for-first-charset-line
search-for-first-not-charset-line
search-not-charset-backward
search-not-charset-forward

Comments

comment-column
comment-prefix

Comparison

<
=
>
alphalessp
eq
fixp
samepnamep

DCTL-clear-rest-of-screen
DCTL-delete-chars
DCTL-delete-lines
DCTL-display-char-string
DCTL-epilogue
DCTL-init
DCTL-insert-char-string
DCTL-insert-lines
DCTL-kill-line
DCTL-position-cursor
DCTL-prologue
DCTL-scroll-down-region
DCTL-scroll-up-region
Rprinc
Rtyo

B-3 CJ52-01

I

I

• • I
I

Debugging

debug-e
Idebug-mode-hook

Defining/Calling 2. Command/Function/Property

defcom
defprop
defun-
funcalL
get
process-char
putprop
set-key
set-permanent-key

Displays

display-as-printout
display-buffer-as-printout
disolav-com-error
dis~lai-com-error-noabort
display-error
display-error-noabort
display-error-remark
end-local-displays
full-redisplay
init-local-displays
local-display-current-line
local-display-generator
local-display-generator-nnl
redisplay
redisplay-current-window-relative
view-region=as-lines

Error Handling

add error code
command-quit
display-corn-error
display-error
display-error-noabort
display-error-remark
error-table
error table - -
?"'\,..nt-~rt-l:'------
report-error
report-error-noabort
ring-tty-bell

B-4 CJ52-01

trace
unwind-protect

Execution and Conditional Evaluation

Files

2/83

and
cond
dispatch-on-current-char
dispatch-on-lefthand-char
do
do-forever
do-times
eval
funcall
go
if
if-at
if-back-at
mapc
or
prog
progl
prog2
progn
return
save-excursion
save-excursion-buffer
save-excursion-on-error
stop-doing
unwind-protect
without-modifying
wi thout-saving .

find-file-subr
fpathname
read-in-file
write-out-file

B-S CJS2-Q1A

Killing

buffer-destruction-hook
buffer-kill
delete-white-sides
delete-window
destroy-buffer-contents
killsave-string

2/83

kill-pop
kill-ring-top
rotate-kill-ring
set-buffer-self-destrllct

B-5.1 CJ52-01A

wipe-point-mark
without-saving

List Processing/Cons

Marks

append
apply-catenate'
car
cdr
cons,
explode·
explodec
lis.t
list*"
memq
ncone
nreverse
reverse
replaca
replacd

der-wahrer-mark
go-to-mark
mark-at-current-point-p
mark-on-current-line-p
mark-reached
mark-same-line~p
point-mark-to-string
point>markp
release-mark
set-mark
wipe-point-mark
with-mark

Minibuffers/Prompts

I last-minibuffer-response
I minibuffer-response

minibuffer-clear
minibuffer-print
minibuffer-print-noclear
yesp

Modes

aIm-made-hook
assert-minor-mode

B-6 CJ52-01

buffer-minor-modes
current-buffer-mode
fill-mode-delimiters
fortran-mode-hook
Idebug-mode-hook
lisp-mod~-hook
mail-mode-hook
negate-minor-mode
pll-mode-hook
rmail-mode-hook
text-mode-hook

Modified Flag

buffer-modified-flag
dont-notice-modified-buffer
read-only-flag
without-modifying

Multics Command Execution

comout-get-output
e cline - -

Point position

at
at-oeginning-of-buffer
at-end-of-buffer
at-white-char
back-at

.bolp
cur-hpo's
curchar
eolp
firstlinep
go-to-hpos
go-to-mark
if-at
if-hack-at
lastlinep
looking-at
mark-at-current-point-p
next-line
point-mark-to-string
point>markp
prev-line
save-excursion
save-excursion-on-error

B-7

I

I

CJ52-Ql

Searching

charscan-table
forward-search
get-search-string
regexp-search
reverse-regexp-search
search-back-first-charset-line
search-back-first-not-charset-line
sear-ch-charset-backward
search-charset-f~rwaId
search-failure-annunciator
search~for-first-charset-line
search-for-first-not-charset-line
search-not-charset-backward
search-not-charset-forward

Variables

defvar
establish-local-var
let
register-local-variable
setq.

Whitescace

at-white-char
delete-white-sides
format-to-col
line-is-blank
skip-back-to-whitespace
skip-back-whitespace
skip-back-whitespace-in-line
skip-over-whitespace
skip-over-whitespace-in-line
skip-to-whitespace
tab-equivalent
whitespace-to-hpos

Windows

2/83

buffer-on-display-in-window
delete-window
find-buffer-in-window
nuwindows
redisplay-current-window-relative
select-buffer-find-window
select-buffer-window
select-window
select.ed-window

B-8 CJ52-Q1A

window-adjust-lower
window-adjust-upper
wind.ow- info

Miscellaneous

close-line-hook
env-dir
ESC
fill-mode-delimiters
insert-string
maknam
nil
NL
not
null
null-stringp
print
process-dir
read-from-string
ring-tty-bell
stringp
symbolp
t
yesp

Each item described
what type of item it is.

below also has a
The item types are:

note that indicates

Native Lisp function, variable, predicate, or special form
Emacs environment function, variable, etc.
CTL functions, to be defined by CTL writer, called by

Emacs Redisplay, and not called by extension code under
any circumstances.

* Lisp function
takes any number of arguments, which are expected to be
.f ixnums (integer numbers), and returns thei r product.

*nopoint Lisp global variable
when bound to anything but nil, causes decimal numbers to be
converted to their printed representation without a trailing
decimal point.

+ Lisp function
adds any number of fixnum arguments.

B-9 CJ52-01

I

II

Lisp function
subtracts all of its (fixnum) arguments but the first from
its, first argument. wi th two arguments, it simply computes
the difference.

Lisp function
divides its first
its succeeding
(fixnum) • wi th
q~otient.

(fixnum) argument successively by each of
arguments. Answer is a whole number
two arguments, it is a simple integer

< Lisp predicate
of two arguments, Eixnums. Returns: truth if first is less
than second.

= Lisp predicate
of two arguments, fixnums. Returns t'ruth if they are the
same fixnum.

> Lisp predicate
of two arguments, fixnums. Returns truth if the first is
greater than the second.

I add-error-code Emacs function
I of two arguments, error-code and error-string, adds an entry
I to the Emacs Error Table.

alm-mode-hook Emacs global variable
if bound to non-n i 1, its binding' is assumed to be a symbol
that can be called as a function as the last action of Emacs
upon entering ALM mode in a buffer. Used to customize key
bindings,. etc.

ilphalessp Lisp predicate

and

of two arguments, can be symbols or strings. Returns truth
if the printname (or string value) of the first collates
alphabetically in the ASCII collating sequence before the
second.

Lisp special form
evaluates all of its subforms in order until
evaluates to nil, or they are all evaluated.
returned by the last one evaluated is returned.

one of them
The value

append Lisp function
takes any number of lists as arguments, including empty
lists. Returns a list with all the elements of the lists
provided as elements, in order.

apply-catenate Emacs function
takes a list of any number of strings or symbols, and
returns a string that is the catenation of all their string
values or priritnames.

B-l0 CJS2-01

ascii Lisp function
returns a single-character symbol whose printname
character whose ASCII numeric value was given
argument.

assert-minor-mode Emacs function

is the
as an

of one argument, asserts that this
be a symbol) has been turned on.
line in the current buffer.

minor mode (expected to
It appears in the mode

at Emacs predicate
of one argument, a single-character string or symbol.
Returns truth if the character to the right of point in the
current buffer is this character.

at-beginning-of-buffer Emacs predicate
returns truth if the current point in the current buffer is
at the beginning of the buffer.

at-end-of-buffer Emacs predicate
returns truth if the current point in the current buffer is
at the end of the buffer.

at-white-char Emacs predicate /
returns truth if the character to the right of the current
point in the current buffer is a whitespace character.

back-at Emacs predicate
of one argument, a single-character string or symbol,
returns truth if the character to the LEFT of point in the
current buffer is this character.

base" Lisp global variable
no.rmally 8, the binding of the variable controls the numeric
base in which numbers are converted to their printed
representation.

bolp Emacs predicate
returns truth if the current point in the current buffer is
at the beginning of a line.

buffer-creation-hook Emacs global variable I
if bound to non-nil, its binding is assumed to be a symbol I
that can be called as a function when a buffer is created. I

buffer-destruction-hook Emacs global variable I
if bound to non-nil, its binding is assumed to be a symbol I
that can be called as a function when a buffer is destroyed. I

buffer-entrance-hook Emacs global variable I
if bound to non-nil, its binding is assumed to be a symbol I
that can be called as a function when a new buffer is I
selected. I

B-11 CJ52-0i

I buffer-exit-hook Emacs global variable
I if bound to non-nil, its binding is assumed to be a symbol
I that can be called as a function when a, buffer is left.

buffer-kill Emacs function
of one argument, the symbol representing a buffer. Destroys
that buffer.

buffer-minor-modes Emacs per-buffer variable
the list of symbols that have been asserted and not negated
as th~ current minor modes in the current buffer~

buffer-modified-flag Emacs per-buffer variable
valu~ is non-nil if the current buffer has been modified
since last read in or written out. Do not set this flag by
yourself: let Emacs manage it.

buffer-on-display-in-window Emacs predicate
_as a predicate, returns t~uth if the buffer whose symbol is
provided as an argument is currently on display in any
window.

buffer-on-display-in-window Emacs function
as a function, returns ~n~. window number in which the buffer
provided is on display (or nil if none).

car Lisp function
returns the "car" of the argument, which is expected to be a
cons. Note that for conses which are parts of lists, car
may be viewed as returning the first element of the list.

catenate Lisp function
'given any number of strings or symbols as arguments, returns
a string that is the catenation of their string-values or
printnames.

cdr Lisp function
returns the "cdr" of the argument, which is expected to be a
cons. Note that for conses that are parts of lists, cdr may
be viewed as returning a list of all the elements beyond the
first element.

charscan-table Emacs function
takes a character-string
table that can be used
characters.

charset-member Emacs function

argument, and
to search a

creates a charscan
string for those

the first argument is a single character string, r symbol,
or fixnum that is the ASCII value of a charater; and the
second argument is a charscan table. Returns truth if the
character is a member of that charscan table.

B-12 CJ52-Ql

close-line-hook Emacs global variable
if bound to non-nil, its binding is assumed
that can be called as a function when the
another line.

I
to be a symbol I
user moves to I

command-quit Emacs function
aborts the execution of the current extension function,
beeping, and returning to the Emacs character-listening
loop.

comment-column Emacs per-buffer variable
the zero-based comment column in the current buffer.

comment-prefix Emacs per-buffer variable
the string to be inserted at the start of comments in' this
buffer, and searched for to find the start of already
existent comments.

comout-get-output Emacs function
catenates all of its arguments into a Multics command line,
and replaces the contents of the current buffer by the
Multics output produced by executing that Multics command
line.

cond Emacs special form
performs successive tests of conditions and conditionally
executes forms. Specifically, evaluates the first subform
of all of its own subforms, until one returns non-nil, and
executes all the remaining subforms of that subform (of
cond). returnino the value of the last subform i of any kind;
evaluated.' See-the writeup/examples.

cons Lisp function
constructs a new cons, whose car and cdr are the two
arguments given.

CtoI Lisp function
obtains the numeric ASCII value of the character that is the
printname (if a symbol, or value if a string) of its
argument.

cur-hpos Emacs function
the zero-based current horizonta.l position of point on the
current line in the current buffer. Note that this is
horizontal position on an infinite-width line-printer or
printing terminal, not on the screen. Tabs count,
b~ckspaces count, etc.

curchar Emacs function
returns the single-character symbol whose' .printname is the
character to the right of point in the current buffer.

B-13 CJ52-Ql

I

current-buffer Emacs per-buffer variable
the symbol representing the current buffer.

current-buffer-mode Emacs per-buffer variable
the symbol representing the major mode in the current
buf fer'.

DCTL-clear-rest-of-screen CTL function
clear to the end of the screen from the cursor.

DCTL-de.lete.-chars CTL. function
d-elete n' ,(argument) characters at the cursor, shifting the
res-t of: the line over to the- I.eft'.

DCTL-delete-lines CTL function
delete. n (argument) lines from the screen at the cursor,
moving the rest of the lines on the screen up.

DCTL-display-char-string CTL function
print the character string supplied as an argument at the
cursor, moving the cursor to the end.

DCTL-epilogue CTL function
take appropriate actions to "reset" the terminal from Emacs
mode to norma~ Multics mode.

DCTL-init CTL function
set up the CTL to operate and then clear the screen.

DCTL-insert-char-string CTL function
insert the character-string argument at the cursor, pushing
the rest of the line over to the right.

DCTL-insert-lines CTL function
open up n (argument) blank lines at the cursor pushing the
rest of the lines down, the n lowest off the screen.

DCTL-kill-line CTL function
clear from the cursor to the end of the line.

DCTL-position-cursor CTL function
takes x, y as arguments. Move the cursor (if not already
there) to that position; x and yare zero based.

DCTL-prologue CTL function
ready the CTL for Emacs usage as opposed to Multics normal
mode.

DCTL~scroll-down-region CTL function
scroll a region at the cursor down.

DCTL-scroll-up-region CTL function
scroll a region at the cursor up.

B-14 t::J52-Ql

debug-e Emacs function
sets error traps in Emacs so that extension code bugs
breakpoint in Lisp.

decimal-rep Emacs function
converts its (numeric) argument to a string that is its
decimal representation.

defcom Emacs special form
defines a command.

defprop Lisp special form
puts a property on a symbol. Like putprop, but is a special
form and does not evaluate any of its arguments.

defun Lisp special form
defines a function.

defvar Emacs special form
declares a special variable (first argument, not evaluated)
and assigns a value if the variable has not been set when
the program is loaded (second argument, evaluated).

delete-white-sides Emacs function
removes all whitespace characters on either side of point in
the current buffer.

delete-window Emacs function
destroys the window whose window number is ,given.

der-wahrer-mark Emacs per-buffer variable
"the true mark," i.e., the user-v-isible ("@) mark in the
current .buffer.

destroy-buffer-contents Emacs function
destroys the contents of the current buffer.

dispatch-on-current-char Emacs special form
executes forms conditionally based upon the value of the
character to the right of point in the current buffer.

dispatch-on-lefthand-char Emacs special form
executes forms conditionally based upon the value of the
character to the right of point in the current buffer.

display-as-printout Emacs special form
displays as local display all of the text placed in the
current buffer (which will be created by this form) by the
forms contained in it.

display-buffer-as-printout Emacs function
displays the current buffer as local display.

. B-15 CJ52-Ql

display-corn-error Emacs function
takes a Multics error code argument and strings that are
catenated to produce an error message in the minibuffer
(including the converted Multics error code), aborts the
current extension code execution, and beeps.

display-com-error-noabort Emacs function
like display-com-error, but does not abort.

display-error Emacs function
catenates its string' arguments. to produce an error message
in the minibuffer; aborts the current extension code
execution, and beeps •.

display-error-noabort Emacs function
like display-error, but does not abort.

display-error-remark Emacs function
like display-error-noabort, but this output is suppressed
during keyboard macro execution.

do Lisp special form
complex native Lisp form for iterated execution.

do-forever Emacs special form
executes all of the forms contained within it until they -
return or abort of their own accord.

do-times Emacs special form
first form is evaluated to obtain a number; the rest of the
forms are executed that many times.

dont-notice-modified-buffer Emacs function
argument is a buffer-symbol. If called, that buffer's being
modified does not prevent the user from exiting Emacs
without being queried.

e cline Emacs function
- executes a Multics command line (the supplied string)

without any arrangements for I/O r etc.

empty-buffer-p Emacs predicate
returns truth if the buffer-symbol argument represents an
empty buffer.

end-local-displays Emacs function
indicates that a local display has produced all it is going
to, and the next charater typed by the user should erase the
local display ..

env-dir Emacs global variable
the directory in which the Emacs subsystem is located.

B-16 CJ52-Ql

eolp Emacs predicate
returns truth if the current point in the current buffer is
at the end of a line.

eq Lisp predicate
returns truth if the same object is given as both arguments.

error-table Emacs function
of two arguments, segment and offset,
Multics error code.

I
gets a standard I

error table Emacs function
produces a Multics error code given an error table entry
point name as a string or symbol.

ESC Emacs global variable
a single-character symbol whose name is the ESC character.

establish-local-var Emacs function
declares a buffer local variable and establishes a value.

eval Lisp function
evaluates a Lisp form.

explode Lisp function
creates a list of characters (single-character symbols) that
is the standard Lisp printed representation of its argument.

explodec Lisp function
like explode, but does not escape Lisp special characters or
quote strings.

f ill-mode-delimi ters Emacs global variable.
the list of char~cters that cause fill mode to fill.

find-buffer-in-window Emacs function
takes a buffer-symbol argument, and either
containing that buffer, or first puts it
than the current window (on an LRU basis)
that window.

find-file-subr Emacs function

selects a window
somewhere other

and then selects

takes an argument like those acceptable to AXAF, and does as
AKAF does (reads file or files, selects buffers, etc.).

firstlinep Emacs predicate
returns truth if the current point is on the first line of
the current buffer.

fixp Lisp predicate
returns truth if its argument is a fixnum (or bignum).

B-17 CJ52-Ql

I

format-to-col Emacs function
puts whitespace in the current
putting in at least one space.
(zero-based) to format out to.

line at the
The argument

fortran-mode-hook Emacs global variable

current point,
is the column

if bound to non-nil, its binding is assumed to be a symbol
that can be called as a function as the last action of Emacs
upon entering FORTRAN mode in a buffer. Used to customize
key bindings, etc.

forward-search Emacs function
takes a string (or symbol) argument. Searches foward (as
does AS) in the current buffer, returning truth if the
search succeeds (and moving point) or nil if not.

fpathname Emacs per-buffer variable
pathname (or nil if none) of file in current buffer.

full-redisplay Emacs function
clears the screen and redisplays all windows.

funcall Lisp function
--,,- - ~ - ... ~'"' ... 1 .. \.._ 4=';~I!!''' ~~""Hma.""\ " "'" ~" t'h A_ T"_A_C:_~_ t"I_f_ ~Cl •• o;) a J..u" I...v" \1.."" ~1.. g-':t~."'"'u 1 wto-""''' __ _

its arguments. Needed only when the identity of the
function to be called is not known, i.e~, was obtained from
the value of a variable.

get Lisp special form
first argument is a symbol, second a property. Obtains that
property of that symbol, or nil if it hasn't one.

get-char Emacs function
returns (as a fixnum ASCII value) a single character read
from the keyboard (or keyboard macro). Does not echo or
prompt in any way.

get-search-string Emacs function
takes a prompt string. Gets a search string from the user
(for use in writing search requests), and does defaulting
and setting of defaults.

go Lisp special form
transfers to a PROG label.

go-to-hpos Emacs function
moves the current point to the character that would be at
that (argument) .horizontal position (see cur-hpos for a
definition of horizontal position).

go-to-mark Emacs function
argument is a mark that must be in the current buffer.
Moves point to that mark.

B-18 CJ52-01

go-to-or-create-buffer Emacs function
argument is a buffer symbol. Goes to that buffer, creating
it if it does not exist. If it did exist, point will be
where it last was in that buffer.

ibase Lisp global variable
base (normally 8) for converting numbers typed into Lisp.

if Emacs special form
special form for conditional execution. Evaluates its first
form. If non-nil, evaluates all following forms up to
"else" or end of the "if": otherwise, evaluates all forms
after the "else" (if any).

if-at Emacs special form
first argument is a character symbol or string. Evaluates
all the rest of its forms if the current character at the
right of the point in the current buffer is this character.

if-back-at Emacs special form
same as if-at, but for the character to the left of the
point.

init-local-displays Emacs function
sets up for local display output.

insert-string Emacs funct.ion
of one argument, a string (or symbol) of any length.
Inserts those characters to the left of the current point
{thus moving it} in the current buffer.

ItoC Lisp functjon
creates a single-character string from the ASC1I value given
as an argument.

killsave-string Emacs function
pushes its string (or symbol) argument onto the kill ring.

2/83 B-19 CJ52-Q1A

kill-pop Emacs function
returns the first item on the kill ring and rotates the kill
ring.

kill-ring-top Emacs function
returns the first item on the kill ring.

lastlinep Emacs predicate
returns truth if the current point is on the last line of
the current buffer. If there is a newline in the file, this
means the line (which may be empty) immediately after the
last newline.

last-minibuffer-response Emacs per-buffer variable

2/83

The last response given in the minibuffer. When ESC X opt
remember-empty-response is set off, last-minibuffer-response
is not set to blank when a blank response is given.

B-19.1 CJ52-Q1A

Idebug-mode-hook Emacs global variable
if bound to non-nil, its binding is assumed to be a symbol
that can be called as a function as the last aciion of Emacs
upon entering LDEBUG mode in a buffer. Used to customize
key bindings, etc.

lefthand-char Emacs function
returns a single character symbol whose printname is the
character to the left of point in the current buffer.

let Lisp special form
'establishes variables and their bindings for a computation.

line-is-blank E~acs predicate
returns truth if the current line of the current buffer (the
one on which point is) has no characters, or only whitespace
characters_

lisp-made-hook Emacs global variable
if bound to non-nil, its binding is assumed to be a symbol
that can be called as a function as the last action of Emacs
upon entering LISP mode in a buffer. Used to customize key
h;n~;""C! o+-_
- - ':S~, ... """'"-

list Lisp function
returns a list whose elements are list's arguments.

list* Lisp function
returns a list-like chain of conses, whose
elements are list*'s first n-1 arguments, but
whose last cons is list*'s nth and last argument.

local-display-current-line Emacs function

first n-1
the cdr of

displays the current line of the current buffer as local
display (a local display must already have been
established) •

local-display-generator Emacs function
takes a string (which must end in a newline) and displays it
as local display.

local-display-generator-nnl Emacs function
like local-display-generator, but adds the newline for you.

looking-at Emacs predicate
. returns truth if the string given as an argument (which must

not contain a newline) appears immediately to the right of
the current point in the current buffer=

B-2Q CJ52-01

·'

mail-mode-hook Emacs global variable
if bound to non-nil, its binding is assumed to be a symbol.
that can be called as a function as the last action of Emacs
upon entering MAIL mode in a buffer. Used to customize key
bindings, etc.

maknam Lisp function
makes a new symbol, not interned, whose name is formed from
t~e supplied list of characters (symbols or fixnums, the
l~tter interpreted as specifying ASCII values).

mapc L~~SP funct ion
an.' iterator; first argument specifies a function. Second
through last arguments are lists. The function is marched
th.rough the elements of the .lists, in parallel.

mark-at~current-point-p Emacs predicate
takes a mark as argument. Returns truth if that mark
specifies the place in the current buffer where the current
point is.

mark-o~~current-line-p Emacs predicate
ta~es a mark as argument. Returns truth if that mark
specifies a point on the same line of the current buffer
where the current point is.

mark-reached Emacs predicate
ta~es a mark as argument. Returns truth if current point
ha$ passed this mark in the current buffer. There are
re~trictions on this (see the writeup).

mark-same-line-p Emacs predicate
t~~es two marks as arguments. Returns truth if they·
represent points on the same line •

. :\

memq Lisp predicate
returns truth if its first argument is a member of the list
that is its second argument.

minibu~er-clear-all Emacs function
no~ arguments, completely clears the minibuffer .•

~,

minibuffer-response Emacs function
ta~es two arguments; the first is a prompt string, and the
second is either NL or ESC - prompts the user with that
·string in the minibuffer, requiring that termination
character. Returns the string result of the user's typing.

minibuffer-clear Emacs function
cl~ars ~he current line of the minibuffer.

B-21 CJ52-01

I
I

I

/

minibuffer-print Emacs function
takes any number of arguments, expected to be strings or
symbols, catenates and prints them in the minibuffer.

minibuffer-print-noclear Emacs function
like minibuffer-print, but appends these strings to the last
active line of the minibuffer.

ncone Lisp function
like append,. but destructively rethreads its arguments to
produce its result. Ba carefuL to utilize the result value
of nconc.-.,

negate-minor-mode Emacs function
asserts that a minor mode (specified by its symbol. argument)
is no longer in effect in the current buffer. The mode is
removed from the mode line at the next redisplay.

next-line Emacs function
places the current point in the current buffer at the
beginning of the next line in that buffer.

nil Lisp global variable
its valu~ is itself, nil, which is both the indicator of
falsity and the emtpy list.

NL Emacs global variable
a symbol whose printname is an ASCII newline character.

not Lisp predicate
returns truth if its argument is the symbol "nil".

nreverse Lisp function
like reverse, but destructively rethreads the list it is
given. Be careful to use the return value of nreverse.

null Lisp predicate
returns truth if its argument is the symbol "nil".

null-stringp Emacs predicate
returns truth if its argument is a null string or the symbol
whose printname has no characters.

nuwindows Emacs per-buffer variable

or

the number of windows on the
minibuffer or mode line).

Lisp special form

screen {not including

evaluates all of its subforms sequentially until one is
evaluated cu anything but nil, or its last subform is
evaluated, whichever comes first. Returns the last form it
evaluates.

B-22 CJ52-Ql

pll-mode-hook Emacs global variable
if bound to non-nil, its binding is assumed to be a symbol
that can be called as a function as the last action of Emacs
upon entering PLjI mode in a buffer. Used to customize key
bindings, etc.

point-mark-to-string Emacs function
returns as a string a copy of all text between the mark
given as an argument and the current point in the current
buffer.

point>markp Emacs predicate
takes a mark as an argument. Returns truth if the current
point is further on in the buffer than the place represented
by that mark.

prev-line Emacs function
moves the point to the beginning of the previous line of the
current buffer.

previous-buffer Emacs per-buffer variable
the symbol of the previous buffer Emacs was in.

print Emacs function
prints out (to normal Multics output)
representation of its argument.

process-char Emacs function

the printed

called on a fixnum that is an ASCII character
reoresentation= interorets that character (including reading
more, if necessary) -as an Emacs request.

process-dir Emacs global variable
the pathname (a character string) of the process directory
of the process using Emacs.

prog Lisp special form
sequentially evaluates forms
local variables and labels.
supplied to "return".

progl Lisp special form

within it, allowing use of
Returns nil, or the value

evaluates sequentially all of the forms within it, returning
the value of the first.

prog2 Lisp special form
evaluates sequentially all of the forms within it, returning
the value of the second.

progn Lisp special form
evaluates sequentially all of the forms within it, returning
the value of the last.

B-23 CJ52-Ql

I protect Lisp special form
I evaluates and returns the value of its first subform. The
I remaining forms are then evaluated according to the success
I or failure of the first form's evaluation, as specified by
I special clauses.

putprop Lisp function
puts its second argument as the property specified by its
third argument on its first argument, which must be a
symbol.

read-from-strinq Lisp function
performs a Lisp ~read~ operation on the contents of the
string supplied, creating (or finding) and returning the
Lisp object whose printed representation was specified by
the string.

read-in-file Emacs function
takes' a pathname argument; reads it into the current buffer.

read-only-flag Emacs per-buffer variable
when set (when buffer-Modified-flag has not
prevents a user from modifying the
pseudo-editable displays (like DlRED).

redisplay Emacs function

yet been set)
buffer. For

updates the screen to reflect all changes in buffers on
display.

redisplay-current-window-relative Emacs function
takes a line number on which to position the current line of
the current buffer in the current window, where it is
assumed to be on display. What- "L wi th an argument does.

regexp-search Emacs function
like forward-search but does a "regular expression" search
(as ESC / does).

register-local-variable Emacs function
sets up a per-buffer variable.

register-option Emacs function
sets up an Emacs user option. First argument is a symbol
(that is the option name and variable) and second argument
is a default value.

release-mark Emacs function
takes a mark as an argument. Invalidates that mark, and
frees Emacs from having to manage it any more:

B-24 CJ52-01

report-error Emacs function
of two arguments, error-code and error-information, aborts
the current computation and prints an error.

report-error-noabort Emacs function
of two arguments, error-code and error-information, prints
an error without aborting.

return Lisp function
returns a value from a do, prog, do-times, or do-forever.

reverse Lisp function
takes a list as an argument, returns a list with the same
elements but in opposite order.

reverse-regexp-search Emacs function
like reverse-search but does a "regular expression" search.

reverse-search Emacs function
searches backward for its (string or symbol) argument from
the current point in the current buffer, as does AR (which
uses it). Returns truth and moves point to before this
string if the search succeeds.

ring-tty-bell Emacs function
beeps the tty bell.

rmail-mode-hook Emacs global variable
if bound to non-nil, its binding is assumed to be a symbol
that can be called as a function as the last action of Emacs
upon entering RMAIL mode in a buffer. Used to customize key
binding?1 etc.

rotate-kill-ring Emacs function
rotates the kill ring.

rplaca Lisp function
first argument is a cons, the second is anything else. The
second argument is made to be the car of the cons, which is
returned as a value.

rplacd Lisp function

2/83

first argument is a cons, the second is anything else. The
second argument is made to be the cdr of the cons, which is
returned as a value.

B-25 CJ52-01A

Rprinc Emacs function
to be used only by CTLS; "sends" a character string in raw
mode to the terminal. This function does not work unless
invoked by the CTL at redisplay time.

Rtyo Emacs function

2/83

to be used only by CTLS; "sends" a single character,
specified by numeric ASCII value, in raw mode to the
terminal. This function does not work unless invoked by the
CTL at redisplay time.

B-25.1 CJ52-01A

samepnamep Lisp predicate
returns truth if both arguments are symbols of the same
printname, or strings of the same character-string value.

save-excursion Emacs special form
remembers where the point was in the current buffer when it
was invoked, and restores it to there after evaluating the
forms vithin. The'value of save-excursion is the value of
its~ last, evaluation.,

save-excursion-buffer Emacs special- form
remembers what buffe~ it was in when invoked, and restores
Emacs to be in that buffer when exited after evaluating the
forms within.

I save-excursion-on-error Emacs special form
I remembers where the point was in the current buffer when it
I was invoked, and restores it to there if an error occurs
I while evaluating the forms within.

search-back-first-charset-line Emacs function
takes a charscan table as an argument. Scans ,backward in
rh~ ~~'rre""l.r ,~ 1 ~' ... lo._ - ~"' ... -""'~ , .. ~ p,", ... lo._ .. ~,..~+- '"'~ ________ -_ l'.; 1..1.,''"' '"'~~.; '"-U .. "' ... ,,'"' t-'''' ... ~I'-....... ,",v '"", ... "' ... ~"'- v-

a character in this charscan table. Returns truth and moves
point if it succeeds.

search-back-first-not-charset-line Emacs function
takes a charscan table as an argument. Scans backward in
the current line until the current point is to the right of
a character not in this charscan table. Returns truth and
moves point if it succeeds.

search-charset-backward Emacs function
takes a charscan table as an argument. Scans backward in
the current buffer until the current point is to the right
of a character in this charscan table. Returns truth and
moves point if it succeeds.

search-charset-forward Emacs function
takes-a charscan table as an argument. Scans forward in the
current line until the current point is to the left of a
character in this charscan table. Returns truth and moves
point if it succeeds. '

search-failure-annunciator Emacs function
indicates that a search has failed, beeps, and aborts. To
be used by search requests.

search-for-first-charset-line Emacs function
takes a charscan' table as an argument. Scans forward in the
current line until the current point is to the left of a
character in this charscan table. Returns truth and moves

• • s: • ..:.I pOlnt l~ It succaeus.

B-26 CJ52-01

search-for-first-not-charset-line Emacs function
takes a charscan table as an argument. Scans forward in the
current line until the current point is to the left of a
character not in this charscan table. Returns truth and
moves point if it succeeds.

search-not-charset-backward Emacs function
takes a charscan table as an argument. Scans backward in
the current buffer until the current point is to the right
of a character in this charscan table. Returns truth and
moves point if it succeeds.

search-not-charset-forward Emacs function
takes a charscan table as an argument. Scans forward in the
current buffer until the current point is to the left of a
character not in this charscan table. Returns truth and
moves point if it succeeds.

select-buffer-find-window Emacs function
tries to put a buffer on the screen. See the section on
window management.

select-buffer-window Emacs function .
takes a buffer symbol and a line count as argument, and
tries to get that buffer on the screen, putting it in the
current window if it is not now on the screen. See the
section on window management.

select-window Emacs function
takes a window number as argument,.
(selects) that window.

selected-window Emacs per-buffer variable

Moves the cursor to

the window number of the window in which the cursor
currently appears.

set-buffer-self-destruct Emacs function
takes a buffer symbol as argument.
used, that buffer will be destroyed
exited.

set-key Emacs function

After this function is
the first time it is

assigns key bindings in the current buffer. Takes two I
arguments, the key name via a string or symbol, and the i
function name via a symbol. The key name can be anything I
like the names in the documentation, e.g., AX, AX, ESC ESC, I
AXq, control-p, c-p, meta-f, ESC Af, etc. See Section 15 of I
the Emacs Text Editor Users' Guide for a full description of I
acceptable key names. I

B-27 CJ52-01

set-mark Emacs function
creates a mark at the point where the current
the current buffer, and maintains it thereafter.
release-mark such marks, or use with-mark.

I set-permanent-key, set perm-key Emacs function

point is in
Be sure to

I sets a key to invoke a function in all buffers. Like
1 set-key, takes two arguments, the keyname via a string or
I- symbol,- and the function name, via a symbol. See Section lS
I of. the: Emacs Text Edi tor Users' Guide for- a full desc:.ription
1 of acceptable key names~

setq Lisp special form
assigns a value to a variable.

skip-back-to-whitespace Emacs function
moves current point backward in current buffer until a
whitespace- character (or the beginning of the -buffer,
whichever comes first) is to the left of it.

skip-back~whitespace Emacs function
moves current point backward in current
non-whitespace character (or _the beginning
whichever comes first) is to the left of it~

skip-back-whitespace-in-line Emacs function

buffer until a
of the buffer,

moves current point backward in current buffer until a
non-whitespace character (or the beginning of the line,
whichever comes first) is to the left of it.

skip-over-whitespace Emacs function
moves current point in current buffer forward over all
whitespace characters until the first non-whitespace
character.

skip-over-whitespace-in-line Emacs function
moves current point in current buffer forward over all
whitespace until the end of the line.

s~ip-to-whitespace Emacs function
moves current point in
non-whitespace characters
character.

stop-doing Emacs special form

current buffer
until the next

causes do/do-forever to exit, returning nil.

stringp Lisp p~edicate
returns truth if its argument is a string.

symbolp Lisp predicate
returns truth if its argument is a symbol.

B-28

over all
whitespace

CJ52-Ql

t Lisp global variable
its value is itself, which represents canonical truth.

tab-equivalent Emacs per-buffer variable
sets how many spaces a tab is "worth" (normally ten) in the
current buffer.

text-mode-hook Emacs global variable I
if bound to non-nil, its binding is assumed' to be a symbol I
that can be called as ,a function as the last action of Emacs I
upon entering TEXT mode in a buffer. Used to customize key I
bindings, etc. I

trace Lisp special form
causes Lisp functions to be traced.

unwind-protect Lisp special form
evaluates and returns the value of its first subform. The
remaining subforms are evaluated after the first form's
evaluation is finished, or when that first evaluation is
aborted. This is how you set up a "cleanup handler".

view-region-as-lines Emacs function
displays the region in the current buffer as local display.

whitespace-to-hpos Emacs function
places whitespace, in optimal tabs
current point in the current buffer,
specified (as argument) horizontal
reached.

window-adjust-Iower Emacs function

and spaces, at the
moving it until the
position has been

adjusts the lower boundary line of a window. First argument
is window number, second is how much to move it, signed.

window-adjust-upper Emacs function
adjusts the upper boundary line of a window. First argument
is window number, second is how much to move it, signed.

window-info Emacs function
returns a list of information about the window whose window
number is given as an argument.

wipe-point-rmark Emacs function
takes a mark as argument. Deletes all text in the current
buffer between the current point and this mark, saving it on
the kill ring unless without-saving is being used.

with-mark Emacs special form
creates a mark in the current buffer at the place where the
current point is when with-mark was invoked. The variable
whose name appears first in the with-mark form is bound to
this mark; with-mark frees this mark automatically.

B-29 CJ52-Ql

without-modifying Emacs special form
evaluates the forms within it, but the buffer is not marked
as modified even though these forms may modify it.

without-saving Emacs special form
evaluates the forms contained within it, but the automatic
saving of killed text on the, kill ring is suppressed.

wri te-out-file Emacs function"
takes a pathname argument. Wri tes the current buffer out too
that file ..

yesp Emacs predicate
takes a string argument. Asks the user that question in the
minibuffer, and returns truth in response to a "yes" answer,
rejecting all answers but "yes" or "no".

B-3Q CJ52-Ql

INDEX

MISCELLANEOUS

&arguments defcom keyword
3-63, 3-64, 3-66, 3-68,
3-69

&cleanup defcom keyword 3-66,
3-68, 3-69

&completions defcom keyword
3-66, 3-67

&documentation defcom keywo-rd
3-66

&epilogue defcom keyword 3-65,

&prologue defcom keyword 3-65,
3-68

&undo defcom keyword 3-67

(*rset t) mode 3-48

*nopoint global variable 2-19

+ function 2-2

-function 2-1

/(Lisp escape character) 2-11

//function 2-11

3-68, 3-69 < predicate 2~5

&inverse defcom keyword 3-67, = predicate 2-5
3-68

&negative-function 3-66

&negative-function defcom
keyword 3-68

&numeric-argument defcom
keyword 3-61, 3-62, 3-66,
3-68

&numeric-function defcom
keyword 3-62

&prologue 3-66

> predicate 2-5

A

add-error-code function 3-60

addition
+funct-ion 2-1

alphalessp predicate 2-6

and special form 2-11

append function 2-16

i-1 CJ52-01A

apply-catenate function 2-18,
3-31

ascii function' 3-43

assert-minor-mode function
3-39

a~ predicat~ 3-12

at~beginning-of-buffer
---~: __ .. _ "_11'
l:.H.t:\.6.L'-Cl~C· "J-.J.. ..

at-end-of-buffer predicate
3-11

at-white-char predicate, 3-11

buffer-minor-modes variable
3-23, 3-39

buffer-modified-flag variable
3-22 -

buffet-on-display-in-window
f.unction 3-56
predicate- 3-56

builtin function
+. 2-2
list
print
rplaca
rplacd

2-14
2-2

2-15
2-15

attribute C
see symbol, property

autophanic request 3-52

B

back-at predicate 3-12

backquote 2-18, A-l

base global variable 2-19

binding 2-3, 2-16

bolp predicate 3-11

breakpoint 4-4

buffer
dont-notice-modified-buffer

3-29
ldebug 4-1
nontemporary 3-28
symbol 3-27, 3-52
temporary 3-27

buffer-creating 3-3, 3-26

buffer-kill function 3-29

car 2-13

catenate function 3-3i

cdr 2-13

character object 3-40

character/number conversion
3-43

characters
searching for 3-33

charscan-table function 3-33

charset-member predicate 3-34

cleanup handler
protect 3-10

cleanup-handler
unwind-protect 3-9

command executing
Multics 3-58

command-quit function 3-18

comment 2-1

i-2 CJ52-Q1A

comment-column variable 3-22

comment-prefix variable 3-22

comout-get-output 3-59

compilation 3-48, 3-49

compiling an extension 3-48

cond special form 5-10

cons 2-13

construct
see cons

control argument
-line_length 5-3
-line speed 5-3
-page-length 5-3
-query 5-2
-terminal_type 5-2

conversion
character/number 3-43
number/character 3-43

CTL 5-1

CTL functions
see DCTL·

eto! function 3-43

cur-hpos function 3-6

curchar function 3-40

current-buffer variable 3-29

current-buffer-mode variable
3-22, 3-38

cursor position
cur-hpos 3-6
go-to-hpos 3-6
predicates reflecting 3-11

D

DCTL-clear-rest-of-screen
function 5-6

DCTL-delete-chars function
5-8

DCTL-delete-lines function
5-7

DCTL-display-char-string
function 5-5

DCTL-epilogue function 5-7

DCTL-init function 5-2, 5-4,
5-6

i-3

DCTL-insert-char-string
function 5-7

DCTL-insert-lines functions
5-7

DCTL-kill-line function 5-6

DCTL-position-cursor function
I 5-5

DCTL-prologue function 5-7

DCTL-scroll-down-region
function 5-9

DCTL-scroll-up-region function
5-8

debug-e function 3-48

debugging 3-48, 4-1

decimal-rep function 2-18,
3-15

declarations 3-49

default specification 3-63

defcom 3-61, 3-62, 3-63, 3-64,
3-65, 3-66, 3-67, 3-68

CJ'52-Q1A

defcom (cont)
keywords 3.-61

'arguments 3-63, 3-64,
3-66, 3-68, 3-69

&cleanup 3-66, 3-68, 3-69
'completions 3-66, 3-67
,documentation 3-66
&epilogue 3-65, 3-68,

3-6Q
'inverse 3-67, 3-68·
'negative-function 3-66,

3-68·
&numeric-argument 3-6~,

3-62, 3-66, 3-68
'numeric-function 3-62
'prologue 3-65, 3-68
'undo 3-67

defprop function 3-37

defprop special form 3-37,
3-50.

defvar special form 3-19

delete-white-sides function
3-13

delete-window function 3-56

deleting
line 3-3
region 3-3

der-wahrer-mark variable 3-22

destroy-buffer-contents
function 3-29

dispatch-on-current-char
special form 3-42

dispatch-on-lefthand-char
special form 3-42

display 3-25

display-as-printout special
ferm 3--26

display-buffer-as-printout
function 3-25

display-corn-error function
3-17

display-com-error-noabort
f.unction 3-17

display-error function 3-16

display-error-noabort function
3-17

display-error-remark function
3-18

division
//function 2-11

do special form 5-11

do-forever special form 2-9

do-times special form 3-5

documenting requests 3-50

i-4

'doc 3-66

dont-notice-modified-buffer
function 3-29

E

element 2-13

else keyword 2-7

empty-buffer-p predicate 3-12,
3-28

end-local-displays function
3-24

entry value 4-3

env-dir global variable 3-20

eolp predicate 3-10

CJ52-01A

epilogue 3-65

eq predicate 2-6, 3-40, 5-4

error 3-8.1
Emacs error system 3-60

functions 3-60
handling 4-1
table 3-59
trap ent~y 4-3

error-table function

error table function -
ESC && (ldebug) 4-4

ESC G (ldebug) 4-2,

ESC global variable

ESC L {ldebug} 4-4

ESC P (ldebug) 4-4

ESC R (ldebug) 4-4

ESC T (ldebug) 4-3

ESC "C(lisp) 3-4·9

ESC "S (ldebug) 4-5

3-60

3-59

4-3

3-16

escape character (Lisp) 2-11

establish-local-var function
3-21

evaluation 2-2
conditional 2-7
of functions calls 2-3
of numbers 2-3
of strings 2-3

execution
see evaluation

explode function 2-18

explodec function 3-27

i-5

extension
definition of 1-1

e cline 3-58 - -
F

file
reading/writing 3-3

fill-mode-delimeters variable
3-39

find-buffer-in-window function
3-52

find-file-subr function 3-3

firstlinep predicate 3-11

fixp predicate 2-6

form 2-2, 2-3, 2-4, 2-16
not 2-11
special 2-6

and 2-11
cond 5-10
defprop 3-37, 3-50
defun 2-7
defvar 3-19
dispatch-on-current-char

3-42
dispatch-on-lefthand-char

3-42
display-as-printout 3-26
do 5-11
do-forever 2-9
do-times 3-5
get 3-27
go 2-10
if 2-7
if-at 3-41
if-back-at 3-41
let 2-9
or 2-11
prog 2-10
progl 2-12
progn 2-11
protect '3-10
putprop 3-27

CJ52-01A

form (cont)
special

save-excursion 3~7
save-excursion-buffer

3-29
save-excursion-on-error

3-7
setq 2-8

. unwind-protect 3-9
with-mark 3-6-
without-modifying 3-8
without-saving 3-8

stop-doing- 2-9

format-to-col function 3-14

forward-search function 3-3

forward-search-in-line
function 3-15

fpathname variable 3-22

full-redisplay function
3-32, 3-33

~-.1 - -,

funcall function 3-38, 3-39

function 2-1, 2-4
add-error-code 3-60
append 2-16
apply-catenate 2-18, 3-31
ascii 3-43
assert-minor-mode 3-39
buffer-kill 3-29
buffer-on-display-in-window

3-56
car 2-13
catenate 3-31
cdr 2-13
charscan-table 3-33
command-quit 3-18
comout-get-output 3-59
cons 2-13
CtoI 3-43
cur-hpos 3-6
curchar 3-40
DCTL-clear-rest-of-screen

5-6·
DCTL-delete-chars
DCTL-delete-lines

1:_0
..; u

5-7

1'-6

function (cont)
DCTL-display-char-string

5-5
DCTL-epilogue 5-7
DCTL-ini t 5-4
DCTL-insert-char-string 5-7-
DCTL-insert-lines 5-7
DCTL-kill-line 5-6
DCTL-position-cursor 5-5
DCTL-prologue 5-7
DCTL--scroll-down-region 5-9
DCTL,-scroll-up-region 5-8
decimal-rep 2-18~ 3-15
definition 2-1
delete-white-sides 3-13
delete-window 3-56
destroy-buffer-contents

3-29
display-buffer-as-printout

3-25
display-corn-error 3-17
display-com-error-noabort

3-17
"';;C:T"\l:::au-o,..,.."",,.. <-1k
~~~~~~~ ~_.~_ ~_w 

display-error-noabort 3-17 
display-error-remark 3-18 
dont-notice-modified-buffer 

3-29 
Emacs requests 3-1 

exceptions 3-2 
end-local-displays 3-24 
error-table 3-60 
error table 3-59 
establish-local-var 3-21 
explode 2-18 
explodec 3-27 
e cline 3-58 
fTnd-buffer-in-window 3-52 
find-file-subr 3-3 
for CTLs 5-2 
format-to-col 3-14 
forward-search 3-3 
forward-search-in-line 3-15 
full-redisplay 3-4, 3-32, 

3-33 
funcall 3-38, 3-39 
get-char 3-43 
get-search-string 3-57 
go-t-o-hpos 3-6 
go~to=mark 3~6 

go-to-or-create-buffer 3-3, 
3-27 

CJ52-01A 



function (cont) 
init-local-displays 3-24 
insert-string 3-4 
ItoC 3-43 
kill~pop 3-8.1, B-5.1, 

B-19.1 
kill-ring-top 3-8.1, B-5.1, 

B-19.1 
killsave-string 3-8 
lefthand-char 3-41 
list 2-14 
list* 2-15 
local-display-current-line 

3-25 
local-display-generator 

3-24 
maknam 2-18, 3-27 
mapc 3-39 
minibuffer-clear 3-17 
minibuffer-clear-all 3-16 
minibuffer-print 3-15 
minibuffer-print-noclear 

3-17 
minibuffer-response 3-16 
ncone 2-16 
negate-minor-mode 3-39 
next-line 3-3 
nreverse 2-16 
point-mark-to-string 3-3, 

3-14 
prev-line 3-3 
process-c~ar 3-44 
read-from-string 2-19 
read-in-file 3-3 
redisplay 3-31 
redisplay-current-window 

-relative 3-4, 3-33 
regexp-search 3-3 
regexp-search-in-line 3-15 
register-local-variable 

3-20 
register-option 3-35 
release-mark 3-5 
report-error 3-60 
report=error~noabort 

function 3-60 
reverse 2-16 
reverse-regexp-search 

B-8, B-25 
reverse-search 3-3· 
reverse-search-in-line 3-15 
ring-tty-bell 3-18 

function (cont) 
rotate-Kill-ring 3-8.1, 

i-7 

B-S.1, B-25 
Rprinc 5-4 
Rtyo 5-4 
search-hack-first 

-charset-line 3-34 
search-back-first-not 

-charset-line 3-34 
search-charset-backward 

3-34 
search-char set-forward 3-34 
search-failure-annunciator 

3-57 
search-for-first 

-charset-line 3-34 
search-for-first-not 

-charset-line3-34 
search-not-charset-backward 

3-34 
search-not-charset-forward 

3-34 
select-buffer-find-window 

3-54 
select-buffer-window 3-53 
select-window 3-56 
set-buffer-self-destruct 

3-28 
set·-key 3-38 
set-mark 3-5 
skip-back-to-whitespace 

3-13 
skip-back-whitespace 3-13 
skip-back-whitespace-in-line 

3-13 
skip-over-whitespace 3-13 
skip-over-whitespace-in-line 

3-13 
skip-to-whitespace 3-13 
stringlength 5-5 
view-region-as-lines 3-25 
whitespace-to-hpos 3-14 
window-adjust-lower 3-56 
window-adjust-upper 3-56 
window-info 3-56 
wipe-point-mark 3-3, 3-5 
write-out-file 3-3 

function call 2-4 
syntax 2-3 

CJ52-Q1A 



G 

get special form 3-27 

get-char function 3-43 

get-search-string function 
3-57 

given-tty-type variable 0-4. 

global variable 
nil 2-8 

if-back-at special form 3-41 

indicator 3-26 

init-local-displays function 
3-24· 

insert-string function 3-4 

interned symbol 3-26 

ItoC: function 3-43 

see variable, global K 
t 2-8 

go spec.ial form 2-10 

go-to-hpos function 3-6 
as predicate 3-6 

go-to-mark function 3-6 

go-to-or-creat-buffer function 
3-3 

go-to-or-create-buffer 3-26 

go-to-or-create-buffer 
function 3-26, 3-27 

H 

heterophanic request 3-52 

hook 
mode 3-23 

I 

ibase global variable 2-19 

if special form 2-7 
syntax 2-7 

if-at special form 3-41 

i -.8 

keyword 
else 2-7 

kill-pop function 3-8.1, 
B-·S.1, B-19.1 

1 ... ! , , _ .... ! ___ .... _.-.. I! .. ., ... _ .... : ........... ., _ 0 1 
~J.J..J..-l.J.U':J-L.V.tJ J.U1H .. L.J.VU oJ-v ... , 

B-S.l, B-19.1 

killsave-string function 3-8 

label 2-10 

last-minibuffer-r~sponse 
variable 3-16 

lastlinep predicate 3-11 

Idebug mode 

ldebug-display-where 
-editor-was 

ESC "S 4-5 

ldebug-list-breaks 
ESC L 4-4 

ldebug-reset-break 
ESC R 4-4 

CJ52-01A 



ldebug-return-to-emacs 
-top-level 

ESC G 4-2 

ldebug-trace-stack 
ESC T 4-3 

lefthand-char function 3-41 

let special form 2-9 
syntax 2-10 

line-is-blank predicate 

Lisp debug mode 
see ldebug 

Lisp macro A-1 
see macro 

Lisp macros 3-49 

list 2-13 

list function 2-14, 2-15 

3-12 

loading an extension 3-1, 
3-45 

local display 3-24 

local v~riable 
see variable, local 

local-display-current-line 
function 3-25 

local-display-generator 
function 3-24 

looking-at predicate 3-2, 
3-11 

looping 
See do-forever 2-9 

M 

macro 2-17 

macro character 
backquote A-1 
comma A-1 

major mode 
see mode 

maknam function 2-18 

maknem function 3-27 

mapc function 3-39 

mark 3-5 
go-to-mark 3-6 
predicates 3-11 
release-mark 3-5 
save-excursion 3-7 
set-mark 3-5 
temporary 3-5 
wipe-poi nt-mark 3-3 
with-mark 3-6 

mark-at-current-point-p 
predicate 3-11 

mark-on-current-line-p 
predicate 3-12 

mark-reached predicate 3-11 

mark-same-line-p predicate 
3-12 

i-9 

memq predicate 3-39 

minibuffer 
functions 
yesp 3-12 

3-15· 
3-16, 3-17 

minibuffer-clear function 
3-17 

minibuffer-clear-all function 
3-16 

minibuffer-print function 
3-15 

minibuffer-print-noclear 
function 3-17 

CJ52-01A 



minibuffer-respons~ function 
3-16 

minor mode 
see mode 

mode 
hook 3-23 
ldebug 4-1 
major 3-37 
minor 3-17, 1-39 

mode-hook 3:-39· 

multiple windows 
see· windows 

multiplication 
*function 2-1 

N 

names 
choosing 3-36 

ncone function 2-16 

negate-minor-mode function 
3-39 

negative function 3-66 

negative-function defcom 
keyword 3-66 

next-line function 3-3 

nil global variable 2-8 

nil symbol 3-4 

NL global variable 3-16 

not form 2-11 

nreverse function 2-16 

null-stringp predicate 3-12 

numarg global variable 3-4 

number/character conversion 
3-43 

'-

numeric arguments 3-4 
do-times 3-5 

nuwindows variable 3-55 

a 

obarray 2-12, 3-26 

object 2-6, 2-18 

objec~ program 3-48 

operand 2-10-

option 3-35 

or special form 2-11 

ospeed variable 5-3 

p 

parentheses 2-3 

per-buffer variable 
see variable, local 

point-mark-to-string function 
3-3, 3-14 

point>markp predicate 3-11 

pop-up window mode 3-53 

predicate 2-5 

i-10 

< 2-5 
- 2-5 
> 2-5 
alphalessp 2-6 
~.. 1_1" Q'- oJ __ 

at-beginning-of~buffer 3-11 
at-end-of-buffer 3-11 

CJ52-01A 



predicate (cont) 
at-white-char 3-11 
back-at 3-12 
bolp 3-11 
buffer-on-display-in-window 

3-56 
char set-member 3-34 
empty-buffer-p 3-12, 3-28 
eolp 3-10 
eq 2-6, 3-40, 5-4 
firstlinep 3-11 
fixp 2-6 
go-to-hpos 3-6 
lastlinep 3-11 
line-is-blank 3-12 
looking-at 3-2, 3-11 
mark-at-current-point-p 

3-11 
mark-on-current-line-p 3-12 
mark-reached 3-11 
mark-same-line-p 3-12 
memq 3-39 
null 2-6 
null-stringp 3-12 
point>markp 3-11 
samepnamep 2-6 
stringp 2-6 
symbolp 2-6 
yesp 3-12 

prev-line funct.ion 3-3 

previous-buffer variable 3-29 

print function 2-2 

printname 2-12 

problem 
monitoring 3-21 

proces-dir global variable 
3-20 

proCess=char function 3-44 

prog special form 2-10 

prog1 special form 2-12 

progn special form 2-11 

prologue 3-65 

prompting 
&prompt 3-64 
minibuffer-response 3-16 

property 2-16, 3-26 
documentation 3-50 

protect special form 3-10 

putprop special form 3-27 

R 

read-from-string function 
2-19 

read-in-file function 3-3 

read-only-flag variable 3-22 

redisplay 3-31, 3-33 

redisplay function 3-31 

redisplay-current-window 
-relative function 3-4, 

3-33 

regexp-search function 3-3 

regexp-search-in-line function 
3-15 

region 
copying 3-3 
deleting 3-3 

region scrolling 5-8 

region-scroll-availablep 
variable 5-8 

register-Iocal-variable 
function 3-20 

register-option function 3-35 

i-11 CJ52-01A 



registering a variable 
functions 3-20 

release-mark function 3-5 

report-error function 3-6Q 

return function 2-9 

returned. value 2-1 

reverse-regexp-search function 
B=8, B=25 

reverse function 2-16 

reverse-search function 3-3 

reverse-search-in-line 
function 3-15 

ring-tty-bell function 3-18 

rotate-kill-ring function 
3-8.1, B-5.1, B-25 

rplaca function 2-15 

rplacd function 2-15 

Rprinc function 5-4 

Rtyo function 5-4 

s 

samepnamep predicate 2-6 

save-excursion special form 
3-7 

save-excursion-buffer special 
form 3-29 

save-excursion-on-error 
special form 3-7 

scanning character 3=33 

screen 3-33 

scrolling 
region 5-8 

search-back-first-charset-line 
function 3-34 

search-back-first-not 
-charset-line function 3-34 

search-charset-backward 
function 3-34, 

search-charset-forward 
function 3-34 

search-failure-annunciator 
function 3-57 

search-for-first-charset-line 
function 3-34 . 

search-for-first-not 
-char set-line function 3-3~ 

search-not-charset-backward 
function 3-34 

search-not-charset-forward 
function 3-34 

searching 3-57 
forward-search-in-line 
foward-search 3-3 
get-search-string 3-57 
regexp-search 3-3 
regexp-search-in-line 
reverse-regexp-search 

B-25 

3-15 

3-15 
B-8, 

reverse-search 3-3 
reverse-search-in-line 3-15 
search-failure-annunciator 

3-57 

select-buffer-find-window 
function 3-54 

select-buffer-window function 
3-53 

select-window function 3-56 

selected-window variable 3-55 

i-12 CJS2-Q1A 



set-buffer-self-destruct 
function. 3-28 

set-key (ESC X) 3-1 

set-key function 3-21, 3-38 

set-mark function 3-5 

set-permanent-key (ESC X) 3-1 

setq special form 2-8 

skip-back-to-whitespace 
function 3-13 

skip-back-whitespace function 
3~13 

skip-back-whitespace-in-line 
function 3-13 

skip-over-whitespace function 
3-13 

skip-over-whitespace-in-line 
function 3-13 

skip-to-whitespace function 
3-13 

special form 
defcom 3-61 
see form 

special varibale 
see variable 

symbol (cont) 
interned 3-26 
property 3-26 
registry 3-26 

symbolp predicate 2-6 

T 

t global variable 2-8 

tab-equivalent variable 3-22 

temp-mark variable 3-5 

temporary 
mark 3-5 
variable 2-10 

terminal support 5-1 

terminal type file 5-1 

the-mark global variable 3-5 

trace 4-5 

tracing function 4-4 

tty-type variable 5-4 

u 

global unwind-protect special form 

stop-doing form 2-9 

string form 3-40 

stringlength function 5-5 

stringp predicate 2-6 

subtraction 
-f.unction 2-1. 

symbol 2-6, 2-16 
definition of 2-12 

3-9 

v 

variable 2-3 

i-13 

binding 2-3 
current-buffer 3-29 
defvar 3-19 
given-tty-type 5-4 
global 2-4, 3-18, 3-35 

*nopoint 2-19 
alm-mode-hook 3-23 

CJ52-01A 



variable (cont) 
global 

base 2-19 
buffer-creation-hook 3-24 
buffer-destruct ion-hook 

3-24 
buffer-entrance-hooks 

3-24 
buffer-exit-hook 
character object 

. close-line-hook 
current-buffer 
env-dir 3-20 

3-24 
3-41. 

3-24 
3--27 

ESC 3-16 
fill-mode-delimeters 3-39 
fortran-mode-hook 3-23 
ibase· 2-19 
ldebug-mode-hook 3-23 
lisp-mode-hook 3-23 
mail-mode-hook 3-23 
nil 2-8 
Nt.. 3-16 
numarg 3-4· 

I ~11-m~~A-~~~~ ~?~ 1:" ....... ........... ,... .... ... ....,.~...... ..,- .. .""" 

process-dir 3-20 
rmail-mode-hook 3-23 
see mode hook 
t 2-8 
the-mark 3-5 
X, Y 5-4 

last-minibuffer-response 
3-16 

ldebug-level 4-2 
local 3-20 

automatically registered 
3-22 

buffer-minor-modes 3-39 
current-buffer-mode 3-38 

nuwindows 3-55 
option 

Idebug-base 4-2 
Idebug-ibase 4-2 
Idebug-prinlength 4-2 
Idebug-prinlevel 4-2 

ospeed 5-3 
parameter 2-4 
previous-buffer 3-29 
region-scroll-availablep 

5-8 
~--!-~--!-- ~-~~ L.t:yj,~l;.t:L.j,Jl':j .J-~U 

selected-window 3-55 

variable (cont) 
special 

se global 
temp-mark 3-5 
temporary 2-4, 2-9 
trace-break-fun 4-7 
trace-printer 4-7 
tty-type 5-4 

view~region-as-lines function 
3-25 

w 

whitespace 
functions 3-13 
management 3-13 

whitespace-to-hpos function 
3-14 

window 3-33 
number 3-55 
pop-up window mode 3-53 
selected 3-55 

window-adjust-lower function 
3-56 

window-adjust-upper function 
3-56 

window-info function 3-56 

windows 
multiple 3-52 

wipe-point-mark function 3-3, 
3-5 

with-mark special form 3-6 

without-modifying special form 
3-8 

without-saving special form 
3-8 

write-out-file function 3-3 

i-14 CJ52-01A 



x 

X global variable 5-4 

y 

Y global variable 5-4 

yesp predicate 3-12 

i-15 CJ52-Q1A 



·.------- I 
I 

( 
.:;0; 

..J 

~ 
·z o 

..J 
<{ 

I­
:::> 
u 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 

( 

( 

HONEYWELL INFORMATION SYSTEMS 
Technicaj Publications Remarks Form 

MULTICS 
TITLE EMACS EXTENSION WRITER'S GUIDE 

(Includes Addendum A) 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate tei:hnical personnel 
and action will be taken as required. Receipt of aU forms will be n 
acknowledged; however, if you require a detailed reply, check here. I-..J 

FROM: NAME ----______________________________________ ___ 

TITLE ____________________________ . ______________ ___ 

COMPANY ---------------------------------------------
ADDRESS ________________________________________ __ 

ORDER No.1 CJ52-01 

. DATED I JULy 1982 

DATE ______ _ 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

111II1 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 

I 
I 
I 

t ___ 

I ~ 
I ...! 

I <.:l 
I Z 
~g 

C 
I 
I 
I 
I 
I 
I 

« 
o 
-I 
o 
~ 

I w 
I z 
I ...I 

I ~ 
~o 
I ~ 
I 0 

...! 
o 
~ 

c. 



Together, we can find the answers. 

Honeywell 
Honeywell Information Systems 

U.S.A.: 200 Smith St., MS 486, Waltham, MA02154 
canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 

Mexico: Av. Constituyentes 900, 11950 Mexico, D.F. Mexico 
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano 

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

40846, 1C1186, Printed in U.SA CJ52-01 


	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08.0
	3-08.1
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05.0
	B-05.1
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19.0
	B-19.1
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25.0
	B-25.1
	B-26
	B-27
	B-28
	B-29
	B-30
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	replyA
	replyB
	xBack

