Multics

PL/1
Programming
with Multics
Subroutines

Reference Handbook
Course Code F15C

ISSUE DATE: April 1, 1981
REVISION: 1
~ REVISION DATE: September, 1983

Copyright (c) Honeywell Information Systems Inc.,' 1983

The information contained herein is the exclusive property of Honeywell
Information Systems, Inc., except as otherwise indicated, 'and shall
not be reproduced, in whole or in part, without explieit written
authorization from the company.

Honeywell disclaims the implied warranties of merchantability and fitness
for a particular purpose and makes no express warranties except as may
be stated in its written agreement with and for its customer.:
In no event is Honeywell liable to anyone for any indirect, special or
consequential damages. The information and specifications: in this
document are subject to change without notice. '

Printed in the United States of America
All rights reserved

COURSE DESCRIPTION

F15C PL/I Programming with Multics Subroutines

Duration: Five Days

- Intended For: Advanced Multics PL/I programmers who need to use Multics

subroutines to perform I/0, manipulate files in the
storage system, and/or write commands and active
functions.

Synopsis: This course introduces the student to the system
- subroutine repertoire to include subroutines that:
create, delete, develop pointers to, and return status
information about storage system entities (hes_); perform
stream and record I/0 to files and devices via I/0
switches (iox_); enable command and active function
procedures to properly interface to the standard command
processing environment (cu)). Interactive workshops
are included to reinforce the material presented.

Objectives: Upon completion of this course, the student should be
able to: write PL/I programs containing calls to system
subroutines which: '

1. Create, destroy, and obtain status information on
segments, directories, and links. ‘

2. Address and manipulate data directly in the virtual
memory (without input/output statements).

3. Interface directlywith the Multics I/0 System (ioa_,
iox).

4, Implement "system standard" commands and active
functions.

Prerequisites: Advanced Multics PL/I Programming (F15B) or equivalent
° ~experience.

[T Py

Major Topics: Advanced Use of Based Variables
v Subroutine Interfaces to the Storage System
and ACL
Multics Implementation of Condition Handling
The Multics I/0 System
Writing Commands and Active Functions

i ; F15C

F15C TOPIC MAP

DAY MORNING TOPICS AFTERNOON TOPICS
WELCCME/ ADMINISTRATION
............... BASED STORAGE
REVIEW OF PL/I ATTRIBUTES
0 T
PL/I STORAGE MANAGEMENT
............... WORKSHOP #2
WORKSHOP #1
INTRODUCTION TO SUBROUTINES
............... MULTICS CONDITION MECHANISM
ADVANCED BASED VARIABLE USAGE
2 o o a e et aa e = m a2 alea e e e e m ... =.= = =
WORKSHOP #3 WORKSHOP #uU
.THE MULTICS iox_ SUBROUTINE
THE MULTICS I/0 SYSTEM - - e . > = - .= - .- - - -
THE MULTICS ioa_ SUBROUTINE
S
WORKSHOP 45 WORKSHOP #6
STORAGE SYSTEM SUBROUTINES
STORAGE SYSTEM SUBROUTINES (CONTINUED)
§ Jo o o @ @ @ @ = = = @ = = ow mfe m e m = e w . e = e - = =
WORKSHOP #7 WORKSHOP #8
COMMANDS & ACTIVE FUNCTIONS REVIEW, QUESTIONS AND
B Jo @ = 2 o o e - e e 2.

WORKSHOP COMPLETION

ii

F15C

CONTENTS (con't)

Page

11-1
11=1

Topie XI Multies Storage System Subroutines--Continued .
. 11-4

Naming and Moving Directory Entries . . .
Affecting the Length of a File.
Manipulating the Address and Name Spaces.

. . 11-8
Examining the Address and Name Spaces . . .
o

11=15
Pathname, Pointer, Reference Name Conversion. 11-16
Topic XII Commands and Active Funeticons « « .+ . . 12=1
Commands. . . . e o s e s e e s o o o o o 12=1
Characterlstlcs of a Command e o o o o o 12=1
Differences Between a Command and a
Program. . o o o« o ¢ o o o o 2 o o o o o« 12=2
Reporting Errors. « ¢« « ¢ o« ¢ o o o o o o 12=3
Command I/O Y e s . 12-5

Other Subroutines Used in Wr1t1ng
Commands . . . e e s s e e o s s 12=8
An Example Of A Command e v o o e o s o o 12=14
Active Functions. . . +« ¢« v ¢ &« & o « o « « « 12=-16
Subroutines Used for Writing Active

Functlons. 3 . » . . 3 3 3 12-17
Reporting Errors. . ¢« « + ¢ o« « o o+ o« « » 12=19
An Active Function Example. 12=20
Commands and Active Functions . . . e v . 12=22
An Example Of a Command/Active Functlon . 12=23
Other Useful Subroutines. . « « « « ¢« « + « « 12=26
Appendix W WOrkshopS . o ¢ ¢ ¢ o o o o o e o o o o o o o » « W=1
Workshop One. e & e o e 2 e o & & e o *» o o o W"“
WOT‘ kShOp TWO] L] . . . - L] . » . W-3
Workshop Three. ¢« ¢« ¢ v ¢ ¢ s o o o o o o o o W=l
Workshop Four . . « ¢ o ¢« ¢« ¢ ¢ o ¢ o o o« o+ o« W=b
Workshop Five . . . ¢ v ¢ ¢ ¢« ¢ o ¢ o o o o« o W=T
Workshop SiX. o ¢ o ¢ o ¢« o o o o o s s o « » W=8
Workshop Seven. « « ¢ o o o o o s o« s o o » + W=9
WOl'kShOp Eig ht [[. . . L) w-1 1
Workshop Nine ¢« ¢ ¢« ¢ ¢ ¢ &« &« o« & « » W=12

v F15C

STUDENT BACKGROUND

PL/I Programming with Multics Subroutines (F15C)

NAME: ’ PHONE :

 TITLE:

COMPANY ADDRESS:

MANAGER: OFFICE PHONE:

INSTRUCTOR'S NAME:

Do you meet the prerequisite as stated in the "Course Description”
of the student text? 1If yes, check "a"™ or "b",
If no, check "c" or "d".

a [] Prerequisite satisfied by attending course indicated in "Course
Description".

[+ 4
~—
—
=

¢ s
lect equisite by

..
(]
el
[+
’.-l
<
[]
[
[(]
3
t
(]
¢
o]
0]
-3
el
[(]
3
0O
[{]
PanY
3
e
ko
(d
0
|
[}
o
-3
...l
(1]
&]
'._l
(<4
g

¢ [] Elected or instructed to attend course anyway.

d [] Was not aware of prerequisite.

What related Honeywell courses have you attended? Furnish dates
and instructors if possible.

(PLEASE TURN OVER)

vii F15C

3.

STUDENT BACKGROUND
PL/1 Programming with Multics Subroutines (F15C)

Check the boxes for which you have any related experience. (May
be other than Honeywell's)

[1 PL1 [1 coBOL [1 FORTRAN [] ASSEMBLY

(1 JcCL , [] OPERATIONS [-1 Gcos [1 MULTICS
[] NPS [1 GRTS (1cCP6 {] OTHER

Detail any experience you have had which is related to the
material in this course.

Objectives for attending this course (May check more than one).
] Require information to provide support for a system
To maintain an awareness of this product

To evaluate or compare its potentials

[
[
[.
[

[o }

Need update from a previous release
Require a refresher

]
]
] Required to use or implement
]
]
] Other:

viii F15C

HONEYWELL MARKETING EDUCATION
COURSE AND INSTRUCTOR EVALUATION FORM

INSTRUCTOR

COURSE

START DATE

LOCATION

STUDENT NAME (OPTIONAL)

In the interest of developing training courses of high quality,
and then improving on that base, we would like you to complete
this questionnaire. Your information will aid us in making
future revisions and improvements to this course. Both the

instructor and his/her manager will review these responses.

Please complete the form and return it to the instructor
upon the completion of the course. In questions 1 through
14, check the appropriate box and feel free to include additional
comments. Attach additional sheets if you need more room
for comments. Be objective and ‘concrete’ in your comments

-=- be critical when criticism is appropriate.

ix

F15C

TOPIC I

"Review of PL/I Attributes

Page
Classitication of Attributes . . e s e e s e o e o o o o 1=1
Usage Examples of Selected Attrlbutes. T
Aggregate Descriptors. . . « ¢ ¢ ¢ ¢ ¢ e 4 e e e s e 0 s 0 e s 1=T

1-1 F15C

Toric 1 REVIEW OF PL/1 ATTRIBUTES Toric 1

OBJECTIVES:

Upon completion of this toric. students should be able to:

1.

Declare variables in PL/1 usins full ranse of variable
attributes.

Determine which instance of a variable is beins referenced al
any siven point in a prosram.

Manirulate storase assregates (arrays and sltructures).

Write and use external procedures.

Set up 1t1he pProper entry declarations 1o use external
procedures.

Multics I-1 F15C

CLASSIFICATION OF ATTRIBUTES

®# A REVIEW LIST OF ATTRIBUTES. STARRED ATTRIBUTES ARE COVERED IN

DETAIL IN TOPICS 2, 3 AND 4. THIS CHAPTER PRESENTS USAGE EXAMPLES
TO REVIEW/CLARIFY SOME OF THE NON-STARRED ATTRIBUTES

storage description
storage type
data type
computational
arithmetic
mode: real complex
scale: fixed float
base: binary decimal
precision: precision(p,q)
string
string type: character(n) bit(n)

variability: varying nonvarying
non-computational »

address

statement: label
data

locator: pointer® offset®
file: file
area: area(n)¥
aggregate type
array: dimension(bp,...)
structure: structure member
alignment: aligned wunaligned
management class
storage class

allocation: automatic static controlled* based(1lq)*
sharing: based(lq)* defined(r)* position(i)* parameter
scope: 1nternal external
category: variable constant
initial: initial (x,...)

usage description

entry: entry(d,...) returns(d,...) options(variable)
offset: offset(a)¥* .
file constant

operation: input output update
organization

stream: stream print environment(interactive)
record: record sequential direct keyed
environment(stringvalue)

picture"ps"

entry format

non-valued names
compile time: 1like r
intrinsic names: builtin

condition¥*

&

Not To Be Reproduced 1-1 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

® ARITHMETIC DATA TYPES
I decl x real fixed binary precision (17,0) aligned;
i decl x; /% SAME AS PREVIOUS DECLARATION */

I decl salary float decimal (6);

® STRING DATA TYPES
0 dcl string_1 char(4) init ("ABC");

I decl string_2 char(l) varying init ("ABC");

string_1 A B c
strins_z 0"19.0Q.I!'..I‘.'ﬂ'!’l'!!.& l011.
A B - c AN

Not To Be Reproduced 1=2 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

® STATEMENT LABEL PREFIX (DECLARED BY USAGE, NOT IN FORMAL DECLARATION)

I continue_1: x = x + 1;

0 output_1: format (a(9),f(6,2));

I prog_1: proc;

I alternate: entry (a,b);

® ALIGNMENT
I decl string char(4) aligned;

I decl number fixed bin unaligned;

® STATIC VS. AUTOMATIC

I del a init(0);
del b init(Q) static;

a 1
b 1
S

'O on
ct nn

+ 13
+ 13
ip list (a,b);

u k

Not To Be Reproduced 1=3

/%

/*

/*

/*

/%

/*

label internal constant */

format internal constant */

entry constant ¥*/

entry constant ¥/

DEFAULT IS unaligned ¥/

DEFAULT IS aligned */

automatic BY DEFAULT ¥/

F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

® AGGREGATES

I ARRAY

I del array_1 (10);
del array 2 (-6:4);
del array_3 (10,3);
del array_4 dimension (5);

I STRUCTURE

I del 01 x structure,
02 y char(8) member,
02 z fixed bin(35) member;

§ del 01 x, 02 y char(8), 02 z fixed bin(35);

I LIKE ATTRIBUTE
I del 1 record_1,
2 employee info,
3 name char(10),
3 salary fixed dec(10,2);
I del 1 record_2 like record_1;

I decl 1 employee like record_1.employee_info.name;

® PARAMETER

I sub_1: proc (a,b);

del a char(3) parameter;
del b char(6); /* parameter ATTRIBUTE USUALLY OMITTED */

Not To Be Reproduced 1=l F15C

¢ USAGE EXAMPLES OF SELECTED ATTRIBUTES

@ SCOPE OF VARIABLES

I aA: proc; /*.SOURCE SEGMENT A.pl1l */

gci x external; 4 Sigtic b7 &QLQUX%ﬁé/
cl ¥

B.

end B;
end A;

I C: proc; /% SOURCE SEGMENT C.pl1 ¥/

decl x external;

end C;

I D: proc; /* SOURCE SEGMENT D.pl1 ¥/

del x;
del y;

end D;

Not To Be Reproduced 1=5 F15C

USAGE EXAMPLES OF SELECTED ATTRIBUTES

® VARIABLE VS. CONSTANT

I del x internal static init (125) options (constant);
del (file_ 1, file 2) file;
del file_ out file var1ab1e°

file_out = file_2;
put file (file_ out) list ("Test line");

I TYPES OF IDENTIFIERS THAT ARE USUALLY USED AS CONSTANTS, BUT MAY
BE DECLARED AND USED AS VARIABLES: 1label, entry, format, file

& INITIALIZATION

I del array_1(5) init(1,2,3,4,5);
del array_2(5) init(1,2,(3)*); /* LAST 3 ELEMENTS UNDEFINED */
del array_ —3(3,2) init(1,2,3,4,5,6);

® ENVIRONMENT ATTRIBUTES

I open file (sysprint) stream output environment (interactive);

put list ("line 1"); /% LINEFEED ADDED AT END AUTOMATICALLY #/
put list ("line 2");

I del 1i
Al ok
acL Sv

ne 50) varying;
re file;

[+
am

open file (stream file) environment (stringvalue) record input
title ("record stream_ user_input");

read file (stream_file) into (line);

/% MAKES POSSIBLE TAKING ENTIRE LINE FROM TERMINAL WITH EMBEDDED
BLANKS WITHOUT USING QUOTES #*/

Not To Be Reproduced 1=-6 F15C

AGGREGATE DESCRIPTORS

® DESCRIPTORS DESCRIBE THE DATA TYPE AND LAYOUT OF AN IDENTIFIER WITHOUT
REFERENCE TO ANY VARIABLE NAMES OR IDENTIFIERS

® DESCRIPTORS ARE USED IN "PARAMETER DESCRIPTOR"™ LISTS, AND IN "RETURNS
DESCRIPTOR"™ LISTS

I EXAMPLES
I declare fooj$bar entry (fixed bin, ptr, char(¥*));

I declare how_many entry (fixed bin) returns (fixed dec(3,0));

Not To Be Reproduced 1=7 F15C

AGGREGATE DESCRIPTORS

® DESCRIPTORS ARE FORMED FOR AGGREGATES AS FOLLOWS:

I ARRAY DESCRIPTORS
0 ARE DERIVED BY ELIMINATING THE IDENTIFIER FROM THE DECLARATION

I THE ARRAY BOUNDS MAY BE PRECEDED BY THE 'dimension' OR 'dim'
KEYWORD, OR THE KEYWORD MAY BE OMITTED IF THE ARRAY BOUNDS
PRECEDE THE DATA TYPE

I EXAMPLES
I del X(12,3) fixed dec(7);
I del get X entry ((12,3) fixed dec(?));

I del return_X entry() returns (dim(12,3) fixed dec(7));

I STRUCTURE DESCRIPTORS

0 ARE DERIVED FROM THE DECLARATION AS FOLLOWS:
0 ELIMINATING ALL IDENTIFIERS
I NORMALIZING THE LEVEL NUMBERS

I THE KEYWORDS 'strudture' AND '"member' MAY BE OMITTED FROM THE
DESCRIPTORS

Not To Be Reproduced 1-8 F15C

AGGREGATE DESCRIPTORS

[EXAMPLE

del 1 A aligned,
2 C(3) fixed bin,
2 F ptr;

I decl get_A entry (1 structure aligned, 2 dim(3) fixed bin
member, 2 ptr member);

I decl returns_A entry () returns (1 aligned, 2 (3) fixed bin,
2 ptr);

I dcl get_A entry (1 like A);

I decl returns_A entry () returns (1 like A);

Not To Be Reproduced 1-9 F15C
(End Of Topice)

Considering the stated objectives of this course, rate the overall
length of the course.

CAN'T TOO ABOUT TOO

JUDGE SHORT RIGHT LONG
o) =T TrrrTrr==Ts 17151351
COMMENTS

Considering the objectives, rate the technical level at which the
course was taught.

NOT
CAN'T TECH ~ ABOUT TOO
JUDGE ENOUGH RIGHT TECH

Co] I T =1 1 1+ 1T 7 1 3 1 91

COMMENTS

Considering the objectives, rate the emphasis placed on the more
important topies.

CAN'T
JUDGE POOR GOOD EXCELLENT

o] [C 1 3 1 o 1T 51 @& 1 7 1 5 1 901
COMMENTS

I}

3
Rate the sequence in which the topiecs were presented.

CAN'T
JUDGE POOR GOOD EXCELLENT

O] I Trr=—rrre=t17s 17138 1T 91
COMMENTS

X F15C

Rate the format and quality of the learning materials (slides,
student handbooks, supplementary handouts, etec.).

CAN'T
JUDGE POOR GOOD ‘ EXCELLENT

Lol I I3 111 ¢ 1T 7 1.3 191

—

COMMENTS

Rate the amount of time given for the completion of the workshops.

TOO TOO
CAN'T LITTLE ABOUT MUCH
JUDGE TIME RIGHT TIME
o] I Trsrorrr 11 71 35 1T o1

COMMENTS

Rate the workshops' ability to relate back to and reinforce the
material presented.

CAN'T

JUDGE POOR GOOD EXCELLENT
] CCI—=Trir 1 s 1o 1T 71 381 351
COMMENTS |

Rate the physical condition of the classroom (space available,
temperature, lighting, etec.).

CAN'T

JUDGE POOR ‘ GOOD EXCELLENT

o] eI Tr=1 1172 1 7 1 35 1 951

COMMENTS

xi F15C

-
N

Rate the physical condition of the lab or workshop room. (systems
configuration, space available, learning tools, terminals, tables,
ete.).

CAN'T
JUDGE POOR GOOD EXCELLENT

) I rr s r=T7sr 17 135 131
COMMENTS

Rate your instructor'sdemonstrated knowledge of the course material.

CAN'T :
JUDGE POOR GOOD EXCELLENT
C I I 31 15 1o 1.7 135 1T 31
COM”ENTS

Rate your instructor's ability to convey the technical aspects of
the various topics.

CAN'T :
JUDGE POOR GOOoD EXCELLENT

— .

Lol LTI rrr 11+ 1T 7 1T 3 151

-

COMMENTS

Rate the c¢lassroom and workshop assistance given you by vyour
instructor.

CAN'T
JUDGE POOR GOOD EXCELLENT
ro1 T —T—T 1T >—1T72 1T 7 1 2 1 o1
COMMENTS

xii F15C

P

- 13.

14,

15.

16.

Rate the instructor's ability to create an enviromment in which
you felt free to ask questions.

CAN'T
JUDGE POOR GOOD EXCELLENT
) CC I 1> 15711 5°o T 7 1T & 1 351
COMMENTS |

Rate the relevance of the skills learned in the course with respect
to your job or further training.

CAN'T }
JUDGE POOR GOOD EXCELLENT

Co) I TI=1 11317 1 %5 191

COMMENTS

What did you like most about this course?

What did you like least about this course?

X111 F15C

17. Other comments please:

18. Of the following job categories, check the ones which most nearly
represent the bulk of your experience, and to the right of your
responses indicate the number of years you have acted in that
capacity.

[] Applications Programmer. . . . years
[] Field Engineering Analyst. . . years
[] Manager. « « « « = o ¢ o o o & years
[] Marketing Analyst. « « « « « & years
[1 Salesperson. . . . « « « « « o« ______years
[] Secretary. « « ¢« ¢« ¢« « ¢ o o & years
[] Systems Analyst. . . « « « o & years

{1 Systems Programmer years

[] Other‘ . . L] . [}] [L] years

Please give "other" title

xiv F15C

TOPIC II
PL/I Storage Management

Page
Declaring PL/I Variables . . &+ ¢ ¢ ¢« o o o ¢ o o o o o o o « » 2=1
Defining the PL/I Storage Management Class . . « ¢« ¢« + o « o+ » 2=2
Abbreviations and Defaults . « ¢« &« ¢ ¢ o o o o ¢ s o « o o 2=3
'controlled! STORAGE CLASS . & ¢ 4 ¢ o o o o s o o o o o o o o« 2=4
Chal‘actel"isties . . .] [L)] . [L) L) L) 2-‘"’
Allocation and Freeing . . . +v ¢ ¢« v ¢ ¢ o o o o o s o o o 2=5
STACKING 'controlled' VARIABLES. . + « « « s o o o o o « « 2=b
Variable Expressions in Attributes ¢« « « . « . . 2=T7
GUIDELINES FOR USING 'controlled' STORAGE. . « + . « « . . 2=8
'defined’ STORAGE CLASS. &« & ¢ ¢ & &t ¢ o ¢ o o s o o o s o+ « 2=10
CharacteristicCsS. « « o o o o o« o o o s o o s o s o s o o« « 2=10
Simple Defining. . © & ¢ ¢ ¢ ¢ o ¢ o o o s s s s o« o o o o 2=12
String Overlay Defining. . « ¢ ¢« ¢ ¢ ¢ ¢ o o o o s » 2 s 5 2=13
'iSUb' DEFINING. . . . e . . 3 . . . 3 2"15
GUIDELINES FOR USING 'defined' STORAGE . . . « . « « « « « 2=17

2-1i F15¢C

Toeic Il PL/1 STORAGE MANAGEMENT Toeric 11
OBJECTIVES:
Uron completion of this toric, studenlts should be abls to:

1. Allocate and free controlled variables to implement a stack
or a variable—-extent data item such as a strins or arrav.

2. Use defined variables 1to chanse Lhe interepretation of a
rarticular area of storase.

3. Manipulate <cross—sections of arrays using “isub'-defined
variables.

Multics II-1 F15C

DECLARING PL/I VARIABLES

~ @ THE DECLARATION OF AN IDENTIFIER IS USUALLY DIVIDED INTO TWO PARTS

] THE STORAGE TYPE
I DESCRIBES THE TYPE OF VALUES WHICH CAN BE ACCOMMODATED

I DESCRIBES THE AMOUNT AND INTERPRETATION OF STORAGE GENERATED

I THE STORAGE MANAGEMENT CLASS
I SPECIFIES VARIOUS INFORMATION ABOUT THE HANDLING OF THE STORAGE
GENERATED FOR THE IDENTIFIER INCLUDING
I THE ALLOCATION AND FREEING MECHANISM TO BE USED
[THE LOCATION OF THE STORAGE TO BE GENERATED
| INITIALIZATION OF STORAGE

I AN EXAMPLE

I decl x real fixed binary(10,0) automatic variable init(5);
I 'real fixed binary(10,0)' IS THE STORAGE TYPE
I 'automatic variable init(5)' IS THE STORAGE MANAGEMENT CLASS

Not To Be Reproduced 2-1 F15C

DEFINING THE PL/I STORAGE MANAGEMENT CLASS

® FOUR ATTRIBUTES SPECIFY THE STORAGE MANAGEMENT CLASS

I THE 'usage category' ATTRIBUTE
I DESCRIBES HOW THE STORAGE IS USED
§ VALUES ARE 'variable!' AND 'constant'

I MOST OFTEN, THE USAGE CATEGORY ATTRIBUTE IS OMITTED

I THE 'scope' ATTRIBUTE
i PARTIALLY DETERMINES THE REGION IN WHICH THE STORAGE IS ALLOCATED

I AFFECTS THE ACCESSIBILITY OF THE IDENTIFIER

i VALUES ARE 'internal' AND 'external'

0 THE 'storage class' ATTRIBUTE

I SELECTS THE MECHANISM TO BE USED FOR THE ALLOCATION AND FREEING
OF THE STORAGE GENERATED

I VALUES ARE ‘'automatie', ‘'static', ‘'controlled', ‘'based',
*defined® AND ‘parameter’

I THE 'initial value' ATTRIBUTE

I WHEN PRESENT, SPECIFIES A VALUE TO BE ASSIGNED TO THE IDENTIFIER
WHEN IT IS ALLOCATED

1 VALUE IS 'initial (value_list)’

Not To Be Reproduced 2=2 F15C

DEFINING THE PL/I STORAGE MANAGEMENT CLASS

ABBREVIATIONS AND DEFAULTS

® VALID ABBREVIATIONS FOR STORAGE MANAGEMENT ATTRIBUTES

ATTRIBUTE ABBREVIATION
internal int
external ext
automatic auto
controlled) ctl
defined def
parameter param
initial init

® STORAGE MANAGEMENT DEFAULT VALUES

OMITTED ATTRIBUTE DEFAULT VALUE

usage category *variable!
- (exception:'constant' if the data
type is 'entry' or 'file')

scope 'internal'
(exception:'external' if the data
type is t'entry' or 'file')

storage class 'automatic'
(exception: 'statie' if the
'external' attribute is
present or implied)

I NOTE: THE DEFAULTS APPLY TO IDENTIFIERS DECLARED IN A FORMAL
DECLARATION STATEMENT. FOR EXAMPLE:

1 A LABEL FORMALLY DECLARED IS A variable BY DEFAULT

I A LABEL DECLARED BY USAGE AS A LABEL PREFIX IS A constant

Not To Be Reproduced | 2=-3 F15C

'controlled' STORAGE CLASS

CHARACTERISTICS

'controlled' STORAGE ALLOWS THE PROGRAMMER TO CONTROL THE GENERATION
OF STORAGE FOR A VARIABLE

IT IS DRIVEN BY EXPLICIT PROGRAM STATEMENTS

STORAGE IS ALLOCATED BY THE 'allocate' STATEMENT, AND FREED BY
THE 'free' STATEMENT

A 'controlled' VARIABLE IS THEREFORE AVAILABLE FOR WHATEVER PORTION
OF EXECUTION OF THE PROGRAM THE PROGRAMMER DESIRES

A SMALL CONTROL BLOCK ASSOCIATED WITH THE 'controlled' VARIABLE
IS USED TO LOCATE ITS CURRENTLY ALLOCATED STORAGE

'controlled' VARIABLES CAN BE "STACKED"

THEY CAN HAVE EITHER 'internal' OR 'external' SCOPE (internal IS
THE DEFAULT)

Not To Be Reproduced 2-4 F15C

Tecontrolled' STORAGE CLASS

ALLOCATION AND FREEING

® A 'controlled' VARIABLE IS ALLOCATED BY EXECUTION OF THE 'allocate®
STATEMENT .

I allocate id;

I alloc idl, id2, ..., idN;

® A ‘'controlled' VARIABLE IS FREED BY THE EXECUTION OF THE 'free’
STATEMENT

Not To Be Reproduced 2=5 . F15C

'controlled! STORAGE CLASS

STACKING 'controlled!

VARIABLES

® PL/I ALLOWS US TO ALLOCATE A ‘'controlled'
- BEFORE FREEING ITS STORAGE

VARIABLE MORE THAN ONCE

I THE HISTORY OF ALLOCATIONS FOR EACH VARIABLE IS MAINTAINED ON A

STACK SO THAT:

I EACH 'allocate!

VARIABLE UNDISTURBED

STATEMENT LEAVES EARLIER ALLOCATIONS OF THAT

Il A 'free' STATEMENT FREES THE MOST RECENTLY ALLOCATED SPACE

FOR THAT VARIABLE

I EACH TIME THE VARIABLE IS REFERENCED, THE ONE "ON THE TOP OF
- THE STACK" IS ACCESSED (MOST RECENTLY ALLOCATED BUT NOT FREED)

EXAMPLE

P1:

del

end;

proc;

x float bin controlled;

« « . (Computation

allocate x;
x = 10;
« « « (Computation

allocate x;
x = 20;
« « « (Computation

free x;

.+« « o+ (Computation

free x;
« « « (Computation

#1)

#2)

#3)

#4)

#5)

Not To Be Reproduced

2-6

F15C

'controlled' STORAGE CLASS

VARIABLE EXPRESSIONS IN ATTRIBUTES

® WHEN A 'controlled' VARIABLE IS ALLOCATED, ANY EXTENT EXPRESSIONS
AND INITIAL VALUE EXPRESSIONS ARE EVALUATED

I EXTENTS ARE ARRAY BOUNDS, MAXIMUM STRING LENGTH, OR AREA SIZE
[EXTENTS MUST BE SET BEFORE THE EXECUTION OF AN 'allocate' STATEMENT

I EXTENTS ARE SAVED IN A SYSTEM TEMPORARY

I EXAMPLE

ed bin init(0);
y float bin controlled

(™
=
[
cr
~~
-~
¥
n
~
o
~r

n = 2;

allocate A;

n = 0; /*HAS NO EFFECT ON EXTENT¥/
put skip list (A); :

f

Not To Be Reproduced 2=-7 F15C

'controlled' STORAGE CLASS

GUIDELINES FOR USING 'controlled' STORAGE

® 'controlled' STORAGE IS GENERALLY MORE EXPENSIVE THAN THE BUILT-IN
STORAGE MANAGEMENT MECHANISM OF AUTOMATIC OR STATIC STORAGE CLASSES

® POSSIBLE APPLICATIONS:

"I WHEN A STACK OF VARIABLES IS NEEDED (THIS ALLOWS A PROGRAM WHICH
USES STATIC VARIABLES TO BECOME REENTRANT BY REPLACING STATIC
VARIABLES WITH ‘'controlled' VARIABLES)

0 WHEN AN EXTERNAL VARIABLE MUST HAVE VARIABLE EXTENTS ('based’
VARIABLES, WHICH COULD HAVE VARIABLE EXTENTS, CANNOT HAVE 'external'
SCOPE)

I WHEN CONTROLLING THE AMOUNT OF STORAGE REQUIRED FOR A PROGRAM
BECOMES CRITICAL -

Not To Be Reproduced 2-8 F15C

'controlled' STORAGE CLASS

GUIDELINES FOR USING 'controlled' STORAGE

® NOTE: PROGRAMS USING 'controlled' VARIABLES SHOULD PROVIDE AN 'on
unit' FOR THE 'cleanup' CONDITION IN ORDER TO FREE ANY ALLOCATED
STORAGE

I THE 'allocation' BUILTIN FUNCTION RETURNS (IN A fixed bin(17))
THE CURRENT ALLOCATION DEPTH OF STORAGE FOR A 'controlled' VARIABLE

[EXAMPLE

del cleanup condition;
del x controlled;

on cleanup begin;
do i = 1 to allocation (x);
free x;
end;
end; '

Not To Be Reproduced 2-9 F15C

'defined' STORAGE CLASS

CHARACTERISTICS

® A 'defined' VARIABLE IS USED TO ASSOCIATE A NEW NAME WITH AN EXISTING
VARIABLE OR PART OF AN EXISTING VARIABLE

® IT SUPPLIES A POTENTIALLY DIFFERENT INTERPRETATION (REDEFINITION)

OF

AN EXISTING GENERATION OF STORAGE

IT MUST HAVE THE SAME DATA TYPE AS THE PART OF THE BASE VARIABLE
BEING REDEFINED (EXAMPLE: A BIT STRING CANNOT BE 'defined' ON A
CHARACTER STRING)

IT ALWAYS HAS 'internal' SCOPE

SINCE IT NEVER HAS STORAGE ALLOCATED FOR IT, A 'defined' VARIABLE
CANNOT HAVE AN 'initial' ATTRIBUTE

® NOTE: USE OF 'defined' VARIABLES IS NOT THE SOLE MEANS OF
"REDEFINITION" OF VARIABLES ('based' VARIABLES WILL BE DISCUSSED
LATER)

Not To Be Reproduced 2-10 F15C

'defined' STORAGE CLASS

CHARACTERISTICS

® THE 'defined' ATTRIBUTE CONSISTS OF THE KEYWORD 'defined' FOLLOWED
BY A REFERENCE TO A BASE VARIABLE

® THERE ARE THREE WAYS TO USE 'defined' VARIABLES:
I SIMPLE DEFINING
I STRING OVERLAY DEFINING

I ‘'isub' DEFINING

Not To Be Reproduced 2=-11 F15C

'defined' STORAGE CLASS

SIMPLE DEFINING

® EACH SCALER IN THE 'defined' VARIABLE AND THE CORRESPONDING SCALER
IN THE BASE VARIABLE HAVE IDENTICAL STORAGE TYPES

I EXAMPLE 1

del array(5,5) char(i);

dcl same array(S 5) char(4) defined array;
del vector_1(5) char(u) defined array;

del vector_2(5) char(4) defined array(2,1);

I EXAMPLE 2

del 1 a,
2 b(n),
3 ¢ float bin,
3 d float bin,
2 e char(6);

del x float defined(a.b(i-2).d);
del Y(n) float defined(a.b(¥*).d);
del 1 z defined(a.b(j)),

2 z1 float bin,
2 z2 float bin;

@ NOTE: THE BASE VARIABLE MAY NOT BE A 'defined' VARIABLE OR A NAMED
CONSTANT

Not To Be Reproduced 2=12 F15C

'defined' STORAGE CLASS

STRING OVERLAY DEFINING

® A STRING 'defined' VARIABLE IS MAPPED ONTO ALL OR PART OF THE STORAGE
OF A STRING BASE VARIABLE

I VALIDFOR ALL STRING TYPES AS LONG AS THEY ARE 'nonvarying unaligned'
0 MUST MATCH BITS ONTO BITS OR CHARACTERS ONTO CHARACTERS

I PICTURED STRINGS CAN BE USED AS THE BASE VARIABLE, A FACT THAT
PROVIDES 'defined' STORAGE ONE OF ITS MOST POWERFUL FACILITIES

l EXAMPLE

del a pic "999v.999es99";
dcl exponent char (3) defined (a) position (9);

I THE 'position' OR 'pos' ATTRIBUTE

AN BE USED TO START THE 'defined’
VARIABLE AT SOME BIT OR CHARACTE SI N OTHER

c
R POSITION OTHER THAN THE FIRST

Not To Be Reproduced 2-13 F15C

'defined' STORAGE CLASS

STRING OVERLAY DEFINING

0 EXAMPLES

del A(5) char(2) unal;
del B char(8) def(4);
del 1 C def(Ah),
2 X char(5) unal,
2 Y char(5) unal;
del D char(5) def(A) pos(6);
del E char(5) def(A(2)) pos(2);

A(1) A(2) AQ3) Al4) A(5)

A

B N N A S A
C.X C.Y

¢ I

5 .

E L1 I

Not To Be Reproduced - 2=14 F15C

'defined' STORAGE CLASS

'isub' DEFINING

® A FACILITY OF PL/I WHICH ALLOWS A 'defined' ARRAY TO MAP ONTO A
BASE ARRAY IN' A SPECIALIZED MANNER

[THE VALUE OF THE 'isub' REFERS TO THE SUBSCRIPT OF THE DEFINED
ARRAY, NOT THE BASE ARRAY

I EXAMPLE

del A(3,4) float bin;

del Q(3) float bin defined A(1sub,4);

decl TRANS(4,3) float bin defined(A(2sub,1sub));
Q1) -=> A(1,8)
Q(2) -=> A(2,4)

Q(3) -=> A(3,4)
I THE ARRAY 'Q' DEFINES THE FOURTH COLUMN OF ‘A’

0 THE ARRAY 'TRANS' REPRESENTS THE TRANSPOSE OF ARRAY 'A’

I IT REPRESENTS AN INTERPRETATION OF 'A' STORED IN COLUMN-MAJOR
ORDER INSTEAD OF ROW-MAJOR ORDER .

I THIS CAN BE USEFUL FOR PASSING ARRAY ARGUMENTS FROM FORTRAN
TO PL/I PROGRAMS AND VICE VERSA

Not To Be Reproduced 2-15 F15C

'defined' STORAGE CLASS

'isub' DEFINING

I CONSIDER A PL/1 2 X 2 ARRAY:

1}
s

A(1,2) =

1
n

]
4=

A(2,1) 3 A(2,2) =

I PL/1 WOULD STORE IT IN MEMORY IN ROW MAJOR ORDER

0 FORTRAN WOULD, HOWEVER, STORE IT IN COLUMN MAJOR ORDER

1 3 2 4

WHEI; FORTRAN EXPECTS TO FIND A(2,1)

0 PL/I MUST THEREFORE PASS FORTRAN A TRANSPOSE!

del A(2,2) fixed bin;
decl transpose A (2,2) fixed bin
defined A(2sub,1sub);

call fortran_prog (transpose_A);

Not To Be Reproduced 2-16 F15C

'defined' STORAGE CLASS

GUIDELINES FOR USING 'defined' STORAGE

® ‘'defined' STORAGE MANAGEMENT IS "IN COMPETITION™ WITH 'based' STORAGE
MANAGEMENT

I ‘'based' STORAGE MANAGEMENT IS MUCH MORE GENERAL

I FOR MULTICS, 'based' IS GENERALLY PREFERRED OVER 'defined' STORAGE

MANAGEMENT
® USUALLY USED ONLY FOR THE ONE UNIQUE FEATURE PROVIDED -- 'isub'
DEFINING :
YOU ARE NOW READY FOR WORKSHOP
#1
Not To Be Reproduced 2-17 F15C

(End Of Topiec)

CHARACTERISTICS OF 'based' STORAGE

THE

EXPLICITLY ALLOCATED 'based' VARIABLES .

EQUIVALENCED 'based' STORAGE
AN APPLICATION FOR 'based' VARIABLES .

TOPIC III

'based' Storage

'based' ATTRIBUTE.

THE 'allocate' AND 'free' STATEMENTS
Tarea' DATA TYPES. . ¢« ¢« ¢ ¢ ¢« o « &
Creating PL/I Areas. . « « ¢ o o o ¢ o =«
Locator Data Types
LOCATOR 'builtin' FUNCTIONS. .

USING EXPLICITLY ALLOCATED 'based' STORAGE .

THE 'refer!' OPTION ¢ &+ ¢ o o o o o o o o o
USING ‘'area' VARIABLES . . ¢« « « .« .

Linked Information Structures. . . .

3-1i

e o ® o o @ @

L]
w
| I
BN X)\V N \V]
o QO =

W — 00 =0

F15C

Toric III BASED STORAGE . Toric 111

0BJE

CTIVES:

Urpon completion of this torpic, students should be able to:

1.

Allocate and free based variables in the same manner as
controlled variables.

Differenltiate belween packed and unrpacked Pointers.

Use builtin functions to manipulate locator variables
{poinlears and offsels).

Use based variables to redefine the intereretation of a
particular area of storase.

Use the "refer" option to implement self-definins data.

Manirulate areas.

Multics I1I~1 F15C

CHARACTERISTICS OF 'based' STORAGE

® ADVANCED AND POWERFUL STORAGE MANAGEMENT TECHNIQUE HAVING THREE MAJOR
APPLICATIONS

I EXPLICITLY ALLOCATING AND FREEING SPACE MUCH LIKE CONTROLLED STORAGE

I EQUIVALENCING TO OR OVERLAYING A TEMPLATE UPON THE STORAGE GENERATED
FOR SOME OTHER VARIABLE, MUCH LIKE DEFINED STORAGE

I ACCESSING A SEGMENT IN THE VIRTUAL MEMORY DIRECTLY, THUS ENABLING
I/0 TO A SEGMENT WITHOUT USING I/O STATEMENTS

® THE SCOPE OF A 'based' VARIABLE IS ALWAYS 'internal'

THE DECLARATION OF A 'based' VARIABLE DESIGNATES ONLY THE DATA TYPE
AND STORAGE TYPE ATTRIBUTE VALUES FOR THAT VARIABLE

[]
-

I IT DOES NOT DESIGNATE THE LOCATION OF THE VARIABLE

I HENCE, EVERY REFERENCE TO A 'based' VARIABLE MUST BE QUALIFIED
WITH A LOCATOR VALUE

I LOCATOR VALUES CAN BE 'pointer' OR 'offset' VALUES

Not To Be Reproduced 3=1 F15C

THE 'based' ATTRIBUTE

® A 'based' VARIABLE IS DECLARED WITH THE KEYWORD 'based' OPTIONALLY
FOLLOWED BY A PARENTHESIZED LOCATOR VARIABLE

I del x fixed bin based;

'H EVERY REFERENCE TO 'x' MUST BE QUALIFIED BY A LOCATOR VARIABLE

I del x fixed bin based(p);
del p pointer;

I THE LOCATOR VARIABLE 'p' IS IMPLICITLY ASSOCIATED WITH 'x'

0 EXPLICIT LOCATOR QUALIFICATION IS NOT NECESSARY (BUT 1IS
RECOMMENDED)

® EVERY 'based' VARIABLE REFERENCE MUST BE QUALIFIED BY A LOCATOR
VALUE, EITHER:

I EXPLICITLY (USING THE -> OPERATOR)

1 ORIMPLICITLY (IF THE VARIABLE WAS DECLARED WITH THE 'based(locref)’
ATTRIBUTE)

Not To Be Reproduced 3-2 F15C

THE 'based' ATTRIBUTE

0 EXAMPLE (EXPLICITLY QUALIFIED)

del A dec(5,2) based init(0);
del p pointer;

del sysprint file;.

alloééée A set(p);

p->A = 5;

put list (p->A);

free p->4;

I EXAMPLE (IMPLICITLY QUALIFIED)

del n fixed bin;

del S char{(n+2) based(beta);
del beta pointer;

n:u;

allocate S;

S = "abecdef";

free S;

Not To Be Reproduced 3-3

F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

® JUST AS IN THE CASE OF 'controlled' VARIABLES, BASED VARIABLES MAY
BE EXPLICITLY ALLOCATED AND FREED

-1 THE 'allocate' AND 'free' ARE USED

® 'based' VARIABLES MAY BE ALLOCATED IN TWO DIFFERENT WAYS:
I USING THE 'in (area_name)' OPTION
I ALLOCATED IN THE ‘'area' SPECIFIED (ONLY 'based' VARIABLES MAY

BE ALLOCATED IN AN 'area')

I OMITTING THIS OPTION

I ALLOCATED IN USER FREE AREA WITHIN ([pd]>[uniquel].area.linker

Not To Be Reproduced 3-4 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

THE 'allocate! AND 'free' STATEMENTS:

® THE 'allocate' AND 'free' STATEMENTS HAVE THE FOLLOWING FORM WHEN
USED FOR 'based' VARIABLES:

1 allocate id [set(locref)] [in(arearef)];

1 WHERE
I id IS THE NAME OF THE 'based' VARIABLE
I set(locref) IS USED TO DESIGNATE THE LOCATOR VARIABLE locref
AS THE "ADDRESS" OF THE BEGINNING OF STORAGE GENERATED FOR
THE 'based' VARIABLE id;

J MAY BE OMITTED IF THE VARIABLE id WAS DECLARED WITH THE
'based(locref)' ATTRIBUTE

I locref MUST SPECIFY A pointer OR offset
- in(arearef) SPECIFIES THE 'area' IN WHICH id IS TO BE ALLOCATED

I MAY BE OMITTED

I free id [in(arearef)];

I WHERE
I id IS THE ‘'based' VARIABLE TO BE FREED AND MIGHT HAVE TO

BE PTR QUALIFIED

1 in(arearef) IS USED IF THE VARIABLE id WAS ALLOCATED IN
THE 'area' arearef (AND IS OTHERWISE OMITTED)

I NOTE: POINTER IS NULLED AFTER 'based' VARIABLE IS FREED

Not To Be Reproduced . 3-5 F15C

® EXAMPLE

EXPLICITLY ALLOCATED 'based' VARIABLES

.THE 'allocate' AND 'free!' STATEMENTS

P1:

del
del
del
del
del

proc;

a(5,2) fixed based;

¢ char(40) based(p1);

AREA area; /% INTERNAL AUTOMATIC, BY DEFAULT %/
(p1,p2) pointer;

sysprint file;

allocate a set(p2);
p2 =-> a = 0;
allocate ¢ in(AREA);
¢ = "abedefg";

pué skip(2) data(p2 => a);
free p2 => a, ¢ in(AREA);
end P1;

Not To Be Reproduced 3=-6

F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

'area' DATA TYPES

® THE PL/I DATA TYPE 'area' PROVIDES A POWERFUL FACILITY FOR STORAGE
MANAGEMENT

® BENEFITS OF 'area' MANAGEMENT

I OPTIONS LIKE ZERO_ON_FREEING, ZERO_ON_ALLOCATING, AND
EXTENSIBILITY .

1 ENABLES THE USE OF PL/1 OFFSETS

I EASY FREEING WITH 'empty' BUILTIN

® AN 'area' VARIABLE IS USED BY THE PROGRAMMER AS A MANAGED "POOL" OQF
FREE STORAGE, TO HOLD 'based' VARIABLES
® THE MAXIMUM SIZE OF A NON-EXTENSIBLE ‘area‘’ IS 256K WORDS

I THE CAPACITY IS ALWAYS SOMEWHAT LESS THAN THIS

1 THE "OCCUPATION RECORD" WHICH RESIDES AT THE BEGINNING OF AN
‘area' CATALOGS THE USAGE OF SPACE IN THE 'area'

0 ™ALLOCATION RECORDS"™ PRECEDE EACH BLOCK OF ALLOCATED STORAGE

Not To Be Reproduced 3-7 ‘ F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

CREATING PL/I AREAS

® AN ‘'area' MAY BE CREATED IN THREE WAYS:

1 BY

THE 'declare' STATEMENT (del A area(area size);)

area_size SPECIFIES THE NUMBER OF WORDS TO BE ALLOCATED FOR
THE 'area' VARIABLE 'A' (THE DEFAULT IS 1024 WORDS)

THE LOCATION OF THE 'area' IS DETERMINED IN THE NORMAL FASHION,
BY THE EVALUATION OF THE STORAGE CLASS ATTRIBUTE

I POSSIBLE ATTRIBUTES ARE static, automatic, internal,
external, controlled AND based

Il dcl A area;
/* automatic - 'A' WOULD BE ALLOCATED ON THE STACK ¥*/

Il del B area based (get_system_free_area_());
del get_system_free_area_ entry returns (ptr);

/% 'B' WOULD BE ALLOCATED IN "SYSTEM FREE STORAGE" ¥/
THE 'define_area_' SUBROUTINE
THE CALLER SPECIFIES THE LOCATION OF THE ‘'area' BY SUPPLYING
A POINTER TO A SEGMENT IN WHICH THE 'area' IS TO BE ALLOCATED

I call define_area_ (info_ptr, code);

IF A NULL POINTER IS SUPPLIED, THE SYSTEM ACQUIRES A SEGMENT
FOR THE 'area' FROM THE PROCESS DIRECTORY TEMP SEG POOL

MUST BE USED IF A BASED AREA IS OVERLAYED UPON ARBITRARY
STORAGE

Not To Be Reproduced 3-8 F1s5C

EXPLICITLY ALLOCATED 'based' VARIABLES
CREATING PL/I AREAS

I BY THE 'create_area' COMMAND (AG92)

0 THE COMMAND-LEVEL INTERFACE TO 'define_area !
1 AT COMMAND-LEVEL: create_area area_seg -extensible

IN PROGRAM: dcl area_seg$ external area;

Not To Be Reproduced 3-9 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR DATA TYPES

® LOCATORS SPECIFY THE "ADDRESS"™ OF AN OBJECT, AND ARE USED TO QUALIFY
'based' VARIABLE REFERENCES

® TWO TYPES OF 'locator' VARIABLES:

I ‘'pointer!
I CONTAINS THE ABSOLUTE ADDRESS OF A BIT IN THE VIRTUAL MEMORY

1 MAY BE ALIGNED OR UNALIGNED
I AN ALIGNED POINTER (DEFAULT)

‘1 IS DOUBLE WORD ALIGNED

I IS A PAIR OF WORDS CONTAINING:
15-BIT SEGMENT NUMBER
3-BIT RING NUMBER
6-BIT TAG FIELD CONTAINING OCTAL 43
18-BIT WORD OFFSET
6-BIT BIT OFFSET

I IS DECLARED
dcl my_pointer pointer;

I IS SOMETIMES REFERRED TO AS AN ITS (INDIRECT TO SEGMENT)
PAIR

Not To Be Reproduced 3=-10 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR DATA TYPES -

f AN UNALIGNED POINTER
I IS BIT ALIGNED
I IS A SINGLE WORD CONTAINING
6-BIT BIT OFFSET
12-BIT SEGMENT NUMBER
18-BIT WORD OFFSET
I IS DECLARED
del my_pointer unal ptr;
I IS SOMETIMES REFERRED TO AS A PACKED POINTER
I IS HANDLED BY SPECIAL HARDWARE INSTRUCTIONS

I SINCE ONE OF THE COMPONENTS OF A 'pointer' IS THE SEGMENT
NUMBER, THE 'pointer' VALUE IS INVALID ACROSS PROCESS BOUNDARIES

Not To Be Reproduced 3-11 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR DATA TYPES

I ‘'offset!

I AN ADDRESS TO A BIT IN AN 'area', RELATIVE TO THE BASE OF
THAT 'area'

I COMPOSED OF A 18 BIT WORD OFFSET AND A 6-BIT BIT OFFSET

I AN 'offset' DECLARATION MUST BE QUALIFIED BY THE NAME OF THE
'area' INTO WHICH THE 'offset' REFERS IF IT IS TO BE USED IN
A 'based' VARIABLE REFERENCE

I AN 'offset' IS VALID ACROSS PROCESS BOUNDARIES, SINCE IT DOES
NOT REFER!TO A SEGMENT NUMBER

I THE PL/I 'offset' ATTRIBUTE IS USED TO DECLARE AN ‘'offset!
VARIABLE
I dcl offi offset;

I decl off2 offset(A); WHERE 'A' HAS BEEN DECLARED AN 'area'

Not To Be Reproduced 3=-12 F15C

EXPLICITLY ALLOCATED 'based!

VARIABLES

LOCATOR DATA TYPES

® EXAMPLE USING POINTERS AND OFFSETS

based_prog: proc;
del sysprint file;

del x fixed bin based;
del c¢ char (8) based;
del p ptr;

del o offset(A);

allocate x set (o) in (A);
o =>x = 15;
allocate c¢ set (p);
p -> ¢ = M"abedefgh";
put skip data (o => x, p =>
free o => x in (A);
free p => c¢;
end based_prog;

del A area; /% DEFAULT SIZE IS 1024 WORDS

c);

*/

[RESULT OF RUNNING ABOVE EXAMPLE
! Dbased_prog

X= 15 c="abedefgh";

Not To Be Reproduced 3-13

F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

® PL/IBUILTIN FUNCTIONS (AM83) ARE PROVIDED TO CONVERT BETWEEN 'pointer’
AND 'offset' LOCATOR DATA TYPES: :

I THE 'pointer' BUILTIN FUNCTION
I CONVERTS AN 'offset' IN AN 'area' INTO A 'pointer'
I pointer(X,A)
ptr(X,A)
0 RETURNS A POINTER POINTING TO 'offset' 'X' IN 'area' 'A'

Il THE 'offset' BUILTIN FUNCTION

I CONVERTS A 'pointer' WHICH POINTS TO A LOCATION IN AN 'area'
INTO THE ‘'offset® OF THAT LOCATION IN THE ‘area’

I offset(P,A)

I RETURNS AN ‘'offset' TO THE 'based' VARIABLE LOCATED BY
'pointer' 'P' IN 'area' ‘A"

Not To Be Reproduced 3=-14 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

® ADDITIONAL BUILTIN FUNCTIONS FOR THE MANIPULATION OF 'locator' AND
'area' VARIABLES:

I THE 'null' BUILTIN FUNCTION

I RETURNS THE VALUE OF THE NULL POINTER, THAT IS, A POINTER TO
SEGMENT NUMBER -1 WITH WORD OFFSET 1

i IS USED TO TEST THE VALIDITYOF ‘*pointer! VALUES OR TO INITIALIZE
THEM
I NOTE THAT A 'pointer' VARIABLE CAN BE IN ONE OF THREE STATES:

I UNDEFINED - NO VALUE HAS BEEN ASSIGNED, AND IF USED,
'fault_tag_ 1' CONDITION IS USUALLY SIGNALLED

I NULL - THE 'null' BUILTIN HAS BEEN USED TO INITIALIZE THE
'pointer' - AN ATTEMPT TO USE SUCH A 'pointer' USUALLY
RESULTS IN THE SIGNALLING OF THE 'null_pointer' CONDITION

I NON-NULL - A LEGITIMATE ADDRESS HAS BEEN ASSIGNED

I THE 'nullo' BUILTIN FUNCTION

[IS USED TO TEST THE VALIDITYOF 'offset' VALUES AND TO INITIALIZE
THEM

I A NULL OFFSET IS ALL "ONES"

Not To Be Reproduced 3-15 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

I THE 'addr' BUILTIN FUNCTION
=
I RETURNS THE ADDRESS OF ITS ARGUMENT AS A 'pointer' VALUE

I addr(x) RETURNS A 'pointer' WHICH LOCATES THE GENERATION OF
STORAGE FOR 'x!'

1 THE 'emgty' BUILTIN FUNCTION
I RETURNS THE "EMPTY"™ OR "NULL"™ VALUE OF DATA TYPE 'area'

I IS USED TO DETERMINE IF AN 'area' IS EMPTY AND IS ALSO USED
TO INITIALIZE AN 'area’

I A "QUICK AND bIRTY“ FREEING MECHANISM

I THE NONSTANDARD 'pointer' BUILTIN FUNCTION

I RETURNS A 'pointer' VALUE GIVEN A 'pointer' POINTING ANYWHERE
IN A SEGMENT AND A -WORD OFFSET EXPRESSED AS AN ARITHMETIC OR
BIT STRING VALUE

I pointer(P,N) OR ptr(P,N) RETURNS A 'pointer' TO THE Nth WORD
OF THE SEGMENT B

I IS DISTINGUISHED FROM THE STANDARD 'pointer' BUILTIN FUNCTION
BY THE DATA TYPE OF THE ARGUMENTS

Not To Be Reproduced : 3-16 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

LOCATOR 'builtin' FUNCTIONS

§ THE NONSTANDARD 'addrel' BUILTIN FUNCTION

I RETURNS A 'pointer' TO A WORD RELATIVE TO ANOTHER POINTER

I addrel (P,N) POINTS TO A WORD N WORDS AWAY FROM P

I THE RESULTING POINTER HAS A 0 BIT OFFSET, REGARDLESS OF
P'S BIT OFFSET

I N IS AS IN THE ABOVE NONSTANDARD pointer BUILTIN

Not To Be Reproduced 3=17 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING EXPLICITLY ALLOCATED 'based' STORAGE

® EXPLICITLY ALLOCATED 'based' STORAGE IS GENERALLY USED FOR ONE OF
THREE PURPOSES:

I TO DIRECTLY CONTROL THE ALLOCATION AND FREEING OF STORAGE

I TO PROVIDE STORAGE FOR DATA ITEMS WHOSE EXTENTS ARE NOT KNOWN AT
COMPILE TIME

I TO TAKE ADVANTAGE OF CERTAIN FEATURES MADE AVAILABLE THROUGH THE
USE OF 'area' VARIABLES

I ZERO ON ALLOCATION
1 ZERO ON FREEING
I MASS FREEING OF ALLOCATED VARIABLES

I EXTENSIBILITY OF AREAS

Not To Be Reproduced 3-18 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES
USING EXPLICITLY ALLOCATED 'based' STORAGE

® EXPLICITLY ALLOCATED 'based' VARIABLES CAN BE USED TO PROVIDE STORAGE
FOR DATA ITEMS WHOSE EXTENTS ARE NOT KNOWN AT COMPILE TIME

I ADJUSTABLE EXTENTS ARE ARRAY BOUNDS, MAXIMUM STRING LENGTHS, AND
'area' SIZES

I UNLIKE ‘'controlled' VARIABLES, FOR 'based' VARIABLES, THE VALUES
OF VARIABLE EXTENTS ARE COMPUTED FOR EACH REFERENCE

I THAT IS, THE ADJUSTED EXTENTS ARE NOT SAVED WHEN THE VARIABLE
IS FIRST ALLOCATED

I IT IS THE RESPONSIBILITY OF THE PROGRAM TO PRESERVE SUCH EXTENTS
TO AVOID VIOLATING THE PL/I CONSISTENCY RULES

Not To Be Reproduced 3-19 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING EXPLICITLY ALLOCATED 'based' STORAGE

I EXAMPLE OF AN INVALID PROGRAM

P1: proc;

1] del n fixed bin;
del S char(n+2) based(beta);
del Dbeta pointer;
n = 4;
allocate S;
~—n"="100;
S = "abedef";
free S;
end;

I THIS PROGRAM IS INVALID

I WHEN THE ‘'based' VARIABLE 'S' IS ALLOCATED, IT IS GIVEN 6
BYTES OF STORAGE

I WHEN IT IS REFERENCED IN THE ASSIGNMENT STATEMENT, THE
EXTENTS ARE RECOMPUTED TO 102, AND THE STRING ™"abcdef"
WILL BE PADDED TO A LENGTH OF 102 BEFORE BEING ASSIGNED

Not To Be Reproduced 3=20 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

THE 'refer' QPTION

® SINCE THE VARIABLE EXTENTS OF 'based' VARIABLES ARE NOT SAVED BY
PL/I, A SPECIAL FEATURE, THE 'refer' OPTION IS PROVIDED

I IT IS USED TO SAVE THE VALUE CALCULATED FOR VARIABLE EXTENTS OF
A 'based' VARIABLE WHEN IT IS ALLOCATED

I IT IS USED WITHIN A STRUCTURE VARIABLE TO CREATE A "SELF-DEFINING
STRUCTURE", WHICH CARRIES ITS OWN EXTENTS

Not To Be Reproduced 3=21 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

THE - 'refer' OPTION

A VALID EXAMPLE

P3: proc;

del n fixed bin;
del 1 Spair based(beta),
2 n2 fixed bin,
2 S char(n+2 refer(n2));
del beta ptr;
5 s s
allocate Spair;
n = 100;
Spair .S = "abedef™;
free Spair;
end P3;

NOTE: A PARENTHESIZED REFERENCE FOLLOWING THE KEYWORD 'refer’
MUST DESIGNATE A SCALAR MEMBER DEFINED EARLIER IN THE SAME STRUCTURE

AT ALLOCATION TIME, ANY INITIAL EXTENT EXPRESSION IS EVALUATED,
AND IS .SAVED IN THE MEMBER REFERENCED BY THE 'refer' OPTION
CLAUSE

ON SUBSEQUENT REFERENCES TO THE 'based' ADJUSTABLE VARIABLE, THE
EXTENT IS DETERMINED BY REFERRING TO THE MEMBER

Not To Be Reproduced 3=22 F15C

EXPLICITLY ALLOCATED 'based' VARIABLES

USING 'area' VARIABLES

® EXPLICITLY ALLOCATED 'based' VARIABLES MAY BE USED TO TAKE ADVANTAGE
OF THE STORAGE MANAGEMENT FACILITIES OFFERED BY THE. PL/I ‘area'
VARIABLES

® NOTE THAT THE ONLY TYPE OF VARIABLE WHICH MAY BE ALLOCATED IN AN
'area' IS AN EXPLICITLY ALLOCATED 'based' VARIABLE

® NOTE ALSO THAT PL/1 'offset' VALUES CAN ONLY LOCATE STORAGE WITHIN
AREAS

Not To Be Reproduced 3-23 F15C

EQUIVALENCED 'based' STORAGE

® THE USE OF EQUIVALENCED 'based' VARIABLES IS ONE OF THE MOST POWERFUL
STORAGE MANAGEMENT CAPABILITIES OFFERED BY PL/I

® UNLIKE EXPLICITLY ALLOCATED 'based' VARIABLES, ANEQUIVALENCED 'based’
VARIABLE:

I IS SUPERIMPOSED ON OR EQUIVALENCED TO A PREVIOUSLY ALLOCATED
"BASE" VARIABLE

[NEVER HAS STORAGE OF ITS OWN, AND THUS IS NEVER ALLOCATED OR
FREED

® THE LOCATOR VALUE USED TGO REFERENCE THE BASE VARIABLE IS OBTAINED
BY THE 'addr' BUILTIN FUNCTION

® EXAMPLE

del a fixed bin (35);
del b fixed bin (35) based (addr(a));

5;
2;

a =
b =
put skip list (a,b);

Not To Be Reproduced 3=-24 F15C

® ADDITIONAL EXAMPLES (NOTE:

THE

i

EQUIVALENCED 'based' STORAGE

FOR THESE EXAMPLES,

THE DATA TYPE OF

'based' VARIABLE IS THE SAME AS THAT OF THE BASE VARIABLE)

EXAMPLE 1

EXAMPLE 2

P1: proc;

del x fixed dec(5,2);

del y fixed dec(5,2) based;
del p ptr;

del (sysin,sysprint) file;

p = addr(x);
get list(x);

end P1;

put skip list(2 * p->y);

del 1 A(5),
2 x fixed bin,
2 y char(6);
del 1 B based,
2 r fixed bin,
2 s char(6);
del p ptr;

p = addr(A(3));

p => B.s = "third";

/* SETS A(3).y TO "third®™ ¥*/

Not To Be Reproduced 3-25

F15C

EQUIVALENCED 'based' STORAGE

IT IS ALSO POSSIBLE FOR THE DATA TYPES OF THE 'based' AND BASE
VARIABLE TO DIFFER

I EXAMPLE 1

del x fixed bin(35);
del y bit(36) based (addr(x));

X = 5;
put skip list (x,y);

I EXAMPLE 2

del number(1024) float bin;
del 1 float_num based,
2 sign bit(1) unal,
2 exponent bit(7) unal,
2 m_sign bit(1) unal,
2 mantissa bit(27) unal;

p = addr(number(43));

I p -> float_num MEANS number(i3)
I p -> sign MEANS bit 0 of number(43)
I p -> mantissa MEANS bits 9-35 of number(i43)

Not To Be Reproduced 3-26 F15C

EQUIVALENCED 'based' STORAGE

del x char(8) varying init(”’ABC");

dcl 1 y based (addr(x)),
2 length fixed bin (35),

2 actual_string char (8);
N — OB 744

length

actual_string | |

x = “BONJOUR";
if y.iength=7
then put list (y.actual_string);

Not To Be Reproduced 3=-27 . F15C

AN APPLICATION FOR 'based' VARIABLES

LINKED INFORMATION STRUCTURES

® EQUIVALENCED 'based' STRUCTURES CAN BE USED TO PROVIDE STORAGE FOR
DATA ITEMS WHICH HAVE BEEN ORGANIZED INTO AN ARBITRARILY LINKED
INFORMATION NETWORK

I SINGLY AND DOUBLY LINKED LISTS
I TERMINATING LISTS

I CIRCULAR LISTS
1 TREES AND OTHER DIRECTED GRAPHS

I OTHER INFORMATION NETWORKS

® IT SHOULD BE NOTED THAT SUCH STRUCTURES ARE HEAVILY USED IN THE
SUPERVISOR, AND THAT MOST OF THE SUPERVISOR DATABASES ARE 'based'
STRUCTURES DEFINED IN "INCLUDE FILES™ SUBORDINATE TO >ldd>include

Not To Be Reproduced 3-28 F15C

AN APPLICATION FOR 'based' VARIABLES

LINKED INFORMATION STRUCTURES

® AN EXAMPLE (from stack frame.incl.plil)

del 1 stack frame based(sp) aligned,

p01nter registers(0 : 7) ptr,

prev_sp pointer, /* points to previous stack frame */
next ,_Sp pointer, /* points to next stack frame */
return _ptr pointer,

entry_ ptr pointer,

operator and_1lp_ptr ptr,

arg_ptr p01nter,

statlc ptr ptr unaligned,

support ‘ptr ptr unallgned

on_unit_relpl bit(18) unallgned
on_unit_relp2 bit(18) unaligned,
translator_id bit(18) unaligned,
operator_return_offset bit(18) unallgned
x(0: 7) Dit(18) unaligned,

a bit(36),

q bit(36),

e bit(36) 7

timer bit(27) unaligned,

pad bit(6) unaligned,

ring_alarm_reg bit(3) unaligned;

PPN

® THERE ARE OVER 2000‘SUCH INCLUDE FILES IN >1ldd>include (TOPIC 5
DEMONSTRATES THEIR USAGE)

YOU ARE NOW READY FOR WORKSHOP
#2

Not To Be Reproduced 3=29 F15C
(End Of Topic)

TOPIC IV

Introduction to Multies Subroutines

Page
What are System Subroutines? . . . ¢ ¢ ¢ ¢« ¢ ¢ « o s o o o o o U=
System Subroutine Conventions. . . « ¢ ¢ ¢« o ¢ « o o ¢ o o o o 422
Using System Subroutines . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ s o o« « o 4=3
Status Codes . ° . L] L] L] L] L] L] L] L] L] . L] . L] . * L] L] [] L] . L)) L] u-u

i F15C

Toeric 1V INTRODUCTION TO MULTICE SUBROUTINES Toric IV
OBJECTIVES:

Upon comrletion of tgis toric. students should be able to:

1. @Give reasons for havins a selt of Multics subroutines.

2. Give gseneral guidelines for use af Multics system
subroutines.

3. List some of the conventions followed when wusinsg Multics
system subroutlines.

Multics Iv-1 F15C

WHAT ARE SYSTEM SUBROUTINES?

® SYSTEM SUBROUTINES ARE CALLABLE PROCEDURES USED BY THE MULTICS
OPERATING SYSTEM

I THEY ARE THE SUBROUTINES THAT THE PROGRAMMER USES TO PERFORM
COMMAND LEVEL LIKE FUNCTIONS

I THEY ARE THE PROCEDURES ACTUALLY CALLED BY COMMAND PROCEDURES
(EXAMPLE: THE delete COMMAND PROCEDURE CALLS THE delete_
SUBROUTINE)

I SOME SUBROUTINES HAVE A ONE-TO-ONE RELATION WITH MULTICS COMMANDS
(EXAMPLE: send _message_ SUBROUTINE PERFORMS THE send_message
COMMAND FUNCTION FROM WITHIN A PROGRAM)

I OTHER SUBROUTINES PERFORM ONLY A SMALL PART OF WHAT AN ENTIRE
COMMAND DOES. EXAMPLES:

I iox_ SUBROUTINES ARE USED BY SEVERAL COMMANDS

‘1 convert_date_to_binary_ IS JUST ONE OF MANY SUBROUTINES
CALLED BY THE enter abs ,_request AND memo COMMANDS-

Not To Be Reproduced 41 F15C

SYSTEM SUBROUTINE CONVENTIONS

® SYSTEM SUBROUTINE ENTRY NAMES END IN AN UNDERSCORE (_)
® MANY SUBROUTINES HAVE SEVERAL ENTRY POINTS
I hes $list_acl

hes_$make_seg

hes_$status_

® THEY ARE DOCUMENTED IN MULTICS SUBROUTINES & I/O MODULES (AG93)

® THEY ARE LOCATED PRIMARILY 1IN >§ystem_library_standard AND
>system_library_1

® THEY ARE WRITTEN IN PL/I OR ALM

Not To Be Reproduced 4.2 F15C

USING SYSTEM SUBROUTINES

® SINCE THEY ARE EXTERNAL SUBROQUTINES, EACH MUST BE DECLARED IN THE
USER'S PROGRAM AS ‘'external entry!

0 THE DATA TYPES FOR THE PARAMETER LIST CAN BE FOUND IN THE MANUAL
DESCRIPTION OF THE SUBROUTINE

I IF THEY ACCEPT A VARIABLE NUMBER OF ARGUMENTS, THEY ARE DECLARED
'entry options (variable)®

® SEVERAL MAKE USE OF STRUCTURES TO PASS DATA TO AND FROM THE CALLING
PROCEDURE

I IN THIS CASE, ONE OF THE ARGUMENTS PASSED TO THE PROCEDURE IS A
POINTER TO THAT STRUCTURE

I THE DECLARATIONS REQUIRED FOR THESE STRUCTURES ARE FOUND IN THE
DOCUMENTATION FOR THE SUBROUTINE

I THE DECLARATIONS OF SOME OF THESE STRUCTURES ARE FOUND IN INCLUDE
FILES IN >ldd>include

I EXAMPLE: hcs_$status_

I THIS SUBROUTINE IS PASSED A- POINTER TO A STRUCTURE INTO WHICH
IT IS TO PUT ITS INFORMATION

I A DECLARATION FOR THAT STRUCTURE IS FOUND IN
>ldd>include>status_structures.incl.pl1 (FURTHER DISCUSSED IN
TOPIC 10)

Not To Be Reproduced 4.3 F15C

STATUS CODES

® ONE OF THE OUTPUT ARGUMENTS OF A SUBROUTINE IS USUALLY A 'status
code!

I THE 'status code' IS THE MEANS BY WHICH THE CALLED PROCEDURE MAY
REPORT ANY UNUSUAL OCCURRENCE TO ITS IMMEDIATE CALLER

I THE VARIABLE THAT RECEIVES THE ‘'status code' MUST BE DECLARED
'fixed bin(35)"

I IF THE SUBROUTINE RUNS TO COMPLETION WITH ABSOLUTELY NO ABNORMAL
CONDITIONS TO REPORT, THE STATUS CODE IS 0 (ZERO)

9 com_err_
I USED TO REPORT ERRORS FROM WITHIN A PROGRAM

I TYPICAL USAGE

dcl com_err entry options (variable);
del code fixed bin(35);

call hes $status_"(.......c0ee...,code);
if code ™z 0
then do;.
call com_err_ {(code, "gamma®);
return; o
end;

I IF AN ERROR OCCURRED, IT MIGHT PRINT SOMETHING LIKE:

gamma: Incorrect access to directory containing...
I SOME NON-ZERQO STATUS CODES DO NOT INDICATE AN ERROR

Not To Be Reproduced 44 F15C

STATUS CODES

I STATUS CODES AND THEIR MEANINGS ARE LISTED IN CHAPTER 7 OF THE
MULTICS PROGRAMMER'S REFERENCE GUIDE (AG91)

I THE STANDARD STATUS CODES AND THEIR CORRESPONDING MESSAGES ARE
IN A SEGMENT CALLED error_table , WHICH IS IN >sli

I IT IS POSSIBLE TO TEST FOR A PARTICULAR STATUS CODE VALUE USING
THE SYMBOLIC REPRESENTATION

del error_table_$segknown external fixed bin(35);

if code = error_table_$segknown
then do;
call com_err_ (code, "beta");
goto try_again;
end;

Not To Be Reproduced 4-5 | F15C

STATUS CODES

1 THE probe 'display' REQUEST CAN BE USED TO DISPLAY THE ERROR
MESSAGE ASSOCIATED WITH A STATUS CODE

segknown: proc;

del initiate file_ entry (char(*), char(*), bit(*), ptr,
fixed bin(24), fixed bin(35));

del seg_ptr pointer;
del bit_count fixed bin (24);
del code fixed bin (35);
del null builtin;

call initiate_file_ (™ udd>MED>jecj>15¢c", "foo", "101"b, seg_ptr,
bit_count, code);

end /* segknown */;

r 11:41 0.100 3

! segknown
Stopped after line 10 of segknown. (level 5)
! sc
call initiate_file_ (">udd>MED>jej>15¢c", "foo", "101"b, seg_ptr
bit_count, code);
! v seg_ptr
seg_ptr = null
! v code .
code = 8589679427
! display code code
error_table_$noentry "Entry not found."

q ,
r 11:42 0.733 86

ey

1ls foo
list: foo not found
r 11:42 0.212 11

Not To Be Reproduced , 4-6 F15C
v (End Of Topic)

TOPIC V

Advanced Based Variable Usage

Page
Gaining Direct Access to Segments. . . . ¢« ¢« ¢« ¢ ¢ ¢ ¢ « o .« . 5=1
MOtiVatiOn * . . . * - . . * . . [. 0 . 5-1
Obtaining a Pointer to a Segment . . « ¢« ¢ ¢« ¢ ¢ o ¢ o« o o 522
An Example L] * L] L] L] L] . . L] Ll . L] L] L 2 L] . L] L] . - . . L] . 5-9

5-1 F15C

Toric V ADVANCED BASBED VARIABLE USAGE Toric V

OBJECTIVES:

Uron completlion of Lhis toric, students should be able lo:

1.

Use Multics subroutines to manipulate seaments directly
instead of usinsg PL/1 1/0 statements. :

Manipulate archive components usins Multics subroulines.

Examine some system dalabases usins based structures and
Multics subroutines.

Multics : V-1 F45C

GAINING DIRECT ACCESS TO SEGMENTS

MOTIVATION

® EQUIVALENCED BASED VARIABLES CAN BE USED TO GAIN DIRECT ACCESS TO
SEGMENTS IN THE VIRTUAL MEMORY

I IN THIS WAY, AN ENTIRE DATA SEGMENT CAN BE ACCESSED WITHOUT
RESORTING TO LANGUAGE I/0

I ONE MUST OBTAIN A ‘'pointer' TO THE SEGMENT IN ORDER TO GAIN
DIRECT ACCESS TO IT :

I THE FOLLOWING PAGES SHOW SUBROUTINES THAT RETURN A POINTER TO A
SEGMENT

Not To Be Reproduced 5«1 Fi15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

® MULTICS SUBROUTINES WHICH OBTAIN A 'pointer' TO A SEGMENT:

I hes_$make_seg

I BASIC FUNCTIONS
I SEGMENT CREATION IF IT DOES NOT EXIST
I SEGMENT INITIATION

I USAGE

del hes $make seg entry

(char(#*),” /* INPUT */

char(®), /% INPUT ¥/

char(¥*), /* INPUT ¥/

fixed bin(5), /* INPUT %/

B ptr, ' /* QUTPUT ¥*/
fixed bin(35)); /* OUTPUT ¥/
call hcs_$make_seg

(dir_name, /% PATH OF CONTAINING DIR */
entryname, /* SEGMENT NAME %/ ¥
ref name, /* DESIRED REFERENCE NAME */ =
‘mode, /* ACCESS FOR THIS USER */
seg_ptr, /* POINTS TO CREATED/FOUND SEG */
code) ; /* STATUS CODE */

Not To Be Reproduced 5=2 F15C

GAINING DIRECT ACCESS TO SEGMENTS
OBTAINING A POINTER TO A SEGMENT

I NOTES

I IF SEGMENT DOESN'T EXIST, APPEND PERMISSION REQUIRED ON
CONTAINING DIRECTORY

MAKING-KNOWN REQUIRES NONNULL ACCESS ON SEGMENT

IF entryname IS NULL, UNIQUE SEGNAME IS GENERATED

IF dir_name IS NULL, SEGMENT IS CREATED IN PROCESS DIRECTORY
ref name USUALLY NULL

= =3 = ==

mode ENCODES THUSLY

READ => 01000b

EXECUTE -> 00100Db

WRITE -> 00010b
I seg_ptr IS RETURNED NULL IF REAL TROUBLE WAS ENCOUNTERED
I code MIGHT BE NON-ZERO UNDER 'NORMAL' CIRCUMSTANCES:

error_table_$namedup
error_table_$segknown

Not To Be Reproduced 5-3 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

I IF THE PROGRAMMER DOESN'T CARE IF THE SEGMENT ALREADY EXISTS
OR IS ALREADY INITIATED HE RELIES ONLY ON THE NON-NULL seg_ptr

del hes_$make_seg entry (char (*), char (*), char (%),
fixed bin (5), ptr, fixed bin (35));
del com_err_ entry options (variable);

call hcs _$make_ seg(.......seg ptr, code);
if seg_ptr = null()
then do;

call com_err_ (code, "alpha");

end;

§ IF THE PROGRAMMER EXPECTS' TO BE CREATING A NEW SEGMENT AND
DOES NOT WANT TO REFERENCE AN ALREADY EXISTING SEGMENT, HE
MUST CHECK THE CODE’

del hcs_$make_seg entry (char (¥*), char (*), char (¥*),
fixed bin (5), ptr, fixed bin (35));

decl com_err_ entry options (variable);

del error_table $namedup fixed b1n(35) ext static;

del error_ “table _$segknown fixed bin(35) ext statlc

call hcs $make_seg (.........s5eg_ptr, code);
if seg_ ptr = null() | code = error table $segxnown
| code = error_ “table” _$named up
then do;
call com_err_ (code, "alpha");

end;

Not To Be Reproduced v 5-4 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

I initiate_file_

I BASIC FUNCTIONS
I MAKES A SEGMENT KNOWN WITH A NULL REFERENCE NAME

I CHECKS THAT THE USER'S PROCESS HAS AT LEAST THE DESIRED
ACCESS ON THE SEGMENT

I RETURNS A POINTER TO THE SEGMENT
I RETURNS A BIT COUNT

I USAGE
dcl initiate file_ entry
(char(¥*), " /% INPUT ¥/
char(¥), /* INPUT ¥/
bit(¥), /% INPUT ¥/
pointer, /% QUTPUT ¥*/

fixed binary (24), /* OUTPUT ¥/
fixed binary (35)); /* OUTPUT ¥/

call initiate file

(dirname, ~ /% PATH OF CONTAINING DIR */
entryname, /* SEGMENT NAME ¥/

mode, /% REQUIRED ACCESS MODE ¥/
seg_ptr, /* POINTS TO INITIATED SEG ¥/
bit_count, /% BIT COUNT OF SEGMENT ¥/
code); /* STANDARD SYSTEM CODE ¥*/

Not To Be Reproduced 5-5 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

I NOTES
I THE SEGMENT MUST EXIST

I MAKING-KNOWN REQUIRES NONNULL ACCESS ON THE SEGMENT, AS
WELL AS THE REQUIRED MODES SPECIFIED IN THE CALL

1 mode ENCODES THUSLY
READ -> "100"b
EXECUTE -> "010"b
WRITE -> "001"b

(>1ldd>include>access_mode values.incl.pll CONTAINS NAMED
CONSTANTS FOR THESE ACCESS MODES)

I seg_ptr IS NULL IF THE SEGMENT IS NOT MADE KNOWN
I code IS A STANDARD STATUS CODE AND COULD BE:
error table $no r permission

error_table _$no_e_permission
error_table_$no_w_permission

Not To Be Reproduced 5-6 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

I 1initiate_file_ $component

I BASIC FUNCTIONS

I MAKES EITHER A SEGMENT OR AN ARCHIVE COMPONENT KNOWN WITH
A NULL REFERENCE NAME

I IF NO COMPONENT NAME IS SPECIFIED, THIS ENTRY POINT IS
IDENTICAL TO initiate file_

I USAGE
del initiate_file $component entry
(char (*Y, /* INPUT */
char (%), /* INPUT */
char (*), /* INPUT #*/
bit (%), /% INPUT ¥*/
pointer, /* QUTPUT #/

fixed binary (24), /% QUTPUT ¥*/
fixed binary (35)); /% QUTPUT ¥/

call 1n1tlate file_$component

(dirname, /% PATH OF CONTAINING DIR */

entryname, /* NAME OF SEGMENT OR ARCHIVE */
component name, /* NULL OR NAME OF COMPONENT */

mode, /* REQUIRED ACCESS MODE ¥/

component ptr, /* PTR TO SEGMENT OR COMPONENT */

bit count’, /* BIT COUNT OF SEGMENT OR COMPONENT ¥/

code); /% STANDARD SYSTEM CODE */

0 NOTES

I THE ARCHIVE COMPONENT MAY NOT BE MODIFIED (ONLY READ ACCESS
IS PERMITTED)

I ONLY THE DATA STARTING AT THE POINTER AND EXTENDING AS FAR

AS THE BIT COUNT MAY BE REFERENCED (NO DATA BEFORE OR
AFTER THE COMPONENT MAY BE REFERENCED)

Not To Be Reproduced 5-7 F15C

GAINING DIRECT ACCESS TO SEGMENTS

OBTAINING A POINTER TO A SEGMENT

0 TO OBTAIN A POINTER TO A COMPONENT WITHIN AN ARCHIVE SEGMENT SEE
I archive_$get_component

I archive $next component

® NOTE THAT THE SUBROUTINES DISCUSSED REQUIRE AN ABSOLUTE DIRECTORY
PATHNAME

® THE expand pathname SUBROUTINE CAN BE USED TO CONVERT A PATHNAME
(WHETHER RELATIVE OR ABSOLUTE) INTO THE REQUIRED DIRECTORY PATHNAME
AND ENTRYNAME STRINGS

I USAGE

decl expand pathname entry
(char(¥), char(¥), char(*), fixed bin(35));

call expand_pathname

(rel_path, 7% RELATIVE OR ABSOLUTE PATHNAME
TO BE EXPANDED ¥*/
dir_name, /* RETURNED DIRECTORY PORTION OF
PATHNAME %/
entryname, /* RETURNED ENTRYNAME PORTION OF
. PATHNAME %/ ‘
code);

Not To Be Reproduced 5-8 F15C

GAINING DIRECT ACCESS TO SEGMENTS

AN EXAMPLE

stack tracer: proc;

%include stack header;
¢include stack . _frame;

del com_err_ entry options (variable);

del get pdlr entry () returns (char (168));

del 1initiate_file_ entry (char (*), char (*), bit (*), pointer,
fixed binary (24), flxed blnary (35));

del interpret ptr_ entry (ptr, ptr, ptr);

del . bit_count fixed binary (24);
del code fixed bin (35);
del ME : char (12) statiec
init ("stack_tracer™) options (constant);

del no_frames fixed bin;
del 1 owner,

2 message char (64),

2 segname char (32),

2 entryname char (33);
del (save_ptr, ﬁr,

shp)~ ptr;
del sysprint file;
del (addr,

ltrim,

null) builtin;

/* GET POINTER TO BASE OF STACK SEGMENT */

call initiate_file_ (get_pdir_ (), "stack 4", "100"Db,
shp, bit_count, code);
if shp = null ()
then do;
call com err_ (code, ME);
return;
end /% then do */;

/* WALK FRAMES TO FIND LAST ONE */

no_frames = 0;
do sp = shp -> stack header.stack begin_ptr
repeat sp -> stack frame. next sp
while (sp "= shp -> stack_header.stack_end_ptr);
save_ptr = sp;
no frames = no_frames + 1;
end /¥ do sp %*/;

/% NOW TRACE BACKWARDS AND DUMP */

Not To Be Reproduced _ 5=9 F15C

GAINING DIRECT ACCESS TO SEGMENTS
AN EXAMPLE

do sp = save_ptr
repeat sp -> stack frame.prev_sp
while (sp "= null T));
call interpret ptr_ (sp -> stack frame.entry_ptr, sp,
addr (owner));
put skip (2) edit ("FRAME", no frames, " IS OWNED BY ",
rtrim(owner.segname), rtrim(owner .entryname))
(a,f(3),2,a,a);
put skip list (" FRAME STARTS AT", sSp);
put skip list (" ARG POINTER IS", sp -> stack frame.arg_ptr);
no_frames = no_frames =-1;
end /¥ do sp */;

/% ALL DONE #/

put skip (2) list ("End stack_tracer");
put skip;

close file (sysprint);

end /* stack tracer */;

r 14:08 0.237 6

stack tracer

FRAME 5 IS OWNED BY stack tracer$stdck téacer

FRAME STARTS AT p01nter(23u.53u0)
ARG POINTER IS pointer(234i5202)
FRAME 4 IS OWNED BY command_ processor $command_processor_
FRAME STARTS AT polntew(23u.gooo>
ARG POINTER IS pointer(234i4274)
FRAME 3 IS OWNED BY abbrev$abbrev_cp
FRAME STARTS AT pointer(234}2700)
ARG POINTER IS pointer(23412564)
FRAME 2 IS OWNED BY listen_$listen_
FRAME STARTS AT pointer(234}2400)
ARG POINTER IS pointer(234i2236)
FRAME 1 IS OWNED BY initialize_process_$initialize_process_
FRAME STARTS AT : po1nter(23ﬁ12000)
ARG POINTER IS pointer(234i0)

End stack tracer
r 14:09 0.658 46

Not To Be Reproduced 5=10 F15C

GAINING DIRECT ACCESS TO SEGMENTS

AN EXAMPLE

YOU ARE NOW READY FOR WORKSHOP
#3

ST PGSR SE e R

Not To Be Reproduced 5-11 F15C
(End Of Topie)

TOPIC VI

Multics Condition Mechanism

Page
Introduction e 4 s s s e e s s e e o o o o & o 6=1
Establishing and Revertlng Condltlon Handlers. . . « « « + . . b6=6
A Special Catch-All Condition Handler. . . . e« + e 4 e+ « « . 6=10
ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK e e e e s s e . B=11
'program_interrupt’ CONDITION. . . . ¢« ¢« & v v ¢« ¢« ¢ o o o« « o 6=}
Summary of Condition Handling Mechanism. . e+ e+ s e« e« o o« o 6=18
Review of PL/I Defined Conditions. ¢« « « « ¢« « . . 6=19
Some System-Defined Conditions . . . + . ¢ & & ¢« ¢« ¢ &« & o« o » 6=22

6-1 F15C

Toric VI MULTICS CONDITION MECHANISHM Toeric VI

OBJECTIVES:

Urpon comprletion of this toric, students should be able tlo:

1. Describe the actions taken by Multics when a condition is
signalled.

2. Write handlers for the following conditions:

cleanue
proaram.interruert
finish

User-defined and PL/1-defined conditions

3. Write an "anv_.other®” handler.

q 0
[+ 9}
=
ot

»
-
n o
Q-
0
n o

he circumstances under which the system—defined

-
=<

&
Q
23
Q
[

Multics VI-1 F15C

INTRODUCTION

THE MULTICS CONDITION MECHANISM IS A FACILITY THAT NOTIFIES A PROGRAM

OF AN EXCEPTIONAL CONDITION

I A CONDITION IS A STATE OF THE EXECUTING PROCESS

I A CONDITION MAY dR MAY NOT INDICATE THAT AN ERROR HAS OCCURRED

IN MULTICS, THERE ARE THREE BROAD CATEGORIES OF CONDITIONS:

I SYSTEM-DEFINED CONDITIONS (MULTICS LEVEL)

I ARE DEFINED AS PART OF THE MULTICS SYSTEM

I ARE DETECTED BY THE MULTICS HARDWARE OR SOF TWARE

==
T

I EXAMPLES

I
1
0
0
a
I

cleanup
no_read_permission
out_of_bounds

quit
record_quota_overflow -

AND OTHERS, TO BE DISCUSSED LATER

Not To Be Reproduced 6-1 F15C

INTRODUCTION

i LANGUAGE-DEFINED CONDITIONS
I ARE DEFINED AS PART OF PL/I
I ARE DETECTED AND SIGNALLED BY THE PL/I RUNTIME PROCESSOR

I EXAMPLES
’ I conversion
I endfile

I AND OTHERS...

1 PROGRAMMER-DEFINED CONDITIONS

I ARE DEFINED BY THE PROGRAMMER

==

ARE DETECTED AND SIGNALLED EXPLICITLY BY THE PROGRAMME!

I EXAMPLES
I oops

I OR WHATEVER ONE DESIRES...

Not To Be Reproduced 6=2 F15C

INTRODUCTION

THE MULTICS CONDITION MECHANISM IS INVOKED WHEN A CONDITION IS DETECTED
AND SIGNALLED BY:

I THE SYSTEM

I EXAMPLE: zerodivide OCCURS

I THE USER PROGRAM

I EXAMPLE: "signal zerodivide;"

Not To Be Reproduced 6-3 F15C

INTRODUCTION

® THE SIGNALLING OF A CONDITION:

I IMMEDIATELY STOPS THE PROGRAM AT THE CURRENT POINT OF EXECUTION

I CAUSES A BLOCK ACTIVATION OF THE MOST RECENTLY ESTABLISHED ON
UNIT FOR THAT CONDITION

I THE APPROPRIATE ON UNIT IS FOUND BY MAKING A BACKWARDS TRACE
OF THE STACK

I EACH BLOCK ACTIVATION ON THE STACK CAN HAVE ONLY ONE ON UNIT
ESTABLISHED FOR EACH CONDITION AT ANY GIVEN TIME

sub2$sub2
sub1$subi e ON UNIT ESTABLISHED FOR zerodivide
main$main e ON UNIT ESTABLISHED FOR zerodivide

command_processor_

abbrev

listen_

initialize_process_

USER STACK

Not To Be Reproduced : 6-4 F15C

INTRODUCTION

I IF zerodivide IS SIGNALLED IN sub2, A BLOCK IS ACTIVATED FOR THE
ON UNIT ESTABLISHED IN sub1

sub1$zerodivide.n

(signal_)

(pl1_signal_from_ops_)

sub2$sub2
sub1$sub1 #mmmeee ON UNIT ESTABLISHED FOR zerodivide
main$main e ON UNIT ESTABLISHED FOR zerodivide

command_processor_

abbrev

listen_

initialize_process_

USER STACK

Not To Be Reproduced 6=5 F15C

F LA

I

EXAMPLES OF ESTABLISHING CONDI

ESTABLISHING AND REVERTING CONDITION HANDLERS

-3
L)
Q
-
g
x>
b~
<
£
2]
=0
w

on zerodivide begin;

end;

on zerodivide system;

on zerodivide snap system;

I IF THE CONDITION SPECIFIED IS SIGNALLED, THE 'probe' COMMAND

IS IMMEDIATELY INVOKED BEFORE THE 'on unit' IS INVOKED (FOR
AN ABSENTEE PROCESS, THE 'trace_stack' COMMAND IS EXECUTED)

on zerodivide call probe;

® THERE ARE THREE WAYS TO REVERT AN 'on unit’

PL/I 'revert' STATEMENT (EXAMPLE: ' revert zerodivide;)
BLOCK DEACTIVATION CAUSED BY REACHING A BLOCK 'end' STATEMENT

NON-LOCAL 'go to' WHICH CAUSES DEACTIVATION OF OF ALL BLOCKS
FROM THE TOP OF THE STACK TO THE PROCEDURE CONTAINING THE LABEL
THAT IS THE TARGET OF THE 'go to'

Not To Be Reproduced 6-6 F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

This Page Intentionally Left Blank

Not To Be Reproduced 6=7 F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

® EXAMPLE OF THE CONDITION MECHANISM

Not To Be Reproduced

example: proc;
del subl external entry;
del sub2 external entry;
del overflow condition;
on overflow <on unit 1>;
call subl;
<{statement 1>;

call sub2;
end /* example */;

subl: proc;

 dcl overflow condition;

{statement 2>;
on overflow <on unit 2>;

<{statement 3>;
end /* subil #/;

sub2: proc;

del overflow condition;
{statement U>;

on overflow <on unit 3>;
<{statement 5>;

revert overflow;

<statement 6>;
end /* sub2 ¥#/;

6-8

F15C

ESTABLISHING AND REVERTING CONDITION HANDLERS

ASSUME THAT EACH OF THE & NUMBERED STATEMENTS IN THE 3 PROCEDURES
ON THE PREVIOUS PAGE IS A SIMPLE ASSIGNMENT STATEMENT (THERE ARE NO

goto's)

FILL IN THE CHART SHOWING WHICH 'on unit' WOULD BE INVOKED IF 'overflow'
OCCURRED IN THE NUMBERED STATEMENT SPECIFIED

STATEMENT CAUSING overflow
TO BE SIGNALLED ON UNIT INVOKED

1

o N =W N

Not To Be Reproduced 6-9 F15C

A SPECIAL CATCH-ALL CONDITION HANDLER

® THE ‘'any other' CONDITION REFERS TO CONDITIONS FOR WHICH NO 'on
unit' HAS BEEN SPECIFICALLY ESTABLISHED

I EXAMPLE
del (zerodivide, overflow, any_other) condition;
on zerodivide begin;
end;.'
on any_other begin;

end;

signal overflow;

I BACKWARD TRACE OF STACK LOOKS FOR CONDITION HANDLER TWICE FOR
EACH FRAME:

I LOOKS FOR SPECIFIC CONDITION HANDLER FIRST

I LOOKS FOR CONDITION HANDLER FOR 'any_other' SECOND

I THE ‘'cleanup' CONDITION IS AN EXCEPTION IN THAT IT DOES NOT
INVOKE THE any_other HANDLER

Not To Be Reproduced 6-10 F15C

ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK

® THERE IS A DEFAULT HANDLER ‘'default_error_handler_®

® THE PROGRAM, initialize_ process_, HAS ONLY ONE 'on unit' (FOR THE
CONDITION any_other) :

I THE any_other CONDITION HANDLER CALLS default_error_handler_$wall

I default error_handler_ CHECKS TO SEE WHICH CONDITION WAS SIGNALLED
[EXECUTES DIFFERENT CODE BASED ON THE CONDITION

I NOTIFIES USER IF IT WAS NOT SET UP TO HANDLE CONDITION (EXAMPLE:
USER DEFINED CONDITIONS AND program_interrupt

I SEVERAL CONDITIONS RESULT IN CALL TOget_to_cl $unclaimed_signal

Not To Be Reproduced 6-11 F15C

ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK

listen_$release_stack

get_to_cl _$unclaimed_signal

d_e_h_$wall #—ON UNIT ESTABLISHED FOR any_other

any_other.2

signal _

pli_signal_from_ops_

user_prog o SIGNAL XYZ

command_processor_

abbrev

listen_

initialize_process_ e ON UNIT ESTABLISHED FOR any_other

Not To Be Reproduced 6=-12 F15C

ACTION TAKEN IF NO 'on unit' IS FOUND ON STACK

I default_error_handler_$wall SETS UP CONDITION HANDLER FOR any_other
THAT RESULTS IN A CALL TO default_error_handler_$wall_ignore_pi

I THUS, A T"CONDITION WALL" IS SET UP BETWEEN PROGRAMS RAISING
CONDITIONS THAT HAVE NO HANDLERS FOR THEM & PROGRAMS RUN AT A
NEW COMMAND LEVEL THEREAFTER

I THE WALL IS TRANSPARENT TO THE 'program_interrupt' AND 'finish'
CONDITIONS

Not To Be Reproduced 6-13 F15C

'program interrupt' CONDITION

2 THE PSEUDC CCDE FOR program_interrupt IS AS FCOLLOWS:

program_interrupt: pi: proc;

del program_interrupt condition;

del signal_ entry options (variable);
del start entry options (variable);

call signal_ ("program_interrupt", ...);

if handler_was_found

then call start;

else call com_err_ (..., "program_interrupt", "There is no suspended
invocation of a subsystem that supports the use of
this command.");

end /% program_interrupt */;

Not To Be Reproduced 6-14 F15C

'program interrupt' CONDITION

® EXAMPLE DEMONSTRATING THAT 'program_interrupt' "PENETRATES THE WALL"

handler: proc;

del (program_interrupt,

quit, .
zerodivide) condition;
del sysprint file;

on zerodivide go to A;
on program_interrupt go to B;

signal quit;
A: put skip list ("ZERODIVIDE HAPPENED");
put skip;

B: put skip list ("PROGRAM INTERRUPT HAPPENED");
put skip;

end /* handler */;

r 14:52 0.153 2

! handler
QUIT
r 14:52 0.265 3 level 2

! signal zerodivide
Error: Attempt to divide by zero at signal$i1101
(>system_library_standard>bound_command_env_)
system handler for error returns to command level
r 14:52 0.524 20 level 3

! signal program_interrupt

PROGRAM INTERRUPT HAPPENED
r 14:52 0.221 7

Not To Be Reproduced 6-15 F15C

paonpouday ag o0l 3ON

91-9

o6l d

LISTEN_

MIT_PROC_

HANDLER

PARTIAL STACK HISTORY OF EXAMPLE

LISTEN_
UNCLAIBED_SIGNAL

O_E_H_SWALL

ANY_OTHER2

SIGNAL _

PLI_SIG_FROM_OPS_

HANDLER HANDLER

c.r_ [

ABSREV ABBREV
LISTEN
INIT_ #ROC_

HANDLERSM.2
BIGNAL _

SIGNAL

e

ARSREV
LISTEN LISTEN

UNCLAIMED _SIGNAL UNCLAIMED SIGNAL

WALL_IGNORE_M _ WALL IGNORE _PL

ANY_OTHER.A ANY QTHERY

SIGNAL _ SIGNAL _

WALL_IGNORE M _ WALL (GNORE Pi .

ANY_OTHER.Y ANY _OTHER1

SIGNAL _ NAL

SIGNAL SIGNAL

cr_ P

ABBREYV) ABBREV

LISTEN LISTEN _

UNCLAIMED SIGNAL UNCLAIMED SIGNAL

0_E_H_SwaLl P_E_H_SWALL

W ANY_OTHER 2
SIGNAL _

PLY_SIG_FROM_QPS . PLY_SiG_FROM_OPS _

HANDLER HANDLER

[P

e LY
ABBREV PROGRAM ABBREV

SIGNAL
(siowaL auiT) [EREREEEREET ZERODIVIOE | [amemetit Y INTERRUPY

LISTEN_ ~ LISTEN

INIT_PAQC (NIT_PROC_.

HANDLER

cr_

ADDREV

,adnJaasqut weJd3odd,

NOILIQONOD

LISTEN_

INIT_PROC _

'program interrupt' CONDITION

® NOTE: 'any other' CONDITION HANDLERS SHOULD PASS ON THE
'program_interrupt!’ CONDITION (SEE continue_to_signal__ AND
find_condition_info_)

Not To Be Reproduced 6=17 F15C

SUMMARY OF CONDITION HANDLING MECHANISM

CONDITION X RAISED

EXAMINE MOST
RECENT
ACTIVATION

Y

r—-)-

IS THERE A HANDLER
ESTABLISHED IN THIS
ACTIVATION FOR

CONDITION X?
NO V YES
EXAMINE NEXT
INVOKE THE
PREVIOUS
ACTIVATION HANDLER

A YES

A

IS THERE A DEFAULT
HANDLER ESTAB-
LISHED IN THIS
ACTIVATION FOR
ANY OTHER?

y No

NO

’
IS THIS THE

OLDEST
ACTIVATION?
YES

r!ﬁ HANGLER

FOR THIS
CONDITION

DOES HANDLER
WANT SEARCH
CONTINUED?

Y no

Not To Be Reproduced

L5

RETURN

F15C

REVIEW QOF PL/I DEFINED CONDITIONS

Default Error | |y, yefined if hit | Can be Enabled/ | Disabled by

Handler Signals | End of On Unit | Disabled Default

error

storage
fixedoverflow
overflow

P

size
stringrange
subscriptrange
zerodivide
conversion
endfile

key

record
transmit
undefinedfile
underflow X
stringsize X X

KEXP XXX X X] X]| X

RIX|XIX XXX
x

XXX x| xx|x|x]|x|x]x|X]|x

name

endpage
finish

2

NOTE THAT THE ‘'size' CONDITION IS ENABLED DURING PL/I I/0
(pl1_signal_from_ops_), AND CONSEQUENTLY, A PL/I PROGRAM WHICH IS
EXECUTING 7put' “STATEMENTS TO THE ‘'sysprint' FILE MAY CAUSE 'size'
CONDITIONS TO BE SIGNALLED EVEN THOUGH THE CONDITION IS NOT ENABLED IN
THE PROGRAM ITSELF

Not To Be Reproduced 6-19 . F15C

REVIEW OF PL/I DEFINED CONDITIONS

@ CONDITIONS IN THE PRECEDING TABLE WERE COVERED IN EARLIER COURSES,
HOWEVER, THE ‘*finish’, ‘*area’ AND ‘*storage’ CONDITIONS ARE COVERED
BELOW SINCE THEY ARE NOT USUALLY FULLY UNDERSTOOD IN AN INTRODUCTORY
COURSE

I ‘'finish' CONDITION

I THE FINISH CONDITION IS SIGNALLED JUST PRIOR TO RUN UNIT OR
PROCESS TERMINATION

I IT IS SIGNALLED BY A STOP STATEMENT OR BY COMMANDS SUCH AS
'stop_run', 'logout' AND 'new_proc'

0 IT BEHAVES JUST LIKE 'program_interrupt' IN THAT IT "PENETRATES
THE WALL"

0 ALL CONDITION HANDLERS, WHETHER THEY HANDLE 'finish' OR NOT,
SHOULD PASS THIS CONDITION ON (BY CALLING continue_to_signal_)
SO THAT ALL PROGRAMS WILL BE NOTIFIED OF THE IMPENDING PROCESS,
OR RUN UNIT, DESTRUCTION

Not To Be Reproduced 6=20 F15C

REVIEW OF PL/I DEFINED CONDITIONS

I ‘tarea' CONDITION

I AN ATTEMPT HAS BEEN MADE TO ALLOCATE STORAGE IN A PL/I 'area‘'
VARTABLE WHICH DOES NOT HAVE SUFFICIENT STORAGE FOR THE ATTEMPTED
ALLOCATION

I PRINTS A MESSAGE AND SIGNALS THE ERROR CONDITION

I EXAMPLE

del (p,q,r) ptr;

del (A,B) (1000) fixed bin based;

del C area(2000) static;

del d float bin based;
allocate A set(p) in(C);
ailéc;te d set(q) in(QC);
allocate B set(r) in(C);

/® causes 'area' condition (unless intervening
'free' statements were executed) */

I 'storage' CONDITION

I AN ATTEMPT HAS BEEN MADE TO GROW A STACK SEGMENT PAST ITS
MAXIMUM LENGTH

AMOUNT OF 'automatic' STORAGE, OR AS A RESULT OF A RUNAWAY
RECURSIVE PROCEDURE

I IS ALSO SIGNALLED IF A PL/I PROGRAM OVERFLOWS THE SYSTEM FREE
STORAGE AREA

Not To Be Reproduced 6=-21 F15C

SOME SYSTEM-DEFINED CONDITIONS

® THE MULTICS SYSTEM HAS DEFINED SOME CONDITIONS OF ITS OWN

® SOME OF THE USEFUL SYSTEM-DEFINED (NON-PL/I) CONDITIONS ARE LISTED
BELOW:

I active_function_error, command_error

I ARE SIGNALLED BY THE active_fnc_err_ AND com_err_ SUBROUTINES
RESPECTIVELY

I DEFAULT HANDLER FOR command_error PRINTS A MESSAGE AND RETURNS

I DEFAULT HANDLER FOR active function_error PRINTS AN ERROR
MESSAGE AND RETURNS TO A NEW COMMAND LEVEL

I cleanup

I SIGNALLED TO THOSE PROCEDURES OWNING STACK FRAMES TO BE DISCARDED
AS A RESULT OF A NON-LOCAL TRANSFER

[THIS IS A VERY ATYPICAL USE OF THE CONDITION MECHANISM, SINCE
'cleanup' IS SIGNALLED IN EVERY FRAME BETWEEN THE CURRENT
STACK FRAME AND THE FRAME CONTAINING THE TARGET OF THE NON-LOCAL
TRANSFER

I TYPE OF THING USUALLY DONE IN A 'cleanup' HANDLER
I CLOSE FILES WHICH HAD BEEN OPENED IN THAT ACTIVATION BLOCK
I FREE ALLOCATED 'controlled' OR 'based' VARIABLES

I REINITIALIZE STATIC VARIABLES

I

SHOULD NOT DO A NON-LOCAL 'goto'

I THIS WOULD INTERFERE WITH THE ONE ALREADY IN PROGRESS

Not To Be Reproduced 6=-22 F15C

SOME SYSTEM-DEFINED CONDITIONS

I fault_tag_1

I SIGNALLED WHEN AN ATTEMPT IS MADE TO ACCESS THROUGH AN
UNINITIALIZED POINTER OR A POINTER CONTAINING INVALID DATA

I 1illegal_opcode, illegal procedure

] SIGNALLED WHEN AN ATTEMPT IS MADE TO EXECUTE AN INVALID OR
PRIVILEGED MACHINE INSTRUCTION

I linkage_error:

§ SIGNALLED WHEN THE DYNAMIC LINKING MECHANISM OF MULTICS CAN
NOT LOCATE AN EXTERNAL OBJECT

I null_pointer

0 SIGNALLED WHEN AN ATTEMPT IS MADE TO USE AN INVALID (NULL)
POINTER

I out_of bounds

] SIGNALLED WHEN AN ATTEMPT IS MADE TO REFER TO A LOCATION
BEYOND THE CURRENT LENGTH OF A SEGMENT

Not To Be Reproduced 6=23 F15C

SOME SYSTEM-DEFINED CONDITIONS

1 program_interrupt

I SIGNALLED WHEN THE USER HAS ISSUED THE 'program_interrupt’
COMMAND

I quit

I SIGNALLED WHEN THE USER HITS THE 'break' OR ‘'attention' KEY
ON HIS/HER TERMINAL (THE DEFAULT HANDLER PRINTS THE WORD "QUIT"
ON THE USER'S TERMINAL, ABORTS THE PROGRAM, AND ESTABLISHES A
NEW COMMAND LEVEL)

I 1IN GENERAL, USER PROGRAMS SHOULD NOT HANDLE THE 'quit' CONDITION

I record_quota_overflow

I SIGNALLED WHEN A USER ATTEMPTS TO ALLOCATE A RECORD IN SECONDARY
STORAGE WHICH WILL OVERFLOW HIS/HER ALLOTTED LIMIT

I seg_fault_error
| SIGNALLED WHEN AN ATTEMPT IS MADE TO USE A POINTER WITH AN
INVALID SEGMENT NUMBER, AND CAN BE CAUSED BY:

I THE DELETION OR TERMINATION OF A SEGMENT AFTER THE POINTER
IS INITIALIZED

I THE POINTER IS NOT INITIALIZED IN THE CURRENT PROCESS

I THE USER HAS NO ACCESS TO THE SEGMENT

Not To Be Reproduced 6-24 F15C

SOME SYSTEM-DEFINED CONDITIONS

’ YOU ARE NOW READY FOR WORKSHOP
#4

Not To Be Reproduced 6-25 F15C
(End Of Topic)

Characteristics. .

The Multics I/0 Mechan

The Multics Input/Output

ism

Protocols Supported.

The More Popular I/0 Modules

.

Performing Multics I/0 .

THE _
‘I/0 Control Blocks

'iox ' SUBROUTINE.

TOPIC VII

e e e 3 e e o

System

e e o o e o o
e o o B o ¢ @
e e o o e o o
e e o B 5 & o

e o6 o o e o e

e o & o e e o

e« o e o o e o

o

F15C

Toric VII THE MULTICS 1/0 SYSTEM Toric VII

OBJECTIVES:

Uron completion of this toepic, students should be able to:

1. Define the followins terms:?
170 switch
I1/0 module
stream 1/0 -
record seauential I/0
record blocked 1I/0

indexed 1/0

2. List the more eporpular I/0 modules.

3. List the sters required to eperform I1/0.

4. Describe an I1/0 control block (I0OCB).

Multics VIiI-1

F13C

CHARACTERISTICS

® THE MULTICS INPUT/OUTPUT SYSTEM IS A FLEXIBLE, GENERALIZED I/0 SYSTEM
CAPABLE OF SUPPORTING SEVERAL PROTOCOLS OF DATA TRANSMISSION TO A
FULL COMPLEMENT OF FILES AND DEVICES

® I/0 SYSTEM BASIC CHARACTERISTICS:

I LOGICAL INPUT/OUTPUT REQUESTS ARE USED RATHER THAN DEVICE-SPECIFIC
PHYSICAL REQUESTS

I DEVICE INDEPENDENCE IS ACHIEVED VIA THE MULTICS I/0 SWITCHMECHANISM

I UNFAMILIAR OR NEW DEVICES CAN BE ADDRESSED VIA THE IMPLEMENTATION
OF SITE-PREPARED INPUT/QUTPUT INTERFACE MODULES

Not To Be Reproduced T=-1 F15C

THE MULTICS I/0 MECHANISM

® THE I/0 MECHANISM USES THE FOLLOWING CONSTRUCTS:

I SWITCH, SWITCHNAME

|

A SWITCH IS A LOGICAL CONSTRUCT USED TO DESIGNATE THE TARGET
OF AN INPUT OR OUTPUT REQUEST

ASSOCIATED WITH AN I/0 SWITCH IS A "SWITCHNAME"

ALL I/0 REQUESTS ARE DIRECTED TO A "SWITCH" WHICH IS "ATTACHED"
BY A DEVICE-DEPENDENT PROGRAM, CALLED AN I/O MODULE, TO A
PARTICULAR DEVICE OR FILE :

THE SUPPORTING DATA STRUCTURE OF A SWITCH IS AN I/0O CONTROL
BLOCK (IOCB)

{ INPUT/OUTPUT MODULE

A DEVICE-DEPENDENT COMMUNICATION MODULE WHICH ACTS AS THE
INTERFACE BETWEEN THE USER'S LOGICAL I/O REQUESTS AND THE
HARDWARE-LEVEL I/O SYSTEM

TRANSLATES THE USER'S LOGICAL REQUESTS INTO THE PHYSICAL REQUESTS
APPROPRIATE TO THE TYPE OF DEVICE OR FILE FOR WHICH IT WAS
WRITTEN

SYSTEM STANDARD MODULES SUPPORT I/0 TO/FROM BASIC DEVICES (TAPE,
REMOVABLE DISK, TERMINAL DEVICES, CARD READERS, ETC.) AND
FILES (SEGMENTS IN THE VIRTUAL MEMORY)

Not To Be Reproduced 7=-2 F15C

Not To Be Reproduced

THE MULTICS I/O MECHANISM

PROGRAM

A

\J

1/O SWITCH

©

A
A

pam——

]

vfile_

il

discard __

F15C

THE MULTICS I/O MECHANISM

PROTOCOLS SUPPORTED

® FOUR BASIC I/0 PROTOCOLS (FILE STRUCTURES) SUPPORTED

I THE TYPE OF PROTOCOL BEING USED LIMITS THE REQUESTS THAT CAN BE
SATISFIED

I CERTAIN I/O MODULES SUPPORT ONLY ONE PROTOCOL, SOME I/O MODULES
SUPPORT ALL THE PROTOCOLS

I THEY ARE:

I 1
1

STREAM INPUT/OUTPUT

A STREAM FILE IS A SEQUENCE OF ASCII CHARACTERS, SEPARATED
BY NEWLINE AND NEWPAGE CHARACTERS

OFTEN CALLED AN "UNSTRUCTURED" FILE

EXAMPLES: TERMINAL DIALOG, TEXT EDITOR CREATED SEGMENTS,
TAPES WRITTEN VIA tape_mult_

RECORD SEQUENTIAL INPUT/OUTPUT

A "STRUCTURED" FILE OF VARIABLE LENGTH RECORDS, EACH RECORD
REPRESENTING ONE STRUCTURE

A RECORD FILE MAY BE ACCESSED IN "SEQUENTIAL" PROTOCOL,
WHICH MEANS THAT THE CURRENT RECORD AND NEXT RECCRD ARE
WELL-DEF INED

EXAMPLES: TAPES WRITTEN VIA tape_ibm_ OR tape_ansi_, CERTAIN
VIRTUAL MEMORY SEGMENTS

Not To Be Reproduced 7-4 F15C

THE MULTICS I/Q MECHANISM

PROTOCOLS SUPPORTED

I 3) RECORD BLOCKED INPUT/OUTPUT

I A RECORD FILE MAY BE CREATED IN LOGICAL BLOCKS, THUS ALLOWING
I/0 TO BE DONE A BLOCK AT A TIME

I BLOCK SIZE IS FIXED
I A BLOCK CONTAINS

I ONE RECORD (WITH POTENTIAL WASTED SPACE) IF IN A VIRTUAL
MEMORY FILE

I ONE OR MORE RECORDS IF ON ANSI OR IBM TAPE
I SPECIFY BLOCKED MODE AT ATTACH TIME

I 4) INDEXED INPUT/OUTPUT
I AN INDEXED FILE IS A "KEYED" FILE, IMPLEMENTED AS A
MULTI-SEGMENT FILE WITH ONE (OR MORE) COMPONENTS HOLDING
THE "KEY VALUES", AND ONE (OR MORE) COMPONENTS HOLDING THE
"DATA RECORDS" ' ’ :

I AN INDEXED FILE MAY BE ACCESSED IN EITHER "KEYED SEQUENTIAL"
MODE, OR "KEYED DIRECT" MODE

I MUST BE IN THE VIRTUAL MEMORY
I EXAMPLE: "RELATIONS™ IN A MRDS DATABASE

1 PL/I DEDUCES THE PROTOCOL BY EXAMINING LANGUAGE I/O STATEMENTS
AND/OR THE ATTACH DESCRIPTION

Not To Be Reproduced 7=5 F15C

THE MULTICS I/O MECHANISM

THE MORE POPULAR I/0 MODULES

® SOME OF THE SYSTEM STANDARD I/0 MODULES, THEIR FUNCTIONS,
PROTOCOLS SUPPORTED ARE:

AND THE

NAME FUNCTION PROTOCOLS SUPPORTED
1) vfile_ I/0 TO/FROM SEGMENTS IN ALL
THE VIRTUAL MEMORY
2) tty_ . I/0 TO/FROM TERMINAL STREAM
DEVICES
3) discard_ OUTPUT SINK ALL
4) syn_ ALLOWS ONE SWITCH TO SERVE ALL
AS A SYNONYM FOR ANOTHER
SWITCH
. 5) rdisk_ I/0 TO/FROM REMOVABLE, NON- SEQUENTIAL,
MULTICS DISK PACKS KEYED, OR
BLOCKED
6) record_stream_ ALLOWS RECORD I/O OPERATIONS STREAM
TO BE DIRECTED TO A STREAM <>
FILE AND VICE VERSA SEQUENTIAL
7) tape_mult_ I/0 TO/FROM A MULTICS STREAM
FORMAT TAPE
8) tape_ibm_ I/0 TO/FROM A TAPE FILE IN SEQUENTIAL,
tape_ansi_ IBM COR ANSI FORMAT BLOCKED
9) tape_nstd_ I/0 TO/FROM TAPES IN NON-STANDARD SEQUENTIAL
OR UNKNOWN FORMATS
10) bisync_ I/0 ACROSS A BINARY SYNCHRONOUS STREAM
COMMUNICATIONS CHANNEL
INTERCEPTS I/0 ACTIVITY ON A STREAM

11) audit_

Not To Be Reproduced

GIVEN SWITCH, ALLOWING LOGGING
AND EDITING OF DATA

7=6

F15C

THE MULTICS I/0 MECHANISM

PERFORMING MULTICS I/0

® STEPS REQUIRED TO PERFORM I/0

I 1) THE SPECIFIED SWITCH MUST BE "ATTACHED" (INITIALIZED) BY A
SPECIFIED I/C MODULE TO SOME TARGET DEVICE OR FILE (SUBSEQUENT
REQUESTS DIRECTED TO THE SWITCHNAME OPERATE VIA THE I/O MODULE
ON THE TARGET DEVICE OR FILE)

0 2) THE SWITCH MUST BE "OPENED" IN A MODE COMPATIBLE WITH THE
TYPE OF DEVICE OR FILE BEING MANIPULATED

I 3) INPUT/OUTPUT OPERATIONS CAN NOW BE DIRECTED TO THE SWITCH
(OPERATIONS MUST BE CONSISTENT WITH THE ATTACHMENT AND OPENING
MODE OF THE SWITCH)

I 4) THE SWITCH MUST BE "CLOSED" LEAVING THE SWITCH IN THE STATE
IT WAS PRIOR TO THE "OPENING"™ (THAT IS, IT MAY NOW BE OPENED
WITH A DIFFERENT MODE)

1 55 THE SPECIFIED SWITCH MUST BE "DETACHED" BREAKING THE ASSOCIATION
BETWEEN THE SWITCHNAME AND THE I/O MODULE AND TARGET (HENCE, THE
SWITCH MAY BE ATTACHED IN A NEW WAY)

Not To Be Reproduced T=7 F15C

-—----ﬁ

THE MULTICS I/0 MECHANISM

PERFORMING MULTICS I/O

| |
: : ATTACH SWITCH OPEN CLOSE
—tm e mmm -
' 1 locs MODE 2
1 M 1 e
: f QQ',"Q:” S
' ! §' °°1/ /°O/
| : /Iél lls,’
i — /
. o ol! 00 00
[}
1
: 1
:- - AP S AP EE WS A u =W -l
DETACH SWITCH CLOSE OPEN SWITCH
---------- - - = o S —
10CB MODE 1 10CB
///// // // /’, ,’ // //
/’//// ’/////
/ / Vi , e / ’/ / //
©0 ON®)
SWITCH SWITCH SWITCH
L” —————————— M ——————————— GPEN. ————--:---_L
locB 10c8 MODE i locs
N A \ E\ ."\ \\ \
\ AR Ay \ \
AR VDY
AR YA N A
ALY AR WA
lcl o X} ICDI 00 FDI 00
]
L J -__J w__J
Not To Be Reproduced 7-8 F15C

THE MULTICS I/0 MECHANISM

PERFORMING MULTICS I/0

® ALL I/O OPERATIONS CAN BE PERFORMED AT THREE BASIC LEVELS:
I LANGUAGE LEVEL « 'open', 'close', 'get!, 'read', 'put', 'write’
I COMMAND LEVEL - THE 'io_call' COMMAND
-1 SUBROUTINE LEVEL - THE 'i?x_' SUEROUTINE

I EXAMPLES (THE FOLLOWING ARE EQUIVALENT):

I PL/I

open file (x) title ("vfile_ user_file") stream output;

io_call attach x vfile_ user_file
io_call open x stream_output

I SUBROUTINE LEVEL
all iox_$attach_name ("x", iocb_ptr, "vfile user_file",

ref_ptr, code);
call iox_$open (iocb_ptr, 2, "0"b, code);

¢}

I LANGUAGE VS. 1I/0 SYSTEM

PL/I STATEMENT EQUIVALENT I/O CALLS
. open attach
open
close close
detach

Not To Be Reproduced 7-9 F15C

THE MULTICS I/0 MECHANISM

PERFORMING MULTICS I/O

® THE ATTACHMENT AND DETACHMENT OF A SWITCH CAN BE PERFORMED EITHER
EXTERNALLY TO A PROGRAM OR INTERNALLY BY THE PROGRAM ITSELF

I IF THE SWITCH IS ATTACHED EXTERNALLY, THE PROGRAM RECOGNIZES
THIS ATTACHMENT, HONORS THIS PRIOR ATTACHMENT, AND IGNORES THE
SPECIFIED INTERNAL ATTACH DESCRIPTION (THUS YIELDING DEVICE
INDEPENDENCE)

I IF THE SWITCH HAS NOT BEEN ATTACHED EXTERNALLY, THE ATTACH
DESCRIPTION SUPPLIED BY THE PROGRAM (EITHER EXPLICITLY OR
IMPLICITLY) WILL BE USED TO ATTACH THE SWITCH

I IF THE SWITCH IS ATTACHED EXTERNALLY, IT MUST BE DETACHED EXTERNALLY
I IF THE SWITCH-IS ATTACHED INTERNALLY BY EXECUTION OF THE 'open'

STATEMENT, IT WILL BE DETACHED BY EXECUTION OF THE 'close'
STATEMENT

® THE ABOVE STATEMENTS SIMILARLY APPLY TO THE OPEN AND CLOSE OPERATIONS

Not To Be Reproduced 7=10 F15C

THE MULTICS I/0 MECHANISM
PERFORMING MULTICS I/0

I EXAMPLE

X: proc;

dcl line char(80);
del (abe, xyz) file;
del i;

open file (abe) input;
open file (xyz) output;

do i = 1 to 50;
get file (abe) 1list (line);
put file (xyz) list (line);
end;
close file (abe), file (xyz);

end /% x %/,

1 TO HAVE OUTPUT SENT TO TERMINAL INSTEAD OF FILE Xyz USER COULD
TYPE THE FOLLOWING:

! io_call attach xyz syn_ user_output
! b4) |

! . io_call detach xyz

Not To Be Reproduced T=-11 F15C

THE 'iox ' SUBROUTINE

iox_ IS THE USER-RING INTERFACE TO THE MULTICS INPUT/QUTPUT SYSTEM

ALL I/0 OPERATIONS ISSUED AT THE USER-RING LEVEL (WHETHER FROM
COMMAND LEVEL, LANGUAGE LEVEL, OR DIRECT iox_ CALL) RESULT IN A
CALL TO iox

iox_ PROVIDES ENTRY POINTS FOR ALL INPUT/OUTPUT OPERATIONS

EVERY iox_ ENTRY POINT REQUIRES AN ARGUMENT DENOTING THE PARTICULAR
I/0 SWITCH (ACTUALLY THE IOCB) INVOLVED IN THE OPERATION

IF AN ENTRY POINT REQUIRES THE I/O SWITCH TO BE OPEN, AND IF IT
IS NOT, THE CODE 'error_table $not_open' IS RETURNED

IF THE I/0 SWITCH IS OPEN, BUT THE OPERATION IS NOT ALLOWED FOR
THAT OPENING MODE, THE CODE 'error_table _$no_operation' IS RETURNED

Not To Be Reproduced T=12 F15C

THE 'iox ' SUBROUTINE

® THE MAJOR ENTRY POINTS OF iox_ CAN BE CLASSIFIED AS FOLLOWS:

I ATTACHING/DETACHING
I iox_$attach_name
I iox_$attach ptr
I iox_$detach_ioch
0 iox_$destroy_iochb
0 iox_$find_ioch
1 idiox_$look iocb

I iox_$move_attach

I OPENING/CLOSING
1 iox_$open

i iox_$close

0 STREAM I/O REQUESTS
I iox_gget_chars
0 iox_$get_line

1 iox_$put_chars

Not To Be Reproduced 7=13 _ F15C

THE 'iox ' SUBROUTINE

8 RECORD I/O REQUESTS
I iox_s$delete_record
1 iox_$read_key
I iox_$read_length
I iox_$read_record
I iox_$rewrite_record
I iox_$seek _key

1 iox_$write_record

>

I CONTROL REQUESTS
I iox_$control
I iox_$modes

I iox_$position

Not To Be Reproduced 7=-14 F15C

I/0 CONTROL BLOCKS

® WHAT IS AN I/O CONTROL BLOCK (IOCB)?
| EVERY SWITCHNAME HAS ASSOCIATED WITH IT AN 'IOCB’
I AN 'IOCB' IS A STANDARD DATA STRUCTURE
I IT IS THE PHYSICAL REALIZATION OF A SWITCH
I THEY ARE FOUND IN THE USER'S PROCESS DIRECTORY

I AN 'IOCB' IS CREATED BY iox_ WHEN A SWITCHNAME IS USED IN AN
"ATTACH STATEMENT"™ OR "ATTACH COMMAND" FOR THE FIRST TIME IN A
PROCESS

I IF THE SAME SWITCHNAME IS USED LATER IN THE PROCESS, THE SAME
'IOCB" IS REUSED

I THUS THERE IS A ONE TO ONE MAPPING BETWEEN SWITCHNAMES AND
IOCB'S

I ONCE AN 'IOCB' IS CREATED, IT LIVES THROUGHOUT THE PROCESS (UNLESS
EXPLICITLY DELETED)

Not To Be Reproduced 7-15 F15C

I/0 CONTROL BLOCKS

/* BEGIN INCLUDE FILE iocb.incl.plt
13 Feb 1975, M. Asherman */
/* Modified 11/29/82 by S. Krupp to add new entries and
to change version number to I0X2. ¥/
/* format: style2 #*/

del 1 ioeb ' aligned based,
/% 1/0 control block. */
version character (4) aligned,

/% 10X2 %/
name char (32),

/* 1/0 name of this block. ¥*/
actual_iocb_ptr ptr,

/% IOCB ultimately SYNed to. */
attach_descrip ptr ptr,

/* Ptr to printable attach description. */
attach_data_ptr ptr,

/* Ptr to attach data structure. */
open_descrip_ptr ptr,

/* Ptr to printable open description. ¥/
open_data_ptr ptr,

/* Ptr To open data structure (old SDB).
reserved : bit (72),

/% Reserved for future use. %/
detach_iocb entry (ptr, fixed (35)),

/% detach_iocb(p,s) */
open entry (ptr, fixed, bit (1) aligned,

fixed (35)),
/* open(p,mode,not_used,s) */

n

N DD DD DN

2 close entry (ptr, fixed (35)),
/* close(p,s) ¥/
2 get_line entry (ptr, ptr, fixed (21),

fixed (21), fixed (35)),
/* get_line(p,bufptr,buflen,actlen, s) */
2 get_chars entry (ptr, ptr, fixed (21),
fixed (21), fixed (35)),
/* get_ chars(p,bufptr buflen,actlen,s) #*/
put_ chars entry (ptr, ptr, fixed {(2ij,
fixed (35)),
/* put_chars(p,bufptr,buflen,s) */
2 modes entry (ptr, "char (*), char (%),
fixed (35)),
/* modes(p,newmode,oldmode,s) */

[\W)

2 position entry (ptr, fivxed, fixed (21),
fixed (35))
/* position(p,ul,u2,s) */
2 control entry (ptr, char (%), ptr,

fixed (35)),
/* control(p,order,infptr,s) ¥*/
2 read_record entry (ptr ptr, fixed (21),
fixed (21) fixed (35))
/* read record(p,bufptr buflen, actlen s) %/
2 write_ record entry (ptr, ptr, flxed 21y,

Not To Be Reproduced T=-16 F15C

I/0 CONTROL BLOCKS

fixed (35)),
/* write_record(p,bufptr,buflen,s) */
2 rewrite_ record entry (ptr, ptr, fixed (21),
fixed (35)),
/* rewrite_record(p,bufptr,buflen s) %/

2 delete_ record entry (ptr, flxed (35)),
/* delete_record(p,s) ¥/
2 seek_key entry (ptr, char (256) varying,

fixed (21), fixed (35)),
/* seek key(p,key,len,s) ¥/
2 read_key entry (ptr, char (256) varying,
fixed (21), fixed (35)),
/* read_key(p,key,len,s) */

2 read_length entry (ptr, fixed (21), fixed (35)),
/¥ read _length(p,len,s) */
2 open_file entry (ptr, fixed bin, char (¥),

bit (1) aligned, fixed bln (35)),
/* open_ flle(p,mode desc,not used,s) */

2 close_file entry (ptr, char (*), fixed bin (35)),
/* close_file(p,desc,s) */
2 detach entry (ptr, char (¥*), fixed bin (35));

/* detach(p,desc,s) ¥/

. declare iox_$iocb_version_sentinel
character (4) aligned external static;

/% END INCLUDE FILE iochb.inecl.plt ¥/
del 1 attach_descrip based aligned,
2 length fixed bin (17),

2 string char (0 refer (attach_descrip.length));

Not To Be Reproduced T=-17 F15C

I/0 CONTROL BLOCKS

® AN ATTACH DESCRIPTION IS A CHARACTER STRING CONVEYING THE FOLLOWING
INFORMATION:

I MODULE NAME

I MODULE-SPECIFIC ARGUMENTS, SUCH AS:
I PATHNAME (vfile)
0 CHANNEL NAME (tty_, bisync_)
0 VOLUME ID (tape_ibm_, tape_ansi_, tape_mult_, tape_nstd_)'
0 DISK_DRIVE_ID AND PACK_ID (rdisk_)

0 SWITCHNAME (syn_, record_stream_)

I MODULE-SPECIFIC CONTROL ARGUMENTS, SUCH AS:
I -extend (vfile_ , tape_ibm_, tape_ansi)
I -density (tape_ibm_, tape_ansi_, tape_mult_)
8 -block (tape_ibm_. tape_ansi_)_

I -blocked (vfile)

0 COMPLETE DESCRIPTIONS OF THE I/0 MODULES AND THE ARGUMENTS SPECIFIED
AT ATTACH TIME ARE IN Multics Subroutines & I/0 Modules (AG93)

Not To Be Reproduced 7-18 F158C

I/0 CONTROL BLOCKS

® THE PRINCIPAL COMPONENTS OF AN 'IOCB' ARE 'pointer' VARIABLES AND
'entry' VARIABLES

® THERE IS ONE ‘'entry' VARIABLE FOR EACH I/O OPERATION, WITH THE
EXCEPTION OF THE ATTACH OPERATION

® TO PERFORM AN I/O OPERATION THROUGH THE SWITCH, THE APPROPRIATE
ENTRY VALUE IN THE CORRESPONDING 'IOCB' IS CALLED ,

I FOR EXAMPLE:
call iox_$put_chars(ioecb_ptr,.....);
CAN BE THOUGHT OF AS:

call ioeb_ptr->iocb.put_chars(.....);

Not To Be Reproduced T=-19 F15C

I/0 CONTROL BLOCKS

® WHEN iox_$attach _name IS CALLED IT:
I CREATES/LOCATES THE 'IOCB' ASSOCIATED WITH THAT SWITCHNAME

I INITIALIZES SOME OF THE ELEMENTS IN THE 'IOCB' STRUCTURE

I CALLS <module name>$<module_name>attach

0 THUS THERE NEED BE NO ENTRY FOR THE ATTACH OPERATION IN THE
'IOCB'

I THIS ENTRY POINT IN THE I/O MODULE FINISHES THE INITIALIZATION
OF THE 'IOCB'

1 FOR EXAMPLE, IF THE I/0 MODULE INVOLVED IN THE ATTACHMENT WAS
vfile :

I vfile_$vfile_attach IS CALLED

I AFTER THE ATTACHMENT (INITIALIZATION) IS COMPLETE:
I iocb.open CONTAINS THE ENTRY TO vfile_$open
I iocb.close CONTAINS THE ENTRY iox_$err_not_open

Not To Be Reproduced T7=-20 F15C

I/0 CONTROL BLOQOCKS

® AFTER THE ATTACHMENT OF THE SWITCH, EVERY I/0 OPERATION ON THAT
SWITCH REFERENCES THE CORRESPONDING 'IOCB' TO FIND THE ENTRY POINT
AT WHICH TO START EXECUTION .

I ONE OF TWO ACTIONS MAY RESULT:
I iox_ GENERATES AN ERROR MESSAGE (IF IT IS AN ILLEGAL OPERATION)

I EXECUTION STARTS AT THE APPROPRIATE ENTRY POINT OF THE
APPROPRIATE MODULE

I THIS EXECUTION UPDATES THE 'IOCB', USUALLY REPLACING SOME

ENTRY VALUES CAUSING ERROR MESSAGES WITH ENTRY VALUES
INDICATING ENTRY POINTS IN THE MODULE (AND VISA VERSA)

I EXAMPLE (IN THE ABOVE CASE):

10CB MEMBER BEFORE OPENING AFTER OPENING
iocb.open vfile $open iox_$err_not_closed
focb.close 10X_serr_not_open viile jclose

® IT IS THE RESPONSIBILITY OF THE I/O MODULE TO MAINTAIN THE ACCURACY
OF THE 'IOCB')

® ONLY THE iox_ ENTRY POINTS RESULTING IN ATTACHMENT OF A SWITCH
REQUIRE THE MODULE AS AN INPUT ARGUMENT

- — te i ea

I AFTER THAT TIME, THE 'IOCB' "POINTS TO" THE APPROPRIATE ENTRY
POINTS IN THE APPROPRIATE MODULE (THE USER NEED ONLY PROVIDE A
POINTER TO THE 'IOCB')

Not To Be Reproduced 7-21 F15C

I/0 CONTROL BLOCKS

IN VIEW OF THE ABOVE DISCUSSION OF IOCB'S AND SWITCHES, THE TERM
"SWITCH* SHOULD MAKE MORE SENSE

I A SWITCH/IOCB CAN BE THOUGHT OF AS A STRUCTURE CONTAINING TRANSFER

VECTORS :
YOU ARE NOW READY FOR WORKSHOP
#5
Not To Be Reproduced : T=22 | F15C

(End Of Topie)

TOPIC VIII

The iox_ Multics Subroutine

Page
INTRODUCTION TO USING 10X_ ¢ ¢ ¢ ¢ o o o o o ¢ o o o o o o o o 8=1
iox_ OPENING MODES & ¢ o ¢ o o o o o o o o o o o o o o o o o o« 8=2
Standard Switch Attachments. . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o « « 8=3
iox_ ENTRY POINTS. o ¢ ¢ ¢ ¢ o o o o o s o o o o o s o« s o« o « 8=5
AN EXAMPLE USING iox_. . « . . . D e 1<)

8-1 F15C

Toric VIII THE IOX_ SUBROUTINE Toric VIII
OBJECTIVES:

Uron complelion of this toeic. students should be able to:

1. Open and close I/0 swilches usins iox..

2. Read data from the user’s terminal.

3. Diseplay information on the usér's terminal.

4. Read and write stream files.

S. Read and write seauential and keved files.

Multics VIII-1 F15C

INTRODUCTION TO USING iox

® WHY USE iox_ RATHER THAN PL/I I/0 STATEMENTS?

I iox_ IS MORE EFFICIENT

I WRITTEN IN alm

I NUMBER OF MEMORY ACCESSES
I iox_ ACCESSES 'IOCB' ONLY
I PL/I STATEMENTS ACCESS 'FSB' (FILE STATE BLOCK) AND 'IOCB'

I MORE POWERFUL

I BETTER ERROR DETECTION

I ACCEPTED CONVENTION FOR SYSTEM CODE

® WARNING: SHOULD NOT MIX iox_AND PL/I I/O DUE TO INCONSISTENCIES
(DIRECT CALLS TO iox_ DO NOT MAINTAIN 'FSB')

Not To Be Reproduced 8-1 F15C

® iox

iox OPENING MODES

OPENING MODES SUPPORTED AND THE iox_ OPERATIONS PERMITTED FOR

EACH OPENING:

=
o

OW 0 =QoOUlE WHN -

SEE

® NOT

Not To

NAME I/0 OPERATIONS PERMITTED
stream_input get_line, get_chars, position
stream _output put_chars
stream _input_output 1 + 2
sequential_ input read_record, read_length, position
sequential output write_record
sequentlal_lnput output 4 + 5
sequential_update 4, rewrite_record, delete_record
keyed_sequential_input read_record, read_length, position,

“seek key, read _key
keyed_sequential_output seek _key, write_record
keyed_sequential_ update 8 + 9, rewrite_ record, delete_record
direct_input read_record, read_length, seek key
direct” ,_output seek _key, write_ record
,dlrect update 11 + 12, rewrite record,delete_record
>ldd>include>iox_modes.incl.pl1

E:
THE 'open', 'close', 'control', AND 'modes' OPERATIONS ARE PERMITTED

WITH ANY OPENING MODE

THE ABOVE NUMBERS ARE USED IN CALLS TO iox_ TO SPECIFY OPENING
MODES

THE LONG NAME (AS GIVEN ABOVE) IS USED WITH 'io_call'

PL/I SPECIFIES THE OPENING MODE IN THE FILE DESCRIPTION

Be Reproduced 8-2 F15C

STANDARD SWITCH ATTACHMENTS

PROCESS

Y

user_input error_output user _output
A
:] 7
¥ L 7
user_i/o
tty-
)
Y
TERMINAL

Not To Be Reproduced 8-3 F15C

STANDARD SWITCH ATTACHMENTS

® THE MULTICS STANDARD PROGRAMMING ENVIRONMENT MAKES USE OF FOUR SWITCHES
WHICH ARE ATTACHED AND OPENED AS PART OF THE PROCESS CREATION CYCLE

® THE STANDARD ATTACHMENTS ARE:

user_i/o tty_ -login_channel
stream_input_output

user_input syn_ user_i/o

user_output - syn_ user_i/o

error_output syn_ user_i/o

® IN TERMS OF iox_, THESE SWITCHES ARE IDENTIFIED BY THE FOLLOWING
DECLARATIONS:

I del iox_$user_io external pointer;

I del iox_s$user_input external pointer;

I del iox_$user_output external pointer;

I del iox_$error_output external pointer;

I EXAMPLE

call iox_$put_chars (iox_$user_output, buffer_ptr,
buffer_length, code);

Not To Be Reproduced 8-4 F15C

iox ENTRY POINTS

® THERE ARE OVER 25 ENTRY POINTS FOR THE iox_ SUBROUTINE (SEVERAL ARE
PRESENTED IN THE REMAINDER OF THIS TOPIC)

® THE FIRST 7 ENTRY POINTS:
I ARE SUMMARIZED ON THE NEXT 2 PAGES
[WILL BE STUDIED IN DETAIL BY REFERRING TO THE SUBROUTINES MANUAL
I WILL BE USED IN WORKSHOP 6

I REPRESENT SOME COMMONLY USED ENTRY POINTS THAT WOULD BE USED TO
PROMPT A USER FOR A KEY AND THEN FIND THE CORRESPONDING RECORD
IN A KEYED FILE

® THE OTHER ENTRY POINTS (STARTING ON PAGE 8-7) WILL BE COVERED IN
MUCH LESS DETAIL

® SEVERAL OPERATIONS INVOLVE THE USE OF A BUFFER

I A BUFFER IS A BLOCK OF STORAGE PROVIDED BY THE CALLER OF THE
OPERATION AS THE TARGET FOR INPUT OR THE SOURCE FOR OUTPUT

I A PTR TO THE BUFFER IS PASSED TO iox_ SUBROUTINES

Not To Be Reproduced 8=5 F15C

iox ENTRY POINTS

® iox_$attach_name
I ACCEPTS A SWITCHNAME
I RETURNS A POINTER TO THE 'IOCB' FOR THE CORRESPONDING SWITCH

I ATTACHES THE SWITCH IN ACCORDANCE WITH THE SUPPLIED ATTACH
DESCRIPTION

® iox_$open

I OPENING MODE IS SPECIFIED BY A NUMBER (SEE PAGE 8-2)

® iox_$get_line

THE NEWLINE CHARACTER SIGNIFIES THE END OF THE LINE
I A CODE OF ZERO IS RETURNED ONLY IF A NEWLINE CHARACTER IS READ

I THE NEWLINE ITSELF IS READ INTO THE BUFFER

Not To Be Reproduced 8-6 F15C

iox ENTRY POINTS

® iox_$seek key

I THE NEXT RECORD POSITION AND CURRENT RECORD POSITION ARE SET TO
THE RECORD WITH THE GIVEN KEY

I USED BEFORE DOING A read, delete, rewrite, ETC.

g iox_$read_record
I READS THE NEXT RECORD IN A STRUCTURED FILE

I KEYED READS FIRST REQUIRE A CALL TO iox_$seek key

® iox_$close

® iox_$detach_iocd

I DOES NOT FREE THE IOCB'S STORAGE

Not To Be Reproduced 8=-7 F15C

iox ENTRY POINTS

® THE REST OF THIS TOPIC WILL SERVE AS AN OVERVIEW OF OTHER iox_
ENTRY POINTS

® iox_$attach ptr
I call iOx_$attach _ptr (iocb_ptr, atd, ref ptr, code);

I BEHAVES LIKE iox_$attach_name, EXCEPT iocb_ptr IS AN INPUT NOT
AN OUTPUT VARIABLE

® iox_$find_iochb
I call iox_$find_iocb (switchname, iocb_ptr, code);

I GIVEN A SWITCHNAME, RETURNS A POINTER TO THE IOCB, BUTDOES NO
ATTACHMENT (IF THE BLOCK DOES NOT ALREADY EXIST, IT IS CREATED)

I iox_$find_iocb + iox_$attach ptr = iox_$attach name

® iox_$look _iocb
I call iox_$look iocb (switchname, iocb_ptr, code);

I BEHAVES LIKE iox_$find iocb, HOWEVER DOES NOT CREATE A BLOCK IF
ONE DOES NOT ALREADY EXIST

Not To Be Reproduced 8-8 F15C

iop ENTRY POINTS

® 1iox_$move_attach
I call iox_$move attach (iocb_ptr1, iocb_ptr2, code);
I INCLUDED FOR COMPLETENESS (NOT FOR NOVICE USERS)

I MOVES AN ATTACHMENT FROM ONE ATTACHED SWITCH TO ANOTHER DETACHED
SWITCH

I THE PERFECT EXAMPLE (FOR WHICH move_attach WAS WRITTEN) IS THE
CASE QOF file_output, IN WHICH A TEMPORARY SWITCH IS CREATED, THE
CURRENT ATTACHMENT OF user_output IS MOVED TO THAT TEMPORARY
SWITCH, AND THEN user_output IS ATTACHED TO THE OUTPUT FILE.

® iox_$destroy_ioch
I call iox_$destroy_ioecb (iocb_ptr, code);

I FREES THE STORAGE USED BY A DETACHED CONTROL BLOCK

Not To Be Reproduced 8-9 F15C

iox ENTRY POINTS

iox_$get_chars

call iox_$get_chars (iocb_ptr, buff ptr, n, n_read, code);

USER REQUESTS n BYTES (CHARACTERS) FROM A STREAM FILE OR DEVICE
(ACTUALLY NUMBER READ IS n_read BYTES)

IF n = n_read THEN code

"
o

IF n_read < n THEN code = error_table_$short_record

IF NEXT BYTE IS "END OF FILE" THEN code = error_table_$end_of_ info
(NOT§ THAT THE 'endfile' CONDITION IS NOT SIGNALLED WHEN USING
iox_) -

READS NEWLINE CHARACTERS INTO BUFFER JUST LIKE ANY OTHER CHARACTER

IF n IS GREATER THAN THE SIZE OF THE RECEIVING BUFFER, OVERFLOW
CHARACTERS WILL BE WRITTEN PAST THE END OF THE BUFFER, YIELDING
POTENTIALLY DISASTROUS RESULTS

BUFFER OUGHT TO BE EXPLICITLY FLUSHED PRIOR TO CALL, BECAUSE
JUST n_read CHARACTERS WILL BE OVERWRITTEN
I ALTERNATIVE:

del max_buff char(80) based (buff_ptr);

del buff char’(n_read) based (buff_ptr);

Not To Be Reproduced 8-10 F15C

iox ENTRY POINTS

® iox_$put_chars
I call iox_g$put_chars (iocb_ptr, buff_ptr, n, code);
I WRITES n BYTES (CHARACTERS) TO THE UNSTRUCTURED FILE OR DEVICE

I BUFFER SHOULD CONTAIN A NEWLINE, IF ONE IS INTENDED (THERE IS NO
"put_line' ENTRY POINT)

I IF OPEN FOR stream_output THE CHARACTERS ARE APPENDED TO THE END
OF THE FILE. IF OPEN FOR stream input_output FILE TRUNCATION
OCCURS JUST BEFORE THE NEXT BYTE

® iox_$write_record
I call iox_s$write_record (iocb_ptr, buff_ptr, rec_len, code);
I ADDS A RECORD TO A STRUCTURED FILE

I IF OPEN FOR sequential_output, THE RECORD IS APPENDED TO THE
FILE. IF OPEN FOR sequentlal 1nput output, FILE TRUNCATION OCCURS
JUST BEFORE THE NEXT RECORD

I iox_$seek key MUST BE CALLED BEFORE DOING A KEYED WRITE IN ORDER
TO WSET THE KEY" FOR INSERTION :

Not To Be Reproduced 8§-11 F15C

iox ENTRY POINTS

& iox_$rewrite_record
I call iox_$rewrite_record (iocb_ptr, buff_ptr, rec_len, code);

I REPLACES THE CURRENT RECORD IN A STRUCTURED FILE THAT HAS BEEN
OPENED FOR "UPDATE"

0 IF THE CURRENT RECORD POSITION IS NULL, error_table_$no_record
IS RETURNED

I THUS IT IS FIRST NECESSARY TO "LOCATE"™ THE RECORD TO BE REPLACED
(USING read_record, seek key OR position ENTRY POINTS)

® iox_$read_length
I call iox_$read_length (iocb_ptr, rec_len, code);

I RETURNS THE LENGTH OF THE NEXT RECORD IN A STRUCTURED FILE

i IF THE NEXT RECCRD POSITICN IS AT THE END OF FILE, code =
error_table_g$end_of_info

0 APPLICATION: TO DETERMINE HOW LONG THE BUFFER MUST BE IN ORDER
TO HOLD THE NEXT RECORD TO BE READ (EXAMPLE: VARIABLE LENGTH
RECORDS) ’

Not To Be Reproduced 8=12 F1i5C

iox ENTRY POINTS

® 1iox_$delete_record

0

call iox_$delete_record (iocb_ptr, code);

DELETES THE CURRENT RECORD FROM THE STRUCTURED FILE, WHOSE SWITCH
MUST BE OPENED FOR "UPDATE"

IF THE CURRENT RECORD IS NULL, code = error_table $no_record

AGAIN, IT IS FIRST NECESSARY TO "LOCATE" THE RECORD TO BE DELETED
(USING read_record, seek key OR position ENTRY POINTS)

® iox_$read_key

call iox $read_key (iocb_ptr, key, rec_len, code);

RETURNS BOTH THE KEY AND THE LENGTH OF THE NEXT RECORD IN AN
INDEXED FILE

code = error_table $end_of info IF THE NEXT RECORD POSITION IS
AT THE END OF FILE

code = error_table $no_record IF THE NEXT RECORD POSITION IS
NULL

Not To Be Reproduced 8-13 F15C

iox ENTRY POINTS

® iox_$position
I call iox_$position (ioecb_ptr, type, n, code);

I POSITIONS TO THE BEGINNING OR END OF A FILE, OR SKIPS FORWARD OR
BACKWARD OVER A SPECIFIED NUMBER OF LINES OR CHARACTERS
(UNSTRUCTURED FILES) OR RECORDS (STRUCTURED FILES)

I type IDENTIFiES THE TYPE OF POSITIONING (INPUT)
I -1 GO TO THE BEGINNING OF FILE (n = 0)
0 +1 GO TO THE END OF FILE (n = 0)
§ o SKI? NEWLINE CHARACTERS OR RECORDS (n positive or negative)
I 2 POSITION TO AN ABSOLUTE CHARACTER OR RECORD (n)

I 3 SKIP CHARACTERS {(stream_input) {(n positive or negative)

Not To Be Reproduced 8-14 F15C

iox ENTRY POINTS

® iox_$modes

I USED TO OBTAIN OR SET MODES THAT AFFECT THE SUBSEQUENT BEHAVIOR
OF THE SWITCH (BEST KNOWN MODES ARE THOSE ASSOCIATED WITH tty_
echoplex,tabs,polite,ete.)

0 call iox_$modes (iocb_ptr, new modes, old_modes, code);

I SWITCH MUST BE ATTACHED VIA AN I/O MODULE THAT SUPPORTS MODES
(EXAMPLE: tty_ SUPPORTS MODES, vfile DOES NOT)

0] FOR A LIST OF THE VALID MODES, SEE THE DESCRIPTION OF THE MODULE
INVOLVED

I call iox_$control (ioeb_ptr, order, info_ptr, code);

I info ptr IS NULL OR POINTS TO DATA WHOSE FORM DEPENDS ON THE
MODUTE

I PERFORMS A SPECIFIED CONTROL ORDER ON AN I/O SWITCH; THE ALLOWED
ORDERS DEPEND ON THE I/O MODULE VIA WHICH THE SWITCH IS ATTACHED
(REFER TO THE I/0 MODULE WRITE UPS)

I EXAMPLES OF tty CONTROL ORDERS: set_delay, set_editing_chars,
quit_ enable, hangup

0 EXAMPLE OF vfile_ CONTROL ORDER: read position (RETURNS THE
ORDINAL POSITION (0, 1, 2...) OF THE NEXT RECORD/BYTE AND
THE END OF THE FILE)

Not To Be Reproduced 8=-15 F15C

AN EXAMPLE USING iox

print_file: proc;

del iox_$attach_name entry (char (*), ptr, char (*), ptr, fixed bin (35));
del iox $detach iocb entry (ptr, tixed bin (35));
del 1ox_$open entry (ptr, fixed bin, bit (1) unallgned fixed bin (35));
del iox $close entry (ptr, fixed bin (35));
del iox_$put_chars entry (ptr, ptr, fixed bin (21), fixed bin (35));
del iox_$read_record entry (ptr, ptr, fixed bin (21), fixed bin (21)
fixed bin (35));
del 1iox_$read_length entry (ptr, fixed bin (21), fixed bin (35));
del 10x_s$get_line entry (ptr, ptr, fixed bin (21), fixed bin (21
fixed bin (35)); °
del 10x_$control entry (ptr, char (%), ptr, fixed bin (35));
del 10x $user output ext ptr;
del iocb_ptr ptr init (null ()),
del code fixed bin (35) init (0);
del com_err_ entry options (variable);
decl ME char (10) static init ("print_ file") options (constant);
del LF char (1) static options (constant) init ("
ll);
del 1 info,
2 next position fixed bin (34),
2 last” _position fixed -bin (34);
del buffer char (buf_len) based (buf ptr);
del ouf_len fixed bin (21);
del ouf_ptr ptr init (null())
del rec_len fixed bin (21);
del 1 fixed bin;
del (null, addr) builtin;
del cleanup condition;

),

" on cleanup call WRAPUP;

call iox_$attach_name ("sw", iocb_ptr, "vfile sample_ file", null (), code);
if code ™= 0
then call WRAPUP;

L]
call iox_$open (iocb_ptr, 4, "0"b, code);
if code ™= 0
then call WRAPUP;

call iox_$control (iocb_ptr, "read_position", addr(info), code);
if code "= 0
then call WRAPUP;

call iox_$read_length (iocb_ptr, rec_len, code);
if code ™= 0
then call WRAPUP;

buf_len = rec_len + 40;
allocate buffer set (buf ptr);

Not To Be Reproduced 8-16 F15C

AN EXAMPLE USING iox

doi=1¢to lastap051tlon£ a/éh{f ,Jkifw
call iox $rea record (iogh~ptr, buf *, buf_len, rec_2X€n, co 5
if code ™z 0 “/gb/ i
then call WRAPUP;
substr (buffer, rec_len+1, 1) = LF; :
call iox $put chars™ (iox $user output buf_ptr, rec_len + 1, code);
if code ™= 0
then call WRAPUP;

end /* do i ¥*/;

call WRAPUP;
WRAPUP: proc;

if code "= 0
then call com_err_ (code, ME);

-~

if iocb_ptr "= null ()
then do;
call iox_$close (ioeb_ptr, code);
call iox $detach_1ocb (1ocb _ptr, code);
end /* then do */;

if buf_ptr "= null 0
then free buf _ptr -> buffer;

goto FINIS;

end /% WRAPUP */;
FINIS:

end /* print_file */;

r 14:40 0.259 32

! vfs sample_file
type: sequential
records: 5
r 14:41 0.261 19

print_file

This is record number 1
THIS IS RECORD TWO

Hi, I'm the third record
Would you believe four?
I am the last record

r 14:41 0.288 7

Not To Be Reproduced 8-17 F15C
(End Of Topie)

TOPIC IX

The 'ioa_' Multics Subroutine

Characteristics.)] °] 9-1
Ent!"y POintS e s e . . . e e o o s o e e s + e o o
COl’ltl"Ol String e o o . e o o . e . e o o e o o o » 9¢4

9-1i ' F15C

Toric IX THE I0A_. SUBROUTINE Toric IX

OBJECTIVES:

Uron completion of this toepic, studenls should be able to:

1. Write simple character strinss to the user's terminal.

2. Use iteration and conditional evaluation to form complex
outrul sirinss for disrlay on the terminal.

2. UWrite to a file via an I/0 switch.

4. MWrite to a file usins the Multics Virtual Memory.

Multics IX-1 ‘ : F15C

CHARACTERISTICS

® USED FOR FORMATTING A CHARACTER STRING FROM FIXED-POINT NUMBERS,
FLOATING-POINT NUMBERS, CHARACTER STRINGS, BIT STRINGS, AND POINTERS

I THE CHARACTER STRING IS FORMATTED ACCORDING TO THE CONTROL
CHARACTERS EMBEDDED IN AN 'ioa_ ' CONTROL STRING

I THE ENTIRE PROCEDURE IS SIMILAR TO FORMATTING OUTPUT IN PL/I OR
FORTRAN

® SEVERAL ENTRY POINTS ARE PROVIDED IN 'ica_' TO PROVIDE VARIOUS OPTIONS

I SINCE ALL OF THE ENTRY POINTS CAN BE CALLED WITH A VARIABLE
NUMBER OF ARGUMENTS, THEY ALL MUST BE DECLARED ‘'entry
options(variable)’

1 ‘'ioa ' NORMALLY APPENDS A NEWLINE CHARACTER TO THE END OF THE
STRING CREATED '

I A CORRESPONDING ENTRY POINT IS PROVIDED FOR EVERY STANDARD ENTRY
POINT WHICH SPECIFIES THAT "NO NEWLINE™ IS TO BE APPENDED

Not To Be Reproduced 9-1 F15C

ENTRY POINTS

® ENTRY POINTS IN ioa_ ARE:

I ioca_, ioca_$nmnl
I call ioa_ (control_string, argl, ..., argh);

I FORMAT THE INPUT DATA ACCORDING TO THE CONTROL STRING, AND
WRITE THE RESULTING STRING ON 'user_output'

I ioa $ioca_stream, ioa_$ioa_stream_nnl

I call ioa_$ioa_stream (switchname, control_string, argl, ...,
argN);

I FORMAT THE RESULTING STRING AS ABOVE, BUT THE STRING IS THEN
WRITTEN TQ AN I/O SWITCH SPECIFIED BY THE SWITCHNAME ARGUMENT

[ioa_$ioca_switch, ioa_$ioca_switch_nnl

| call ioa_$ioa_switch (ioceb_ptr, control_string, argl, ...,
arghy;

I IDENTICAL TO THE ioa_$ioa_stream AND ioa_$ioca_$stream_nnl ENTRY
POINTS EXCEPT THAT THE I/0 SWITCH IS DESIGNATED BY A POINTER
TO ITS IOCB, RATHER THAN BY SWITCHNAME (HENCE, THESE ENTRY
POINTS ARE A BIT MORE EFFICIENT)

Not To Be Reproduced g2 F15C

ENTRY POINTS

I ioa_$rs, ioa_$rsnnl

I call ioa_$rs (control_string, ret_string, ret_length, argl,
eeey argN);

I EDITING OCCURS AS IN THE ABOVE CALLS, BUT INSTEAD OF BEING
WRITTEN TO AN I/0 SWITCH, THE STRING IS PASSED BACK TO THE
CALLER IN A CHARACTER STRING VARIABLE

I THE CHARACTER STRING VARIABLE PROVIDED BY THE CALLER MAY BE
VARYING OR NONVARYING, ALIGNED OR UNALIGNED AND OF ANY LENGTH

I THE LENGTH OF THE CREATED STRING IS ALSO RETURNED

I ioa_$rsnp, ioca $rsnpnnl

I THESE ARE IDENTICAL TO THE ica_$rs AND ioa_$rsnnl ENTRY POINTS
EXCEPT THAT THEY DO "NO PADDING" OF A STRING RETURNED INTO A
NONVARYING CHARACTER STRING

Not To Be Reproduced 9=-3 F15C

CONTROL STRING

® A NON-VARYING CHARACTER STRING CONSISTING OF TEXT TO BE COPIED AND/OR
ioa_ CONTROL CODES

® ioa_ CONTROL CODES ARE ALWAYS IDENTIFIED BY A LEADING CIRCUMFLEX
(") CHARACTER, AND SPECIFY THE TYPE OF EDITING TO BE DONE FOR THEIR
CORRESPONDING argi

® PROCESSING BY ioa_ BEGINS BY SCANNING THE CONTROL STRING UNTIL A
CIRCUMFLEX IS FOUND, OR THE END OF THE STRING IS REACHED

I ANY TEXT (INCLUDING BLANKS) PASSED OVER IS COPIED TO THE OUTPUT
STRING

I CONTROL CODES ARE INTERPRETED, GENERALLY BY EDITING THE NEXT
argi INTO THE OUTPUT STRING IN A FASHION DICTATED BY THE CONTROL
CODE

Not To Be Reproduced 9-4 F15C

CONTROL STRING

CONTROL CODE ACTION

“d “nd) Edit a fixed-point decimal integer
“i “ni \ same as “d (FOR COMPATIBILITY WITH FORTRAN)
“f “nf Edit a floating-point number
“n.df
s .g?
“e “ne Edit a floating-point number in exponential
form -
"o “no . Edit a fixed-point number in octal
“w “nw Edit a full machine word in octal
“a “na Edit a character string in ASCII
“b “nb Edit a bit string
“n.db :
~~.db
“p Edit a pointer
"t “ni Insert formfeed character(s)
*/ “n/ Insert newline character(s)

>
>

Insert horizontal tab character(s)

'
1t
i

“x “nx Insert space character(s)

I Insert circumflex character(s)

“s “ns Skip argument(s)

“C “n(Start an iteration loop

~) End an iteration loop

“f Start an if/then/else or case selection group
*] Limit the scope of a “[

~s Use as a clause delimiter between [~]

“nt “n.mt Insert enough space to reach column n

Not To Be Reproduced 9=5 F15C

CONTROL STRING

® WHEN n AND/OR d APPEAR IN A CONTROL CODE, THEY GENERALLY REFER TO A
FIELD WIDTH OR A REPETITION FACTOR (THE EXACT MEANING DEPENDS ON
THE CONTROL CODE WITH WHICH THEY APPEAR)

I THE n OR d MUST BE SPECIFIED AS UNSIGNED DECIMAL INTEGERS, OR AS
THE LETTER "v", IN WHICH CASE, THE NEXT argi ARGUMENT (WHICH
MUST BE FIXED BINARY) IS USED TO OBTAIN THE ACTUAL VALUE

® IF NO FIELD WIDTH IS SPECIFIED, ioa_ USES A FIELD LARGE ENOUGH TO
CONTAIN THE DATA TO BE EDITED

® JIF TOO SMALL A FIELD WIDTH IS SPECIFIED, ioa_ IGNORES THE WIDTH AND
SELECTS AN APPROPRIATE WIDTH

® NUMERIC CONTROL CODES TAKE ANY PL/I NUMERIC DATA TYPE, INCLUDING A
NUMERIC CHARACTER STRING, AND USE STANDARD PL/I CONVERSION ROUTINES
IF NECESSARY ’

® ARGUMENTS THAT ARE EDITED INTO THE CONTROL STRING MAY BE ARRAYS

I THE ELEMENTS ARE TREATED SEPARATELY IN ROW MAJOR ORDER

Not To Be Reproduced " 96 F15C

CONTROL STRING

® THE FOLLOWING EXAMPLES ILLUSTRATE MANY; BUT NOT ALL, OF THE FEATURES
OF THE ioa_ SUBROUTINE. THE SYMBOL ¥ IS USED TO REPRESENT A SPACE
IN THE PLACES WHERE THE SPACE IS SIGNIFICANT

Source:

Result:

Source:

Result:

Source:

Result:
Source:
‘Result:
Source:
Result:

Source:

Result:

Source:

Result:

Source:

Result:

call ioa_("This is “a the third of "a","Mon","July");

This is Mon the third of July

call ioa_("date “d/"d/"d, time “d:"d",6,20,74,2014,36);
date 6/20/7T4, time 2014:36

call ioa_("overflow at “p",ptr);

overflow at 27114671

call ioca_(""2("2("w ")°/")",Ww1,w2,w3,wl);

112233445566 000033004400
000000000001 TTTTTTTTTTTT

bit="110111000011"b;
call ioa_(""vxoct=".3b hex=".4b",6,bit,bit);

bbhbHBboct=6T03Bhex=DC3

call ioa_("°f "e °f °5.2f",1.0,1,1e-10,1);

1. B1.e0 ¥1.e-10 ¥1.00

call ioa_("°("°d ")",1,2,56,198,456.7,3e6);

1 2 56 198 456 3000000

abs sw=0;

calT ioa_$rsnnl(""v(Absentee user ")"a "a logged out.",

out_str,out_cnt,abs sw,"LeValley","Shop");

out_cnt=25;
out_strz"LeValley Shop logged out."

Not To Be Reproduced 97 : F15C

Source:

Result:

Source:

Result:

Source:

Result:

Source:

Result:

Source:

Result:

Source:

Result:

Source:

Result:

Source:

0
(]
[V}
[
‘_A
ot

Not To Be Reproduced 9-8

CONTROL STRING

abs sw=1l; /* Using same call to ioa $rsnn1 ®/
call ioa_$rsnnl("“v(Absentee user *)"a “a logged out."
out_str,out_cnt,abs_sw,"LeValley", “Shop")

out_cnt=39;
out str="Absentee user LeValley Shop logged out.”"

del a(2,2)fixed bin init(1,2,3,4);
call ioa_(""d"s “d “w",a);

1 3 000000000004

del b(6:9)fixed bin init(6,7
call ioa_(""v("3d")",dim(b,1

6 7 8 9

sw="0"b;

call ioa_ ("a="d “[b="d";"s"] e¢="4d",5,sw,7,9);

a=5 ¢=9

Sw="1"b;

call ioa_ ("a="d “[b="d";"s"] e="d",5,sw,7,9);

a=5 b=7 c=9
dir=">"; ename=z"foo";

call ioa_ ("Error in segment °
(dir “=">"), ename);

a*{>"]%a", dir,
Error in segment >foo

dir=">foo™; ename="bar";
call ioa_ ("Error in segment “a*[>"]1"a", dir,
(dir "= ™™) ename);

Error in segment > food>bar

option=2; /* Assume following call is on one line */
call ioa_ ("Insurance optlon selected:

“{no fault®;bodily injury";propertydamage~]", option);
Insurance ¢

ption selected: bodi

Twv indme
se v e i

lllJu J

F15C

CONTROL STRING

YOU ARE NOW READY FOR WORKSHOP
#6

Not To Be Reproduced 9-9 F15C
(End Of Topic)

TOPIC X

Multics Storage System Subroutines

Page

The Multics Storage System . . + ¢ o ¢ o o o« o o o o o o o o o 10=-1
Summary of Discussed Subroutines . . . « ¢ ¢« ¢« ¢ ¢ ¢+ ¢ ¢ .+ o . 10=3
Creating Storage System Entities . . . e ¢ s e e o s s o o « 10=5
Deleting Segments, Directories, and Llnks. e o e o s & o e o » 10-12
Obtaining Status Information . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o+ o 10=13
An Example . . ¢ 2 2 ¢ 2 s s 3 s s s e = s & s & ¢ s o « o« 10=20
SeCUrity o ¢ o o o o & o o o o s s & e s e & s s s 2 e o s s « 10=22
Access Control Lists « & v o ¢ o o o o o o o o o o o o « » o o 10-23
Working, Default, and Process Directories. « « « « . . 10=-29
Manipulating Pathnames . . . ¢ ¢ ¢ ¢ o o o o ¢ « o s« o o o« « o 10=32

10-1 F15C

Toric X MULTICS STORAGE SYSTEM SUBROUTINES Toeic X

OBJECTIVES:

Uron completion of this toric, students should be able to:

1.

Add and remove enlries to and from the Multics Storase
System.

Manirpulate pathnames usinsg Multics subroutines.
Obtain status information on entries in the sitorase system.

Change the acceés control lists (ACLs) of various entries in
the storasgse system.

Use Multlics subroutines toc obtain information aboutl a user’s
home, working, and process directories.

Discuss the access required to perform any of the above
oprerations.

Multics X-1 F15C

THE MULTICS STORAGE SYSTEM

® THE STORAGE HIERARCHY IS ORGANIZED INTO AN INVERTED TREE STRUCTURE

I THIS TREE IS MADE UP OF DIRECTORY SEGMENTS, SEGMENTS, MULTI-SEGMENT
FILES AND LINKS

® FOR NON-DIRECTORY SEGMENTS:

I SUBJECT TO THE THREE ACCESS CONTROL MECHANISMS, THE USER IS FREE
TC CREATE, DESTROY, AND MODIFY THE CONTENTS OF SEGMENTS

I USER-CREATED SEGMENTS NORMALLY "RESIDE"™ IN THE RING OF THE CREATOR.
THE USER IS FREE TO ACCESS SUCH SEGMENTS WITHOUT HAVING TO " CROSS"
ANY RING BOUNDARIES

® FOR DIRECTORY SEGMENTS:

I THE USER MAY CREATE, DESTROY, AND MODIFY DIRECTORY SEGMENTS, BUT
NOT DIRECTLY (THEY ARE PROTECTED AGAINST DIRECT ACCESS VIA THE
RING MECHANISM)

0 ALLOWING USERS TO MANIPULATE DIRECTORY SEGMENTS DIRECTLY WOULD
BE INVITING CHAOS, SINCE DIRECTORY SEGMENTS DETERMINE THE INTEGRITY,
SECURITY AND CONSISTENCY OF THE HIERARCHY

I DIRECTORY SEGMENTS ARE PLACED IN RING O AND USERS ULTIMATELY
ACCESS SUCH SEGMENTS BY USING A SYSTEM-PROVIDED GATE PROCEDURE
CALLED hes

Not To Be Reproduced 10-1 F15C

THE MULTICS STORAGE SYSTEM

® THE hcs_ SUBROUTINE

I PROVIDES VARIOUS ENTRY POINTS FOR MANIPULATION OF THE STORAGE
SYSTEM AND VIRTUAL ADDRESS SPACE

I ALL ACCESS TO THE STORAGE SYSTEM IS ACCOMPLISHED VIA THIS GATE
PROCEDURE

® THE STORAGE MANIPULATION SUBROUTINES COVERED IN THIS COURSE ARE
SUMMARIZED BELOW:

Not To Be Reproduced 10=2 ’ F15C

SUMMARY OF DISCUSSED SUBROUTINES

CREATING STORAGE SYSTEM ENTITIES

hes_$ append_branch
hes_$append_branchx
hes_$append_link
hes_$create_branch_
hes_$make_seg

DELETING STORAGE SYSTEM ENTITIES

delete_$path
delete_$ptr

OBTAINING STATUS INFORMATION

hes_$status_
hes_$status_long
hes $status minf

hes_$status_mins
SECURITY

get_group_id_
get_group_id_$tag_star
hcs_$add_acl_entries

hes _$add_dir_acl_entries
hes_$delete_acl_entries
hes_$delete_dir_acl_entries
hes $fs_get_mode
hes_$1ist_acl
hes_$1list_dir_acl
hcs_$replace_acl
hcs_$replace_dir_acl

"WORKING, DEFAULT, AND PROCESS DIRECTORIES

change_default_wdir_
change_wdir_
get_default wdir_
get_pdir_

- de seed 2 oam
geL Walir

Not To Be Reproduced

10-3

F15C

SUMMARY OF DISCUSSED SUBROUTINES

MANIPULATING PATHNAMES

absolute_pathname_

absolute pathname $add_suffix

expand_ pathname

expand pathname_: $add suffix

expand pathnama_$component

expand pathname_$component_add_suffix
get_ shortest _path_

pathname

pathname $component

pathname $component_check

NAMING AND MOVING DIRECTORY ENTRIES

hcs ,_$chname_file
$chname seg

hcs_$fs_mova_f11e

hes_$fs_move_seg

AFFECTING LENGTH OF ENTRIES

adjust_bit_count_
hes $set be

hes . $truncate file
terminate_file_

MANIPULATING THE ADDRESS AND NAME SPACES

hes $fs_get_path_name
hes $fs get ref name
hes . $fs get seg_ “ptr
hes” $make seg
initiate Tile
term_$refname”

term $seg ptr

term $51ngle refname
term $term
term_$unsnap
terminate_file_

Not To Be Reproduced 10-4

F15C

CREATING STORAGE SYSTEM ENTITIES

This Page Intentionally Left Blank

Not To Be Reproduced 10=5 F15C

CREATING STORAGE SYSTEM ENTITIES

Requires append permission

Can use to create segments

Gives full access to ».SysDaemon.«

Obeys initial acl

Can set access for one user_id

Can specify the user_id

Can use to create directories

Can set ring brackets

Can set copy switch

Can set bit count

HKIX[RIXIX|IX]X|XxIx]Xx

Can be told to chase links

Can move quota to directory

Can manipulate aim

Requires info structure

WYX XXX XPREXPX XXX X

Initiates created segment

Not To Be Reproduced 10-6

F15C

CREATING STORAGE SYSTEM ENTITIES

A c)
® call hes_$make_seg (dir_name, entryname, ref name, mode,
seg_ptr, code);

call hes_$append_branch (dir_name, entryname, mode, code);

® call hes_$append_branchx (dir name, entryname mode,’ K%ﬁ;é‘“@“»*A
useP’T¢=~ﬁir SW, COpy_Sw, bit_count, code);

Not To Be Reproduced 10-7 . F15C

CREATING STORAGE SYSTEM ENTITIES

® call hcs_$create_branch_ (dir_name, entryname, info_ptr, code);

I info_ptr POINTS TO THE FOLLOWING STRUCTURE:

/* BEGIN INCLUDE FILE - - - create_branch_info.incl.pl1
- - - created January 1975 ¥/

/* this include files gives the argument structure for
create_branch_ */

del 1 create_branch_info aligned based,
2 version fixed bin,
/* set this to the largest value given below ¥/
2 switches unaligned,
3 dir_sw bit (1) unaligned,
/¥ if on, a directory branch is wanted */
copy_sw bit (1) unaligned,
/¥ if on, initiating segment will be done by copying ¥/
chase_sw bit (1) unaligned,
/* if on, if pathname is a link, it will be chased */
priv_upgrade_sw bit (1) unaligned,
/* privileged creation (ring 1) of upgraded object */
parent_ac_sw bit (1) unaligned,
/% it on, use parent's access class for seg or
dir created #*/
3 mbz1 bit (31) unaligned,
/* pad to full word */
mode bit (3) unaligned, :
/* segment or directory for acl for userid ¥/
mbz2 bit (33) unaligned,
/* pad to full word */
rings (3) fixed bin (33,
/%* branch's ring brackets ¥/
userid char (32),
/% user's access control name ¥/
bitent fixed bin (24),
/* bit count of the segment */
quota fixed bin (18),
/* for directories, this am't of quota will be moved
to it #*/
access_class bit (72);
/% is the access class of the body of the branch */

w w w w

(A JSNNN O T A6 TR O BN A B AV}

N

/% The following versions are implemented N 74
/* (Changes to structure require defining new static
initialized variable) */

del create_branch_version_1 static fixed bin init (1);
/% branch info valid through access class field */

™ar Py = ry - v -] ,
END INCLUDE FILE - - = create branch info.inc l.?l’x - - = ¥/

J %
YA

Not To Be Reproduced 10-8 F15C

CREATING STORAGE SYSTEM ENTITIES

® NOTES:

I FOR BOTH hcs_$make_seg AND hcs_$append_branch:
I THE BIT COUNT AND COPY SWITCH ARE SET TO O

1 THE SPECIFIED MODE IS SET FOR Person_id.Project_ id.*

I FOR hcs_s$make_seg, hcs_$append_branch AND hes_$append branchx‘;éi
MODE IS SPECIFIED AS FOLLOWS:

I FOR SEGMENTS:

read the 8-bit is 1 (01000b)
execute the 4-bit is 1 (00100b)
write the 2-bit is 1 (00010b)

I FOR DIRECTORIES:

status the 8-bit is 1 (01000Db)
modify the 2-bit is 1 (00010b)
append the 1-bit is 1 (00001b)

I THE MODE FOR hcs $create_branch_ IS SPECIFIED IN SIMILAR MANNER,
USING ONLY 3 BITS

- a s

Not To Be Reproduced 10-9 F15C

CREATING STORAGE SYSTEM ENTITIES

/* BEGIN INCLUDE FILE ... access_mode_values.incl.pll

Values for the "access mode" argument so often used in hardcore
James R. Davis 26 Jan 81 MCR 4844
Added constants for SM access 4/28/82 Jay Pattin

*/

del (N_ACCESS init (™000"Db),
R_ACCESS init (™00"D),
E_ACCESS init ("010"b),
W_ACCESS init ("001"b),
RE ACCESS init ("110"Db),
REW_ACCESS init ("111"p),
RW_ACCESS init (™o01"b),
S_ACCESS init (™00"b),
M_ACCESS init ("010"b),
A_ACCESS init ("001"Db),
SA_ACCESS init (™o01"b),
SM_ACCESS init ("110"b),
SMA ACCESS init ("™111"b))

bit (3) internal static options (constant);

del (N_ACCESS_BIN init (00000b),
R_ACCESS_BIN init (01000b),
E_ACCESS_BIN init (00100D),
W_ACCESS_BIN init (00010Db),
RW_ACCESS_BIN init (01010b),
RE_ACCESS_BIN init (01100Db),
REW_ACCESS_BIN init (01110b),
S_ACCESS_BIN init (01000b),
M _ACCESS_BIN init (00010Db),
A_ACCESS_BIN init (00001b),
SA_ACCESS_BIN init (01001b),
SM_ACCESS_BIN init (010100b),
SMA_ACCESS_BIN init (01011b))

fixed bin (5) internal static options (constant);

/* END INCLUDE FILE ... access_mode_values.incl.pll */

Not To Be Reproduced 10-10 F15C

CREATING STORAGE SYSTEM ENTITIES

® hcs_$append_link
0 call hes_$append_link (dir_name, entryname, path, code);
I CREATES A LINK IN SPECIFIED DIRECTORY

I LINK'S TARGET NEEDN'T EXIST AT CREATION TIME (CODE OF ZERO STILL
RETURNED)

I APPEND PERMISSION REQUIRED ON CONTAINING DIRECTORY

Not To Be Reproduced 10-11 F15C

DELETING SEGMENTS, DIRECTORIES, AND LINKS

® delete_

I HAS TWO ENTRY POINTS

I delete_$path

0 GIVEN AN ENTRYNAME, DELETES SEGMENTS, MSFs, DIRECTORIES,
AND LINKS

I delete_s$ptr '
Il GIVEN A POINTER, DELETES SEGMENTS ONLY

'l call delete_s$path (dir_name, entryname, switches, caller, code);

I call delete_$ptr (seg_ptr, switches, caller, code);

I DIRECTORY TO BE DELETED NEED NOT BE EMPTY

I UNSNAPS ANY LINKS THIS PROCESS HAS SNAPPED TO THE OBJECTS DELETED

I NOTE: delete CAN'T PREVENT DISASTER WHEN ONE PROCESS DELETES
ANOTHER'S SHARED SEGMENT

I THE 6 BIT INPUT VARIABLE 'switches' MAKES THIS SUBROUTINE EXTREMELY
FLEXIBLE

I SEE THE SUBROUTINES MANUAL FOR DETAILS OF THE 6 SWITCHES
(force_sw, question_sw, directory_sw, segment_sw, Llink sw,
chase_sw)

'Not To Be Reproduced 10-12 F15C

OBTAINING STATUS INFORMATION

® THE FOLLOWING 4 ENTRY POINTS RETURN STATUS INFORMATION FOR A DIRECTORY
ENTRY (LISTED IN ORDER OF INCREASING COMPLEXITY)

=> hes_$status_mins
— hes_$status_minf
hes_$status_

‘hes_$status_long

0 ALL THE ABOVE ENTRY POINTS HAVE A CURIOUS ACCESS REQUIREMENT

I INFORMATION IS RETURNED IF CALLER HAS STATUS ON THE CONTAINING
DIRECTORY, OR NON-NULL ACCESS ON THE ENTRY

I ENTRYNAMES ARE NOT RETURNED UNLESS THE CALLER HAS STATUS ACCESS
ON THE CONTAINING DIRECTORY

I TO THE STATUS ENTRY POINTS, DIRECTORIES AND MULTI-SEGMENT FILES
LOOK IDENTICAL :

NN AS e s BT A e G aa s

I THE ONLY DISTINGUISHING ATTRIBUTE IS THE BIT COUNT

I BIT COUNT 0 FOR A DIRECTORY

I BIT COUNT

NUMBER OF COMPONENTS FOR A MSF

Not To Be Reproduced 10=-13 F15C

OBTAINING STATUS INFORMATION

#® hes_$status_minf

0 call hes_$status_minf (dir_name, entryname, chase_sw,
type, bit_count, code);

I RETURNS BIT COUNT AND ENTRY TYPE OF ENTRY, GIVEN A PATH
I - TYPE OF ENTRY:
0 MEANS link

1 MEANS segment
2 MEANS msf OR directory

I OFTEN USED WHEN TRYING TO DISTINGUISH BETWEEN DIR AND MSF

® hcs $status_mins
I call hcs_$status_mins (seg_ptr, type, bit_coupt, codé3;

I RETURNS BIT COUNT AND ENTRY TYPE OF A SEGMENT GIVEN A POINTER TO
THE SEGMENT

Not To Be Reproduced 10=-14 F15C

OBTAINING STATUS INFORMATION

® hes_$status_

I call hes_$status_ (dir_name, entryname, chase_ sw, status_ptr,
status_area_ptr, code); '

I RETURNS INFORMATION ABOUT A SEGMENT, DIR, MSF, OR LINK:

I INFORMATION INCLUDES ENTRY TYPE, "DATE TIME CONTENTS LAST
MODIFIED, DATE TIME LAST USED, NUMBER OF RECORDS USED, USER'S
RAW MODE, USER'S EFFECTIVE MODE AND ENTRYNAMES (NO BIT COUNT)

§ CALLER MUST PROVIDE
I POINTER TO CALLER-ALLOCATED INFO STRUCTURE

I POINTER TO CALLER-DESIGNATED AREA TO CONTAIN "names" (IF NULL,
NO NAMES RETURNED)

Not To Be Reproduced 10-15 F15C

OBTAINING STATUS INFORMATION

/* -=~ BEGIN include file status_structures.incl.pll --- ¥/

/* Revised from existing include files 09/26/78
by C. D. Tavares #/

/% This include file contains branch and link structures
returned by hcs_$status_ and hes $status_long. */

del 1 status_branch aligned based (status_ptr),
2 short aligned,
type fixed b1n (2) unaligned unsigned,
/* seg, dir, or link %/
nnames fixed bin (16) unaligned unsigned,
/* number of names %/

w

3
3 names_relp bit (18) unaligned,
/* See entry_names dcl */
3 dtem bit (36) unaligned,
/* date/time contents last modified ¥/
3 dtu bit (36) unaligned,
/* date/time last used */
3 mode bit (5) unaligned,
/* caller's effective access ¥/
3 raw mode bit (5) unaligned,
/¥ caller's raw "rew" modes %/
3 pad1 bit (8) unaligned,
3 records_used fixed bin (18) unaligned unsigned,
/* number of NONZERO pages used */

/* Limit of information returned by hcs_$status_ */

2 long aligned,
3 dtd bit (36) unaligned,
/* date/time last dumped */
3 dtem bit (36) unaligned,
/* date/time branch last modified */
3 1vid bit (36) unaligned,
/% logical volume ID */
current length fixed bin (12) unaligned unsigned,
/* number of last page used */
bit count fixed bin (24) unaligned unsigned,
/¥ reported length in bits */
pad2 bit (8) unaligned,
copy_switch bit (1) unallgned
/% copy switch #*/
tpd switch bit (1) unaligned,
/¥ transparent to paging device switch */
mdir_switch bit (1) unaligned,
/* is a master dir */
damaged switch bit (1) unaligned,

/* salvager warned of possible damage #*/
qynnhrnnl')nd switeh bit (1) unaligned,

/* DM synchronized file */

3 pad3 bit (5) unaligned,

w

w W w ww w

w

Not To Be Reproduced " 10-16 F1i5C

OBTAINING STATUS INFORMATION

3 ring_brackets (0:2) fixed bin (6) unaligned unsigned,

3 uid bit (36) unaligned; /% unique ID ¥/
del 1 status_ link aligned based (status_ptr),
2 type fixed bin (2) unaligned unsigned, /* as above ¥/
2 nnames fixed bin (16) unaligned un51gned
2 names_relp bit (18) unaligned,
2 dtem DBit (36) unaligned,
2 dtd bit (36) unaligned,
2 pathname_length fixed b1n (17) unaligned,
/* see pathname ¥/

2 pathname_relp bit (18) unaligned; /* see pathname ¥/

del status_entry names (status_branch.nnames)
character (32) aligned based)
(pointer (status_area ptr, status_branch.names_relp)),
/* array of names returned */
status_pathname character (status_link.pathname_length)
aligned based
(pointer (status_area_ptr, status_link.pathname_relp)),
/* link target™ path %/
status_area_ ptr pointer
status” _ptr Pointer;

del (Link initial (0),

Segment initial (1 1),
Memandamer 3Snddd Al f 2\ £33 v ad Ta S m -.n&-nnra‘l s"n‘l\ﬂ
Wkl Tw LU ’ Liddbial \& /77 4 LATU N Ll Ll LS L1l vauwi'.
options (constant);
/* values for type fields declared above ¥/

/* --- END include file status_structures.incl.pll --- ¥/

Not To Be Reproduced 10-17 F15C

OBTAINING STATUS INFORMATION

® hcs_$status_long

0 call hes_$status_long (dir_name, entryname, chase_sw, status ptr,
status_area_ptr, code);

I RETURNS EVERYTHING hes_$status_ RETURNS PLUS:
I DATE-TIME-LAST-DUMPED (ssds ONLY)
I CURRENT LENGTH IN 1024-WORD UNITS (SEGS, MSFS)
0 BIT COUNT (SEGS, MSFS)

I PHYSICAL VOLUME ID OF STORAGE DEVICE ON WHICH ENTRY CURRENTLY
RESIDES

I COPY AND DAMAGED SWITCH VALUES
SEE THE switch_on and switch_off COMMANDS (AG92)

I RING BRACKETS

[SEGMENT UNIQUE ID

Not To Be Reproduced 10-18 F15¢C

OBTAINING STATUS INFORMATION

®
I hes_$get_author, hes $get_bc_author
I hes $get_max_length, hes_$get_max_length_seg
0 he §_$ get_safety_sw, hes_$get_safety_ sw_seg
I hes_$get_link target
® TO OBTAIN STATUS INFORMATION FOR ARCHIVE COMPONENTS SEE

=
V]
[¢]
o
[
<‘
(]
|
&
o
a
cr
|
0
[«)
El
=)
(1]
o]
cr
|
[
o
-y
(&)

I archive _$list_components

I archive $next_component_info

<

COVERED IN MULTICS CQURSE F15D
Not To Be Reproduced 10=-19

OTHER ENTRY POINTS THAT RETURN STATUS TYPE INFORMATION'

F15C

OBTAINING STATUS INFORMATION

AN EXAMPLE

Status: proc;

del 1 status_branch aligned based (status_ptr),

type fixed bin (2) unaligned unsigned,

nnames fixed bin (16) unaligned un51gned,

names_relp bit (18) unaligned,

dtem Pit (36) unaligned,

dtu bit (36) unaligned,

mode bit (5) unaligned,

raw_mode bit (5) unallgned

padT bit (8) unaligned,

records_used fixed bin (18) unaligned unsigned;

del status_entry_names (status_branch.nnames) character (32) aligned

based (pointer (get_system_free area_ (), status_branch.names_relp));

del pointer builtin;g

del get_system_free_area_ entry() returns(ptr);

del status ptr-ptr;

del (ioa_,

com_err_) entry options (variable);

del hes_$status_ entry (char (*), char (*), fixed bin (1), ptr,
ptr, fixed bin (35));

del code fixed bin (35);

del 1i;

LSIOVES NI VR VRV V]

allocate status_branch;
call hes $status (">udd>MEDclass>F15C", "si", 0, status_ptr,
get_system free_area (), code);

if code "= 0
then do;

call com_err_ (code, "Status");

return;

end /* then do */;

call ioa_ (" /s1 is a “[link";segment”;directory”] with “d names:",
status_branch.type + 1, status branch.nnames);
do i = 1 to status branch.nnames;
call ioa_ (" T~a", status_entry_names(i));
end /* do i */;

end /* Status */;

Not To Be Reproduced 10=-20 F15C

OBTAINING STATUS INFORMATION

AN EXAMPLE

r 15:00 0.148 19
! Status

s1 is a directory with 2 names:
Student 01
st

r 15:00 0.124 6

Not To Be Reproduced 10=21 F15C

SECURITY

® MULTICS HAS THREE ACCESS CONTROL MECHANISMS
I THE ACCESS CONTROL LIST MECHANISM (ACLS)
I THE ACCESS ISOLATION MECHANISM (AIM)

I THE RING MECHANISM

® hcs_ AND OTHER SUBROUTINES ENABLE US TO MANIPULATE THESE MECHANISMS

Not To Be Reproduced 10=22 F15C

ACCESS CONTROL LISTS

® hcs $add_acl_entries

I call hes_$add_acl_entries (dlr name, entryname, acl_ptr,
acl” count, code);

I ADDS OR CHANGES (™SETS") ACL ON A SEGMENT (rewn)
I CALLER MUST ALLOCATE AND FILL IN AN ARRAY OF STRUCTURES

I "MATCHING"™ ACCESS NAMES ACCEPTABLE TO THE set_acl COMMAND ARE
NOT ACCEPTABLE

I SEE msf_manager_$acl_add FOR MULTI-SEGMENT FILES

® hcs_$add_dir_acl_entries

I call hes_$add_dir_acl_entries (dir_name, entryname, acl_ptr,
acl_count, code);

I ADDS OR CHANGES (™SETS") ACL ON DIRECTORIES (sman)

I SIMILAR TO hes _$add_acl_entries EXCEPT STRUCTURE MISSING
extended mode

COVERED IN MULTICS CQURSE F15D
Not To Be Reproduced 10-23 F15C

ACCESS CONTROL LISTS

/* Begin include file -- acl_structures.incl.pll BIM 3/82 */
/* format: style3 ¥/

declare
declare

declare

declare

declare-

‘"declare

declare

declare

declare

declare

declare

declare ACL_VERSION_1 internal static fixed bin init

acl_ptr pointer;
acl count fixed bin;
1 segment_acl aligned based (acl_ptr),
2 version fixed bin,
2 count fixed bin,
2 entries (acl_count refer (segment_acl.count))

aligned 1like segment_ acl” _entry;

segment_acl_entry aligned based,

2 access_name character (32) unallgned
2 mode bit (36) aligned,

2 extended_mode bit (36) aligned,

2 status_code fixed bin (35);

segment_acl_array (acl_count) aligned like
segment acl_entry based (acl_ptr);

directory_acl aligned based (acl_ptr),

2 version fixed bin,

2 count fixed bin,

2 entries (acl_count refer (directory_acl.cour

aligned like directory_ acl_ _entry;

directory_acl_entry based,

2 access_name character (32) unaligned,
2 mode bit (36) aligned,
2 status_code fixed bin (35);

directory_acl_array (acl_count) aligned like
dlrectorv acl_entry based (acl ptr);

delete_acl_entry aligned based,

2 access_name character (32) unaligned,

2 status_code fixed bin (35);

delete_acl based (acl_ptr) aligned,

2 version . fixed bin,

2 count fixed bin,

2 entries (acl_count refer (delete_acl.count))

aligned like delete_ acl _entry;

delete_acl_array (acl_count) aligned like
delete_acl_entry based (acl_ptr);

~

1)
L)

cptions (constant);

/* End include file acl_structures.incl.pll */

Not To Be. Reproduced

10-24 F15C

ACCESS CONTROL LISTS

® hcs $delete_acl_entries

I call hes_$delete_acl_entries (dir_name, entryname, acl_ptr,
. acl_count, code);

I DELETES ONE OR MORE ENTRIES FROM A SPECIFIED SEGMENT'S ACL
I USES A STRUCTURE ALLOCATED BY CALLER

I "MATCHING" ACCESS NAMES ACCEPTABLE TO THE delete_acl COMMAND
ARE NOT ACCEPTABLE TO hes $delete acl_entries

I SEE msf_manager_$acl_delete FOR MULTI-SEGMENT FILES?

® hcs_$delete_dir_acl_entries

I call hcs_$delete_dir_acl_entries (dir_name, entryname, acl_ptr,
acl” _count, code);

I DELETES ONE OR MORE ENTRIES FROM A SPECIFIED DIRECTORY'S ACL

I OTHERWISE SIMILAR TO hes_$delete_acl_entries

COVERED IN MULTICS COURSE F15D
Not To Be Reproduced 10-25 F15C

ACCESS CONTROL LISTS

® hes_$list_acl

0 call hes $list_acl (dir_name, entryname, area ptr,
area_ret_ptr, acl_ptr, acl_count, code);

I RETURNS ALL OR PART OF A SEGMENT'S ACL IN A 'segment_acl' STRUCTURE
(SAME STRUCTURE AS USED BY hcs_jadd_acl_entries)

I THERE ARE TWO DIFFERENT WAYS TO USE THIS ENTRY POINT:

I IF ENTIRE ACL REQUIRED:

I SET "area_ptr"™ NON-NULL AND EXPECT BACK "acl_count™ AND
"area_ret ptr" .

I SUBROUTINE ALLOCATES AN ARRAY OF STRUCTURES

I IF JUST SOME MODE ENTRIES REQUIRED:

SET "area_ptr" NULL

USER ALLOCATES AN ARRAY OF PARTIALLY FILLED IN STRUCTURES
PASS A PTR TO THIS ARRAY (acl_ptr)

B = = =

MODES AND CODES WILL HAVE BEEN FILLED IN UPON RETURN

L]

® hcs $list_dir_acl

I call hes_$list_dir_acl (dir_name, entryname, area_ptr,
area_ret_ptr, acl_ptr, acl_count, code);

I RETURNS ALL OR PART OF A DIRECTORY'S ACL

I SIMILAR TO hes_$list_acl EXCEPT USES dir_ael STRUCTURE

Not To Be Reproduced 10-26 - F15¢C

ACCESS CONTROL LISTS

® hcs $replace_acl

1 call hes_$replace_acl (dir_name, entryname, acl_ptr, acl_count,
no_sysdaemon_sw, code);

I REPLACES ENTIRE ACL FOR A SEGMENT WITH A USER-SUPPLIED ONE
I USES SAME STRUCTURE AS hecs_$add_acl_entries AND hes_$list_acl
0 CAN (OPTIONALLY) ADD "rw" FOR * ,SysDaemon.*

0 CAN BE MADE TO DELETE ENTIRE ACL (IF acl_count=0)

® hcs $replace_dir_acl

] call hes_$replace_dir_acl (dir_name, entryname, acl_ptr,
acl_count, no_sysdaemon_sw, code);

I REPLACES ENTIRE ACL FOR A DIRECTORY

I USES SAME STRUCTURE AS hcs_$‘dd_dir_acl_entries AND
hes_$1ist_dir_acl

I CAN (OPTIONALLY) ADD "sma" FOR * .SysDaemon.*

0 CAN BE MADE TO DELETE.ENTIRE ACL

Not To Be Reproduced 10-27 F15C

ACCESS CONTROL LISTS

® hcs $fs_get_mode
I call hes_$fs_get_mode (seg_ptr, mode, code);
I RETURNS THE EFFECTIVE ACCESS MODE (rew) OF THE CALLER ON A SPECIFIED
SEGMENT

I TAKES INTO ACCOUNT ACL, RING BRACKETS AND CURRENT VALIDATION
LEVEL

I NOTE: SINCE A POINTER IS PASSED, SEGMENT MUST HAVE BEEN MADE
KNOWN, WHICH IMPLIES USER HAS NON-NULL ACCESS

® get_group_id_
1 wuser_id = get_group_id_ ();

I RETURNS IN A char(32) nonvarying Personid.Projectid.tag

® get group_id_$tag_star
I wuser_id = get_group_id_$tag_star ();

I RETURNS Personid.Projectid.*

Not To Be Reproduced 10-28 F15C

WORKING, DEFAULT, AND PROCESS DIRECTORIES

® change wdir_
I call change_wdir_ (path, code);
I CHANGES THE WORKING DIRECTORY TO THE SPECIFIED DIRECTORY
I REQUIRES ABSOLUTE PATHNAME

I COMMAND INTERFACE: cwd

® get wdir_
I working_dir = get_wdir_ ();

I RETURNS THE ABSOLUTE PATHNAME OF THE USER'S CURRENT WORKING
DIRECTORY IN A char(168) nonvarying

I COMMAND INTERFACE: pwd

Not To Be Reproduced 10-29 F15C

WORKING, DEFAULT, AND PROCESS DIRECTORIES

® get pdir_
I process_dir = get_pdir_ ();

I THIS FUNCTION RETURNS THE ABSOLUTE PATHNAME OF THE USER'S PROCESS
DIRECTORY IN A char(168)nonvarying

I COMMAND INTERFACE: pd

® get_default_wdir_
I default_wdir = get_default_wdir_ ();

I RETURNS THE ABSOLUTE PATHNAME OF THE CALLER'S DEFAULT WORKING
DIRECTORY IN A char(168) nonvarying

I COMMAND INTERFACE: pdwd

Not To Be Reproduced 10=30 F15C

WORKING, DEFAULT, AND PROCESS DIRECTORIES

® change default_wdir_
I call change_default wdir_ (path, code);

I CHANGES THE USER'S CURRENT DEFAULT WORKING DIRECTORY TO THE
DIRECTORY SPECIFIED

I COMMAND INTERFACE: cdwd

Not To Be Reproduced 10-=31 F15C

MANIPULATING PATHNAMES

® expand_pathname_
I call expand_pathname_ (pathname, dirname, entryname, code);

I CONVERTS A RELATIVE OR ABSOLUTE PATHNAME INTO A DIRECTORY PATHNAME
AND AN ENTRYNAME

I COVERED IN TOPIC 5

® expand_pathname $add_suffix

I call expand_pathname $add_suffix (pathname, suffix, dirname,
entryname, code);

I SAME AS expand_pathname , BUT ALSO ADDS A SPECIFIED SUFFIX ONTO
THE ENTRYNAME, "IF THAT SUFFIX IS NOT ALREADY PRESENT

® expand_pathname_$component

I call exband_pathnamg_$component (pathname, dirname, entryname,
componentname, code);

I EXPANDS A "RELATIVE OR ABSOLUTE PATHNAME INTO A DIRECTORY NAME,
AN ARCHIVE NAME, AND AN ARCHIVE COMPONENT PORTION (OR INTO A

DIRECTORY NAME AND ENTRYNAME PORTION IF NO COMPONENT NAME IS
PRESENT)

Not To Be Reproduced 10=32

5
-
w
O

MANIPULATING PATHNAMES

expand_pathname_$component_add_suffix

I call expand pathname_$component_ add_suffix (pathname, suffix,
dirname, entryname, componentname, code);

I SAME AS expand_pathname $component, BUT ALSO ADDS A SPECIFIED
SUFFIX TO EITHER THE ENTRYNAME OR THE COMPONENT NAME, IF NOT
ALREADY PRESENT

absolute_pathname_

I call absolute_pathname_ (pathname, full_ pathname, code);

absolute_pathname_ $add_suffix

I call absolute_pathname_ $add suffix (pathname, suffix,
full_pathname, code);

I SAME AS absolute_pathname , BUT ALSO ADDS A SPECIFIED SUFFIX IF
THAT SUFFIX IS NOT ALREADY PRESENT

Not To Be Reproduced 10-33 F15C

MANIPULATING PATHNAMES

® get_shortest_path_

I shortest_path = get_shortest_path_ (original_path);

® pathname_
I path = pathname_ (dirname, entryname);

I GIVEN A DIRECTORY NAME AND AN ENTRY NAME, RETURNS THE PATHNAME
OF THE ENTRY IN A char (168)

I IF THE RESULTING PATHNAME IS >168 CHARACTERS, THE LAST 20
CHARACTERS OF THE RESULT ARE SET TQ "<PATHNAME TOO LONG>"

® pathname_$component
I path = pathname_$component (dirname, entryname, component_name);

I GIVEN A DIRECTORY NAME, AN ENTRY NAME, AND OPTIONALLY, AN ARCHIVE
COMPONENT NAME, CONSTRUCTS A PATHNAME OR AN ARCHIVE COMPONENT
PATHNAME

I IF COMPONENT NAME IS NULL AND THE RESULTING PATHNAME IS >168
CHARACTERS, THE LAST 20 CHARACTERS OF THE PATHNAME ARE SET TO
"{PATHHAME TOO LONG>*

I IF COMPONENT NAME IS NOT NULL AND THE RESULTING PATHNAME IS
>194 CHARACTERS, THEN THE LAST 20 CHARACTERS OF THE
dirname>entryname PORTION OF THE ARCHIVE PATHNAME ARE CHANGED
TO "<PATHNAME TOO LONG>"™ AND THE component name REMAINS IN
THE PATHNAME '

Not To Be Reproduced 10=-34 F15C

MANIPULATING PATHNAMES

® pathname_$component_check

I call pathname_$component_check (dirname, entryname,
: component_name, path, code);

I SAME AS pathname $component EXCEPT A STATUS CODE INDICATES
TRUNCATION INSTEAD OF AN INVALID PATHNAME CONTAINING "<PATHNAME
TOO LONG>"

® NOTE: NONE OF THE PREVIOUS SUBROUTINES CHECK TO SEE IF THE ENTRY
EXISTS

Not To Be Reproduced 10-35 F15C

ANIPULATING PATHNAMES

YOU ARE NOW READY FOR WORKSHOP
#7

Not To Be Reproduced 10=-36 F15C
(End Of Topic)

TOPIC XI

Multics Storage System Subroutines--Continued

Page

Naming and Moving Directory Entries. . .
Affecting the Length of a File
Manipulating the Address and Name Spaces
Examining the Address and Name Spaces. .

] . 11_1
Pathname, Pointer, Reference Name Conversion

11-4
11-8

11-15
11-16

* o o o o
e e o o o
e o o o »
e o o o o
e o o o o
e o o o o
e & o o o
* o o e o
e o o o o

11-1 F15C

Toric X1 MORE MULTICS STORAGE SYSTEM SUBROUTINES Toric X1

OBJECTIVES:

Upon completion of this loepic, students should be able to:

Move entries from one place in the storase system to another.

Change the 1lensths and names of entries in tlhe storage
system.

ddd and remove entries to and from the user's name sepace.

Multics . XI-1 F15C

NAMING AND MOVING DIRECTORY ENTRIES

® hcs_$chname_file

I call hes_$chname_file (dir_name, entryname, ‘oldname,
newname, code);

I ADDS, DELETES, OR CHANGES NAMES OF SEGMENTS, DIRECTORIES, MSFS,
OR LINKS (SPECIFIED BY NAME)

§ EITHER oldname OR newname (BUT NOT BOTH) MAY BE null (")

I MODIFY PERMISSION ON CONTAINING DIRECTORY REQUIRED

® hes_jchname_seg
I call hes $chname_seg (seg_ptr, oldname, newname, code);
I ADDS, DELETES, OR CHANGES NAMES OF A SEGMENT, GIVEN A POINTER T
IT .

I OTHERWISE SIMILAR TO hes_$chname_file

Not To Be Reproduced 11-1 F15C

NAMING AND MOVING DIRECTORY ENTRIES

® hes $fs move file

I call hes $fs_move file (from_dir, from_entry, at_sw,
to_dir, to_entTy, code);

I MOVES CONTENTS OF ONE SEGMENT TO ANOTHER SEGMENT

I at_sw HAS 2 BITS (fixed bin(2))

i THE APPEND BIT ON FORCES CREATION OF NEW SEGMENT IF IT
DOESN'T EXIST

I THE TRUNCATE BIT ON FORCES TRUNCATION OF NEW SEGMENT IF IT
EXISTS
I OLD (ZEROED OUT) SEGMENT REMAINS
I RECORD LENGTH = O
I BIT COUNT NOT CHANGED

I NEW SEGMENT'S BIT COUNT NOT ADJUSTED

I ACCESS REQUIRED
I READ AND WRITE ON OLD SEGMENT
I READ, WRITE 0& NEW SEGMENT (IF IT EXISTS)
I APPEND ON NEW SEGMENT'S CONTAINING DIRECTORY (IF SEG MUST
BE CREATED)

I FOR A SHORT TIME, 2 IMAGES EXIST (POSSIBLE QUOTA PROBLEM)

Not To Be Reproduced 11=2 F15C

NAMING AND MOVING DIRECTORY ENTRIES

® hcs_$fs_move_seg

I call hes_$fs_move_seg (from_ptr, to_ptr, trun_sw, ccde);

I MOVES CONTENTS OF ONE SEGMENT TO ANOTHER, GIVEN POINTERS TO EACH
I trun_sw HAS ONLY ONE BIT

I OTHERWISE SIMILAR TO hcs_$fs_move_file

Not To Be Reproduced 11=3 F15C

AFFECTING THE LENGTH OF A FILE

® hcs _$truncate_file

I call hes_$truncate_file (dir_name, entryname, length, code);

I TRUNCATES A SEGMENT TO A SPECIFIED LENGTH (IN WORDS), GIVEN ITS
NAME AND CONTAINING DIRECTORY NAME

I TRAILING FULL PAGES ARE DISCARDED
I ZEROES ARE STORED (IN LAST PAGE) BEYOND SPECIFIED LENGTH
I WRITE PERMISSION ON TARGET REQUIRED

I THE BIT COUNT IS NOT SET (USE EITHER hes_$set_be OR
adjust_bit_count_)

I truncate COMMAND PERFORMS BOTH hecs _$truncate_file AND
hcs_$set_be

Not To Be Reproduced 11=4 F15C

AFFECTING THE LENGTH OF A FILE

® hcs $set_be
I call hes_$set_be (dir_name, entryname, bit_count, code);

I SETS THE BIT COUNT OF A SEGMENT TO A SPECIFIED NUMBER, GIVEN ITS
NAME AND CONTAINING DIRECTORY

I ALSO SETS BIT COUNT AUTHOR TO USER ID OF CALLER
I WRITE PERMISSION ON SEGMENT REQUIRED
I MODIFY PERMISSION ON DIRECTORY NOT REQUIRED

I COMMAND INTERFACE: set_bit_count (sbe)

® adjust_bit_count_

I call adjust_bit_count_ (dir_name, entryname, char_sw,
bit_count, code);

I SETS THE BIT COUNT TO THE LAST NON-ZERO WORD OR BYTE
I WORKS ON SEGMENTS AND MULTISEGMENT FILES

I char_sw DETERMINES WHETHER THE BIT COUNT IS ADJUSTED TO THE
LAST WORD OR CHARACTER

I COMMAND INTERFACE: adjust_bit_count (abe)

Not To Be Reproduced 11<5 F15C

AFFECTING THE LENGTH OF A FILE

® terminate_file_

|

call terminate_file (seg_ptr, bit_count, switches, code);

PERFORMS COMMON OPERATIONS OFTEN NECESSARY AFTER A PROGRAM HAS
FINISHED USING A SEGMENT, SUCH AS

I SETTING THE BIT COUNT

I TRUNCATING THE SEGMENT

I ENSURING THAT BITS IN THE LAST WORD OF THE SEGMENT AFTER THE
BIT COUNT ARE ZERO

I TERMINATING A NULL REFERENCE NAME

I ENSURING THAT ALL MODIFIED PAGES OF THE SEGMENT ARE NO LONGER
IN MAIN MEMORY

USES THE terminate_file_ switches STRUCTURE

Not To Be Reproduced 11-6 F15C

AFFECTING THE LENGTH OF A FILE

/% BEGIN INCLUDE FILE ... terminate file.incl.pl1l ¥/
/* format: style2,”inddels,idind32 ¥/

declare 1 terminate_file_ switches

declare
declare
declare
declare
declare
declare

declare

2 truncate

2 set_bec

2 terminate

2 force_write
2 delete

TERM FILE TRUNC
- “static options
TERM_FILE_BC
static options
TERM_FILE_TRUNC_BC
static options
TERM_FILE_TERM
static options
TERM_FILE_TRUNC_BC_TERM
static options
TERM_FILE_FORCE_WRITE
static options
TERM_FILE_DELETE
static options

bit
(constant)
bit
(constant)
bit
(constant)
bit
(constant)
bit
(constant)
bit
(constant)
bit
(constant)

d,

(1) unaligned,
(1) unaligned,
(1) unaligned,
(1) unaligned,
(1) unaligned;

(1) internal
initial ("1"b);
(2) internal
initial ("01"b);
(2) internal
initial (™ 1"b);
(3) internal
initial ("001"b);
(3) internal
initial ("111"b);
(4) internal
initial ("0001"b);
(5) internal
initial ("00001"b);

/* END INCLUDE FILE ... terminate_file.incl.pll ¥/

I terminate file

SHOULD NEVER BE CALLED FROM A CLEANUP HANDLER

WITH THE truncate OR set_bec SWITCHES ON (seg_ptr MAY CONTAIN AN
INVALID SEGMENT NUMBER)

force write SHOULD BE USED ONLY WHEN DATA INTEGRITY IS ABSOLUTELY

ESSENTIAL AS IT MAY INTRODUCE A SUBSTANTIAL REAL TIME DELAY IN
EXECUTION

Not To Be Reproduced A 11-7

F15C

MANIPULATING THE ADDRESS AND NAME SPACES

® DEFINITION OF TERMS

I ADDRESS SPACE IS

I THE PER-PROCESS COLLECTION OF SEGMENTS THAT CAN BE DIRECTLY
REFERENCED VIA HARDWARE

I EXPANDING AND CONTRACTING DURING A PROCESS' LIFE
I A COLLECTION OF "KNOWN" SEGMENTS
I REFLECTED IN THE DSEG (AND KST)

I MANAGED
I AUTOMATICALLY BY THE DYNAMIC LINKER
I IMPLICITLY, BY A CALL TO SOME SYSTEM COMMAND
EXAMPLE: print my dir>my_seg

I EXPLICITLY, BY USER CALLS TO SYSTEM COMMANDS OR SUBROUTINES
THAT MANAGE THE ADDRESS SPACE

Not To Be Reproduced 11-8 F15C

MANIPULATING THE ADDRESS AND NAME SPACES

I NAME SPACE IS

I THE PER-PROCESS COLLECTION OF "REFERENCE" NAMES (OPTIONALLY)
ASSOCIATED WITH EACH "KNOWN" SEGMENT

I EXPANDING AND (RARELY) CONTRACTING DURING A PROCESS' LIFE
I REFLECTED IN THE REFERENCE NAME TABLE (RNT)
0 AN IMPORTANT PART OF SEARCH RULES (INITIATED SEGMENTS LIST)

I MANAGED
I AUTOMATICALLY BY THE DYNAMIC LINKER

I EXPLICITLY, BY USER CALLS TO SYSTEM COMMANDS OR SUBROUTINES
THAT MANAGE THE NAME SPACE

I MAKING-KNOWN INVOLVES

I DEVELOPING A POINTER TO A SPECIFIED&EGMENT (ASSIGNING A SEGMENT
NUMBER)

0 ADDING AN ENTRY TO THE KST AND DSEG

I INITIATING (A REFERENCE NAME) INVOLVES
I EXPANDING THE PROCESS' NAME SPACE

I ADDING AN ENTRY TO THE RNT

Not To Be Reproduced 11=9 F15C

MANIPULATING THE ADDRESS AND NAME SPACES

I TERMINATING (A REFERENCE NAME) INVOLVES

I CONTRACTING THE PROCESS' NAME SPACE

I REMOVING AN ENTRY FROM THE RNT

I MAKING-UNKNOWN INVOLVES

I MAKING A PREVIOUSLY VALID SEGMENT NUMBER INVALID

I FREEING UP THAT SEGMENT NUMBER FOR FUTURE REASSIGNMENT

Not To Be Reproduced 11=10 F15C

MANIPULATING THE ADDRESS AND NAME SPACES

® NOTES

I INITIATING A REFERENCE NAME MAY TRIGGER THE MAKING-KNOWN OF A
SEGMENT

I TERMINATING A REFERENCE NAME MAY TRIGGER THE MAKING-UNKNOWN OF A
SEGMENT

I AN UNKNOWN SEGMENT CAN NOT HAVE A REFERENCE NAME
I A KNOWN SEGMENT MAY HAVE A NULL REFERENCE NAME .

I PRESENCE IN THE RNT IMPLIES PRESENCE IN THE DSEG (AND XST)

Not To Be Reproduced 11=11 F15C

MANIPULATING THE ADDRESS AND NAME SPACES

® TERMINATING SEGMENTS USING term_

I term_$term_

I call term_$term_ (dir_path, entryname, code);

I REMOVES ALL REFERENCE NAMES FROM RNT

I REMOVES SEGMENT FROM CALLER'S ADDRESS SPACE
I REMOVES SEGMENT FROM COMBINED LINKAGE SECTION
I

UNSNAPS LNKS 1IN COMBINED LINKAGE QECTION THAT CONTAIN
REFERENCES TO THE SEGMENT

=4

USER SUPPLIES dir_path AND entryname
0 COMMAND INTERFACE: terminate (tm)
i term_$seg_ptr

I call term_$seg_ptr (seg_ptr, code);
I LIKE term_$term_, BUT ACCEPTS A PTR TO SEGMENT
I COMMAND INTERFACE: terminate_segno (tms)

I term_$refname

1 call term_$refname (ref name, code);
I LIKE term_$term_, BUT ACCEPTS A REFERENCE NAME
I COMMAND INTERFACE: terminate_refname (tmr)

Not To Be Reproduced 11=12 F15C

MANIPULATING THE ADDRESS AND NAME SPACES

I term_$single refname

I call term _$single refname (ref_name, code);
I REMOVES A SINGLE REFERENCE NAME FROM RNT

I BEHAVES LIKE term $refname (I.E. SEGMENT IS NOT MADE UNKNOWN)
IFF REFNAME SPECIFIED WAS SEGMENT'S ONLY INITIATED REFNAME

I COMMAND INTERFACE: terminate_single refname (tmsr)

/

I term_$unsnap

I call term _$unsnap (seg_ptr, code);
I UNSNAPS LINKS ONLY
I DOESN'T TERMINATE REFERENCE NAMES OR MAKE SEGMENT UNKNOWN
I NO COMMAND LEVEL INTERFACE

Not To Be Reproduced | 11-13 F15C

MANIPULATING THE ADDRESS AND NAME SPACES

® initiate_file_
I MAKES A SEGMENT KNOWN WITH A NULL REFERENCE NAME

I (PREVIOUSLY DISCUSSED IN TOPIC 5)

® terminate_file_
0 TERMINATES A NULL REFERENCE NAME

I (PREVIOUSLY DISCUSSED IN THIS TOPIC)

Not To Be Reproduced 11=14 F15C

EXAMINING THE ADDRESS AND NAME SPACES

® hcs $fs_get path_name

0 call‘hcs_sfs_get_péth_name (seg_ptr, dir_name, ldn,
entryname, code);

I GIVEN A POINTER TO A SEGMENT, RETURNS A PATHNAME FOR THE SEGMENT,
WITH THE DIRECTORY AND ENTRYNAME PORTIONS SEPARATED (THE ENTRYNAME
RETURNED IS THE PRIMARY NAME ON THE ENTRY)

® hcs_$fs_get_ref name
I call hcs_$fs_get ref name (seg_ptr, count, ref name, code);

I RETURNS A SPECIFIED (I.E., FIRST, SECOND, ETC.) REFERENCE NAME
OF A SPECIFIED SEGMENT, GIVEN A POINTER TO THE SEGMENT

® hcs $fs_get seg_ptr

I call hes_$fs_get_seg_ptr (ref_name, seg_ptr, code);

I GIVEN A REFERENCE NAME OF A SEGMENT, RETURNS A POINTER TO THE BASE
HAT SEGMEN

Not To Be Reproduced 11=15 o F15C

PATHNAME , POINTER, REFERENCE NAME CONVERSION

REFERENCE
NAME

Not To Be Reproduced 11=16 v F15C

PATHNAME , POINTER, REFERENCE NAME CONVERSION

YOU ARE NOW READY FOR WORKSHOP
#8

Not To Be Reproduced 11-17 F15C
(End Of Topice) '

TOPIC XII

Commands and Active Functions

Page
Commands e s e e e e s e e s e e w e e s e e 12=1
Characterlstlcs of a Command e e s s e s e s e e x s e . 12-1
Differences Between a Command and a Program. e e e e e e e 12=2
Reportlng EI'T'OPS . . .] . .] L] . . . 3 (3 . . 12-3
Command I/0. e e o e o o s e o o « 12=5
Other Subroutines Used 1n ertlng Commands e e s e s s . . 12=8
An Example Of A Command. . « « o o o« 2 5 o s = o« o s o« o o 12=14
Active Functions . ¢ v ¢ v ¢« v ¢ o o o o o e r e e e e e e . 12-16
Subroutines Used for Writing Active Functlons. B - S
Reporting Errors . ¢ o ¢ o o o s o o s o o s o o o o o « « 12=19
An Active Function Example . . . o « ¢« ¢« ¢ o o o & o « « o 12=20
Commands and Active Functions. . . ¢ ¢ ¢« ¢ o o & o o » o « « o« 12=22
An Example Of a Command/Active Function. 12=23

Other Useful Subroutines ¢« ¢« ¢« &« « = 12-26

12-1 F15¢C

Toric XII COMHANDS AND ACTIVE FUNCTIONS Taric XII
OBJECTIVES:
Urpon completion of this toeric, students should be able to:

1. Describe the differences bhelween a command and an active
function.

2. MWrite a command which takes a varvins number of arsumenils-
validates them, and eperforms some task.

3. Write an active function which accepts a varyins number of
arsguments, validates them, and returns an approrriate value.

4. Use Multics subroutines to rerporlt errors encountered durins
execulion of a command or active funclion.

5. Use Multics subroutines 1o acqauire and release temporary
workins storaase.

6. Use the Multics clock and timer functions.

Multics LXII=1 _F13C

COMMANDS
- CHARACTERISTICS OF A COMMAND

& A COMMAND PROCEDURE IS AN OBJECT PROGRAM WHICH IS DESIGNED TO BE
INVOKED FROM COMMAND LEVEL

® A COMMAND PROCEDURE MUST OPERATE WITHIN STRICT OPERATIONAL LIMITATIONS,
AND IT IS THESE LIMITATIONS THAT MAKE IT DIFFERENT FROM OTHER PROCEDURES

® MANY SYSTEM SUBROUTINES CALLED BY COMMAND PROCEDURES RETURN PL/I
POINTER VALUES, THUS FORCING THE AUTHOR TO CODE THE COMMAND PROCEDURE
IN PL/I

Not To Be Reproduced 12=1 F15C

COMMANDS

DIFFERENCES BETWEEN A COMMAND AND A PROGRAM

® THE DIFFERENCES WHICH EXIST BETWEEN A COMMAND PROGRAM AND A REGULAR
PROGRAM ARE DEFINED BY THE THREE RESTRICTIONS BELOW:

I BECAUSE THE COMMAND IS CALLED BY THE MULTICS COMMAND PROCESSOR
(OR A USER-DESIGNED COMMAND PROCESSOR)

I INPUT ARGUMENTS ARE LIMITED TO 'nonvarying unaligned character
strings'

I HENCE, A COMMAND IS RESPONSIBLE FOR CONVERTING THESE STRINGS
TO WHATEVER DATA TYPES ARE REQUIRED

I A COMMAND CAN RECEIVE ONLY INPUT ARGUMENTS

I THE COMMAND CANNOT CHANGE THE VALUE OF ANY OF THESE INPUT
ARGUMENTS

I THE COMMAND MUST BE PREPARED TO HANDLE AN ARBITRARY NUMBER OF
ARGUMENTS - THERE ARE NO PARAMETER DECLARATIONS ALLOWED

I IF THE COMMAND IS PASSED TOO MANY ARGUMENTS, IT MUST COMPLAIN
AND ABORT (CONSIDER HOW THE SYSTEM HANDLES "pwd a")

{ OTHER RULES FOR MULTICS SYSTEM COMMANDS

I USE com_err_ TO REPORT ERRORS

Not To Be Reproduced 12=2 F15C

COMMANDS
REPORTING ERRORS

® WHEN A COMMAND PROCEDURE DETECTS SOME ERROR, IT IS RESPONSIBLE FOR
REPORTING IT TO THE USER IN A STANDARD FASHION:

I com_err_

I THE PRINCIPAL SUBROUTINE USED BY COMMANDS FOR PRINTING ERROR
MESSAGES

I IT IS GENERALLY CALLED WITH A NONZERO STATUS CODE TO REPORT
SOMETHING UNUSUAL '

I IT MAY ALSO BE CALLED WITH A CODE OF O TO REPORT AN ERROR NOT
ASSOCIATED WITH A STATUS CODE
I declare com_err_ entry options(variable);

call com_err_ (code, caller, control_string, argl, ...,
argN);

I control_string IS AN OPTIONAL ioa_ SUBROUTINE CONTROL STRING
(INPUT)

i argl, ..., argN ARE ioa_ SUBROUTINE ARGUMENTS TO BE
SUBSTITUTED INTO THE control_string (INPUT)

Not To Be Reproduced 12-3 F15C

COMMANDS
REPORTING ERRORS

I THE ERROR MESSAGE PREPARED BY com_err_ HAS THE FORM:
I caller: system message user_message

I FOR SYSTEM COMMANDS caller IS THE NAME OF THE PROGRAM
DETECTING THE ERROR

I EXM;IPLE: (IF code = error_table_$wrong_no_of_args AND nargs
=5

I PL/I STATEMENT:

call com_err_ (code, "sample_ command",
"*/You furnished “d args.", nargs);

I RESULT:

sample_command: Wrong number of arguments supplied.
You furnished 5 args.

1 1IF CODE = Q ONLY A user_message IS PRINTED

Not To Be Reproduced 12-4 F15C

COMMANDS
COMMAND I/0

® IN WRITING COMMAND PROCEDURES NO LANGUAGE LEVEL I/O STATEMENTS ARE
EVER USED

® STANDARD INPUT/OUTPUT IS DONE USING THE FOLLOWING SUBROUTINES:

I 1ioa

0 USED FOR FORMATTING A CHARACTER STRING

I iox

0 THE SUBROUTINE-LEVEL INTERFACE TO THE MULTICS I/0 SYSTEM

I command_query_

0 THE STANDARD SYSTEM PROCEDURE INVOKED TO ASK THE USER A QUESTION
AND OBTAIN AN ANSWER

‘I IT PRINTS THE QUESTION ON THE USER'S TERMINAL, AND THEN READS
THE 'user_input' SWITCH TO OBTAIN THE ANSWER
I declare command_query_ entry options(variable);

call command_query_ (ptr, answer, caller, control_string,
argl, ..., argh);

I ptr POINTS TO THE query_info STRUCTURE DESCRIBED ON THE
FOLLOWING PAGE (INPUT)

Not To Be Reproduced 12<5 F15C

COMMANDS
COMMAND I/0

/* BEGIN INCLUDE FILE query_info.inel.pl1l TAC June 1, 1973 */
/% Renamed to query info.incl.plt ‘
and cp_escape_control added, 08/10/78 WOS ¥/
/* version number changed to 4, 08/10/78 WOS */
/* Version 5 adds explanation_ (ptr len) 05/08/81 S. Herbst */
/* Version 6 adds literal_sw, prompt~after explanation switch
12715/82 S. Herbst */

del 1 query info aligned,
/% argument structure for command_query_ call */
2 version fixed bin,
/% version of this structure - must be set, see below */
2 switches aligned,
/% various bit switch values ¥*/
3 yes_or_no_sw bit (1) unaligned init ("0"b),
/¥ not a yes-or-no question, by default */
3 suppress_name_sw bit (1) unaligned init ("0"b),
/* do not suppress command name */
3 cp_escape_control bit (2) unaligned init ("00"b),
7% obey static default value */
/* "01" <> invalid, "10"™ -> don't allow, "11" <> allow ¥/
suppress_spacing bit (1) unaligned init (“O"b)
/* whether to print extra spacing */
literal_sw bit (1) unaligned init ("0"b),
/* ON => do not strip leading/trailing white space */
prompt after_explanation bit (1) unaligned init ("0"b),
/* ON => repeat question after explanation */
3 padding bit (29) unaligned init (""b),
/* pads it out to t word */
2 status_code fixed bin (35) init (0),
/% query not prompted by any error ay default */
2 query_code fixed bin (35) init (0),
/* Currently has no meaning */

w W W

/* Limit of data defined for version 2 #/

2 question_iocbp ptr init (null ()),
/% I0 Switch to write question ¥/
2 answer_iocbp ptr init (null ()),
/* 10 switeh to read answer */
2 repeat_time fixed bin (71) init (0),
/% repeat questlon every N seconds if no answer */

7%
/* minimum of 30 seconds reguired for repeat %/

/* otherwise, no repeat will occur ¥/
/* Limit of data defined for version 4 ¥/
2 explanation_ptr ptr init (null ()),
/* explanation of question to be printed if */
2 explanation_len fixed bin (21) init (0);
/* user answers "?" (disabled if ptr= null or len=0) %/

Not To Be Reproduced 12-6 F15C

_ COMMANDS

COMMAND I/O

del query_info_version_3 fixed bin int static
options (constant) init (3);
del query_info_version 4 fixed bin int static
options (constant) init (4);
del query_info_version 5 fixed bin int static
options (constant) init (5);
del query_info_version 6 fixed bin int static
options (constant) init (6);
/* thé current version number ¥/

/% END INCLUDE FILE query_info.inel.plt ¥/

Not To Be Reproduced 12=-7 F15C

COMMANDS
OTHER SUBROUTINES USED IN WRITING COMMANDS

® cCcu

0 USED TO MANIPULATE THE COMMAND ENVIRONMENT IN FUNCTIONS LIKE:

I SETTING THE READY MESSAGE

I CALLING THE COMMAND PROCESSOR

I CHANGING THE COMMAND PROCESSOR

I EXAMINING STACK FRAMES

Not To Be Reproduced 12-8 F15C

COMMANDS
OTHER SUBROUTINES USED IN WRITING COMMANDS

® THE FOLLOWING ENTRIES ARE USED TO OBTAIN THE ARGUMENTS PASSED TO
THE COMMAND

I cu $arg_count
I call cu $arg_count (arg_count, code); -

I USED TO DETERMINE THE NUMBER OF ARGUMENTS SUPPLIED WHEN THE
PROCEDURE WAS CALLED

I cu $arg_ptr
I call cu $arg_ptr (arg_ho, arg_ptr, arg_len, code);

I RETURNS A POINTER TO AND THE LENGTH OF ONE OF THE ARGUMENTS
I arg_no IS AN INTEGER SPECIFYING THE NUMBER OF THE DESIRED
ARGUMENT (INPUT) .

[NOTE THAT A BASED VARIABLE IS NORMALLY USED FOR INPUT ARGUMENTS
AND IS DECLARED AS FOLLOWS:

I declare argument char(arg_len) based(arg_ptr);

Not To Be Reproduced 12=9 F15C

COMMANDS
OTHER SUBROUTINES USED IN WRITING COMMANDS

® EXAMPLES

sample_command: proc;

del cu $arg_count entry(fixed bin, fixed bin(35)); -

del nargs fixed bin;

del error_table $wrong no_of_args fixed bin(35) external;
del com_err_ entry options(variable);

del code fixed bin(35);

call cq_$arg_count (nargs, code);
if nargs "= 0
then do;
call com_err_(error_table_$wrong_ no_of_args,
"sample command") ;
return;
end /* then do */;

sample_command2: proc;

del argument char(arg_len) based(arg_ptr);
del arg_len fixed bin(21);
del arg ptr ptr;
del code fixed bin(35);
del (com_err_, ioa) entry options(variable);

call cu_$arg_ptr (1, arg_ptr, arg_len, code);
if code *= 0~
then do;
call com_err_ (code, "sample_command2");
return;
end /* then do ¥/;
call ioa_("First argument is “a",argument);

del cu_ $arg_ptr entry (fixed bln,ptr fixed bin(21),fixed bin(35));

Not To Be Reproduced 12=-10

F15C

COMMANDS
OTHER SUBRQUTINES USED IN WRITING COMMANDS

® THE FOLLOWING SUBROUTINES ARE USED FOR ARGUMENT CONVERSION:

I expand_pathname_
I call expand_pathname_ (pathname, dirname, entryname, cocde);
I PREVIOUSLY DISCUSSED IN TOPICS 5 AND 10

I NOTE THAT SOME CRITICAL MULTICS SUBROUTINES REQUIRE A PATHNAME
ARGUMENT SPECIFIED IN TWO PORTIONS, THE DIRECTORY PATHNAME
AND THE ENTRYNAME, AND THIS IS ONE OF THE MAIN REASONS
expand_pathname_ IS AVAILABLE

I cv_ptr_
I ptr_value = cv_ptr_ (vptr, code);

I THIS FUNCTION CONVERTS A VIRTUAL POINTER TO A POINTER VALUE
(A VIRTUAL POINTER IS A CHARACTER-STRING REPRESENTATION OF A
POINTER VALUE, SUCH AS "foo$bar™ OR ">udd>PROJ>PERS>segi1200")

Not To Be Reproduced 12=11 F15C

COMMANDS
OTHER SUBROUTINES USED IN WRITING COMMANDS

I OTHER CONVERSION SUBROUTINES AND FUNCTIONS

I ev_bin_
I cv_bin_s$dec

I cv_bin_$oct
I cv_dec_, cv_dec_check
I cev_oct_, cv_oct _check
I cv_hex_, cv_hex_check__

I cv_float_

=3
[¢]
<
i
o]
m
ct
.
[}
[}
o
..J
(i)

I cv_ptr_$terminate
I cv_entry_

i cv_mode_

I cv_dir_mode_

0 cv_userid_

I cv_error_

Il cv_error_s$name

Not To Be Reproduced 12=-12 F15C

COMMANDS
OTHER SUBROUTINES USED IN WRITING COMMANDS

This Page Intentionally left Blank

Not To Be Reproduced 12=13 F15C

COMMANDS
AN EXAMPLE OF A COMMAND

how_long: proc;

del cu_$arg_count entry (fixed bin, fixed bin (35));
del cu_$arg_ptr entry (fixed bin, ptr, fixed bin(21), fixed bin (3

5)
del expand_pathname_ entry (char (*), char (¥), char (*), fixed bin (35));
)y

del hes_gstatus_minT entry (char(*), char(#*), fixed bin(1), fixed bin(2
fixed bin(24), fixed bin(35));

del 1long bit (1) init ("0"b);
del arg char (argl) based (argp);
del (i, nargs) fixed bin;
del argl fixed bin(21);
del argp ptr;
del type fixed bin (2);
del code fixed bin (35);
del dir char (168);
del entry char (32);
del (com_err_,
ioa) entry options (variable);
del ME char (8) static init ("how long") options (constant);
del be fixed bin (24);
del null builtin;

del error_table $wrong_no_of args fixed bin(35) external;
/% check number of args ¥/

call cu $arg_count (nargs, code);
if (nargs < 1) | (nargs > 2)
then do;
call com_err_ (error_table $wrong_no_of_ args, ME);
return;
end /* then do ¥*¥/;

/* evaluate args */

do i,= 1 to nargs;
call cu |_$arg_ptr (i, argp, argl, code);

if i =1
then do;
call expand_pathname_ (arg, dir, entry, code);
if code "= 0
then do;
com err (code, ME);
end /% then do #/;
call hes $status_minf (dlr, entry, 1, type, bc, code);
if code ™= 0
then do;
call com_err_ (code, ME);
return;
end /* then do */;

Not To Be Reproduced 12=-14 F15C

);

COMMANDS
AN EXAMPLE OF A COMMAND

bc = be/36;
end /* then do ¥/;
else do;
/* second arg must be -long or -1lg */
if (arg = "-long") | (arg = "-1g")
then long = "i"b;
else do;
call com_err_ (0, ME, "Control arg must be -long or -1lg"
return;
end /* else do */;
end /* else do */;
end /* do i */; '

call ioa_(""[Number of words for “a>"a is ";"2s"]17i", long, dir, entry, bec)

end /* how_long */;

r 14:03 0.197 18

! how_long
how_long: Wrong number of arguments supplied.
r 14:04 0.183 11

! h&%_long how_long

660
r 14:04 0.105 0

! how_long how_long.pll -lg
Number of words for >user_dir_dir>MED>Jackson>15¢>how_long.pll is 544
r 14:04 0.088 0

! how long how long.plil -short

how long: Control arg must be -long or -1g
r 17:04 0.143 1

Not To Be Reproduced | 12-15 F15C

ACTIVE FUNCTIONS

® AN ACTIVE FUNCTION RETURNS A CHAR VARYING VALUE TO THE COMMAND
PROCESSOR FOR SUBSTITUTION INTO THE COMMAND LINE

I IT IS CALLED BY THE COMMAND PROCESSOR FOR THE PURPOSE OF RETURNING
A VALUE TO THE COMMAND PROCESSOR

I THE COMMAND PROCESSOR MUST PREPARE A LOCATION FOR THE RETURNED
VALUE

I THE ACTIVE FUNCTION MUST KNOW THIS LOCATION IN ORDER TO RETURN A
VALUE

® AN ACTIVE FUNCTION DIFFERS FROM A STANDARD PROCEDURE IN THE THREE
WAYS SPECIFIED FOR COMMANDS (TAKES ONLY CHARACTER-STRING ARGUMENTS,
HANDLES ONLY INPUT ARGUMENTS, TAKES A VARYING NUMBER OF ARGUMENTS)
AND HAS ONE ADDITIONAL DIFFERENCE:

[AN ACTIVE FUNCTION MUST RETURN A VARYING CHARACTER-STRING ARGUMENT
TO THE COMMAND PROCESSOR IN- A LOCATION SPECIFIED BY THE COMMAND
PROCESSOR

® A COMMAND PROCEDURE CAN BE WRITTEN TO IMPLEMENT EITHER A COMMAND OR
AN ACTIVE FUNCTION.

® SUCH A PROCEDURE'S EXECUTION DEPENDS ON THE MANNER IN WHICH IT WAS
INVOKED

Not To Be Reproduced 12=16 F15C

ACTIVE FUNCTIONS

SUBROUTINES USED FOR WRITING ACTIVE FUNCTIONS

® THE SUBROUTINES USED FOR WRITING AN ACTIVE FUNCTION MUST BE ABLE TO
DETERMINE TWO VERY IMPORTANT THINGS:

I THE LOCATION INTO WHICH IT SHOULD PLACE ITS RETURN VALUE

I WHETHER OR NOT IT WAS INVOKED AS A ACTIVE FUNCTION

® cu $af_arg_count
I call cu $af arg_count (nargs, code);
1 RETURNS THE NUMBER OF INPUT ARGUMENTS

I IF THE CALLER WAS NOT INVOKED AS AN ACTIVE FUNCTION, A NON-ZERO
STATUS CODE IS RETURNED (error_table_$not_act~fcn)

® cu $af_ arg_ptr
I call cu $af_arg_ptr (arg_no, arg_ptr, arg_len, code);

I OPERATES LIKE cu_$arg_ptr EXCEPT THAT IT RETURNS A NULL arg_ptr
IF IT WAS NOT CALLED AS AN ACTIVE FUNCTION

I USUALLY USED IN WRITING PROGRAMS THAT CAN ONLY BE CALLED AS
ACTIVE FUNCTIONS

Not To Be Reproduced 12=17 4 F15C

ACTIVE FUNCTIONS
SUBROUTINES USED FOR WRITING ACTIVE FUNCTIONS

e cu_$af_return_arg

I call cu $af_return_arg (nargs, rtn_string_ptr, max_length,
‘ code);

I PERFORMS THE JOB OF cu$af_arg_count AND
I MAKES THE ACTIVE FUNCTION'S RETURN ARGUMENT AVAILABLE

T N
I QQT;% ptp IS A POINTER TO THE VARYING STRING RETURN ARGUMENT
oF TI FUNCTION (QUTPUT)
-

i {max length)IS THE MAXIMUM LENGTH OF THE VARYING STRING POINTED
—string_ptr (OUTPUT)

§ IF THE CALLER WAS NOT INVOKED AS AN ACTIVE FUNCTION, A NON-ZERO
STATUS CODE IS RETURNED (erron‘table_$not_acp_fcn)

I NOTE THAT THE ACTIVE FUNCTION DECLARES ITS RETURN ARGUMENT AS
FOLLOWS:

declare return_string char (max_length) varying
based (rtn_string_ptr);

Not To Be Reproduced 12-18 F15C

ACTIVE FUNCTIONS

REPORTING ERRORS

® AN ACTIVE FUNCTION USES A DIFFERENT SUBROUTINE FOR REPORTING ERRORS
TO THE USER: :

I active_fnec_err_
0 CALLED BY AN ACTIVE FUNCTION WHEN IT DETECTS AN ERROR

I FORMATS AN ERROR MESSAGE MUCH LIKE com_err_ AND THEN SIGNALS
THE 'active_function_error' CONDITION

I USAGE
I declare active_fnc_err_ entry options(variable);

I call active_fnc_err_ (code, caller, control_string, argl,
eeey argN);

I THE USAGE IS SIMILAR IN ALL RESPECTS TO com_err_

Not To Be Reproduced 12-19 F15C

.CTIVE FUNCTIONS

AN ACTIVE FUNCTION EXAMPLE

me: proc;

del cu_$af_return_arg entry (fixed bin, ptr, fixed bin(21), fixed bin (35));

del nargs fixed bin;
del return_arg char (rslength) varying based (rsptr);
del rslength fixed bin (21);
del rsptr ptr;
del code fixed bin (35);
del user_info_ entry (char (*), char (%), char (¥*));
del (active_fnc_err_,
com_err_) entry options (variable);
del error table $wrong_no_of_args fixed bin (35) external;
del person_id char (22);
del projecp_id char (9);
del acct char (32);

/* DETERMINE IF INVOKED AS ACTIVE FUNCTION %/

call cu $af return_arg (nargs, rsptr, rslength, code);
if code "= 0
then do;
call com_err_ (code, "me");
return;
end /* then do */;

if nargs "= 0
then do;
call active fnc_err_(error_table $wrong no_of_ args,"me");
return;
end /* then do */;
/* SQ FAR, SO GOOD - GET PERSON_ID */

call user_info_ (person_id, project_id, acct);
return arg = person id;

end /% me */;

Not To Be Reproduced 12-20 F15C

ACTIVE FUNCTIONS

AN ACTIVE FUNCTION EXAMPLE

r 15:19 0.143 0

! me
me: This active function cannot be invoked as a command.
r 15:19 0.197 5

! who [me]
Jackson .MED

r 15:20 0.524 5

who [me Jackson]
me: Wrong number of arguments supplied.

Error: Bad call to active function me
r 15:20 0.206 9 level 2

Not To Be Reproduced 12=-21 F15C

COMMANDS AND ACTIVE FUNCTIONS

® THE SUBROUTINES DISCUSSED PREVIOUSLY ARE USED IN WRITING PROCEDURES
THAT MAY BE CALLED AS BOTH COMMANDS AND ACTIVE FUNCTIONS

® THE FOLLOWING SUMMARIZES THE IDIOSYNCRASIES TO BE CONSIDERED IN
CHOOSING APPROPRIATE SUBROUTINES

ACT.
cu_ ENTRY COMMAND FUNC. COMMENTS
arg_count , X X IF INVOKED AS AN ACTIVE FUNCTION
COUNT INCLUDES RETURN ARGUMENT
arg_ptr X X
af_arg_count X X COUNT EQUALS INPUT ARGUMENTS ONLY
af_arg_ptr X NULL arg_ptr IF INVOKED AS A COMMAND
af_return_arg X X COUNT EQUALS INPUT ARGUMENTS ONLY
NULL rtn_ptr IF INVOKED AS A COMMAND

® IT IS ALWAYS POSSIBLE TO WRITE ANY COMMAND OR ACTIVE FUNCTION USING
ONLY THE TWO ENTRY POINTS, cu_$af_return_arg AND cu $arg_ptr

Not To Be Reproduced 12=22 F15C

COMMANDS AND ACTIVE FUNCTIONS

AN EXAMPLE OF A COMMAND/ACTIVE FUNCTION

how_long_both: proc;

del expand_pathname_ entry (char (¥), char (¥), char (*), fixed bin (35));

del cu $arg_ptr entry (fixed bin, ptr, fixed bin(21), fixed bin(35));

del cu $af_ Teturn_arg entry(fixed bin, ptr, fixed bin(21), fixed bin (35).

del active fne err entry options (variable);

del nes_$status_minf entry (char(¥), char(*), fixed bin(1), fixed bin(2),
fixed bin(24), fixed bin(35));

del 1long bit (1) init ("0"b);

del arg char (argl) based (argp);

dcl complain entry variable options (variable);

del af bit (1) init ("0"b);

del return_string char (rslength) var based (rsptr);

del rslength fixed bin (21);

del rsptr ptr;

del (i, nargs) fixed bin;

del argl fixed bin (21);

del argp ptr;

del type fixed bin (2);

del <code fixed bin (35);

del dir char (168);

del entry char (32); -

del (com_err_, ioa) entry options (variable);

del ME char (13) Static init ("how_long_ both“) options (constant);

del be fixed bin (24);

del error_table $wrong_no_of_args fixed bin(35) external;

/* check number of args ¥/
call cu_$af return_arg (nargs, rsptr, rslength, code);
/* command or active function invocation??? ¥/

if code = 0
then do;
af = "1"b;
complain = active_fnc_err_;
end /* then do */;
else complain = com_err_;

if (nargs < 1) | (nargs > 2)
then do;
call complain (error_table_$wrong_no_of_args, ME);
return;
end /* then do ¥*/;

/* evaluate args %/
do i = 1 to nargs;

call cu $arg_ptr (i, argp, argl, code);

Not To Be Reproduced 12-23 F15C

COMMANDS AND ACTIVE FUNCTIONS

AN EXAMPLE OF A COMMAND/ACTIVE FUNCTION

/* relative pathname argument ¥*/

ifi=1
then do;
call expand_pathname_ (arg, dir, entry, code);
if code "= 0
then do;
call complain (code, ME);
return;
end /* then do ¥*/;

call hes_$status _minf (dir, entry, 1, type, be, code);
if code ™= 0
then do;
call complain (code, ME);
return;
end /* the do */;
be = be/36;
end /* then do %/
else do;

/* second arg must be -long or -1lg */

if (arg = "-long") | (arg = "-1lg")
then long = "1"b;
else do;
call complain (0, ME, "Control arg must be -long or -1g");
return;
end /* else do */;
end /* else do */;

end /* do i */;

if af -
then do;
return string = be;
return;

end /* then do */;
call ioa_(""[Number of words for "a>"a is *;"2s"]1"i", long, dir, entry, be);

end /* how_long_both */;

Not To Be Reproduced 12=-24 F15C

COMMANDS AND ACTIVE FUNCTIONS

AN EXAMPLE OF A COMMAND/ACTIVE FUNCTION

r 15:59 0.284 7

how_long_both
how long both: Wrong number of arguments supplied.

r 15:59 0.152 11

o

how_long both foo -1lg
how long both: Entry not found.
r 18:00 0.118 0

how_long_both how_long_both

776~
r 16:00 0.076 0

o

how_long_both how_long_both -long
Number of words for >user dir_dir>MED>Jackson>f15c¢>how_long_both is 776
r 16:01 0.098 0

! octal [how_long_both how_long_both]
1410
r 16:01 0.196 6

! octal [how_long_both]
how_long_ both: Wrong number of arguments supplied.

FrraAr

- a

or all
r 16:

a2 1
7

_Atl

e to a
.169 level

000
O(D

Not To Be Reproduced 12=25 | F15C

OTHER USEFUL SUBROUTINES

® user_info_

I RETURNS INFORMATION CONCERNING A USER'S LOGIN SESSION (ALL ARGUMENTS
ARE OUTPUT ARGUMENTS)

0 ecall user_info_ (person_id, project_id, acct);

I OTHER ENTRY POINTS:
I call user_info_$absentee_queue (queue);
I call user_info_$absentee_request_id (request_id);
I call user_info_g$absin (path);
I call user_info_$absout (path);
I call user_info_$attributes (attr);
I call user_info_$homedir (hdir);

I call user_info_$limits (mlim, clim, cdate, crf, shlim, msp,
csp, shsp);

I call user_info_$load_ctl_info (group, stby, preempt_time,
weight);

I call user_info_$login_arg_count (count, max_length,
total_length);

I call user_info_$login_arg_ptr (arg_no, arg_ptr, arg_len,
code);

Not To Be Reproduced ’ 12-26 F15C

OTHER USEFUL SUBROUTINES

I call user_info_$login_data (person_id, project_id, acct,
anon, stby, weight, time_login,
login_word);

I call user_info_$logout_data (1ogout_cha;nel, logout_pid);
I call user_info_$outer_module (om);

I call usép_infq_$process_type (process_type);

I ecall user_info_$respondef (resp);

I call user_info_$rs_name (rs_name);

I call user_info_$rs_nhmber (rs_number);

I call user_info_$service type (type);

I call user_info_$terminal_data (id_code, type, channel,
line_type, charge_type);

I call user_info_g$usage_data (nproc, old_cpu, time_login,
time_create, old_menm,
old_io_cps);

I call user_info_g$whoami (person_id, project_id, acct);

Not To Be Reproduced 12=27 F15C

® value_

OTHER USEFUL SUBROUTINES

I READS AND MAINTAINS VALUE SEGMENTS CONTAINING NAME-VALUE PAIRS
ACROSS PROCESS BOUNDARIES

I CREATING A VALUE SEGMENT

CREATE A SEGMENT WITH A SUFFIX OF .value

I
I eall
I DEFAULT
" eall
I call

value $1n1t seg (seg_ptr, seg_type, remote_area_ ptr,
seg_size, code);

VALUE SEGMENT IS [home_dir]>[user_namel].value
value_$set_path (path, create_sw, code);

value_$get_path (path, code);

I CREATING AND MAINTAINING NAME-VALUE PAIRS

H

call

call

call

call

call

call

value_$set (seg ptr, switches, name, new value,
old_value, code);

value_$test_and_set (seg_ptr, switches, name, new_value,
old_value, code);

value_s$get (seg_ptr, switches, name, value_arg, code);

value_$1list (setdptr, swit

< =

val ue list in

o _ptr, area_ptr,

\13
)

value_$defined (seg_ptr, switches, name, code);

value_$delete (seg_ptr, switches, name, code);

Not To Be Reproduced 12-28 F15C

OTHER USEFUL SUBROUTINES

l YOU ARE NOW READY FOR WORKSHOP

l # |

Not To Be Reproduced 12-29 F15C
(End Of Topie)

Workshops

Page

oam
TTQN T T
' P
TEETTEETETTX
e @ * & e e & o *
e @ * & e e o0 . L]

e o o o o s o s o
® o o ¢ o o o o o
o e Q) e o o) o
[V] Lo
R
ot o "
UTmFFSn&F_N
2, Q, O, O, O, O O D, O
000000000
coocooago.oga
nnomnunnmnunnunmn
MM MM MMM YN
[A T T S
000000000
ExTETxzE2E X

F15C

W-i

WORKSHOP ONE

Controlled Variables and 'isub' Defining

1. Write a procedure called 'allocate array.pll} that will ask the
user for the size of one dimensional fixe in (17) arrays he/she
wishes to allocate. For example, if the user provides the number
7, your program is to allocate an array with 7 fixed bin (17)
Jlements.

The program should loop, repeatedly asking for the s¢ze

next array, allocating that array and then initializing a F11 elements._
of that array to the current allocation Tevel (i.e., the first

array would be initialized to 1, the second array would be initialized

to 2, ete.). Use the 'g;;ggg&ignlﬁhnilbia\to determine the depth.

The program should continue allocating and initializing until the
user responds with zero (0). Again using the 'allocation' builtin
to determine the allocation depth, it should then free all the
allocated arrays, printing each array just before freeing it.

Test your program asking for arrays of size 1, 2, 3, and 4,
Observe the order in which the arrays are freed.

Not To Be Reproduced W=1 F15C

WORKSHOP ONE

2. The segment >udd>MEDelass>F15C>si1>printit.fortran contains a fortran

subroutine that accepts a 2 by 3 array as an argument and prints
it out a row at a time. .

Copy the segment, print it, compile it and write a PL/I procedure
called 'call fortran.pll1' declaring a 2 by 3 array and the 3 by 2
transpose of this array (use isubs). The program should:

a. Initialize the 2 by 3 array as follows:

1 2 3
4 5 6

b. Call the fortran subroutine, passing to it the
untransposed array.

¢. Call the fortran subroutine, passing to it the
transposed array.

Note:
1) 'printit' must be declared an entry, and since it will be

passed both a 2.by 3 and a 3 by 2 array, its descriptor must use the
star convention (dim(*,%)),

2) The %%?ggnbs-of the array should be declared ;lxed bin (35)
since that is the data type for fortran integers.

3) The final compilation of the PL/I program will still have a
"by value" warning since 'isub' defined variables are always passed by
value., Recall this means that the called procedure will not be able
to change the variable passed to it. How can this warning be avoided?
That is,; how could the array be passed by reference?

4) When you compile the PL/I program with the table option (the

default), you will receive a warning that the transposed array will
not appear in the symbol table.

- Not To Be Reproduced W=2 F15C

WORKSHQOP TWO

Based Variables and Areas

This workshop has three parts. Be sure you understand the mechanism
used in parts 1 and 2 (based variables), since they form the basis for
workshop three and the remainder of this course.

1. The following = declarations are in the segment
>udd>MEDeclass>F15C>s1>included>w2.incl . .pll.

/% Begin w2.incl.pll ¥/

del string char (10) varying;

del 1 string_parts based (addr (string)),
2 length fixed bin (35),
2 characters char (10);

del number float binary;

del 1 float_num based (addr (number)),
2 sign bit (1) unal,
2 exponent bit (7) unal,
2 m_sign bit (1) unal,

2 mantissa bit (27) unal;
/% End w2.inel.pll #/ '

Write a short program that _enters data into the two BASE variables
(string and number) and thé S out the values in e BASED
(overlay) variables in order to see exactly how 'char varying' and
'float binary' numbers are stored. (lUse put data.) '

2. Change your working directory to >udd>MEDeclass>F15C>s1. Print the
segment get message.pll. Execute the corresponding object segment
and follow the directions given in the message.

3. In your working directory create an area named AREA (all caps)
using the create area command . - In the sSegment,
>udd>MEDclass>F15C>s1>?ill_area.p11, is a program that allocates 2
numbers in that area. Print the program and make sure you understand
what it is doing. Execute the object segment. Use the dump_segment
(ds) command to look at your AREA segment. Notice how the pointer
values printed by the program correspond to locations in the segment.
Also notice the extra area manager information in the segment.

Not To Be Reproduced W=-3 F15C

WORKSHOP THREE

Gaining Direct Access to a Segment

The segment, >udd>MEDclass>F15C>si>invoices, contains invoices for a
number of different vendors. ._At the base of the segment is a header.
The remainder of the segment is a series of linked structures, each

onerepresenting a single invoice for a particular vendor. Thedeclaration
to be used for the linked structure is:

del 1 invoice based (p),
- 2 next bit (18),
2 invoice_number dec (3),
2 vendor_number dec (3),
2 charge fixed dec (8,2);

The structure member, invoice.next, is a non-standard offset (word
offset from the base of the segment) indicating the location of the
next structure in the linked list. :

. (" D
Write a program called {get_invoices.pl1!Y. Your program should prompt

the user for a vendor numb 1g1TS) and then print out all invoice
numbers and the corresponding charges belonging to that vendor.

Actually, the segment does not contain just one linked list. There
are, in fact, 10 linked lists below the header. The header is used to
determine which list is to be searched for that particular vendor.
The declaration to be used for the header is:

del 1 invoice file header based (seg_ptr),
2 number of Invoices fixed bin,
2 hash_table (0:9) bit (18) unal;

The hash table is made up of 10 non-standard offsets. Each offset
points to the start of one of the linked lists of invoice structures.
Which linked list a particular vendor is found in is determined by the

last digit in the vendor number. For example, invoices for vendor 35
would be in the list pointed to by ‘*hash_table(7)'.

Thus, qhen a user gives you a vendor number you must Qverla
depr : £ and get the of set _for

&Lann_ggit e approprlate"ln ed list. Then you must_ ggt a_pointer to
the start of the linked ISt and .move the invoice structure down the~
TSt checking ToT the appropriate ;EE33FT_"TF7ﬁﬁ;?ﬁﬁﬁﬁﬁrﬁzié%EET_EFfﬁf“
out the invoice number and the charge. Continue scanning the list

,until you reach theend. The last invoice in any list is indicated by
invoice.next = "0"b.

Not To Be Reproducgd W=l K15C

WORKSHOP THREE

As an example, to find invoices for vendor 357, the statement p =
ptr(seg_ptr,hash_table(7)) would generate a pointer 'p' which locates
the first invoice for a vendor with low order digit 7. The vendor
number for this invoice can be compared to 357, and printed out if
matched. Then, the pointer p could be adjusted to the next ipveice in
this list by coding the statement p = ptr(seg ptr, p ->next) and so
on. =

Test your program by printing out the invoice number and charges of

all invoices for vendor_number 029,

You may wish to use the following declarations which are in the segment,
>udd>MEDeclass>F15C>s1>include>w3.incl.pli.

-

/% Begin w3.incl.pll %/

del initiate_file_ entry (char (*), char (*), bit (*), pointer,
fixed bin (24), fixed bin (35));

del code fixed bin (35);
del bit_count fixed bin (24);
dcl seg_ptr ptr;
del p ptr;.

del 1 invoice_file_header based (seg_ptr),
2 number_of invoices fixed bin,
2 hash_table (0:9) bit (18) unaligned;

del 1 invoice based (p) aligned,
2 next. bit (18),
2 invoice_number dec (3),
2 vendor number dec (3),

2 charge fixed dec (8,2);
del com_err_ entry options (variable);
del (sysin,
sysprint) file;

/% End w3.incl.pl1 ¥/

For the more curious, you may wish to study
>udd>MEDclass>Fi5C>si>set_up>put_invoice.pli.

Not To Be Reproduced W-5 ' F15C

1.

WORKSHOP FOUR

The Multics Condition Handling Mechanism

Print the segment >udd>MEDelass>F15C>s1>test_any_other.plt (taoc.pll)
and execute the corresponding object segment.

Examine your user stack using the 'stack' request of 'probe'.
“Notice where, on the stack, the program you just executed is compared
to the 'wall' laid down by default error handler.

Using the 'signal’' command, execute the following commands: "signal
zerodivide™, "signal any_other", "signal finish", "signal
program_interrupt". How do you explain the difference in these
four cases?

Note: the above program is not well behaved in that it should
have continued to signal the 'finish' condition.

BE SURE TO DO A 'release -all' BEFORE PROCEEDING!!!

Print the segment'>udd>MEDclass>F1SC>s1>test_cleanup.p11 (tcu.pll)
and execute the corresponding object segment TWO times. BE SURE
YOU EXECUTE IT AT LEAST TWO TIMES (more than two won't hurt, but
is wasteful).

Examine the user stack using the 'stack' request of 'probe'. Notice
the numerous occurrences of 'test_cleanup' on the stack. Now examine
the stack using the 'trace_stack' (ts) command. Notice the 'cleanup'
handlers in several stack frames. (While you are at it, alsc
notice that 'initialize process_' and 'default_error_handler_' have
only one condition handler.)

Execute a "release -all". Can you explain what happened?

Print the segment >udd>MEDclass>F15C>s1>test_finish_1.pl1 (tf1.pl1)
and execute the corresponding object segment AT LEAST THREE TIMES.
Signal the finish condition.

Do a "release -all" and then repeat the above procedure using
>udd>MEDeclass>F15C>s1>test_finish 2.pl1 (tf2.pl1).

Not To Be Reproduced W=-6 F15C

WORKSHOP FIVE

IOCB structure

1. Print the segment >udd>MEDclass>F15C>si1>examine_iocb.pll and read
it carefully to see what it does.

2. Execute the print_ attach table (pat) command to examine the switches
currently attached.

3. While in your own directory, execute the following command lines:

io_call attach zoo vfile_ zoo
io_call open zoo stream_output
pat

Now execute the program >udd>MEDclass>F15C>sl>examine_iocb and
carefully examine the results. Notice that all pointers and entry
points printed are in one of 3 segments.

4, Recall that the list reference_names (lrn) command, if given a
segment number, will Treturn thé pathname and ro?nrnnﬂn names of
that segment. Use this command to determine the three segments
whose numbers were found in the IOCB. Notice especially which
entries in the IOCB point to iox_ and which point to the I/0
module, vfile . Do these make sense, considering the file is
opened for stream output?

5. Execute the command line, 'io_call close zoo'. Again execute the
'pat' command. Run the program, examlne ioecb, again and notice
the different results. Can you explain what happened° If not,
ask your instructor.

6. Now that you have looked directly at an iocb using an overlay,
you should try using the command that gives you the same information.
Execute the command line 'io_call print_iocb zoo'.

7. Using 'io_call print_iocb <switch>' one can easily look at the
contents of an iocb. Try the following: delete the segment zoo,
and then use io_call to open zoo "keyed sequential_ output" and to
display the contents of the iocb.

Not To Be Reproduced W=7 F15C

WORKSHOP SIX

Multics I/0 Workshop

/—“'\
Write a PL/I procedure called <ilucky number .pl1’ which _prompts the
user for a 6 digit number, and uses that as a key into an indexed file
of lucky numbers. The file of numbers is in the segment:

-

® >udd>MEDelass>F15C>s1>lucky nos

The data records are 32 characters or less in length.

Display the records. Do not use any language-level I/0. Use only
iox_ and ioa_ calls in your program.

Test your program with the numbers 780101, 780116, and 771225.

You may wish to use the following declarations which are in the segment,
>udd>MEDclass>F15C>s1>include> wb.incl.pl1

/% Begin w6.incl.pll ¥/

ydel iox_s$attach_name entry (char (*), ptr, char (*), ptr,
fixed bin (35));

del iox_$close entry (ptr, fixed bin (35));
del iox_$detach_iocb entry (ptr, fixed bin (35));
decl iox_$open entry (ptr, fixed bin, bit (1) aligned,

. fixed bin(35));

del iox_$read_record entry (ptr, ptr, fixed bin (21),

fixed bin (21), fixed bin (35));
del iox_$seek key entry (ptr, char (256) varying,

fixed bin (21), fixed bin (35));
del iox_$get_line entry (ptr, ptr, fixed bin (21),

fixed bin (21), fixed bin (35));
decl iox_$user_input external static ptr;
del (ioa_,

com_err_) - entry options (variable);
del error_table _$no_record fixed bin (35) external;
del code fixed bin (35);
del buff char (32);
del buff ptr ptr;
del rec_Ten fixed bin (21);
decl iocchb pir ptr;
del n_read fixed bin (21);
del number char (256) varying;
del cleanup condition;
del (addr,
null,
substr) builtin;

/% End wé6.incl.pl1 */

Not To Be Reproduced W=-8 F15C

WORKSHOP SIX

Be sure that you provide an 'on unit' for the 'cleanup' condition.
Also, you should check for the ¥5de, error_table_$no_record (indicating
an invalid key), after doing the seek key.

Not To Be Reproduced W=9 F15C

WORKSHOP SEVEN

A Storage System Workshop

Apply the concepts discussed in Topic Ten by writing a PL/I procedure
called 'new_subsystem.pl1' which, when invoked, will do the following:

1.

©

G

B —

————

Determine whether or not a subdirectory called "F15C" exists j
the callers default working directory. _If it does, proce to
S ybelow. If it does not, proceed to @ask bbelow. If a

or link called "F15C" exists in the caller's default working

directory, delete/unlink it, wthe caller of your action, gﬁ'

proceed to¢’stepn

Since no "F15C" subdirectory exists in the caller's default working
directory, create this directory. You should make sure that, besides
the standard ACL entries, the directory also has an ACL entry
giving "sma" access to Student 01.*.*. Report the creation of
this difectory to the caller. .

Change the caller's working directory to the nF15C" directory, and
noti of this action.

Compile and test out your procgdure.

(CONTINUED ON NEXT PAGE)

Not To Be Reproduced W-10 F15C

WORKSHOP SEVEN

J

You may wish to use the following declarations which are in the segment,
>udd>MEDeclass>F15C>s1>include>w7.incl.pli.

/% Begin wT7.incl.pll ¥/

—del
-del
 —del

del

del
del
del
del
del

del
del
del
del

del

delete_$path entry (char (*), char (*), bit (6), char (¥),
fixed bin (35));
hes_$add_dir_acl_entries entry (char (*), char (*), ptr,
fixed bin, fixed bin (35));
hes_$append_branchx entry (char (*), char (¥*), fixed bin (5),
(3) fiXed bin (3), char (*), fixed bin (1), fixed bin (1),
fixed bin (24), fixed bin (35))
hes_$status_minf entry (char (¥), char (*), fixed bin (1),
fixed bin (2), fixed bin (24), fixed bln (35));
get_group_id_$tag_ star entry returns (char (32));

get_default_wdir_ entry returns (char (168) aligned);
change_wdir_ entry (char (168), fixed bin (35));
absolute_pathname_ entry (char (*), char (*), fixed bin (35));
(ioa_

com_ érr) entry options (variable);

error table _$nomatch fixed bin (35) external;

error_table $noentry fixed bin.(35) external;

addr builtin;

rings (3) fixed bin (3) internal static init (4, 4, 4)
' options (constant);

1 dir_acl aligned,

2 access_name char (32) init ("Student 01.% .%*"),
2 dir_modes bit (36) init ("111"b),
2 status_code fixed bin (35);

/* End wT7.incl.pli ¥/

Not To Be Reproducdd W=-11 F15C

WORKSHOP EIGHT

—

User Address and Name Sp

']
0

e

1. Write a PL/I procedure called "my tmsr.pll" that will prompt the
user for a reference name to be terminated. Using the appropriate
eatry point in term-, duplicate. the action of the
terminate Single refname command (i,e. terminate the reference name,
but do not make the segment unknown unless it was the last refname
in the RNT for that segment). The program should end by notifying
the user that the termination is complete .*INCLUDE IN THE MESSAGE,
THE ABSOLUTE PATHNAME OF THE SEGMENT ASSOCIATED WITH THAT REFNAME.

2. Execute a simple command (ex. who, memo, pwd, list). Test your
program using that reference name as input.)

3. X Look at the contents of‘%udd>MEDclass>F15C>s1>call_sub1.p11 and
>k‘*)uddﬂ‘!EDclass)F‘15C>s1>s.ub1.pl1. At command level, initiste the
object segment for the first program with the reference name "gsi"
.%(Tinitiate >udd>MEDeclass>F15C>s1>call_subl c¢s17). Now execute the
program by simply typing "ecsi1". This, of course, works no matter
what your working directory is at the time of initiation or execution.

u.* Use your "my_tmsr®™ procedure to terminate the reference name "subl1".
Again execute thé call_subl program using the name "esi1". It should
work exactly as it did before.

Not To Be Reproduced W-12 F15C

2.

3.

WORKSHOP NINE

Writing a Command/Active Function

ich can function either as
It is to return the entryname
a segment supplied as an argument.

That is, issuing the command

¥ parent >udd>MEDelass>F15C>s1>foo

would result in 's1' being output to the terminal. Used as an
active function

f [parent >udd>MEDeclass>F15C>s1>foo]

it would return the string 'st'.

Note of course, the argument needn't be an absolute pathname.

Try your command out on various segments.

Test it's ability to work as an active function by issuing the
a—»
command :

status <[parent ?7?]

:
S a segnment in your wuork

Test your program both as a 'command' and as an 'active function'
giving it the wrong number of arguments.

Not To Be Reproduced W-13 F15C

WORKSHOP NINE

You may wish to use the following declarations which are in the segment,
>udd>MEDelass>F15C>s1>include>wg.incl.pli.

7 Begin—wShrinel.pll */

del cu_$arg_ptr entry (fixed bin, ptr, fixed bin,
fixed bin (35));
del cu $af_return_arg entry (fixed bin, ptr, fixed bin (21),
fixed bin (35));
del expand_pathname_ entry (char (¥*), char (*), char (%),
fixed bin (35));
del complain entry variable options (variable);
del (ioa_,
com err ,
actlve ?hc err_) entry options (variable);
del error_ table $wrong no_of args external flxed bin (35);
del nargs Tixed b1n,
del (arg_ptr,
rtn_string ptr) ptr;

del rtn_string char (max_length) varying
based (rtn_string_ptr);

decl arg char (arg_Ten) based (arg_ptr);

del max_length tixed bin (21);

del arg_len fixea bin;

del code fixed bin (35);

del af bit (1) init ("0"b);

del ME char (6) static init ("parent")
options (constant);

decl entryname char (32);

del dir_name char (256);

7 End—w9sincl.pll =/

Not To Be Reproduced W=14 " F15C

(End " Of Topic)

	0001
	0002
	001
	002
	005
	006
	007
	008
	009
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	010
	011
	012
	013
	014
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	W-001
	W-01
	W-02
	W-03
	W-04
	W-05
	W-06
	W-07
	W-08
	W-09
	W-10
	W-11
	W-12
	W-13
	W-14

