SOURCE DEBUGGING AND PROCESS ENVIRONMENT

COURSE CODE: r21

STUDENT HANDBOOK

Fso 1ssuE paTe: JULY 1981

HONEYWELL INFORMATION SYSTEMS
""" MARKETING EDUCATION

Copyright C:)
Honeywell Information Systems, Inc.

The information contained herein is the exclusive property of Honeywell
Information Systams, Inc., axcept as otherwise indicatad, and shall not

be disclosed or reproduced, in whole or in part, without axplicit written
authorization from the company. The distribution of this materisl outside
the company may ocgur only as authorizad.

Printed in the United States of America
All rights rasarved

=121

CONTENTS

L)
)]

i el
[}
=00 AW = 0

o

e

Topic I Debugglng Programs on Multics+ . .+ . .
Types of Programming Errors « « + « &
List of Debugging Tools e e e e
2ther Programming and Debugging Tools e e e e
Source-Level Debugging. . . . + « . ¢« « .« o« .
Object Level Debugging. . . « ¢ « ¢ « o « o =

i

Topic II SQOURCE LEVEL DEBUGGING - AN INTRODUCTION TO THE
probe COMMAND. . . v &+ &4 v 4 o o o o o« o o o o
The probe Environment + ¢ « o &+ + &
A Sample Program. .+ . v o & o « o o o s+ o o

2-1
2~1
2-4
SCENARIO ONE: FUNDAMENTAL probe 2-11
Scenaric Two: More preobe. « . .« . . 2-17
Breaking Program Execution. 2=25
Scenario three: Simple Break Processing . . . 2-29
Additional Break Control. 2=-36
2robe Odds and Ends « 4 + 4 + 4 . < . 2-54
Topic III Qther Source-Level Debugging Commands, . . 3=1
. The trace Command e e e . . 3-1
Interaction of the Control Arguments .« « .« 3=5
Tracing Example ONe . . v ¢ « & & &+ o « « « « 3-8
Ccher trace Contrcl Requests. 3-11
Trace Example TWO. . & & & & « & o o o o + « o« 3=14
The display pllio error Command . . .-. . . . 3-20
A display pllio error Example 3=-21
Topic IV Advanced probe Requests + ¢« ¢ « « o+ o . 4-1
Introduction. . . ¢ ¢ 4 e 4 e e e e e . . . 4=1
Scenaric I - Mcore probe Contrel 4=2
Control of Qutput Processing. 4=7
3cenario III - Program Manipualtion 4-9
Scenario IV - probe Variables 4-14
Topic Vv MULTICS USER RING RUNTIME STRUCTURES. 5-1
Introduction. 4 4 ¢ s 4 4 4« 4 . . 5-1
Supervisor Segments 4+« + 4+ + + 4 « o 5=3
The Stack Segment - stack_n 5-6
The area.linker Segment « &+ + .+ « 5-11
Getting Space for Program Variables . 5-23
Topic VI MULTICS DYNAMIC LINKING . . . « & « 4+ « & 2 o » « 6-1
Introduction. v ¢ 4 4 e v e e e . . 6-1

iii F

CONTENTS (con't)

Page
Multics Compiler Conventions. 6=8
Mutlics Operating System Support. 6-11
The Linker - Phase I. . . . ¢« « ¢ « & &« « « - 6=13
The Linker - Phase II . . . ¢ ¢« o « « « « » « 6=19
By=-Products of Dynamic Linking. 6=36
Topic VII The Multics Programming Environment 7-=1
Destruction of the Programming Environment. . 7-1
Error Recovery Techniques + « . . 7=-8

Topic VIII Other Useful Debugging Tools. . . . ¢ « « « o « &
list_external_variables
list_external_variables
reset_external_variables.
reset external variables.
delete external _variables
delete external variables
print_ bind MAPe & ¢« v v e e e e e e e e e e e
print_ bind~ M3P. & o o 4 4 e s e s o e o e o
print_ llnk info o« ¢ ¢ v ot e e e e e e e e
print_ llnk info, pli. ¢« + ¢ ¢ 4 . . .
resolve llnkage @YTOL v v & & o o s & o « s
reslve llnsage @LrOr, Cle . v v v 4 & o« + o
trace_ SEACK v v v v e e e e e e e e e e e e
trace_stack, ES & 4 ot ot h e e e s e e e e e e

LI T I T I

O Q0 W) GO 00 0000 000 0o
\
00 00 ~1 ~J WU Ut W N

Appendix A Debugging Tools . . ¢ & & v & &« o « o o+ o o o o « A=
area_status e o e e e e . . oA=L
area_status ¢ 4 4 0 e e e e e . . oAl
cancel cobol _program. « .« + o o o . A=2
cancel cobol™ _program, CCP . .+ < « .« 4« o o . A=2-
Create_area . . .+ « « + 4 « 4 &« 4+« . . . A4
Create_2area . . . « s+ « « o + o o « o o « o o A-4
create “data _Segment« « « « & + o« ¢ o o A-S
create_ “data_ _segment, cds. A-S
cumulative_page_trace «. « « .+ « .« . . A-B
cumulative_page _trace,cpt A-6
CV PEL__ ¢ ¢ ¢ ¢ v & ¢ o o & « o o & = « « « « A-9
CV_PEL_ . & v & v ¢ v o 4 4 e o + e« « & o« « A=Y
delete external_variables A-12
delete external” _variables ., A-12
dlsplay cobol run unit., . . . + + . . . < . . A-13
dlsplay cobol run unit, der o . . . A-13
dlsplay plllo ETT & 4 4 4 4 s e o & o o o o o A-14
display_ plllO err, dpe. . . . < . + .+ « .+ . . A-14
dump_segment e o+ « & e o s s e o o s & = « « A=15
dump_segment, dS. . . . « .+ .« ¢+ ¢ + « o+ « . . A-15
io_call . . . ¢ ¢ ¢ v v 4 e e e e v e o . . . A-18
io call, io . . & +« ¢« v & 4 « ¢ &« « « s+ =« . - A-18
list_external_variables A=31

iv F21

Appendix W

CONTENTS (con't)

list_external_variables .

14 o+ ==
o e e t:utr qum%f‘u..a. . . .

list _temp_segments. . . .
pageﬂtrace. e« e o e o o o
page_trace, pgt o
print_bind map.
prlnt bind_ _Ma8Pe o+ o o .
prlnt llnk info e o e
print_ llnk info, p11 . e
print_ llnkage usage . . .
print_ 11nkage usage, plu.
probe
probe, pb
profile . . . « . « « . .
profile
reset_external varlables.
reset_ “external variables.
resolve_llnkage_error .
reslve_linkage_error, rle
run_cobol
run_cobol, rc
set_fortran_common. . . .
set_fortran_common, s
set_system_storage. . . .

th
(9]
°

set_system_storage. . . .

set user_storage.
set user storage. - v e .
stop cobol run.
stop_cobol run, scr . . .
trace . . .
trace . .+ .« ¢ ¢ « 4 4 .
trace_stack
trace_stack, ts

.

Workshops . . . « . « « « . .

Workshop One. .
Workshop Two.« .
Workshop Three.

W-10
W-13

F21

TOPIC I

Debugging Programs on Multics « &
Types of Programming Errors »
List of Debugging Teols « «
Other Programming and Debugging Tools
Source-Level Debugging. « + « o« « o o
Object Level Debugging. . . « « « « =«

(==
!
[

LI . [°

e

®© L] e .]

HP‘HT!—‘!—-‘
b= 00 OY Ul = =

Toric I

OBJECTIVES:

Upon completion of this toric,

1-

Describe
errors.

m LI
~ MW
~ U
o n
b S |
m e
L +

m

List some

Qutline.,
debugsinsg

Multics

DEBUGGING PROGRAMS ON MULTICS Toric 1

students should be able to:

the methods used to find and correct syntactical

1]
[
it}
m
[+ 8
[ad
Q
™

of Lhe more common source~level debussins tools.

in seneral terms: the conceplts of source-level
as oprposed to obdect-level debussins.

Fa1

TYPES OF PROGRAMMING ERRORS

8 TWO KINDS OF ERRORS (BUGS) COMMCNLY OCCUR IN PROGRAMS

I SYNTAX ERRORS

I TYPING ERRORS

I MISUSE OF A LANGUAGE STATEMENT

I SEMANTIC ERRORS

I SPECIFYING THE WRONG DATA

I USING DATA INCORRECTLY

ATTEMPTING TO REFERENCE MORE DATA THAN IS PRESENT

f
I PERFORMING INVALID OPERATIONS ON THE DATA

r—t
g
o1
°d
iz
o
P,

z
.
2

NG AN INCQRRECT SEQUENCE OF QOPERATICNS
et VALY 4 DD WmAINv L Ve ME DG L e

PN ~

Not To Be Reproduced 1-1

TYPES OF PROGRAMMING ERRORS

8 SYNTAX ERRORS

I CAN BE DETECTED BY
] PROOFREADING THE PROGRAM

I COMPILING THE PROGRAM AND OBSERVING THE ERROR DIAGNOSTIC
MESSAGES

I CAN BE CORRECTED BY

I EDITING THE SOURCE PROGRAM TO CORRECT THE ERRORS (DIAGNOCSED
BY THE COMPILER OR FOUND DURING PROOFREADING)

I RECCMPILING THE SOURCE

I REPEATING THIS PROCESS UNTIL NO MORE ERRORS ARE DIACNOSED

Not To Be Reproduced 1-2 F21

TYPES OF PROGRAMMING ERRORS

8 SEMANTIC ERRORS

I CAN BE DETECTED BY
I PROOFREADING THE PROGRAM
I INSERTING TEMPORARY STATEMENTS IN THE PROGRAM SOURCE TO PRINT
INFORMATION ABOUT DATA VALUES, FLOW OF CONTROL, ETC.

I ARE INTERMEDIATE DATA VALUES CORRECT?

I DOES THE POINT OF EXECUTION FLOW THROUGH THE PROGRAM IN
THE EXPECTED WAY?

I RUNNING THE PROGRAM AND OBSERVING
I WHETHER CR NOT THE PROGRAM RUNS 70 COMPLETION
i DOES THE PROGRAM GO INTC A LOOP?

I DOES AN UN
XE

XPECTED ERROR CCNDITION OCCUR WHICH HALTS
PROGRAM E T

ION?
I WHETHER OR NOT THE PROGRAM PRODUCES THE EXPECTED RESULTS

I DOES THE PROGRAM PRODUCE CORRECT QUTPUT DATA?

-

I DOES THE PROGRAM DIAGNOSE INCORRECT INPUT DATA?

I CAN BE CORRECTED BY
I IDENTIFYING THE POINT OF ERRCR
I EDITING THE SOURCE PROGRAM TO CORRECT THE ERRORS

I RECCMPILING THE SOURCE

Not To Be Reproduced 1-3 F21

TYPES OF PROGRAMMING ERRORS

I REPEATING THIS PRCCESS UNTIL THE PROGRAM OPERATES CORRECTLY

Not To Be Reproduced 1-4 F

21

LIST OF DEBUGGING TOOLS

B MAJOR TOOLS FOR DIAGNOSING

I SYNTAX ERRORS

I THE COMPILERS

I
I

T
1

pll
cobol

fortran

1 SEMANTIC ERRORS

I SOURCE-LEVEL DEBUGGING TOCLS

I
I

—

Lo TR e SRR S T e D o B o]

probe

trace (elurddivy Cati s

display pll,\io_arrnr d(PQ

I OBJECT-LEVEL DEBUGGING TOQOLS

debug

trace_stack
dump_segment
print_link info
print_bind map

display component_name

print_linkage_usage

Not To Be Reproduced 1-5

ey
'...1

OTHER PROGRAMMING AND DEBUGGING

TOOLS

I FILE MANIPULATION TOOLS
lo_call
print_attach_table
close_file

viile status
vfile_adjust‘

adjust_bit count

[T e T ac D as T us T 2 B o)

set_bit _count

I EXTERNAL REFERENCE MANIPULATION TOOLS
] resolve_linkage_error
list_external_variables
delete_external_variables
reset_external_variables
set_fortran_common

create_data_segment

[T e T e D s T e D e |

error_table compiler

I COBOL RUN UNIT TOOLS
I run_cobol
display cobol_run_unit

stop_cobol_run

—t

cancel_cobol program

—
]
N

Not To Be Reproduced

F2

OTHER PROGRAMMING AND DEBUGGING TOOLS

I GENERAL RUN UNIT COMMANDS
I run

I stop_run

I SEARCH RULE AND DYNAMiC LINKING TOOLS
print_search_rules
add_search_rules
delete_search_rules

LU»:'/

where

— =

list_ref names
initiate

terminate

e

terminate_refname

()

3 3 1 v ama
terminate single refname

[terminate_segno lost Enootedae oF locsTion

I AREA MANIPULATION TOOLS

—t

area_status

I create_area

I set_user_storage

I set_system_storage
I list_temp_segments

Not To Be Reproduced 1-7

g
,J

SOURCE-LEVEL DEBUGGING

% SOURCE-LEVEL DEBUGGING ALLOWS THE PROGRAMMER TO

I DISPLAY PROGRAM SOURCE STATEMENTS
I GIVEN A STATEMENT LABEL

I GIVEN A LINE NUMBER

I DISPLAY THE VALUE OF PROGRAM DATA VARIABLES

1 GIVEN THE NAME OF THE VARIABLE

I DISPLAY THE VALUE OF PROGRAM DATA VARIABLES

I GIVEN THE STORAGE LOCATION AND DATA FORMAT OF THE VARIABLE
I DISPLAY THE DECLARATION OF A PROGRAM VARIABLE

I DISPLAY THE LIST OF (USER RING) ACTIVE PROGRAMS

Not To Be Reproduced 1-8 F21

SQURCE-LEVEL DEBUGGING

& SOURCE-LEVEL DEBUGGING ALLCWS THE PROGRAMMER TO

I SET BREAKPOINTS BEFORE OR AFTER STATEMENTS

I TO INTERRUPT NORMAL FLOW OF EXECUTION

-
+3
O

I TO CHANGE THE VALUE OF PROGRAM DATA

I TO ALTER THE FLOW OF EXECUTION THROUGH THE PROGRAM

i

TO CONDITIONALLY PERFORM ANY OF THESE FUNCTIONS

I ONLY IF A PROGRAM DATA VALUE MEETS SOME CONDITION

]
8]

I TRACE CALLS TO A PARTICULAR PROGRAM

I CALL PROGRAMS WHICH EXPECT NON-CHARACTER ARGUMENTS

Not To Be Reproduced 1-9

INTERRCGATE THE STATE OF THE EXECUTING PROGRAM

TMT

PO

EPEATEDLY WHILE A PROGRAM DATA VALUE MEETS SOME C

ON

F21

OBJECT LEVEL DEBUGGING

% OBJECT-LEVEL DEBUGGING TOOLS ALLOW THE PROGRAMMER TO

I PERFORM MOST SOURCE-LEVEL DEBUGGING FUNCTIONS, PLUS

=1
(9}
e »]
3
=4
3]
i3]
-3
n
)
<
y o
E
=
(@]
o]
o]
X0
[®]
T
"
=
(o]
¥
3
]
<
1
¢l
,_‘
i
oo
-
g3]
n

I GIVEN THE STORAGE LOCATION AND DATA FORMAT OF THE VARIABLE

I DISPLAY PROGRAM SOURCE STATEMENTS

I GIVEN A LOCATION IN THE PROGRAM OBJECT SEGMENT

I DISPLAY AND CHANGE THE VALUE OF MACHINE INSTRUCTIONS COMPILED TO
EXECUTE A SOURCE STATEMENT

I DISPLAY THE FORMATTED CONTENTS OF

=

THE PROGRAM ACTIVATION HISTORY SEGMENT (THE STACK)

AREA SEGMENTS

[}

Not To Be Reproduced 1-10 F21

OBJECT LEVEL DEBUGGING

8 OBJECT-LEVEL DEBUGGING TOOLS ALLOW THE PROGRAMMER TO

I DISPLAY AND CHANGE THE CONTENTS OF ANY SEGMENT
I GIVEN ITS PATHNAME
I GIVEN ITS REFERENCE NAME
I GIVEN ITS SEGMENT NUMBER

I WHEN THE USER HAS ADEQUATE ACCESS TO PERFORM THE REQUESTED
OPERATION

I DISPLAY AND CHANGE THE CONTENTS OF HARDWARE REGISTER IMAGES

Not To Be Reproduced 1-11 ' F21
(End 0f Topic)

SOURCE LEVEL DEBUGGING = &N

probe COMMAND. . .
The probe Environment .
Program. . .

A Sample
SCENARIO
Scenario
Breaking
Scenario

ONE: FUNDAMENT

TOPIC II

®

.

INTRODUCTION TO

3 ®

. ©

AL pr

Two: More probe., .
Program Executicn.

three:

Simple Break Processin

Additional Break Control. .
Probe 0dds and Ends .

°

©

obe

©

°

-

°

3

-

-

©

.

°
e
.
.
.
g
.

Toric Il S0URCE-LEVEL DEBUGGING (PROBE) Torpic II

OBJECTIVES:

Uron comeplelion of this toric, students should be able 1lo:

1. Usge Lthe arsrarriate PL/1 compiler control arsuments to enable
probe to function on an obJdect seament.

2. Describe the different situalions under which erobe may be
invoked.
3. Debus a prosram usins the followins probe requesis:
source (sc)
value (v}
symbol (sh}
quit (a3}
hele
stack (sk)

4. Manirpulate breakrepoinis in a program usins the followins probe
requesis:

posiltion (eg): stalus (st}

before (b)), after (a), reset (r)

conftinue (c), continue.to (ct), ster (s5)

5. Use the eprobe buillin functions.

Multics II-1 FZ1

THE PROBE ENVIRONMENT

FUNCTICNS AS A SUBSYSTEM FOR PROGRAM RECOVERY

DRIVEN BY INTERACTIVE REQUESTS
I LONG AND SHORT FORMS AVAILABLE

I REQUEST DELIMITER IS EITHER NEW LINE OR SEMI-COLON

WORKS BEST WITH COMPILER GENERATED SYMBOL TABLE
I CURRENTLY AVAILABLE FOR COBOL, FORTRAN, AND PL/I
s N\%E—S?}\

1 USE -table OPTION MiV¥+ °

I MAY ALSO USE -short_table OPTION

r 07:47 0.159 43

pll check_back_issues -sv2

PL/I 26a
r 07:48 3.391 221

probe check_back_issues
probe: Cannot get statement map for this procedure.
r 07:48 0.108 31

pll check_back_issues =-sv2 -tb
PL/I 26a
r 07:48 3.486 217

probe check back issues

Using check_back_issues (no active frame). (dt O~ RN

source
check back issues:

- proc;
quit

r 07:49 0.173 21

et e e et e ot i s e St et e i, e et et s e e i e e}

Not To Be Reproduced 2-1

THE PROBE ENVIRONMENT

1 MAY BE INVOKED FROM SEVERAL SITUATIONS
I AFTER AN UNHANDLED CONDITION (READY LEVEL NOT EQUAL TO ONE)
I AT READY LEVEL ONE WITH NO PROGRAM SPECIFIED |0 € Kaw-® stadk
1 AT READY LEVEL ONE WITH PROGRAM SPECIFIED

on ConlefSlOn graf
I IMPLICITLY AT A PREVIQUSLY SET BREAKPOINT

I MANAGES TWO IMPORTANT PIECES OF INFORMATION

I SOURCE PQINTER

I FRAME OF PROGRAM (ONLY IF ACTIVE)

P-4

BLOCK OF CODE WITHIN PROGRAM.
1| LINE OF CODE WITHIN PROGRAM

I BASED UPON MANNER OF INVOCATION

I CONTROL POINTER

LAST INSTRUCTION EXECUTED

4

BASED UPON MANNER OF INVOCATION

4

USUALLY AT BREAKPOINT, FAULTING INSTRUCTICON, OR FIRST
INSTRUCTION IN BLOCK

@ USES A PERMANENT DATA BASE FOR OPERATION

Not To Be Reproduced 2-2 F21

THE PROBE ENVIRONMENT

I LOCATED AT >udd>[user project]>(user name]>[user name] .probe
I CONTAINS PATH NAMES OF PROGRAMS WITH BREAKPOINTS SET IN THEM

I IS REFERENCED BY probe WHENEVER
I A BREAKPOINT IS ESTABLISHED OR FREED

I A BREAKPOINT IS ENCOUNTERED WHILE A PROGRAM IS RUNNING

I IF THIS DATA BASE IS DELETED, probe LOOSES INFORMATION ABOUT
BREAKPOINTS : :

I IF probe COMPLAINS ABOUT A "seg_fault" THE DATA BASE MAY BE
DELETED :

I probe CANNOT FREE ANY BREAKPOINTS THAT HAVE BEEN PREVICUSLY
SET

I TO FREE ANY "LOST" BREAKPOINTS, CNE MUST RECCMPILE THE
AFFECTED PROCGRAM

Not To Be Reproduced 2-3 F21

A SAMPLE PROGRAM

8 THE EXAMPLE FCOR THIS COURSE

] IS WRITTEN IN PL/I

I IS FAIRLY WELL STRUCTURED

I IS EASY TO READ IF YOU ALREADY KNOW A FORTRAN OR COBOL RELATED
LANGUAGE

] HAS SOME BUGS IN IT

I WILL 3E USED IN THE DEBUGGING SCENARIOS THAT FOLLOW

Not To Be Reproduced 2-4 F21

A SAMPLE PROGRAM

@ THE FOLLOWING PROGRAM IS SUPPOSED TO
I KEEP TRACK OF BACK ISSUES OF MAGAZINES OF A SMALL COMPANY

I EACH RECORD CONTAINS THE NUMBER OF ISSUES LEFT IN STOCK, HOW

MANY ARE REQUESTED FOR SHIPPING, AND THE CURRENT COST OF
PURCHASE

I PRINT OUT A SUMMARY OF THIS DATA

I ACCEPT TWO INPUT STRINGS
I BOTH IN THE FORM OF volume:number

I SPECIFY THE FIRST AND LAST ISSUES TO BE SUMMARIZED

I PRINT OUT EACH RECORD AND CALCULATE RUNNING TOTALS

Not To Be Reproduced 2-5 F21

8 THE

A SAMPLE PROGRAM

PROGRAM

check back issues:

decl
decl
del
del
del
decl
dcl
dcl

Al

(O L O

dcl
decl

decl

del
dcl
decl
decl

Not To

proc;

/**

* declarations for check_back_issues *

* and its subroutines- *
**/

back_issues file;
(Eirst issue, last issue) char (12);

(first_issue_delim, last_issue_delim) fixed bin (24);

index Builtin;
substr builting
number_of issues fixed bin;
issue Fixed bin;
1 issue record,
2 current inventory fixed bin (17),
2 pending_requests fixed bin {(17),
2 cost of issue fixed dec (8,2);
total number pending fixed bin;
total number stocked fixed bin;
total stock value fixed dec (8,2);
(current volume, current number) fixe
(last_issSue_num, first_iSsue num) fix
(sysin, sysprint) file; -
(Eirst_issue_volume, last_issue_volume) fixed bin;
colon Internal static options (constant)
char (1) aligned init (":");

open file (back_issues) keyed sequential input;

/***

* get number of the first and last issues *
the user wants to check. the form is *
volume:number. this routine will split *
the components up into issue_volume *
and issue number, and position to that *
record in the file. *
***/

* ok X *

put list ("from (specify vol:numj: ");
get list (first issue);

put list ("to (sSpecify vel:num): ");
get list (last_issue);

Be Reproduced 2-6

F21

A SAMPLE PROGRAM

flfSt issue delim = index (first issue, colon):
last_1ssue_delim = index (last_iSsue, colon);
first issue volume =

Substr” (first_issue, 1, first_issue_delim);
last_issue_volume =

“substT (last_ issue, 1, last issue delim);
first issue num = - -

Substr™ (first_issue, first_issue_delim);
last_issue_num =

“substT (last_issue, last_issue_delim);

call p051tlon file (first_issue_volume,
flrst issue_num);

number of issues =
(6*last_issue_volume + last_issue_num) -
(6*f1rst 1ssue volume + flrst issue _num) ;

do issue = 1 to number_of_issues;
call print_record ();
end;

call print_summary ():

close file (back_issues);

return;
/*********************************

* begin support subroutines *
*********************************/

prlnt record:
proc ();

/**
* this subroutine obtains the next record *

* from the back_issues file, calculates *
* some totals, and outputs the current *
* record in a formatted form. *

**/

call get_record ();

total_number_pending =

total number _DPending +

issue record. pendlng requests;
total number stocked =

total number stocked +

issue record.current 1nventory,
total_ stock value =

Not To Be Reproduced 2=7 F21

A SAMPLE PROGRAM

total_stock_value +
(issue_record.current_inventory*
issue_record. COst_of_vssue)

put skip edit ("volume",
current volume,
"number™
current_number,
*stocked:"
issue record current 1nventory,
"outstanding requests:"
issue record.pending requests,
"cost of this issue:™,
issue_record.cost_ of issue,
n n
)
(r {output format 1))
file (sysprint); —

return;

output_ format 1:

format (a(5), x(1 £(3,0), x(1),

) s
a(6), x(1), £(3,0), skip (1), x(11),
a(8), x(1), £(6,0), x(1),
a(2l), x(1), £(6,0), x(1),
{13}, x(1), pP"S5,859v.99", a(l)};

end print_record;

position_file:
proc (first_vol, first_num);

/***
* this subroutine positions the back_issues *
file to the record specified by the *
first issue specifier given by the user *
at the beginning of the program. to *
position to the record, we simply read *
records we don't want and do nothing with *
*

x

them.
**'/

* 4 A A

del (first_vol, first_num) fixed bin;

do while (first vol > current_ volume) ;
call get_ reccn"4 ()
end;

do while (flrst num > current_ number) ;

call get_ record ();
end;

Not To Be Reproduced 2-8 F21

A SAMPLE PROGRAM

return;
end position_file;
get_record: proc (j;

dcl key char (8);

/***

* © this subrcutine reads a record from the *
back issue file into the issue record. ®
the other necessary information, vol *
and num of the issue, was stored in *
the record's key. we must extract this *
from our internally declared key and *
place it in the globally available *

*

*

current volume and current number vars
kdkkkdhkkrhhhkrkkkhrhkrhrhorhhbhirehArhorhrhhhhkhrothosk /

* * H A X H *

read file (back_issues)
into (issue_reccrd)
keyto (key):

current volume = substr (key, 1, 4)
current number = substr (key, 5, 4)

return;

end get_record;

pr int summary

proc ();
/**************************************
* a 51mple subroutine, all this *
* does is print out the totals *
* calculated by the print_record *
* subroutine, *

**************************************/

put skip (2)
edit ("number of issues stocked:"
total _number stocked,
"number of requests oendlng~
total number_pending,
"total stock value:"
total_ stock_value,
w ")
(r (output_format_2))
file (sysprint);

Not To Be Reproduced 2-9 F21

A SAMPLE PROGRAM

output_format_2:
format (a(25),
a(27), =%(1
3(18) 7 X(l
end print_summary;

end check back issues;

Not To Be Reproduced

% (
),
)y

1), £(6,0), skip (1),
£(6,0), Skip (1),
p"$8S$,$89v.99", a(ly));

SCENARIQO ONE: FUNDAMENTAL PRQBE

SOME PRIMARY probe REQUESTS

I THE source REQUEST

—

I PRINTS SOURCE STATEMENTS

I USAGE:
source
sc
source <number of lines>

sc <number of lines>

-1 EXAMPLES:
source 7

sc 3

I THE value REQUEST

I DISPLAYS THE VALUE OF A SINGLE VARIABLE, AN EXPRESSION, CR
SECTION OF AN ARRAY

I USAGE:
value <expression>
v <expression>
value <array cross section>

v <Larray cross section>

Not To Be Reproduced 2-11 F21

SCENARIQ ONE: FUNDAMENTAL PROBE

I EXAMPLES:
value x
value array (1:95)
value strl.mem2.elem
v ptrl -> some_based_var

v ptr2 -> really big.meml.comp (2).z

I SPECIFYING THE EXPRESSION FOR THE value REQUEST
I MADE FROM PROGRAM VARIABLES, CONSTANT VALUES AND probe
DEFINED FUNCTIONS

I PROGRAM VARIABLES MUST APPEAR EXACTLY AS THEY WERE TYPED
IN YOUR PROGRAM

loop_counter (PL/I)
VECT{l) {(FCRTRAN)
data-part (COBOL)
I CONSTANTS SHOULD BE IN A FORM ACCEPTABLE TO YOUR PROGRAM
-39
3.2e5
"abcde"

'STRING'

I probe MAINTAINS A SET OF BUILTIN FUNCTIONS THAT RETURN
VALUES TO YOU

addr - RETURNS THE ADDRESS OF ITS ARGUMENT

addrel - RETURNS AN ADDRESS RELATIVE TO THE SPECIFICATION
OF ITS ARGUMENTS

baseptr - RETURNS THE ADDRESS OF THE BEGINNING OF A
SEGMENT

length - RETURNS THE LENGTH OF A BIT OR CHARACTER STRING

Not To Be Reproduced 2-12 F21

SCENARIO ONE: FUNDAMENTAL PROBE

maxlength - RETURNS THE MAXIMUM ALLOWED LENGTH OF A STRING
null = RETURNS A SPECIAL INVALID ADDRESS

octal - RETURNS THE MACHINE REPRESENTATION OF ITS ARGUMENT
pointer - RETURNS AN ADDRESS BASED UPON ITS ARGUMENTS

rel - RETURNS THE ADDRESS WITHIN A SEGMENT INTO WHICH ITS
ARGUMENT POINTS

segno - RETURNS THE NUMBER OF THE SEGMENT INTO WHICH ITS
ARGUMENT POINTS

substr = RETURNS A PORTION OF A CHARACTER OR BIT STRING

unspec - RETURNS THE BINARY REPRESENTATION OF ITS ARGUMENT

I AN EXPRESSION CAN CONTAIN OPERATORS
I FOUR DEFINED WITHIN PROBE
ADDITION - USE A PLUS SIGN (+)
SUBTRACTION - USE A MINUS SIGN {-)
MULTIPLICATION = USE AN ASTERISK (*)
DIVISION - USE A SLASH (/)

I ORDER IS MULTIPLICATION AND DIVISION, THEN ADDITION~AND
SUBTRACTION

I ORDER MAY BE OVERRIDDEN WITH PARENTHESES
I THE symbol REQUEST
] SHOWS YOU THE DATA TYPE OF A PROGRAM VARIABLE

I USAGE:
symbol <name of variable>

sb <name of variable>

Not To Be Reproduced 2-13 F21

SCENARIC ONE: FUNDAMENTAL PROBE

I EXAMPLES:

symbol x

sb HYPTN

I THE quit REQUEST

I CAUSES YOU TO LEAVE PROBE

I USED TO GET BACK TO COMMAND LEVEL

I USAGE:

quit

q

g THE SCENARIO

I THE PROGRAM BLOWS UP

I PROBE IS USED TO ASSESS THE DAMAGE

Not To Be Reproduced 2-14 F21

SCENARIQ ONE: FUNDAMENTAL PROBE

13
I
I
I
I
I
!
|
|
|
I
|
I
|
I
|
I
I
I
|
|
I
I
I
I
I
I
I
|
I
I
|
[
|
I
|
|
I
I
I
I
I
|
|
I
I

r 12:54 0.155 21
check_back_issues

from (specify vol:num):1l:1
to (specify vol:num):2:1

Error: conversion condition by >udd>MEDmult>F21>doodle>bad__

\ccbiScheck back issues|540 (line 48)

onsource = "1:", onchar = ":"

Invalid character follows a numeric field.

system handler for error returns to command level
r 12:54 0.273 52 level 2

probe
Condition conversion raised at line 48 of check_back_issues
\c(level 7).

source
first_issue_volume =
substr (first_issue, 1, first_issue_delim);

value first_issue_delim
first issue_delim =2

value first_issue
first_issue ="1:1 "

value substr (first_issue, 1, first_issue_delim);
wyon - -

symbol first_issue_volume
fixed bin (17) automatic
Declared in checg_back_issues
v substr (first_issue, 1, first_issue_delim - 1);
nl " -
q
r 07:03 0.591 210 level 2

rl
r 07:03 0.045 9

e —— e e]

Not To Be Reproduced 2-15

F2

SCENARIO ONE: FUNDAMENTAL PROBE

I TECHNIQUE

I INVOKE probe - IT TELLS YOU WHAT HAPPENED
I FIND THE STATEMENT AT WHICH THE PROGRAM DIED

I CHECK ALL THE VARIABLES IN THAT STATEMENT
] NOTE THE IMPLICIT CONVERSION

I THE SUBSTR BUILTIN WAS THE CULPRIT

8 YOUR TURN

1 WHAT WAS THE PROGRAMMER TRYING TO DO WITH THE SUBSTRING BUILTIN?

I HOW WOULD YOU CHANGE THE PROCRAM SO THAT THE IMPLICIT CONVERSION
SUCCEEDS?

L) 15 57¢ delim = 2

I ARE THERE ANY OTHER STATEMENTS WHERE THIS CONDITION MAY HAPPEN?

Not To Be Reproduced 2-16 F21

SCENARIO TWQO: MORE PROBE

@ AS ERRORS ARE FOUND THEY ARE FIXED

I MODIFY THE SOURCE ONLY

I RECOMPILE INTO NEW OBJECT

CLEAN UP ANY FILES THAT MAY HAVE BEEN LEFT INCONSISTENT

gedx
rcheck_back_issues.pll
48
first issue volume =
.+l - -

substr (first_issue, 1, first_issue_delim);
s/Y/ = 1)/p

substr (first_issue, 1, first_issue_delim - 1
W .
q
r 07:55 0.549 88
pll check_back_issues -tb -sv2
PL/I 26a
r 07:55 3.317 83

r 07:55 0.049 8

close_file back_issues
r 07:58 0.082 23

e ———— e e — —

I
I
I
I
I
I
|
|
)4
I
I
I
I
I
|
|
I
I
I
|
|
I
I

@ RUN THE NEW PROGRAM

I BE AWARE OF NEW PROELEMS

Not To Be Reproduced 2-17

-

F2

SCENARIO TWO: MORE PROBE

I MAKRE SURE THE OLD PROBLEM IS FIXED

I LOOK FOR ANY EFFECTS YOUR CHANGE MAY HAVE ON OTHER PORTIONS OF
THE PROGRAM

check—back_issues

from (specify vol:num):1:1
to (specify vol:num):1l:4

T
|

|

!

l

|

|

| Error: conversion condition by >user_dir_dir>MEDmult>F21>do
| \codle>bad_cbi$check back_issues{551 (line S0)

| onsource = "1:", onchar = ":"

| Invalid character follows a numeric £ield.

| system handler for error returns to command level

| r 07:58 0,367 34 level 2

| probe

| Condition conversion raised at line 50 of check_back_issues
| \¢ (level 7).

| source

i last_issue_volume =

! TsubstT (last_issue, 1, last_issue_delim);

|} From Pandolf.MEDmult 05/19/81 0759.6 mst Tue:

| The handbooks came in today. I have them if you want to see
| \cthem.

| sm Pandolf.MEDmult good, be there later

| probe: Unknown request., "sm"

|

._._.——.-.».-»—-—-4—-—-—.‘—4—_--—--—-—-——-‘.._..__.-—no-_.._...__—._..4.....___....——_4..____1

® SOME INVALUABLE REQUESTS

I THE list_requests REQUEST
I LISTS ALL THE ALLOWED REQUESTS IN probe

I USAGE:
list_requests
ir

Not To Be Reproduced 2-18 F21

list_requests

SCENARIO TWO: MORE PROBE

Summary of probe requests:

after, a

args

before, b

call, cl
continue, ¢
continue_to, ct

declare, dcl
display, ds
execute, e

goto, g
halt, h
help

if

input_switch, isw
language, 1lng

let, 1

list_help, 1lh

list builtins, 1lb
list requests, 1lr
list_variables, lsv

modes, mode
output_switch, osw
pause, p

position, ps

quit, g

reset, r
source,
stack,

status,
step, s
symbol, sb

scC
sk
st

use
value, v
where, wh

while, wl

Type "help" for more

Not To Be Reproduced

Set a breakpoint after the specified statement.
Print argument list for procedure.
Set a breakpoint before the specified
Call a subroutine.

Continue after a breakpoint.

Resume execution from last breakpoint and stop
at specified statement.

Create a probe variable,

Display storage in various formats.

Execute a Multics command line, usually
within a break request.

Continue execution at a specified statement.

Halt ands re—-enter probe.

Print info files for probe requests.

Execute probe requests based on specified
condition.

Set the I/0 switch used for probe input.

Display or set the current language.

Change the value of a variable.

List the available info topics for probe.

Print a summary listing of all probe builtins.

Print a summary listing of the probe requests.

Print type and value of one or more probe
variables.

Set probe operation modes.

Set the I/0 switch used for probe output.

Reset the current breakpoint and halt.

Move the probe pointer to a new location
and display the source.

Leave probe and return to Multics command
level.

Reset breakpoints.

Display source of program.

Display the stack.

Display the status of breakpoints.

Execute one statement and halt.

Display information about the specified
symbol,

Move the probe pointer to a new location.

Print the value of a variable or expression.

Display the current values of the probe
pointers.

Execute probe requests while condition
is true.

sStatement.

information.

SCENARIQ TWO: MORE PROBE

I THE help REQUEST

I USAGE:
help
help <request>

help <feature>

I EXAMPLES:
help
help quit

help EXPRESSIONS

I THE execute REQUEST

I ALLOWS A MULTICS COMMAND TO BE PROCESSED WHILE STILL IN probe

I USAGE:
execute <command line>

e <command line>

I EXAMPLES:
execute "pwd"

e "list *.pll"

Not To Be Reproduced 2-20 F21

SCENARIO TWO: MQRE PRCBE

USING THESE REQUESTS

help execute
09/27/79 The "execute™ request.

Syntax: execute STRING

I
1 !
I |
I I
I I
I I
| I
I |
| The contents of STRING are passed to the Multics command pro |
| \ccessor. |
| This request is chiefly useful in break request list, because]
| \ce the more |
| convenient escape to the Multics command processor is not av |
| \cailable |
| then. |
| I
I |
I I
| I
I |
I |
| |
I |
| I
I |
| I
| I

The user can pass an arbitrary line to the Multics command p

\crocessor
by preceeding it with ".." on a new line.

Examples (6 lines). More help?no

execute sm Pandolf.MEDmult good, be there later

probe {execute): The Multics command lines must be enclosed
\cin quotes. ’

e "sm Pandolf.MEDmult good, be there later"

Not To Be Reproduced 2-21

SCENARIO TWO: MORE PROBE

I FINISHING UP THE CURRENT ERROR

source
last_issue_volume =
substr (last issue, 1, last issue delim);

value substr (last issue, 1, last issue delim)

lll:l! - - -

sb last issue volume

fixed Bin (17) automatic
Declared in check back issues
quit - -

r 08:10 2.508 492 level 2

gedx
rcheck back issues.pll
50,51p -
last_issue_volume =
Al

substr (last_issue, 1, last_issue_delim);
s/)Y/ = 1)/p

substr (last_issue, 1, last_issue_delim - 1);
52,55p

first issue num = '
Substr (first_issue, first_issue_delim);
last issue num = -
“substr (last_issue, last_issue_delim);
53s/)/ + 1) /p

substr (first issue, first issue.delim + 13;
55s/)/ + 1)/p

substr (last;issue, last_issue_delim + 1);

QO

r 08:12 0.423 80 level 2

pll check_back issues -sv2 -tb
PL/I 26a
r 08:13 3.524 141 level 2

rl
r 08:15 0.046 29
close f£ile back issues

r 08:15 0.051 2T

e e e e e e et e e TS s e s s e s e s T T S e St et e e s i Pt e o S e e P o]

Not To Be Reproduced 2-22 F21

SCENARIO TWO: MQRE PROBE

8 ADDITIONAL USE OF FUNDAMENTAL PROBE REQUESTS

I SOME USEFUL INFORMATION ABOUT A FAILURE WILL COME INDIRECTLY
FROM THE probe DIALOGUE

NOTE THE USE OF value IN THE NEXT WINDOW

check_back_issues

from (specify vol:num):1l:1
to (specify vol:num):1:4

Error: 1illegal procedure condition by >user_dir dir>MEDmult
\c>F21>doodle>bad cbi$print recordls75 (line 98)

(while in pll operator real to_real_tr)

referencing stack_4]6503 (in process dir)

r 08:15_0.369 42 level 2

pb
Condition illegal procedure raxsed at line 98 of print_recor
\cd (level 8).
sc
total_stock_value =
total_stock_value +
(Lssue record.current inventory*
issue Tecord. cost_of_ Tssue) ;
v issue record.cost of issue
cost_of issue = 5
v issue Tecord.current inventory
current_inventory = 23
v total Stock value
total stock value = (invalid decimal data)
symbol total stock value
fixed dec (§,2) automatic
Declared in check back issues
value octal (total stock_value)
040040040040040040040040040
r 08:19 0.234 33 level 2

rl

I
T
I
I
I
|
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
I
|
|
I
I
|
| r 08:19 0.037 2
I

r

I
|
|
I
I
I
|
I
I
|
I
|
I
!
!
|
|
!
I
I
I
|
I
|
|
I
I
I
I
I
I
I
I
I
I
I
I

Not To Be Reproduced 2-23

21

SCENARIO TWO: MORE PROBE

gedx

rcheck back issues. pll

/dcl total Stock value/

decl total_stock_value fixed dec (8,2);

s/;/ init (0);/P

del total_stock_value fixed dec (8,2) init (0);
W

q
.r 08:20 0.207 24

pll check_back issues =-sv2 -tb
PL/I 26a
r 08:21 3.461 233

close_file back_issues
r 08:22 0.107 69

I THE illegal procedure CCNDITION ITSELF EXPLAINED LITTLE ABOUT

THE ERROR

[]

IMMEDIATE CAUSE

I THE value REQUEST UNCOVERED THE 'FACT THAT ONE VARIABLE HAD

INVALID DATA

I BECAUSE OF THIS THE VALUE OF total_stock_value WAS

UNPRINTABLE

- n-—pn‘-—\n— oo

THERE REGARDLESS OF THE DATA TYPE

I THE PRESENCE OF SPACES (OCTAL 040) INDICATED THAT THE

VARIABLE WAS NEVER INTIALIZED (TO OCTAL 060)

Not To Be Reproduced 2-24

THE PL/I STATEMENT WAS TOO COMPLEX TO QUICKLY DETERMINE THE

1 BUILTIN FUNCTION ALLOWED US TO LOOK AT THE DATA

F21

BREAKING PROGRAM EXECUTION

@ BREAKPOINTS

I AT TIMES, THE PROGRAMMER DESIRES TO VIEW INTERMEDIATE PROGRAM
VALUES

I ONE OPTION IS TO PLACE I/O STATEMENTS IN THE SOURCE PROGRAM
I COSTS TOO MUCH IN TERMS OF RECOMPILES

I STILL PROVIDES NO WAY TO SUSPEND THE PROGRAM

I LET THE DEBUGGER DO IT
I RECOMPILING NOT NECESSARY TO CHANGE DEBUGGING BEHAVIOR

] THE PROGRAM MAY BE SUSPENDED OR CONTINUE ON AFTER PRINTING
OUT SOME DIAGNOSTIC

@ PROBE IMPLEMENTATION

I REVOLVES AROQUND THE "BREAXPOINT"

I A LIST OF ONE OR MORE probe REQUESTS TO BE PERFORMED WHEN A
STATEMENT IS REACHED

I LIKE A SMALL PROGRAM FCOR EACH STATEMENT

I MODIFIABLE AT WILL BY THE PROGRAMMER

I probe BREAKPOINTS CAN BE SPECIFIED TO BE EXECUTED EITHER BEFCRE
OR AFTER AN EXECUTABLE STATEMENT

Not To Be Reproduced 2-25 F21

BREAKING PROGRAM EXECUTION

I BEFORES AND AFTERS ARE SEPARATE BREAKS, AND BOTH WILL BZ
EXECUTED IF ENCOUNTERED CONSECUTIVELY

I COBOL COMPILER RESTRICTIONS LIMIT COBOL PROGRAMS TO THE USE
OF BREAKPOINTS BEFQRE THE STATEMENT ONLY

@ BREAKPOINT REQUESTS

I THE before REQUEST

I USAGE:
before <line>
b <line>
before <line>: (<request list>)

b <line>: (<request list >)

1 EXAMPLES:
before
before 50

<§Efore 5: (value x; value y)

before: value comp-val

’ ' 1 NDF GKGL
(Vslve X Jawe v L@‘;\ at §

I NOTES:

I 1IF NO LINE NUMBER IS SPECIFIED, THE CURRENT LINE IS
ASSUMED

I 1IF ONLY ONE REQUEST IS DESIRED AT THE BREAK, THEN THE
PARENTHESES MAY BE CMITTED

I 1IF NO REQUEST IS SPECIFIED, THEN A "halt" REQUEST IS

ASSUMED, CAUSING THE PROGRAM TO STOP AND PROBE TO BE
ENTERED

Not To Be Reproduced 2-26 F21

 BREAKING PROGRAM EXECUTION

I THE stack REQUEST
I NOT SPECIFICALLY A BREAK REQUEST
] DISPLAYS LIST OF ALL PROGRAMS THAT HAVE NOT FINISHED YET
I ALLOWS YOU TO SEE HOW FAR YOUR PROGRAM HAS RUN
I SHOWS RELATIONSHIPS BETWEEN PROGRAMS
I MORE ON STACKS LATER

I USAGE:
stack
sk
stack <amount>
sk <amount>
stack <first frame, amount>

sk <first frame, amount>

I EXAMPLES:
sk
stack 4

sk 12,3

I THE position REQUEST

] POSITIONS TO AND PRINTS A SPECIFIED SOURCE STATEMENT

Not To Be Reproduced 2-27 F21

BREAKING PROGRAM EXECUTION

I USAGE:
position <label>
ps <+,-line>
ps <line>

ps <"string™>

I EXAMPLES:
position do_label
ps +3
ps -4
ps 68

ps 1 i=5"

Ps /i=s/ |

Not To Be Reproduced 2-28 F21

SCENARIO THREE: SIMPLE BREAK PRCCESSING

8 LET'S RETURN TO OUR EXAMPLE

checkﬁback_issues

from (specify vol:num):1:1
to (specify vol:num):1:4

volume 1 number 1

stocked: 23 outstanding requests: 0 cost
\¢ of this issue:
$5.00.
volume 1 number 2
stocked: 30 outstanding reguests: 2 cost
\¢ of this issue:
$3.00.
volume 1 number 3
stocked: 27 outstanding reguests: 0 cost
\¢ of this issue:
$3.00.

Error: size condition by >user_dir_dir>vEDmult>F21>doodledb
\cad_cbiSprint_summary|1255 {(line 133)

Precision of target insufficient for numoer of integral digi
\cts assigned to it.

system handler for error returns to comm:nd ;evel

r 08:23 0.420 40 level 2

Not To Be Reproduced 2-29

F21

SCENARIQ THREE: SIMPLE BREAK PROCESSING

probe
Condition size raised at line 193 of print summary (level 8).
source -
put skip (2)
edit ("number of issues stocked:",
total_number_stocked,
"number of requests pending:",
‘total number pending,
"total stock value:",
total_stock_value,
n ll)
(r (output_ format_2))
file (sysprwnt),
stack
15 simple_command_processor| 12265
14 command processor]11070
13 abbrev 15336
12 release_stac&{lOOBl
11 unclaimed_signall27064
10 wall|4436
9 walll4407 ’ error
8 orint _summary (line 193) size
7 check back_issues (line 70) C
6 51mple command procnssor!12265
5 command proces:or [11070
4 abbrev_T5336
3 listen_|10031
2 Dreject start_up_ {41747
1 user_init_ adm;n 142452 (alm)
sc

put skip (2)
edit ("number of issues stocked:",
total number_stocked,
"number of requests Dendlng
total number pending,
"total stock value:",
total_stock_value,
1 ll)
(r (output_format_2))
file (sysprlnt)

v total number_ stocked
total nuxubef stocked = 4,30337e
positio “total_number stocked ="
total number stocked =

Ttotal number stocked +

issue reccrd.current inventory;
before - -
Break set before line 58S
quit

r 08:27 0.968 317 level 2

e e e e e e e e e e S e — ——— oot — —— it i s oty i ittt it S it i ot s oot i ke nein riid ot i tonaiot ins ot o i B ot s St s ot mmmes]

e e i I

Not To Be Reproduced 2-30

]
N
[

SCENARIO THREE: SIMPLE BREAK PROCESSING

I THE PROGRAM WILL NOW STOP BEFORE LINE 95 IS REACHED
I probe IS AUTOMATICALLY INVOKED

I THE REQUEST LIST IS PROCESSED
I 1IN THIS CASE, WE ARE PLACED AT probe REQUEST LEVEL

I IF THE halt REQUEST WAS NEITHER IMPLICITLY NOR EXPLICITLY
STATED, EXECUTION WOULD CONTINUE WITH LINE 95

rl
r 08:27 0.041 10

close_file back_issues
r 08:28 0.049 17

check_back_issues

r
|

|

|

I

|

|

[

l

|

| from (specify vol:num):1:1

| to (specify vol:num):1:4
| Stopped before line 95 of print_record. (level 8)
| source

| total_number_stocked =

| Total_number_stocked +

! issue record.current inventory;

| v total number stocked -

| total number stocked = 4.30337e9

| symbol total number stocked

| fixed bin (I7) automatic

| Declared in check_back_issues

|

|

|

|

q
r 08:30 0.441 115

n i T et o e s o o T s s e e]

I TECHNIQUE:

Not To Be Reproduced | 2=-31 F21

SCENARIO THREE: SIMPLE BREAK PROCESSING

I NOTE THE CONDITION: size
I RESULT TOO BIG TO BE PLACED IN TARGET STORAGE LOCATION

I DISAGREES WITH THE WAY THE PROGRAMMER THOUGHT TO USE IT

I FIND OUT WHERE THE VARIABLE IS ASSIGNED
I SET BREAKPOINT THERE

I LOOK AT VALUE OF VARIABLE AT THAT STATEMENT

I THE VARIABLE HAD A RANDOM VALUE IN IT
] IT WAS NOT INITIALLY SET

I THIS CARRIED THROUGH UNTIL IT BLEW UP AT THE OUTPUT
FORMATTING

Not To Be Reproduced 2-32 F21

SCENARIO THREE: SIMPLE BREAK PROCESSING

gedx

rcheck back issues.pll

/del total number stocked/

dcl total_number Stocked fixed bin;

s/;/ init™(0);/p

dcl total number_stocked fixed bin init (0);
W

q

r 08:30 0.256 30

pll check_back_issues -sv2 -tb
PL/I 26a

r 08:31 3.549 111

close_file backﬁissues
r 08:31 0.057 8

check back issues

from (specify vol:num):1:1
to (specify vol:num):1:4

volume 1 number 1

stocked: 23 outstanding reguests:

this issue:
$5.00. volume 1 number 2

stocked: 30 outstanding requests:

this issue:
$3.00. wvolume 1 number 3

stocked: 27 outstanding requests:

this issue: _ _
$3.00. Error: size condition by

0 cost of

2 cost of

0 cost of

>user_dir_ dir>MEDmult>F2l>doodle>bad_cbiS$print_summary|1304
(line 193} Precision of target insufficient for number of
integral digits assigned teo it. system handler for error

returns to command level
r 08:32 0.487 22 level 2

-

|
|
I
I
I
|
I
I
!
|
I
I
I
I
I
|
I
I
|
|
I
I
|
|
|
|
I
I
|
|
|
I
|
|
I
|
I
|
I
|
I

Not

Tc Be Reproduced 2-33

SCENARIQO THREE: SIMPLE BREAK PROCESSING

g YOUR TURN

I THIS LCOKS LIKE THE SAME ERROR. IS IT? HOW DO YOU KNOW?

I LIST THE STEPS YOU WOULD TAKE TO RESOLVE THIS ERROR.

Not To Be Reproduced 2=-34 F21

SCENARIO THREE: SIMPLE BREAK PROCESSING

|

|

| pb

= Condition size raised at line 193 of print_summary (level 8).
sc

I put skip (2)

] edit ("number of issues stocked:",
I total_number_stocked,
| "number of requests pending:"
| total number pending,
| "total stock value:%,
! total_stock_value,
i 1 ")

| (r (output_format_2))
| file (sysprint);
| v total_number_stocked

| total number stocked = 80

| v total number _pending

| total number pending = 4.30337e9
| v total stock value

| total_stock_value = 286

| sb total number pending

| fixed bin (17) automatic

| Declared in check_back_issues
(e

| £ 08:33 0.386 79 lavel 2

|

|

|

|

!

|

|

|

|

I

l

|

|

|

|

|

|

|

|

I

|

|

gx

rcheck back issues.pll

/dcl total number _pending/

dcl total number pendlng f£izxed bin;

s/;/ init (0);/p

dcl total_number_pending fixed bin init (0);
W

9
r 08:34 0.216 35 level 2

pll check_back_issues -tb -sv2
PL/I 26a
r 08:34 3,462 219 level 2

rl
r 08:34 0.040 6

close_file back_issues
r 08:35 0.042 7

Not To Be Reproduced 2-35

ADDITIONAL BREAK CONTROL

8@ MORE REQUESTS

I THE after REQUEST

I SETS UP A BREAKPOINT AFTER A GIVEN STATEMENT IN A PROGRAM
I OPERATES EXACTLY LIXE THE before REQUEST

I USAGE:
after
a
after <line>: {<request list>)

a <line>: (<request list>)

I EXAMPLES:
after
after 100

a-50: (value x; value vy)

I THE status REQUEST

I LISTS BREAKPOINTS YOU HAVE SET IN YOUR PROGRAMS
I USAGE:
status
st
status <program name>
st <program name>

status <line in current program>

Not To Be Reproduced 2-36 F21

ADDITIONAL BREAK CONTROL

st <line in current program>
status -all

st =-all

status *

st *

XAMPLES:

—t
=1

status
status at 50
status other-prog

status -all

I NOTES:
"status =-3ll" LISTS ALL BREAKS SET
"status *" LISTS THE NAMES OF PROGRAMS WITH BREAKS SET

AN OPTIONAL CONTROL ARGUMENT OF "-long" IS ALLOWED, WHICH
PRINTS THE PROBE REQUEST LIST ASSOCIATED WITH THE BREAKPOINT

I THE continue REQUEST

I ALLOWS THE PROGRAMMER TO RESUME THE PROGRAM AFTER A BREAK
THAT INVOKED probe

I USAGE:
continue

c

I EXAMPLES:
continue

lod

Not To Be Reproduced 2=-37 F21

ADDITIONAL BREAK CONTROL

@ BACK TO THE SCENARIO

r 08:36 0.264 7

I T
| |
| check_back_issues I
I I
| from (specify vol:num):1:1 |
| to (specify vol:num):1:4 |
I l
| volume 1 number 1 i
! stocked: 23 outstanding requests: 0 cost of this issue:|
| $5.00. |
| volume 1 number 2 |
| stocked: 30 outstanding requests: 2 cost of this issue:|
! $3.00. |
| volume 1 number 3 I
i stocked: 27 outstanding requests: 0 cost of this issue:|
| $3.00. i
| |
| number of issues stocked: 80 |
| number of requests pending: 2 |
| total stock value: $286.00. I
] |
| |
i |

I A NEW PROBLEM: NOT ENOUGH RECORDS PRINTED OUT

I WITH NC CONDITION SIGNALLED, BREAKPOINTS ARE THE CONLY WAY TO
GET INTO PROBE WHILE THE PROGRAM IS RUNNING

I WITHOUT SETTING TOO MANY BREAKS, ATTEMPT TO STOP THE PROGRAM
AT APPROPRIATE PLACES AND LOOCK AT LOOP VALUES

Not To Be Reproduced 2-38 F21

ADDITIONAL BREAK CONTROL

probe check back issues
Using check back issues (no active frame).
ps "do issue"
do issue = 1 to number_of_issues;
b
Break set before line 66
quit
r 08:39 0.342 137

check_back issues
Trom (specify vol:num):

to (specify vol:num):1
Stopped before line 66 of check back issues. (level 7)

v number of issues
number_of_issues = 3

Ps "number of issues ="
number of issues =
(6*last issue _volume + last_issue _num) -

6*f1rst ;ssue volume + first Lasue_num);

v last issue volume
last issue volume = 1

v last lssue num
lasg 1ssue num = 4

v first issue volume ; v first issue_num

first_issue_volume = 1
first issue_num = 1

position +2
call print_record ();

after
Break set after line 67

continue

Not To Be Reproduced 2-39

ADDITICONAL BREAK CONTROL

$3.00.Stopped after line 67 of check back_issues. (level 7)
v issue
issue = 2
c

!

|

volume 1 number 1 I
stocked: 23 outstanding regquests: 0 cost of this issue:|
$5.00.Stopped after line 67 of check back issues. (level 7) }

v issue - - |
issue = 1]
c i
|

volume 1 number 2 !
stocked: 30 cutstanding requests: 2 cost of this issue:|

I

|

|

volume 1 number 3
stocked: 27 outstanding requests: 0 cost of this issue:
$3.00.Stopped after line 67 of check_back_issues. (level 7)
v issue
issue = 3
status
Break exists after line 57 in check_back_issues
3reak exists before line 66 in check_back_issues
c

number of issues stocked: 80
number of requests pending: 2
total stock value: $286.00..

r 08:46 1.185 380

_____.___..,—-_-—-—_.__..,_.,______.._____,__.‘_.___________.,.___._._____‘_..—--.-.._._____._{

] TECHNIQUE:

I IDENTIFY THE LOOP THAT PRINTS THE RECORDS

SET A BREAK WITHIN THE LOOP AND CHECK T

[]

I LOCATE THE STATEMENT AT WHICH THE LOOP VARIABLE WAS
INCCRRECTLY SET

I FIX THE SOURCE

Not To Be Reproduced 2-40 F21

ADDITI

ONAL BREAK CONTROL

S O UL S SR U U RV S e g e et dianen I B R

gedx

rcueck back issues.pll
/numbet of Issues/

dcl number_of issues fixed

/7
number_oﬁ_issues
s/$/ 1 +/p

number of issues
" Ot
q
r 09:09 0.270 80
pll check_back_issues -sv2
PL/I 26a
r 09:10 3.668 234

check_back issues
from (specify vol:num): 1:

to (specify vol:num):1:4

‘'volume 1 number 1

stocked: 23
\cof this issue:
$5.00.
volume 1 number 2
stocked: 30
\cof this issue:
$3.00.
volume 1 number 3
stocked: 27
\cof this issue:
$3.00.
volume 1 number 4
stocked: 20
\cof this issue:
$3.00.

number of issues stocked:
number of requests pending:

total stock value: $346.
r 09:10 0.362 ‘28

bin;

i
—
+

-tb

ocutstanding requests:

outstanding reguests:

outstanding requests:

outstanding requests:

100

0o.

cost

cost

cost

cost

—_—— T T T T T T T T e e e e e e e e e e

Not To Be Reproduced

F21

ADDITIONAL BREAK CONTROL

I LOOKS GOOD; NOW TEST IT WITH DIFFERENT DATA.

check back issues

from (specify vol:num): 2:1

to (specify vol:numj:3:1

{]
| |
| |
| |
! I
I I
I I
| volume 1 number 1 I
| stocked: 23 ocutstanding requests: cost of this issue: |
| $5.00. |
| volume 1 number 2 !
| stocked: 30 outstanding requests: cost of this issue: |
| $3.00. |
| volume 1 number 3 |
| stocked: 27 outstanding requests: cost of this issue: |
| $3.00. I
| volume 1 number 4 |
! stocked: 20 outstanding requests: cost of this issue: |
l $3.00. |
| volume 1 number 5 |
I stocked: 40 outstanding requests: cost of this issue: |
| $3.00. : !
| volume 1 number 6 ‘ !
| stocked: 35 outstanding requests: cost of this issue: |
I $3.00. {
| volume 2 number 1 I
| stocked: 30 outstanding requests: cost of this issue: |
| $3.00. - I
| |
| number of issues stocked: 205 I
| number of requests pending: 9 |
| total stock value: $661.00. !
| r.09:13 0.443 96 |
| I
Not To Be Reproduced 2-42 721

ADDITIONAL BREAK CONTROL

® ONE MORE BREAK CONTROL REQUEST

I THE continue_to REQUEST

I CAUSES probe TG CONTINUE EXECUTING, BUT ONLY UNTIL LINE
SPECIFIED

I USAGE:
continue_to <line>

ct <line>

I EXAMPLES:
continug@to 75

ct +1

I NOTES:

THE FIRST EXAMPLE RESUMES EXECUTION OF THE PROGRAM AND STOPS
IN probe AT LINE 75 OF THE PROGRAM

THE SECOND EXAMPLE RESUMES EXECUTION, BUT STCOPS BEFORE THE

NEXT STATEMENT {I.E. EZXECUTE ONE STATEMENT); SEZE THE step
REQUEST LATER

Not To Be Reproduced 2~-43 r21

ADDITIONAL BREAK CONTROL

probe check_back_issues
Using check_back issues (no active frame).
position position_file
position file:
proc (first _vol, first num);
a
Break set after line 129
status
Break exists after line 129 in check_back_issues
o
r 09:20 0.311 120

check_back_issues
from (specify vol:num): 2:1

to (specify vol:num):3:1

Stopped after line 129 of position file. (level 8)

v first_vol

first_vol = 2

v tirst num i

first _num = 1 i

,ps +3 N . +
end;

a f
Break set after line 146 ‘
continue to 132 i
orobe (continue to): Using line 144 of check back issues instead.|
Stopped before Tine 144 of position_file, (level 3) !
sc |
do while (first vol > current volume);
v first wvol - - l
first vol = 2 I
v current_volume !
current volume = 4.,30337e9 !
sb current volume
fixed bin (17) automatic
Declared in check_back_issues

l
i
I
of !
r 09:25 0.831 265 _ I
l
i

Not To Be Reproduced 2-44 F21

ADDITIONAL BREAK CONTROL

gedx

rcheck back issues.pll

/dcl (curreng volume/

dcl (current_ Volume, current _number) fixed bln,
s/;/ init (07; /P

w

q

r 09:27 0.288 83

pll check_back_issues -sv2 -tb
PL/I 26a -

r 09:27 3,520 230

close_file back_issues
r 09:28 0.044 48

e e ot o e e e e s e et e oo e e e

del (cur:ent_volume, current_number) fixed bin init (0);

Not To Be Reproduced 2-45

F21

ADDITIONAL

BREAK CONTROL

I i
I |
| check_back_issues |
| from (specify vol:num):2:1 !
I !
| to (specify vol:num):3:1 |
| I
| volume 2 number 2 i
| stocked: 36 outstanding requests: 1 cost of this issue: |
| $3.00. |
| volume 2 number 3 l
! stocked: 46 outstanding requests: 7 cost of this issue: |
| $3.00. l
| volume 2 number 4 l
! stocked: 31 outstanding requests: 0 cost of this issue: |
| $3.00. |
| volume 2 number 5 |
| stocked: 36 outstanding requests: 0 cost of this issue: ;
i $3.00.

| volume 2 number 6 |
j stocked: 33 outstanding requests: 1 cost of this issue: |
| $3.00. : |
| volume 3 number 1 |
i stocked: 47 outstanding requests: 5 cost of this issue: |
| $3.00. , |
| volume 3 number 2 }
| stocked: 50 outstanding requests: 4 cost of this issue: |
| $3.00. i
| |
| number of issues stocked: 279 |
| number of requests pending: 18 |
| total stock value: $837.00. |
| r 09:28 0.395 30 i
| |
8 TWO MORE BREAK REQUESTS

I THE reset REQUEST
I DELETES SPECIFIED BREAKPOINTS
(RESET BEING A HARDWARE TERM FOR TURNING A SWITCH OFF)

Not To Be Reproduced 2-46 F21

.

ADDITIONAL BREAK CONTROL

USAGE:

reset

r

reset <location>

r <location>

reset <{program name>
r <{program name>
reset -all

r -all

reset *

r *

EXAMPLES:

reset after 75
reset

reset other-prog

r*

NOTES:

THE "reset *" and "reset -all"

ARE IDENTICAL: THEY BOTH

DELETE ALL BREAKPOINTS IN ALL PROGRAMS

I THE step REQUEST

EXECUTES ALL THE INSTRUCTIONS UP TO,

NEXT STATEMENT

USAGE:

step

Not To Be Reproduced

2-47

BUT NOT INCLUDING, THE

ADDITIONAL BREAK CONTROL

I EXAMPLES:
step

S

I NOTES:

ACTS JUST LIKE EITHER OF THE FOLLOWING:

continue_to +1
before +1l:(reset; halt)

IS DEFINITELY MORE CONVENIENT

Not To Be Reproduced 2-48

ADDITIONAL BREAK CONTROL

pb check_back_issues
Using check back issues (no active frame).
ps position file™
position file:
proc (first_vol, first_num);
a
Break set after line 129

q
r 09:30 0,247 98

check_back_issues
from (specify vol:num): 2:1

to (specify vol:num):3:1
Stopped after line 129 of position_file. (level 8)

sk 8,2
8 position_file (line 129)
7 check_back_issues (line 58)

sc _
position_file: :
proc (first_veol, first_num);

step _
Stcpped before line 144 of position_file. (level 8)

sc
do while (first_vol > current_volume);

ps "return"
return;

b
Break set before line 152

Not To Be Reproduced 2-49 F21

ADDITICNAL BREAK CONTROL

status

Break exists before line 152 in check back issues
Break exists before line 144 in check_back:issues
Break exists after line 129 in check back_1issues

Break reset before line 144 in check_back_issues

continue
Stopped before line 152 of position_file. (level 8)

v current_volume
current volume = 2

v current number

current number = 1

-
|

I

|

]

|

l

| reset 144
|

|

|

]

I

|

l

|

I

|

|

| g

| r 09:39 1.492 4290
| .

e e e e e e e e e]

Not To Be Reproduced 2-50 F21

ADDITIONAL BREAK CONTROL

1 TECHNIQUE

I DETERMINE THAT CORRECT NUMBER OF RECORDS ARE BEING PRINTED
OUT, BUT THAT THE STARTING POINT IS INCORRECT

] DECIDE THAT THE PROGRAM "position file" IS THE PROCEDURE THAT
SETS THE STARTING POINT

I SET BREAKPOINTS WITHIN "position_file® TO CHECK THE SETTING
F THE STARTING POINT

O w

1 SEE THAT "position_file" POSITIONS TO THE FIRST DESIRED
RECORD

I CONCLUDE THAT "print record" DOES NOT HAVE TO READ THE FIRST
RECORD -

Not To Be Reproduced 2-51 F21

ADDITIONAL BREAK CONTROL

gx

rcheck_back_issues.pll

/call get record/

Tcall get_record ();

i
if have_used_record then

\£f

/return/
return;

-1

a
have used record = "1"Db;

\£ - -

a

/position file/
position file:
/return/”
return;

-1

a
have used record = "0"b;

\£

ln/dcl/

dcl back_issues file;

i

dcl have_used_record bit (1) aligned;
\f '

W
q
r 09:43 0.637 104

pll check_back_issues -sv2 -tb

PL/I 26a

r
|
l
|
l
|
!
i
l
!
!
|
!
|
|
l
l
|
I \f
|
l
l
|
l
!
|
|
|
I
l
l
l
|
I
I
|
l
l
|
|
| r 09:43 3.814 183
I

e o e]

Not To Be Reproduced 2-52 F21

ADDITIONAL BREAK CONTROL

r 09:43 0.050 29

check_back issues

volume 2 number
$3000.

volume 2 number

$3.00.

volume 2 number

$3.00.

volume 2 number

$3.00.

volume 2 number

$3.00.

volume 2 number

$3.00.

volume 3 number

$3.00.

total stock wvalue:
r 09:44 0.459 14

e e o — i e ey o oo iy S e e et i e e e i i s o e e g e i WSS it e v oo ctinoe]

stocked: 30

stocked: 36

stocked: 46

stocked: 31

stocked: 36

stocked: 33

stocked: 47

close file back issues

to (specify vol:num):3:1

-

1
outstanding

2
outstanding

3
outstanding

4
outstanding

5
cutstanding

6
outstanding

1
outstanding

number of issues stocked: 25
number of requests pending:

$777.00.

From (specify vol:num):2:1

requests:

requests:

requests:

requests:

requests:

requests:

requests:

9
16

cost

cost

cost

cost

cest

cost

.cost

of

of

of

of

of

of

of

this

this

this

this

(a8
.
L
[N
[11]

this

this

issue:

issue:

issue:

issue:

issu

issue:

issue:

Y3
et ——— o — e et — " e — . s " ot —— T iy e S mm, s T s o e bt s s WO e s .

Not To Be Reproduced

2-53

F21

PROBE ODDS AND ENDS

8 A FEW MORE CCOMMANDS

I THE halt REQUEST

I CAUSES PROBE TO BE ENTERED AT BREAKPOINT EXECUTION TIME

I USAGE:
halt

h

I EXAMPLES:

halt

1 NOTES:
ONLY USEFUL IF NOT EXECUTING IN PROBE ALREADY

A BREAKPOINT S’T IN THE FORM OF "ar*er" IS REALLY

" .- o=]

after:halt’

I THE pause REQUEST

I ACTS LIKE THE halt REQUEST, BUT ALSC RESETS THE BREAKPOINT

I USAGE:

pause

1%

Not To Be Reproduced 2-54 F21

PROBE ODDS AND ENDS

I EXAMPLE:
pause
P

I NOTES:

LIKE THE halt REQUEST, IS ONLY USEFUL AT A BREAKPOINT

the BREAKPOINT "after:pause® IS EQUIVALENT TO "after:
(halt;reset)"

I THE list_builtins REQUEST

I LISTS THE BUILTIN FUNCTIONS AVAILABLE FROM WITHIN probe

I USAGE:
list_builtins

1b

I EXAMPLES:
list_builtins
1b

I THE list_help REQUEST

] LISTS ALL THE HELP FILES AVAILABLE THROUGH THE probe "help"
REQUEST

I USAGE: 1list_help
1h

Not To Be Reproduced 2-55 F21

PROBE ODDS AND ENDS

I EXAMPLES:
list_help
1h
NOTES:

Y0U CAN GET MORE THAN JUST HELP ON THE REQUESTS:
DESCRIPTIONS ARE ALSQO PROVIDED FOR THE ARGUMENTS TO probe
REQUESTS

g SPECIFYING LINES

I SEVERAL PROBE REQUESTS ACCEPT LINE NUMBERS AS THEIR ARGUMENTS
I before

{ after

1 reset
1 status

I SPECIFICATION OF A LINE CAN TAKE ON MANY FORMS

I ABSOLUTE LINE NUMBER

5
10N
ESRVAS)

4-21

I RELATIVE EXECUTABLE STATEMENT

+1

Not To Be Reprcduced 2-56 F21

PROBE ODDS AND ENDS

+50
=5

I USING LABELS
get_record
place (3)
soméwhere,4

$100

I SPECIAL SYMBOLS
$c
Sc,7
$b

$b,3

Not To Be Reproduced 2-57 F21

TOPIC III

Other Source-Level Debugging Commands .
The trace Command . . ¢« & o« o—a o+ =
Interaction of the Control Arguments
Tracing Example Cne . . + ¢ o o « &
Other trace Control Requests. . .
Trace Example TWO o« « + & o o o o
The display pllio error Command .
A display pliio error Example . .

.
.
.
L3

» & & o * o & o

e ® o o e & e o

e ® ® o » 5 s o

e ® ¢ o & 5 s o

. . [. . L] L) .

3-1
3-1
3-5
3-6
3-11
3-14
3-20
3-21

Toric II1IX SOURCE-LEVEL DEBUGGING (TRACE) Topic III
OBJECTIVES:
Upon completion of this toric, students should bhe able to:

1. Add and remove procedures to and from the lrace table.

2. Modify the tracins of a particular procedure in the trace
tahlia
3. Use the trace command to eerform melerins on selecled

procedures.

4. Monitor recursion of selected procedures.

Multics I1I-1 Fz21

B2

race

THE TRACE COMMAND

COMMAND

SOURCE-LEVEL, PRCCEDURE-CALL MONITOR

CAN BE USED WITH PROGRAMS WHICH DO NOT HAVE SYMBOL TABLES

‘CAPABILITIES INCLUDE

—4

PRINTING ARGUMENTS AT PRCCEDURE ENTRY AND/OR EXIT

I EXECUTING A MULTICS COMMAND LINE AT PROCEDURE ENTRY AND/OR
EXIT

I STOPPING (BY <CALLING THE COMMAND PROCESSOR) AT PROCEDURE
ENTRY AND/OR EXIT

I CONTROLLING THE FREQUENCY AT WHICH TRACING MESSAGES ARE
PRINTED

1 WATCHING UP TO 16 STORAGE LOCATIONS FOR CHANGES .AT EVERY
PROCEDURE ENTRY AND/OR EXIT

LIMITATIONS

I ONLY EXTERNAL PROCEDURES COMPILED BY PL/I OCR FORTRAN CAN BE
TRACED

I ONLY USER-RING PROCEDURES CAN BE TRACED, NOT SUPERVISOR OR

GATE PROCEDURES

Not To Be Reproduced 3-1 F21

Lrace

trace

THE TRACE COMMAND

PROCEDURE IN A BOUND SEGMENT CAN BE TRACED ONLY IF ITS.
TRY POINT HAS BEEN "RETAINED" IN THE BOUND SEGMENT

-control_args
CR

procedure_names
OR

-control_args procedure_names

1 procedure names GIVE THE PATHNAME OR REFERENCE NAME OF A
PROCEDURE ENTRY POINT TO BE TRACED

Jirectory_path>entryname

directory_path>entrynameSentry point_name

reference_name

reference_name$entry point_name

I <control args CONTROL THE TRACING FUNCTIONS PERFORMED ON THE
TRACED PROCEDURE

] OPERATION

I trace COUNTS

I

HOW MANY TIMES A PROCEDURE IS CALLED (N = NUMBER OF CALLS)
IN THIS PROCESS SINCE CCOUNTERS WERE LAST RESET

HOW MANY TIMES A PROCEDURE IS MONITORED WHILE A PREVIOUS
ACTIVATION STILL EXISTS (R = RECURSION DEPTH)

Not To Be Reproduced 3-2 F21

THE TRACE COMMAND

I OPERATION {(Continued)

I trace MONITORS A PROCEDURE CALL
] WHEN N AND R MEET CERTAIN CRITERIA
I BY PRINTING MONITORING MESSAGES
Call N.R of PROCEDURE from CALLING PROC, ap=244]|17456.
Return N.R from PROCEDURE.

I BY OPTIONALLY PRINTING PROCEDURE ARGUMENTS BEFORE ENTRY OR
AFTER EXIT

I BY OPTIONALLY GOING TO Multics COMMAND LEVEL CR INVOKING A
USER-SPECIFIED PROCEDURE BEFORE ENTRY OR AFTER EXIT
I MONITORING CRITERIA

I ARE STORED IN A TRACE COCNTRCOL TEMPLATE (TCT), AN INTERNAL
STATIC DATABASE IN THE PROCESS DIRECTORY

1 FOR EACH TRACED PROCEDURE ARE STORED
FASHIONED AFTER THE TCT

14
Z
=3
i

4
Hy]

ATES

Lt

I 1IN THE TCT ARE PRINTED BY

trace -template

=)
(-
-3
5 H]
.

THE FOLLOWING

]

ARE SET BY GIVING & trace COMMAND
control args:

-first F, -ft F
MONITOR WHEN F<=N

-last L, -1t L
MONITOR WHILE N<=L

-every E, -ev E
MONITOR EVERY Eth CALL (WHEN mod(N,E)=0)

-before B
STOP BEFORE ENTERING PROCEDURE IF B"=0 AND mod(N,B)=0
AND mod(N,E)=0

-after A

STOP AFTER EXITING PROCEDURE IF A"=0 AND mod{N,A)=0
AND mod (N, E)=0

Not To Be Reproduced 3=3 F21

THE TRACE COMMAND

-argument AG, =-ag AG

PRINT ARGUMENTS 1IF AG"=0 AND mod {N,AG)=0 AND
mod (N, E)=0

-in PRINT ARGUMENTS ONLY BEFORE ENTRY
-out PRINT ARGUMENTS ONLY AFTER EXIT

-inout
PRINT ARGUMENTS BEFORE ENTRY AND AFTER EXIT

-depth D, -dh D :
MONITOR ONLY IF R<=D AND GOVERNING IS OFF

-return _value {onloffl, -rv {on]|off}
PRINT FUNCTION RETURN VALUE AFTER EXIT

-govern {on|loff}, -gv {onloff}
DISABLE RECURSION DEPTH CHECKING; INSTEAD, PRINT THE
CALL MESSAGE ONLY WHEN THE RECURSION DEPTH REACHES A
NEW MAXIMUM. ALSQO, STOP WHEN RECURSICN DEPTH IS A
MULTIPLE OF 10 & A NEW MAXIMUM.

-meter {on|off}, -mt {on|off}

DISABLE MONITORING AND ENABLE PERFORMANCE METERING OF
THE TRACED PROCEDURES

Not To Be Reproduced 3-4 F21

INTERACTION OF THE CONTROL ARGUMENTS

tracs -first 5 -last 12 -gveryz -bafore 3 -argument 4

= 0000 TR
L4l

2nd CALL 103 12.4
{-avery 2)

STOP BEFORE A

EVERY 3rd CALL i i
{if iT'S MONITORED]
{-bafcra 3)

n
[y
[)

4th CALL (IFIT'S i
MONITORED) 3
(-argument 4)

PRINT INPUT .
ARGUMENTS EVERY

—
N

Not To Be Reproduced 3-5 F21

TRACING EXAMPLE ONE

! i
I 1 fact_: procedure (n) returns (fixed dec (12)); |
| 2 del (n, £, r) fixed dec {12); !
| 3 if n<=1 thenr = 1; |
| 4 else do; ‘ |
.- £ = fact_ (n=-1); |
| 6 r=£f * n; |
|7 end; |
| 8 return (r); |
| 9 end fact_; |
| I
| |
| 1 factorial: procedure; i
| 2 dcl result fixed dec (12); |
| 3 decl fact_ entry (fixed dec '12)) returns (fixed dec (12)); |
| 4 dcl n fixed dec (12); |
I 5 dcl cleanup condition; T
I 6 dcl (sysin, sysprint) file; !
l 7 open file(sysin) stream input, |
} 8 file(sysprint) stream output |
{ 9 env(interactive); |
! 10 on cleanup close file (sysin), file (sysprint); |
I 11 get file (sysin) list (n); . |
12 do while (n >= 0); |
| 13 result = fact In); |
| 14 put file (zysprint) list (result); |
| 15 get file (sysin) list (n); |
I 16 end; . |
| 17 close file (sysin), file (sysprint); . |
| 18 end factorial; :
|

Not To Be Reproduced

3-6

F21

TRACING EXAMPLE ONE

-

| 1 ! pll fact_

| 2 PL/I

| 3 r 1720 1.381 21.776 148

| 4

| 5 ! pll factorial

! 6 PL/I

{ 7 r 1720 0.964 1.332 36
8

| 9 t factorial

| 10 P33

| 11 6

| 12 1 4

| i3 24

! 14 !5

! 15 120

| 16 1 5

| 17 720

1 18 10

| 19 3628800

| 20 -1

i 21 r 1721 0.303 0.342 18

g 22

Not To Be Reproduced 3-7

F21

TRACING EXAMPLE ONE

o— b

trace -template

first: 1, last: 9999999999, every: 1,
before: 0, after: 0, args: 0, depth: 9999999999

=g o i = i i I)

meter: off, govern: off, return_value off
r 1721 0.067 0.042 ¢

trace -arguments 1 -out ~returq_value on
r 1721 0.038 0.002 1

trace fact_
r 1721 0.155 0.506 22

i

factorial

5 N. R

Call 1.1 of fact_ from factoriall|235, ap = 24415254
Call 2.2 of fact_ from fact |43, ap = 244i5600

Call 3.3 of fact_ from fact |43, ap = 2446120

Call 4.4 of fact_ from fact_l43, ap = 244|6440

Call 5.5 of fact_ from fact_l43, ap = 2446760
Return 5.5 from fact_

ARG 1 @ 24416750 = 1

ARG 2 @ 2441|6740 = 1

Return 4.4 from fact_
ARG 1 @ 2441|6430 = 2
ARG 2 @ 24416420 = 2
Return 3.3 from fact_
ARG 1 @ 24416110 = 3
ARG 2 @ 24416100 = 6
Return 2.2 from fact_
ARG 1 @ 24415570 = 4
ARG 2 @ 2445560 = 24
Return 1.1 from fact_
ARG 1 @ 2441|5144 5
ARG 2 @ 2445140 120
120

hon

-1
r 1721 0.395 1.632 47

et —— T — . — s -t e o et it i et et o e o St it S St s it T) e @t st et e e

Not To Be Reproduced 3-8

F21

TRACING EXAMPLE ONE

| T
| 1 ! trace -every 3 |
| 62 r 1722 0.021 0.000 O i
1 63 |
| 64 ! trace fact_ |
| 65 r 1722 0.024 0.000 O i
| 66 |
i 67 ! factorial !
| 68 t 10 |
I 69 Call 6.1 of fact_from factoriall235, ap = 24415254 |
| 70 Call 9.2 of fact_from fact |43, ap = 244]6100 |
| 71 Call 12.3 of fact_from fact 143, ap = 244]6720 l
| 72 Call 15.4 of fact_ from fact_|43, ap = 2447540 I
L 73 Return 15.4 from fact_ l
| 74 ARG 1 @ 244[7530 =1 1
| 75 ARG 2 @ 24417520 =1 !
| 76 Return 12.3 from fact_ |
i 77 ARG 1 @ 24416710 = 4]
l 78 ARG 2 @ 24416700 = 24 I
b 79 Return 9.2 from fact_ !
1 80 ARG 1 @ 24416070 = 7 l
! 81 ARG 2 @ 2441|6060 = 5040 l
(82 Return 6.1 from fact_ l
1 83 ARG 1 @ 24415144 = 10 |
! 84 ARG 2 @ 244[5140 = 3628800 |
! 85 3628800 i
I 86 ! -1 i
! 87 r 1722 0.210 0.002 1 2
| 88 I
I l

Not To Be Reproduced 3-9 F21

TRACING EXAMPLE ONE

89
90
o1
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

trace
fact

o
KO0 > mE e w2l

o I I T O 1 1}

.

e

|
n
U
]
or
[
n
h
[}
(¢}
r

- U

max R =0

999999999

QOWWYWH O

1 (o)
9999999999
urn_value

r 1722 0.052 0.000 O

trace -status *

15.0 fact_

r 1723 0.027 0.000 O

trace
fact

)
Wl onn

>
OQP W e mo

-reset fact_ -status fact_

0

0, max R = ¢
1

9999999999
3.

0

0

1 (o)
9999999999

return_value

r 1723 0.055 0.006 2

factorial

4

call 3.1 of fact_ from fact_ |43, ap = 2445560
Return 3.1 from fact

ARG
ARG

-1

1 @ 244|5550 = 2
2 @ 24415540 = 2

24

r 1724 0.103 0.000 O

Not To Be Reproduced

F21

OTHER TRACE CONTROL REQUESTS

I OTHER trace CONTROL ARGUMENTS
I CONTROL THE GENERAL OPERATION OF trace

I INCLUDE
-status procedure_name, -st procedure_ name
PRINTS THE TRACE CONTROL PARAMETERS AND COUNTERS FOR THE
NAMED PROCEDURE
-status *, -st *
LISTS THE PROCEDURES BEING TRACED, THEIR INVOCATION
COUNTS AND RECURSION DEPTHS

-reset procedure_name, -rs procedure_name
ZEROES THE INVOCATION COUNT OF THE GIVEN PROCEDURE

-0off procedure name
STOPS MONITORING THE GIVEN PROCEDURE; PROCEDURE REMAINS
IN TRACE TABLE AND COUNTING OF INVOCATIONS CONTINUES,
HOWEVER

-on procedure_name
RESUMES MONITORING THE GIVEN PROCEDURE

-remove procedure name, -rm proceduke name

~ e Ty AT TP AT
STOPS TRACING THE GIVEN PROCEDURE, DELETING ALL COUN

FOR THE PROCEDURE
I THE proccedure_name OP?RAVD FOLLOWING CONTROL ARGUMENTS MUST
HAVE THE FORM:
entryname
entryname$entry_point_name
reference_name

reference_nameSentry_point_ name

*

THE CONTROL ARGUMENT APPLIES TO ALL TRACED PROCEDURES WHEN *
IS GIVEN

Not Toc Be Reproduced 3-11 F21

OTHER TRACE CONTROL REQUESTS

133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
158
160
161
162
163
164
165
166
167
163
169
170

o

=

trace -off fact_
r 1724 0.022 0.000 O

factorial

12
479001600
-1
r 1725 0.072 0.000 O

trace -on fact_
r 1725 0.025 0.000 0

factorial
2
Call 18.1 of fact_ from fact |43, ap = 24415420
Return 18.1 from fact_
ARG 1 @ 2445410 1
ARG 2 @ 24415400 =1
2

-1
r 1726 0.055 0.000 0

trace =-status *
18.0 fact_
r 1726 0.028 0.000 O

trace -remove fact_
r 1726 0.027 0.002 1

trace -status *
trace: Trace table is empty.
r 1727 0.036 0.000 0

factorial
10

3628800
-1

r 1727 0.070 0.000 O

Not To Be Reproduced 3-12

F21

OTHER TRACE CONTROL REQUESTS
I OTHER trace CONTROL ARGUMENTS

] CONTROL THE GENERAL OPERATION OF trace

-brief, -bf
SHORTENS THE MONITOR MESSAGES

-long, -1g
PRINTS LONGER MONITOR MESSAGES AGAIN

-io_switch switch name, -is switch_name
PRINTS MONITOR MESSAGES ON THE NAMED I/0 SWITCH, WHICH
MUST BE ATTACHED & OPENED FOR STREAM _OUTPUT

-execute command line, -ex command line
EXECUTES THE COMMAND LINE WHENEVER A PROCEDURE IS
MONITORED

-Stop_proc procedure_name, -sp procedure_name
CHANGES THE PROCEDURE CALLED TQ STOP BEFORE ENTRY OR
AFTER EXIT TO THE GIVEN PROCEDURE :

I CONTROL PERFORMANCE MONITORING

-meter {onloff}, -mt {on|off}
STARTS/STCPS METERING OF TRACED PROCEDURES

-total, -ttt
PRINTS PERFORMANCE MEASUREMENTS AND CLEARS THE METERING
STATISTICS

-subtotal, -stt
PRINTS PERFORMANCE MEASUREMENTS BUT DOES NOT CLEAR THE
METERING STATISTICS

+

~ O COW\IN\Q
I WATCH STORAGE LOCATIONS FOR CHANGES AS PROCLDURPS ARE TRACED
AND STOP IF THE LOCATIONS CHANGE

-watch location, -wt location
WATCHES THE ONE WORD LOCATION. UP TO 16 LOCATIONS CAN
BE WATCHED AT ANY TIME. location HAS THE FORM:
segment number|offset

-watch off, -wt off
TURNS OFF THE WATCH FACILITY

Not To Be Reproduced 3-13 F21

WO~ U N+

e il el el
W0~ O N O

[AS I 18]
O

NN RN
O U R

WM
— O W 00

w
[\

LW W W W
O W=l Ww

[{ = g St Y
W

UL B
O W W~1Bh W

v Lty Ut
Y UL W+

wn
~J

TRACE EXAMPLE TWO

-l.print tt.pll 1 .

tt: proc;
dcl ioa_ entry options (variable);
dcl 4% external static;
dcl mod builtin;
del cleanup condition;
on cleanup begin;
counter = 0;

call ioca (“counter initialized back

goto bottom;
end;

dcl counter fixed bin internal static init

counter = counter +1;
call ioa ("..7i", counter);

if mod (counter, 5) = 0 then d$ = counter;

call tt;
bottom:
end tt;

! trace -£ft S5 -last 12 -every 2 -before 3 -argument 4 tt

! trace -status tt
tt:

Z

Wonowowowon o
N

0

6, max R =0
5

12

>
OQPrwEr o

3
0
4
9999999999

! trace -template

first: 5, last: 12, every: 2, before: 3, after:
depth: 9999999999, meter: cff, govern: off, return_value off

I tt

el

.2

3

.o 4

.5

Call 6.1 of tt from tt|l13, ap = 244[5476
trace: stop before

! hmu

Multics MR6.5+, load 32.0/150.0; 40 users
Absentee users 0/4

! start

«eB

0o’

Call 8.2 of tt from ttill3, ap = 24416156
No arguments.

..8

.9

Call 10.3 of tt from tt|11l3, ap = 244(6636

Not To Be Reproduced 3-14

to zero.");

F2l

. 58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
32
93
94
935
96
97
98
29
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Not

TRACE EXAMPLE TWO

..10
..11

Call 12.4 of tt from tt|1l13, ap = 244]731%

No arguments.
trace: stop before

! sr
eol2
..13
. 014
eelD
..1l6
.17
. 018
L eel8
.20
QUIT
I trace -status tt
tt:
N = 282
R =4, max R =0
F =25
L =12
E =2
B =3
A =0
AG = 4
D = 9999999999

t release -all

counter initialized back to zero,

Return 12.4 from tt
Return 10.3 from tt
Return 8.2 from tt
Return 6.1 from tt

! trace =-status tt

Tt:

282

0, max R =20
5

12

2

3

0

4
9999999999

>
OQrPwmEmr Moz

(L L T I T T ' 1}

i, tracerev

b tracerev trace -ft 1 -1t 89699389559 -ev
-after 0 -ag 0 -dh 99993599999 -mt off -gv off -w

-return_value off

! tracerev tt

! trace =-st tt

TL:

282

0, max R =0
]

o

9999995999

To Be Reproduced 3=-1

1
4

F21

TRACE EXAMPLE TWO

115 CE =1

116 B =0

117 A =0

118 ; AG =0

119 D = 9999999999
120

121 ! list_ref names 4
122

123 357

124 d

125 | trace -watch 35710
126 | trace tt

127 1 £t

128 ..1

129 ..2

130 ..3

131 ..4

132 ..5

133 trace_print_: 357/0 = 000000000005
134 Call 288.6 of tt from tt|113, ap = 2441|6556
135 trace: stop before

136 ! start
137 ..6

138 ..7

139 ..8

140 ..9

141 ..10

142 trace_print_: 35710 = 000000000012
143 Call 293.11 of tt from tt|113, ap = 244{10576
144 trace: stop before

145 ! start
146 ..1l1
147 ..12
148 ..13
149 ..14
150 ..1l5

151 trace print_: 357{0 = 000000000017

152 Call 298.16 of tt from tt|1l13, ap = 244|12616
153 trace: stop before

154 ! rl -all :

155 counter initialized back to zero.

156 | tracerev tt

157 t trace -st tt

158 tt:

159 N = 298

160 R =0, max R = 0
161 F=1

162 L = 9999999999
163 E=1

164 B =20

165 A=20

166 AG =0

167 D = 9999999999
168

169 | trace -reset tt

170 ! trace =-govern on tt
171 I tt

Not To Be Reproduced 3-16 F21

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
151
192
193
154
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

Not

TRACE EXAMPLE TWO

Call 1.1 of tt from command_processor_|3304 (read_list),
ap = 24414600 -

.1 .

Call 2.2 of tt from t£t]|l113, ap = 2445056

.2

Call 3.3 c¢f tt from ttlll3, ap = 2441|5376

«e3

Call 4.4 of tt from ttill3, ap = 244]5716

«od

Call 5.5 of tt from tt|ll3, ap = 2446236

«5

trace_print_: 35710 = 000000000005

Call 6.6 of tt from ttill3, ap = 244(6536

)

Call 7.7 of tt from tt|ll3, ap = 2441|7076

o7

Call 8.8 of tt from tt{ll3, ap = 244|7416

.8

Call 9.9 of tt from ttlll3, ap = 244(7736

.9

Call 10.10 of tt from tt|113, ap = 244/10256

trace: stop before

! trace -brief tt

I start

..10

trace_print_: 35710 = 000000000012

Call 11.11 of tt

.11

Call 12.12 of tt

.

Call 13.13 of tt

..13 :

Call 14.14 of tt

. .14

Call 15.15 of tt

..15

trace_print_: 357/0 = 000000000017

Call 16.16 of tt

..16

Call 17.17 of tt

.17

Call 18.18 of tt

..18

Call 19.19 of tt

..19

Call 20.20 of tt

trace: stop before

QuIT

! trace -watch off tt

! sr

! ready

r 1842 9.00% 21.098 724 level 2, 51

! sr

..20

Call 21,21 of tt

..21

To Be Reproduced

F21

228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

TRACE EXAMPLE

TWO

of tt
of tt
of tt
of tt
of tt
of tt
of tt

of tt

30.30 of tt
trace: stop before

Call 22.22
v e22

Call 23,23
..23

Call 24.24
24

Call 25.25
o253

Call 26.26
c .26

Call 27.27
0027

Call 28.28
.28

Call 29.29
¢ 029

Call

QUIT :

! rl -all

counter initialized back to zero.
! trace ~st

tt:

1
!
!
tt:

. ,
OQOroEmrEmaoZ

o]
OQpPpwmr ooz

tt

30

0, max R =
1
9999999999
1

0

0

0
9999999999

oW omomononnwn

govern

trace -govern off tt
trace -st

[

30

0, max R =
1
9999999999
1

Woouonw oo

OO OO

999999999

! trace =-reset tt
! "trace -st

tt:

POty X

£t

0
0, max R =
1
9999999999
1
0
0

[T I T 1}

Not To Be Reproduced

30

34

30

F2

TRACE EXAMPLE TWO

285 AG
286 D

0
9999999999

nwn

Not To Be Reproduced 3-19

F21

] THE DISPLAY PL1IO ERROR COMMAND
©® display_pllio_error - COMMAND

I PRINTS ADDITIONAL INFORMATION ABOUT THE MOST RECENT ERROR
CONDITION SIGNALLED BY THE PL/1l INPUT/QUTPUT FACILITY

I USAGE
display pllio_error
OR

dpe

I PL/1 I/0 ERROR CONDITIONS INCLUDE

I endfile
T key
1 name

I recor?

I transmit

I undefinedfile

Not To Be Reproduced 3-20 F21

A DISPLAY PL1IO ERROR EXAMPLE

| I
| 1 write_ file: procedure; I
I 2 |
| 3 dcl £ file record output; I
! 4 dcl recl char (10), !
| 5 rec2 char (30) varying; |
! 6 dcl cleanup condition; |
! 7 |
| 8 |
| 9 on cleanup close file (£); !
| 10 open file (£); |
11 |
P12 recl = "ABCDEfghij"; |
| 13 write file (£f) from (recl); |
| 14 : |
o1 rec2 = "abcdeFGHIJ"; |
| 16 write file (f) from (rec2); |
|17 l
i 18 close file (£); i
[19 !
| 20 end write_file; |
| |
|

i 1 read file: procedure;

l 2

l 3 dcl £ file record input;

! 4 dcl sysprint £ile;

! 5 del recl char (10);

i 6 dcl (cleanup, endfile) condition;

1 7

| 8 on cleanup close file (£), file (sysprint);

| 9 open file (f),

10 file (sysprint) output stream env (interactive);
|11

I 12 on endfile (£f) go to DONE;

{13 do while ("1"b);

| 14 read file (£f) into (recl);

| 15 put file (sysprint) list (recl);

| 16 end;

I 17

| 18 DONE:

| 19 close file (£), file (sysprint);

[20

| 21 end read_file;

|

Not To Be Reproduced 3-21 F21

A DISPLAY PL1IO ERROR EXAMPLE .

! pll read_file -table
PL/1
r 1033 1.353 37.579 272

e

pll write file -table
PL/I
r 1034 0.767 40.527 287

om

read_file

Error: undefinedfile condition

by >udd>Fl9d>Friedman>read filell77 (line 9)
occurred while doing I/0 on file f
File cannot be opened: call to iox_Sopen fails.
system handler for error returns to command level
r 1034 0.169 5.250 74 level 2, 16

bt b et gt e et
UL W O WO ~3N U W

[

17

18 | display pllio_error

19

20 Error on file £, status code: Entry not found.
21 Title: viile f

22 Attributes: input notkeyed record sequential
23 Permanent attributes: input record

24 Error in opening or closing £

25 r 1035 0,069 1.470 37 level 2, 16

286

27 | probe

28 Condition undefinedfile raised at line 9 of read_file.
29 | source

30 open file (f),

31 file (sysprint) output stream env (interactive);
32 ! quit

33 r 1035 0,126 5.726 97 level 2, 16

34

35 | release

36 r 1035 0.028 0.328 17

S/

Not To Be Reproduced 3-22 i F21

A DISPLAY PL1IO ERROR EXAMPLE

38 ! write file

I
|
! 39
| 40 Error: undefinedfile condition
i 41 by >udd>F19d>Friedman>write_£ilel|133 {(line 10)
] 42 occurred while doing I/0 on file £
| 43 File cannot be opened:
I 44 . input and output attributes conflict.
| 45 system handler for error returns to command level
| 46 r 1035 0.140 3.660 60 level 2, 16
| 47
| 48 | dpe
! 49
I 50 Error on file £
| 51 Title: viile ¢
! 52 Attributes: input output record
| 53 Permanent attributes: input output record
| 54 Error in opening or closing £
i 55 The output attribute conflicts with the input attribute.
| 56 r 1036 0.061 1.190 34 level 2, 16
l 57
! 58 | new_proc
l 59 r 1037 0.184 8.372 91
| 60 :
! 61 | write file
l 62 r 1037 0.376 6.532 80
| 63
| 64 1 read file
| 65
l 66 Error: undefinedfile condition
| 67 by >udd>Fl9d>Friedman>read_£ilell77 (line 9)
! 68 occurred while doing I/0 on file £
| 69 File cannot be opened:
i 70 input and output attributes conflict.
! 71 system handler for error returns to command level
% 72 r 1038 0.627 25.122 192 level 2, 16
73 :
i 74 | new_proc
| 75 r 1039 0.236 4.830 69
! 76
|

e — it i ot e ot vt e it e it s N ot iy s e o it vt i iy ot i ot i it st st s e s e e}

Not To Be Reproduced 3-23 F21

A DISPLAY PL1TIQ ERROR EXAMPLE

107
108
109
110
111
112
113

O
o>

s

o

—

read_file
ABCDEfghij

Error: record condition

by >udd>Fl19d>Friedman>read filel241 (line 14)
occurred while doing I/0 on file £
"read into(XX)":

record in data set larger than variable XX.
Type "start" to continue,
Data will be truncated to record's length.
system handler for error returns to command level
r 1039 0.887 25.244 219 level 2, 16

dpe

Error on file £, status code: Record is too long.
Title: vfile £

Attributes: open input notkeyed record sequential
Permanent attributes: input record

Last i/o operation attempted: read into

r 1040 0.106 3.540 59 level 2, 16

probe
Condition record raised at line 14 of read file.
source
read file (f) into (recl);

v recl

"\000\000\0 07
abcder"
quit
r 1041 0.368 11.650 192 level 2, 16

start

\000\0OQCN\GO00

abcdeF

r 1041 0.119 3.492 59

@ e e — s —— e et e —— o o oy s e o o it e e et e o i . sm o] ¢

Not To Be Reproduced 3-24

F21

A DISPLAY PL1IO ERROR EXAMPLE

[!
| 114 ! print_attach_table £ |
| 115 £ (not attached) !
| 116 r 1041 0.069 1.640 40 1
117 {
| 118 ! io_call attach £ vfile f I
| 119 r 1041 0.080 3.306 57 |
| 120 I
| 121 !t 1io open f sequential input |
| 122 r 1042 0.087 3.422 58 !
| 123 !
| 124 ! 1io read_length f |
| 125 io call® len=10. !
| 126 r 1042 0.039 0.006 2 !
| 127 |
| 128 ! io read £ 10 |
I 129 io_call: 10 characters returnad. ABCDEfghij |
| 130 r 1042 0.077 1.980 44 |
| 131 |
| 132 ! 1io read_length £ |
[133 io_call: len=34. !
| 134 r 1042 0.032 1.332 36 I
[135 |
[136 ! 1io read f 40 !
| 137 io_call: 34 characters returned. \000\000\000 l
| 138 abcdeFGHIJN400%\400\000\000\000write_file]
i 139 r 1042 0.050 1.980 44 |
| 140 ' i
| 141 ! io (close detach) £ !
| 142 r 1043 0.045 2.162 46 :
|

Not To Be Reproduced 3=-25 F21

(End 0f Topic)

TOPIC IV

Advanced probe Requests . . « o « o e
Introduction. « o« ¢ o « o o ¢ o o
Scenario I - More probe Control . .
Control of Output Processing. . . .
Scenario III = Program Manipualtion

©

a » o & &

L] o L] o L

@ o ® o ®

e © © o6 o

L] L] o L] o

Topic IV

OBJECTIVES:

Uron completion of this toric,

1. Use the following probe resguests lo socod advantags:

Multics

ADVANCEL PROBE REQUESTS

modes

if

lansuasge (1lnsa)
display (ds)
solo (3)

where {(wh)

use

call (cl)
declare (dcl)

list_.variables {lsv}

V-1

TToric IV

students should be able to:

Fz1

- INTRODUCTION

B MORE ABOUT probe

I MOST DEBUGGING CAN BE DONE USING THE TECHNIQUES DESCRIBED IN
CHAPTER TWO

I THE REQUESTS DESCRIBED HERE GIVE THE USER MUCH MORE CONTROL OVER

- A
THE PROBE ENVIRONMENT

I THE CONTROL CAN BE THOUGHT OF AS COVERING DIFFERENT ASPECTS OF
probe

I CONTROL OF THE INTERACTION
I modes
I if
I language
I

display

I CONTROL OF PROGRAM USAGE

I goto
I where
1 use

I call

{ CONTROL OF PROBE VARIABLES
I declare

I 1list_variables

Not To Be Reproduced 4=-1 F21

SCENARIO I - MORE PROBE CONTROL

® NEW REQUESTS

I THE modes REQUEST
I ALTERS THE WAY probe INTERACTS WIT

I USAGE:
modes
mode
modes <mode type> <mode valued>

mode <mode type> <mode value>

I EXAMPLES:

modes prompt on

mode value separator " is equal to "

I NOTES:

SUPPORTED MODES ARE:
error_messages, em
qualification, gf
value_print, vp
value_separator, vs
prompt

prompt_string

Not To Be Reproduced 4-2

THE PROGRAMMER

F21l

_ SCENARIQ I - MORE PROBE CONTROL

I THE language REQUEST

I ALLOWS THE PROGRAMMER TO LET probe INTERACT 1IN DIFFERENT
DIALECTS

I USAGE:
language
ing
language <language>

lng <language>

I EXAMPLES:
language
I1ng

lénguage fortran

I NOTES:

THE LANGUAGES CURRENTLY SUPPORTED ARE pll, fortran, AND cobol
I THE goto REQUEST

I GIVES BETTER ERROR PROCESSING CONTROL

I USAGE:
goto <line>

g <line>

I EXAMPLES:
goto 50

g 1=23

Not To Be Reproduced 4-3

o]
[\S]
bt

SCENARIQ I - MORE PROBE CONTROL

g Sc

g S$b+2

I NOTES:
I A TRICKY RQUEST TO USE

I COMPILER OPTIMIZATION MAY NOT LET THE goto PERFORM AS IT
SEEMS IT SHOULD

I DEFINITELY MORE DEPENDABLE THAN COMMAND LEVEL start

I THE SCENARIO - BACK TO OUR PROGRAM

Not To Be Reproduced

W
)
-

F21

SCENARIO I - MORE PROBE CONTROL

r 13:57 0.332 51

check_back issues
from (specify vol:num):1l:1
to (specify vol:num):2:1

Error: conversion condition by
>user_dir_dir>FSOEP>Pandolf>wkd>check back_issues|540 (line 48)
onsource = "1:", onchar = ":"

Invalid character follows a numeric fieid.

system handler for error returns to command level

r 13:57 0.469 44 level 2

pb
Condition conversion raised at
line 48 of check_back_issues (level 7).
modes prompt true
probe: language
Current language is PL/I
probe: sc

first_issue_volume = :

substr (first_issue, 1, first_issue_delim);

probe: modes prompt false
modes prompt on
probe: modes prompt off
v substr (first_issue, 1, first_issue_delim)
'll:N
let first_issue_volume = "1"
v first_issue_volume
first_issue_volume = 1
g
r 14:01 0.431 61 level 2

Not To Be Reproduced 4-5 F21

SCENARIC I - MORE PROBE CONTROL

start

Error: conversion condition by

>user dlr_d1r>FSOEP>Pandolf>wkc>cneck back issues{540 (line 48%
onsource = "l:" r onchar = ":"

Invalid character follows a numeric field.

system handler for error returns to command level

r 14:01 0.257 8 level 2

pb

Condition conversion raised at

line 48 of check back_issues {level 7).

v first issue delim

flrst_lssue delim = 2

let first_issue_delim = 1

v substr (first_issue, 1, first_issue_delim)
!llll

q

r 14:03 0.244 1 level 2

start

Error: cohversion condition by

>user dir dir>FSQEP>Pandclfd>wkd>check back issues|340 {line 48)
onsource = "1:", onchar = ":"
Invalid character £follows a numeric field.

system handler for error returns to command level
r 14:03 0.235 0 level 2

pb

Condition conversion ralsed at line 48 of check_back_issues
(level 7).

v substr (flrst_lssue, 1, flrst_issue_delim)

"lll

goto 3¢

Error: conversion condition by
>user_dir_dir>FSOEP>Pandolfd>wkd>check_back_issues|550 (line
50)

onscurce = "2:", onchar = ":"

Invalid character follows a numeric f£ield.

system handler for error returns to command level
r 14:05 0.348 2 level 2

m_____gnum___ﬂﬁ_m“wm__,*_w~_w__wﬂm__m“_____“j

- ot dat s e s s ke ——— e s s e e oy i e et e oS — SO et o e S oy ———

Not To Be Reproduced 4-6 F21

CONTROL OF OUTPUT PROCESSING -

THE PREVIOUSLY DESCRIBED value REQUEST CAN BE USED TO DISPLAY A
NAMED STORAGE LOCATION

I THE display REQUEST
I SHOWS ANY ACCESSIBLE LOCATION ON ONE OF FOUR FCRMS

I USAGE:
display <address> <format> <count>

ds <address> <format> <count>

I EXAMPLES:.
display var-one octal 2
ds 260114430 pointer 1

ds tmp_strng ascii 12

I NOTES:
FOUR MODES ARE AVAILABLE
octal: o}
ascii, a, character, ch, ¢
instruction, i

pointer, ptr, its
code

Not To Be Reproduced 4-=7 F21

CONTROL OF QUTPUT PROCESSING

I THE SCENARIO

r 14:56 0.325 16

check_back issues
from (specify vol:num): 1:1
to (specify vol:num):1:4

Error: 1illegal procedure condition by

>user_dir_dir >FSOEP>Pandolf>wkd>checx back lssues$pr;nt record|675
(llne 96)

(whlle in pll operator real_ to_real tr)

referencing stack_416363 (in process dir)

r 14:56 1.145 34 lavel 2

I

|

|

I

|

I

|

I

|

!

|

l

!

!

| pb

| Condition illegal procedure raised at
| line 96 of print record (level 8).
| sc

| total stock value =

| total stock_value +

| (issue_record.current inventory*
i : 'issue_record.cost_of Issue);
| v cost_of issue - -

i cost_of issue = 5

| v current 1nvenbory

| current 1nventory 22

| v total stock value

|
|
i
|
I
I
|
|
|
|
|
{
|

total stock value = (invalid decimal data)
v octal (total_s*ock_value)
040040040040040040040040040 > un h\W\&(v;e}

v unspec {toctal stock value)
"000100000000100000000100000000100000000100000000100000000
100000000100000000100000"0

display total_stock_value a 8

display total_stock_value o Zv/zsNoﬁAS
040040040040 040040040040

d
r 14:59 0.928 72 level 2

Not To Be Reproduced 4-8 F21

SCENARIOQ III - PROGRAM MANIPUALTION

® MORE TOOLS

I THE where REQUEST

I THIS REQUEST TELLS THE PROGRAMMER THE VALUES OF probe's TWO
DEBUGGING POINTERS

I USAGE:
where
wh
where <pointer>

wh <pointer>

I EXAMPLES:
where
wh sc

where control

I NOTES:

THE TWO POINTER SPECIFICATIONS ARE:

source, sc

control, ctl
THE position AND use REQUESTS CHANGE THE VALUE OF THE SOURCE
POINTER

I THE use REQUEST

Not To Be Reproduced 4-9 F21

I MOVES THE SOURCE POINTER

I UuNLI

SCENARIQO III - PROGRAM MANIPUALTION

KE THE position REQUEST, THIS

LOCATION

I USAGE:

use

use

use

use

use

use

<absolute line number>
<relative line number>
level <number>
{program name>

{character string>

I EXAMPLES:

use
use
USé
use
use

use

I NOTE

I THE

I INVOKES ANOTHER PROGRAM JUST AS IF IT HAD

CALL

I usac

call

Not To Be Rep

level 5

138

foo

+3

ﬂvl - 5"

S:

call REQUEST

]
52

{program name>

roduced

(<parameters>)

TO A NEW LOCATION

DOES NOT DISPLAY THE FINAL

THIS REQUEST CANNOT BE USED WITHCUT THE TABLE OPTION

BEEN A SUBROUTINE

F21

SCENARIO III - BROGRAM MANIPUALTION .

I EXAMPLE:

call my prog ({(argl, arg2)

call com_err_ (code, "from probe")

1 NOTES:

probe PERFORMS VALUE CONVERSION AS PART OF THE CALL

Not To Be Reproduced 4-11 F21

SCENARIO III - PROGRAM MANIPUALTION

THE NEXT EXAMPLE

pb check back_issues

Using check back issues (no active frame).
ps get_ record

get record: proc ();

a:(sk;halt)

Break set after line 153

g
r 15:25 0.745 236

check_back issues
from (specify vol:num): 1:1

9 get record {(line 153)

8 print record (line 88)

7 check back issues (line 65)

5 31mple command _processor{12265

5 command processor 111070

4 abbrev_T5336

3 J.lSl.en 10031

2 process overseer [400553

1 aser l“u.t ad'ﬁ.v.n 14 452 (1'1’1)
Stopped after line 153 of get record. {(level 9)
where

line 153 in get_ record (level 9)
Control at line 153 of get_record.
use level 8
sc

call get record ():
use level 7 -
where A
line 65 in check_back_issues (level 7)
Control at line 153 of get_record.
sc

call print record ();

value issue -
issue = 1

I
'n
I
!
|
|
|
I
!
I
!
|
|
|
| to (specify vol:num):1:4
f
|
I
i
|
I
|
l
!
i
!
!
l
l
|
|
|
|
|
|
|
l
|
l
N
!
|

e T e e e e e e e e e e e e e e e e e e e s e e e e e e]

Not To Be Reproduced 4-12 F21

SCENARIO III = PROGRAM.MANIPUALTION .

volume 1 number 1

stocked: 23 outstanding requests:
\cof this issue:

$5.00. 9 get record (line 153)
print_record (line 88)

check back_issues (line 65)
51mple command_processor|12265
command processor 111070
aoorev IDJ.JO

llsten 110031

process overseer |40055
user_inTt_admin_T42452 (alm)
Stopped after line 153 of get record. (level 9)
v issue -

issue = 2

v number of issues

number of iSsues = 3

quit

r 17:12 1.216 1238

e e e e e]
. N N W s Y 00

0 cost

Not To Be Reproduced 4-13

F21

SCENARIQ IV - PROBE VARIABLES

8 MANAGING YOUR OWN VARIABLES

I probe ALLOWS THE PROGRAMMER TO SET UP VARIBLES

ONLY,
(BREAKPOINTS,

ETC.)

I ALMOST LIKE HAVING A PL/I INTERPRETER

I THE declare REQUEST

I USAGE:

declare <name> <typed>

decl <name>

v
i3
23
a7
=
N
i
(ko]
wn

{type>

5

dcl pb_counter_1 fixed

dcl TOTPCT

dcl sum—~cal

I NOTES:

real

c comp-5 =-force

THREE DATA TYPES ARE SUPPORTED:

?l\“} o BTN

fixed, integer, int, comp-%
£loat, real
pointer, ptr

USE THE

-force CONTRQOL ARGUMENT TO REDEFINE A

IF A probe

[&5]

KNOWN TO PROBE
BUT AVAILABLE FOR USE DURING ALL OF probe's PROCESSING

BLE

VARIABLE IS THE SAME NAME AS A PROGRAM VARIABLE,
PREFIX THE probe VARIABLE WITH A PERCENT

Not To Be Reproduced

F21

SCENARIQ IV = PROBE VARIABLES

I THE list_variables REQUEST

I LISTS THE NAMES, DATA TYPES AND VALUES OF probe VARIABLES

I USAGE:
list_variables

SV

[

I EXAMPLES:
list_variables

lsv

I ONE MORE REQUEST

I THE if REQUEST

I CONDITIONALLY EXECUTES A SET OF probe REQUESTS

I USAGE:

if <conditional> : (<request listd>)

I EXAMPLES:
if a=b : (value a; halt)

if varl = 4.56 : let var2 = 0

I NOTES:

CURRENT IMPLEMENTATION ALLOWS FOR ONLY SIMPLE EXPRESSION
EVALUATION; USE THE help REQUEST TO CHECK ON NEW DEVELOPMENTS

THE USE OF RELATIONAL OPERATORS 1IN THE EXPRESSION DEPENDS
UPON THE LANGUAGE SPECIFIED TO probe

Not To Be Reproduced 4-15 F21

. SCENARIO IV - PROBE VARIABLES

(E.G. PL/I USES =, FORTRAN USES .edq.)

Not To Be Reproduced 4-16 F21

- SCENARIO.-IV..~,PROBE .VARIABLES. ..

r—
o
=4
(]
)
M

£
g
l-'l
]

r 17:16 0.122 4

frame) . fbs get record /get record: proc (); declare

times_get_ recorE called fixXed/list variables

times™ get record called fixed' 0 a:(let

times™ get record called = times_get_record_called + } call

ioa_ (“get record called "i times®, / /
i

pb check _back_issues Ué}ng check_back_issues (no active

times _get_ Tecord called);) Break set after line 153

17:2070.3%90 85

check_back_issues
Trom (specify vol:num):1:1
to (specify vol:num):1:4 get record called 1 times

volume 1 number 2
stocked: 30 outstanding requests: 2 cost of
this issue:
$3.00.get_record called 2 times

volume 1 number 3 : :
stocked: 27 outstanding requests: 0 cost of
this issue:

$3.00.get_record called 3 times

volume 1 number 4

stocked: 20 outstanding requests: 1 cost of

this issue: °
$3.00.get_record called 4 times

volume 1 number ~ 5

stocked: 40 outstanding requests: 0 cost of
this issue:

$3.00.
number of issues stocked: 117
number of requests pending: 3
total stock value: $351.00.

r 17:21 0.660 61

e et e e it it e o et A s % gy et e et e i e iy s i s S i "t st e oy et e o et S St orsgy e it

Not To Be Reproduced 4=17 F21

- SCENARIQ-IV - PROBE VARIABLES

] THE let REQUEST

I ASSIGNS THE VALUE OF AN EXPRESSION TO A GIVEN VARIBLE

I USAGE:
let variable = expression

let cross_section = expression
I EXAMPLES:

let a =5 let array (2,1) = a - 3 let substr (alpha,2,3) =
"abc®

Not To Be Reproduced 4-18 F21

_SCENARIO IV - PROBE VARIABLES

r 18:08 0.156 4

pb check_back_issues Using check back issues (no active
frame) . ps get record get_ record: proc (); ps "return®
return;

b: if current volume=last_issue_volume : if
current_ number last_issue_num :call ioa_ ("just positioned

1 ack Aa Ad vAammwANY
to last ucc.l.l.cu reCoLa

Break set before line 175

list variables

times _get_record called fixed 4
let times_get record_called = 0

g
r 18:11 0.386 50

check back issues
from (specify vol:num): 1:3

yto Jspec1fy vol:num):1:6

e s e o — o o it o ot i o i it i et it gy i Sy oo oo s o M i e on et oy st S e o s it s o emmane]

‘voiume T number 4
stocked: 20 outstanding requests: 1 cost of
this issue:
$3.00. volume 1 number 5
stocked: 40 outstanding requests: 0 cost of
this issue:
$3.00.just positioned to last desired record

volume 1 number 5
stocked: 35 outstanding requests: 4 cost of
this issue:
$3.00. wvolume 2 number 1
stocked: 30 outstanding requests: 2 cost of
this issue:

$3.000
number of issues stocked: 125
number of requests pending: 7
total stock value: $375.00.

r 18:11 0.795 24

e e e e e e s e e T e o e e o s S s e e s e S T e e e T o e]

Not To Be Reproduced 4-19 F21

. SCENARIO IV - PROBE VARIABLES

r
pb check back issues
Using check back issues (no active frame).
pPs get_ record
get record: proc {); -
(let times _get_record_ called = times‘get_record‘called + 1;
v tlmes get record called)
Break set after line 153

q
r 18:13 0.245 2

check back issues
from (specify vol:num): 1:3

to (specify vol:num):1:6

= W N

|

|

I

|

I

|

|

I

|

|

|

!

I

|

I

|

|

I

|

A : L !
volume =~ 1 number 4 S : L : I

' " stocked: 20 ocutstanding regquests: 1 cost of this |

issue: |

$3.00.5 i

|

I

I

!

I

I

I

|

|

I

|

I

I

|

I

|

|

!

I

!

|

I

-

volume 1 number 5
stocked: 40 outstanding requests: 0 cost of this

issue:
$3.00.6 Jjust positicned to last desired record

volume 1 number 5
stocked: 35 outstanding requests: 4 cost of this
issue:
$3.00.7

volume 2 number 1
stocked: 30 outstanding requests: 2 cost of this

issue:

$3.00.
number of issues stocked: 125
number of requests pending: 7
total stock value: $375.00.

r 18:14 1,105 6

e e — iy s s ot s W " o e s o et i i i Sttt s it s S it et iy o bt s s o ks it bt et o\, et sos st et i i S e}

Not To Be Reproduced 4-20 F21

. _SCENARIO

IV - PROBE VARIABLES.

pb check back issues
Using check_back_issues (
st

Break exists after line 1
Break exists before line
ps 153

get_record: proc ();

st at 153
Break exists a
times_get_reco

in

i
le

La]

£ o - 1
LLe e 1
rd ca d +

H&d

l;call iosa (“get Tecord
times_get_Tecord called))
Break set after line 153

ps 1

check_back_issues:
proc;

a

.Break set after line 1.
-azlet times get reco:d ca
Break set after line i~

q

r 18:17 0.45C 2

no active frame).

53 in check back issues
175 in checF bacE issues

3
l; v times get record calle

Talled "4 tlmes"

lled =g

Q.

a: (let times_get_record_called = times_get_record_called +

e e e e e ———— e e —]

Not To Be Reproduced

4=21
(End Of Topic)

TOPIC V

MULTICS USER RING RUNTIME STRUCTURES.
Introduction., « +« &+ « « ¢ ¢ o o &
Supervisor Segments« ¢ o o
The Stack Segment - stack n . . .
The area.linker Segment

Getting Space for Program

Variables

(VS

Toric V¥ MULTICS USER-RING RUNTIME STRUCTURES Toric V°

OBJECTIVES:

Upon comepletion of this toeric, students should be able to:

1. Describe some of the wars in which eprocesses can be
inadvertently destroved.

-~ ™ ' * S 0 * o Fd o
2. Describe the funclions of the followins process.directory
seamentss:
dses
kst
pds

stack.1 - stack.7 {(as areropriate)

Cuniqise.area.linkerd
3. Describe the formal of the followins structures:

linkase offsel table (LOT}
internal static offset table (ISOT)

reference_name_.table (RNT)

4. Name the secltions of a standard Multics obhdect sesment and
give the funcltions of each.

Multics V-1 Fz1

INTRODUCTION

INTRODUCTION

I THERE IS NO CENTRALIZED LOCATION FOR ALL PROGRAM SUPPORT TABLES
AND DATA IN MULTICS

I NATIVE MULTICS USES SEVERAL SEGMENTS TC MANAGE RUNTIME
INFORMATION

MOST ARE FOUND IN THE PROCESS DIRECTORY

4

I THE PROCESS DIRECTORY IS CREATED FOR A USER AT LOGIN TIME
I IT IS PART OF THE HIERARCHY, JUST AS THE HOME DIRECTORY IS

1 IT IS GIVEN A SHRIEK NAME AS iTS IDENTITY

]
]

n
{x3
O]
tx1
1
s
o
*
v}
[9}]

> ARE MODIFIABLE BY PROGRAMS IN A PROCESS

I THEIR MISUSE IS THE MAIN CAUSE OF PROCESS FAILURE

ot To Be Reproduced 5-1 F21

"INTRODUCTION

r 04:38 0.163 1

T
|

|

I

| pd

| >process_dir_dir>!BXNCwXCBBBBBBB
| r 04:38 0.044 0
l

| ewd [pd]

| r 04:38 0.047 0
l

| list

|

I

|

l

I

I

l

l

|

!

|

I

|

l

Segments = 7, Lengths = 0.

rew 0 !BBBJLFKcGzxlDg.temp.0326
rew 0 !BBBJLFKcGxPLpJ.area.linker
rew 0 stack 4
re 0 pit

0 pds

0. kst .

0. dseg.

r 04:38 0.196 0

e e e e e e e e e it e s]

Not To Be Reproduced 5-=2 F21

" " 'SUPERVISOR SEGMENTS

dseg

I DESCRIPTOR SEGMENT

I RESIDES IN RING O

I USED BY THE HARDWARE TO CALCULATE MEMCRY ADDRESSES

I IS NOT ACCESSIBLE TQO THE USER

I XNOWN SEGMENT TABLE

I RESIDES IN RING O

IS NOT ACCESSIBLE TO THE USER

I IS USED INDIRECTLY BY VIRTUAL MEMORY OPERATICNS

I IS AN ARRAY OF BLOCKS,
ABOUT EACH SEGMENT THE PROCESS IS CAPABLE OF REFERENCING

Not To Be Reproduced

EACH BLOCK CONTAINING INFORMATION

F21

'SUPERVISOR SEGMENTS

I FOR A SEGMENT TO BE USED IN A PROCESS (E.G. PRINTED, EDITED,
EXECUTED) IT MUST HAVE AN ENTRY IN THE kst

I IF A SEGMENT HAS AN ENTRY IN THE kst IT IS CONSIDERED "KNOWN"

13
3
(o}
n

I PRCCESS DATA SEGMENT

I RESIDES IN RING O

1 CONTAINS = MANY THINGS . THE. SUPERVISOR . WANTS TO KNOW ABOUT. YOUR
"' "PROCESS

I YOUR PROCESS ID
I YOUR USER ID

I PROCESSOR INFORMATION FOR FAULT AND CONDITION PROCESSING
I RING INFORMATION

I MORE

I NOT ACCESSIBLE TO THE USER

Not To Be Reproduced S5=4 F21

- SUPERVISOR SEGMENTS

XSTE FOR SEG 344
SEGMENT

342 SEG 343
I KSTE FOR L aow o)
| szeMENT SEG 342
341

(3}
A
W
w
e
.,_J

XSTE FOR com
SZGHENT an_——_———'é" S=G 340
340
. SEG 337
SEG 336
K35t dseg
FAULT DATA
FAULT DATA
FAULT DATA
1 1
i ‘&i
" DATA CELLS
: T | I -
i 2 i L
1 i 1
L A S i

Not To Be Reprocduced 5-5

THE STACK SEGMENT - STACK N’

USER STACK

I FUNCTION

-

I

IS THE BACKBONE COF THE MULTICS PROGRAMMING ENVIRONMENT

USED TO DEFINE THE REST OF THE PROGRAMMING ENVIRONMENT

I THE STACK IS DIVIDED INTO TWO FUNCTIONAL PARTS

AT THE BEGINNING OF THE STACK IS THE STACK HEADER

'THE HEADER CONTAINS 'POINTERS OF ALL THE OTHER TABLES USED

AT SOME POINT INTO THE STACK SEGMENT (DEPENDING ON THE STACK
ITSELF) ACTIVATION FRAMES WILL BE FOUND

EACH FRAME CONTAINS INFORMATION ABOUT VARIABLES OF A
CURRENTLY ACTIVE (CALLED, BUT NOT YET RETURNED) PROGRAM

I THE SIZE OQF THE STACK IS NOT PREDICTABLE, BECAUSE AS PROGRAMS
ARE CALLED AND RETURN THE STACK WILL GROW AND SHRINK

Not To Be Reproduced 5-6 F21

TO NEXT

'THE STACK SEGMENT - STACK N

/
—— .

FRAME
/ STACK
FRAME
EOINTER
70 LINKS
> /
N ./’ <
A 7N T
. STACK
.//,4/’//% FRAME | POINTER
Ny . 1 . 7o 2RoGRAM
| 5> POINTER :
. o— | TO LINKS
—3
L STACK T
/,/” HEADER
{ 2
AINT
POINTER TO FIRST FRAME i;lgiggRAM

NULL
POINTER

Not To Be Reproduced

21

’ THE:STACK'SEGMENT‘: STACK N

I IS USED BY THE DYNAMIC LINKER AND BY PROGRAMS TO FIND THEIR
LINKAGE INFORMATION

e}

IS QUITE SIMPLY AN ARRAY OF ONE WORD ADDRESSES SHOWING WHERE
VARIOUS LINKAGE SECTIONS ARE

I TO FIND OUT WHERE THE LINKAGE INFORMATION FOR A PROGRAM (CALL
IT foo), FIRST OBTAIN ITS SEGMENT NUMBER

I COUNT UP THAT MANY WORDS FROM THE BEGINNING OF THE LOT AND
THE WORD AT WHICH YOU ARRIVE CONTAINS THE ADDRESS OF £oo0'S
LINKAGE INFORMATION

1 THE ULOT' HAST AN'INITIAL' SIZE OF 512 WORDS 'AND IS ACTUALLY
OVERLAID UPON THE BEGINNING OF THE STACK

g THE INTERNAL STATIC OFFSET TABLE - THE ISOT

I THE ISOT CONTAINS ONE WORD ADDRESSES OF THE STATIC SECTIONS OF
ALL THE ACTIVE PROGRAMS

I IT TOO IS AN ARRAY OF THESE ADDRESSES

I TO FIND THE LCCATION OF SOME PROGRAM'S STATIC SECTION, ONE
COUNTS UP ITS SEGMENT NUMBER WORTH OF WORDS AS IN THE LOT

Not To Be Reproduced 5-8 F21

THE STACK SEGMENT - STACK N

I THE SIZE OF THE ISOT IS ALSO 512 WORDS LONG AND 1IT IS FOUND
RIGHT AFTER THE LOT ON THE STACK

I BECAUSE OF THE LOT AND 1ISOT, THE FIRST STACK FRAME USUALLY
BEGINS RIGHT AFTER THE ISOT

w
i
O
]
N
[

Not To Be Reproduced

THE STACK SEGMENT - STACK N

s | POINTER

POINTER
POINTER
FOLNTAR
POINTER
POINTER
POINTER

/f POINTER

FIRST
;;ﬁgg POINTER
POINTER
- POINTER
POINTER
POINTER
POINTER
DOTNTER
POINTER
LOT POINTER
POTNTER

HEADER

Not To Be Reproduced 5-10 F21

THE AREA.LINKER SEGMENT

® THE COMBINED LINKAGE AREA

I AS WILL BE SEEN IN DYNAMIC LINKING, SOME INFORMATION FROM AN
OBJECT SEGMENT NEEDS TO BE COPIED CUT INTO A WRITEABLE AREA

I THE COMBINED LINKAGE AREA IS ONE OF THE TWO AREAS THAT HOLD THIS
COPIED DATA

I THE COMBINED LINKAGE AREA IS A PL/I TYPE AREA - A MANAGED POOL
OF STORAGE FOR ALLOCATING AND FREEING DATA :

I HISTORICALLY THE COMBINED LINKAGE AREA WAS A PHYSICALLY SEPARATE
AREA APART FROM CTHER RUNTIME AREAS.

I NOW IT IS JUST A "SYNONYM" FOR THE area.linker

-t

k] - 4
THEREFORE THE WH

o]
COMBINED LINXAGE AR

3
~
m
al
(]
o
=

BE THOUGHT

(@]
]
g
n
3
.E
(0]

[
=y
-
-

TR
Lt i
EA

V]
e
M
[V

& THE COMBINED STATIC AREA

] MODIFIABLE STATIC DATA IS MAPPED OUT IN THE CBJECT SEGMENT WHEN
IT IS CREATED, BUT NEEDS TC BE MODIFIED

I TO PREVENT THE MODIFICATION OF THE OBJECT ITSELF, THE STATIC
DATA TEMPLATE IS COPIED FROM THE OBJECT TC THE COMBINED STATIC
SECTION (COMBINED BECAUSE IT IS COMBINED WITH THE STATIC
SECTIONS OF OTHER PROGRAMS)

Not To Be Reproduced 5-11 F21

hlTHELAREK}LINKER'SEGMENT

FREZ
BLOCKS
ADDR ADDR ADDR ADDR ADDR
ADDR { ADDR ADDR ADDR ADRR ADDR
ADDR ADDR ADDR ADDR ADDR ADDR
0 0 SIZE HWM FIRST { LG.BK.
0
VERSION
TWO
AREA
Not To Be Reproduced 5-12

F21

THE AREA.LINKER SEGMENT

I THE COMBINED STATIC AREA IS AGAIN A PL/I TYPE AREA

I THE COMBINED STATIC AREA IS ANOTHER SYNONYM FOR THE area.linker
SEGMENT

@ THE REFERENCE NAME TABLE - THE RNT

I THE REPOSITORY FOR A SET OF ATTRIBUTES CALLED REFERENCE NAMES

I

]

-4

A REFERENCE NAME IS AN ATTRIBUTE OF A SEGMENT FOR PROGRAMMING
PURPOSES

‘A REFERENCE NAME EXISTS ONLY WITHIN A PROCESS - IT IS NOT

PERMANENT
IT IS A SYNONYM FOR A SEGMENT THAT IS THE OBJECT OF A SEARCH

IT MAY OR MAY NOT BE RELATED TO THE ACTUAL NAME OF THE
SEGMENT

IT IS CREATED IMPLICITLY OR EXPLICITLY

'] WHEN A PROGRAM IS CALLED IT IS GIVEN A REFERENCE NAME

I WHEN THE RING 0 initiate PROGRAM IS CALLED (THROUGH A
GATE, OF COURSE)

THE RNT ALSO MAINTAINS THE ASSOCIATION BETWEEN A REFERENCE NAME

AND THE SEGMENT NUMBER OF A SEGMENT

Not To Be Reproduced 5-13 F21

THE . AREA.LINKER, K SEGMENT .

I THE RNT IS IN THE FORM QOF A RATHER INVOLVED SERIES OF LINKED
LISTS

I THE RNT IS DEFINED BY A HEADER WHICH CONTAINS TWO HASH
TABLES, ONE FOR SEGMENT NUMBERS AND ONE FOR REFERENCE NAMES

I EACH ENTRY IN THE RNT IS 1IN TWO LINKED LISTS - A REFERENCE
NAME LIST AND A SEGMENT NUMBER LIST

I THE RNT RESIDES IN THE MIDDLE PORTION OF THE area.linker SEGMENT

I IT MANAGES ITS CWN AREA IN THIS SEGMENT

® 'THE USER FREE AREA

I USED FOR ALLOCATING CONTROLLED A:D SOME BASED VARIABLES, FOR
FORTRAN -COMMON AND FOR COBOL DATA

I OBVIOUSLY, BY NOW, IT IS A PL/I AREA

I THE USER FREE AREA ALSQO IS A '"SYNONYM" FOR THE area.linker
SEGMENT

I TO RUN A PROGRAM THE USER MUST

I CREATE AN OBJECT SEGMENT ACCEPTABLE TOC THE MULTICS LINKERS

I CALL THE PROGRAM

Not To Be Reproduced 5=-14 F21

.THE AREA.LINKER SEGMENT

SYSTEM FREE AREA

omz.«m.’?‘oh

STACK (get_system_free_area)
REGISTERS
CALLING HISTORY TV
Sty IN AN ARFA
T
COMBINED STATIC AREA AUTCMATIC :
A
.»\/~,—~/~aﬂ~r*’““ ASSIGNED LINKAGE AREA
(hes_Sassizn_linkage)
INTERNAL :
STATIC :
SECTION ,—~/~uﬂ\/“"’\“ﬁ7 EA3ED DATA-
IN AN AREA
<+ e STACK o
HEADER o o
. -
v
4
ISCT ¥ . #10T © | EXTERNAL
T , ¢ ..,
Pt SXT. STATIC & D TRoL
1 COMMON 3LOCKS- INFO
— PER PROCESS *r -
1 LINKAGE CONTROLLED CONTROLLED
: sJ SECTION INTERNAL EXTERNAL
B
Yl T COBOL
a ' RUN UNIT
é a'i INFO e—ip{ COBOL PROGRAM
g | F cobol _centrol data_jC_# DATA
A J axt Z_¢4 -
Y pro P_g- 0
By | =8 = I BASED DATA- BASED DATA-
L N NO AREA IN I/0 3UFFER
S T
E
R
s
DIRECTORY
oxt ol PATHNAMES >
—» | EXTERNAL STATIC
prog e -+~ > AND COMMON BLOCKS-
OBJECT PERMANENT
prog.pll e PROGRAM
SOURCE ext
PROGRAM
prog
prog.pll

Not To Be Reproduced

F21

RO N7 Yo

3 %1 g)

> 15w 3

_THE AREA,LINKER SEGMENT

o

FROM ANQTHER PRQOGRAM
call progSentry ();
I OR, BY INVOKING IT AT COMMAND LEVEL
prog$entry
I THE COMMAND LEVEL INVOCATION DOES NOT CALL IN THE DYNAMIC
LINKER, WHILE THE CALL STAEMENT MAY

I THE OBJECT SEGMENT FUNCTIONS TO

I PROVIDE INSTRUCTIONS AND DATA IN THE MACHINE'S LANGUAGE
I INSTRUCTIONS ARE CURRENTLY IN L68 MACHINE CODE

I THE DATA IS PROVIDED FOR THE MULTICS LINKER, PRELINKER,
BINDER, AND DEBUGGERS

I COMPOSED.OF 7' SECTIONS
I TEXT SECTION
I DEFINITION SECTION
I LINKAGE SECTION TEMPLATE
I STATIC SECTION TEMPLATE (OPTIONAL)
I SYMBOL SECTION
I OBJECT MAP

I OBJECT MAP POINTER

Not To Be Reproduced 5-16 F21

oBJecT LeGrenT
.. THE AREA-LINKER SEGMENT

I TEXT SECTION

I PURE PART OF AN OBJECT PROGRAM

I CONTAINS:
I INSTRUCTIONS (NOC SELF~-MODIFYING INSTRUCTIONS)
[ENTRY SEQUENCES
I READ-ONLY DATA
felayive P@WTO tL

I DEFINITION SECTION

I NONEXECUTABLE, READ-ONLY SYMBOLIC INFORMATION
USED FCR DYNAMIC LINKING

I
[. USED FOR SYMBOLIC DEBUGGING

I CONTAINS
I DEFINITIONS ,
I OFFSETS OF NAMED ENTITIES IN TEXT AND OTHER SECTIONS
I

DEFINITION HASH TABLE (OPTIONAL) TO EXPEDITE THE LINKER'S
SEARCHES

I SYMBOLIC NAMES OF EXTERNAL REFERENCES

Not To Be Reproduced 5-17 F21

_ THE AREAYLINKER SEGMENT

I LINKAGE SECTION TEMPLATE

I INITIAL CONTENTS OF THE IMPURE, NONEXECUTABLE PART OF A
PROGRAM

I USED FOR DYNAMIC LINKING
I CONTAINS

I UNSNAPPED LINKS TO EXTERNAL REFERENCES

I DATA ALLOCATED ONCE PER-PROCESS (INTERNAL STATIC DATA)

I COPIED 1INTO COMBINED LINKAGE AREA IN THE PROCESS DIR WHEN
OBJECT SEGMENT IS FIRST REFERENCED

Not To Be Reproduced 5~-18 F21

THE AREA.LINKER SEGMENT

I STATIC SECTION TEMPLATE

I THE INITIAL CONTENTS OF IMPURE, NONEXECUTABLE DATA FOR OBJECT
PROGRAM

DATA IS

4

I ALLOCATED ONLY ONCE PER PROCESS

I INITIALIZED ONLY ONCE PER PROCESS

I USUALLY INCLUDED AS PART OF LINKAGE SECTION UNLESS THE
-separate_static CONTROL ARGUMENT IS USED WHEN COMPILING THE
PROGRAM

I COPIED INTO COMBINED STATIC AREA IN PROCESS DIR WHEN OBJECT
SEGMENT IS FIRST REFERENCED

Not To Be Reproduced 5-19 F21

THE AREA.LINKER SEGMENT

I SYMBOL SECTION
I IS PURE

I CONTAINS INFORMATION NOT BELONGING IN OTHER SECTIONS

I USED FOR SYMBOLIC DEBUGGING

4

= LV P L4 S i AP 2 ~

USED FOR OBJECT PROGRAM STATUS COMMANDS (SUCH AS pli)

I INFORMATION DOCUMENTING CREATION OF OBJECT PROGRAM
I RELOCATION INFORMATION
I SOURCE SYMBOL NAMES AND STORAGE LOCATIONS (PRESENT ONLY IF
-table OPTION SPECIFIED)
I NOTE: IN THE CASE OF BOUND OBJECT, THIS SECTICN MIGHT BE

FURTHER STRUCTURED INTO A THREADED LIST OF VARIABLE LENGTH
"SYMBOL BLOCKRS™ i » .

Not To Be Reproduced 5=20 F21

THE AREA.LINKER SEGMENT

I OBJECT MAP

I DEFINES THE LOCATION (OFFSET) AND LENGTH OF OTHER SECTIONS

I DEFINES OBJECT SEGMENT FORMAT
I SINGLE (UNBOUND) OBJECT PROGRAM, CR

I SEVERAL OBJECT PROGRAMS, BOUND TOGETHER

] OBJECT MAP POINTER

I AN 18-BIT OFFSET 1IN THE UPPER HALF WORD OF THE LAST WORD IN
THE OBJECT SEGMENT

I GIVES LOCATION OF OBJECT MAP, RELATIVE TO BASE OF OBJECT
SEGMENT

I FOUND USING THE BIT COUNT

Not To Be Reproduced 5-21 F21

THE AREA.LINKER' SEGMENT

mEyT
- det % L

SECTION

DEFINITIONS

A ' LINKAGE
: SECTION

STATIC

SECTION

7771

pbuecr
e P
Pn. wi? {\‘—éu

OBJECT MAP

Not To Be Reproduced 5-22 F21

THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

8 CONSTANTS

I

-

CONSTANT DATA VALUES, XNCWN ONLY TO ONE PROGRAM

DECLARATION

I PL/l: dcl con fixed bin internal static options(constant)
initial(3);

] COBOL: CONSTANT SECTION.
77 CON; PIC IS 99; VALUE IS 3.

1 FORTRAN: parameter con=3

ALLOCATED AND INITIALIZED

I ONCE BY THE COMPILER, WHEN THE SOURCE PROGRAM IS COMPILED

FREED

I ©NEVER

Not To Be Reproduced 5-23

F21

THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

@ INTERNAL STATIC

I PER PROCESS DATA, KNOWN ONLY TO ONE PROGRAM

ECLARATION

=
(@]

I PL/l: declare is internal static;

I FORTRAN: save is

I TLOCATION

I IN. INTERNAL. STATIC SECTION OF PROGRAM, WHICH .IS THEN COPIED
- TO [uniquel.area.linker : ,

I NOTE: SUCH VARIABLES CAUSE THE SIZE OF THE OBJECT TO GROW

I ALLOCATED AND INITIALIZED

I FIRST TIME OBJECT SEGMENT IS CALLED IN THE PROCESS BY COPYING
OBJECT'S LINKAGE SECTION (OR SEPARATE STATIC SECTION)

I FREED

I WHEN PROCESS TERMINATES, OR WHEN OBJECT SEGMENT IS EXPLICITLY
TERMINATED (terminate COMMAND)

Not To Be Reproduced 5-24 F21

" THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

2 AUTOMATIC

PER PROGRAM-ACTIVATION DATA, KNOWN ONLY TO ONE PROGRAM

-

I DECLARATION

I PL/l: declare a automatic;

I FORTRAN: automatic a

LOCATION

—4

I "ALLOCATED" -IN STACK FRAME WHEN FRAME IS PUSHED

I ALLOCATED AND INITIALIZED

I EACH TIME PROGRAM IS CALLED

I FREED

I WHEN PROGRAM RETURNS

Not To Be Reproduced 5-25 F21

‘THE AREA<LINKER SEGMENT-

GETTING SPACE FOR PROGRAM VARIABLES

3 EXTERNAL STATIC - PER PROCESS

1 PER PROCESS DATA, SHARED BETWEEN PROGRAMS, STORED IN TEMPORARY
SEGMENTS IN THE PROCESS DIRECTORY

I DECLARATION
I PL/1: declare e external static;

I FORTRAN: common b,c
common /e/b,c

1 'LOCATION

T ALLOCATED IN USER FREE AREA

I ALLOCATED AND INITIALIZED

I WHEN FIRST REFERENCED

I FREED
1 WHEN PRQOCESS TERMINATES, OR EXPLICITLY (SEE
reset_external_variables AND delete_external_variables
COMMANDS)

Not To Be Reproduced 5-26 F21

THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

® EXTERNAL STATIC - PERMANENT

i PERMANENT DATA, SHARED BETWEEN PROGRAMS, STCRED IN USER-SUPPLIED
SEGMENTS

I DECLARATION

I PL/1l: declare ext$ external static,
extSe external static;

I FORTRAN: common /ext$/b,c
common /ext$e/b,c

-LOCATION

4

I IN PERMANENT SEGMENT ext, FOUND BY LINKER (USING OBJECT
SEARCH RULES)

I SEGMENT MUST EXIST PRIOR TO EXECUTION

I ALLOCATED AND INITIALIZED

I WHEN SEGMENT ext IS CREATED

] FREED

I EXPLICITLY BY DELETING THE CONTAINING SEGMENT

Not To Be Reproduced 5-27 F21

_THE AREA.LINKER SEGMENT'

GETTING SPACE FOR PROGRAM VARIABLE

@ CONTROLLED STCORAGE - INTERNAL

I EXPLICITLY-ALLOCATED DATA, XNOWN TO ONE PROGRAM

4
(]
(03]
@]
r'ﬂ
Y
o5]
=3
3
4
(@)
4

I PL/l: dcl c controlled int; /* int is default */
allocate c¢;
allocate ¢;

I LOCATION

1 ALLOCATED IN USER FREE AREA IN {unigue].area.linker

I ALLOCATED ANC INITIALIZED

I EXPLICITLY BY PL/1l allocate STATEMENT

I FREED

I EXPLICITLY BY PL/1 free STATEMENT -

Not To Be Reproduced 5-28

F21

. THE AREA.LINKER SEGMENT

GETTING SPACE FOR PRCGRAM VARIABLES

8 CONTRCLLED STORAGE - EXTERNAL
] EXPLICITLY-ALLOCATED DATA, SHARED BETWEEN PROGRAMS
I DECLARATION

I PL/l: declare ce controlled external;
allocate ce;

I LOCATION

I ALLOCATED IN USER FREE AREA IN [unigue].area.linker

l—i

I EXPLICITLY BY PL/1 £free STATEMENT

Not To Be Reproduced 5-29

F21

- THE AREA.LINKER SEGMENT

'GETTING SPACE FOR PROGRAM VARIABLES

® BASED - IN AN AREA

I EXPLICITLY-ALLOCATED DATA, KNOWN ONLY TO ONE PROGRAM, QUALIFIED
BY A LOCATOR

I DECLARATION

I PL/l: dcl area area,
b based (p) ,
p ptr;
allocate b in (area);

I LOCATION
I DEPENDS WHERE THE USER SPECIFIES THE AREA TO BE (PERHAPS THE

SYSTEM FREE AREA SUPPLIED BY INVOKING get_system_free_area_)

I ALLOCATED AND INITIALIZED

I EXPLICITLY BY PL/l allocate STATEMENT

I FREED

I EXPLICITLY BY PL/l free STATEMENT

Not To Be Reproduced 5-30 F21

THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

@ BASED - NO AREA

-1

BY A POINTER

I DECLARATION

I PL/1: declare b based(p),
(p,pl) ptr;
allocate b;
allocate b set(pl);

I LOCATION

I IN USER FREE AREA WITHIN [unique].area.linker

£

PP AR AT = by -
ALLULALLDY AND L°U

-4

I EXPLICITLY BY PL/1 allocate STATEMENT

I FREED

I EXPLICITLY BY PL/l free STATEMENT

Not To Be Reproduced 5-31

EXPLICITLY-ALLOCATED DATA, XNOWN ONLY TO ONE PROGRAM, QUALIFIED

THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

@ BASED - IN AN I/0 BUFFER

I

EXPLICITLY-ALLOCATED DATA, KNOWN ONLY TO ONE PROGRAM, QUALIFIED
BY A POINTER

DECLARATION

I PL/1: declare b based(p), £ file;
read file(f) set(p);
locate b file(f) set(p);

LOCATION

I IN..AN I/0 BUFFER..ALLOCATED BY¥ PL/l.IN .USER FREE AREA IN
" [uniquel]..area.linker ’ . .

ALLOCATED

I EXPLICITLY BY PL/L read (WITH set OPTION) OR locate STATEMENT

INITIALIZED

I BY locate STATEMENT

FREED

I BY SUBSEQUENT I/0 OPERATION ON THE FILE

Not To Be Reproduced 5-32 F21

THE AREA.LINKER SEGMENT

GETTING SPACE FOR PROGRAM VARIABLES

® CCBCL DATA

I INTERNAL STATIC-LIKE DATA, KNOWN ONLY TC ONE PROGRAM

I DECLARE

I COBOL: WORKING SECTION.
77 CB PIC IS 99.

I LOCATION

I ALLCCATED IN USER FREE AREA

T ALLOCATED AND INITIALIZED
I WHEN THE PROGRAM IS FIRST CALLED

] WHEN THE PROCESS OR COBOL RUN UNIT TERMINATES, OR EXPLICITLY
(BY A cancel_cobol program COMMAND OR A CANCEL STATEMENT)

Not To Be Reproduced 5-33 F21
(End QOf Topic)

TOPIC VI

MULTICS DYNAMIC LINKING . ¢ o ¢ o =
Introduction. . ¢« ¢ ¢ o o o o &
Multics Compiler Conventions. .
Mutlics Operating System Support
The Linker - Phase I. . . « « o«
The Linker - Phase II
By~-Products of Dynamic Linking.

°
®
-
]
3

®

o L] L L L]

2 e © o o

®

6 & e o6 0o

e e 8 o 06 o o

.

» o o o o

L] L L] L] ®

L]

8

i

i
MO

mo\m?wno\m
W It = bt OO b b

 Teeic VI MULTICS DYNAMIC LINKING | Toric VI
OBJECTIVES:

Upon complelion of this torpic, students should be able to:

1. Compare convenltional linkins with Multics dynamic linkins,

2. List the functions rperformed by the Multics dynamic linker

3. Trace the oreration of the dynamic linker from the time it
first encounters an unsnarrped link until it resolved the
linkase fault.

4., Discuss the side-effects of dynamic linkins and some of the
dansers related to it.

3. Exeplain whalt harrens when bindins occurs and why it can be
used to sreal. advantase.

Multics VIi-1 F21

INTRODUCTION

B LINKING
I A LINKER IS BASICALLY A POST COMPILER

I SYMBOLIC REFERENCES TO LOCATIONS NOT WITHIN THE OBJECT NORMALLY
CAUSE THE TRANSLATOR TO PRINT AN ERROR MESSAGE

I TELLING THE COMPILER OR ASSEMBLER THAT A SYMBOL IS EXTERNAL IS
JUST A FUDGE SO THAT IT WON'T COMPLAIN

I THE TRANSLATOR STILL CAN'T CALCULATE AN ADDRESS, SC IT BUILDS A
STRUCTURE TELLING WHAT IT WAS LOOKING FOR

T .IT -1S "THE.JOB. OF ~ THE LINKER " TO' ‘RESOLVE ALL THESE UNLINKED
" REFERENCES e ‘ : S

Not To Be Reproduced 6-1 F21

INTRODUCTION

CALL

O o
CALL Py

Pl:
cC =7

2727
FE g1

Not To Be Reproduced

F21

INTRODUCTION

THE TRADITIONZAL LINKER

I

PHILOSOPHY

LINKING MUST BE DONE BEFORE THE PROGRAM RUNS

LINKING IS ASSOCIATED WITH LOADING - PLACING THE PROGRAM IN
MEMORY

ALL EXTERNAL REFERENCES MUST BE PRESENT AT LINKING TIME

THE LINKER PRODUCES A "LOAD UNIT" OR "BOUND UNIT" - ABLE TO
BE PLACED IN MAIN MEMORY WITH ALL ADDRESSES RESOLVED

THE LOAD UNIT IS THEN RUN BY THE USER

LIMITATIONS

THE LINKER IS THE LAST STEP 1IN ADDRESS RESOLUTION - IF IT
CAN'T DO IT, NOTHING CAN

BECAUSE TRADITIONAL LINKING IS ASSOCIATED WITH REAL MEMORY,
ALL PROGRAMS HAVE TO BE PRESENT TO GET A SPOT 1IN THE BOUND
UNIT, AND HENCE THE MEMORY

IF THE LINKER CAN'T RESOLVE A LINK, THE LINKING FAILS

CHANGING ONE PROGRAM IMPLIES LINKING EVERYTHING OVER AGAIN

SUBSTITUTING A PROGRAM MID-EXECUTION IS IMPOSSIBLE

Not To Be Reproduced 6-3 F21

Not To Be Reproduced

INTRODUCTION

Pl:

CALL

A

F21

INTRODUCTION

THE DYNAMIC LINKER

I PHILOSOPHY

IN AN OPERATING SYSTEM WITH MANY (100 PLUS) SEGMENTS, LOADING
AND RELOCATION BECOME PART OF THE JOB OF THE HARDWARE, NOT
THE SOFTWARE

RESOLVING REFERENCES BECOMES EASIER BECAUSE THE TRANSLATOR
GENERATES ADDRESSES RELATIVE TO THE BASE OF THE PROGRAM, AND
HENCE THE SEGMENT

THE JOB OF THE LINKER HAS BEEN REDUCED TO FINDING A SEGMENT
NUMBER AND AN OFFSET WITHIN THE SEGMENT TO COMPLETE THE
EXTERNAL REFERENCE

" THE 'CALCULATION ~OF TWO NUMBERS, LINKING CAN BE POSTPONED

UNTIL THE EXTERNAL REFEENCE IS MADE

ALTHOUGH DYNAMIC LINKING IS POSSIBLE USING A REAL MEMORY,
UNSEGMENTED MACHINE, THE BY-PRODUCTS OF SEGMENTATION MAKE IT
WORTH WHILE TO IMPLEMENT

WITH THE DRUDGERY OF PRE-LINKING TAKEN AWAY FROM THE
PROGRAMMER, S/HE CAN SPEND MORE TIME WORRYING ABOUT THE
PROGRAM, AND NOT ABOUT THE MEMORY MANAGEMENT

LIMITATIONS

EXCESSIVE USE OF DYNAMIC LINKING CAN SLOW THE QVERALL SYSTEM
THROUGHPUT

BY GIVING THE JOB OF LINKING TO THE OPERATING SYSTEM, THE
PROGRAMMER HAS LESS SAY OVER WHICH VERSION OF A PROGRAM IS TO
BE USED

Not To Be Reproduced 6-5 F21

INTRODUCTION

I ADVANTAGES

I PROGRAMS ARE EXECUTEABLE WITHOUT ALL EXTERNAL REFEREWCES
BEING PRESENT - ONE NEED ONLY WRITE AND DEBUG A SMALL PORTION
AT A TIME -

I SUBSTITUTING SUBROUTINES CAN BE DONE AT RUNTIME WITH LITTLE
EFFORT AND COST TO THE OPERATING SYSTEM

I EXTERNAL REFERENCES THAT ARE AVOIDED BECAUSE OF TRANSFERS
WITHIN A PROGRAM NEVER HAVE TO BE RESOLVED

Not To Be Reproduced 6-5 F21

P:
CAaLL

Pl

INTRODUCTION

Pl:

Not To Be Reproduced

o cann (BT b

DYNAMIC LINKER

22?2

F21

MULTICS COMPILER CONVENTIONS

®8 EXTERNAL REFERENCES

I ALL STANDARD MULTICS COMPILERS GENERATE THE SAME TYPE OF LINK
THAT RELATES TO BOTH PRELINKING (BINDING) AND DYNAMIC LINKING

I IS A REPCSITORY FOR THE EXTERNAL ADDRESS

I CONTAINS INFORMATION TELLING ABOUT THE NAME OF THE EXTERNAL
REFERENCE, INTERNAL LOCATIONS, WHETHER OR NOT TO CREATE IT IF
NOT FOUND, ETC.

1 INITIALLY CREATED IN THE LINYAGE SECTION OF THE CBJECT SEGMENT
I ONE FOR EACH EXTERNAL REFERE'CE

I IS TWO WORDS LONG

I MAY BE UNSNAPPED
I THE END OF THE FIRST WORD CONTAINS THE "FAULT-TRAP 2" CODE

I THE REST OF THE LINK CONTAINS ADDRESSES OF INFORMATICON FOR
THE LINKERS

I MAY BE SNAPPED

I THE END OF THE FIRST WORD CONTAINS THE "ITS" CODE -
INDICATES A VALID MULTICS POINTER

Not To Be Reproduced 6-8 F21

MULTICS COMPILER CONVENTIONS

I THE FIRST BHALF OF THE FIRST WORD CONTAINS THE SEGMENT
NUMBER OF THE EXTERNAL REFERENCE

I THBE FIRST HALF OF THE SECOND WORD CONTAINS THE OFFSET
WITHIN THE SEGMENT OF THE EXTERNAL REFERENCE

I CONTAINS ALL THE LINKS A PROGRAM NEEDS

I Is COPIED OUT OF THE OBJECT SEGMENT BEFORE THE OBJECT IS
EXECUTED

'] IS MERGED INTO THE COMBINED LINKAGE AREA.

Not To Be Reproduced 6-9 F21

Not To Be Reproduced

MULTICS COMPILER CONVENTIONS

0060009 DEFS

TRAP

POINTER TO SYMBOL SECTION

POINTER TC LINKS'

ORIGIN

 UNUSED

LENGTH] SEGNO

LINK

LINK

F21

' MUTLICS OPERATING:SYSTEM SUPPORT.

B MANAGEMENT OF EXTERNAL REFERENCES

I WITH FEW EXCEPTICNS, COMPUTERS EXPECT ADDRESSES TO BE IN NUMERIC
(BINARY) FORM

I THE MULTICS HARDWARE CURRENTLY FOLLOWS THIS ARCHITECTURE

I THE DESIGNERS OF MULTICS DECIDED THAT IT WAS TIME TO MOVE AWAY
FROM SOFTWARE ALSO USING NUMBERS

I PROGRAMMERS STOPPED PROGRAMMING 1IN BINARY MACHINE LANGUAGE
YEARS AGO, USING A MNEMONIC ASSEMBLY LANGUAGE

..l . HUMANS REMEMBER AND MANIPULATE WORDS. MORE EFFICIENTLY. THAN
NUMBERS ™

I THE HARDWARE LCCATIONS OF DATA MAY CHANGE, BUT THE NAME WILL
REMAIN THE SAME

I SOFTWARE TECHNOLOGY NOW ALLOWS SYMBOLIC NAMES TO BE
AUTOMATICALLY MANAGED CHEAPLY ‘

I MULTICS SUPPORTS SYMBOLIC (VIRTUAL) ADDRESSES FOR POTENTIALLY
ALL THE DATA ON THE SYSTEM

I SPECIFIED BY A TWO COMPONENT NAME IN THE FORM QF
alpha$beta
I alpha IDENTIFIES A SEGMENT

I beta IDENTIFIES A LOCATION WITHIN THE SEGMENT

Not To Be Reproduced 6-11 F21

"MUTLICS OPERATING SYSTEM SUPPORT

I MULTICS WORRIES ABOUT THE HARDWARE NUMBER ASSOCIATED WITH
alpha

I MULTICS WORRIES ABOUT THE HARDWARE NUMBER ASSOCIATED WITH
beta

I THE PROGRAMMER IS CONCERNED ONLY WITH REMEMBERING AND
MANAGING THE ENTITY alpha$Sbeta

{ THIS SCHEME IS IMPLEMENTED EVEN AT THE MULTICS ASSEMBLY
LANGUAGE LEVEL

I MULTICS MANAGES SEVERAL TABLES TO MAINTAIN THE ASSOCIATION
BETWEEN A SYMBOLIC NAME AND ITS HARDWARE NUMBERS

I dseq.
I kst
I RNT

] DEFINITION SECTION IN OBJECT SEGMENTS

I THERE IS AN INTERPLAY AMONG THE TABLES

I dseg AND kst CAN BE CONSIDERED AS A NECESSARY PAIR
I dseg TELLS THE HARDWARE WHERE SEGMENTS ARE
I kst TELLS THE SOFTWARE WHO SEGMENTS ARE

I THE RNT LISTS ALIASES FOR SEGMENTS LISTED IN THE kst

Not To Be Reproduced 6-12 F21

THE LINKER - PHASE I

I PROLOGUE

I THE INSTANT A PROGRAM BEGINS TO RUN, IT HAS NOT YET MADE ANY
CALLS

I 1ITS LINKAGE SECTION WILL CONTAIN ONLY UNSNAPPED LINKS BECAUSE
LINKS ARE NOT SNAPPED UNTIL NEEDED

I AN ATTEMPT TO REFERENCE THROUGH ANY OF THESE LINKS WILL CAUSE
A HARDWARE FAULT

Not To Be Reproduced 6-13 F21

.THE LINKER - PHASE I

PRO 270 7030
PR1 110 322
PR2 244 4420
PR3 .121 0
PR4 260 132090
PR5 77 3736
PR6 244 4420
PR7 244 0
Not To Be Reproduced 6-14

000000 DEFS | TRAP

POINTER TC SYMBOL SECTION

POINTER TC LINKS' ORIGIN

UNUSED

LENGTH| SEGNO LENGTH

LINK

LINK

F21

- THE LINKER < PHASE I .

.1 THE FAULT HANDLER

I A REFERENCE THROUGH A LINK IS DONE WITH HARDWARE INDIRECTION

I ALL THE LINK DOES IS TELL THE HARDWARE WHERE TO GO FOR THE
NEXT REFERENCE

I USES AN ITS-PAIR

T Trme o
L Lio o
qu

I 1IF THE HARDWARE FINDS THE BIT PATTERN 100110 AT THE END OF
THE FIRST WORD OF A LINK, IT FALLS INTO A FAULT TRAP 2.

I THE WHOLE PROCESSING UNIT IS HALTED AND THE MACHINE IS FORCED
. TO EXECUTE THE PROGRAM £im [\~ wyeccusT Woodole

I FROM THIS POINT ON, CONTROL IS IN THE HANDS OF THE
.. SUPERVISOR

I THIS IS RING ZERO'
I THERE IS NO WAY FOR THE USER TO INTERCEPT THIS FAULT

I fim ASCERTAINS THAT THE FAULT WAS FAULT TRAP 2 AND CALLS THE
PROGRAM link_snap

I 1link_snap IS THE DYNAMIC LINKER

I "ink_snap FIRST VERIFYS THAT THIS IS A VALID UNSNAPPED LINK

Not To Be Reproduced 6-15 F21

v}

s

V2%

260 13200

260 13212

Not To Be Reproduced

- THE LINKER - PHASE I

12 QFFSET IN
LINKAGE SECTION

ADDR1

46 ADDR?2

6-16

THE LINK

Fr21

' THE LINKER - PHASE I

SEARCH FOR THE NAME

link_snap LOOKS AT THE LINK THAT CAUSED THE FAULT AND EXTRACTS
FROM IT POINTERS BACK TO THE OBJECT SEGMENT

NITION SECTION, ARE

SEGMENT AND LOCATIQON

IN THE OBJECT, AS PART
MBOLS

n ﬁl!ﬂ"hl‘?\ Dﬁ_‘Dﬂ‘ﬁ‘ﬂ’D DN TN OV
LIVOGRL T Rme BRGNS LN T O 1

WITHIN IT THAT WE WANT

3

15 Y

link_snap OBTAINS THE TWO SYMBOLIC NAMES THAT MAKE UP THE
VIRTUAL ENTRY DESCRIBING THE FAULTED LINK FROM THIS LIST OF
SYMBOLS

Not To Be Reproduced 6-17 F21

. THE LINKER - PHASE 1

TEXT

DEFINITIONS
LINKAGE

SYMBOLS

FAULTED LINK

Not To Be Reproduced 6-18 F21

THE LINKER - PHASE II

8 OBTAINING THE SEGMENT NUMBER

I A SEGMENT NUMBER DESCRIBES TO HARDWARE THE LOCATION OF A REAL
SEGMENT; THE DYNAMIC LINKER HAS TO FIND THAT REAL SEGMENT

I THE SEARCH RULES

I EACH PROCESS HAS A LIST OF PLACES TO SEARCH JUST IN CASE
LINKAGE FAULTS OCCUR (WHICH IS INEVITABLE)

I THIS IS THE USER MODIFIABLE ATTRIBUTE OF A PROCESS CALLED
"THE SEARCH RULES"

I A SPECIAL CASE: initiated segments
© I '-THE LINKER GOES' TO'THE ‘RNT’

I IT -LOOKS UP 'xHE'NAME OF THE SEGMENT - -IT OBTAINED DURING
PHASE I (THE R IS A BUNCH OF LINKED LISTS)

I IF THE NAME IS FOUND, THEN THE NUMBER ASSOCIATED WITH IT
IS ASSUMED TO BE THE DESIRED SEGMENT NUMBER

I IF THE NAME WAS NOT FOUND, THEN WE MOVE ON TO THE NEXT
SEARCH RULE

Not To Be Reproduced 6-19 F21

Not To Be Reproduced

THE LINKER - PHASE IT

¥

? pr 401
f print 401
? gedx 370
? ax 378
j .

X

6-20

21

 THE LINKER - PHASE IT

e

11 » 3 3
HUNCH: referencing dir
-

o

I THE SECOND RULE IN THE SEARCH RULES IS referencing_dir

I THIS MEANS THE LINKER WILL LOOK IN THE DIRECTORY OF THE
PROGRAM THAT CAUSED THE LINKAGE FAULT FOR THE SEGMENT

I ALTHOUGH THIS IS NOTHING MORE THAN THE LIST COMMAND, IT IS
NOT AN INEXPENSIVE OPERATION

i

ITS PURPOSE IS TO CONTAIN THE GLOBAL NATURE OF THE DYNAMIC
LINKER IN ITS SEARCH FOR THE SEGMENT

I THIS TENDS TO ISOLATE ALL THE PROGRAMS IN A DIRECTORY INTO
A SUBSYSTEM

I THE DANGER OF THIS WILL BE STATED LATER

Not To Be Reproduced 6=21 F21

THE LINKER - PHASE II

| e

THE REFERENCING DIR {' somemdir

-

—

{ a prag { prog
5
AN \
N \'-..—-'
THE
FAULTING
PROGRAM

Not To Be Reproduced 6-22 F21

'THE LINKER = PHASE II

r.u-u-k-'-n Adir
WULARLOY Gal
e

I THE LINKER FIGURES THAT THE USER HAS THE PROGRAM AND WILL
LIST THE CONTENTS OF THE WORKING DIRECTORY

I THIS ALSO TENDS TO CONTAIN THE WORKING DIRECTORY INTO A
SUBSYSTEM OF SORTS

I IT ALSO LETS THE USER ACCUMULATE A LIBRARY OF INTERWOVEN
PROGRAMS :

Not To Be Reproduced 6=-23 F21

THE LINKER - PHASE I

a—

~
{wd} another dix ;
- 4
{ ¥]
’]
/“L)
s/ \,
/ Yy \
\Ty_proc / \my_other \stolen)

\) 3 ‘
__‘,// N \\\~_,///

Not To Re Reproduced 6-24 F21

THE LINKER - PHASE II .

I SYSTEM LIBRARIES
I HERE BEGINS THE BIG SEARCH

I AGAIN, A LIST FOR EACH DIRECTORY UNTIL THE LINKER FINDS
THE SEGMENT IN QUESTION

I THIS CAN EASILY BECOME THE MOST TIME CONSUMING JOB OF THE
DYNAMIC LINKER

I IF THE SEGMENT WAS NOT FOUND IN EITHER THE RNT OR THE
DIRECTORIES, THEN THE "linkage_error" CONDITION IS SIGNALLED

I IF THE SEGMENT WAS NOT FOUND 1IN THE RNT, BUT WAS FOUND IN A
DIRECTORY, ADD IT TO THE kst AND RNT

rer. Fi IE.NQE . .IN THE kst, ‘THEN THE PROGRAM. .IS NOT. IN. _THE,ADDRESS .., -:

"'SPACE OF THE PROCESS AND CAN'T BE USED

I AFTER ADDING THE PROGRAM INTO THE kst THE LINKER ALSO PLACES
THE SEGMENT NAME INTO THE RNT

I THE SEGMENT NAME WE OBTAINED IN PHASE ONE IS NOW A REFERENCE
NAME

b

SUBSEQUENT SEARCHES FOR THIS NAME BY FUTURE PROGRAMS IS THIS
PROCESS WILL FIND A MATCH IN THE RNT, AND HAVE AN INEXPENSIVE
LINKAGE FAULT

Not To Be Reproduced 6-25 F21

 THE LINKER - PHASE II

UNUSED
KSTE

KSTE
FOR
410

o s
@2 W
3

o
tr

a

Not To Be Reproduced

A
T s
A
; ? | or 401
g y
| ? i print 401
N\, 4
-~ ? prog 416G
i
]
L4
9 | gedx 370
i
T
9

21

'THE 'LINKER - PHASE II

I LOCATE THE DEFINITION SECTION OF THE JUST FOUND SEGMENT
I OBTAIN THE BIT COUNT FROM THE DIRECTORY

I DIVIDE IT BY 36

I SUBTRACT 1

I THIS IS THE LOCATION OF THE OBJECT MAP POINTER; USE IT TO
LOCATE THE OBJECT MAP

] WITHIN THE OBJECT MAP FIND THE ADDRESS OF THE DEFINITION
SECTION

Not To Be Reproduced 6-27 F21

THE LINKER - PHASE II

(This page intentionally left blank)

Not To Be Reproduced 5-28 r21

THE LINKER - PHASE I

I WALK THROUGH THE DEFINITION SECTION
I THIS IS ANOTHER LINKED LIST

I LOOK FOR A CHARACTER ON THE CHAIN THAT MATCHES THE SECOND
NAME EXTRACTED FROM PHASE ONE.

—

I THE LINKER NOW HAS ALL THE INFORMATION NECESSARY TO SNAP THE
LINK

& SNAPPING THE LINK
I BACK IN THE FAULTING OBJECT SEGMENT WAS AN UNSNAPPED LINK

] THE LINKER WILL OVERWRITE THIS INFORMATION WITH THE NEWLY FOUND
SEGMENT NUMBER AND OFFSET

I THE LINKER WILL PLACE BINARY 100011 1IN THE LAST SIX BITS OF THE
FIRST WORD OF THE LINK

I THE LINK IS NOW A STANDARD POINTER - IT IS SNAPPED

I ANY FURTHER REFERENCES THROUGH THIS LINK WILL NOT RESULT IN A
FAULT

Not To Be Reproduced 6-29 F21

THE LINKER - PHASE II

I THIS SNAPPING DOES NOT EFFECT ANY OTHER LINK WITHIN THE LINKAGE
SECTION '

-30 F21

(o)

Not To Be Reproduced

THE LINKER - PHASE IT

UNSNAPPED LINK

ADDR1

46

ADDR2

¥

SNAPPED LINK

410

43

4

560

Not To Be Reproduced

6-31

THE LINKER - PHASE II

@ LOADING THE OBJECT SECTIONS'

I THE NEWLY REFERENCED SEGMENT MAY HAVE A LINKAGE AND STATIC
SECTION OF ITS OWN THAT MUST BE LOADED INTO MEMQORYY

I THE DYNAMIC LINKER

PERFORMS THE COPYING OF

LINKAGE TEMPLATES INTO THE PROPER AREAS

I 1IF THE LOT WORD CORRESPONDING

SECTION

THE COMBINED LINKAGE

THE ST

TIC AND

TO THE SEGMENT IS EMPTY (I.E. LOT
(SEGMENT_NUMBER) =0) THEN THE LINKER WILL COPY IT
I GET SOME ROOM IN THE COMBINED LINKAGE AREA FOR THE LINKAGE
I CoPY THE LINKAGE TEMPLATE FRCM THE OBJECT INTO THE SPOT IN
AREA
THE LINKAGE SECTION INTO THE LOT ENTRY

1 PLACE THE ADDRESS OF

o T e]

I - PERFORM THE SAME WITH THE STATIC SECTION, USING THE
COMBINED STATIC AREA

I NOTE: THE ©STATIC MAY BE COMBINED WITH THE

INFORMATION, 1IN WHICH CASE THE STATIC WAS LOADED

LINKAGE SECTION

Not To Be Reproduced

5-32

[}
w
Q
=]
.;;l
zZ

lw)]

LINKAGE
WITH THE

F21

OBJECT SEGMENT

THE LINKER - PHASE I

TEXT

*

COMBINED LINKAGE ARFA

LINKAGE
OFFSET TABLE

(LOT)

DEFS

LINKAGE
TEMPLATE

LINKAGE
SECTION

INTERNAL
STATIC
TEMPLATE

COMBINED STATIC AREA

i

L

INTERNAL STATIC

OFFSET TABLE

et ek ek

(150T)

SYMBOLS

OBJECT
MAP

INTERNAL <
STATIC
SECTION

BREAK MAP

0BJ MAP PTR

Not To Be Reproduced

6-33

P_#

F21

THE LINKER - PHASE II

8 INSTRUCTION RETRY

I RETURN TO THE SCENE OF THE CRIME

I WHEN link_snap IS FINISHED, IT RETURNS TO fim

[fim THEN CAUSES THE INSTRUCTION THAT GENERATED THE LINKAGE
FAULT TO BE REEXECUTED

I WITH THE LINK NOW SNAPPED, A FAULT WILL NCT OCCUR AND THE
INSTRUCTION WILL FIND THE THING IT WAS LOOKING FOR

Not To Be Reproduced 6-34 F

THE LINKER - PHASE II

(This page intentionally left blank)

Not To Be Reproduced 6-35

BY-PRODUCTS QOF DYNAMIC LINKING

INITIATION

EVERY SEGMENT THAT A PROCESS WANTS TO USE MUST BE REGISTERED
WITH BOTH THE dseg AND kst

desc (. p108- Ses

IF A SEGMENT IS NOT REGISTERED - KNOWN - TO A PROCESS AND IT IS
THE OBJECT OF A LINKAGE FAULT, THEN THE DYNAMIC LINKER WILL MAKE

IT KNOWN

I THIS INVOLVES GOING TO THE kst, FINDING OUT THE NEXT FREE
NUMBER TO USE AND ASSIGNING IT TO THE NEW SEGMENT

I BECAUSE THIS IS PRETTY MUCH AN UNPREDICTABLE OPERATION AS FAR
AS AVAILABLE NUMBERS ARE CONCERNED, MULTICS DOES NOT

GUARANTEE THE CONSISTENCY OF SEGMENT NUMBERS ACR(OSS PROCESS
BOUNDARIES

HIDDEN DANGERS

4

THE SEARCH FOR A SEIGMENT TO FULFILL THE LINKAGE FAULT CAN CREATE
DANGERS FOR PROGRAMMERS WHC ARE NOT AWARE OF THE NATURE OF THE
SEARCH ' ‘

CONSIDER THE FOLLOWING SCENARIO

I A PROGRAMMER HAS WRITTEN A SET OF PROGRAMS
THE FIRST PRCGRAM IS CALLED driver
IT CALLS calculate_total
IT THEN CALLS ioa_ TO PRINT THE TOTAL 0OUT

LATER {AND ALTHOUGHE OUNLIKXELY, PSS
form

BLE) driver CALLS A
PROGRAMMER PROVIDED PROGRAM NAMED ine

Not To Be Reproduced 6-36 F21

BY-PRODUCTS OF DYNAMIC LINKING

o]

THERE IS A SIGNIFICANT CHANCE THAT THE PROGRAMMER SUPPLIED
formline_ WILL NOT EXECUTE

I THE MULTICS SYSTEM SUBROUTINE, ioa_, ALSO CALLS A PROGRAM
NAMED formline_

IF 1ioa_ TOOK A LINKAGE FAULT WHILE CALLING formline , IT
WOULD HAVE FOUND THE SYSTEM'S COPY USING THE referencing_dir
RULE, PLACED S NAME IN THE RNT, AND driver WOULD HAVE FOUND

~a

T rITeIYIAY? M L o b o S -
Ll WHRLN 11 CALLLD LOormilne .,

I NOTE, THEN THAT IT IS POTENTIALLY DANGEROUS TO CALL PROGRAMS
OUTSIDE THE DIRECTORY OF EXECUTION IF THE NAMES OF SEGMENTS CAN
BE DUPLICATED ELSEWHERE

I BINDING ALSQO HELPS

@ BINDING

I BINDING ITSELF IS A LINKING PROCESS, BUT ITS EFFECTS CAN B3E FELT
SYSTEM WIDE

I THIS EXPLANATION WILL CONCERN ITSELF WITH ONLY THE® LINKING
ASPECTS OF BINDING :

I ONE OF THE ADVANTAGES OF DYNAMIC LINKING IS THAT UNUSED EXTERNAL
REFERENCES WERE NOT LINKED, SAVING TIME

I IF A SET OF PROGRAMS MAKE MANY CALLS TO EACH OTHER AND IT IS
ALMOST UNAVOIDABLE THAT ALL LINKS WILL BE SNAPPED IN THE COURSE
OF THEIR EXECUTION, THEN PRELINKING WILL BE CHEAPER

Not To Be Reproduced 6-37 F21

BY-PRCDUCTS OF DYNAMIC LINKING

I EACH LINK WILL BE SNAPPED ONCE 1IN ITS LIFE, AS OPPOSED TO
MANY TIMES WITH DYNAMIC LINKING

I THE PROGRAMMER MUST GIVE UP THE ABILITY TO MAKE CHANGES TO
OBJECT EASILY; THEREFORE BINDING SHOULD BE DONE ONLY AFTER
THE PRCOGRAMS ARE FULLY DEBUGGED

I THE BINDER'S TASK
I BREAK APART ALL THE SECTIONS OF ALL THE PROGRAMS TO BE BOUND
I GROUP ALL LIKE SECTIONS TOGETHER (TEXT WITH TEXT, ETC)

I COMBINE ALL THE LINKAGE SECTICNS TOGETHER, AND ELIMINATE ALL
LINK DUPLICATIONS

I ELIMINATE SOME ENTRYPCINTS INTC THE PROGRAMS, TRIMMING DOWN
THE DEFINITION SECTION

] GENERATE ONE OBJECT MAP AND OBJECT MAP POINTER

I A BOUND SEGMENT MAY ACTUALLY HAVE LINKS LEFT OVER THAT WERE NOT
RESOLVED AT BINDING TIME; THEY WILL BE HANDLED BY THE DYNAMIC
LINKER WHEN NEEDED

Not To Be Reproduced 6-38 F21

TOPIC VII

The Multics Programming Environment
Destruction of the Programming Environment.
Brror Recovery Techniques

The Multics Programming Environment
Destruction of the Programming Environment.
Error Recovery Techniques . . « . « + « « o

SN I I N |
[I T T N |
Q0 -t =+ QO §— p—t

Toric VII MULTICS PROGRAMMING ENVIRONMENT Toepic VII

OBJECTIVES:

Uron comerletion of this toric, students should be able to:

1. Discuss some of the ways in which the Multics process
environmen!t can be disruprpled.

T

o
1]

¥ |
na

o Le

» I
R+)
oM
Mo
m
1]
w
ot
"M
2o
g
b
[T
ot
m ct
[+ o
oo
anm
(=
=
E)
oW
-
(113
-5
-5
(4]
-5
"
€
ol
)
)
]
[+
u
0m
[N

3. Areply preventive tLechniques durins prosram develoement Lo

minimize the number of poltentially danserous pProsrammins
errors.

Multics VII-1 Fz1

vESTRUCTION OF THE PROGRAMMING ENVIRONMENT

I SOURCE SEGMENT
I WHEN INITIATED BY THE COMPILER, NOT GIVEN A REFERENCE NAME

I USUALLY NOT MADE KNOWN EXCEPT BY COMPILER

I SEGMENT USUALLY NOT KNCWN

I DESTRUCTION UNLIKELY

I OBJECT SEGMENT

] SEGMENT READ-EXECUTE ONLY (EXCEPT WHEN DEBUGGER IS SETTING
BREAKPOINTS)

I DESTRUCTION UNLIKELY BECAUSE OF HARDWARE PROTECTION

Not To Be Reproduced 7-1 F21

DESTRUCTION OF THE PROGRAMMING ENVIRONMENT

® stack_n SEGMENT

1 IN [pd]

I READ-WRITE

I INCLUDES
I PROGRAM ACTIVATION HISTORY (STACK)
I AUTOMATIC VARIABLES
I STACK HEADER INFORMATION

I INCLUDES INITIAL LOT & ISOT ALLOCATIONS

I DESTRUCTION POSSIBLE THROUGH MISUSE OF AUTOMATIC VARIABLES OR
BUILT-IN PFUNCTIONS

I SUBSCRIPTRANGE
I STRINGRANGE

I USE OF UNINITIALIZED POINTER TO BASED VARIABLE
I SYMPTOMS

I IF STACK HEADER OVERWRITTEN, FATAL PROCESS ERRCR USUALLY
OCCURS

Not To Be Reproduced 7-2 F21

DESTRUCTION OF THE PROGRAMMING ENVIRONMENT

I STRINGRANGE OFTEN RESULTS IN STORAGE CONDITION (out_of bounds
ON USER'S STACK)

I SUBSCRIPTRANGE CAUSES AUTOMATIC DATA AND/OR PROGRAM
ACTIVATION INFORMATION TO BE OVERWRITTEN, LEADING TO IMPROPER
RESULTS AND PROGRAM QPERATION

Not To Be Reproduced 7-3 F21

DESTRUCTION OF THE PROGRAMMING ENVIRONMENT

I IN [pd]
I READ-WRITE AREA

I INCLUDES

I COMBINED LINKAGE AREA
LINKAGE SECTIONS
LOT

I

I

I 1IsoT
.

I COMBINED STATIC AREA

I INTERNAL STATIC SECTIONS (VARIABLES)

e

USER FREE AREA

I EXTERNAL STATIC AND COMMON VARIABLES - PER PROCESS
EXTERNAL VARIABLE CONTROL INFORMATION

CONTROLLED VARIABLES

BASED VARIABLES - NO AREA, IN AN I/0 BUFFER

[T s N o B o |

COBOL VARIABLES

I ASSIGNED LINKAGE AREA

I BASED STORAGE-ALLOCATED THROUGH hcs_Sassign_linkage

Not To Be Reproduced 7-4

)
V]
.——‘

DESTRUCTION OF THE PROGRAMMING ENVIRONMENT

8 [unique].area.linker SEGMENT (continued)

I

I

DESTRUCTION POSSIBLE THROUGH

I SUBSCRIPTRANGE

I STRINGRANGE

I USE OF UNINITIALIZED POINTERS

I MISUSE OF AREA
I -EREEING SAME BASSE-VARIABEETWICE.

SYMPTOMS

I IF LINKAGE SECTIONS OVERWRITTEN, IMPROPER PROGRAM OPERATION

I IF LOT OVERWRITTEN, IMPROPER OPERATION OF ALL PROGRAMS

I IF ISCT OVERWRITTEN, IMPROPER INTERNAL STATIC DATA;
SUBSEQUENT DESTRUCTION OF OTHER DAT

I IF RNT OVERWRITTEN, UNABLE TO FIND PREVICUSLY-REFERENCED
PROGRAMS

I IF VARIABLES (OF ANY STORAGE CLASS) ARE OVERWRITTEN, IMPROPER
VARIABLE VALUES

I IF EXTERNAL VARIABLE CONTROCL INFORMATION OVERWRITTEN,

IMPROPER COMMUNICATION OF SHARED VARIABLES BETWEEN PROGRAMS;
IMPROPER DATA VALUES

Not To Be Reproduced 7-5 F21

DESTRUCTION OF THE PROGRAMMING ENVIRONMENT

I IF AREA CONTROL INFORMATION OVERWRITTEN, bad_area_format
CONDITION

Not To Be Reproduced 7-6 F21

DESTRUCTION OF THE PROGRAMMING ENVIRONMENT

DIRECTGRIES, dseg,

kst

I NO DIRECT ACCESS TO USER FROM USER RING (RING 4)

I DESTRUCTION UNLIKELY,

Not To 3e Reproduced

SEGMENTS PROTECTED BY HARDWARE

o]

(=]

ERROR RECOVERY TECHNIQUES

- m DA CTTY T/ NDPCMDNAY MO D TAI >
@ MOST ERRORS WHICH DESTROY THE PRCOGRAMMING ENVIRONMENT

I ARE CAUSED BY IMPROPER SUBSCRIPTS, BAD SUBSTRING OPERANDS, OR
POINTERS USED IMPROPERLY

I RECOVERY FROM SUBSCRIPTRANGE AND STRINGRANGE"

I RECOMPILE PROGRAMS CAUSING THESE ERRORS AND ENABLE CHECKING
FOR THESE CONDITIONS

I PL/L: INSERT A LINE CONTAINING

\\ (size, stringsize, stringrange, subscriptrange):

AT THE BEGINNING OF EACH SOURCE SEGMENT, AND RECOMPILE
WITH -table OPTION .

I cCoBOL: USE -runtime_check AND -table CONTROL ARGUMENTS IN
cobol COMMAND .

[an }

FORTRAN: USE -subscriptrange AND -table CONTROL ARGUMENTS
IN fortran COMMAND

I RUN PROGRAMS
I 1IF CONDITIONS ARE SIGNALLED, USE probe TO FIND CAUSE

I FIX PROBLEMS, AND RECOMPILE AS ABOVE UNTIL NO MORE CONDITIONS
ARE SIGNALLED

I IF NO MORE CONDITIONS ARE SIGNALLED, BUT PROGRAMMING
ENVIRONMENT ERRORS STILL PERSIST

I RECOMPILE WITHOUT THE CONDITION CHECKING, BUT WITH -table
CONTROL ARGUMENT

I PROCEED AS GIVEN BELOW UNDER "FURTHER ERROR RECOVERY"

Not To Be Reproduced 7-8 F21

ERRCR RECOVERY TECHNIQUES

I IF ALL ERRORS CORRECTED, RECOMPILE WITHOUT CONDITION CHECKING
OR -table ‘

3@ FURTHER ERROR RECOVERY

I bad_area_ format CONDITION IN [unique].area.linker SEGMENT

] CAUSED BY OVERWRITING AREA CONTROL INFORMATION
I STORED AT BEGINNING OF AREA

I STORED BETWEEN SPACE ALLOCATIONS

I RECOVERY TECHNIQUES (ASSUMES STRINGRANGE AND SUBSCRIPTRANGE
TESTS HAVE ALREADY BEEN DONE)

I USE area_status COMMAND TO FIND FAULTY LOCATION IN AREA
I USE dump _segment COMMAND TO PRINT AREA AROUND THAT
LOCATION; RECOGNIZABLE DATA MAY LEAD TO THE CAUSE

I USE create_area AND set_user_storage COMMANDS TO SEPARATE
USER FREE AREA FROM OTHER GRCUPED AREAS

I 1IF ERROR OCCURS NOW IN USER-SPECIFIED AREA SEGMENT, THEN
PROBLEM IS 1IN A USER PROGRAM (NO SYSTEM PROGRAMS EXCEPT
EXTERNAL VARIABLE MANAGER USE THIS AREA)

I USE probe TO EXAMINE ALL POINTER-QUALIFIED REFERENCES TO
BE SURE POINTER IS SET PROPERLY

I AFTER BASED-VARIABLES HAVE-—BEEN FREED, NULL THEIR POINTER
TO_PREVENT SUBSEQUENT REFERENCE TO FREED SPACE.

Not To Be Reproduced 7-9 F21

ERROR RECOVERY TECHNIQUES

I FATAL PROCESS ERRORS (REPRODUCIBLE)

I CAUSED BY OVERWRITING

I STACK HEADER

I LINKAGE OR INTERNAL STATIC SECTIONS OF CRITICAL PROGRAMS
(lox_, listen_, command_processor_, print _ready msg_,
etc.)

I RECOVERY TECHNIQUES

I ATTEMPT TO ISOLATE POINT OF PROCESS FAILURE TO A SINGLE
PROGRAM STATEMENT

I USE probe TO

I SET BREAKS AT KEY POINTS IN THE EXECUTION OF THE
PROGRAM :

I CONTINUE EXECUTION AS EACH BREAK IS REACHED UNTIL FATAL
ERROR OCCURS

I WHEN FATAL ERROR OCCURS, POINT OF FAILURE LIES AFTER
. LAST BREAKPOINT WHICH WAS REACHED

I SET BREAKS AFTER THIS POINT TO FURTHER ISOLATE POINT OF
FAILURE TO A SINGLE STATEMENT

I FAILING STATEMENT MAY BE

I CAUSE OF ERROR

] USING INCORRECT DATA AS RESULT OF A PREVIOUS ERROR
I USE probe TO TRACK ORIGINAL CAUSE OF ERROR

.1 USE -watch CONTROL ARGUMENT COF trace COMMAND TO ISOLATE
THE SUBROUTINE WHICH IS DAMAGING A PARTICULAR DATA ITEM

Not To Be Reproduced 7-10 F21

ERROR RECOVERY TECHNIQUES

@ FURTHER ERROR RECOVERY (continued)

I FATAL PROCESS ERRORS (INTERMITTENT)

I CaN BE CAUSED BY
I UNINITIALIZED DATA VALUES

I ANOTHER PROGRAM DESTROYING YOUR PRCGRAM'S DATA

I RECOVERY TECHNIQUES
I IN A NEW PROCESS, RUN JUST THE FAILING PROGRAM

I IF PROGRAM OPERATES CORRECTLY, ANOTHER PROGRAM MAY BE
SOURCE OF ERRCR

I IF PROGRAM FAILS (ESPECIALLY FAILS INTERMITTENTLY OR IN
DIFFERENT WAYS), USE probe TO LOOK FOR UNINITIALIZED
VARIABLES :

Not To Be Reproduced 7-11 F21
({End Qf Topic)

TOPIC VIII

Other Useful Debugging Tools.

list external variables .
llst external variables .
reset external variables.
reset_exeernal_var1ables.
delete external variables

del A""A axternal “variahles

SLiiGe VL sGrLTS

print_ “Bind _MapP.
prlnt bind~ _Map. « « « o+ &
print_ link info
print link info, pli. . .
resolve llnkage error . .
reslve llnkaqe error, rle
trace_ Stack «
trace_stack, ks

Q00 00 Q0 00 00 00 00 00 00 0O 00 Q0 QO Q0 OO
i
00 00 ~3 ~J UL o i D W NN B2

Toric VIII

OBJECTIVES:

OTHER DEBUGGING COMMANDS Toric VIII

Upon comepletion of this toric, studenls should be able to:

1. Manirpulate external variables with Lhe followins commands:

2. Find and
followins

list_ external_variables (lev)

resel.external._variables {(rev)

delete_exlernal_ovariahbles (dev}

correct problems related to linkins with

commands:

print.bind_.mar (rbm)

print.link_.info (pli)}

resolve_linkase_error {(rle)

the

3. Use the trace.stack (ls) command in conduncltion with lrace
to determine Lhe sltale of Lhe process when an error

and probe
DCCUrS.

Multics

VIII-+

Fa1

list external variables

- . 1z - " -1 e .
ne: l1ist external variables

The 1list_external_variables command prints information about
variables managed by the system for the user, including FCRTRAN common
and PL/I external static variables whose names do not contain dollar

signs. The default information 1is the location and size of each
specified variable.

Usage

list_external_variables names {-control_args}

where:
1. names
are names of external variables, separated by spaces.
2. control_args
can be chosen from the following:
-unlabeled_common, -uc
is the name for unlabeled {(or blank) commen.
-lcng, -1
prints how and when the variables were allocated.
-all, -a
prints information for each variable the system 1is
managing.
-no_header, -nhe
suppresses the header.
Not To Be Reproduced 8-1 F21

reset external variables

Name: reset_external variables

The reset_external_variables command reinitiallizes system-managed

variables to the values they had when they were allocated.

Usage

reset_external_variables names {-control arg!

where:

1. names
are the names of the external variables,
spaces, to be reinitialized.

2. contrel arg

TIs -unlabeled common (or =-uc) to indicate unlabeled

block) common.

Note

separated by

(or

A variable cannot be reéset if the segment containing

the 1initialization 1information is terminated

variable is allocated.

Not To Be Reproduced 8-2

the

21

delete external variables

Name: delete external variables
The delete external variables command deletes <from the user's

name space specified variables managed by the system for the user.
All links to those variables are unsnapped and their storage is freed.

Usage

delete_external_variables names {-control_arg}

where:

1. names
are the names of the external variables, separated by
spaces, to be deleted.

2. centrol arg

Ts -unlabeled common (or =-uc) to indicate unlabeled (or
blank) common.

Not To Be Reproduced 8-3 F21

print bind map

Name: print_bind map

of

The print_bind_map command displays all or part of the bind map
an object segment generated by version number 4 or subsequent

versions of the binder.

Usage

print_bind _map path {components} {-control_ args}

where:

1

- o

2.

3.

Not To Be Reproduced 8-

path
is the pathname of a bound object segment.

components

are the optional names of one or more components of this
bound object and/or the bindfile name. Only the lines
corresponding to these components are displayed. a
component name must contain one oOr more nonnumeric
characters. If it is purely numerical, it is assumed to
be an octal offset within the bound segment and the lines
corresponding to the component residing at that offset are
displayed. A numerical component name can be specified by
preceding it with the -name control argument (see below).
If no component names are specified, the entire bind map
is displayed.

control args
may be chosen from the following list:

-long, -1lg '
prints the components' relocation values (also printed in
the default brief mode), compilation times, and source
languages.

-name STR, -nm STR
is used to indicate that STR is really & component name,
even though it appears to be an octal offset.

~-no header, -nhe

T omits all headers, printing only lines concerning the
components themselves.

F21

=

print link info, pli

Name: print_link info, pli
The print link info command prints selected items of information
for the specified object segments.

Usage

print_link_info paths {-control args}

where:

1. paths
are the pathnames of object segments.

2. control_args

can be <chosen from the following 1list. (See "Note"
below.)
-length, -1n

~print only the lengths of the sections in pathi.

-entry, -—-et .
print only a 1listing o
giving their symbelic nam
within the segment.

the pathi external
es and t relat

i
heir

efinitions,
¢ addresses

o

-link, -1k
print only an alphabetically sorted 1listing of all the
external symbols referenced by pathi.

-long
prints more information when the header 1is printed.
Additional information includes a 1listing of source
programs used to generate the object segment, the contents
of the ™"comment" field of the symbol header (often
containing compiler options), and any unusual values in
the symbol header.

-header, -he
prints the header (The header is not printed by default,
if the =length, =-entry, or -link control argument is
specified.)

-no_header
suppresses printing of the header.

Note

Control arguments can appear anywhere on the command line and
apply to all pathnames.

Not To Be Reproduced 8-5 F21

print link info, pli

Examgle

! print _link_info program -long -length

program 07/30/76 1554.2 edt Fri

Object Segment >udd>Work>Wilson>program
Created on 07/30/76 0010.1 edt Fri
by Wilson.Work.a

using Experimental PL/I Compiler of Thursday, July 26, 1976 at 21:38

Translator: PL/I
Comment: map table optimize
Source:

07/30/76 0010.1 edt Fri >user_dir_dir>work>Wilson>s>s>program.pl

12/15/75 1338.1 edt Mon »>library dir_dir>include>linkdcl.incl.pl

06/30/75 1657.7 edt Mon >llbrary dlr dir>includedobject_info. lncl oll
10/06/72 1206.8 edt Fri >11brary dlr dir>include>source _map.incl.pl
05/18/72 1512.4 edt Thu >71brary dir™ d1r>1nclude>symbo; block.incl. pl;
01/17/73 1351.4 edt Wed >library dir_dir>include>pll symbol_block.incl.pll

Attributes: relocatable, orocedure standard

Object Text Defs Link Symb Static
Start 0 0 3450 3620 3656 3630
Length 11110 3450 150 36 5215 0
<ready>

Also printed is:

Severity, if it 1s nonzero.
Entrybound, if it is nonzero.
Text Boundary, if it is not 2.
Static Boundary, if it is not 2.

Not To Be Reproduced 8-6 F21

reslve linkage error, rle

Name : resolve linkage_error, rle

The resolve_linkage_error command 1is invoked

linkage fault after a process encounters a linkage error.

locates the virtual entry specified as an argument

satisfy the
The program
and patches the

linkage information of the process so that when the start command is

issued the process continues as if the original linkage

located the specified virtual entry.

resolve_linkage_error wvirtual_entry
where virtual_entry is a virtual entry specifier.

Notes

fault had

For an explanation of virtual entries, see the description of the

cv_entry subroutine.

Examples
! myprog
Error: Linkage error by >udd>m>vv>mypr091123
referencing subroutineSentry
Segment not found. _
r 1234 2.834 123.673 980 level 2, 26
! rle mysubSmysub_entry
r 1234 0.802 23.441 75 level 2, 26
! start
«+«s Mmyprog is running
Not To Be Reproduced 8-7

F21

trace stack, ts

Name: trace_stack, ts

The trace_stack command prints a detailed explanation of the
current process stack history 1in reverse order (most recent frame
first). For each stack frame, all available information about the
procedure that established the frame (including, if possible, the
source statement last executed), the arguments to that (the owning)
procedure, and the condition handlers established in <the frame are
printed. For a description of stack frames, see "Multics Stack
Segments" in Section!IV of the MPM Subsystem Writers' Guide.

The trace_stack command is most useful after a fault or other
error condition. If the command is invoked after such an error, the
machine registers at the time of the fault are also printed, as well
as an explanation of the fault. The source line in which it occurred
can be given if the object segment is compiled with the -table option.

Usage

trace_stack {-control_args}

where control_args can be selected from the following:

-brief, -bf
suppresses 1listing of arguments and handlers. This
control argument <cannot be specified 1if -long 1is also
specified as a control argument,

-long, -1lg
prints octal dump of each stack frame.

-depth N, -dh N
dumps only N frames.

Cutput Format

When trace_stack is invoked, it first searches
backward through the stack for a stack frame containing
saved machine conditions as the result of a signalled
condition. If such a frame is found, tracing proceeds
backward from that point; otherwise, a comment is printed
and tracing begins with the stack frame ©preceding
trace_stack.

If a machine-conditions frame is found, trace_stack
repeats the system error message describing the fault,
Unless the -brief control argument is specified,
trace_stack also prints the source line and faulting

Not To Be Reproduced 8-8 F21

trace stack, ts

instruction and a listing of the machine registers at the
time the error occurred.

The command then performs a backward trace of the
stack, for N frames if the -depth N argument was
specified, or else until the beginning of the stack is
reached.

For each stack frame, trace_stack I set
of the frame, the condition name if an error occurred in
the frame, and the identification of the procedure that
established the frame. If the procedure is a component of
a bound segment, the bound segment name and the offset of
the procedure within the bound segment are also printed.

T
[
[=
o
(&
U
[a
(]
C
H
H

The trace_stack command then attempts to locate and
print the source line associated with the last instruction
executed in the procedure that owns the frame (that is,
either a call forward or a 1line that encountered an
error). The source 1line can be printed only 1if the
procedure has a symbol table (that is, if it was compiled
with the -table option) and 1if the source for the
procedure 1is available in the wuser's working directory.
If the source line cannot be printed, trace stack prints a
comment explaining why. -

Next, trace stack prints the machine instruction last
executed by the procedure that owns the current frame. If
the machine instruction is a call to a PL/I operator,
trace_stack also prints the name of the operator. If the
instruction is a procedure call, trace_stack suppresses
the octal printout of the machine instruction and prints
the name of the procedure being called.

Unless the =brief control argument 1is specified,
trace_stack lists the arguments supplied to the procedure
that owns the current frame and alsc 1lists any enabled
condition, default, and clean-up handlers established in
the frame.

1f the -long control argument is specified,
trace_stack then Drlnts an octal dump of the stack frame,
with eight words per line.

Not To Be Reproduced 8-9 F21

trace stack, ts

Example

After a fault that reenters the user environment and
reaches command level, the user invokes the trace_stack
command.

For example, after guitting out of the list command,
the following process history might appear:

1 list
Segments=8, Records=3

rew 0 mailbox
rw
QUIT

trace_stack
quit In ipc_ $block]| 156
(>system_library_l>bound_ command _loop 1156)
No symbol table for 1pc
156 400010116100 cmpq prd4ilo
Machine registers at time of fault

o

pr0 (ap) 263146586 pll _operators_Soperator tablell62

(external symbol in separate nonstandard

text section)

prl (ab) 1031264 scs| 264

pr2 (bp) 14{12200 as_linkagel|12200

pr3 (bb) 11310 tc_datalo

prd (lp) 25312250 I1BBBJGjFKkPBWcNZ .area.linker|2250
(internal static|0 for ipc_)

pr5S (1lb) 244]3614 stack 4361

pré (sp) 24413500 stack_413500 (-> "kcpMbLH +0000000")

pr7 (sb) 2441}0 stack_410

x0 73 x1 0 X2 0 x3 600000

x4 0 %5 32 X6 3033 x7 4

a 000000000000 g 000000000004 e O

Timer reg - 1746005, Ring alarm reg - 0

SCU Data:

4030 400270250011 000000000021 400270000000 000000672000
000156000200 000154000700 002250370000 600044370120

Connect Fault (21
At: 2701156 ipc_|
On: cpu a (%0)

Indicators: “bar

)
156 (bound_command loop_ !|136)

Not To Be Reproduced 8-10 F21

trace stack, ts

APU Status: xsf, sd-on, pt-on, fabs

CU Status: rf£i, its, fif

Instructions:
4036 002250 3700 00 epp4d 2250
4037 6 00044 3701 20 eppd pr6l44,*

Time stored: 08/02/77 1635.5 edt Tue (104541674361226602)
Ring: 4

Backward trace of stack from 2443500

3500 quit ipc_Sblock|156 (bound_command_loop [156)
No symbol table for ipc_
156 400010116100 cmpqg pr4llo
ARG 1l: 2531|5704 !BBBJGjFkPBWcNZ.area.linker|5704
ARG 2: 244)3152 stack_4]3152
ARG 3: Q

2720 tty_Stty get_line|2442 (bound _iox_[11546)
No symbol table for Lty
call_ext_out to ipc_S$block
ARG 1: 25374320 !BBBJGjFkPBWCNZ.area.linker|4220
(internal static|154 for find_iochb)

ARG 2: 24412660 stack_4126580 (-> "fc stuff")
ARG 3: 128
ARG 4: 0
ARG 5: 0
2400 listen_Slisten_|461 (bound_command_loop_ |1325)

No symbol table for listen_
call_ext out to iox_Sget_line

ARG l . W
on "cleanup" <call listen_|256 (bound_command_loop_|1122)

2100 process_overseer Sprocess_overseer_|473 (bound command loop_[214
No symbol table for process _overseer
call_ext out_desc to listen_ _Slisten_
Argunent list header invalid.

on "any other"
call standard_default_handler_ $standard_default _handler 3

(external symbol in separate nonstandard text section)

2000 user_init_admin_Suser_init admin |36 (bound_command_loop |21676)
No symbol table for user_init_admin
21676 700036670120 tsp4 pr7736,* alm_call

No arguments.
End of trace.

Not To Be Reproduced 8-~11 F21

trace stack, ts

r 1635 1.756 40.790 207 level 2, 9

Not To Be Reproduced 8-12 F21

area status

Name: area status

The area_status command is used to display certain information
about an area.

Usage

area_status area name {-control args}

where:

1. area_name
is a pathname specifying the segment containing the area
to be looked at.

2. control_args
can be chosen from the £following:

-trace
displays a trace of all free and used blocks in the area.

-offset N, =-ofs N
specifies that the area begins at ocffset N (octal) in the
given segment.

-long, -1g
dumps the contents of each block in both octal and ASCII
format.
Note

If the area has internal format errors, these are reported. The

command does not report anything about (o0ld) buddy system areas except
that the area is in an obsolete format.

Not To Be Reproduced A-1 21

cancel cobol program, ccp

Name: cancel_cobol program, ccp

The cancel_cobol program command causes one or more programs in
the current COBOL run unit to be cancelled. Cancelling ensures that
the next time the program is invoked within the run unit, its data is
in its initial state. Any files that have been opened by the program
and are still open are closed and the COBOL data segment is truncated.
Refer to the run cobol command for information concerning the run unit
and the COBOL runtime environment.

Usage
—————

cancel cobol program names {-control arg}

where:

1. names
are the reference names of COBOL programs that are active
in the current run unit. If the name specified in the
PROG-ID statement of the program is different from its
associated namei argument, namei must be in the form
refnameSPROG-ID.

2. control arg
may be -retain_data or -retd to leave the data segment
assoclated with the program intact for debugging purposes.
(See "Notes" below.)

Notes

The results of the cancel cobol program command and the execution
of the CANCEL statement from within ~a COBOL program are similar. The
only difference 1s that 1f a namei argument 1iIs not actually a
component of the «current run unit, an error message is issued and no
action is taken; for the CANCEL statement, no warning is given in such
a case.

To preserve program data for debugging purposes, the -retain data
control argument should be used. The data associated with the
cancelled program is in its last used state; it is not restored to its
initial state wuntil the next time the program is invoked in the run
unit.

Refer to the feollowing related commands:

3
28]
’_‘

Not To Be Reproduced A=2

cancel cobol program, ccp

display_cobol run unit, dcr
stop_cobol_run, scr
run cobol, rc

Not To Be Reproduced A-3

create area

Name: <create area
The create area command ¢

_ reat an area and initializes it with
user-specified area management cont

es
rol information.

Usage
create_area virtual ptr {-control_args}

where:

1. virtual ptr
Ts a wvirtual pointer to the area to be <created. The
syntax of virtual pointers is described in the cv_ptr_
subroutine description. If the segment already exists,
the specified portion is still initialized as an area.

2. control_args
can be chosen from the following:

-no freeing
allows the area management mechanism to wuse a faster
allocation strategy that never frees,

-dont free

-
1s used du

ring debugging to disable the free mechanism.
This does not a

ffect the allocation strategy.

-zero on alloc

Tnstructs the area management mechanism to clear blocks at
allocation time,

-zero on free

InsTructs the area management mechanism to clear blocks at
free time.

~extend
causes the area to be extensible, i.e., span more than one
segment, This feature should be used only for perprocess,
temporary areas.

-gsize N

specifies the octal size, 1in words, of the area being
created or of the first component, if extensible. If this
control argument is omitted, the default size of the area
is the maximum size allowable for a segment,

-id STR

specifies a string to be used in constructing the names of
the components of extensible areas.

Not To Be Reproduced A-4 F21

create data segment, cds

Name: create_data_segment, cds

The create_data_segment command translates a create_data_segment
source program (CDS program) into an object segment, A listing
segment is optionally created. These results are placed in the user's
working directory. This command cannot be called recursively.

The source for create data segment programs is standard PL/I with
the restriction that ~the = program include a call to the
create data segmeng subroutine. The create_data_segment subroutine
creates a standard Object segment from PL/I data Structures passed to

it as parameters, These data structures can be initialized with
arbitrarily complex PL/I statements in the CDS program. (See the MPM
Subroutines for a description of the create_data_segment_ subroutine.)

Usage

create_data_segment path {-contrel_arg}

where:
1. nath
. is the pathname of a CDS segment that is to be translated

intc an object segment. I£ path does not have a cds
suffix, one is asssumed. However, the cds suffix must be
the last component of the name of the source segment.

2. control arg
can be -list (-1s) tc produce a scurce listing of the CDS
program used to generate the data segment followed by
object segment information (as printed by the
print_link_info <command described in the MPM Subsystem
Writers' Guide) about the actual object segment created.

Note

Since the create data segment command invokes the PL/I compiler
to first compile the TDS ségment, any errors that the compiler finds
are reported by its standard technique. If any errors with a severity
greater than 2 occur, the CDS run 1is aborted and an object segment is
not created.

Not To Be Reproduced A-5 F21

cumulative page trace,cpt

Name: cumulative_page_trace, cpt

The cumulative page trace command accumulates page trace data so
that the total set Of pages used during the invocation of a command or
subsystem can be determined. The c¢ommand accumulates data from one
invocation of 1itself to the next. Qutput from the command 1is in
tabular format showing all pages that have been referenced by the
user's process. A trace in the format of that produced by the
page_trace command can also be obtained.

The cumulative page trace command operates by sampling and
reading the system trace array after invocation of a <command and at
repeated intervals. Control arguments are given to specify the
detailed operation of the cumulative_page_trace command.

The command line used to invoke the cumulative page_trace command
includes the command or subsystem to be traced as well as optional
control arguments,

Usage

cumulative_page_trace command line {-control args}

where:

1. command line
Ts a character string to be interpreted by the command
processor as a command line. If this character string
contains blanks, it must be surrounded by gquotes. All
procedures invoked as a result of processing this command
line are metered by the cumulative_page_trace command.

2. control args

may be chosen from the following:

-count, =ct
prints the accumulated results, giving the number of each
page and the number of faults for each page.

-flush
clears primary memory before each invocation of the
command line and after each interrupt. This helps the
user determine the number of page faults but increases the
cost.

-interrdpt N -int N
interrupts execution every N wvirtual CPU milliseconds for
page fault sampling.

=3
[e]

(o)}
ref
(3]
...J

= Y o P e - | .Y
o REJViUUuLTU o

2
(o]
cr

cumulative page trace,cpt

-long, -1lg
produces output in long format, giving full pathnames.

-loop N
calls the command to be metered N times.

-print, -pr
prints the accumulated results, giving the number of each
page referenced.

-print_linkage faults
prints aTl accumulated 1linkage faults and calls to the
hcs_Smake_ptr entry point.

~-reset, -rs
resets the table of accumulated data. If the table is not
reset, data from the current use of cumulative page_trace

is added tc that obtained earlier in the process.

-short, =-sh .
formats output for a line length of 80.

-sleep N
waits for N seconds after each call to the command being
metered.

-timers
includes all faults between signal and restart.

-total, -tt
prints the total number of page faults, the total number
of segment faults, and the number of pages referanced for
each segment.

-trace_linkage faults .
accumulates linkage faults information along with page and
segment £ault information.

-trace path
writes the trace on the segment named path using an I/0
switch named cpt.out; cumulative page_trace attaches and
detaches this switch.

Notes

At least one of three generic operations must be requested, They
may all be combined and, if so, are performed in the following order:
resetting the table of accumulated data, calling the command to be
metered, applying the specified control arguments, and printing the
results in the specified format.

Net To Be Reproduced A-7 F21

cumulative page trace,cpt

The default mode of operation permits no interrupts for page
fault sampling. If the command or subsystem to be metered will take
more than several hundred page faults, linkage faults, or other system
events that are indicated in the page trace array, it is recommended
that interrupts be requested. If the user does not know a suitable
value for the -interrupt control argument, the value recommended is
400 milliseconds. 1If this figure is too large, messages indicate that
some page faults may have Dbeen missed; a smaller value can then be
chosen., The cost of a smaller value is high and may cause additional
side effects. 1If the command or subsystem to be metered includes the
taking of CPUT interrupts, then the -timers control argument should be
given. This control argument causes some of the page £aults of the
metering mechanism to be included as well.

Only one of the control arguments =-print, =-count, or -total may
be given. Each of these control arguments produces printed output in
a different format. If more than one format iIs desired, the command
must be invoked once for each format.

Examples
The command line:
cpt "pll test" -interrupt 400 -trace trace_out
calls the pll command to compile the program named tast, requesting an

interrupt every 400 milliseconds to obtain page trace information.
Trace information is placed in a segment named trace_out.

The command line:
cpt "list -pn >udd>Multics" -=loop 2 -sleep 10

calls the list command twice, and sleeps for 10 seconds between calls.

The command line:
cpt -print

prints the accumulated results of previous metering.

cv ptr

The cv_ptr_ subroutine converts a virtual pointer te a pointer
value. A virtual pointer is a character string representation of a
pointer value. The types of virtual pointers accepted are described
under "Virtual Pointers" below.

Usage

declare cv_ptr_ entry {(char(*), f£ixedibin(35)) returns! (ptr);

ptr_value = cv_ptr_ (vptr, code);

where:

1. vptr is the wvirtual pointer to Dbe converted. (Input)
See "Virtual Pointers" below for more information.

2. code is a standard status code. (Output)

3. ptr_value is the pointer :that results £from the conversion.

{Qutput)

Entry: c¢v ptr §terminat
=ncry -

W

This entry pocint is called to terminate the segment that has been
initiated by a previous call to cv_ptr_.
Usage

declare cv_ptr_$terminate (ptr);

call cv_ptr_Sterminate (ptr_value);

where ptr value is the pointer returned Dby the previous call to
cv_ptr_. T(Input)

Notes

Pointers returned by the cv ptr subroutine cannot be used as
entry pointers in calls to cu $gen call or cu $make entry value. The
cv_ptr_ subroutine constructs ~the Teturned pointer To a Segment in a
way that avoids copying of the segment's linkage and internal static
data into the combined linkage arsa. The cv entry subroutine is used
to convert virtual entries to an entry value. -

Not To Be Reproduced A-9 | F21

cV ptr

The segment pointed to by the returned ptr_value is initiated
with a null reference name. The cv_ptr_$terminate entry point should

be called to terminate this null reference name,

Virtual Pointers

The cv_ptr_ subroutine converts virtual pointers that contain one
or two components -~ a segment identifier and an opticnal offset into

the segment. Altogether, fourteen forms are accepted. They are shown
in ‘the table below.

In the table that follows, W is an octal word offset Efrom the
beginning of the segment. It may have a value from 0 to 777777

inclusive. B is a decimal bit offset within the word. It may have a
value from 0 to 35 inclusive,

X
|
t_.a
(e
rig
[\]
..._.l

Not To Be Reproduced

Virtual
Pointer

path|W(B)

path|wW
pathl
path

path|entry_pt
ref nameSentry pt
ref namesSw(B)

ref nameSw
ref name$

segnolW(3)

segno| W
segno|
segno

segnolentry_ pt

cv ptr

Interpretation

points to octal word W, decimal bit B of segment
identified by absclute or relative pathname path.

same as path|w(0).
same as path|0(0).
same as path{0(0).

points to word identified by entry point entry pt
in segment identified by path.

points to word identified by entry point entry pt
in segment whose reference name is ref name.

points to octal word W, decimal bit B of segment
whose reference name is ref name.

same as ref nameSW(0).
same as ref nameS$0{(0).

points £ cctal word W, decimal bit B of segment

‘whose octal segment number 1s segno.

same as segno|W(Q).
same as segnol0(0).
same as segnol0(0).

points to word identified by entry point entry pt
in segment whose octal segment number 1is segno.

A null pointer is represented by the virtual pointer 77777!1, by =111,

or by -1.

Not To Be Reproducad

A-11 F21

delete external variables

Name: delete external variables

The delete external _variables command deletes from the user's
name space specified variables managed by the system for the user.
All links to those variables are unsnaoped and their storage is freed.

Usage

delete_external_variables names {-control_arg}

where:

1. names

are the names of the external variables, separated by
spaces, to be deleted.

2. control arg

Is -unlabeled_common (or =-uc) to indicate unlabeled (or
blank) common.

Not To Be Reproduced A-12 F21

display cobol run unit, dcr

The display_cobol_ run_unit command displays the current state of
a COBOL run unit. The minimal information displayed tells which
programs compose the run unit. Optionally, more detailed information
can be displayed concerning active £files, data 1location, and other
aspects of the run unit. Refer to the run_cobol command for
information concerning the run unit and the COBOL runtime environment.

Usage

display_cobol_run_unit {-control_args}

where control args may be chosen from the following list:

-long, -1lg
causes more detailed information about each COBOL program
in the run unit to be displaved.

displays information about the current state of the files
that have been referenced during the execution of the
current run unit.

s information about all programs in the run unit,
uding those that have been cancelled,

o
T
®

Refer .to the following related -commands:

run_cobol, rc
stop cobol run, scr
cancel cobol program, ccp

Not To Be Reproduced A-13 F21

display pllio err, dpe

Name: display pllio_err, dpe

The display pllio error command is designed to be invoked after
the occurrence of an I/0 error signal during a PL/I I/0 operation. It
describes the most recent file on which a PL/I I/0 error was raised
and displays diagnostic information associated with that type of
error,

Usage

P .
display pllic error

Example
The command line:
display pllio_error
might respond with the following display:
Error on file afile
Title: vfile_ afile .
Attributes: open input keyed record sequential
Last i/o operation attempted: write from

Attempted "write" operation conflicts with file "input" attribute.
Attempted "from" operation conflicts with file "input" attribute.

Not To Be Reproduced A-14 F21

dump segment, ds

Name: dump_segment, ds

The dump_segment command prints, in octal or hexadecimal format,
selected portions of a segment. It prints out either four or eight
words per line and can optionally be instructed to print out an edited
version of the ASCII, BCD, EBCDIC {(in 8 or 9 bits), or 4-bit byte
representation.

Usage

dump_segmant path {first} {n_words} {-control_args}

where:

1. path
is the pathname or {(octal) segment number of the segment
to be dumped. If path is a pathname, but looks like a
number, the preceding argument should be the -name {or
-nm) control argument (see below).

2. first

is the (octal) offset of the first word to be dumped. If
.bcch first and n_words are omitted, the entire segment is

dumped.

3. n words
iz the (octal) number of words to be dumped. If first is
supplied and n words is omitted, 1 is assumed.

4, control args

can be chosen from the following:

-4bit
prints out a translation of the octal or hexadecimal dump
based on the Multics uistructured 4-bit byte. The
ranslation ignores the first bit of each 9-bit byte and
uses each of the two groups of four bits remaining to
generate a digit or a sign.

-address, =-add
prints the address (relative to the base of the segment)
with the data. This is the default.

-bed

prints the BCD representatiocon of the words in addition to
the octal or hexadecimal dump. There are no nonprintable
8CD characters, so periods can be taken literally.

-block N, -bk N
dumps words in blocks of N words separated by a blank

Not To Be Reproduced A-15 F21

Not To

dump segment, ds

line. The offset, if being printed, 1is reset to initial
value at the beginning of each block.

-character, -ch, =-ascii
prints the ASCII representation of the words in addition
to the octal or hexadecimal dump. Characters that cannot
be printed are represented as periods.

-ebcdic9
prints the EBCDIC representation of each 9-bit byte in

addition to the octal or hexadecimal dump. Characters
that cannot be printed are represented by periods.

-ebcdics
prints the EBCDIC representation of each eight bits in
addition to the octal or hexadecimal dump. Characters
that cannot be printed are represented by periods. If an
odd number of words is regquested to dump, the last four
bits of the last word do not appear in the translation.

-header, -he
prints a header line containing the pathname ’o5r segment
number) of the segment being dumped as wesll as the
date~time printed. The default is to print a header only
if the entire segment i1s being dumped, i.e., nz=ither the
first nor the n_words arguments is specified.

~hex8
prints the dumped words in hexadecimal wvith nine
hexadecimal digits per word rather than octal with 12
octal digits per word.

-hex9
prints the dumped words in hexadecimal wit>r eight
hexadecimal digits per word rather than 12 octal digits
per word. Each pair of hexadecimal digits corresponds to
the low-order eight bits of each 9-bit byte.

-long, -1lg

prints eight words on a 1line. Four is the defzult. This
control argument cannot be used with -character, -bcd,
-4bit, -ebcdic8, -ebcdic9, or ~short. (Its use with these
control arguments, other than -short, results in a line
longer than 132 characters.)

-name, -nm
indicates that the following argument is a pathname even
though it may look like an octal segment number.

-nouaddress, -nad
does not print the address.

Be Reproduced A-16 F21

dump segment, ds

-no_header, -nhe
suppresses vprinting of the header 1line even though the
entire sagment is being dumped.

-no_offset, -nofs
does not print the offset. This is the default.

-cffset N, -ofs N
prints the offset (relative to N words before the start of
data being dumped) along with the data. If N 1is not
given, 0 is assumed.

-short, =-sh
compacts lines to £fit on a terminal with a short line
length. Single spaces are placed between fields, and only
the two low-order digits of the address are printed,
except when the high-order digits change.:® This shortens
output lines to less than 80 characters.

Note

Only - one of the «control arguments: -ebcdics,
-gbcdic9, -character, -bcd, or -4bit can be specified.

Not To Be Reproduced A-17 F21

io call, io

Name: 1io call, io

The 1o call command performs an operation on a designated I/0
switch. -

Usage

io_call opname switchname {args}

where:

1. opname
designates the operation to be performed.

2. switchname
is the name of the I/C switch.

3. args

may be one or more arguments, depending on the particular
operation to be performed.

The opnames permitted, £followed by their alternate forms where
applicable, are:

attach look iocb

close _ open

control ‘ pesition

delete record, delete print iocb

detach ioch, detach put_chars
destroy_ioch read_key

find_iochb ' read length
get_chars read_record, read
get line rewrite record, rewrite
modes seek key
move_attach write_record, write

Usage 1is explained below under a separate heading for =ach
designated operation. The explanations are arranged functionally
rather than alphabetically.

Unless otherwise specified, if a control block for the I/0 switch
does not already exist, an error message is oprinted on error_output
and the operation is not performed. If the requested operation is not
supported for the switch's attachment and/or opening, an error message
is printed on error_output.

Not To Be Reproduced A-18

T
N
it

io call, i

o

The explanations of the operations cover only the main points of
interest and, in general, treat only the cases where the I/0 switch is
attached to a £file or device, For full details see the descriptions
of the lox_ subroutine and the 1I/0 modules in the MPM Subroutines and
Section V, "Input and Output Facilities,"” in the MPM Reference Guide.

Ogeration: attach

io_call attach switchname modulename {args}

where:

1. modulename
is the name of the I/0 module to be wused in the
attachment. If modulename contains less-than (<) or
greater-than (>) characters, it 1is assumed to Dbe a
pathname, otherwise, it is a refesrence name.

2. args
may be one or more arguments, depending on what is
permitted by the particular I/0 module.

This command attaches the I/0 switch using the designated I/0
dule., The attach description is the concatenation of modulename and
gs separatasd by blanks. The attach description must conform to the
quirements of the I/0 module., 1If the I/0 modulename is specified by

pathname, it 1is initiated with &a reference name equal to the
entryname. If the entryname or reference name doces not <contain a
dolliar sign ($), the attachment will Dbe made by <calling
modulenameSmodulenameattach., 1If a dollar sign is specified, the entry
point specified is <called. See "Entry Point Names" in the MPM
Reference Guide, ' ' ‘

£

i

r
e

[\TRLe SET)

If a control block for the I/0 switch does not already exist, cne
is created.

Operation: detach iocb, detach

io_call detach switchname

This command detaches the I/0 switch.

Not To Be Reproduced A-19

[25]
[\S]
‘,.—l

io call, io

Operation: open

io_call open switchname mode

where mode 1is one of the following opening modes, which may be
specified by its full name, or by an abbreviation:

stream_input, si keyed sequential_ input, ksqgi
stream_output, so keyed sequentlal output, ksgo
stream input_output, sio keyed sequentlal update, ksqu
sequential lnput sgi direc®_input, di~

sequentzal output, sgo direct output, do

sequentlal input_output, sqgio direcE:update, du

sequentlal update, squ

This command opens the 1I/0 switch with the specified opening
mode.

Operation: close

io_call close switchname
This command closes the I/0 switch.

Operation: get_line

io_call get_line switchname {N} {-control_args}

where:

1. N
is a decimal number greater than zero specifying the
maximum number of characters to be read.

2. control args

Tan be selected from the following:

-segment path {offset}, -sm path {offset}
specifies that the line read from the I/0 switch is to be
stored in the segment specified by path, at the location
specified by offset.

-nnl

specifies that the newline character, 1f ©present, is
deleted from: the end of the line.

Not To Be Reproduced A-20 F21

io call, i

(o]

-nl
specifies that a newline character 1is added to the end of
the line if one is not present.

-lines

specifies that the ocffset, if given, is measured in lines
rather than characters. This control argument only has
meaning if the -segment control argument is also
specified.

This command reads the next line from the file or device to which
the I/0 switch 1s attached. I£ N is given, and the 1line is longer
than N, then only the first N characters are read.

If the -segment control argument 1is not specified, the line read
is written onto the I/0 switch user_output, with a newline character
appended if one is not present and -nnl has not been specified.

If the -segment control argument is specified, the line is

in the segment specified by path. If this segment does not exist, it
is created. If offset 1is specified, the 1line 1is stored at that
position relative to the start of the segment. This 1is normally
measured 1in characters, unless -lines has Dbeen used. If offset is
cmitted, he line is appended to the end of the segment. The Dit
count of the segment is always updated to a point beyond the newly
added data.

stored
st
t

Operation: get chars

io_call get_chars switchname N {-control args}

where:

1. N

is a decimal number greater than zero specifying the
number of characters to read.

2. control_args
can be selected from the same list as described under the
get_line operation.

This command reads the next N characters from the f£ile or device
to which the 1I/0 switch 1is attached. The disposition of the
characters read is the same as described under the get line operation;
that 1s, they are written upon wuser_output if the ~segment control
argument 1is not specified, or stored in a segment if the -segment
control argument is specified.

Not To Be Reproduced A-21 F21

io call, io

Operation: put_chars

io_call put_chars switchname {string} {-control_ args}

where:

1. string
may be any character string.

2. control arg

- ha calam+ra’d FrAam +h
c ue SCL8CTEl LI ol

G e fcllﬂ"'

n owing:

-segment path {length}, -segment path {offset} {length},

-sm path {length}, -sm path {offset} {length}
specifies that the data for the output operation is to be
found in the segment specified by pathname. The location
and length of the data may be optionally described with
offset and length parameters.

-nnl

specifies that a newline character is not to be appended
to the end of the output string.

-nl .
specifies that a newline character is to be added to the
end of the output line 1f one is not present.

~lines

specifies that offsets and lengths are measured in lines
instead of characters.

The string parameter and the -segment control argument are
mutually exclusive. 1If a string is specified, the contents of the
string are the data output to the I/0 switch., 1If the -segment control
argument is specified, the data is taken from the segment specified by
path, at the offset and length given. If offset is omitted, the
beginning of the segment is assumed. If length is omitted, the entire
segment is output.

If the I/0 switch is attached to a device, this command transmits
the characters from the string or the segment to the device. If the
I/0 switch is attached to an unstructured file, the data is added to
the end of the file. The =-nl control argument is the default on a
put chars operation: a newline character 1is added wunless o¢ne is
already present, or the -nnl control argument is specified.

Not To Be Reproduced A=22 F21

io call, io

Cperation: read_record, read

io_call read_record switchname N {~-control args}

where:

j N

4 e A
is a decimal integer greater than zero specifving the size
of the buffer to use.

2. control args
can be selected from the same list as described under the
get_line operation.

This command reads the next record from the £ile to which the I1I/0
switch is attached into a buffer of length N. TIf the -segment control
argument is not specified, the record (or the part of it that fits
into the buffer) 1is printed on user output. If the -segment control
argument is specified, the record is stored in a segment as explained
under the get chars operation.

Opveration: write record, write

io call write record switchname {string} {-control args:

ey —

1. string
is any character string.

2. control args
may be selected from the same list as described under the
put chars operation.

This command adds a record to the file to which the I/0 switch is
attached. If the string parameter is specified, the record is equal
to the string. If the -segment control argument 1is specified, the
record will be extracted from the segment as described under the
put_chars operation. 1In either case, the -nnl control argument is the
default: a newline character 1is added only 1£ the -nl control
argument is specified. If the file is a sequential file, the record
is added at the end of the file. If the file is an indexsd file, the
record's key must have been defined by a preceding seek_key operation.

Not To Be Reproduced A—23 F21

io call, io

Operation: rewrite_record, rewrite

io call rewrite record switchname {string} {-control args}

where:

1. string
is any character string.

2. control args
may be selected from the same list as described under the
put_chars operation.

This command replaces the current record in the file to which the
I/0 switch 1s attached. The new record 1is either the string
parameter, or is taken £from a segment, as described under the
write_record operation. The current record must have been defined by
a preceding read_record, seek_key, or position operation as follows:

read_record
current record is the last record read.

seek key
current record is record with the designatsd key.

position
current record is the record preceding the record to which
the £ile was positioned.
Operation: delete_record, delete
io_call delete_record switchname
This command deletes the current record in the file to which the

I/0 switch 1is attacned. The current record is determined as in
rawrite racord above,

Q
w
(4]
A
[(\]
T
=~
(o]
Cu
[
(¢}
100
(o
o2
l
[\W]
>
nj
[N
'. ~d

io call, i

(o]

Operation: position

io_call position switchname type

where type may be one of the following:

bof
sets position to beginning of file

eof :
sets position to end of file

forward N, fwd N, £ N
sets position forward N records or lines (same as reverse
N)

reverse N, rev N, r N
sets position back N records (same as forward -N records)

other
any other numeric argument or pair of numeric arguments
may Dbe specified, but 1ts function depends on the I/0
module being used and may not be implemented for all I/0
modules.

This command positions the file to which the I/0 switch is
attached., If type is bof, the file is positicned to its beginning, so
that +the next record is the £first record (structured files), or so
that the next byte is the first byte (unstructured files)., 1If type is
20f, the £file is positioned to its end; the next record (or next byte)
is at the end-of-file position., If type is forward or reverse the
file 1is ©positioned forwards or backwards over records (structured
files) or lines (unstructured files). The number of records or lines
skipped is determined by the absolute wvalue of N.

In the case of unstructured files, the next byte position after
the operation is at a byte immediately following a newline character
(or at the first byte in the £ile or at the end of the file); and the
number of newline characters moved over is the absolute value of N.

If the I/0 switch is attached to a device, only forward skips
{where type is £forward) are allowed. The effect is *to discard the
next n lines input from the device,

Not To Be Reproduced A-25 F21

io call, i

Operation: seek_key

io_call seek_key switchname key
where key is a string of ASCII characters with 0!<!length!<!256.

This command positions the indexed file to which the I/0 switch
is attached to the record with the given key. The record's length is
printed on user_output. Trailing blanks in the key are ignored.

If the file does not contain a record with the specified key, it
becomes the key for insertion. A following write_record operation
adds a record with this key.

Operation: read_key

io_call read_key switchname

This command prints, on user output, the key and record length of
the next record in the indexed file to which the 1I/0 switch is
attached. The file's position is not changed.

Operation: read_length

io_call read_length switchname

This command prints, on wuser_output, the length of the next
record in the structured file to which the I/0 switch is attached.
The file's position is not changed.

Not To Be Reproduced A-26

L]
[S
[

io call, i

(o]

Overation: control

io_call control switchname order {args}

where:

i, order
is one of the orders accepted by the I/0 module used in
the attachment of the I/0 switch.

2. args

are additional arguments dependent upon the order being
issued and the I/0 modules being used.

This command applies only when the 1I/0 switch is attached via an
I/0 module that supports the control I/0 operation. The exact format

of the command line depends on the order being issued and the I/0

module being used. For more details, refer to "Contrel Operations
from Command Level" in the appropriate 1I/0 module in the MPM
Subroutines. If the I/0 module supports the control operation and the

paragraph just refesrenced does not appear, it can be assumed that only
control orders that do not require an info structure can be performed
with the 1ioc call command, as a null info ptr 1is used. (See the
description of the iox Scontrol entry point and the 1I/0 module's
control operaticn, both in the MPM Subroutines.)

OCperation: modes

o ettt

io_call modes switchname {string} {-control_arg}

where:

1. string
is a sequence of modes separated by commas. The string
must not contain blanks.

2. control_arg
may be -brief or -bf.

This command applies only when the I/0 switch is attached via an
I/0 mocdule that supports modes. The command sets only new modes
specified in string, and then prints the o0ld modes on user output,
Printing of the old modes is suppressed if the -brief control argument
is used.

Not To Be Reproduced A-27 F21

io call, io

If the switch name is user i/0, the command refers to the modes
controlling the user's terminal. See the 1I/0 module Lty subroutine
description in the MPM Subroutines for an explanation of applicable
modes.

Operation: find_iocb -
io_call find_iocb switchname

This command prints, on user output, the location of the control

block for the I/0 switch. If it does not already exist, the control
block is created.

Operation: look_iocb

io_call look_iocb switchname

This command prints, on user_output, the location of the control
block for the I/0 switch. 1If the I/0 switch does not exist, an error
is printed.

Cperation: move_attach

io_call move_attach switchname switchname?2
where switchname2 is the name of a.second I/0 switch.

This c¢ommand moves the attachment of the £first 1I/0 switch
(switchname) to the second I/0 switch (switchname2). The original 1/0
switch is left in a detached state.

Operation: destroy_iocb

io_call destroy_iocb switchname

This command destroys the 1I/0 switch by deleting 1its control
block. The switch must be in a detached state before this command is
used. Any pointers to the I/0 switch become invalid.

Operation: print_ioch

io call print iocbhb switchname

Not To Be Reproduced A-28

)
[\
ot

io call, io

This command prints, on wuser_output, all of the data in the
control block for the I/0 switch, " including all pointers and entry
variables.

Summary of Operations

Usage: 1io attach switchname modulename {args}

Usage: 1io detach switchname

Usage: 1o open switchname mocde

Usage: 1o close switchname

Usage: 1o get_line switchname {N} {-control args}
Usage: 1o get _chars switchname N {-control args}

Usage: io put chars switchname {string} {-Control args}
Usage: 1io rnad record switchname N {-control argsT
Usage: 1o wrlte record switchname {string} {-control _args}
Usage: 1o rewrite record switchname {string} {- conurol args}
Usage: 1o delete_ Tecord switchname

Usage: io position switchname type

Usage: 1o seek key switchname kasy

Usage: 1o read_key switchname

Usage: 1io read :enggh switchname

Usage: io control switchname order {args}

Usage: 1o modes switchname {string} {-control arg:
Usage: 1o find iocb switchname: -

Usage: 1io look ioch switchname

Usage: 1ic uov: attach switchname switchname2

Usage: 1o dest roy ioch switchname

Usage: 1o orln* ioch switchname

where:

1. switchname
is the name of the I/0 switch.

2. modulename °

is the name of I/0 mo attachment.

[eN
[
[
(]
[
n
(1
Q.
—
=]
rt
oy
®

3. args
are any arguments accepted by the I/0 module wused in the
attachment.

Not To Be Reproduced A-29 F21

40

10.

Not To Be Reproduced

mode

string

type

key

order

o]

io call, i

is one of the following modes:

stream input, si
stream_output, so
stream_input_output,
sequentlal input, sqi
sequentlal output, sgo
sequential” input_output, sqio
sequential_update, squ

sio

is a decimal number,.
is any character string.

sets the f£ile position.

bof forward N
eof reverse N
other

keyed sequential input, ksqi
keyed_ sequentlal output, ksdge
keyed sequentlal update, ksqu
dltect input, 4i~

direct _output, do

direct” _update, du

It can be:

is a string of ASCII characters with 0!<!length!<!1256.

is one of the orders

acc=pted by the I/0

module used in

the attachment of the I/0 switch,

control_args
can be chosen from the following:

-segment path {length}, -sm path {length}
-segment path {offset}, -sm path {offset}

-segment path {offset} {length},

-nnl
-nl
-lines

-brief, -bf

A-30

-sm path {offset} {length}

F21

list external variables

Name: list external_variables

The 1list_external variables command prints information about
variables managed by the system for the user, including FORTRAN common
and PL/I external static variables whose names do not contain deollar
signs. The default information is the location and size of each
specified variable.

Usage

list_external_variables names {-control_args}

where:
1, names

are names of external variables, separated by spaces.
2. control args

CTan be chosen from the following:

-unlabeled common, -uc
is the name for unlabeled (or blank) common.

-no_header, -nhe
suppresses the header.

Not To Be Reproduced A-31 F21

list temp segments

Name: list_temp_segments

The

pool is managed by the

list_temp_segments command
the temporary segment pool associated with

get temp segments

lists the segments currently in
the user's process. This

and release_temp_segments_

subroutines (described in the MPM Subroutines).

Usage

list_temp_segments {names} {-control_arg}

where:

1. names
is a list

of names

identifying the programs whose tesmp

segments are to be listed.

2. control arg

Ts -all (or -a) to 1list all temporary segments. If the
command is issued with no control argument, it l1ists only
those temporary segments currently assigned to some
program.

Examples

To list all the segments currently in the pool, type:

! list_temp_segments -all

5 Segments, 2 Free

I1BBBCdfghgffkkkl.temp.0246
!BBBCdffddfdfftkl.temp.0247
{BBBCddffdfffhhh.temp.0253
I1BBBCdgdgthfgfsf.temp.0254
IBBBCvdvEgvdgvvv.temp.0321

work

work
(Eree)
(free)
editor

To list the segments currently iIn use, type:

! list_temp_segments
3 Segments
IBBBCdfghgffkkkl.temp.02456

IBBBCAffdd£fdffkl.,temp.0247
I1BBBCvdvigvdgvvyv.temp.0321

Not To Be Reproduced

work
work
editor

A-32

list temp segments

To list segments used by the program named editor,

list temp segments editor
1 segment

!BBBCvdvigvdgvvv.temp,.0321 editor

Not To Be Reproduced A-33

type:

page trace, pgt

Name: page_trace, pgt

The page trace command prints a rec

e story of page faults and
other system events within the calling pr

nt his
ocess.

Usage

page_trace {N} {-control_args}

where:
1. N
prints the 1last N system events (mostly page faults)
recorded for the calling process, I£ N is not specified,
then all the entries in the system trace list for the
calling process are printed. <Currently, there is room for
approximately 350 entries in the system trace array.
2. control args
can be chosen from the following:
-from STR, -fm STR
searched the trace array for a wuser marker matching STR.
I£ one is found, oprinting begins with 1it; otherwise,
printing begins with the first element in the array.
-long, =-1lg
prints £ull pathnames where appropriate. The default is
to print only entrynames.
-no_header, -nhe
suppresses the header that names each column. The default
is to print the header.
-output switch swname, -o0os swname
writes all output on the I/0 switch named swname, which
must already be attached and open for stream_output. The
default is to write all output on the user_output I/0
switch.
-to STR .
stops printing if a user marker marching STR is found.
The default 1is to print until the end of the array. If
both -from and -to are specified, the from marker is
assumed to cccur before the to marker.
Qutput

Not To Be Reproduced

pe
|
w
£
iy
3%
| v

page trace, pgt

The first column of output describes the type of trace entry. An
empty column indicates that the entry is for a page fauit. The second
column of output is the real time, in milliseconds, since the previous
entry's event occurred. The third column (printed for page faults
only) is the ring number in which the page fault occurred. The fourth
column of output contains the page number for entries, where
appropriate., The fifth column gives the segment number for entries,
where appropriate. The last column is the entryname (or pathname) of
the segment for entries, where appropriate.

Notes

Since it 1is possible for segment numbers to be reused within a
process, and since only segment numbers (not entrynames or pathnames)
are kept in the trace array, the entrynames and pathnames associated
with a trace entry may be for previous uses of the segment numbers,
not the latest ones., In fact, the entry and pathnames printed are the
current ones appropriate for the given segment number.

For completeness, events occurring while inside the supervisor
are also listed in the <trace. The interpretation of these events
sometimes requires detailed knowledge of the system structure; in
particular, they may depend on activities of other wusers. For many

find it appropriate to identify the points at
s the supervisor and ignore the events in

H
W 3

which he entars 2

between,

Typically, any single invocation of a program does not induce a
page fault on every page touched by the vreogram, since some pages may
still be in primary memory from previcus uses or use Dby another
process. It may be necessary to obtain several traces to fully
identify the extent of pages used.

A count wvalue (N) and either the -from or -tc control argument
cannot be specified in the same invocation of the page_trace command.

Not To Be Reproduced A-35 F21

print bind map

Name: print_bind_map

The print bind _map command displays all or part of the bind map
of an object segment generated by version number 4 or subsequent
versions of the binder.

Usage

print_bind map path {components} {-control_args}

where:

1. path
is the pathname of a bound object segment.

2. components

are the optional names of one or more components of this
bound object and/or the bindfile name. Only the lines
corresponding to these components are displayed. A
component name must contain one or more nonnumeric
characters. If it is purely numerical, it is assumed to
be an octal offset within the bound segment and the lines
corresponding to the component residing at that offset are
displayed. A numerical component name can be specified by
preceding it with the -name control argument (see below).
If no component names are specified, the entire bind map
is displayed.

3. control_args
may be chosen from the following list:

-lcng, -1lg

' prints the components' relocation values (also printed in
the default brief mode), compilation times, and source
languages.

=name STR, -nm STR
is used to indicate that STR is really a component name,
even though it appears to be an octal offset.

-no header, -nhe

T omits all headers, printing only lines concerning the
components themselves,

Not To Be Reproduced A-36 Fz1l

print link info, pli

Name: print_link info, pli

The print link info command prints selected items of information
for the specified object segments.
Usage

print_link_info paths {-control_args}

where:

1. paths
are the pathnames of object segments.

2. control_args
can be chosen from the £following 1list. (See "Note"
below.)

-length} -1n
print only the lengths of the sections in pathi.

-entry, -et
print only a 1listing cf the wpathl external definitions,
giving their symbolic names and their relative addresses
within the segment.

-link, -1

[o)
’ b
oo
n
ot
ese
o
«Q
O
rh
[W)
.....J
‘,_‘
T
)

k
t
arn

DT~

r'rt-‘

ri only a lphabetically
X al symbols referenced by
-long
prints more information when the theader 1is printed.
Additional information includes a listing of source
programs used to generate the object segment, the contents
of the "comment" <field of the symbol header (often

containing compiler options), and any wunusual values in
the symbol header.

-header, -he
prints the header (The header is not printed by default,
if the =-length, =-entry, or -link <control argument is
specified.)

-no_header
suppresses printing of the header.

2
[}
't
1y

Control arguments can appear anywhere on the c¢ommand line and
apely to all pathnames.

Not To Be Reprdduced A-37 F21

print link info, pli

Examgle

! print_link_info program -long -length

program 07/30/76 1554.2 edt Fri

Object Segment >udd>Work>Wilson>program

Created on 07/30/76 0010.1 edt Fri

by Wilson.Work.a

using Experimental PL/I Compiler of Thursday, July 26, 1976 at 21:38

Translator: PL/I
Comment: map table optimize
Source:

07/30/76 0010.1 edt Fri >user dir d1r>work>wllson>s>s>program pll

12/15/75 1338.1 edt Mon >11brary dir_dir>include>linkdcl.incl .pll

06/30/75 1657.7 edt Mon >library_ dir~ _dir>include>object_info.incl.pll
10/06/72 1206.8 edt Fri >llbrary d*r dir>include>source _map.incl. oll
05/18/72 1512.4 edt Thu >11brary dir d1r>1ﬁclude>symbol block.incl.pll
01/17/73 1551.4 edt Wed >11brary dir dir>include>pll svmbol block. lncl oll

Attributes: relocatable,procedure,standard

Object Text Defs Link Symb Static
Start 0 Q 34590 362C 3656 3630
Length 11110 3450 150 36 5215 0
<ready>

Also printed is:

Severity, if it is nonzero.
Entrybound, if it is nonzero.
Text Boundary, if it is not 2.
Static Boundary, if it is not 2.

Not To Be Reproduced

p -
|
(VY]
o0
rx)
[\S]
’..d

print linkage usage, plu

Name: print linkage usage, plu

The print_linkage usage command lists the locations and size of
linkage and static sections allocated for the current ring. This
information is useful for debugging purposes or for analysis of how a
process uses its linkage segments.

A linkage section is associated with every procedure segment and
every data segment that has definitions,

Usage

print_linkage_usage

Note

For standard procedure segments, the information printed includes
the name of the segment, its segment number, the offset of its linkage
section, and the size (in words) of both its 1linkage section and its
internal static storage.

Not To Be Reproduced A-39 F21

probe, pb

Name: probe, pb

The probe command provides symbolic, interactive debugging
facilities for programs compiled with PL/I, FORTRAN, or "COBOL. 1Its
features permit a user to interrupt a running program at a particular
statement, examine and modify program variables in their initial state
or during execution, examine the stack of block invocations, and list
portions of the source program. External subroutines and functions
may be invoked, with arguments as required, for execution under probe
control., The probe command may be called recursively.

Usage

probe {grocedure_name}

where procedure name is an optional argument that gives the symbolic
name of an entry to the procedure or subroutine thet is to be examined
with probe. It can take the form reference nameSoffset name. 1If no
procedure name argument is specified, the procedure owning the frame
in which the 1last condition was raised 1is assumed, 1if one exists;
otherwise, an error is reported.

Qverview of Processing

The probe command is generally used to examine an active program
at points where execution has been suspended by one of the following:

1. Breakpoint. Execution 1is temporarily halted at a point
selected by the user and probe entered directly. Debugging
requests associated with the breakpeoint are automatically
carried out and/or requests issued from the user's terminal.
Program execution can be resumed at the point of
interruption.

2. Error. An error such as zerodivide or subscriptrandge can
interrupt program execution. After an error message is
printed, a new command level is established. The user can
then call probe to examine the state of the program.

3. Quit signal. A run-away or looping program can be stopped
by issuing a quit signal. A new command level is
established and the user can call probe to determine the
source of the problem.

In all of these cases, variables of all storage <classes
{including automatic) are accessible,

probe, EE

The probe command can alsc be used to examine a nonactive program
-- one that has never been run or that has completed execution -- by
specifying a procedure_name argument in the command line. In this
case, the wuser can examine static variables and the program source.
However, the most common use is to set breaks before actually running
the preogram.

A program to be debugged with probe must have a standard symbol
table that contains information about variables defined in the program
and a statement map that gives the correspondence between source
statements and object code. A symbol table and statement map are
produced for the languages supported if the -table control argument is
given at compilation. {A program may alsc be compiled with the
-brief table control argument, which produces only a statement map.
The wvariables of a program compiled in this way cannot be examined
with probe; however, the user may retrieve information about source
statements and where the program was interrupted and alsoc may set
breakpoints at particular statements.)

Information about programs being debugged is stored by probe in a
segment in the user's home directory called Person id.probe where
Person_id 1is the wuser's log-in name. This segment 1is created
automatically when needed.

Probe Pointers

Three internal "pointers" are used by probe to keep track of the
1

program's state. They are:
source pointer indicates the current source-program statement
block pointer - indicates the current block

control pointer indicates the current control point

These values are affected by certain probe requests. A user can,
for example, position the source pointer to a particular statement,
then list a portion of the source program beginning at that point.

The block pointer serves two purposes. It identifies the
procedure, subprogram, or Dbegin block whose variables are to be
examined. Further, it specifies the stack frame associated with the
block and is used to distinguish among different occurrences of an
automatic wvariable in a recursively invoked procedure. The control
pointer marks the point at which a program is suspended.

The initial values of these pointers are determined as described
below. If a procedure_name argument is given in the command line and

Not To Be Reproduced A-41 21

probe, pb

if the designated program is active, the control and source pointers
. are set to the last statement executed, and the block pointer is set
to the most recent invocation of the procedure, If the designated
program is not active, then the control and source pointers are set to
the entry statement, and the block pointer to the outermost block (but
with no active frame).

If no procedure name argument 1s given and the default rule
applies (i.e., a <condition has been raised), then the procedure in
which the <condition was raised 1is used. The source and control
pointers are set to the statement where the condition was raised, and
the block pointer to the block containing that statement.

Similarly, when ©probe is entered because of a breakpoint
encountered during the execution of a program, the source and control
pointers are set to the statement at which the break has been set; and

the block pointer to the block containing that statement.

Breakpoints

a breakpoint causes a temporary interruption of ©program
execution, during which debugging operations can be performed. Using
probe requests, a user can set a breakpoint before or after any
statement and can asscciate a list of probe requests with the break.
A break set after a statement may, in some cases, not be executed due
to the nature of the code generated <for that statement. When the
break is encountered during execution, probe is entered and the list
of requests interpreted automatically. These reguests might, for
example, display the value of a wvariable or alter 1its wvalue
(effectively allowing source level patching of the program), tell what
line was just executed, or cause probe to read a list of requests from
the terminal to permit the user to interactively examine the state of
his ©program. When the request 1list assocclated with the break is
exhausted, the execution of the program is resumed from the point at
which it was interrupted.

The implementation of a breakpoint Dby probe consists of patching
a call to the probe command 1into the appropriate location in the
object segment of the program. As a result, there need not be an
active invocation of probe for a break to occur; also, breakpoints may
be set in a program before it is run, while the program is suspended
by another break, or before a program interrupted by a quit signal or
error condition has been restarted.

Not To Be Reproduced A-42

rx)
[\
[

probe, pb

Probe Requests

A probe request consists of 2 keyword (or its abbreviaticn) that
specifies the desired function and any arguments reguired by the
particular request.

A serie§ of requests may be given in the form of a request list.
Here, 1individual requests are separated by semicolons or newline
characters.

A single request or a vparenthesized request list may be preceded
by a conditional predicate whose wvalue determines 1i1f and when the
reguests it modifies will be executed.

The following pages present the format and function of each probe
request, Requests are grouped according to function. Required
arguments are indicated for each. The syntax and semantics of generic
arguments such as expressions, procedures, labels, and variables are
defined under separate headings following the reguest descriptions.

The following descriptions first give the name of the request and
its abbreviated form (if any). This line is followed by the general
format line(s) cf the reguest.

value expression
value cross-section

The request "wvalue expression® causes the value of the given
expression to be displayed. Allowable expressions are variables,
builtin functions such as addr and octal, and the value returned by an
external function. The evaluation of expressions 1is described later
(following the descriptions of 2ll the reguests) under "Evaluation of
Expressions.”

Not To Be Reproduced A-43 F21

probe, pb

Examples:

value var

value p -> a.b(j).c
value addr (1)
value octal (ptr)
value function (2)

The request "value cross-section" 1is used to display values
contained in a <cross-section of an array. A cross-section is

specified by giving the upper and lower bounds of one or more
subscripts, as in:

value array (1:5, 1)

The notation 1:5 indicates the range one through five for the
first subscript. The example above prints array(i,l), array(2,l),
eeey, Array(s,l). More than one dimension can be 1iterated; for
instance, arrayfl:2,1:2) prints, in order, arrav{l,l), array(l,2),
arrav(2,1), arra.(2,2).

2. let, 1

let variables = expression
let cross-section = expression

This request sets the specified variable or array elements to the
value of the expression. If the variable and the expression are of
different data tyzas, conversion is performed according teo the rules
of PL/I. Arra cross—-sections are expressed as shown in the value

One

regquest above, array cross-section may not be assigned to
another., ‘

Examples:

let var = 2

let array (2,3
let p => a.b{(l
let ptr = null

Because of compiler optimizaticn, the <change may not take
immediate effect: in the program, though the value request shows the
value to be altered.

=

ot To Be Reproduced

o]
!
s
oy
Ley]
N
[

probe, pb

3. call, cl

call procedure (argl, ..., argn)

This request calls the procedure named with the arguments given.
If the procedure expects arguments of a certain type, those given are
converted to the expected type; otherwise, they are passed without
conversion. The value request (see above) <can be used to invoke a
function, with the same sort of argument conversion taking place. If

the procedure has no arguments, a null argument list, "(}", must be
given.

Examples:
call sub {"abc®,

D
call sub noargs ()
value function ("01

-> p2 => bv, 250, addr({i}))

O"b)

4, goto, g

goto label

This reguest &transfsrs control from probe to Ethe 3s:itement
specified and initiates program execution at that point.
Examples:
goto label var transfer to value of label variable
goto action (3) transfer to label constant
goto 29 transfer &to statement on 1line 29 of
current program
goto $110 transfer to line with 1label 110 in the
FORTRAN program
goto S$c,l transfer to the statement following the

current statement

Because of compiler optimization, unpredictable results may occur
when using this request.

3. quit, g

gquit

This reguest causes a return to command level.

Not To Be Reproduced A-45

x)

£
o

probe, EE

6. continue, ¢

continue

This request restarts a program that has been suspended by a
break. If this request is issued in any other context, probe-returns
to its caller (generally command level).

SOURCE REQUESTS
1. source, sc

source n

This request displays one or more statements beginning with the
current statement (i.e., the source pointer). If n is not specified,
one line is printed; otherwise, n lines are printed. Only executable
statements for which c¢ode has been generated can be listed; however,
if a range of statements 1is regquested, intervening text, such as
comments and nonexecutable statements (for example, declarations), is
included in the output.

2. position, ps

position label
position +n

This request sets the source pointer to the statement indicated
by label o¢r to an executable statement relative to the current
statement as indicated by the value of n and displays it if the user
is in 1long mode. If +n is given, the pointer 1is set forward n
statements; if -n is given, th pointer is set back n statements. If
no label or offset is given, the statement designated by the control
pointer is assumed.

Examples:

position here set the source ptr to the statement
labeled here

position action (3) to the statement labeled action (3)

position 2-14 to the statement on line 14 of include
file 2 of the program

position +2 move forward two statements in the
source

position =5 move back five statements

probe, pb

The position request can also be used to search for an executable
statement that contains a specified string, using the form:

position "string"

The search begins with the statement following the current
statement and continues through the program, 1if necessary, until the
current statement is again reached. 1If a match 1s found, the source
pointer is set to that statement. If the specified string contains a
quotation mark, it must be doubled when given in the request line.
Because statements are reordered by the compiler, the search may not
necessarily £ind statements in the same order as the source listing of
the program would indicate.

[~

Examples:

position "write (5,10)" locate the statement in the program
position "str = ""a" locate str = "a
position "g+2"; source locate and print the statement

SYMBOL REQUESTS

1. stack, sk

~ o - 1 s -3
3calK 1, 0 ail

This request traces the stack backward beginning at the ith frame
and continuing for n frames. If i is not given, then the trace begins
with the most recent frame and continues for n frames. If no limits
are given, the entire stack is traced. The trace 1lists all active
procedures and block invecations (including quick blocks) beginning
with the mest rscent. For each block, a frame or level number 1is
given, as is the name of any conditions raised in the frame.

Examples:
stack trace the whole stack
stack 2 trace the two most recent frames
stack 3, 2 trace the third and second frames

Normally, system or subsystem support procedures are not included
in the stack trace. These may be included by specifying "all".

Xxamples:

3]

stack all trace the whole stack including all
support stack frames

Not To Be Reproduced A-47 F21

probe, pb

stack 5,3 all trace the £fifth, fourth, and third
frames including all support stack
framss
2. use, u

use block

This request selects the block to be used for subsequent probe
requests, It may be specified by the name of an entry, a label, or a
stack frame number (level i). If no block is specified, then the
block originally used (when probe was entered) is assumed. The block
pointer is set to the specified block so that variables in that block
can be referenced. 1In addition, the source pointer is set to the last
statement executed in the block. In this way, the point at which the
block exited can be found through use of the source request.
Acceptable block specifications include:

procedure name
label -
level 1

-n

In this context, procedure name is the name of a procedure or
subprogram entry point whose ~ frame 1is desired; 1its wusage 1is
essentially the same as if used on the command line. A label denotes
the block that contains the statement identified by the label or line
number; for instance, the label on a begin statement denctes that
begin block. If the label's block is not active, the scurce pointer
is set to the statement specified. The block specification level i
uses the block with level number i from a stack trace; -n uses the nth
previous instance of the current block, allowing one to move back to a
previous recursion level, 1If more frames are requestad thdn actually
exist, the last one found is used. -

Examples:

use sub use the Dblock that procedure sub
occupies

use label use the block that contains the
statement labeled label

use level 2 use the second frame in the stack trace

use =1 use the previous instance of the
current block

use =999 use the last (oldest) instance

(@]
w
M
a1
(1
e}
s}
Q
(a7
[
(4]
o
(&7
e
I
>
co
iy
[\8]
'._‘

probe, pb
2IO0C, BB

When a level 1is specified, the last trace mode (support
procedures included or excluded) specified is used to £find the level
requested.

3. symbol, sb

symbol identifier

This request displays the attributes of the variable specified
and the name of the block in which its declaration is found. If the
size or dimensions of the variable are not constant, an attempt is
made to evaluate the size or extent expression; if the wvalue is not
available, an asterisk (*) is used instead.

4, where, wh
where source

where Dblock
where control

This request displays the current value.of one or all of the
pointers. Source and control give the statement number of the
corresponding statement. Block gives the name of the block currently
being used; if the block is active, its level number 1is also given.
If neither source, block, or <control appears, the information for all
three is given.

Examples:

where give the wvalue of all three pointers

where source give the value of the source pointer

BREAK REQUESTS
1. before, b

before label: request
before label: (request 1list)

This regquest sets a breakpoint before the statement specified by
label and causes the given regquest(s) to be associated with the break.
I£f no 1label 1is given, the <current statement is assumed. If no

requests are given, a halt is assumed (see the halt request described
below) .

Not To Be Reproduced A-49 F21

probe, pb

When the running program arrives at the statement specified,
probe 1is entered before the statement is executed, and associated
requests are processed automatically. When all requests are done,
execution of the program resumes at the statement before which the
break was set. A Dbreakpoint set before a statement takes effect
whether the statement is arrived at in sequence or as the result of a
branch or call from some other location.

Examples:

()}

before: (value var; value var2) set a break before the current
statement to display the value of

: the variables var and var2
before quick: value x set a break Dbefore the statement

™

labeled quick

before set a break <containing the halt
request before the current
statement

The request list may extend across line boundaries if necessary.

2. after, a

after label: regquest
after label: (regquest list)

This request is the same as the before reguest except that the
break 1is set after the designated statement. This means that the
request list is interpreted after the statement has been executed. £
the statement Dbranches to another location in the program, the
breakpoint does not take effect; also, in some cases, the break may
not be executed due to the nature of the code generated for the
statement.

Notice the distinction between two breakpoints in sequence. The
one that is after statement Xx is not effective when control is passed
to statement x+1 from elsewhere. The break befores statement x+1 does
take place.

Not To Be Reproduced A-50 F21

probe, pb

3. halt, h

halt

This request <causes probe toc stop processing its current input
and to read requests from the terminal. A new invocation of probe is
created with new pointers set to the values at the time the halt
regquest was executed. As part of a break request list, it enables the
user to enter requests while a program is suspended by the break. A
running program can be halted 1in this way. A subseguent continue
request causes probe to resume what it was doing Dbefore it stopped;
for example, f£inish a break request list and resume execution of the
pregram.

Examples:

before 29: halt causes the program to halt at
statement 29 and allows the user
to enter probe requests (the
continue request can be used to
restart the program)

after: (value a; halt; value b) causes the wvalue of a teo be
printed before the program
halts; 1later, after the wuser
anters a continue request, the
value of b is printed, and the
execution of the ©program is

resumed

4. reset, r

reset

reset at/after/before label
reset procedure

reset *

This request deletes breaks set by the before and after requests.
When no argument is supplied, reset deletes the current break. With a
label argument, breaks set before and/or after a statement are
deleted; with a procedure or asterisk (*) argument, all the breaks in
a specified segment or all breaks in all segments, respectively, can
‘be deleted.

Not To Be Reproduced A-51 F21

probe, pb

Examples:
reset delete the current break
reset at 34 delete breaks set before and after the
first statement on line 34
reset after 34 delete the break set after line 34
reset sub delete all breaks in sub
reset * delete all known breaks
5. status, st
status

status at/after/before label
status procedure
status *

This request gives information about breaks that have been set by
the 'user. The scope of the requests is similar to reset except that
status without arguments specifies all breaks 1in the current program
{the program containing the statement designated by the source
pointer).

Examples:
status list the breaks set in the current
program
status before label give the break set before the statement
at label
status sub list the breaks set in sub
status * list the procedures that have Dreaks
set in them
5. pause, pa
pause

This request is equivalent to ™halt; reset" in a break request
list. 1It causes the procedure to execute a break once and then reset
it. If the statement after which the break 1is set transfers
elsewhere, the break does not occur and remains set until encountered
sometime Iin the future or explicitly reset at some other point.

Not To Be Reproduced A-52 F21

probe, pb

7. step, s

step

This request enables the user to step through his program one
statement at a time. It sets a break consisting of a pause regquest

fter the next statement to be executed (as indicated by the control

pointer) and resumes the execution of the program as with a continue
reguest.
MISCELLANEQUS REQUESTS
1. mode

mode brief

mode long

This request turns the brief message mode on or off. 1In brief

mode, most messages generated by probe are shortened and others are
suppressed altogether. The default is long.
2. a2Xecute, e

execute "string"

This request passes one or more Multics command line
recvresented above by "string", to the command processcr for execution,

3. acknowledge

This request causes probe to identify itself by printing "probe"
on the terminal. It may be used, £for example, to determine if a
called procedure has returned.

Not To Be Reproduced A-53

i3
N
[

probe, pb

CONDITIONAL PREDICATES
1. if
if conditicsnal expression: regquest

if conditional expression: (request list)

The request or request list is executed 1if the conditional
expression is true. The expression must be of the form:

expression operator expression

-~

where operator can be <=, £, =, "=, >, or >=,

Example:

if'a < b: let p = addr (a)

This predicate 1is most useful 1in a break request 1list where it
can be used to cause a conditional halt. For example,

before: if z "= "10"b: halt
causes the program to stop only when z "= "10"b.
2. while, wl

while conditional expression: request

while conditional expressiocn: (request list)

The request or request list is executed repeatedly as long as the
conditional expression is true.

Example:

while p "= null: (value p -> r.val; let p = p =-> r.next)

Not To Be Reproduced A=-54 F2

(=]

probe, pb

Evaluation of Expressions

llowable expressions include simple scalar variables, constants,
and probe builtin functions. The sum and difference of computational
(arithmetic and string) values can also be used.

Variables can be simple identifiers, subscripted references,
" structure qualified references, and locator gqualified references,
Subscripts are also expressions. Locators must be offsets, pointer
variables, or constants.

Examples:

running_total
salaries (p => i - 2)
a.b(2).c(3)
a.b.c(2,3)

X.y -> var

Constants can be arithmetic, string, bit, and pointer.
Arithmetic <constants can be either decimal or binary, £ixed or
flecating point, real or complex. 2also, octal numbers are permitted as
abbreviations for binary integers {(e.g., 120 = 10).

Examples:

-123

10b

45,37
4.73el0
2.1-0.31
123456700

Character and bit strings without repetition factors are allowed.
Character strings can include newline characters. Octal strings can
be used in place of bit strings (e.g., "123"oc = "001010011"Db).

Examples:
" abc "
"quote""instring"

"1010"b
"01234567"0

Not To Be Réproduced A-53 F21

probe, pb

A pointer constant is of the form:
segment_number|word offset(bit _offset)

where the segment_number and word_offset must be 1in octal. The
bit offset is optional but if given must be in decimal. The pointer
constant can be used as a locator.

Ly am
LA

Examples:

2

21415764
23217413(9)

Four builtin functions are provided by probe: addr, null, octal,
and substr. The function of addr and null 1is the same as in PL/I:
addr takes one argument and returns a pointer to its argument; null,
taking no arguments, returns a null pointer. The function octal acts
very much like the PL/I unspec Dbduiltin functicn in that it treats its
argument as a bit string cf the same length as the raw data value and
can be used 1in a similar manner as & pseucdo-variable. However, when
used in the wvalue request, the value 1is displayed 1in octal. Data
items not occupying a multiple of three bits are padded on the right.
The substr builtin function may be used as a function or
pseudo-variable. It takes two or three arguments, The first argument
must be a character or bit string or a reference to the octal builtin.
function; the second and optional third arguments give the offset and
length of the desired substring as with the PL/I substr builtin
function.

2
(o]
ot
o

These builtin functions cannot be used if a program variable of
the same name appears in the block being referenced. (For axample, if
X and octal are arrays in the same block, then octal (x(2)) becomes a
reference to the variable octal, not the probe builtin).

Not To Be Reproduced A-56 F21

Examples:

For the
aligned pointer, i as £
initial ("abcdefgh").

value addr (i)

let p null

value octal (i)

value substr (cs,

let substr (cs, 4,

Label References

A label identifies
variable or constant,

a
of the following special

designates

Sc
$b designates
occurred

Snumber designates

An optional offset

Examples:

label
label var
17
3-14,2

St
$c,l
$100

following examples,

probe, pb

assume that p
ixed binary initial(-2), and

displays the address

sets the pcinter, p;

is declared as an
cs as character(8)

of 1

to null

displays the storage containing 1 in
octal, giving: 777777777776 '

2, 3) displays "bcd"

1)="" sets ¢cs to "abc fgh"

a source program statement and can be a label

.
L
statement designators:

"current statement”
statement on which the

the
the

a2 FORTRAN label

of the form ",s"

at label
to
on line 17
2 on line

statement
statement
statement
statement
3
statement
statement

FORTRAN statement labelead

ine number in source-listing

wnich label var

format, or one

most recent break

is also allowed.

_ is set
of program

14 of include file

at which last break occurred
after current statement

100

Generally, a label can also be the name of a procedure, entry, or

subroutine statement,

Procedure References

Not To Be Reproduced

A-57

F2l

probe, pb

A procedure_name is an identifier representing an entry variable
or constant. External reference names, representing entry points not
declared in the current block, can be used.

Evaluation of Variable References

When a variable is referenced 1in a request, probe first attempts
to evaluate it by checking £for an applicable declaration in the
current block and, if necessary, in its parents. If no declaration is
found, the list of builtin functions is searched. Finally, when the
context allows a procedure_name, a search is made following the user's
search rules,

The block in which a wvariable reference is resolved can be
altered by the use request that sets the current block. For example,
if "value var" displays the value of var in the current block, then
"use -1; value var" displays the value of var at the previous level of
recursion. An optional block specification is available for
referencing variables in other blocks:

variable [block]

where block is the same as in the use request. The use of blocks in
this manner does not alter the block pointer.

Examples:
var([-1] looks for the previous value of var
abc[other_block] looks in "other block™ for abc
xyz[39] looks in the block that contains line
39 for xyz
n.m{level 4] looks in the block at level 4 for n.m
g(2) [sub] looks in the procedure sub for g(2)

A block specification can be used to gualify a variable reference
in any context the variable could be used. However, a block
specification on a label or entry constant 1is ignored unless the
relative (-n) format is used and the label or entry is itself used in
a block specification. 1In such a case, it is taken to mean the nth
previous instance of the block designated by the label or entry; that
is, "var[sub(=-2]]" references var in the second previous invocation
(third on the stack) of sub.

Not To Be Reproduced A-58 F21

probe, pb

Sample Debugging Sessions

Two extensive examples are given on the following pages to
illustrate Dboth how probe requests are used and how to get useful
debugging information out of them, the £first example was devised
principally to demonstrate the application of probe requests., A
listing of the source of the program, test, is given on the next page.
The program has been compiled with the -table control argument {(line
1). The sample output follows with an exclamation point (!) denoting
lines typed by the user. Unless otherwise indicated, line numbers
referenced in the following paragraphs are from the sample output.

The user first calls his program (line 5); noticing that it seems
to be looping, he stops it by issuing the quit signal (line 6). After
the user invokes probe (line 10), it responds by telling him that the
internal function fun was executing line 38 when interrupted. Since
the source pointer was autcmatically set to that line, the source
request (line 12) causes the current source statement to be displayed.
A statement causing an error could be displayed in a similar manner.

1 test: procedure;
2
3 declare.
"4
5 (i, 3) fixed binary,
6 1 s structure basad {(p),
7 2 num fixed binary,
3 2 b (n refer (s.num)) flocat binary,
S p pointer, n fixed binary,
10 sysprint file;
11
12
13 ns=>5;
14 allocate s set (p);
15
16 do i = 1 to s.num;
17 s.b(i) = fun (i, 1);
18 end;
19 put skip list (s.b);
20
21 do j = s.num to 1 by -1;
22 s.b(3) = fun (-3, -1);
23 end;
24 put skip list(s.b);
25
26 return;
27
28
29 fun: orocedures (b, 1) returns (float binary);
30
31 declare

Net To Be Reproduced A-59 F21

probe, pb

32 (b, i) fixed binary;
33

34 ifEb =20

35 then return (1);

36 else do;

37 b=»>b~ i;

38 returm (2**b + fun (b, 1i));
39 end;

40

41 end fun;

42

43

44 end test;

Not To Be Reproduced A-60 F21

probe, pb

1 ! pll test -table
2 PL/I
3 r 1248 3,211 28.336 280
4
5 ! test
6 t{quivt)
7 QUIT
8 r 1250 5.371 6.702 52 level 2, 10
S
1 ! probe
11 Condition quit raised at line 38 of fun.
12 ! source
13 return (2**b + fun (b, 1));
14 ! stack
15 11 command_processcr_
16 10 release_stack
17 9 unclaimed signal
18 8 real_sdh_
19 7 return_to_ring 0 _
20 6 fun ‘gquit
21 5 test
22 4 command_Processor_
23 3 listen_
24 2 process_overseer
25 1 user init admin
26 1. use level 5 - -
27 ! source
28 s.b(i) = fun (i, 1);
29 ! value s.num
30 5
31 ! position "i = 1"; source
32 do i =1 to s.num;
33 ! after: value i
34 Break set after line 16 of test.
35 ! quit '
36 r 1252 1,375 16.394 354 level 2, 10
37
38 ! release
39 r 1252 ,126 .922 19
40
41 ! test
42 1
43 1
44 1
45 1
46 !(quit)
47 QUIT
48 r 1252 3.069 .650 25 level 2, 12
49
50 ! release
51 r 1253 .092 .937 20
52
53 ! probe test

Neot To Be Reproduced A-61 F21

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
59
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
921
52
93
94
95
96
97
98
99
100
101
102

o

probe, pb

status

Break after line 186.

status after 16

Break after line 16: wvalue i
reset at 16

Break reset after line 16 of test.
position 34

source
ifEb=20
then return (1);

before: halt
Break set before line 34 of test.
quit
r 1255 .781 12.3%56 333
test
Stopped before line 34 of fun.
value b

1
where

Current line is line 34 of test.
Using level 6: fun.
Control at line 34 of fun.
value 1
1

c .
Stopped before line 34 of fun.
stack 5

8 break
7 fun
5 fun
5 test’
4 command_processor_
1u

value b
0

value b[-1] .
0

value 1
1

symbol 1

fixed binary(17,0) aligned parameter
Declared in fun.
use test
value 1
0
reset
Break reset before line 34 of test.
quit
r 1307 4.870 64.788 1544

The stack command is then used (line 14) to see in what order

procedures

were

called. The output shows that procedure test

Not To Be Reproducsd A-62

the
was

F21

probe, pb

called from command level, and then <called £fun. While fun was
executing, a quit signal was issued and estaplished a new command
level. :

The use request (line 26) sets the block pointer to the outermost
block of procedure test, and the source pointer to the last statement
executed in that block -- the statement which 1invoked i¢he function
fun.

The source request (line 27) is 1issued to display the current
Statement (as set above) to determine from which 1line of the program
(17 or 27) fun was actually invoked.

Since the block pointer has also been set, the user can check the
value of "s.num" with the value request (line 28) and ascertain that
it is as desired. Since there is no new declaration of "s.num" within
the procedure fun, the declaration made in the parent block, test, is
known and the value of "s.num" could be displayed without changing the
block pointer as would be necessary 1f there were & conflicting
declaration.

The user decides that it is worthwhile to trace the value of 1i.
Rather than recompiling his program with a "put statement” added in a
strategic location, probe allows him to set a break containing a value
request to accomplish the same thing. The user wants to szt the break
after the do statement on line 16 of the ©program and searches for it

with th position reguest (line 31). The scurce request 1Is used to
verify that the correct line was found. The after request i1s used to
actually set the break (line 33). The quit regquest (line 35) then

causes probe to return command level.

To abort the suspended program test, the user invokes the Multics
release command (line 38). 1If he had done this just after issuing the
guit signal, he <could not have used probe to examine automatic
variables 1inside the program or to determine where the program had
been interrupted.

The program is restarted (line 41) but now, after each execution
of line 16, the break occurs and probe displays the valus of i,
Clearly, it 1is not being incremented as it should. Since this
approach is not producing any wuseful information, the user aborts the
program and tries to delete the Dreak. The status reguest is used to
tell what Dbreaks have been set 1in the procedure test (line 34), and
then {(line 586) to see the probe request associated with that break.
The break is then deleted with the reset request (line 58). If there
nad also been a "Break before 16", then the request "reset at 15"
would have deleted both.

Not To Be Reproduced A-63 F21

probe, pb

The user next decides to examine fun, so he sets a break that
will halt every time £fun is invoked (lines 60 through 64). Looking at
the listing, he sees that the first statement in fun is on line 34, so
he sets the source pointer to that statement with the position request
and sets a break to halt the program. To accomplish the same thing,
"before 34: halt" could have been used.

The ©program is <called (line 59) and then halts when the break
before line 34 is reached. The wuser displays b and 1 (lines 71 and
77), getting the values he expected. The where request 1s also used
(line 73) +to check on the current state of things. The continue
request (line 79) restarts fun, which calls 1itself recursively and
stops again. The stack request (line 81, showing the 1last five
frames) verifies that fact. The wuser displays the b in the current
instance of fun (line 87, at 1level 7) and in the previous one (line
89, at level 6). Mistakenly expecting the b's at different levels to

be different, he gets suspicious. The variable i has the value
expected (line 91), but the symbol command (line 93) shows that it is
the wrong instance of i -- the parameter to fun, not the loop index.

To get the correct instance, he must look in the frame belonging to
the procedure test (line 96) and display that i (line 97). This i has
been set to 0. The user then realizes his error. The function is
modifying its argument (the loop index i) on line 37 (line 94). When
the user has finished debugging the program, the reset request (line
99) is wused to delete the <currently active break (the one that just
occurred), and the program is aborted with the quit request (line
101).

The preceding example was constructed to give a wuser a feeling
for applying probe requests. The following example is taken from an
actual debugging session using probe and illustrates several
additional techniques available to the user.

The program of interest is a subroutine, sort_strings, that is
supposed to sort a character array of arbitrary dimension; the array
is passed as an argument to the subroutine. Since very large strings
are being compared, it would be time consuming to exchange the strings
themselves. Therefore, an array of pointers to the strings (actually,
the indices of the strings in the original array) is first sorted by a
simple bubble sort, and the strings moved afterwards into the correct
order. There are (at least) two bugs in the program as it appears in
the listing. The next two paragraphs further describe the algorithm
intended.

A bubble sort involves making repeated passes over an input
array, comparing adjacent pairs of values, and interchanging them as
necessary. This moves <the larger (smaller) values toward the end of
the array. The sort only covers that portion of the array that is out
of order (i.e., up to the element where the final exchange took place

Not To Be Reproduced A-64 F21

probe, pb

on the previous pass -- all elements following this point are clearly
correctly arranged). The example below 1illusccates how a bubble sort
works in one case. (The hyphen delimits the end cf the search.)

Original First Pass Second Pass Third Pass

d a a -
a o] b a
c -> b -> - -> b
b - c c
e d d d
- e e e

In the sort_strings subroutine (see source listing below), "k"
determines the last element of the array needing to be sorted.
Sorting continues until no exchanges occurred during the last pass
(i.e., until the test, k <= 1, fails). The "order"” array contains the
indices that are actually sorted.

The reordering method wused is to scan for unordered items and
then move the entire chain (a replaces b; b replaces ¢; and ¢ replaces
a) containing the element., For =sxample:

Initial QOrdering Desired Ordering Movements
1 e 3 a temp <= 1 {e}) temp <- 2 (4)
2 d 4 b 1 <= 3 (a) 2 <= 4 (b)
3 a 5 c 3 <=5 (9 4 <- temp
4 o] 2 d 5 <= temp
5 c 1 e

All elements that have been moved into the correct location are
flagged as having been moved by setting their order values to -1.

Source listings of the program anéd subroutine, named testss and
sort_strings respectively, are given below.

1 testss: procedure;
2
3 /* test caller for sort_strings */
4
5 declare
&
7 i fixed binary, sysprint file, .
8 sort_strings entry (character(256) varying dimension(*
9 array (6) character(256) varying initial
Not To Be Reproducead A-65 F21l

\¢c);

10

11
12

14
15
16
17
18
19

WO oW WM

\¢c do;

\¢)

t;

Not To Be Reproduced A-66

probe, pb

("probe", nhellon, nxrayn’ unicen’ Ndef", " abc

call sort strings {(array);
do i =1 to 6;
put list (array (i));
put skip;
end;

end testss;

sort_strings: procedure (strings);
declare

strings character(256) varying dimension(*),

order fixed binary dimension (nbound (strings, 1)),
temp character(256) varying,

(i, k, 1, t) fixed binary;

/* initialize order array */

do i = 1 to hbeound (order, 1);
order (i) = i;
end;

/* perform bubble sort */

k, 1 = hbound (strings, 1);
do while (k <= 1);
do 1 = 2 to k;
1=1i-1;
if strings (order (1)) > strings (order (i)) then

t = order (l); order (1) = order (i); order (i
k = 1;
end;

end;
end;

/* move strings into above ordering */
do i = 1 to hbound (strings, 1);
if order (i) "= -1 then do;

temp = strings (i);

/* follow chain 'til reach start again */

do k = i repeat 1 while (k "= -1);
1 = order (Kj;
strings (k) = strings (1);

g
(3]
[

probe, pb

41 order (k) = -1;
42 end;

43 strings (1) = temp;
44 end;

45 end;

46

47

48 end sort_strings;

The debugging session begins below. Again, an exclamation point
(1) indicates lines typed by the user,.

! testss
L (quit)
QUIT

r 736 6.068 0.132 9 level 2, 10

{ probe
Ceondition quit raised at line 21 of sort strings.
! source -
do i = 2 to k;

' wvalue k

1
value 1

1

W N = O WO 00 ~3 Oy U i N

4 4 bt b

First the program testss, used to test the sort_strings
subroutine, is called from command level (line 1). When no output is
produced, the program 1is aborted by issuing a quit signal, and probe
is invoked to determine where the program was looping (line 6).

When probe 1is entered, it responds by giving the procedure and
line where execution was interrupted. The source pointer 1is set by
default to that line, so that the source reguest (line 8) may be used
to display the text of <the statement. The output does not indicate
whether the infinite loop is occurring in the inner (do i = to k) or
outer (do while (k <= 1)) loop. The wvalue of k (line 11) is 1, which
implies that the inner loop is not being entered; the value of 1 (line
13) is also 1 explaining why the outer loop never terminates.

An examination of the program shows that k and 1 could take on
these values 1if elements 1 and 2 are exchanged on a pass with k = 2;
on subsequent passes, no exchanges ars made (as the inner loop is not
entered), and the termination condition 1s never met. What i1s needed
is to force 1 to Dbe less than k on 11 passes unless an exchange
actually occurs. This can be done by setting 1 = -1 before attempting
the inner loop.

Not To Be Reproduced A-67 F21

probe, pb

14 ! before: let 1 = -1

15 Break set before line 21 of sort_strings.
16 I quit

17 r 737 1.217 3.562 97 level 2, 10
18

19 ! start

20

21 def

22 hello

23 probe

24 abc

25 xray

26 r 737 0.359 0.182 ©

The probe command can be used to modify the value of variables
either 1interactively or as part of a break request list. In the
latter case, the change is made every time the program is executed. A
breakpoint is set before the current statement (line 21 of the program
-- the inner loop) to set the value of 1 to -1 with the before request
(line 14). The gquit request (line 16) <causes a return to command
level, and the Multics start command (line 19) restarts the program
from where it was interrupted. This time output 1is generated.
However, the strings are not being sorted correctly.

27 ! probe sort_strings

28 ! position "1 = 1";source

29 do i = 1 to hbound (order, 1);

30 ! position "i = 1";source

31 do i = 1 to hbound (strings , 1);
32 ! before

33 Break set before line 32 of sort_strings.
34 ! quit

35 r 738 0.218 0.002 14

36

37 ! testss

38 Stopped before line 32 of sort_strings.
39 ! symbol order

40 fixed binary(17,0) aligned automatic dimension(6)
41 Declared in sort_strings.

42 ! value order(l:6)

43 6

44 5

45 2

46 4

47 1

48 3

One way to determine whether it 1s the sorting or ordering
section of the program that is functioning incorrectly, is to stop the
program before the ordering section and look at its input, the array

Not To Be Reproduced A-68 F21

probe, pb .

"order." The position request (line 28) is an attempt to locate the
desired statement, but the source request (line 28), used to check
that the <correct line has been found, shows that the wrong one was
found. The process is repeated (line 30), and the source pointer set
to the correct line. A break is set {(line 32) to cause the program to
"halt"™ at that statement and enter probe. The driving program is
begun once again (line 37), and sort_strings halts at the desired
location. The symbol request (line 39) is wused to <check that the
correct dimensions are being received for the array order. The value
request {(line 42) is used to display order(l), ..., order(6). It can
be seen that these are the correct values ("abc", in position 6, is to
be moved to position 1, etc.).

49 ! position 39; source

50 1 = order (k)

51 1 after: (value k; wvalue 1)

52 Break set after line 39 of sort_strings.

53 ! continue

54 1

55 6

56 6

57 3

38 32

59 2

60 2

61 5

62 5

63 1

64 1

65 -1

66 4

67 4

68 4

69 -1

70 nice

71 def

72 hello

73 probe

74 abc

75 Xray

76 r 740 0.602 0.000 O

It appears that the sorting code is working ©properly (with the
patch in it). Therefore, the reordering of the array is failing for
some other reason. The user then begins to trace the exchanges that

are made. A break is set (lines 49 and 51) to display the values of X
(the element to which the string is to be moved) and 1 (the element
from which the string is to be moved) as the program is running. As
stated previously, the effect of recompiling the program with a put
statement added can be duplicated 1in this manner. The break is set
after the 1line whers both wvalues have been determined <Zfor the

Not To Be Reproduced A-69 F21

probe, pb

exchange. The ‘continue request (line ©53) restarts the program from
where it was suspended by the break.

The output shows that extra exchanges are taking place. When k =
5, the next element on the chain is the first element (1l = 1), and the
fifth element should therefore be replaced by the copy of the first
value stored in "temp." It should not be replaced by the current
first element (the old element &, "abc"). Nor should the program
continue to move the undefined element -1 into element 1.

77 ! probe sort_strings

78 ! reset at 39 ‘

79 Break reset after line 39 of sort_strings.,
80 ! before 39: if order(k) = 1: (

81 ! let strings(k) = temp

82 ! let order(k) = -1

83 ! goto 42

84 1)

85 Break set before line 39 of sort_strings.
86 ! quit

87 r 742 0.280 0.966 36

For the program to work properly, the movement through the chain
must stop when the next element is the first (i.e., when order (k) =
i}). The saved value of the first (temp) should then be copled into
the <current element (strings(k)), and the search for additional
unreordered elements continued. If the user were to recompile the
program, the following code should achieve the desired effect.

if order (i) "= -1 then do;

temp = strings (i);

do k = i repeat 1 while (crder (k) "= i};
1 = order (k);
strings (k) = strings (1);

order (k) -1
end;
strings (k) = temp;
order (k) = =1;

end;

This approach may be checked before recompilation by making a
slightly more elaborate patch than the cone made previously. The probe
command may be used to place a check for the <correct terminating
condition as the first thing in the loop on k and, if the condition is
met, cause strings(k) to be set and the loop exited. First the break
(containing the two value requests) previously set after the statement

(line 78) is reset. Then a break, containing several requests and

Not To Be Reproduced A-70 F21

probe, pb .

extending across line boundaries, is set (lines 80 through 84) before
the statement on line 3% of the program.

83 ! testss

89 Stopped before line 32 of sort_strings.
90 ! reset

91 Break reset before line 32 of sort_strings.
92 ! continue

23 abc

94 def

85 hello

g6 nice

97 probe

98 Xxray

99 r 743 0.357 1.582 42

100

101 ! probe sort strings

102 ! status

103 Break before line 39.

104 Break before line 21.

105 ! status at 21

106 Break before line 21: 1let 1 = -1
107 I guik

108 r 744 0,184 1.146 72

The program is run once again {(line 88}, and the ©Dbreak set
between the two sections is encountered again. As it is no longer of
any use, the reset request (line 90), assuming the default of the last
break encountered, is used to delete the break. The continue request
{line 92) resumes the execution of the program. This time it works!

The probe command i1s invoked once again. This time the status
request is used to recall the breaks set, and, hence, the changes to
be made to the program, Two forms of the status request are used.
Just “status" (line 102) gives a list of all breaks set 1in the
program; "status at line number” (line 105) gives he text of the
associated break reguest list. The wuser can now dit and recompile

. 3 & - [}

the program and expect it to work correctly. Th em ng breaks
(=3
e

(a3

e

mn
194

ini
fect.

RS - b

need not be reset, because a recompilation has the same

e
e
e
e
a

a
a
£

)
[\
|-

A-71

Z
(o]
)
-3
(0]
w
1]
8]
[$)]
e
"
(o]
[eN
[t
(9}
({4
Q.

probe, pb

Terminology

active - a procedure is said to be active if its execution is
ongoing or suspended by an error, quit signal, breakpoint,
or call. An active procedure should be distinguished from
one that has never been run, has completed execution, or has
been interrupted and aborted by a Multics release command.

automatic storage - a storage «class for which space is allocated
dynamically in a stack frame upon block invocation. As a
result, variables of this class only have storage assigned
to them, and hence a legitimate address and value, when the
block in which they are declared has an active invocation.
PL/I variables, by default, belong to this class. FORTRAN
variables must appear in an "automatic" statement in order
to belong to this class.

lock - corresponds to a PL/I procedure or begin block or FORTRAN
program or subroutine, and identifies a particular group of
variable declarations.

breakpoint - a point at which program execution is temporarily
interrupted and probe requests executed.

invocation - when a procedure-is <called recursively, it will
appear on the stack two or more times, and will have storage
allocated for it the same number of times. Each instance of
the procedure on the stack is <considered a separate and
distinguishable invocation of the block. The wvalues of
automatic variables can be different in different
invocations of the same block. The most recent invoecation
is the topmost in stack trace.

level number - an integer used by probe to uniquely designate
each block invocation (i.e., each entry 1in a stack trace).
Level one is the first (least recent) procedure invoked,
Level number 1is not necessarily the same as either of the
numbers given after the word "level" in a ready message.
The first of this pair gives the count of command levels in
effect and gives the value n+l, where n is the number of
programs {(or groups of programs) whose execution has been
suspended, the second gives the number of stack frames in
existence and since the probe stack 1includes gquick blocks,
this number is less than or equal to the level number of the
last command level in the stack trace.

Not To Be Reproduced A-72 F21

. probe, pb

gquick block - internal procedures and begin blocks that satisfy
certain requirements (e.g., are not <called recursively, do
not contain on, signal, or revert statements, etc.) have
their automatic storage allocated by the blocks that call
them. Hence, they do not actually have their own stack
frames, but share the one of the caller, Certain system
commands, such as trace_stack, ignore these blocks. The
probe command, however, includes them 1in a stack trace, and
treats them as if they were the same as any other blocks.
The quickness £ a block may be determined £from a program
listing containing information about the storage requirement
of the program (produced with the -symbols, -map, or -list
control arguments). For example, procedure "quick"™ shares
stack frame of external procedure "main”.

stack - 1f a procedure A calls another procedure B, then the
execution of A is suspended until B returns. If B in turn
calls C, then this is an ordered list of procedure or
subroutine calls indicating which program called which other
program, and which will return to which. This ordered list
is called the ‘"stack". 1In probe, a trace of the stack may
be displayed by use of the stack request. The list is given
in top-down fashion with the most recently called procedure

listed first:

[{)]

(Sl S
P w0

The numbers are level numbers.

stack frame - when a block is invoked {(that is, a procedure is
calied or a begin block 1is entered), storage 1is allcocated
for its automatic variables. The area allocated is called a
stack frame and logically corresponds to each entry in the

stack.

static storage - a storage class for which space is allocated
once per process, effectively at the time the procedure is
first referenced. As a result, vwvariables of this class

always have a legitimate address and value. Regular FORTRAN
variables, and those in a common block, have static storage.
PL/I variables must be explicitly declared.

support procedure - a system utility routine that provides
runtime support for other procedures ({e.g., the procedure
that allocates storage as requested by a PL/I allocate
statasment) .

3}
[\
'— ~3

Not To Be Reproduced 2-73

summary of Reguests

after

mode
pause

pesition

quit
reset
source
stack
status
step
symbol
use
value
where

while

cl

(9]

{none)

(none)
pa
pPSs

sc
sk

st

sb

wh

Wl

Not To Be Reproduced

probe, pb

Set a break after a statement.
Set a break before a statement.

Call an external procedure.

Return from probe,

Execute a Multics command.

Transfer to a statement.

Stop the program,

Execute commands if condition is true.
Assign a value to a variable,

Turn brief message mode on or off.

Stop a program once.

Examine a specified statement or locate
a string in the program.

Return to command level,

Delete one or more breaks.

Display source statements,

Trace the stack.

Display information about breaks.
aAdvance one statement and halt.
Display the attributes of a variable.
Examine the block specified.

Display the value of a variable.

Display the value of probe pointers.

Execute c¢ommands while condition is
Lrue.
A-T74 F21

. probe, pb
de on or off.
pause ra .Stop a program once.

pesition ps Examine a specified statement or locate a string in the
program,

guit q Return to command level,

reset r Delete one or more breaks.

source scC Display source statements.

stack sk Trace the stack.

status st Display information about breaks.
Step S Advance one statement and halt.
symbol sb Display the attributes of a variable.
use , u Examine the block specified.

value v Display the value of a variable.
where ' wh Display the value of probe pointers.

while wl Execute commands while condition is true.

L]
N
s

Not To Be Reproduced A-75

profile

Name: profile

The profile command is a debugging tool used in conjunction with
the -profile (-pf) control argument of the pll, fortran, and cobol
commands. The profile command prints information about the execution
of each statement in the PL/I, COBOL, or FORTRAN program,

The =-profi co ¢l argument causes the compiler to generatas an
internal static tab containing an entry for each statement in the
source program; th table entry <contains information about the
statement as well as a counter that starts out &t zero. The counter
assoclated with a statement 1is 1increased by one each time the
statement is executed. The profile command prints and resets these

counters.

Usage

profile paths {-control_args}

wnere:

.
1, paths
are the pathnames or reference names of programs whose
counters are to be printed or reset.

2. control_args
are selected from the following 1list. Control arguments
apply to all programs whose names appear in the command
line.

-print, -pr
prints the following information for each statement in the
specified programs:

1. line number

2. statement number, if greater than 1

3. number of times the statement has been executed

4. cost of executing the statement measured in number of
instructions executed online plus the number of PL/I
operators invoked. Each instruction and each

operator invocation count as only one unit,

5. the names of all the PL/I operators used by this
statement
6. total cost for all statements is printed at the end

Not To Be Reproduced A-76 F21

profile

-prief, -bf
omits from the statement list statements that have never
been executed.

-leng, -1lg
includes iIn the statement 1list statements that have never
been executed.

-reset, -rs
causes profile to reset to zero all counters associated
with the specified program.

Note

If no control arguments are given, the default contrecl arguments
are -print and ~-brief.

Example

The PL/I program shown below <ccunts the number of occurrences of
one string 1in another string. It was compiled with +the -profile
control argument and executed once. Notice that 1line number and
statement number (LINE and ST, respectively) of the statement in the

then clause is the same as the line n:mber and statement number of the
if statement itself.

The source code £for the pregram is:

1 example: ©proc(sl,s2);
2 -
3 declare (sl,s2) char(*), .
4 (i,k) fixed bin,
5 ioa_ options (variaible);
6
7 X = 0;
8 do i = 1 to length{(sl}) - length(s2);
9 i1f substr(sl,i,iength{s2)) = s2
10 then k = k + 1;
11 end;
12
13 call ioa_(""d",k);
14 end example;

i
[\
'—l

Not To Be Reproduced A-77

profile

After executing the program once and invoking the profile command
without any control arguments, the output is:

LINE ST COUNT COosT PROGRAM
example
7 1 1
8 1 5
8 8 24
9 7 56
9 1 1
11 7 14
13 1 13«1 (call _ext _out_desc)
14 1 0+1 {return)
TOTAL 114+2

Not To Be Reproduced A-78 F21

reset external variables

Name: reset_external variables

The reset_external variables command reinitializes system-managed
variables to the values they had when they were allocated,

Usage

reset_external variables names {-control arg}

where:

1. names
are the names of the external variables, separated by
spaces, to be reinitialized.

2. control arg

is -unlabeled_common {or -uc) to indicate unlabeled (or
block) common.

Note

A variable cannot be reset if the segment containing
the initialization information is terminated after the
variable is allocated,

Not To Be Reproduced A-79 F21

Name

The

linkage
locates
linkage
issued

located

Usage

reslve linkage error, rle

resolve_linkage_error, rle

resolve_linkage _error command 1is invoked to satisfy the
fault after a process encounters a linkage error. The program
the virtual entry specified as an argument and patches the
information of the process so that when the start command is
the process continues as 1if the original linkage £fault had
the specified virtual entry.

resolve_linkage_error virtual_entry

where vi

Notes

For

rtual_entry is a virtual entry specifier.

an explanation of virtual entries, see the description of the

cv_entry_ subroutine.

Examples

!

myprog

Error: Linkage error by >udd>m>vv>myprogil23
referencing subroutine$entry

Segment not found.

r 1234 2.834 123.673 980 level 2, 26

rle mysubSmysub_entry
r 1234 0,802 23.441 75 level 2, 26

start
... Mmyprog is running

Not To Be Reproduced A-80 F21

run cobol, rc

Name: run_cobol, rc

The run_cobol command explicitly initiates execut
run unit in a specified "main program”. This command i
execute COBOL object programs on Multics; it is used
environment in which traditional COBOL concepts may be
This command cannot be called recursively.

Usage

run_cobol name {-control args}

1. name

is the reference name or pathname of the "m
which execution 1is to be initiated. If
given, then the specified segment 1is in
reference name identical to the entryname
pathname. Otherwise, the search rules are
the segment. If the name specified 1
statement of the COBOL program (i.e., &t
name) is different from the current refere
object segment, then the name specified h
the form ASB3 where A is the pathname or re
the segment and B 1is the PROG-ID as
IDENTIFICATION DIVIS ro

o d BRI

ON of the source
ne so

1
v PRV

e}

Qar
R

2. control_args
can be chosen from

r
o
®
n
(@]
.‘_J
|.J
(o]
)
1
3
Vo]

-cobol _switch N, -cs N
sets one or more of the eight COBOL-de
switches" on, where N is a number from 1 to
of numbers separated Dby spaces) that cor
numbered external switch. At the outset o

ion of a COBOL
S not needed to
to simulate an
easily defined,.

ain program" in
~a pathname is
itiated with a

portion of the

used tc locate
n the PROG-ID
he entry point
nce name of the
ere must Le in
ference name of
defined 1in the
2m

fined "external
8 (or a series
responds to the
f the run unit,

the default setting of these -external switches 1is off.

(The eight external switches are defined
COBOL Reference Manual, Crder No.!AS44.)

-no_stop _run, =-nsr
avoids establishment of a handler for
condition. (See "Notes" below.)

-sort_dir patn, -sd path

specifies the directory to be wused during execution o

this run unit for temporary sort work £
control argument s not specified, the pr
is assumed.

-sort_£file size N, -sfs N

is the floating point representation of
average size 1in characters of the files

Not To Be Reproduced A-81

in the Multics

the stop_run

iles. If th
ocess directo

the estimated
to be sorted

P21

run cobol, rc

during execution of this run unit. This information is
used to optimize sorting. 1If not specified le6 is assumed
(i.e., one million characters).

Notes

This command enables the wuser to explicitly define and start
execution of a COBOL run wunit, A run unit is either explicitly
started by the execution of the run_cobol command or implicitly
started by the execution of a COBOL object program either by
invocation from command 1level or from a call by another program
written in COBOL or another language. A run unit is stopped either by
the execution of the STOP RUN statement in a COBOL object program or
by invocation of the stop _cobol run command. For the duration of time
after a run unit is started and before it is stopped, it is said to be
active., All <COBOL programs executed while a run unit 1is active are
considered part of that run unict.

A run unit 1is a subset of a Multics ©process; it is stopped when
the process is ended. Also, when all programs contained in a run unit
are cancelled, the run unit is stopped (refer to the
cancel cobol program command). Only cone run unit may be active at any
given time in a process; thus, the run_cobol command cannot be invoked
recursively. Additionally, if a2 run wunit has been started implicitly
(as described above), the run_cobol command may not be used until that
run unit has Dbeen stopped; 1i.e., the run_cobol command does not
terminate a currently active run unit.

The explicit <creation of a run unit with the run_cobol command
performs the fcllowing functicons:

1. Establishment of a "main program", i.e., a program £from
which control does not return to the «caller. The EXIT
PROGRAM statements, when encountered in such a program, have
no effect, as required in the COBOL definition. An
implicitly started run unit has no "main program”. The EXIT
PROGRAM statement in all programs contained in such a run
unit always causes control to be returned to the caller,
even if the caller is a system program, e.g., the command
processor.

2. Setting of the COBOL external switches. These switches are
set to: off unless otherwise specified by the -cobol_switch
control argument,

3. User control of the action taken when a STOP RUN statement
is executed in a COBOL object program. The action normally
taken for STOP RUN is <cancellation of all ©programs in the
run unit, closing any £iles 1left open. After this has been

Not To Be Reproduced A-82

rx)

2

=

run cobol, rc

done, the data associated with any o¢f the programs is no
longer available, Thus in a debugging environment, it may
be useful to redefine the action taken for STOP RUN. When
the run unit is explicitly initiated with the run_cobol
command, the STOP RUN statement causes the signalling of the
stop_run condition £for which a handler 1is established that
performs the normal action described above. If the
-no_stop_run control argument is specified, the handler is
not established, thus allowing the user to handle the signal
himself using other Multics commands. If the user has not
provided a handler himself for stop run and specifies the
-no_stop run control argument, an unclaimed signal results.

The name given in the run_cobol command need not be a COBOL
object program. t may be a precgram prcduced by any language compiler
that provides a meaningful interface with COBOL programs {e.g., PL/I,
FORTRAN) . :

Refer to the folliowing related commands:

display cobol_run_unit, dcr
stop_cobol run, scr
cancel _cobol program, ccp

Not To Be Reproduced A-83 F21

set fortran common, sfc

Name: set fortran common, sfc

The set_fortran_common command allocates and initializes all
FORTRAN common blocks referenced by the specified FORTRAN object
segments. The maximum declared length of a common block (of all those
found in the 1ist of FORTRAN object segments) 1is wused £for the
allocation and initialization. This command <c¢an therefore be used to
guarantee that the correct common block storage is allocated and
initialized prior to a FORTRAN run. (If the user 1left it to the
dynamic linker, the first reference tc the common block would cause it
to be allocated 2and 1initialized as declared 1in the referencing
program. This program might not include the necessary initialization
information.) The set_ fortran_common command can also be wused to
reinitialize the <common blocks referenced by the specified object
segments, although it will not reinitialize any local storage such as
static or automatic variables.

Usage

set.fortran_commcn paths {-control arg}
where:

1. paths
are the pathnames of the FORTRAN object segments whose
common blocks are to be allocated and (re)initialized.

2. control arg
Ccan be -long (-1g) indicating that warning messages are to
be printed. Normally, all warning messages are
suppressed, Warnings are printed if the common block is
already allocated with a smaller size.

Notes
A FORTRAN object segment is either a segment created Dby one of
the Multics FORTRAN compilers or is a segment created by the binder

and contains at least one component that was created by one of the
Multics FORTRAN compilers.

Only common storage is affected by this command. Local variables
are not (re)initialized.

Common blocks without data initialization information are set to
binary zeros.

Not To Be Reproduced A-84 F21

set fortran common, sfc

If the common block 1is already allocated, 1its contents are
reinitialized and the prior contents are lost.

A warning is always printed if different initialization values
are encountered in the set of specified object segments.

Not To Be Reproduced A-85 F21

set system storage

Name: set_system_storage

The set system storage command establishes an area as the storage
region in which normal system allocations are performed.

Usage

set_system_storage {virtual ptr -control_ arg}

where:
1. virtual ptr
1s a wvirtual pointer to an 1initialized area. The syntax
of virtual pointers is described in the cv_ptr_ subroutine
description. This argument must be specified only if the
-system control argument is not supplied.
2. control_arg
is -system to specify tHe area used for linkage sections.
This control argument must be specified only 1if
virtual ptr is not specified.
Notes
To initialize or create an area, refer to the description of the
create_arsa ccmmand,
The area must be set up as either zero_on_£free or zero_on_alloc.

It is racommended that the area specified be extensible.

Examples
The command line:
set_system_storage free_S$free_

places objects in the segment whose reference name is <free_ at the
offset whose entry peint name is free_.

Net To Be Reproduced A-86

LEs]
(3]
[

set system storage

The command line:

set_system_storage my_seg$
uses the segment whose reference name is my seg. The area is assumed
to be at an offset of 0 in the segment. The segment must already
exist with the reference name my seg ané must be initialized as an
area,

The command line:

set_system_storage my_seg

uses the segment whose (relative) pathname 1s my_seg. The segment
must already exist.

Not To Be Reproduced A-87 F21

set user storage

Name: set_user_storage

The set user_storage command establishes an area as the storage
region in which normal user allocations are performed. These
allocations include FORTRAN common blocks and PL/I external variables
whose names do not contain dollar signs.

Usage

set_user_storage {virtual_ptr -control_arg}

where:

1. virtual ptr
is a wvirtual pointer to an 1initialized area. The syntax
of virtual pointers is described in the cv_ptr_ subroutine
description. This argument must be specified only if the
-system control argument is not specified.

2. control*arg ,
is =-system to specify the area used for linkage secticns.
This control argument must be specified enly 1if
virtual ptr is not specified.

Notes

To initialize or create an area, refer to the description of the
create_area command.

The area must be set up as either zero_on_free or zero_on_alloc.

It is recommended that the area specified be extensible.

Examples

The command line:
set_user_storage free $free_

places objects in the segment whose reference name is <free_ at the
offset whose entry point name is free .

Not To Be Reproduced A-388

LrY)
[\
e

Set user storage

The command line:

set _user_storage my_segS$
uses the segment whose reference name Is my_seg. The area is assumed
to be at an offset of 0 in the segment. The segment must already

exist with the reference name my_seg and must be 1initialized as an
area.

The command line:
set_user_storage my_seg

uses the segment whose (relative) pathname is wmy_seg. The segment
must already exist.

Not To Be Reprcduced A-89 F21

stop cobol run, scr

Name: stop_cobol_run, scr

The stop cobol run command causes the termination of the current
COBOL run unit. ~Refer to the run_cobol command for information
concerning the run unit and the COBOL runtime environment.

stop_cobol run {-control arg}

where the control_arg may be -retain data or -retd to leave the data
segments associated with the programs composing the run wunit intact
for debugging purposes. (See "Notes" below.)

Notes

The results of the stop_cobol_run command and the execution of
the STCP RUN statement from within a COBQOL program are identical,
Stopping the run unit consists of cleaning up all files that have been
opened during the execution of the current run unit, and -“guhbu,Auhug
the next time a program that was a component of this run unit is
invoked, its data is in its initial state.

To maintain the wvalue of all data referenced in the run unit in
its last used state, the -retain _data control argument should be used.

Refer to the related commands:

display cobol run_unit, dcr
cancel Cobol program, cep
run_cobol, rc

Not To Be Reproduced A=-90 F21

trace

Name: trace

The trace command is a debugging tool that lets the user monitor
all calls to a specified set of external procedures. The trace
command modifies the standard Multics procedure call mechanism so that
whenever control enters or leaves one of the ©procedures specified by
the user, a debugging procedure is invoked. The user can request the
folliowing:

1. Print the arguments at entry, exit, or both.

2. Stop (by calling the command processor) at entry, exit, or
both.

3. Change the frequency with which tracing messages are printed
(e.g., every 100 <calls, after the 2000th call, only if the
recursion depth is less than five, etc.).

4, Execute a Multics command line at entry, exit, or both.

5. Meter the time spent 1in the various procedures Rreing

monitored.

Use of the trace command is subject to the following
restrictions:

1. Only external procedures compiled by PL/I or FORTRAN can be

traced.
2. Ring 0 or gate entries cannot be traced.
3. Incorrect execution results 1f the traced procedure looks

back a fixed number of stack frames, e.g., cu Sarg_ptr
cannot be traced,.

4, Only 100 procedures can be traced at one time. Up to 16
locations can be watched at one time.

5. The procedure being traced and the trace package itself must
share the same combined linkage segment.

5. A procedure in a bound segment can only be traced if its
entry point is externally available.
Usage

trace {-control_args} names

'
3]
}—

Not To Be Reproduced A-91

trace

where:

1. names
is a pathname or reference name. The reference name or
entry portion of a pathname is used in the trace table.
(See "Notes" below.)

2. control_args
apply to the namei arguments that follow, and, 1if
applicable, change the current value in the trace control
template (TCT). (See "Notes" below.) Control arguments
may be chosen from the following:

-after N
calls the command processor after <calling the traced
procedure every N times (initial valuel!=1!0: do not call).

-argument N, -ag N
prints the arguments every Nth time the procedure is
entered (initial value!=!0: do not print).

-before N ,
calls the command processor before calling the traced
procedure every N times (initial wvalue!=!0: do not call).

-brief, -bf
prints a short form of the monitoring information.

-depth N, -dh N
monitors to the maximum recursion depth of N (initial
valuei=10: no limit).

-every N, -ev N
monitors every Nth call (initial value!=!1).

-execute STR, =-ex STR
executes the Multics command line specified by the string
STR whenever the procedure is monitcred (initial
value!=!"": no command).

~-first N, -ft N
starts monitoring on the Nth call (initial wvalue!=!1).

-govern STR, -gv STR
limits/does not limit the recursion level for a procedure,
where STR can be the string on or off (initial
value!=10ff). See "Recursion Limiting" below.

-in
prints the arguments only on entry (initial valuel=!yes).

Not To Be Reproduced A-92 F21

Not To

trace

-inout
prints +the arguments on both entry and exit (initial
valuel!=!no).

-io_switch STR, -is STR
changes the switch for output to the switch specified by
STR. (See "Changing OQutput Switch" below.)

-last N, -1t N
stops monitoring after the Nth call {initial
valuel=1595999%39399).

-long, -1g
prints the long form of the monitoring information. (For
use after the -brief control argument to restore the long
form.)

-meter STR, -mt STR
meters/does not meter the time spent in the procedure,
where STR can be the string on or off (initial
valuel=!off). See "Metering" below.

-out
prints the arguments only on exit {(initial valuel!=!no).

-off entryname
stops monitori

i
remains in th
counted.

-on entryname
resumes monitoring the specified procedure. This contrel
argument is used after the -off control argument.

-remove entryname, -rm entryname
removes the specified procedure from the trace table.
Tracing can be removed at any time.

-reset entryname, —-rs entryname
sets the number of <calls and recursion depth of the
specified procedure to zero.

-return value STR, -rv STR
prints/does not print the return value on exit, where STR
can be the string on or off (initial valuel=!cff). This
control argument assumes the entry is a function.

-status *, -st *

prints the procedures being monitored and their counters.
(See "Notes" below.)

Be Reproduced A-93 F21

trace

-status entryname, -st entryname
prints the trace parameters and counters for the procedure
specified by entryname. (See "Notes" below.)

-stop_proc path, -sp path
changes the procedure that is <called for stop requests
from the command processor to the procedure specified by
path. To reset the stop procedure, issue this control
argument with no path argument.

-subtotal, -stt
prints and does not clear the metering statistics.

-template, -tp
lists the trace control template.
Notes
The procedure whose pathname is given in the command line is added
to the trace table with the tracing parameters from the trace control

template (TCT). If the procedure is already 1in the table, the
counters are reset and the current parameters in TCT are used.

For <control arguments that affect procedures being traced, the
argument is an entryname or an asterisk (*). If an entryname is used,
the control argument applies to that procedure. If an asterisk is
used, the control argument is applied tc all entries 1in the trace
table. All control arguments that affect the TCT must have a number
argument (indicated by N abecve).

Examples

The command line:
trace -ag 1 -inout test

prints the arguments for test on entry and exit.

The command line:

trace -ag 2 -in -depth 6 test
prints the arguments for test every second time test is entered up to
a recursion depth of six, i.e., 2, 4, 6.

The command line:

trace -govern on test

Not To Be Reproduced A-94 F21

trace

prints the arguments of test each time test is called with a new
maximum recursion depth. The trace procedure c¢alls the command
processor every time the recursion depth is a multiple of 10.

The command line:
trace =-st * -tp
lists the procedures in the trace table and prints the values of the

trace control template,
Message Format

The message printed when control enters a procedure can appear in
any one of several formats, depending on the setting of the brief
switch and the status of the <calling procedure. If the calling
procedure is wunbound or occurs in a bound segment containing a
bindmap, the message takes the form:

Call 4.1 of alpha from betall27, ap = 20410746,

This 1is the fourth call of procedure alpha, which 1is at recursiocn
level 1, The call comes from location 127 in component beta, and the
argument list is at 204110746, 1If the procedure making the call is in
a bound segment that does not contain a bindmap, the message takes the
form:

Call 4.1 of alpha from bound gamma|437 (beta), ap = 204{10746.

The name in parentheses may not always be available and may be omitted

in some cases. If the user has requested the brief output mocde, the
message is shortened to:

Call 4.1 of alpha,

When tracing is requested for a ©procedure, the parameters for that
entry are taken from the trace control template (TCT). If the user
does not alter the values in the TCT, the 1initial default values are
used (see Dbelow). The initial wvalues in the TCT specify that every
call should be monitored.

]
N
=

Not To Be Raproduced A-95

trace

Trace Control Template

As mentioned earlier, the trace table entry holds a number of
parameters for each procedure to be traced. The wvalues of the
parameters are determined by the contents of the TCT at the time the
table entry 1is filled in. These parameters are used in conjunction
with N (the number of calls to the traced procedure in this process)
and R (the current recursion depth) to control when and how the
procedure should be monitored. The -execution count (N) is set to 0
when tracing is first started and is incremented by 1 every time the
traced procedure is called. The recursion depth (R) is set to 0 when
tracing is first started and 1is incremented by 1 every time control
enters the traced procedure and is decremented by 1 every time control
leaves the traced procedure.

Let:

D = the maximum recursion depth to be monitored (-depth)

F = the number of the first call to be monitored (-first)

L = the number of the last call to be monitored (-last)

E = how often monitoring should occur (-every) .

B = the number of times the ©procedure is <callied before trace
stops at sntry to the traced procedure (-before)

A = the number of times the procedure is called before trace

stops at exit from the traced procedure (-after)
AG = the number of times the procedure is called before trace
prints the arguments of the traced procedure (-argument)
= a bit that is "1"b if the tracing procedure should print the
arguments of the traced procedure when control goes into the
traced procedure (-in)
0 = a bit that is "1"b if the tracing procedure should print the
arguments of the traced procedure when control goes out of
the traced procedure (-out)

=
I

A call is monitored and the tracing procedure 1is called if, and
only i£:

F <= N K= 1L
R <= D
mod (N,E) = 0

~

If AG = 0, mod{N,abs(aG)) = 0, and I = "1"b, trace prints the
values of the arguments (if any) being passed to the traced procedure.
All of the arguments are listed when AG < 0. If AG < 0, the procedure
is assumed to be a function and the wvalue of the last argument is
printed after the procedure returns.

Not To Be Reproduced A-96 F21

trace

I£ B "=0 and mod(N,B) = 0, the monitoring procedure prints
"Stop" and calls the command processor {or a user-set procedure if the
-stop_proc control argument was used). This call occurs before the
procedure being traced has created its stack frame.

After control leaves the traced procedure, trace prints a line of
the form:

Return N.R from alpha.

If AG "= 0 and mod(N,abs(AG)) = 0, then all of the arguments of
the traced procedure are printed if O = "1"b; otherwise, 1f AG < 0,
the wvalue of the last argument (assumed to be the value of the
function) is printed.

Finally, +trace czils the command processor. If the -stop_proc
control argument was jiven, a procedure set by the wuser is called.
This call occurs after the stack frame of the procedure being traced
has been destrovyed.

Metering

The trace commané can be used to meter the execution of a
specified set of procedures. If the metering feature 1is being used,
trace does not <call the debugging procedure when control enters a
procedurse being traced; instead, it determines the current time and
the virtual CPU time used, and the number of page faults taken by the-
user's ©process before control enters and after control 1leaves the
traced procedure. This information is used to compute the real time
and CPU time used, and the number of page £faults taken by the traced
procedure on a local and global basis. The global CPU time 1is the
time spent in the proceiure including the time spent in any procedur=as
that it calls. The local CPU time does not include the time spent in
any traced procedure called by the procedure, but it does include time
spent in called ©procedures that are not being traced. The local and
global versions of real time and page faults are calculated 1in a
similar manner. Metering is only done when the first, last, every,
and depth tracing cconditions are satisfied.

The control argument:

-meter on, -mt on

Not To Be Reproduced A-97 F21

trace

sets the metering switch in the TCT; any procedures added to the trace
table or that have their table entries updated after this argument is
used are metered.

The control argument:

-mt off

{
3
®
¥
m
(a1
(o]
()Y
I

-

turns off the metering switch in the TCT; any procedures currently
being metered continue to be metered.

The control argument:
-total

causes trace to print the metering statistics of all procedures in tne
trace table. The output gives the number of «calls (#CALLS), glotal
CPU time (GCPYU), global real time (GREAL), global page waits (GPWS ,
local CPU time (LCPU), 1local real time (LREAL), local ©page wail:s
(LPWS) , and the usage percentage (%USAGE) based on local CPU time, £
all the procedures being metered. The metering statistics are set co
0 after they are printed.

The control argument:
-subtotal, -stt

prints the same 1information as the -total control argument, but dc:s
not clear the statistics.

Lgs]
N
—

Not To Be Reprocduced A-98

trace

Recursion Limiting

The control argument:
-govern on, =-gv on

sets a bit 1in the TCT that causes recursion limiting to be in effect
for any procedure subsequently added to the trace table. When the
governing feature is used, the depth control parameter is ignored and
trace prints the <c¢all message only when the recursion depth of the
traced procedure reaches a new, maximum depth. Each call message has
a recursion depth one greater than the ©previous call message. In
addition, trace «calls the command processor (or a user-defined
procedure if the -stop proc control argument was used) whenever the
recursion depth is a multiple of 10. Return messages are not printed.
This feature enables the user to find and 1limit uncontrolled
racursion; it can be very useful in £finding the ©procedure(s)
responsible for fatal process error.

The control argument:
-govern off, -gv off

turns off the governing switch in the TCT; any procedure currently
being governed continues to be governed.

Watch Facility

The trace command has an optional watch facility in which trace
watches the «contents of a set of previously specified memory cells.
The <cells are checked at every entry to and every exit from every
traced procedure. As long as the wvalues in the 1locations being
watched remain the same, no action is taken and no tracing messages
are printed. The tracing message 1is printed as soon as trace finds
that any of the locations being watched has had 1its value changed.
This can be £found either at entry to or exit from the traced
procedure. When any value changes, the tracing message is preceded by
lines that give the new wvalues of all of the locations that have
changed, and the command processor {or a user-set procedure if the
-stop_proc control argument was used) is called even LIf the A or B
conditions are not met. When execution continues,; the locations that
have changed are watched with the new value being used in subsequent
checks. This feature <can be very useful In determining which of the
user's procedures has incorrectly modified a word of storage.

Not To Be Reproduced A-99 F21

trace

The control argument:
-watch STR, -wt STR

causes all procedures being traced to watch for a change 1in the
current contents of the memory word(s) specified by the string STR.
This string, specifying the location, can consist of a single address
specification or a series of address specifications separated by
blanks and surrounded by quotes. 1If an address specification does not
contain a vertical bar (l), it is taken to be an octal number giving a
location in the stack; otherwise, it is taken to be a segment number
and offset in octal in the standard form, e.g., segment number|offset.

The control argument:
-watch off, -wt off
turns of£f the watch facility.

The watch facility differs from other trace facilities 1in that
there is a single table of locations being watched that is used by all
procedures being traced. When the =-watch <control argument Iis
processed, the new location(s) specified replace any locations
currently in the watch table. There is no provision made for removing
a single location from the watch table; the user must reissue a watch
request that omits the location to be removed from the table.

Command Execution

The command execution facility of trace allows the user to
specify a Multics command line to be executed whenever the trace
debugging procedure is called. The trace procedure calls the command
processor with the specified string after oprinting the tracing
message, but before the stop request causes the command processor to
be called.

Not To Be Reproduced A-100 F21

trace

The control argument:

-execute string

sets the execution string parameter in the TCT. Since string is a
single argument, it must be enclosed in qgquotes if it contains any
spaces. The execution parameter in the TCT is turned off if string
has zero length (-execute ""). The following line:

trace —-eX time test

causes trace to execute the time command before and after test is
called.

Changing Qutput Switch

All of the messages from the trace command that may b

2 generated
while actuall monitorin rocedures are normall writt
b4
u

on the
ocedures

n
it.

user_Ii/o switch so that trace can convenliently be used with

ut. The

that change the attachment of the normal switch, user_ o
control argument:

g
en
pr
tp

-io_switch STR

causes race to write <further monitoring output on the switch
specified by STR, which must already be attached and opened for
stream output.

Not To Be Reproduced A-101 F21

trace stack, ts

Name: trace_stack, ts

The trace_stack command prints a detailed explanation of the
current process stack history 1in reverse order (most recent frame
first). For each stack frame, all available information about the
procedure that established the frame (including, if possible, the
source statement last executed), the arguments to that (the owning)
procedure, and the condition handlers -established in the frame are
printed. For a description of stack £frames, see "Multics Stack
Segments" in Section!IV of the MPM Subsystem Writers' Guide.

The trace stack command 1is most useful after a <fault or other
error condition, If the command is invoked after such an error, the
machine registers at the time of the fault are also printed, as well
as an explanation of the fault. The source line in which it occurred
can be given if the object segment is compiled with the -table option.

Usage

trace_stack {-control_args}

where control_args can be selected from the following:

-brief, -bf
suppresses listing of arguments and handlers, This
control rgument cannot be specified if -long 1is also

specified as a control argument.

-long, -13
prints octal dump of each stack frame,

-depth N, -dh N
dumps only N frames.

Qutput Format

When trace_stack 1is invoked, it first searches
backward through the stack for a stack frame containing
saved machine conditions as the result of a signalled
condition. If such a frame 1is found, tracing proceeds
backward from that point; otherwise, a comment is printed
and tracing begins with the stack frame preceding
trace_stack.

If a machine-conditions frame is found, trace stack
repeats the system error message describing the fault,
Unless the -brief «control argument is specified,
trace_stack also prints the source 1line and faulting

Not To Be Reproduced A-102 F21

trace stack, ts

instruction and a listing of the machine registers at the
time the error occurred.

The command then performs a backward trace of the
stack, for N frames if the =-depth N argument was
specified, or else wuntil the beginning of the stack is
reached,

For each stack frame, trace_stack prints the offset
of the frame, the condition name if an error occurred in
the frame, and the identification of the procedure that
established the frame. 1If the procedure is a component of
a bound segment, the bound segment name and the offset of
the procedure within the bound segment are also printed.

The trace_stack command then attempts to locate and
print the source line asscciated with the last instruction
executed in the procedure that owns the frame (that is,
either a call forward or a line that encountered an
error) . The source line <can be printed only 1£ the
procedure has a symbol table {(that is, if it was compiled
with the -table option) and 1if the source for the
procedure 1is available in the wuser's working directory.
If the source line cannot be printed, trace_stack prints a

€

comment explaining why.

Next, trace stack prints the machine instruction last
executed by the procedure that owns the current frame, If
the machine 1instruction is a call to a PL/I operator,
trace stack also prints the name of the operator. 1If the
instruction 1is a procedure call, trace_stack suppresses
the octal printout of the machine instruction and prints
the name of the procedure being called.

Unless the -brief «control argument 1is specified,
trace stack lists the arguments supplied tc the preocedure
that ~owns the current frame and also 1lists any enabled
condition, default, and clean-up handlers established in
the frame.

Iif the -Tong control argument i spe
trace_stack then prints an octal dump of the stack
with eight words per line.

Not To Be Reproduced A-103 F21

card

‘Not

To Be Reproduced A-104

trace stack, ts

Example

After a fault that reenters the user environment =2nd
reaches command level, the user Iinvokes the trace_stack
command.

For example, after quitting out of the list command,
the following process history might appear:

1 list
Segments=8, Records=3
rew 0 mailbox
r w
QUIT
trace_ stack
quit Tn ipc_S$block|156
(>system_library l>bound_command_loop_|156)
No symbol table for ipc_
156 400010116100 cmpg pr4llo

Machine registers at time of fault

pr0 (ap) 26314654 pll_operators_Soperator_tablel|l62
(external symbol in separate nonstand.

text section)

prl (ab) 1031264 scs| 264

pr2 (bp) 14112200 as_linkagel12200

pr3 (bb) 11310 tc_ “datal?

prd4 (lp) 25312250 |BBBJGjFKPBWCNZ .area.linker|2250
(internal staticl0 for ipc_)

pr5 (lb) 2443514 stack_413614

pré (sp) 24413300 stack_41(3500 (-> "kcpMbLH +0000000")

pr7 (sb) 24410 stack_410

X0 73 xl 0 X2 0 X3 600000

x4 0 X5 32 X6 3033 X7 4

a 000000000000 g 000000000004 e O
Timer reg - 1746005, Ring alarm reg

|
o

SCU Data:

4030 400270250011 000000000021 400270000000 000000672000
000156000200 000154000700 002250370000 600044370120

Connect Fault (21
At: 2701156 ipc_|
On: cpu a (%0)

Indicators: “bar

)
156 (bound_command_loop |1548)

)
3]
js

trace stack, ts

-

APU Status: xsf, sd-on, pt-on, fabs

CU Status: rf£i, its, fif

Instructions:
4036 002250 3700 00 epp4 2250
4037 6 00044 3701 20 epp4d pr6l44,*

Time stored: 08/02/77 1635.5 edt Tue (104541674361226602)
Ring: 4

Backward trace of stack from 2443500

3500 quit ipc_$block|156 (bound_command_loop |156)
No symbol table for ipc_
156 400010116100 cmpg pr4il1o0
ARG 1: 253[5704 !BBBJGjFkPBWcNZ.area.linker|5704
ARG 2: 24413152 stack_4]3152
ARG 3: 0

2720 tty_Stty get_linel2442 (bound iox [115456)
No symbol table for tty_ -7
call_ext_out to ipc_Sblock
ARG 1: 25374320 !BBBJGjFkPBWcNZ.area.linker|4320
(internal static|l154 for £ind_ioch)

ARG 2: 244]2660 stack_412660 (-> "fo stuff")
\RG 3: 128
ARG 4: 0
ARG 5: 0
2400 listen $listen_[461 (bound_command_locp_|1325)

No symbol table for listen_
call ext out to iox_$get_line

ARG 1l: ""
on "cleanup” «call listen_|256 (bound_command_loop_[1122)

2100 process_overseer_S$Sprocess_overseer |473 (bound_command_loop
\c_121433)
No symbol table for process_overseer_
call ext out_desc to listen Slisten_
Argument list header invalid.
on "any other”
call standard _default _handler_Sstandard_default handler_ 3
(external symbol in separate nonstandard text section)
2000 user_init_admin $user_init_admin_[36 (bound_command_loop_ |2
\cl6786)

No symbol table for user_init_admin_
21676 700036670120 tsp4 pr7136,* alm_caill
No arguments,
End of trace.

Not To Be Reproduced A-105 F21

trace stack, ts

r 1635 1.756 40.790 207 level 2, 9

Not To Be Reproduced A-106 F21

Workshops .
Workshop
Werkshop
Workshop

APPENDIX W

One. .
Two. .
Three,

Workshops

W-1i

W-1
W-1
W-10
W-1

WORKSHOP ONE

A probe Workshop

The best (perhaps the only) way of 1learning how to use the probe
command is by using the command in actual debugging sessions. This
workshop provides the experience of debugging a moderately complicated
program. The program computes and prints out the elements of a
Fibonacci series, An F series begins as

01123581321 3455 ...

An element of the series 1is calculated by adding the previous 2
elements (for a Fibonacci series of degree 2). In the series shown
above, the first two elements (0 and 1) are given as initial wvalues
and the remaining elements are then computed.

Fibonacci series of higher degrees can also be defined by adding more
elements to calculate the next in the series. For example, a series
of degree 4 begins as ‘

0G 011248 1529 56 108 ...

with the next element of the serles caliculated by adding the previous
4 elements in the series.

The program shown below reads two paraneters from the terminal: Fdeg
gives the number of the highest degrze Fibonacci series to be
computed; count gives the number of elzaments to be 1included in each
series, For input of

Fdeg=4, count=7;
the first seven elements (excluding the assumed initial values) of the

Fibonacci series of degrees 2, 3, and 4 are printed. .

Now, without further ado, here are the »rograms! There is one written
in PL/I, and one written in FORTRAN. <You can copy whichever of these
programs you wish to debug from >udd>Fl9>Student_01>fib.pll (or
.fortran) into your home directory. Note that the line numbers shown
below are not actually a part of the soirce segment.

SIS TR A
fco ed T WKsPET
7\)AJ7

Not To Be Reproduced W-1

rxy
N
b

L R S Sy
001 Ui WK QWO I U & W

ot
(s

NN ON
(V2R SN VSIS B)

WM NN
OWOo IO

G W W W
> L0 N

w W
awn

37

w W
O

W >
WO

44

B
~J Oy W

U
QW 0

wm o U
w N -

Not To Be Reproduced. W-2 F21l

fib: proc;

decl (sysin

WORKSHOP ONE

, Sysprint) file,

Sfirst bit(l) int static init("1l"b),

(Fdeg,
msg ¢

decl 1lines
get_1

dcl clean

count, i) £fixed bin,
har(2568) varying;

ize fixed bin,
ine_length_S$stream entry (char(*), f£ixed bin(35))
returns(fixed bkin);

up condition;

/* Establish cleanup on unit to close files. */
/* Open input/output files, get output file line */
/* length to insure output lines £it on terminagl. */

on cleanup close file(sysin), file(sysprint);

open file(sysin) stream input;

open file(sysprint) stream output;

linesize = get_line_length_Sstream ("sysprint", 0);

/* Initialize indicator of how many series should */
/* be cutput (Fdeg) and how many items should be */

/* output in each series {excluding assumed */
/* initial elements of sach series). *®/
" Fdeg = 2;

"Enter PFde

""For examp

"These are

",
’

12
count = 10;

/* Output brief instructions to the user,; but * /
/* only the first time fib invoked in each process*/
if sfirst then do;
msg =
g and/or count, followed by a "";"" character.”;
write file(sysprint) £from(msg); .
msg =
le,
Pdeg = 2, count=10;";
write file(sysprint) from{msg);
msg =
the default values. To stop, enter
Fdeg = 1;
write file(sysprint) from(msg);
Sfirst = "0"b;
end;
put file(sysprint)

list ("Enter data, or just a "";"" char: ");
get file(sysin) data (PFdeg, count); :

WORKSHOP ONE

54 ' /* Compute and output each Fibonacci series. */
'55' /* Then get next set of input values. */
56 . *
57 do while (Fdeg < 1);
58 . : put file(sysprint) skip(2) data (count);
59 put file(sysprint) skip;
60 " do i = 2 to Fdeg;
61 ' call gen fib (i, count);
62 = end; -
63 put file(sysprint)
64 - list ("New data, or just a "";"" char: ");~
. 65 ' get file(sysin) data (Fdeg, count);
66 . end; .
87 - '
68
69 /* Close files and return. */
70. '
71 ~ close file(sysin), file(sysprint);
727) return;

Not To Be Reproduced W=3 F21

74
75
78
77
78

80
81
82

84
85
86
87
88
89
90
91
g2
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
11
114
115
116
117
118
119
120
121
122
123
124

, A0
A€F~ ((/\ (

WORKSHCP ONE

S
(

gen_fib: proc (grouping, count);

del (grouping, count) fixed bin,

/* Fibonacci series to be computed, and number
/* of items to be computed in the series.
N (grouping) fixed bin(71),

*/
*/

/* Array of values summed to form series elements*/

result (-grouping:count-1) char(28) varying,
/* Array of output values, including assumed
/* values which begin the series.

*/
*/

r matrix (Nrows, Ncols) char(28) varying based(Pr matrix),

—

/* values (excluding assumed values).
Pr_matrix ptr;

(Icol, Irow, Ncols, Nrows,

Nused_cols_in_last_row) fixed bin,
Sdoes not fit bit{l),

SPACES char(30) int static options(constant) init(""),

cycle fixed bin,

/* index of series element being computed.
formatted_total pic "zzz,zzz,222,222,222,222,229",
output_total char(l00) varying,
total fixed bin(71);

. /* Initialize the assumed values which begin
/* the series. All are 0 but the last, which is
N(*) = 0;
N (grouping-~l) = 1;

/* Put the assumed values in the output arravy.

do cycle = -grouping to -2;
result{cycle) = "0";

end;

result(cycle) = "1";

/* 2-dimensional overlay for the computed output

*/
*/

*/

*/
1%/

*/

/* Compute remaining values of series, and put in */

/* the output array.

do cycle = o count-l;
total = sum(N);
formatted total = total;
result(cycle) = ltrim(formatted total);
N(mod(cycle, grouping)) = total;
end;

Not To Be Reproduced W-4

*/

WORKSHOP ONE

125 /* The output will be printed with assumed values */
126 /* preceding computed values. The computed values*/
127 /* will be printed in as many rows as possible to */
128 /* reduce the number of output lines. However, if*/
129 /* the output fits in 2 or more rows, the number */
130 /* of rows 1s chosen so that all columns but the */
131 /* £inal one are full (have Nrows values). */
132 /* Of course, in multi-column format, all data */
133 /* must fit the terminal linesize. */
134

135 Pr_matrix = addr(result(0));

136 Sdoes_not_fit = "1"b;

137 do Ncols = 20 to 1 by -1 while (Sdoes_not_fit);

138 total = -2;

139 Nrows = divide(count+Ncols-1, Ncols, 17, 0);

140 Nused cols in last row = mod{count,Ncols);

141 if Nused cols in last row = 0 then

142 Nused_cols_1In_last_row = Ncols;

143 if Nused cols in last_row >= Ncols then do;

144 do Tcol = 1 to Nused _cols_in_last_row;

145 total = total + :

146 length(r_matrix(Icol, Nrows))+2;
147 end;

1438 do Icol = Icol to Ncols;

149 total = total +

150 length(r_matrix(zcol, Nrows=1))+2;
151 end; ,
152 if total <= linesize then Sdoes_not_fit = "0"b;
153 end; .

154 end;

155 Ncols = Ncols + 1;

156

Not To Be Reproduced W=-5 F21

< a (ovuetd

WORKSHOP ONE

157 /* Qutput the values, starting with the assumed */
158 /* values, then the computed (output in columns). */
159 /* Computed values are output in right-justified */
160 /* columns. Each row (line) is formatted and */
161 /* then output. */
162
1863 put file(sysprint) edit ("Fdeg =", grouping,
164 ":") (a, £(3), a); .
165 put file(sysprint) edit (" (assumed beginning of series)",
166 (result(cycle) do cycle=-grouping to =1))
167 (skip, a, skip, {(grouping) {(a, x(1)));
168 put file{sysprint)
169 edit ("(remainder of series)") (skip, a):;
170 put file(sysprint) skip;
171 do Irow = 1 to Nrows;
172 msg = "";
173 do Icol = 1 to Ncols-1;
174 msg = msg || substr(SPACES, 1,
175 length(r_matrix(Icol,Nrows)) -
176 length(r matrix(Icol,Irow)));
177 msg = msg || r_matrix(Icol, Irow);
178 msg = msg || " ";
179 end;
180 if Irow*Ncols + Icol <= count then do;
181 msg = msg || substr(SPACES, 1,
182 length(result{hbound(result,l))) -
183 _ length{r_matrix(Icol, Irow))};
184 : msg = msg || r_matrix(Icol, Irow)-
185 end;) |
186 write file(sysprint) from(msg); ;
. 187 end;
188 put skip(2) file(sysprint):
189 end gen fib;
190 -
191 end fib;

Not To Be Reproduced W-6 F21

W o1 U= N
(#]

14 10

20 15

26 22

29 25

w
(Vo)
O0a0a0aaq0

WORKSHOP ONE

A FORTRAN VERSION

logical sfirst /.true./
save sfirst

Qutput instructions to the user, but only the first
time '£ib' is invoked in each process.

if {(.not.sfirst) goto 10
print, "Enter first degree and count"

print, "For example, First degree = 2, count = 10"
print, "To stop, enter First degree = 1"

sfirst = ,false.

Prompt for First degree and count.
print, "First degree, count?"
read, ifdeg, icount

Stop when First degree is 1.
if (ifdeg - 1) 15,15,25

print, "Count =",icount

Compute and output each Fibonacci series.
Then get next set of input values.

do 22 1 = 2,ifdeg
call gen_fib (i,icount)
goto 10

stop
end

subroutine gen_£ib (igrouping, icount)

This subroutine actually computes the Fibonacci series.
‘iresult' will be filled with the proper values,

while "Jjresult' is a convenient squivalent view of

the solution which will be used for printing purposes.
The 'n' array holds the most recent terms to be added
together to obtain the next term in the series.

double precision n(l0), total
dimension iresult(30)

dimension jresult(10,3)

equivalence (iresult(l),jresult(l,l))

Tell him which degree of Fibonacci series this is

print
print,"Degree =" ,igrouping

Not To Be Reproduced) W=7 F21

WORKSHOP ONE

52 print

53

54 c Initialize the assumed values which begin the
55 c series, All are 0 but the last, which is

56 c 1 - also put the assumed values into the

57 o] output array

58

59 do 10 i = 1,igrouping-1

60 iresult(i) =0

61 10 n(i) =0

62 iresult(igrouping) =1

53 n(igrouping) =1

64

65 c Compute remaining values of series, and put in
66 c the output array

67

68 do 20 icycle = igrouping+l, icount

69 total = 0

70 do 15 i = 1, igrouping

71 15 total = total + n(i)

72 iresult(icycle) = total

73 20 n(mod(icycle-1,igrouping)) = total

74 .

75 o The output will be printed with assumed values
76 c preceding computed values. The computed values
77 c will be printed along with the assumed values
78 o] in three columns. Hence, there will always be
79 c 'irow' rows with three values, and the last
80 c row may have 1 2 or 3 wvalues

81

82 . icol = mod{icount,3)

83 irow = icount / 3

84

85 do 22 j=1,irow

86 22 print,(jresult(i,’i),i=1,3)

87 if (icol) 30,30,25

88 25 print,{(jresult(irow+l,i),i=1,icol)

89 30 return

90 end

Not To Be Reproduced W-38 F21

WORKSHOP ONE

The following dialcgue shows the correct operation of the PL/I version
of the £fib program. The dialogue 1is slightly different £for the
FORTRAN and COBOL versions, but the concept is basically the same for
all three programs. The programs shown above may have errors which
prevent them from generating these results. Use probe to find the
errors. Change the source to correct 'the errors, recompile the
program and continue testing it wuntil it prints the results shown
below.

[[
I 1 1 . pll £ib -table |
2 PL/I l
| 3 r 2247 5.091 51.312 227 |
| 4 |
| 5 1 £ib |
| 6 Enter Fdeg and/or count, followed by a ";" character. |
l 7 For example, l
| 8 Fdeg = 2, count=10; |
! 9 These are the default values. To stop, enter I
{10 Fdeg = 1; |
| 11 |
| 12 Enter data, or just a ";" char: ! Fdeg = 4, count=9; |
[13 I
| 14 I
| 15 count= 9; |
| 16 Fdeg = 2: i
|17 (assumed beginning of series) |
| 18 01 |
| 19 (remainder of series) |
| 20 1 2 3 5 8 13 21 34 55 !
P21 - |
| 22 I
[23 Fdeg = 3: |
| 24 (assumed beginning of series) |
| 25 00 1 |
| 26 (remainder of series) |
| 27 1 2 4 7 13 24 44 81 149 |
| 28 l
I 29 l
| 30 Fdeg = 4: |
| 31 {(assumed beginning of series) |
I 32 0001 |
| 33 (remainder of series) |
| 34 1 2 4 8 15 29 56 108 208 |
| 35 |
| 36 I
| 37 New data, or just a ";" char: ! Fdeg=1l; |
| 38 r 2248 0.249 0.228 19 |
| I

Not To Be Reproduced W-9 F21

WORKSHOP TWO

A trace Workshop

1. Use 'trace' tc monitor the value of the arguments on return from
the system program 'expand pathname ' (trace =-ag 1 -out
expand_pathname_) . Do you know what that program is used for?
Issue the trace command to list che status of the expand_pathname_
trace entry {trace -status expand_pathname_). Do vyou " know what
those counters mean? Now lssue a print command and observe what
happens. 1Issue the command '‘print >1ldd>include>its.incl.pll' and
see what happens. Now try the command 'ds balcney'. Finally, try
the command 'pr <>foo'. What happens? What do you think the
fourth argument of expand_pathname_ is used for??

2. Now print the status of the expand pathname_ (trace -status
expand_pathname_). Also, 1list the control template £for trace
(trace =-tp). Remove the trace entry for expand pathname_ and

reset the «control template to its initial form T(trace -remove
expand_pathname_ -ag 0).

yPsoed 7 wksPBYFI781>

3. Execute the followiﬁg recursive program (see >udd>F19>sl1>R2.pll
and >udd>P1l39>s1>R2):

R2: ©proc;

dcl (sysin, sysprint) file;
del (n, i) £ixed bin;

decl R2S$Seqg entry (fixed bin);

open £file (sysprint) stream output env (interactive);
put file (sysprint) skip list ("Enter value...");

get list (n);

call R2SSeq (n);

return;

Seq: entry (i);
put file (sysprint) 1list (i);
if i > 1 then do;
call R23Seq (i-=l1l};
put f£ile (sysorint) list (i);
end;
end;

Ixecute the program with a value of 5. You should get 5 4 3 2 1 2
3 4 5, Type the command to trace this program, printing the
argument values at input to every second <call(trace -in -ag 2
R2S$Seq) . Now run R2 again wusing the wvalue S and observe what
happens. List the trace status of R2$Seg and then turn on the
governing facility (trace -st R2$Seq =-govern on R2SSeq). The
governing facility is used to help trap runaway recursive
procedurses. Run R2 once again, wusing the wvalue 5. List the
status of R2$Seg{trace -st R2SSeg). Note the maximum recursion

Not To Be Reproduced W-10 F21

WORKSHOP TWO

level. Now lets see if we <can blow it out. Run R2 again, this
time with an input of 1l2. What happened? Since our procedure is
not really a runaway program, type the ‘'start' <command to
continue. Did you realize that we were at command level?
Why? (Hint: the govern facility stops on depth levels which are a
multiple of 10 to give you a chance to find out what's happening).

4., Now, stop tracing R23Seqg, and reset the template. You may first
want to issue the command 'trace -st * -—tp' to see the current
state of affairs. Next, copy the following three simple pll
programs, which are found in the directory >udd>F1l9>sl:

init: proc;
dcl 1 S external static,
2 sentinel £ixed bin,
2 array {5) float;
del 1ioa entry options (variable);
dcl addr builtin;

sentinel = 0;
call ioa_ ("sentinel located at "p", addr (sentinel));

end;

load: proc;

dcl sysprint file;

decl 1 S external static,
2 sentinel fixed bin,
2 array (5) float;

del 1 fixed bin;

open file (sysprint) stream output env (interactive);
do 1 =1 to 5;
array (i) = 3* (i=-2});
end;
put file (sysprint) skip (3) list (array);
end;

Not To Be Reproduced W=11 F21

WORKSHQOP TWO

print stat: proc;

del Ssysprint file;

dcl 1 S external static,
2 sentinel fixed bin,
2 array (5) float;

open file (sysprint) stream output env (interactive)
put skip (2) list ("*sentinel location clobbered!i*"
put skip (1) data (S);

)i

end;

Compile each of these programs. Now run init., It should tell you
that the external static member wvariable 'sentinel!' is located at
some segment number|offset., We want to use the watch facility of
trace to f£ind out whether any program is clobbering that locaticn.
Hence, issue the command to have trace watch that location -sesce
%watch seg_noloffset). Next, let’'s monitor the 'load' program,
and if anything goes wrong, let's cause the print stat program to
be called as the 'stop proc' instead of the command processor.
Issue the command to do this(trace -stop proc print stat load).
Now run the load program and see what happens. So far so good!
Now modify the load program so that it inadvertently changes the
value of sentinel by changing the 'do' statement to 'do i = 0 to
5'. Recompile and run the load program. What happens? The watch
facility should have stopped your load program since the value of
its watch 1location <changed, and it should have called the
appropriate 'stop _ 'proc’. Did irx? The watch facility 1is very
useful when trying to track dcwn the one procedure in a group of
procedures that 1s going a bit awry, or has modified scme
externally accessible error cell,etc.

Not To Be Reproduced W-12 F21

WORKSHOP THREE

On the Programming Environment: A Quiz

1. Object segments are an essential part of the Multics programming
environment., Name the 8 sections into which an object segment is
divided. Describe the contents of each section in general terms.
Are all the sections always present in every object segment? 1If
not, which are optional.

Not To Be Reproduced W-13 r21

WORKSHOP THREE

2. The system maintains information about the wuser ring programming
environment in 2 important segments. <Can you name these 2
segments? Briefly describe what kinds of data the system keeps
in each segment. What directory are the segments located in?
How are these segments protected from accidental damage?

Not To Be Reproduced wW=14 F21

WORKSHOP THREE

3. One of the most powerful features of the Multics programming
environment is the Dynamic Linking mechanism. The programming
environment uses this mechanism to find an object segment which
is called by another program.

Briefly name the important steps taken by the dynamic linker to
find an object segment.

At what point during the compilation or execution of the calling
program does dynamic linking take place?

How often do=3 it take place?

If one program calls an object segment and then a second program
(a second ob*=2ct segment) calls that same target object segment,
are the same steps followed in both cases to dynamically link to
the called object segment? If not, how does dynamic linking
differ during the second call?

Not To Be Reproduced W=15 F21

4'

WORKSHOP THREE

A fatal process error occurs when the system decides “hat the
programming environment can no longer operate correctly. When
this occurs, the system takes control of the user's terminal,
prints a brief error message, and creates a new user process.

Under what circumstances might the system decide that the

.fprogramming environment can no longer operate?

gLl

Toc Be Reproduced W=-16

What 2 programming errors are the most common causes of fatal
process errors?

Briefly describe a procedure for finding the cause of a fatal
process error.

o]
[\]
b

WORKSHCOP THREE

5. In chapter four 11 different <classes of data (storage classes) -
were discussed which can be used in PL/I, FORTRAN and/or COBOL.
programs. For each class of data, describe:

o Where the data 1is stored. Give the logical name of a
segment, table, or area; also give the pathname of the
segment containing the data class.

o The major characteristics of the storage <class. (When the
data is allocated, when freed, when initialized, can it be
shared between programs, etc?) L :

P

For example, one class of storage is:

based storage, in an area: stored in a program—supplied areaz,
such as the system free area (segment system_free n_ in the
process dir). Storage is known only to 1 program, is
explicitly allocated and freed, is 1initialized by allocate
or leocate statements, and has a location maintained by a
pointer or offset qualifier.

Not To Be Reproduced W-17 LI R2Y

WORKSHOP THREE

5. ce-for the answer)

{3 3}
v -
_mm,é, Happiness is Multing the day away \
\ /
Not To Be Reproduced W-18 F21

(End Of Topic)

	001
	002
	003
	004
	005
	1-001
	1-002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-001
	7-002
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	8-001
	8-002
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-001
	A-002
	A-003
	A-004
	A-005
	A-006
	A-007
	A-008
	A-009
	A-010
	A-011
	A-012
	A-013
	A-014
	A-015
	A-016
	A-017
	A-018
	A-019
	A-020
	A-021
	A-022
	A-023
	A-024
	A-025
	A-026
	A-027
	A-028
	A-029
	A-030
	A-031
	A-032
	A-033
	A-034
	A-035
	A-036
	A-037
	A-038
	A-039
	A-040
	A-041
	A-042
	A-043
	A-044
	A-045
	A-046
	A-047
	A-048
	A-049
	A-050
	A-051
	A-052
	A-053
	A-054
	A-055
	A-056
	A-057
	A-058
	A-059
	A-060
	A-061
	A-062
	A-063
	A-064
	A-065
	A-066
	A-067
	A-068
	A-069
	A-070
	A-071
	A-072
	A-073
	A-074
	A-075
	A-076
	A-077
	A-078
	A-079
	A-080
	A-081
	A-082
	A-083
	A-084
	A-085
	A-086
	A-087
	A-088
	A-089
	A-090
	A-091
	A-092
	A-093
	A-094
	A-095
	A-096
	A-097
	A-098
	A-099
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	W-001
	W-01
	W-02
	W-03
	W-04
	W-05
	W-06
	W-07
	W-08
	W-09
	W-10
	W-11
	W-12
	W-13
	W-14
	W-15
	W-16
	W-17
	W-18

