
Multics 

C User's Guide 

HoneMell Bull 



SUBJECT 

MULTICS 
C USER'S GUIDE 

Description of the Multics Implementation of the C Programming Language 

SPECIAL INSTRUCTIONS 

This publication supersedes the previous edition of the manua~ Order No. HH07 -00, 
dated January 1987. See the Preface for a description of changed information. 

SOFTWARE SUPPORTED 

Multics software release 12.1. 

ORDER NUMBER 

HH07-01 November 1987 

HoneMel1 Bull 



PREFACE 

This manual describes the C programming language as 
implemented under Multics. The language is described by noting 
variations from a baseline version of C. The reader is assumed 
to be familiar with C. This manual is not a language 
specification, nor is it intended as a tutorial document. 

Braces { J in this manual are used to enclose information 
from which the user must make a choice. 

The following conventions are used to indicate the relative 
levels of topic headings used in this manual: 

Level 

1 (highest) 
2 
3 
4 

Format 

ALL CAPITAL LETTERS, UNDERLINED 
Initial Capital Letters, Underlined 
ALL CAPITAL LETTERS, NOT UNDERLINED 
Initial Capital Letters, Not Underlined 

USER COMMENTS FORMS are included at the back of this manual These forms are to be used to record 
any corrections, changes, or additions that will make this manual more useful 

Honeywell Bull disclaims the implied warranties of merchantability and fitness for a particular 
purpose and makes no express warranties except as may be stated in its written agreement with 
and for its customer. 
In nQ event is HQneywell Bull liable to anyQne fm· any mdirect, special or cQ!lsequentia! 
damages. The information and specifications in this document are subject to change without 
notice. Consult your Honeywell Bull Marketing Representative for product or service 
availabili ty. 

Copyright © Honeywell Bull Inc., 1987 File No.: 1L23 HH07-01 



SIGNIFICANT CHANGES IN HH07-01 

Appendix B, "C Environment Support Commands" is new and the 
following RUN-TIME ROUTINES (Section 4) are either new or 
updated. The unmarked items are "new" and the updates are noted 
as "update." 

access getcwd srand 
abort getenv stat 
alarm getgid strtok 
asctime na+lnn;n '.:i .... ...... ""'.:i ........ strtol 
clock getopt strtod 
ctime (update) getpid swab 
drand48 getuid sys_ errlist 
execl gmtime sys_nerr 
execle ioctl times 
execv link tzset 
execve localtime ulimit 
execlp perror utirne 
fentl rand varargs 
fstat sleep vprintf 

iii HH07-0l 





CONTENTS 

SECTION 1 I NTRODUCT I ON ••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Definition of Baseline C •• 
Contents of This Manual ••• 

. . . . . . . . . . . . . . . . . . . . . . 
SECTION 2 IMPLEMENTATION OF THE C LANGUAGE. 

. ... . . . . 

...... ... Lexical Conventions [2] ••••• 
Hardware Characteristics •• 

What's in a Name? •..•••••• . . . . . . . . . . . . . 
Conversions ••••••••••••••• 

Characters and Integers ••• 
Float and Double •••• 
Additive Operators. 
Shi ft Operators ••• A_ ••••• 

. . . . 
Declarations......... ••••••• • •••••• 

Structure and Union Declarations ••••••• 
Types Revisited ..••••••••••••••• 

Structures and Unions ••••••••• 
Explicit Pointer Conversions. 

C Program Portability ••• 
Size of Data Types •••• 
Structures and Unions •••••• 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bit Fields ••••••••••••• 
Pointers ••••••••••••••••••••• . . . .... _. 
The Null Pointer Value. . . . . . . . . . . . . . 
System Calls and the .Runtime Library. . . . 

. . . . 

. . . . . . . . . . . . . .. 

SECTION 3 INVOKING THE C COMPILER ••••• . . . . . . . . . . . . . . . . . . . 

Page 

1-1 

1-1 
1-2 

2-1 

2-1 
2-1 
2-2 
2-2 
2-2 
2-3 
2-3 
2-3 
2-3 
2-3 
2-3 
2-3 
2-3 
2-4 
2-4 
2-5 
2-5 
2-5 
2-7 
2-7 

3-1 

v HH07-01 



I 
I 

I 

I 

I 

I 
I 

CONTENTS 

SECTION 4 THE C STANDARD LIBRARY. · . . . . . . . . . . . . . . . . . . . . . . . . 
C Support of Multics File Types. 
Subroutines and Libraries. 
Traps and Signals •••••••.••••• 
Error Returns ...•.•.•.•...•••. 

Reporting Errors Via errno •• 
UNIX Errors ••.•• 

Run-Time Routines •• 
abort. 
abs ...• 
access ••. 
acOs •.•••• 
alarm. 

. . . · . . · . . . . . . . . . 

asctime •••.••••••• 
asin •• · . . . . . . . . . 
atan ••..••••. 
atan2. 
atof ••••. · . . . 
atoi •• . . . 

· . . 

· . . . 

· . 
· . . . . · . . . . . . . . 
· . . . . . . . · . . . · . . . . . . . . ... · . . . . . . . . . . . . . . . . 
· . . . · . . . . . . . . . · . . . . · . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . · . . . . . . . . . . . . . ... atol .••• 

calloc •• · . . . . . . . . · . . . . . . . . . 
ceil •••• 
clearerr •• 
clock. · . . . 

· . . . . . . . . . . . . . . . . . . . . · . . . . 
close ••••• · . . . . . . . . · . . . . · . . . 

· . . . . . . . . · . . . . · . . 

cos •••••• 
cosh •• 
create 
ctime •.•• 
drand48 •• . . . . . . . . . . . . 
ecvt •• 
errno. 
execl. 

· . . 
execle ••••••. 
execlp. 
execv ••• 
execve •• 
execvp •• 
exit •• 
exp ••. 

. . . ... 

· . . . . . . · . . . . . . . . . . . . . 
· . . 

· . . · . · . . . . . . . . . . 
· . . 

fabs. · . . . . . . . . . . . . . . .... 
fclose ••••••• 
fcntl ••••• · .. 
f cvt •••• · .... 
fdopen. .... 
feof ••••• · .... 

· .. . .... 
., . . · . . . . 

. . . . . . . . . . . . 
.. . . . . . 

· . . . · .. . . . . . . . . 
· . . . . . . · . . . . . . . . . 

· . . . . . . . . . . 
· . . . ... . . . . . . . . . . . 
· . . · .. · . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . · . . . . . · . . . . . · ... · . . . . . . . . . . . . . . . . · . . . . . . . . . . . . 

Page 

4-1 

4-14 
4-15 
4-16 
4-18 
4-18 
4-18 
4-22 
4-23 
4-24 
4-25 
4-26 
4-27 
4-28 
4-30 
4-31 
4-32 
4-33 
4-34 
4-35 
4-36 
4-37 
4-38 
4-39 
4-40 
4-41 
4-42 
4-43 
4-44 
4-46 
4-49 
4-50 
4-51 
4-53 
4-55 
4-57 
4-59 
4-61 
4-63 
4-64 
4-65 
4-66 
4-67 
4-69 
4-70 
4-71 

vi HH07-01 



ferror. 
ff lush •• 
fgetc •• 
fgets •••••••••••• 
fileno. 
floor. 
fmod ••• 

. . . . . . . . . . . 
fopen. 
fprintf. 
fputc. 
fputs •• 
fread •• 
free ••• 
freopen •• 
frexp •• 
fscanf. 

. . . 

fstat ••••••••• 
fwri te ••• 
gcvt ••• 
getc ••• 
getchar ••••••••••. 
getcwd. 
getenv •• 
getgid. 
getlogin. 
getopt. 
getpid. 
gets ••• 
getuid. 
getw ••• 
. gmt ime. 
hypot ..... 
ioctl ••• 
isalnurn •• 
isalpha. 
isascii •• 
isatty •••• . . 
iscntrl ••••••••• 

· . . . 
.... 

• • 

isdig it •• 
is1owet. 
isprint. 

.... · . . . . . . . 
.. · . 

CONTENTS 
Page 

. . . . . . . . . . .. 

.' . 

. ..... . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. ... '. 
. . . 

. . . . . . . . . . . . . . . . . 
. '. . .... . . . . . . . . 

. . . . . . . . . . . . . . . ... . . . . . . . . . . 
. . ispunct •• 

isspace ••• 
isupper •••• 
isxdigit •• ......... . . . 

4-72 
4-73 
4-74 
4-75 
4-76 
4-77 
4-78 
4-79 
4-80 
4-85 
4-86 
4-87 
4-88 
4-89 
4-91 
4-92 
4-96 
4-98 
4-99 
4-100 
4-101 
4--102 
4-103 
4-104 
4-105 
4-106 
4-109 
4-110 
4-111 
4-112 
4-113 
4-115 
4-116 
4-122 
4-123 
4-124 
4-125 
4-126 
4-127 
4-128 
4-129 
4-130 
4-131 
4-132 
4-133 
4-134 
4-135 

kill ••• ~ . . . . . . . . 
Idexp •.• ~ ••••• . .. -... 

vii HH07'-Ol 

I 

I 
I 
I 



I 

I 

I 

I 

I 

I 

CONTENTS 
Page 

1 ink •••.••. 
localtirne. 
log .•••• . . . . . . . 

. . . · . . . . .. 10glO ••• 
longjmp. 
malloc •• · . . . . . . . . 
memccpy. 
memchr •• 
memcmp •• 
memcpy •••••••••••. . . 
memset •• 
mktemp ••• 
modf. 

• • • • • • • • • e 

open ••••••••.•••••• 
perror.. • ••••••• 
pow .•••• 
printf •••••••• 
putc ••• 
putchar. 
puts •.•••••• 
putw •• 

· . . . . 

· .. · . . . . . · . . . . . . . . . . . . . . . . . . . 

· . . . . . . . . . . . . . . . . 

· .. 
· . · . . . . . . . . 

· ... . . . 
· . · . . . 

· ... rand •• 
read •• 
realloc. 
sbrk •.• 

· . . . . . . . . . . . . . . . · . . . . . . . 
scanf •• 
setbuf .... 
setjmp •• 
signal •• 
sin .•••• 
sinh ••• 

· . . 
sleep •••••••• 
sprintf •• 
sqrt •••• 
srand ••• 
sseanf •• 

· .. 
. . . . 

· .. 

· ...... . 
. . . . .. . 

· . . . . · . . 
· ...... . 

· . 
. . . . . . . . . . · . . . . . . . . . . . · ..... . ... 

· .. · ... . . . . . . . · . . . . . · .... · ..... · . . · . . . . . · . . . . . . · . . . . . · . . · . . . · . . · ..... · . . . . . . . . . . . . . . . . . . . . . 

· .. · . 
· . . . · . 

· . . . . · .... . ... . .... · ...... . . . . . · . · . . . . . . . ... 

stat .... 
streat. 
strchr •• 
strcmp •• 
strcpy. 
strespn. 
strlen ••• 
strncat. 
strnemp. 
strncpy. 
strpbrk •• 

· . . . · . . . . . . . . . . . . . . . . · ... · . . . . . .. ..... · ..... . . . . . . . . . . . . . . . . . . · . 

4-136 
4-138 
4-140 
4-141 
4-142 
4-143 
4-144 
4-146 
4-147 
4-149 
4-150 
4-151 
4-152 
4-153 
4-155 
4-156 
4-157 
4-158 
4-159 
4-160 
4-161 
4-162 
4-163 
4-164 
4-165 
4-166 
4-167 
4-168 
4-169 
4-172 
4-173 
4-174 
4-175 
4-176 
4-177 
4-178 
4-179 
4-181 
4-182 
4-183 
4-184 
4-185 
4-186 
4-187 
4-188 
4-189 
4-190 

viii HH07-01 



strrchr. 
strspn. 
strtod •. 
strtok •. 
strtol. 
swab •.. 
system •• 
sys_errlist. 
sys_nerr. 
tan .• 
tanh. .... . .. time .• 
times ••••• 
tmpnam. 
toascii •• 
tolower. 
_tolower. 
toupper •• 

. . . . . . 

· . . . . 
. . . 

· .... 

. . . . 

. . . 
. . . 

. . 

CONTENTS 
Page 

... 

. . . . _toupper. 
tzset ••. 
ulimit ••..•••• 
ungetc •• 
unlink •. 

. . . . . . . · ...... . . . . . . . . . . . . 

4-191 
4-192 
4-193 
4-194 
4-195 
4-196 
4-197 
4-198 
4-199 
4-200 
4-201 
4-202 
4-203 
4-205 
4-206 
4-207 
4-208 
4-209 
4-210 
4-211 
4-212 
4-213 
4-214 
4-215 
4-216 
4-219 
4-221 

ut ime .. 
varargs. 
vprintf, 
write ••• 

. . . · . · . . . . . . . . . . ... . . . . . . .. 
vfprintf, vsprintf. . . . . . . . . . . . . . . . . . . . . 

. ..... . . ..... . . . . . . . . . . . 

. .. . . . . . . . 
APPENDIX A C COMPILER DIAGNOSTIC MESSAGES. . . . . . . . . . . . . . . . A-I 

APPENDIX B C ENVIRONMENT SUPPORT COMM.AN"DS. • • • • • • • • • • • • • • • B-1 

Table 

4-1 
4-2 
4-3 
4-4 
4-5 

A-I 

touch •• 
env ••• . . . · . . . . . . . . . . . 

Multics C Standard Library (Sorted by Name) ••• 
Multics C Routines (Sorted by Function Group) 
C Routines Not Supported •••••••••••••••••• 
Multics Trap Support of UNIX Signals. 
Software-Generated Signals ••••••••••••• 

. . . . . B-2 
B-3 

TABLES 

.... 
Page 

4-2 
4-7 
4-11 
4-16 
4-17 

C Compiler Diagnostic Messages. . . . . . . . . . . . . . . . . . . . A-2 

ix HH07-01 

I 
I 
I 

I 

I 

I 

I 





Section 1 
INTRODUCTION 

C is a general-purpose, low-level programming language. It 
was developed under a UNIX* operating system but is now available 
for use with a number of computers and operating systems. 

This manual describes the C programming language as 
implemented on Multics release 12.1. The language is described 
by noting variations from a baseline version of C. 

The reader is assumed to be familiar with C and Multics. 
This manual is not a complete reference document, nor is it 
intended as a tutorial document. 

DEFINITION OF BASELINEC 

The version of C used in this manual as the baseline for 
comparison is described in: 

UNIX System V Release 2.0 Programming Guide 
Published by AT&T April 1984 

The phrase baseline C refers to that version of C. You are 
assumed to have a copy of the UNIX operating system book on hand 
when you refer to this manual. 

*UNIX is a registered Trademark of AT&T. 

1-1 HH07-01 



CONTENTS OF THIS MANUAL 

The rest of this manual is organized as follows: 

Section 2 notes variations in the Multics implementation of 
the C language. 

Section 3 describes the command available for invoking the C 
compiler under the Multics environment. 

Section 4 lists the C standard library of run-time routines. 

Appendix A lists the C compiler diagnostic messages. 

Appendix B lists the C environment support commands. 

A glossary defines terms for a UNIX operating system, C, and 
Multics. 

1-2 HH07-01 



Section 2 
IMPLEMENTATION OF 

THE C LA.¥GUAGE 

This section lists variations from the baseline C as 
described in the UNIX System Programming Guide (refer to 

. Section 1). 

This section conLalns only statements of variations. If a 
feature is not described in this section, it is fully supported 
by the C compiler, and behaves exactly. the same as in baseline C. 

LEXICAL CONVENTIONS [2} 

The following variations on baseline C lexical conventions 
exist in Multics C. 

Hardware Characteristics 

The size of C data types are: 

Data Type Size (bits) 

char 9 
unsigned char 9 
int 36 
unsigned int 36 
short 36 
long 72 
unsigned long 72 
float 36 
double 72 

2-1 HH07-01 



I 

WHAT'S IN A NAME? 

The C compiler supports all arithmetic types. C data types 
are described below. 

A character variable (char) is a one-byte, signed binary 
integer consisting of eight significant bits and a high-order 
sign bit. It is always byte-aligned. Use the signed character 
data type for integer data with a domain of -512 to 511 (at 
most). 

An unsigned character variable (unsigned char) is a one-byte, 
unsigned binary integer consisting of nine significant bits. It 
is never negative and always byte-aligned. 

An integer variable (int) is a four-byte, signed binary 
integer consisting of 35 significant bits and a high-order sign 
bit. It is always word-aligned. This is the default data type 
for any variable. 

An unsigned integer variable (unsigned int) is a four-byte, 
unsigned binary integer consisting of 36 significant bits. It is 
never negative and always word-aligned. 

A long variable (long) is an eight-byte, signed binary 
integer consisting of 71 significant bits and a high-order sign 
bit. It is always double-word aligned. 

An unsigned long variable (unsigned long) is an eight-byte 
unsigned binary integer consisting of 72 significant bits. It is 
always positive and always double-word aligned. 

A floating-point variable (float) is a four-byte, 
word-aligned, signed real number. It can contain a value in the 
approximate range 1.0E-38 to 1.OE+38, with up to seven digits of 
precision. 

A double-precision variable (double) is an eight-byte, 
double-word-aligned, signed real number. It can contain a value 
in the approximate range 1.0E-38 to 1.OE+38, with up to 16 digits 
of precision. 

CONVERSIONS 

The following variations on baseline C operand conversion 
exist in Multics C. 

Characters and Integers 

The C compiler performs sign extension on characters and on 
unsigned characters on assignment. Character variables range in 
value from -256 to 255, and unsigned characters range in value 
from 0 to 512. 

2-2 HH07-01 



Float and Double 

The C compiler converts a double-precision variable to a 
floating-point variable by truncation. 

Additive Operators 

When adding or subtracting from pointers, be careful not to 
exceed segment bounds. When subtracting two pointers, the data 
being pointed to should be in the same segment or the result may 
be meaningless. 

Shift Operators 

When a right shift is performed on a signed quantity, the 
sign is propagated. For instance, in the expression EI»E2, 
where El is a signed quantity, the vacated bit positions are 
filled by a copy of the sign bit. 

When a right shift is performed on an unsigned quantity, 
vacated bit positions are filled with zeros. 

DECLARATIONS 

The Multics implementation of C does not use register 
variables. 

All "static" functions must be declared before their first 
use. 

Structure and Union Declarations 

The C compiler only recognizes integer fields. The compiler 
does not initialize structure~ containing bit fields. The 
compiler assigns bit fields left to right within the word. 

TYPES REVISITED 

The following variations on baseline C types exist in 
Multics C. 

Structures and Unions 

Multics C does not allow the passing of structures or unions 
to or from functions. 

Explicit Pointer Conversions 

A pointer-to-Iongor a long-to-pointer conversion simply 
moves data between the two variables. A pointer-to-int 
conversion moves only the low-order bits of the pointer. 

2-3 HH07-0l 



C PROGRAM PORTABILITY 

There is no guarantee that a program written in C on one 
system will port easily to another system. Even when the 
programmer has been careful to write the program with portability 
in mind, problems may be caused by differences in the target­
machine hardware or differences between the source and the target 
compiler. 

The following is a discussion of the possible problems that 
may occur when porting C applications to Multics. It is assumed 
that most of the programs that are to be ported will have been 
written under a UNIX operating system on the VAX* or PDP** series 
machines. 

Size of Data Types 

A program may need to know the size of a particular data 
type. If this is hardcoded into the program, the code will not 
be portable if the data type sizes between the two machines 
differ. For example, a program may use the maximum size of an 
int in an expression as follows: 

#define MAXINT 32767 1* largest int on a machine with a 16 bit int */ 

. 
if (y == MAXINT) 

This code could cause incorrect results on Multics. Multics 
has a 36-bit integer so the value of MAXINT is not the maximum 
integer size on the Multics hardware. The following code would 
correct the situation: 

#define MAXINT «int) «(unsigned) - 1) » 1» 

The following examples illustrate nonportable and portable 
ways of coding word definitions: 

Nonportable Example: 

#define wo~ 4 1* hardcoded number of h¥tes in an integer*/ 

Portable Example: 

#define wo~ sizeof{int) 

*VAX 11/780 is a trademark of Digital Equipment Corporation. 

**PDP-11 and PDP-7 are trademarks of Digital Equipment 
Corporation. 

2-4 HH07-01 



Structures and Unions 

Structures or unions cannot be passed to functions, nor can 
functions return either type. 

Bit Fields 

Multics bit fields may not be any data type other than 
integers or unsigned integers. However, various other compilers 
allow bit fields to be other than the integers or unsigned 
integers. This may cause portability problems. 

The order in which the bits are put into memory may cause 
problems. The Kernighan and Ritchie C specification does not 
indicate the order in memory of bits in a bit f_ield. 

These problems would become apparent when using masks and 
unions to test bits, since the bits may not be where the tests 
think they are. The following is an example of the type of code 
that may cause problems when ported to Multics: 

union { 

struct { 

struct { 

} extract; 

int num: 4; 
int total: 6; 
int pad~ 6; 
} stl; 

int word; 
} st2; 

In the above example, st2 is used to extract information from 
stl. The order of bits laid down in bit field determines the 
value of extract.st.word. 

Pointers 

One of the most common causes of nonportable code is the 
casting of pointers to integers. In most machines, pointers and 
integers are the same size. The programmer can then easily put 
pointers into integers with no loss of data. This is very common 
when returning pointers from functions. 

Tpe return value of a function is by default an integer. 
Since in most machines pointers and integers are the same size, 
it is quite easy to return a pointer from a function using the 
default return size of integer. This does not work on Multics 
because pointers are larger than integers. 

2-5 HH07-01 



To fix the problem, the Multics C programmer must define 
these functions as returning a long or a pointer. While 
returning a pointer in a long is allowed, it is not recommended. 

The following code samples illustrate nonportable and 
portable cases of returning a pointer as an integer. 

Nonportable Example: 

my_func( ) 
{ 
int *p; 

if (same_test) return (p); 

} 

Portable Example: 

int *my_func() 
{ 
int *p; 

return (p); 
} 

1* function returns an int as default */ 

1* a pointer to an int *1 

1* returns a poitner in an integer */ 

/* function· returns a pointer to an int */ 

/* a pointer to an int */ 

/* returns a pointer in a pointer location */ 

The following example shows a nonportable case of an integer 
holding a pointer, followed by a portable fix for Multics: 

Nonportable Example: 

int i; 
struct { 

t = &qbert; 
i = t; 
i += 5; 

char y[10]; 
int p; 
} qbert, *t; 

Portable Example: 

char *Pi 

p = &qbert.y[O]; 
p += 5; 

/* t points to structure */ 
/* assign pointer to integer */ 
/* point to y[5] */ 

/* point to start of y */ 
/* point to y[5] */ 

Be careful when you use pointers. Pointers on a VAX imple­
mentation are automatically initialized to zero when the stack 
frame is first allocated. Since zero is also the NULL value, the 
pointers can be used with no pre-initialization. 

2-6 HH07-0l 



On Multics, you get no automatic initialization, therefore a 
pointer must be explicitly initialized to NULL before it is 
used. The following examples illustrate nonportable and portable 
cases of this: 

Nonportable Example: 

int *y[lO]i 

if (y[3] == N[lLL) ••••••••• i 

Portable Example: 

int *y[lO] = { NULL, NULL, •••• Ji 

1* no guarantee that y[3] has */ 
i* been ass igned to NULL * / 

/* explicitly initialize array of pointers to NULL */ 

The Null Pointer Value 

In most implementations the null pointer value NULL is 
defined to be the int value O. It is not uncommon to see NULL 
used as a substitute for O. On Multics the pointer value NULL is 
not 0, but -Ill. 

The following two examples show implementations in which NULL 
is 0, which could cause portability problems: 

Example 1: 

int Pi 

if (p == NULL ) •••..• 

Example 2: 

int *t[lO]i 

t[NULL] = Oi 

/* use NULL as substitute for zero */ 

/* NULL used as subscript zero */ 

System Calls and the Runtime Library 

Most of the commonly available portable programs have been 
developed on UNIX operating systems, and as such may have calls 
to system routines or runtime routines that are either not 
available on Multics or that have been implemented differently 
(see the documentation of these routines ahead). If this is the 
case it can be dealt with by creating the routine, removing the 
call, or writing a stub. 

2-7 HH07-01 





Section 3 
INVOKING THE 

CCOMP.~RR 

This section describes the syntax of the cc command that 
invokes the Multics C compiler. 

3-1 HH07-01 



cc 

cc is the Multics C compiler. It accepts as input C source 
programs and/or assembled or compiled programs creating one of 
various output file types. 

SYNTAX: 

cc filenamel, ... , filenamen {-control_args} 

ARGUMENTS: 

filename 

Any file name with a suffix of .c is taken as a C source 
file and is compiled. Any file name suffixed with .alm 
is passed to aIm. Any file name suffixed with .cpp is 
passed to the compiler. All other file names are given 
as input to the Linkage Editor. 

CONTROL ARGUMENTS: 

-brief, -bf 

suppresses printing of messages stating the current pass 
being performed (default). 

-definition args, -def args 

Specifies define names to be defined or undefined in the 
preprocessor. Where args is a list of define names 
separated by COITWiaS with no spaces in the following form: 

The first arg specifies that n is to be defined as 1 in 
the same way as \define n would define n to 1. The 
second arg specifies that x is to be given a definition 
of 2, and the last arg specifies that y is to be 
undefined in the preprocessor. 

-include paths, -incl paths 

Specifies the pathnames of include file directories the 
user wishes the preprocessor to look into for include 
files. All arguments up to the next control argument are 
treated as include directory pathnames. 

3-2 HH07-01 



-library paths, -lb paths 

Specifies the pathnames of library directories, archjves, 
or object files the user wishes the linkage editor to use 
when resolving external references. All arguments up to 
the next control argument are treated as include library 
pathnames. 

-long, -lg 

Specifies that a message should be printed specIlylng the 
completion of each pass of the compiler for each 
specified file name. 

-optimize, -ot 

Runs all compiled files through the optimizer (not 
implemented) . 

-output_file pathname, -of pathname 

Forces the output to be placed in the file defined by 
pathname. 

-profile, -pf 

Generates profile information (not implemented). 

-stop_after pass, -spaf pass 

Specifies to cc to stop after the specified pass of the 
compiler. Valid values for pass are: 

preprocessor, pp 

c 

aIm 

Generates a .cpp file which is the output from the 
preprocessor. 

Generates a .alm file which is an aIm source file 
outputted from the C compiler. 

Generates a .cob file which is the intermediate 
executable file generated from the assembler. This 
file is to be used as input to the Linkage Editor. 

-table, -tb 

Specifies that the compiler should generate symbol table 
information. At the moment this generates a listing via 
the Linkage Editor. 

3-3 HH07-01 





Section 4 
THE C STANDARD 

LTBRARY 

This section lists the standard functions and subroutines 
p~ovided with the Multics C compiler. 

The routines provided with the C compiler attempt to present 
C programs with the same interface they would enjoy under a UNIX 
operating system. However, due to the inherent differences in 
the two operating systems, some routines are altered, have 
restrictions not found on UNIX operating systems, or are not 
supported at all. For instance, routines that involve pathnames 
adhere to Multics pathname conventions, not UNIX operating 
systems pathname conventions; the process management and "super 
user" functions are not available. Also excluded are these 
functions: 

• Data base 
• Multiplexed file 
• Multiprecision integer arithmetic 
• Plotter I/O 
• Packet driver 
• Interprocess communication 
• Semaphore 
• Archive 
• X.2S. 

4-1 HH07-01 



I 
I 

I 

I 

I 

Table 4-1 lists C system functions and subroutines, sorted by 
name; Table 4-2 lists the same functions sorted by function 
group. Table 4-3 lists commonly used UNIX operating system 
functions (taken from System V UNIX) not supported under Multics 
C. 

I 

The Multics standard C include directories are located in 
>S13p>c_compiler>include. 

Table 4-1. Multics C Standard Library (Sorted by Name) 
(Sheet 1 of 5) 

Name 

abort 
abs 
access 
acos 
alarm 
alloc 
asctime 
asin 
atan 
atan2 
atof 
atoi 
atol 

calloc 
ceil 
clearerr 
clock 
close 
cos 
cosh 
creat 
ctime 

drand48 

ecvt 
execl 
execle 
execlp 
execv 
execve 
execvp 
exit 
exp 

Function 

Generate lOT fault 
Absolute value of integer 
Determine accessibility of file 
Arc cosine 
Schedule signal after interval 
Main memory allocation 
Convert time to ASCI I 
Arc sin 
Arc tangent 
Arc tangent 
Convert ASCII to floating-point 
Convert ASCII to integer 
Convert ASCII to long integer 

Main memory allocation 
Ceiling function 
File status inquiry 
Report CPU time used 
Close file 
Cosine 
Hyperbolic cosine 
Create new file 
Convert date/time to ASCI I 

Generate uniformly distributed 
pseudorandom numbers 

Output conversion 
Execute a file 
Execute a file 
Execute a file 
Execute a file 
Execute a file . 
Execute a flle 
Terminate a process 
Exponential function 

4-2 

Function 
Group 

Process 
Mathematical 
File control 
Mathematical 
Process 
Storage 
System 
Mathematical 
Mathematical 
Mathematical 
String 
String 
String 

Storage 
Mathematical 
Input/output 
Process 

I 
File control 
Mathematical 
Mathematical 

I File control 
System 

Mathematical 

String 
Process 
Process 
Process 
Process 
Process 
Process I 
MPar~~::~~ ~ ~~, l. "'1;;;,,,0 l. .L \... Cl ..L 

HH07-01 



Table 4-1. Multics C Standard Library (Sorted by Name) 
(Sheet 2 of 5) 

Name 

fabs 
fclose 

I f cnt I 
fcvt 
fdopen 
feof 
ferror 
fflush 
fgetc 
fgets 
fileno 
floor 
fmod 
fopen 
fprintf 
fputc 
fputs 
fread 
free 
freopen 
frexp 
fscanf 
fstat 
fwrite 

gcvt 
getc 
get char 
getcwd 
getenv 
getgid 
getlogin 
getopt 
getpid 
gets 
getr 
getuid 
getw 
gmtime 

hypot 

Function 

Absolute value of real value 
Close a file 
Control over open files 
Output conversion 
Open a file 
File status inquiry 
File status inquiry 
Flush a file 
Get character from word or file 
Get string from file 
File status inquiry 
Floor function 
Return remainder function (a/b) 
Open a file 
Formatted output conversion 
Put character or word on file 
Put string on file 
Buffered binary input 
Main memory allocation 
Reopen a file 
Split into mantissa and exponent 
Formatted input conversion 
Get file status 
Buffered binary output 

Output conversion 
Get character from word or file 
Get character from word or file 
Get current working directory 
Get environment name 
Get group ID 
Get login name 
Get option letter from arg 
Get process ID 
Get string from file 
Get record 
Get user ID 
Get word from file 
Convert to Greenwich mean time 

Euclidean distance 

4-3 

Function 
Grou, 

Mathematical 
I ~put/output I • 
Flle control • 
String 
Input/output 
Input/output 
Input/output 
Input/output 
Input/output 
Input/output 
Input/output 
Mathematical 
Mathematical 
Input/output 
Input/output 
Input/output 
Input/output 
Input/output 
Storage 
Input/output 
Mathematical 
Input/output 
File control I 
Input/output 

String 
Input/output 
Input/output 
File control 
Process 
Process 
Process 
String 
Process 
Input/output 
Input/output 
Process 
Input/output 
System 

Mathematical 

HH07-01 

I 

I 



Table 4-1. Multics C Standard Library (Sorted by Name) 
(Sheet 3 of 5) 

I 

I 

Name 

ioctl 
isalnum 
isalpha 
isascii 
isascii8 
isatty 
iscntrl 
isdigit 
isgraph 
islower 
isprint 
ispunct 
isspace 
isupper 
isxdigit 

ldexp 
link 
localtime 
log 
10glO 
longjmp 

malloc 
memccpy 
memchr 
memcmp 
memcpy 
memset 
mktemp 
modf 

kill 

open 

I perror 
pow 
printf 
putc 
putchar 
putr 
puts 
putw 

Function 

Control device 
Character classification 
Character classification 
Character classification 
Character classification 
Get name of terminal 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 

Split into mantissa and exponent 
Link to a file 
Convert date/time to local time 
Natural logarithm 
Common logarithm 
Non-local goto 

Main memory allocator 
Memory-to-memory copy 
Point to character in memory 
Compare memory areas 
Memory-to-memory copy 
Initialize memory 
Make unique file name 
Split into mantissa and exponent 

Send signal to process 

Open file 

Print system error message 
Power function 
Formatted output conversion 
Put character or word on file 
Put character or word on file 
Put record on a file 
Put string on file 
Put word on file 

4-4 

Function 
Group 

Input/output 
String 
String 
String 
String 
System 
String 
String 
String 
String 
String 
String 
String 
String 
String 

Mathematical 
File control 
System 
Mathematical 
Mathematical 
System 

Storage 
Storage 
Storage 
Storage 
Storage 
Storage 
File control 
Mathematical 

Process 

File control 

System 
Mathematical 
Input/output 
Input/output 
Input/output 
Input/output 
Input/output 
Input/output 

HH07-0l 



Table 4-1. Multics C Standard Library (Sorted by Name) 
(Sheet 4 of 5) 

Name 

rand 
read 

I realloc 

sbrk 
scanf 
setbuf 
setjmp 
sin 
sinh 
sleep 
sprintf 
sqrt 
srand 
sscanf 
stat 
strcat 
strchr 
strcmp 
strcpy 
strcspn 

strncat 
strncmp 
strncpy 
strpbrk 
strrchr 
strspn 
strtod 

strtok 
strtol 
swab 
system 
sys_errlist 
sys_nerr 

tan 
tanh 
time 
times 
tmpnam 
toascii 
tolower 
toupper 
tzset 

Function 

Random number generator 

I Read from a file 
Reallocate memory 

Change memory allocation 
Formatted input conversion 
Assign buffering to a file 
Prepare for non-local goto 
Sine 
Hyperbolic sine 
Suspend execution for interval 
Formatted output conversion 
Square root 
Random number generator 
Formatted input conversion 
Get file status 
Character-string concatenation 
First C occurrence 
Compare 
Copy 
Compare length of strings 
Length 
Concatenate N characters 
Compare N characters 
Copy N characters 
Find first Sl in S2 
First C occurrence 
Length of Sl substr of S2 chars 
Convert string to double precision 
numbers 
Token separator 
Convert string to long integer 
Swap bytes 
Execute a command line 
Vector of system error messages 
Largest system error message number 

Tangent 
Hyperbolic tangent 
Get time 
Get process times 
Create temporary file name 
Character translation 
Character translation 
Character translation 
Set time zone 

4-5 

Function 
Grcup 

Mathematical 
Input/output 
Storage 

Storage 
Input/output 
Input/output 
System 
Mathematical 
Mathematical 
Process 
Input/output 
Mathematical 
Mathematical 
Input/output 
File control 
String 
String 
String 
String 
String 
String 
String 
String 
String 
String 
String 
String 
String 

String 
String 
String 
System 
System 
System 

Mathematical 
Mathematical 
Process 
Process 
File control 
String 
String 
String 
System 

HH07-01 

I 

I 

I 

I 

I 
I 

I 

I 



I 

I 

I 

Table 4-1. Multics C Standard Library (Sorted by Name) 
(Sheet 5 of 5) 

Function 
Name Function Group 

ulimit Get and set user limits File control 
ungetc Push character back into input file Input/output 
unlink Remove directory entry File control 
utime Set file time stamps File control 

varargs Handle variable argument list Input/output 
vprintf Print formatted output of a varargs Input/output 

argument list 

wait wait for process to terminate Process 
write write on file Input/output 

4-6 HH07-01 



Table 4-2. Multics C Routines (Sorted by Function Group) 
(Sheet 1 of 4) 

Group Name 

File control access 
close 
creat 
fcntl 
fstat 
getcwd 
link 
mktemp 
open 
stat 
tmpnam 
ul imi t 
unlink 
utime 

Input/output clearerr 
fclose 
fdopen 
feof 
ferror 
fflush 
fgetc 
fnc+-c .. ~""" .... ..., 
fileno 
fopen 
fprintf 
fputc 
fputs 
fread 
freopen 
fscanf 
fwrite 
getc 
get char 
gets 
getw 
ioctl 
printf 
putc 
putchar 
puts 
putw 
read 
scanf 
setbuf 
sprintf 
sscanf 

Function 

Determine accessibility of file 
Close file 
Create new file 
Control over open files 
Get file status 
Get current working directory 
Link to a file 
Make unique file name 
Open file 
Get file status 
Create name for temporary file 
Get and set user limits 
Remove directory entry 
Set file time stamps 

File status inquiry 
Close a file 
Open a file 
File status inquiry 
File status inquiry 
Flush a file 
Get character from word or file 
Get string from file 
File status inquiry 
Open a file 
Formatted output conversion 
Put character or word on file 
Put string on file 
Buffered binary input 
Reopen a file 
Formatted input conversion 
Buffered binary output 
Get character from word or file 
Get character from word or file 
Get string from file 
Get word from file 
Control device 
Formatted output conversion 
Put character or word on file 
Put character or word on file 
Put string on file 
Put word on file 
Read from file 
Formatted input conversion 
Assign buffering to file 
Formatted output conversion 
Formatted input conversion 

4-7 HH07-0l 

I 

I 
I 
I 

I 

I 



I 

I 

I 

I 

Table 4-2. Multics C Routines (Sorted by Function Group) 
(Sheet 2 of 4) 

Group 

Input/output 
(cont.) 

Mathematical 

Process 

Name 

ungetc 
varargs 
vfprintf 

vsprintf 

write 

abs 
acos 
asin 
atan 
atan2 
ceil 
cos 
cosh 
drand48 

exp 
fabs 
floor 
fmod 
frexp 
hypot 
ldexp 
log 
10glO 
modf 
pow 
rand 
sin 
sinh 
sqrt 
srand 
tan 
tanh 

abort 
alarm 
clock 
execl 
execle 
execlp 
execv 

I 
execve 
execvp 
exit 

Function 

Push character back into input file 
Handle variable argument list 
Print formatted output of a varargs 
argument list 
Print formatted output of a varargs 
argument list 
Write on file 

Absolute value of integer 
Arc cosine 
Arc sin 
Arc tangent 
Arc tangent 
Ceiling function 
Cosine 
Hyperbolic cosine 
Generate uniformly distributed 
pseudorandom numbers 
Exponential function 
Absolute value of real value 
Floor function 
Return remainder function (a/b) 
Split into mantissa and exponent 
Euclidean distance 
Split into mantissa and exponent 
Natural logarithm 
Common logarithm 
Split into mantissa and exponent 
Power function 
Random number generator 
Sine 
Hyperbolic sine 
Square root 
Random number generator 
Tangent 
Hyperbolic tangent 

Generate lOT fault 
Schedule signal after interval 
Report CPU time used 
Execute a file 
Execute a file 
Execute a file 
Execute a file 
Execute a file 
Execute a file 
Terminate a process 

4-8 HH07-0l 



I 

Table 4-2. MOD 400 C Routines (Sorted by Function Group) 
(Sheet 3 of 4) 

Group 

Process 
(cont.) 

I 

Storage 

String 

Name 

getenv 
getgid 
getlogin 
no T"\;A 
":j .... tr-.:. ...... 
getuid 
kill 
signal 
time 

alloc 
calloc 
free 
malloc 
memccpy 
memchr 
memcmp 
memcpy 
memset 
realloc 
sbrk 

a641 
atef 
atoi 
atol 
ecvt 
fcvt 
gcvt 
getopt 
isalnum 
isalpha 
isascii 
isascii8 
iscntrl 
isdigit 
isgraph 
islower 
isprint 
ispunct 
isspace 
isupper 
isxdigit 
strcat 
strchr 
strcmp 
strcpy 
strcspn 

Function 

Get environment name 
Get group ID 
Get login name 
r!.~~ ~,...~ Tn 
..:i_I.. p~v~ess .;.; 
Get user ID 
Send signal to process 
Catch signal 
Get time 

Main memory allocation 
Main memory allocation 
Main memory allocation 
Main memory allocator 
Memory-to-memory copy 
Point to character in memory 
Compare memory areas 
Memory-to-memory copy 
Initialize memory 
Reallocate memory 
Change memory allocation 

Convert base-64 ASCII to long 
Convert ASCII to floating point 
Convert ASCII to integer 
Convert ASCII to long integer 
Output conversion 
Output conversion 
Output conversion 
Get option letter from arg 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character classification 
Character-string concatenation 
First C occurrence 
Compare 
Copy 
Compare length of strings 

I 

4-9 HH07-01 

I 
I 

I 



I 
I 

I 
I 

I 

Table 4-2. MOD 400 C Routines (Sorted by Function Group) 
(Sheet 4 of 4) 

Group 

String 
(cont.) 

System 

Name 

strlen 
strncat 
strncmp 
strncpy 
strpbrk 
strrchr 
strspn 
strtod 

strtok 
strtol 
swab 
toascii 
toascii8 
tolower 
_tolower 
toupper 
_toupper 

asctime 
ctime 
errno 
gmtime 
localtime 
longjmp 
perror 
setjmp 
system 
sys_errlist 
sys_nerr 
tzset 

Function 

Length 
Concatenate N characters 
Compare N characters 
Copy N characters 
Find first Sl in S2 
First C occurrence 
Length of Sl substring of S2 
Convert string to double precision 
numbers 
Token separator 
Convert string to long integer 
Swap bytes 
Character conversion 
Character conversion 
Character conversion 
Character conversion 
Character conversion 
Character conversion 

Convert time to ASCII 
Convert date/time to ASCII 
Error message number 
Convert to Greenwich mean time 
Convert date/time to local time 
Non-local goto 
Print system error message 
Prepare for non-local goto 
Execute a command line 
Vector of system error messages 
Largest system error message number 
Set time zone 

4--10 HH07-01 



Table 4-3. C Routines Not Supported (Sheet I of 4) 

Name Function 

a641 Convert base-64 ASCII to long 
assert Program verification 

brk 
bsearch 

chdir 
chmod 
chown 
chroot 
ctermid 
crypt 
cuserid 

dbminit 
delete 
dial 
dup 

Change memory allocation 
I Binary search 

Change working directory 
Change mode of file 
Change owner 
Change root directory 
Get terminal ID 
DES encryption 
Get user ID 

Data base subroutine 
Data base subroutine 
Dial external line 
Duplicate open file descriptor 

DES encryption encrypt 
edata 
end 
endgrent 
endpwent 
equal_name 
erf 

End of program initialized data location 
End of program data location 

erfc 
errno 
etext 

fetch 
find file 
firstkey 
fork 
fseek 
ftell 
ftw 

Close group file 
Close password file 
Equal-names convention 
Return error function of arg 
Return l-erf(x) 
Error message number 
End of program code location 

Data base subroutine 
Find a file 
Data base subroutine 
Spawn a new process 
Reposition a file 
Reposition a file 
File tree walk 

4-11 HH07-01 



Table 4-3. 

Name 

gamma 
getdir 
getegid 
geteuid 
getgrent 
getgrgid 
getgrnam 
getpass 
getpgrp 
getppid 
getpwent 
getpwnam 
getpwuid 
getptcb 
gettcb 
gsignal 

hcreate 
hdestroy 
hsearch 

jO 
jl 
jn 

13tol 
164a 

19div 
19mul 
19rem 
logname 
lsearch 
Iseek 
lto13 

matherr 
mcl 
mknod 
monitor 
mount 
mpx et al 

next key 
nice 
nlist 

C Routines Not Supported (Sheet 2 of 4) 

Function 

Log absolute value gamma function 
Get pathname of system directory 
Get effective group ID 
Get effective user ID 
Get group file entry 
Get group file entry 
Get group file entry 
Read password 
Get process group 
Get parent process ID 
Get passwork record entry 
Get password record by login name 
Get password record by user ID 
Get parent TCB 
Get TCB 
Get signal 

Create heap 
Destroy heap 
Search heap 

Initialize memory 

Bessel function· 
Bessel function 
Bessel function 

Convert 3-byte integer to long 
Convert long to base-64 ASCII string 

Long divide 
Long Multiply 
Long remainder 
Login name of user 
Linear search 
Change file currency 
Convert long integer to 3-byte 

Math routine error handler 
Execute Multics macrocall 
Make node (directory or file) 
Prepare execution profile 
Mount volume 
Create and manipulate multiplexed files 

Data base subroutine 
Change priority of a process 
Get entries from name list 

4-12 HH07-01 



Table 4-3. 

Name 

pause 
pclose 
pipe 
plock 
pOpen 
posr 
profil 
pthto6 
ptrace 
putpwentry 

qsort 

regcmp 
regx 
runl 
runlp 
runv 
runvp 

same file 
send-sig 
setgid 
setgrent 
s~tkey 
setpgrp 
setprint 
setpwent 
setuid 
sgetl 
sig 
signal 
smopen 
smread 
smwrit 
sputl 
star check 
star_match 
star name 
stime 
store 
stty 
synch 

C Routines Not Supported (Sheet 3 of 4) 

Function 

Stop until signal 
Close a pipe 
Interprocess communication 

I ~~~~e~s p~~~k to/from process 
Position file record pointer 
Execution profile 
Convert UNIX pathname to Multics 
Trace a process 
Write password entry 

Quicker sort 

Compile regular expression 
Execute regular expression 
Create new process 
Create new process 
Create new process 
Create new process 

Compare pathnames 
Send signal to process 
Set group ID 
Rewind group file 
DES encryption 
Set process group 
Set print attribute of stream 
Rewind password file 
Set user ID 
Get long numeric 
Signal 
Catch signal 
Open for block read/write 
Read block 
Write block 
Put long numeric 
Validate star name 
Validate and match star name 
List star name matches 
Set time 
Data base subroutine 
Set terminal characteristics 
Update superblock 

4-13 HH07-0l 



Table 4-3. C Routines Not Supported (Sheet 4 of 4) 

Name 

tdelete 
tell 
tmpfile 
tmpnam 
tsearch 
ttyname 
twalk 
tzname 

ucf_defc 
ucf defr 
ucf-finish 
ucf-init 
uldTv 
ulrem 
umemchr 
umemcmp 
umemcpy 
umemset 
unmount 

yO 
yl 
yn 

Function 

Delete tree 
Change file currency 
Create temporary file 
Temporary name 
Search tree 
Get name of terminal 
Walk tree 
Get time zone 

Create file 
Create file 
Create file 
Create file 
Long unsigned divide 
Long unsigned remainder 
Point to character in memory 
Compare memory areas 
Memory-to-memory copy 
Initialize memory 
Dismount volume 

Bessel function 
Bessel function 
Bessel function 

C SUPPORT OF MULTICS FILE TYPES 

C supports sequential files with most functions. 

The creat function creates a sequential file. Sequential 
processing of pre-existing string-relative files will be compat­
ible with a UNIX operating system. 

4-14 HH07-01 



SUBROUTINES AND LIBRARIES 

C subroutines and libraries include input/output and 
mathematical functions. While these functions are not directly 
callable from C, you can use these functions with include 
statements of the form: 

# include <stdio.h> 
# include <math.h> 

Functions in the math library may return conventional values 
o or HUGE (largest size precision floating number) when the 
function is undefined for the given arguments or when the value 
is not representable. In these cases, the external variable 
errno is set to the value EDOM or ERANGE. 

The descriptions of some functions refer to the null pointer 
(NULL). This value will not match that of any legitimate 
pointer, so many functions that return pointers return it, for 
example, to indicate an error. NULL is defined in <stdio.h> as 
(void*)Oi you can include your own definition if you are not 
using <stdio.h>. 

The standard I/O package consists of the stdio.h header file 
and a set of functions. The inline macrocalls getc and putc 
handle characters quickly. The macrocalls getchar, putchar, and 
the higher level routines fgetc, fgets, fprintf, fputc, fputs, 
fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf 
all use getc and putc; they can be freely intermixed. 

A file with associated buffering is declared to be a pointer 
to a defined type FILE. The fopen function creates certain 
descriptive data for a file and returns a pointer to designate 
the file in all further transactions. Normally, there are three 
open files with constant pointers declared in the "include" file 
and associated with the standard open files: 

stdin 
stdout 
stderr 

Standard input file (Multics user_input) 
Standard output file (Multics user_output) 
Standard error file (Multics error_output). 

An integer constant EOF (-1) is returned when a function 
encounters the end of a file or an error (see the individual 
descriptions for details). 

Any application that uses this package must include the 
header file of pertinent macrocall definitio~s, as follows: 

# include <stdio.h> 

4-15 HH07-01 



The functions and constants mentioned in the input/output 
functions are declared in that "include" file and need no further 
declaration. The constants and the following "functions" are 
macrocalls (redeclaration of these names is perilous): 

• clearerr 

• feof 

• fileno 

• getc 

• getchar 

• putc 

• putchar. 

TRAPS AND SIGNALS 

Generally, Multics traps are mapped to their UNIX operating 
system equivalents, to provide an emulation of a UNIX operating 
system environment. After catching a signal in a UNIX operating 
system, a program can continue as if the signal had not been sent 
merely by returning from the signal catcher (as opposed to 
calling exit). 

Multics traps will be mapped into UNIX operating system 
signals as described in Table 4-4. This table shows the Multics 
conditions available to the C user and their corresponding UNIX 
operating system signal value. 

Table 4-4. Multics Trap Support of 
UNIX Operating System Signals 

Multics Condition 

sus 
program_interrupt 
quit 
illegal_opcode, illegal_modifier 
mmel 
overflow, underflow 
io_error 
out_of_bounds 
command_error, active_function_error 
alrm 

UNIX Operating 
System Signal 

SIGHUP 
SIGINT 
SIGQUIT 
SIGILL 
SIGTRAP 
SIGFPE 
SIGBUS 
SIGSEGV 
SIGSYS 
SIGALRM 

Refer to the Multics Programmer's Reference Manual for a 
description of the Multics conditions. 

4-16 HH07-01 



Table 4-5 lists software-generated signals. Note that "pid~ 
is the process ID. 

Table 4-5. Software-Generated Signals 

C Calling Sequence Meaning 

I kill (pid; 0) Test signal; always ignored I 
kill (pid, SIGHUP) 1 Hangup 
kill (pid, SIGINT) 2 Interrupt 
kill (pid, SIGQUIT) 3 Quit 
kill (pid, SIGILL) 4 Invalid instruction 
kill (pid, SIGTRAP) 5 Trace trap 
kill (pid, SIGIOT) 6 IOTinstructiona 

kill (pid, SIGEMT) 7 EMT instruction a 

kill (pid, SIGFPE) 8 Floating-point exception 
kill (pid, SIGKILL) 9 Kill 
kill (pid, SIGBUS) 10 Megabus error 
kill (pid, SIGSEGV) 11 Segmentation violation 
kill (pid, SIGSYS) 12 Bad argument to function 
kill (pid, SIGPIPE) 13 Write to pipe having no readers 
kill (pid, SIGALRM) 14 Alarm clock 
alarm (delta) 14 Alarm clock (after delta secs) 
kill (pid, SIGTERM) 15 Terminate 
kill (pid, SIGUSRI) 16 User-defined signal 1 
kill (pid, SIGUSR2) 17 User-defined signal 2 
kill (pid, SIGCLD) 18 Death of a child 
kill (pid, SIGPWR) 19 Power-fail restart 

a On some processors 

In a UNIX operating system, the interrupt and quit signals 
are sent to every process in the process group that is not 
ignoring the signal. Processes created to run a command in the 
background (asynchronously) are created with these signals being 
ignored. Processes created to run a command in the foreground 
(synchronously) are created with default handling of these 
signals unless otherwise specified via the trap command. All 
other processes inherit the handling of these (and all other) 
signals from their parent. 

On Multics, signals will be trapped and handled by' each 
execution unit. If no signal mechanism exists at the current 
execution, the Multics default error handler will be invoked. 
(See the Multics Programmer's Refe·rence Manual for a description 
of this handler.) 

4-17 HH07-01 



ERROR RETURNS 

Most functions have one or more error returns. An error 
condition is indicated by an otherwise impossible returned 
value. This is almost always -1: the individual descriptions 
specify the details. 

Reporting Errors Via errno 

A UNIX operating system error number is returned in the 
external integer variable errno. The variable errno is not 
cleared on successful calls, so it should be tested only after an 
error has been indicated. 

UNIX Operating System Errors 

All of the possible error numbers are not listed in each 
function description because many errors are possible for most of 
the calls. The following is a complete list of the error 
numbers, manifest constants, and names as defined in <error.h>. 

1 EPERM Not owner. 

In a UNIX operating system, this error typically indicates an 
attempt to modify a file in some way forbidden except to its 
owner or super-user. 

2 ENOENT No such file or directory. 

This error occurs when a file name is specified and the file 
should exist but does not, or when one of the directories in a 
pathname does not exist. 

3 ESRCH No such process. 

No process can be found corresponding to that specified by 
the process ID in kill. 

4 EINTR Interrupted process. 

An asynchronous signal (such as interrupt or quit), which the 
user has elected to catch, has occurred during a function. If 
execution is resumed after processing the signal, it appears as 
if the interrupted function returned this error condition. This 
is a UNIX operating system error only: it never occurs in 
Multics. 

5 EIO I/O error. 

Some physical I/O error. This error may in some cases occur 
on a call following the one to which it actually applies. 

4-18 HH07-01 



6 ENXIO No such device or address. 

In a UNIX operating system, this occurs when I/O on a special 
file refers to a device that does not exist, or is beyond th~ 
limits of the device. It may also occur when, for example, a 
tape drive is not online or no disk pack is loaded on a driv~. 

7 E2BIG Argument list too long. 

An argument list longer than 5120 characters is presented to 
a member of the exec family. 

8 ENOEXEC Exec format error. 

In a UNIX operating system, this occurs when a request is 
made to execute a file that, although it has the appropriate 
access, does not start with a valid magic number. This is a UNIX 
operating system error only; it never occurs in Multics. 

9 EBADF Bad file number. 

A file descriptor refers to no open file, a read request is 
made to a file that is open only for writing, or a write request 
is made to a file that is only open for reading. 

10 ECHILD No children. 

A wait was executed by a process that has no existing child 
processes; or by a process already waiting for all its childre~. 

11 EAGAIN No more processes. 

A fork failed because you are not allowed to create any more 
processes. 

12 ENOMEM Not enough memory. 

During an exec, sbrk, or other function, a program asks for 
more space than Multics can supply. This is not a temporary 
condition; the maximum space is a system parameter. 

13 EACCES Permission denied. 

An attempt has been made to access a file to which you have 
insufficient access. 

14 EFAULT Bad address. 

On Multics this error is performed by a fault and is not 
available to the user. 

4-19 HH07-01 



15 ENOTBLK Block device required. 

In a UNIX operating system this occurs when a nonblock file 
is mentioned where a block device is required: for example, in 
mount. 

16 EBUSY Mount device is busy. 

In a UNIX operating system this occurs when an attempt is 
made to mount a device that is already mounted, or an attempt is 
made to demount a device on which there is an active file (open 
file or current directory). It also occurs if an attempt is made 
to enable accounting when it is already enabled. 

17 EEXIST File already exists. 

An existing file is mentioned in an inappropriate context: 
for example, link. 

18 EXDEV Cross-device link. 

In a UNIX operating system this occurs when a link to a file 
on another device is attempted. 

19 ENODEV No such device. 

An attempt has been made to apply an inappropriate function 
to a device: for example, read a write-only device. 

20 ENOTDIR Not a directory. 

A file is specified where a directory is required, for 
example in a path prefix or as an argument to chdir. 

21 EISDIR Is a directory. 

An attempt has been made to write on a directory. 

22 EINVAL Invalid argument. 

Some invalid argument has occurred; for example, mentioning 
an undefined signal in signal, or kill. This error is also set 
by the mathematical functions. 

23 ENFILE File table overflow. 

The system table of open files is full, and temporarily no 
more opens can be accepted. 

24 EMFILE Too many open files. 

No process can have more than 20 file descriptors open at a 
time. 

4-20 HH07-01 



25 ENOTTY Not a typewriter. 

The device is not a terminal. 

26 ETXTBSY Text file busy. 

In a UNIX operating system this occurs when an attempt has 
been made to execute a pure procedure program that is currently 
open for writing (or reading), or an attempt has been made to 
open for writing a pure procedure program that is being executed. 

27 EFBIG File too large. 

In a UNIX operating system this occurs when the size of a 
file exceeds the maximum file size or ULIMIT. 

28 ENOSPC No space left on ·device. 

During a write to an ordinary file, there is no free space 
left on the device. 

29 ESPIPE Illegal seek. 

In a UNIX operating system this occurs when an lseek has been 
issued to a pipe. 

30 EROFS Read-only file system. 

An attempt was made to modify a file or directory on a device 
mounted read-only; that is, with the write-protect switch set. 

31 EMLINK Too many links. 

In a UNIX operating system this occurs on an attempt to make 
more than the maximum number of links (1000) to a file. 

32 EPIPE Broken pipe. 

In a UNIX operating system this occurs when a write has been 
attempted on a pipe for which there is no process to read the 
data. This condition normally generates a signal; the error is 
returned if the signal is ignored. 

33 EDOM Math argument not in function's domain. 

The argument of a function in the math package is out of the 
domain of the function. 

34 ERANGE Math function's result too large. 

The value of a function in the math package is not 
representable within machine precision. 

4-21 HH07-01 



35 ENOMSG No message of desired type. 

An attempt was made to receive a message of a type that does 
not exist on the specified queue. This is a UNIX operating 
system error only; it never occurs in Multics. 

36 EIDRM Identifier removed. 

This error is returned to processes that resume execution due 
to the removal of an identifier from the file system's name 
space. This is a UNIX operating system error only; it never 
occurs in Multics. 

RUN-TIME ROUTINES 

The rest of this section describes the run-time routines 
(either functions or macrocalls) available under Multics C. The 
descriptions are arranged alphabetically by routine name. Refer 
to Tables 4-1 and 4-2 for a complete list of routines. 

4-22 HH07-01 



abort 

abort 

Terminate a C program. 

SYNTAX: 

int abort ( ) 

ARGUMENTS: 

None. 

DESCRIPTION: 

The abort function causes an lOT signal to be sent to its own 
process. The default signal catcher causes program 
termination. 

It is possible for abort to return control if SIGIOT is 
caught or ignored. In this case, the value returned is that 
of the kill function. 

4-23 HH07-01 



abs 

Integer absolute value. 

SYNTAX: 

int abs (i) 
int i; 

ARGUMENTS: 

i 

Integer value whose absolute value is to be returned. 

DESCRIPTION: 

The abs function returns the absolute value of its integer 
operand. 

RELATED FUNCTIONS: 

fabs. 

4-24 HH07-01 



access 

Determine access rights or existence of a file. 

SYNTAX: 

int access (path, amode) 
char *path; 
int amode: 

ARGUMENTS: 

path 

Pointer to a pathname naming a. file. 

amode 

access 

Bit pattern constructed as a sum of the following: 

04 Read 
02 Write 
01 Execute (search) 

DESCRIPTION: 

The access function checks ~ne access rights or tne named 
file according to the bit pattern contained in the amode 
argument. 

The file has access checked with respect to the read, write, 
and execute mode bits. 

No access to the file is indicated if the information request 
of the file system returns an error. 

RETURN VALUE: 

If the requested access is permitted, a value of 0 is 
returned. Otherwise, a value of -1 is returned. The 
variable errno is set to indicate a UNIX operating system 
error. 

4-25 HH07-01 



acos 

Arc cosine function. 

SYNTAX: 

# include <math.h> 

double acos (x) 
double Xi 

ARGUMENTS: 

x 

Double value of the cosine. 

DESCRIPTION: 

The acos function returns the arc cosine in the range 0 to 
pi. 

DIAGNOSTICS: 

Arguments of magnitude greater than 1 cause acos to return 
value O. 

RELATED FUNCTIONS: 

asin, atan, atan2, cos, sin, tan.· 

4-26 HH07-01 



alarm 

Set a process alarm clock. 

SYNTAX: 

int alarm (sec) 
int sec; 

ARGUMENTS: 

sec 

Number of seconds until alarm. 

DESCRIPTION: 

alarm 

The alarm function instructs the calling process's alarm 
clock to send the signal SIGALRM to the calling process after 
the number of real-time seconds specified by the sec argument 
have elapsed; see signal. 

Alarm requests are not stacked; successive calls replace the 
calling task's alarm clock. 

If sec is Of any previously made alarm request is cancelede 

RETURN VALUE: 

The alarm function returns the amount of time, possibly 0, 
previously remaining in the calling process's alarm clock. 

DIAGNOSTICS: 

If alarm is unable to set the alarm clock for any reason, 
errno is set to indicate the reason and -1 is returned. 

RELATED FUNCTIONS: 

signal. 

4-27 HH07-0l 



·asctime 

asctime 

Convert date and time to ASCII. 

SYNTAX: 

# include <time.h> 

char *asctime (tm) 
struct tm *tm; 
extern long timezone; 
extern int daylight; 
extern char *tzname[2]; 

ARGUMENTS: 

tm 

Time, in military notation. 

DESCRIPTION: 

The asctime function converts the components of the time to 
ASCII and returns a pointer to a 26-character string in the 
following form (all fields have constant width): 

Fri Aug 10 10:24:54 1984\n\0 

The structure declaration from the include file is: 

struct tm 
int 
int 
int 
int 
int 
int 
int 
int 
int 

} ; 

{ 
tm_sec; 
tm_min; 
tm hour-- , 
tm_mday; 
tm_mon: 
tmJear; 
tlll_wday; 
tm_ydaYi 
tm_isdst; 

These quantities give the time on a 24-hour clock, day of 
month (1-31), month of year (0-11), day of week (Sunday - 0), 
year - 1900, day of year (0-365), and a flag that is nonzero 
if daylight savings time is in effect. 

4-28 HH07-01 



as':time 

The external long variable timezone contains the difference, 
in seconds, between GMT and local standard time (in EST, 
timezone is 5*60*60); the external variable daylight is 
nonzero if and only if the standard u.S. daylight savings 
time conversion should be applied. 

If the environment variable TZ is not present, the asctime 
function assumes the local time zone is the same as the 
system time zone. The external variable daylight is set to 
zero in this case. 

If TZ is present, the asctime function uses it to determine 
the local time zone. The value of TZ must be a time zone 
acronym, a time offset, and an optional daylight savings time 
zone acronym. 

• The time zone acronym is up to four characters long. 

• The time offset represents the difference between 
local time in the designated time zone and GMT. The 
difference is represented by a string of digits with 
an optional leading minus sign (for locations east of 
Greenwich, England) and with an optional trailing .5 
(for locations some odd number of half-hours from 
Greenwich). 

• The optional daylight savings time zone acronym is up 
to four characters long. 

For example, the setting for Boston would be EST5EDT. 

Setting TZ changes the values of the external variables 
timezone and daylight; in addition, time zone acronyms 
contained in the external variable tzname are set: 

char *tzname[2]= {"EST ", "EDT "I; 

NOTE 

The return value.s point to static data whose con­
tents are overwritten by each call. 

RELATED FUNCTIONS: 

ctime, gmtime, localtime, time, tzset; see also the 
list_stz and set_stz commands. 

4-29 HH07-01 



asin 

Arc sine function. 

SYNTAX: 

# include <math.h> 

double asin (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value of the sin. 

DESCRIPTION: 

The asin function returns the arc sine in the range -pi/2 to 
pi/2. 

DIAGNOSTICS: 

Arguments of magnitude greater than 1 cause asin to return 
value O. 

RELATED FUNCTIONS: 

acos, atan, atan2, cos, sin, tan. 

4-30 HH07-01 



Arc tangent function. 

SYNTAX: 

# include <math.h> 

double atan (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value of the tangent. 

DESCRIPTION: 

atan 

The atan function returns the arc tangent of x in the range 
-pi/2 to pi/2. 

RELATED FUNCTIONS: 

acos, asin, atan2, cos: sin: tan. 

4-31 HH07-01 



atan2 

atan2 

Arc tangent of y/x. 

SYNTAX: 

# include <math.h> 

double atan2 (y, x) 
double x, Yi 

ARGUMENTS: 

x 

Double-precision value. 

y 

Double-precision value. 

DESCRIPTION: 

The atan2 function returns the arc tangent of y/x in the 
range -pi to pi. 

RELATED FUNCTIONS: 

acos, asin, atan, cos, sin, tan. 

4-32 HH07-01 



Converts ASCII to floating point. 

SYNTAX: 

double atof (aptr) 
char *aptr; 

ARGUMENTS: 

aptr 

atof 

A string of tabs and spaces, then an optional sign, then 
a string of digits optionally containing a decimal point, 
then an optional e or E followed by an optionally signed 
integer. 

DESCRIPTION: 

The atof function converts a string to floating-point 
representation. The first unrecognized character ends the 
string. 

NOTE 

There are no provisions for overflow. 

RELATED FUNCTIONS: 

atoi, atol, scanf. 

4-33 HH07-01 



atoi 

Converts ASCII to integer. 

SYNTAX: 

int atoi (aptr) 
char *aptr; 

ARGUMENTS: 

aptr 

A string of tabs and spaces, then an optional sign, then 
a string of digits. 

DESCRIPTION: 

The atoi function converts a string to integer 
representation. The first unrecognized character ends the 
string. 

NOTE 

There are no provisions for overflow. 

RELATED FUNCTIONS: 

atof, atol, scanf. 

4-34 HH07-01 



Converts ASCII to long. 

SYNTAX: 

long atof (aptr) 
char *aptr; 

ARGUMENTS: 

aptr 

at~1 

A string of tabs and spaces, then an optional sign, then 
a string of digits. 

DESCRIPTION: 

The atol function converts a string to long integer 
representation. The first unrecognized character ends the 
string. 

NOTE 

There are no-provisions for overflow. 

RELATED FUNCTIONS: 

atof, atoi, scanf. 

4-35 HH07-01 



calloc 

calloc 

Heaps memory allocation. 

SYNTAX: 

char *calloc (nelem, elsize) 
unsigned nelem, elsize; 

ARGUMENTS: 

nelem 

Number of elements. 

elsize 

Size of each element in characters. 

DESCRIPTION: 

The calloc function allocates space for an array of 
elements. The space is initialized to zeros. 

RETURN VALUE: 

The calloc function returns a pointer to space suitably 
aligned (after possible pointer coercion) for storage of any 
type of object. 

DIAGNOSTICS: 

If the heap does not contain enough memory and cannot be 
sufficiently expanded to meet the request, the variable errno 
is set to ENOMEM or ENOSPC and a null character pointer is 
returned. 

RELATED FUNCTIONS: 

free, malloc, realloc. 

4-36 HH07-01 



Ceiling function. 

SYNTAX: 

double ceil (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value to be compared. 

DESCRIPTION: 

The ceil function returns the smallest integer not less 
than x. 

RELATED FUNCTIONS: 

abs, fabs, floor, fmod. 

ceil 

4:-37 HH07-01 



clearerr 

clearerr 

File status inquiry -- clear error indicator. 

SYNTAX: 

# include <stdio.h> 

clearerr (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The clearerr function resets the error indication on the 
named file. 

The clearerr function is a macrocall; it cannot be 
redeclared. 

RELATED FUNCTIONS: 

feof, ferror, fileno, fopen, open. 

4-38 HH07-01 



clock 

Report CPU time used. 

SYNTAX: 

long clock ( ) 

ARGUMENTS: 

None. 

DESCRIPTION: 

clock 

Clock returns the amount of CPU time (in microseconds) used 
since the first call to clock. The time reported is the sum 
of the user and system times of the calling process. 

4-39 HH07-01 



close 

close 

Closes a file. 

SYNTAX: 

# include <stdio.h> 

int close (fildes) 
int fildes; 

ARGUMENTS: 

fildes 

File descriptor obtained from a create or open function. 

DESCRIPTION: 

The close function closes and deletes a file. The close 
function closes the file descriptor indicated by fildes. A 
shared file is not removed until the last user executes a 
close. 

RETURN VALUE: 

Upon successful completion, a value of 0 is returned. 
Otherwise, a value of -1 is returned. The variable errno is 
set to indicate the error. 

DIAGNOSTICS: 

The close function fails if fildes is not a valid, open file 
descriptor. 

RELATED FUNCTIONS: 

creat, open. 

4-40 HH07-01 



Cosine function. 

SYNTAX: 

# include <math.h> 

double cos (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value of the angle in radians. 

DESCRIPTION: 

The cos function returns the cosine of a radian argument. 
The caller should check the magnitude of the argument to 
ensure that the result is meaningful. 

RELATED FUNCTIONS: 

acos, asin, atan, atan2, sin, tan~ 

cos 

4-41 HH07-01 



cosh 

cosh 

Hyperbolic function. 

SYNTAX: 

# include <math.h> 

double cosh (x) 
double x: 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

The cosh function computes the hyperbolic cosine function for 
real arguments. 

DIAGNOSTICS: 

The cosh function returns a huge value of appropriate sign 
when the correct value would overflow. 

RELATED FUNCTIONS: 

sinh, tanh. 

4-42 HH07-01 



creat 

Creates a new file or rewrites an existing one. 

SYNTAX: 

int creat (path, mode) 
char *path; 
int mode; 

ARGUMENTS: 

path 

File pathname. 

mode 

File access--ignored (see below). 

DESCRIPTION: 

creat 

The creat function creates a new sequential file or prepares 
to rewrite an existing file named by the pathname pointed to 
by the path argument. 

The mode argument (which in a UNIX operating system sets file 
access) is ignored. Access Control List (ACL) rights for the 
file are determined by whatever ACLs currently apply to the 
file. 

If the file exists, the length is truncated to 0 and the mode 
and owner are unchanged. 

RETURN VALUE: 

Upon successful completion, the file descriptor (a non­
negative integer) is returned and the file is opened for 
writing. The file descriptor is set to remain open across 
exec functions (see fcntl). The file pointer is set to the 
beginning of the file. No process can have more than 20 
files open simultaneously. 

Otherwise, a value of -1 is returned, and the variable errno 
is set to indicate the error. 

RELATED FUNCTIONS: 

close, open, read, write. 

4-43 HH07-01 



ctime 

ctime 

Converts date and time to ASCII. 

SYNTAX: 

# include <time.h> 

char *ctime (clock) 
long * clock; 

ARGUMENTS: 

clock 

Long integer pointer to the time in seconds since 
midnight GMT, Jan. 1, 1970 (such as returned by time). 

DESCRIPTION: 

The ctime function converts a time into ASCII and returns a 
pointer to a 26-character string in the following form (all 
fields have constant width): 

Sat Aug 10 10:24:54 1985\n\0 

The structure declaration from the include file is: 

struct tm { 
int tm_sec; 
int tm_min: 
int tm_hour; 
int tm_mday; 
int tm_mon: 
int tm_year; 
int tm_wday; 
int tm_yday; 
int tm_isdst; 

} ; 

These quantities give the time on a 24-hour clock, day of 
month (1-31), month of year (0-11), day of week (Sunday - 0), 
year - 1900, day of year (0-365), and a flag that is nonzero 
if daylight savings time is in effect. 

The external long variable timezone contains the difference, 
in seconds, between GMT and local standard time (in EST, 
timezone i~ 5-60-60): the external variable daylight is 
nonzero if, and only if, the standard u.s. daylight savings 
• .: ..... "" ,.. .......... , .. "'- ... .:......... s ......... ·",..::1 1-."" ap ...... '.: e..::l \..L"'C \.,.VUVC.L.;::).LVU &lVU..L.U UC ,lJ..L..L u. 

4-44 HH07-01 



NOTE 

The return values point to static data whose 
contents are overwritten by each call. 

RELATED FUNCTIONS: 

asctime, gmtime, localtime, time, tzset. 

4-45 

ctime 

HH07-01 



drand48, erand48, lrand48, nrand48, mrand48, ;rand48, srand48, 
seed48, lcong48 

Generate uniformly distributed pseudorandom numbers. 

SYNTAX: 

double drand48 ( ) 
double erand48 Xi[3]; 

long lrand48 ( ) 

long nrand48 (Xi) 
unsigned short Xi[3]; 

long mrand48 ( ) 

long jrand48 (Xi) 
unsigned short Xi[3]; 

void srand48 (seedval) 
long seedval; 

unsigned short *seed48 (seed16v) 
unsigned short seed16v[3]; 

void lcong48 (param) 
unsigned short param[7]; 

DESCRIPTION: 

This family of functions generates pseudorandom numbers using 
the well-known linear congruential algorithm and 48-bit 
integer arithmetic. 

Functions drand48 and erand48 return non-negative double­
precision floating-point values uniformly distributed over 
the interval [0.0, 1.0). 

Functions lrand48 and nrand48 return non-negative long 
integers uniformly distributed over the interval [0, 231 ). 

Functions mrand48 and jrand48 return signed long integers 
uniformly distributed over the interval [-2 31 , 231 ). 

4-46 HH07-0l 



drand48 

Functions srand48, seed48, and lcong48 are initialization 
entry points, one of which should be invoked before either 
drand48, lrand48, or mrand48 is called. (Although it is not 
recommeded practice, constant default initializer values will 
be supplied automatically if drand48, lrand48, or mrand48 is 
called without a prior call to an initialization entry 
point.) Functions erand48, nrand48, and jrand48 do not 
require an initialization entry point to be called first. 

All the routines work by generating a sequence of 48-bit 
integer values, Xi, according to the linear congruential 
formula: 

Xn+l = (axn + C)mod m n>=O 

The parameter m = 248 ; hence 48-bit integer arithmetic is 
performed. Unless lcong48 has been invoked, the multiplier 
value a and the addend value c are given by: 

a = 5DEECE66D16 = 2736731631558 
c = B16 = 138. 

The value returned by any of the functions drand48, erand48, 
lrand48, nrand48, mrand48, or jrand48 is computed by first 
generating the next 48-bit Xi in the sequence. Then the 
appropriate number of bits; according to the type of data 
item to be returned, are copied from the high-order 
(leftmost) bits of Xi and transformed into the returned 
value. 

The functions drand48, lrand48, and mrand48 store the last 
48-bit Xi generated in an internal buffer; that is why they 
must be intialized prior to being invoked. The functions 
erand48, nrand48, and jrand48 require the calling program to 
provide storage for the successive Xi values in the array 
specified as an argument when the functions are invoked. 
That is why these routines do not have to be initialized; the 
calling program merely has to place the desired initial value 
of Xi into the array and pass it as an argument. By using 
different arguments, functions erand48, nrand48, and jrand48 
allow separate modules of a large program to generate several 
independent streams of pseudorandom numbers, i.e., the 
sequence of numbers in each stream will not depend upon how 
many times the routines have been called to generate numbers 
for the other streams. 

The initializer function srand48 sets the high-order 32 bits 
of Xi to the 32 bits contained in its argument. The 
low-order 16 bits of Xi are set to the arbitrary value 
330E16· 

4-47 HH07-01 



drand48 

The initializer function seed48 sets the value of Xi to the 
48-bit value specified in the argument array. In addition, 
the previous value of Xi is copied into a 48-bit internal 
buffer, used only by seed48, and a pointer to this buffer is 
the value returned by seed48. This returned pointer, which 
can just be ignored if not needed, is useful if a program is 
to be restarted from a given point at some future time. Use 
the pointer to get at and store the last Xi value, and then 
use this value to reinitialize via seed48 when the program is 
restarted. 

The initialization function Icong48 allows the user to 
specify the initial Xi, the multiplier value a, and the 
addend value c. Argument array elements param[O-2] specify 
Xi, param[3-5] specify the multiplier a, and param[6] 
specifies the 16-bit addend c. After Icong48 has been 
called, a subsequent call to either srand48 or seed48 
restores the "standard" multiplier and addend values, a and 
c, specified on the previous page. 

4-48 HH07-01 



Output conversion. 

SYNTAX: 

char *ecvt (value, ndigit, decpt, sign) 
double value: 
int ndigit, *decpt, *sign: 

ARGUMENTS: 

value 

Double-precision value to be converted. 

ndigit 

Number of digits in output string. 

decpt 

ecvt 

Pointer to position of the decimal point relative to the 
beginning of the string (negative means to the left of 
the returned digits). 

sign 

If the sign of the result is negative, the word pointed 
to by sign is nonzero: otherwise it is zero. 

DESCRIPTION: 

The ecvt function converts a value to a null-terminated 
string of ndigit digits and returns a pointer thereto. If 
the sign of the result is negative, the word pointed to by 
sign is nonzero; otherwise it is zero. The low-order digit 
is rounded. 

NOTE 

The return values point to static data whose con~ 
tents are overwritten by each call. I 

RELATED FUNCTIONS: 

fcvt, gcvt, printf. 

4-49 HH07-01 



errno 

errno 

System error message number. 

SYNTAX: 

extern int errno; 

ARGUMENTS: 

None. 

DESCRIPTION: 

The external variable errno is set when errors occur but not 
cleared when nonerroneous calls are made. 

4-50 HH07-01 



execl 

execl 

Execute a bound unit. 

SYNTAX: 

int execl(path,argo,argl, ••• ,argn,(unsigned char *) 0) 
unsigned char *path, *argO, *argl, ••• , *argn: 

ARGUMENTS: 

path 

Pointer to a pathname that identifies the new process 
bound unit. 

argO, arg1, ••• , argn 

Pointers to null-terminated strings. These strings 
constitute the argument list available to the new 
process. By convention, at least argO must be present 
and point to a string that is the same as path (or its 
file-name component). 

DESCRIPTION: 

The execl function transforms the calling process into a new 
process. The new process is constructed from an ordinary 
bound unit called the new process bound unit. 

A pointer to the environment of the calling process is placed 
in the global cell: 

extern unsigned char **environ: 

It is used to pass the environment of the calling process to 
the new process. 

The execl function fails and returns to the calling process 
if: 

• One or more components of the pathname do not exist 
[ENOENT] • 

• A directory-name component of path is not a directory 
[ENOTDIR] • 

• List access is denied for a directory named in path 
[EACCES] • 

4-51 HH07-01 



execl 

• The new process bound unit is not a bound unit, or the 
calling process lacks execute access to it [EACCES]. 

• The path, argv, or envp argument points to an invalid 
address [EFAULT]. 

RETURN VALUE: 

If execl returns to the calling process, an error has 
occurred; the return value is -1, and the variable errno is 
set to indicate the error. 

RELATED FUNCTIONS: 

execle, execv, execve, exit, getenv. 

4-52 HH07-01 



execle 

execle 

Execute a bound unit. 

SYNTAX: 

int execle(path,argo,argl, ••• ,argn,(unsigned char 
*)O),envp)unsigned char *path, *argO, *argl, ••• , *argn, 
*envp []; 

ARGUMENTS: 

path 

Pointer to a pathname that identifies the new process 
bound unit. 

Pointers to null-terminated strings. These strings 
constitute the argument list available to the new 
process. By convention, at least argO must be present 
and point to a string that is the same as path (or its 
file name component). 

envp 

Array of character pointers to null-terminated strings. 
These strings constitute the environment for the new 
process. The array is terminated by a null character 
pointer. 

DESCRIPTION: 

The execle function transforms the calling process into a new 
process. The new process is constructed from an ordinary 
bound unit called the new process bound unit. 

The new process also inherits the following attributes from 
the calling process: 

• Process ID 
• Parent process 1D 

• Process group ID 
• TTY group ID 
• Time left until an alarm signal 
• Current working directory 
• Root directory 
• File mode creation mask 
• File size limit. 

4-53 HH07-01 



execle 

The execle function fails and returns to the calling process 
if: 

• One or more components of the pathname do not exist 
[ENOENT]. 

• A directory-name component of path is not a directory 
[ENOTDIR]. 

• List access is denied for a directory named in path 
[EACCES]. 

• The new process bound unit is not a bound unit, or the 
calling process lacks execute access to it [EACCES]. 

• The path, argv, or envp argument points to an invalid 
address [EFAULT]. 

RETURN VALUE: 

If execle returns to the calling process, an error has 
occurred; the return value is -1, and the variable errno is 
set to indicate the error. 

RELATED FUNCTIONS: 

execl, execv, execve, exit. 

4-54 HH07-01 



execlp 

execlp 

Execute a bound unit. 

SYNTAX: 

int execlp(file,argO,argl, ••• ,argn(unsigned char *)0) 
o d h *fol * * * unslgne c ar 1 e r argO, argl, ••• , argn: 

ARGUMENTS: 

file 

Pointer to the filename of the new process bound unit. 

argO, argl, ••• , argn 

Pointers to null-terminated character strings. 
strings constitute the argument list available 
process. By convention, at least argO must be 
and point to a string that is the same as path 
filename component). 

DESCRIPTION: 

These 
to the new 
present 
(or its 

The execlp function transforms the calling process into a new 
process. The new process is constructed from an ordinary 
bound unit called the new process bound unit. 

The directory containing the new process bound unit is found 
by searching the directories passed as the environment line 
"PATH= ••• ". 

A pointer to the environment of the calling process is placed 
in the global cell: 

extern unsigned char **environ; 

It is used to pass the environment of the calling process to 
the new process. 

4-55 HH07-0l 



execlp 

The new process also inherits the following attributes from 
the calling process: 

• Process ID 
• Parent process ID 
• Process group ID 
• TTY group ID 
• Time left until an alarm signal 
• Current working directory 
• Root directory 
• File mode creation mask 
• File size limit. 

The execlp function fails and returns to the calling process 
if: 

• One or more components of a directory named in the 
environment line "PATH= •.• " does not exist [ENOENT). 

• A directory-path component of "PATH= ••• " is not a 
directory [ENOTDIR). 

• List access is denied for a directory named in 
"PATH= ••• " [EACCES). 

• The new process bound unit is not a bound unit, or the 
calling process lacks execute access to it [EACCES]. 

• The argv argument points to an invalid address 
[EFAULT]. 

RETURN VALUE: 

If execlp returns to the calling process, an error has 
occurred; the return value is -1, and the variable errno is 
set to indicate the error. 

RELATED FUNCTIONS: 

execvp. 

4-56 HH07-01 



execv 

execv 

Execute a bound unit. 

SYNTAX: 

int execv (path, argyl 
unsigned char *patht *argv []: 

ARGUMENTS: 

path 

argv 

Pointer to a pathname that identifies the new process 
bound unit. 

Array of character pointers to null-terminated strings. 
These strings constitute the argument list available to 
the new process. By convention, argv must have at least 
one member, and it must point to a string that is the 
same as path (or its file name component). The array is 
terminated by a null character pointer. 

DESCRIPTION: 

The execv function transforms the calling process into a new 
process. The new process is constructed from an ordinary 
bound unit called the new process bound unite 

A pointer to the environment of the calling process is placed 
in the global cell: 

extern unsigned char **environ; 

It is used to pass the environment of the calling process to 
the new process. 

4-57 HH07-01 



execv 

The new process also inherits the following attributes from 
the calling process: 

• Process 10 
• Parent process ID 
• Process group 10 
• TTY group 10 
• Time left until an alarm signal 
• Current working directory 
• Root directory 
• File mode creation mask 
• File size limit. 

The execv function fails and returns to the calling process 
if: 

• One or more components of the pathname do not exist 
[ENOENT). 

• A directory-name component of path is not a directory 
[ENOTOIR). 

• List access is denied for a directory named in path 
[EACCES). 

• The new process bound unit is not a bound unit, or the 
calling process lacks execute access to it [EACCES). 

• The path, argv, or envp argument points to an invalid 
address [EFAULT). 

RETURN VALUE: 

If execv returns to the calling process, an error has 
occurred; the return value is -1, and the variable errno is 
set to indicate the error. 

RELATEO FUNCTIONS: 

execl, execle, execve, exit. 

4-58 HH07-01 



execve 

execv 

Execute a bound unit. 

SYNTAX: 

int execve (path, argv, envp): 
unsigned char *path, *argv [j, *envp []: 

ARGUMENTS: 

path 

argv 

envp 

Pointer to a pathname that identifies the new process 
bound unit. 

Array of character pointers to null-terminated strings. 
These strings constitute the argument list available to 
the new process. By convention, argv must have at least 
one member, and it must point to a string that is the 
same as path (or its file name component). The array is 
terminated by a null character pointer. 

Array of character pointers to null~terminated strings. 
These strings constitute the environment for the new 
process. The array is terminated by a null character 
pointer. 

DESCRIPTION: 

The execve function transforms the calling process into a new 
process. The new process is constructed from an ordinary 
bound unit called the new process bound unit. 

A pointer to the environment of the calling process is placed 
in the global cell: 

extern unsigned char **environ; 

It·. is used to pass the environment of· the calling process to 
the new process. 

4-59 HH07-01 



·execve 

The new process also inherits the following attributes from 
the calling process: 

• Process 10 
• Parent process 10 
• Process group 10 
• TTY group 10 
• Time left until an alarm signal 
• Current working directory 
• Root directory 
• File mode creation mask 
• File size limit. 

The execv function fails and returns to the calling process 
if: 

• One or more components of the pathname do not exist 
[ENOENT] • 

• A directory-name component of path is not a directory 
[ENOTOIR] • 

• List access is denied for a directory named in path 
[EACCES] • 

• The new process bound unit is not a bound unit, or the 
calling process lacks execute access to it [EACCES]. 

• The path, argv, or envp argument points to an invalid 
address [EFAULT]. 

RETURN VALUE: 

If execve returns to the calling process, an error has 
occurred; the return value is -1, and the variable errno is 
set to indicate the error. 

RELATED FUNCTIONS: 

execl, execle, execv, exit. 

4-60 HH01-01 



execvp 

execv 

Execute a bound unit. 

SYNTAX: 

int execvp (file, argv) 
unsigned char *file, *argv [] 

ARGUMENTS: 

file 

argv 

Pointer to the filename of the new process bound unit. 

Array of character pointers to null-terminated strings. 
These strings constitute the argument list available to 
the new process. By convention, argv must have at least 
one member, and it must point to a string that is the 
same as path (or its file name component). The array is 
terminated by a null character pointer. 

DESCRIPTION: 

The execlp function transforms the calling process into a new 
process. The new process is constructed from an ordinary 
bound unit called the new process bound unit. 

The directory containing the new process bound unit is found 
by searching the directories passed as the environment line 
"PATH= ••• ". 

A pointer to the environment of the calling process is placed 
in the global cell: 

extern unsigned char **environ; 

It is used to pass the environment of the calling process to 
the new process. 

4-61 HH07-01 



execvp 

The new process also inherits the following attributes from 
the calling process: 

• Process 10 
• Parent process 10 
• Process group 10 
• TTY group 10 
• Time left until an alarm signal 
• Current working directory 
• Root directory 
• File mode creation mask 
• File size limit. 

The execvp function fails and returns to the calling process 
if: 

• One or more components of a directory named in the 
environment line "PATH= ••• " does not exist [ENOENT]. 

• A directory-path component of "PATH= .•• " is not a 
directory [ENOTOIR]. 

• List access is denied for a directory named in 
"PATH= ••• " [EACCES]. 

• The new process bound unit is not a bound unit, or the 
calling process lacks execute access to it [EACCES). 

• The argv argument points to an invalid address 
[EFAULT] • 

RETURN VALUE: 

If execvp returns to the calling process, an error has 
occurred; the return value is -1, and the variable errno is 
set to indicate the error. 

RELATED FUNCTIONS: 

execlp. 

4-62 HH07-01 



Terminate a process. 

SYNTAX: 

exit (status) 
int status; 

ARGUMENTS: 

status 

Status of operation. 

DESCRIPTION: 

The exit function terminates the calling process with the 
following consequences: 

• All of the file descriptors open in the child 
(calling) process are closed. 

RELATED FUNCTIONS: 

signal l wait. 

exit 

4-63 HH07-01 



exp 

Exponential function. 

SYNTAX: 

# include <math.h> 

double exp (x) 
double Xi 

ARGUMENTS: 

x 

Double-precision value to be operated on. 

DESCRIPTION: 

The exp function returns eX. 

DIAGNOSTICS: 

The exp function returns a huge value when the correct value 
would overflow. A very large argument can also result in 
errno being set to ERANGE. 

RELATED FUNCTIONS: 

hypot, log, pow, sinh, sqrt. 

4-64 HH07-01 



Absolute value function. 

SYNTAX: 

double fabs (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value to be operated on. 

DESCRIPTION: 

fabs 

The fabs function returns Ixl (that is, the absolute value 
of x). 

RELATED FUNCTIONS: 

abs, ceil, floor, fmod. 

4-65 HH07-01 



fclose 

fclose 

Close a file. 

SYNTAX: 

# include <stdio.h> 

int fclose (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The fclose function causes any buffers for the named file to 
be written to that file, and the file to be closed. Buffers 
allocated by the standard input/output system are freed. 

The fclose function is performed automatically upon calling 
exit. 

RETURN VALUE: 

This function returns 0 for success, and EOF if any errors 
were detected. 

RELATED FUNCTIONS: 

close, fflush, fopen, setbuf. 

4-66 



fcntl 

fcntl 

File control. 

SYNTAX: 

# include <fcntl.h> 

int fcntl (fildes, cmd, arg) 
int fildes, cmd, argi 

ARGUMENTS: 

fildes 

cmd 

arg 

Open file descriptor obtained from a creat, open, or 
fcntl function. 

Command (see below). 

Argument to cmd. 

DESCRIPTION: 

The fcntl function provides for control over open files. 

Acceptable values for cmd are as follows: 

F_DUPFD 

F_GETFD 

F_SETFD 

Duplicate the lowest-numbered available file 
descriptor greater than or equal to arg. The 
file descriptor shares the same open file(s), 
file pointer, and access mode. The file 
status flags have the values of the original 
flags. The close-on-exec flag associated 
with the new file descriptor is set. 

Get the close-on-exec flag associated with 
the file descriptor fildes. If the low-order 
bit is zero, the file remains open across 
exec functions; otherwise, the file is closed 
on execution of exec. 

Set the close-on-exec flag associated with 
the file descriptor fildes to the low-order 
bit or arg. 

4-67 HH07-0l 



fcntl 

F_GETFL 

F_SETFL 

RETURN VALUE: 

Get the status flags of file. 

Set the status flags of file to arg. 

Upon successful completion, the value returned depends on the 
cmd argument, as follows: 

A new file descriptor F_DUP.FD 
F_GETFD 
F_SETFD 
F_GETFL 
F_SETFL 

Value of flag (only low-order bit defined) 
Value other than -1 
Value of file flags 
Value other than -1. 

Otherwise, a value of -1 is returned and the variable errno 
is set to indicate the error. 

DIAGNOSTICS: 

The fcntl function fails it: 

• The fildes argument does not point to a valid, open 
file descriptor [EBADF]. 

• The cmd argument is F_DUPFD and twenty file 
descriptors are currently open [EMFILE]. 

• The cmd argument is F_DUPFO and the arg argument is 
negative or greater than twenty [EINVAL] or the cmd 
argument is F_SETFL and the arg argument is invalid. 

RELATED FUNCTIONS: 

close, exec, open. 

4-6.8 HH07-01 



Output conversion. 

SYNTAX: 

char *fcvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

ARGUMENTS: 

value 

Double-precision value to be converted. 

ndigit 

Number of digits to be returned. 

de cpt 

fcvt 

Pointer to position of the decimal point relative to the 
beginning of the string (negative means to the left of 
the returned digits). 

sign 

If the sign of the result is negative, the word pointed 
to by sign is nonzero; zero otherwise. 

DESCRIPTION: 

The ecvt function converts a value to a null-terminated 
string of ndigit digits and returns a pointer thereto. The 
correct digit has been rounded for FORTRAN F-format output of 
the number of digits specified by the ndigit argument. 

NOTE 

The return values point to static data whose con­
tents are overwritten by each call. 

RELATED FUNCTIONS: 

ecvt, gcvt, printf. 

4-69 HH07-01 



fdopen 

fdopen 

Open a file. 

SYNTAX: 

# include <stdio.h> 

FILE *fdopen (fildes, type) 
int fildes; 
char *type; 

ARGUMENTS: 

fildes 

Number of a file descriptor. 

type 

Access type (see below). 

DESCRIPTION: 

The fdopen function opens a file descriptor obtained from the 
open, dup, or creat function. The read/write indicator is 
set according to the type argument. 

When a file is opened for update, both input and output are 
allowed. 

The type argument consists of all valid combinations of r, w, 
a, +, and b. The argument has these meanings: 

r Open text file for reading only 
w Create text file for writing 
a Append to text file 
r+ Update (read/write) text file 
w+ Create text file for update (read/write) 
a+ Append (read/write) at end of text file. 

RELATED FUNCTIONS: 

fclose, fopen, freopen, open. 

4-70 JfH07-01 



File status inquiry -- check for end of file. 

SYNTAX: 

# include <stdio.h> 

int feof (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The feof function returns nonzero when EOF is read on the 
named input file; _otherwise, it returns zero. 

feof 

The feof function is a macrocall; it cannot be redeclared. 

RELATED FUNCTIONS: 

clearerr, ferror, fileno, fopen, open. 

4-71 HH07-01 



ferror 

ferror 

File status inquiry -- check for I/O error. 

SYNTAX: 

# include <stdio.h> 

int ferror (file) 
FILE *file 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The ferror function returns a nonzero value when an error has 
occurred while reading or writing the named file; otherwise, 
it returns zero. Unless cleared by the clearerr function, 
the error indication remains until the file is closed. 

The ferror function is a macrocall; it cannot be redeclared. 

RELATED FUNCTIONS: 

clearerr, feof, fileno, fopen, open. 

4-72 HH07-01 



fflush 

Flush a f i le-. 

SYNTAX: 

# include <stdio.h> 

int fflush (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

Mush 

,The fflush function causes any buffered data for the named 
output file to be written to that file. 

RETURN VALUE: 

This function returns 0 for success; and EOF if any errors 
were detected. 

RELATED FUNCTIONS: 

close, fclose, fopen, setbuf. 

4-73 HH07-01 



fgetc· 

fgetc 

Get character from file. 

SYNTAX: 

# include <stdio.h> 

int fgetc (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The fgetc function returns the next character from the named 
input file. The fgetc function behaves like getc, but is a 
genuine function, not a macrocall; it can therefore be used 
as an argument. The fgetc macrocall runs more slowly than 
getc, but takes less space per invocation. 

DIAGNOSTICS: 

This function returns the value -1 at end of file. 

RELATED FUNCTIONS: 

ferror, fopen, fread, getc, getchar, gets, getw, putc, 
scanf. 

4-14 HH01 .... 01 



fgets 

Gets characters from a file. 

SYNTAX: 

# include <stdio.h> 

char *fgets (s, n, file) 
char *s; 
int n; 
FILE *file; 

ARGUMENTS: 

s 

"(gets 

Pointer to string of characters returned, including a 
newline character~ 

n 

Number of characters to get -1. 

fil.e 

File pathname. 

DESCRIPTION: 

The fgets function reads n-lcharacters, or up to a newline 
character (which is retained), whichever comes first, from 
the file into the string s. The last character read into s 
is followed by a null character. 

RETURN VALUE: 

The fgets function returns its first argument. 

DIAGNOSTICS: 

The fgets function returns the constant pointer NULL upon the 
end of file or on an error. 

NOTE 

The fgets function retains in string s a newline 
character that ends input. 

RELATED FUNCTIONS: 

ferror, fopen, fread, getc, gets, puts, scan. 

4-75 HH07-01 



tileno 

fileno 

File status inquiry -- get file descriptor. 

SYNTAX: 

# include <stdio.h> 

fileno (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathnarne. 

DESCRIPTION: 

The fileno function returns the integer file descriptor 
associated with the file (see open). 

The fileno function is a rnacrocall; it cannot be redeclared. 

RELATED FUNCTIONS: 

clearerr, feof, ferror, fopen, open. 

4-76 HH07-01 



floor 

Floor function. 

SYNTAX: 

double floor (x) 
double Xi 

ARGUMENTS: 

X 

Double-precision value for comparison. 

DESCRIPTION: 

t100r 

The floor function returns the largest integer (as a double­
precision number) not greater than x. 

RELATED FUNCTIONS: 

abs, ceil, fabs, fmod. 

4:-77 HH07-01 



fmod 

Remainder function. 

SYNTAX: 

double fmod (x, y) 
double x, y; 

ARGUMENTS: 

x 

Double-precision value. 

y 

Double-precision value. 

DESCRIPTION: 

The fmod function returns x if y is 0; otherwise, it returns 
the number f with the same sign as x such that x = i*y + f, 
for some integer i, and 0 < f < y. 

RELATED FUNCTIONS: 

abs, ceil, fabs, floor. 

4-78 HH07-01 



fopen 

Open a file. 

SYNTAX: 

# include <stdio.h> 

FILE *fopen (filename, type) 
char *filename, *type; 

ARGUMENTS: 

filename 

File pathname. 

type 

Access type (see below). 

DESCR I PT ION.: 

The fopen function opens the file named by filename and 
associates a file with it. 

i" open 

The fopen function returns a file pointer that identifies the 
file in subsequent operations. 

When a file is opened for update, both input and output are 
allowed. 

The type argument consists of all valid combinations of r, w, 
a, and +. The argument has these meanings: 

r Open text file for reading only 
w Create text file for writing 
a Append to text file 
r+ Update (read/write) text file 
w+ Create text file for update (read/write) 
a+ Append (read/write) at end of text file. 

DIAGNOSTICS: 

The fopen function returns a null pointer if the file cannot 
be accessed.-

RELATED FUNCTIONS: 

fclose, fdopen, f reopen , open. 

4-79 lnI07-01 



fprintf 

Formats output to file. 

SYNTAX: 

# include <stdio.h> 

int fprintf (file, format [, arg} ••• ) 
FILE *file: 
char *format; 

ARGUMENTS: 

file 

Pathname of file to receive output. 

format 

Format string (se~ below). 

arg 

Optional argument to be printed. 

DESCRIPTION: 

The fprintf function places output on the named output file. 
This function converts, formats, and prints its arguments 
under control of the format. The format is a character 
string that contains two types of objects: plain characters, 
which are simply copied to the output file, and conversion 
specifications, each of which results in the fetching bf zero 
or more arguments. The results are undefined if there are 
insufficient arguments for the format. If the format is 
exhausted while arguments remain, the excess arguments are 
simply ignored. 

Each conversion specification is introduced by the percent 
(%) character. After the percent character, the following 
appear in sequence: 

• Zero or more flags, which modify the meaning of the 
conversion specification. 

• An optional decimal digit string specifying a mInImum 
field width. If the converted value has fewer char­
acters than the field width, it is blank-padded on the 
left (or right, if the left-adjustment flag has been 
given) to make up the field width. -

4-80 HH07-01 



fprintf 

• A precIsIon that gives the minimum number of digits to 
appear for the d, 0, u, x, or X conversions, the 
number of digits to appear after the decimal poirt for 
the e and f conversions, the maximum number of 
significant digits for the g conversion, the maximum 
number of characters to be printed from a string in s 
conversion, or the minimum number of digits to appear 
in the word address portion of a converted pointer for 
the p or P conversions. The precision takes the form 
of a period (.) followed by a decimal digit string; a 
null digit string is treated as zero. 

• An optional 1 specifying that a following d, 0, u, x, 
or X conversion character applies to a long integer 
argument. 

• A character that indicates the type of conversion to 
be applied. 

A field width or precision can be indicated by an asterisk 
(*) instead of a digit string. In this case, an integer 
argument supplies the field width or precision. The argument 
that is actually converted is not fetched until the conver­
sion letter is seen, so the arguments specifying field width 
or precision must _appear before thea.rgument (if any) to be 
converted. 

The flag characters and their meanings are: 

+ 

blank 

The result of the conversion is left-justified 
within the field. 

The result of a signed conversion always 
begins with a sign (+ or -). 

If the first character of a signed conversion 
is not a sign, a blank precedes the result. 
This implies that if the blank and + flags 
both appear, the blank flag is ignored. The p 
andP conversions ignore this flag. 

-t-81 HH07-01 



fprintf 

# The value is to be converted to an "alternate 
form." For c, d, s, and u conversions, the 
flag has no effect. For 0 conversions, it 
increases the precision to force the first 
digit of the result to be a zero. For x (X) 
conversion, a nonzero result will have Ox (OX) 
preceding it. For e, E, f, g, and G conver­
sions, the result always contains a decimal 
point, even if no digits follow the point 
(normally, a decimal point appears in the 
result of these conversions only if a digit 
follows it). For g and G conversions, trail­
ing zeros are not removed from the result (as 
they normally are). For p or P conversions, 
the word-address and character-address por­
tions of the converted pointer will each be 
preceded by Ox or OX, except when the 
portion's value is zero. 

The conversion characters and their meanings are: 

d,o,u,x,X The integer argument is converted to signed 
decimal, unsigned octal, unsigned decimal, or 
unsigned hexadecimal notation (x and X), 
respectively; the letters abcdef are used for 
x conversion and the letters ABCDEF for X 
conversion. The precision specifies the 
minimum number of digits to appear: if the 
value being converted can be represented in 
fewer digits, it is expanded with leading 
zeros. The default precision is 1. The 
result of converting a a value with a 
precision of 0 is a null string (unless the 
conversion is 0, x, or X and the # flag is 
present). 

f The float or double argument is converted to 
decimal notation in the style "[-]ddd.ddd", 
where the number of digits after the decimal 
point is equal to the precision specification. 
If the precision is missing, six digits are 
output: if the precision is explicitly 0, no 
decimal point appears. 

4...;82 HH07-01 



e,E 

g, G 

c 

s 

% 

fprintf 

The float or double argument is converted in 
the style "[-]d.ddde+dd", where there is one 
digit before the decimal point and the nurr.ber 
of digits after it is equal to the precision; 
when the precision is missing, six digits are 
produced; if the precision is 0, no decimal 
point appears. The E format code produces a 
nwtiber with E instead of e introducing the 
exponent. The exponent always contains 
exactly two digits. 

The float or double argument is printed in 
style e (or in style E in the case of a G 
format code), with the precision specifying 
the number of significant digits. The style 
used depends on the value converted; style e 
is used only if the exponent resulting from 
the conversion is less than -4 or greater than 
the precision. Trailing zeros are removed 
from the result; a decimal point appears only 
if it is followed by a digit. 

The character argument is printed. 

The argument is taken to be a string 
(character pointer) and characters from the 
string are printed until a null character (\0) 
is encountered or the number of characters 
indicated by the precision specification is 
reached •. If the precision is missing, it is 
taken to be infinite, so all characters up to 
the first null character are printed. 

Print a %; no argument is converted. 

In no case does a nonexistent or small field width cause 
truncation of a field; if the result of a conversion is wider 
than the field width, the field is simply expanded to contain 
the conversion result. Characters generated by fprintf are 
printed as if putchar had been called. 

RETURN VALUE: 

This function returns the number of characters transmitted. 

DIAGNOSTICS: 

If this function encounters an invalid string pointer, it 
behaves as if it has encountered a valid pointer to a null 
string. An error condition is indicated to the calling 
function by a negative return value. 

4-83 HH07-0l 



fprintf 

EXAMPLES: 

To print a date and time in the form "Sunday, July 3, 10:02", 
where weekday and month are pointers to null-terminated 
strings: 

fprintf(temp,"%s, %s %d, %.2d:%.2d",weekday,month,day,hour,min): 

To print pi to five decimal places: 

fprintf(output,"pi = %.5f", 4*atan(1.0»: , 

RELATED FUNCTIONS: 

ecvt, printf, putc, scanf, sprintf. 

4-84 HH07-01 



fputc 

Puts a character on a file. 

SYNTAX: 

# include <stdio.h> 

fputc (c, file) 
FILE *file; 

ARGUMENTS: 

c 

Character to write to file. 

file 

File pathname. 

DESCRIPTION: 

fputc 

The fputc function appends the character c to the named 
output file. Unlike putc, it is a genuine function rather 
than a macrocall; it can therefore be used as an argument. 
The fputc function runs more slowly than putc, but takes less 
space per invocation. 

RETURN VALUE: 

The fputc function returns the character written. 

DIAGNOSTICS: 

The fputc function returns the constant EOF when it 
encounters an error. Since this is a good integer, ferror 
should be used to detect putw errors. 

RELATED FUNCTIONS: 

ferror, fopen, fwrite, getc, printf, putc, putchar, puts, 
putw. 

4-85 HH07-01 



fputs 

fputs 

Puts a string on a file. 

SYNTAX: 

# include <stdio.h> 

int fputs (s, file) 
char *s; 
FILE *file; 

ARGUMENTS: 

s 

String to be written to the file. 

file 

File pathname. 

DESCRIPTION: 

The fputs function copies the null-terminated string s to the 
named output file. 

This function does not copy the terminating null character. 

DIAGNOSTICS: 

This function returns EOF if it encounters an error. 

NOTE 

The fputs function does not append a newline 
character. 

RELATED FUNCTIONS: 

ferror, fopen, fwrite, gets, printf, putc, puts. 

4-86 HH07-0l 



fread 

Buffered input. 

SYNTAX: 

# include <stdio.h> 

fread (buf-ptr, size, nitems, file) 
int size; 
int nitems; 
char *buf-ptr; 
FILE *file; 

ARGUMENTS: 

buf-ptr 

Buffer address pointer. 

size 

Item size in characters. 

nitems 

Number of items to read. 

file 

File pathname. 

DESCRIPTION: 

fread 

The fread function reads, into an array beginning at buf-ptr, 
nitems of size characters each from the named input file. 

RETURN VALUE: 

The fread function returns the number of items actually read. 

RELATED FUNCTIONS: 

fopen, fwrite, getc, gets, printf, put~, puts, read, 
scanf, write. 

4-87 HH07-0l 



free 

Frees heap memory. 

SYNTAX: 

void free (ptr) 
char *ptr; 

ARGUMENTS: 

ptr 

Pointer to a block previously allocated by calloc or 
malloc; this space is made available for further 
allocation. 

DESCRIPTION: 

The malloc and free functions together provide a simple, 
general-purpose memory allocation package. 

DIAGNOSTICS: 

Unspecified results occur if free acts on some random number. 

RELATED FUNCTIONS: 

calloc, malloc, realloc. 

4-88 HH07-01 



freopen 

Reopens a file. 

SYNTAX: 

It include <stdio.h> 

FILE *freopen (filename, type, file) 
char *filename, *type; 
FILE *file; 

ARGUMENTS: 

filename 

New file pathname. 

type 

Access type (see below). 

file 

Old file pathname. 

DESCRIPTION: 

freopen 

The freopen function substitutes the named file in place of 
the open file. It returns the original value of file. The 
original file is closed, regardless of whether the open 
ultimately succeeds. 

The freopen function is used to attach the pre-opened 
constant names stdin, stdout, and stderr to specified files. 

When a file is opened for update, both input and output are 
allowed. 

The type argument consists of all valid combinations of r, w, 
a, and +. The argument has these meanings: 

r Open text file for reading only 
w Create text file for writing 
a Append to text file 
r+ Update (read/write) text file 
w+ Create text file for update (read/write) 
a+ Append (read/write) at end of text file. 

4-89 HH07-01 



freopen 

DIAGNOSTICS: 

The freopen function returns a null pointer if filename 
cannot be accessed~ 

RELATED FUNCTIONS: 

fclose, fdopen, fopen, open. 

4-90 HH07-01 



frexp 

Splits into mantissa and exponent. 

SYNTAX: 

double frexp (value, eptr) 
double value; 
int *eptr; 

ARGUMENTS: 

valu~ 

Double-precision value to be processed. 

eptr 

Pointer to exponent. 

DESCRIPTION: 

frexp 

The frexp function returns the mantissa, x, of the 
double-precision value as a double-precision quantity. The 
magnitude of x is less than 1 and greater than 1/16. It 
stores the exponent at the location pointed to by eptr. The 
exponent is the integer n such that value = x*2n. 

RELATED FUNCTIONS: 

ld.exp, modf. 

4-91 HH07-01 



fscanf 

fscanf 

Formatted input conversion. 

SYNTAX: 

# include <stdio.h> 

fscanf (file, format [, pointer] ••. ) 
FILE *file; 
char *format; 

ARGUMENTS: 

file 

Input file pathname. 

format 

Control string format (see below). 

pointer 

Set of arguments indicating where the converted input 
should be stored. 

DESCRIPTION: 

The fscanf function reads from the named input file. This 
function reads characters, interprets them according to a 
format, and stores the results in its arguments. It requires 
a control string format described below, and an optional set 
of pointer arguments indicating where the converted input 
should be stored. 

The control string usually contains conversion 
specifications, which are used to direct interpretation of 
input sequences. The control string may contain: 

1. Blanks, tabs, or newline characters, which cause 
input to be read up to the next non-white-space 
character. 

2. An ordinary character (not %), which must match the 
next character of the input file. 

3. Conversion specifications, consisting of the 
character %, an optional assignment suppressing 
character *, an optional numerical maximum field 
width, and a conversion character. 

HH07-01 



fscanf 

A conversion specification directs the conversion of the next 
input field; the result is placed in the variable pointed to 
by the corresponding argument, unless assignment suppression 
was indicated by *. An input field is defined as a string of 
nonspace characters; it extends to the next inappropriate 
character or until the field width, if specified, is 
exhausted. 

The conversion character indicates the interpretation of the 
input field; the corresponding pointer argument must usually 
be of a restricted type. The following conversion characters 
are valid: 

% A single % is expected in the input at this point; 
no assignment is done. 

d A decimal integer is expected; the corresponding 
argument should be an integer pointer. 

o An octal integer is expected; the corresponding 
argument should be an integer pointer. 

x A hexadecimal integer is expected; the corresponding 
argument should be an integer pointer. 

s A character string is expected; the corresponding 
argument should be a character pointer pointing to 
an array of characters large enough to accept the 
string and a terminating \0, which is added 
automatically. The input field is terminated by a 
space or newline character. 

c A character is expected; the corresponding argument 
should be a character pointer. The normal skip over 
space characters is suppressed in this case; to read 
the next nonspace character, use %ls. If a field 
width is given, the corresponding argument should 
refer to a character array; the indicated number of 
characters is read. 

e,f A floating-point number is expected; the next field 
is converted accordingly and stored through the 
corresponding argument, which should be a pointer to 
a float. The input format for floating-point 
numbers is an optionally signed string of digits, 
possibly containing a decimal point, followed by an 
optional exponent field consisting of an E or an e, 
followed by an optionally sign~d integer. 

4-93 HH07-01 



fscanf 

[ Indicates a string that is not to be delimited by 
space characters. The left bracket is followed by a 
set of characters and a right bracket; the charac­
ters between the brackets define a set of characters 
making up the string. If the first character is not 
a circumflex (A), the input field consists of all 
characters up to the first character that is not in 
the set between the brackets; if the first character 
after the left bracket is a circumflex, the input 
field consists of all characters up to the first 
character that is in the set of the remaining 
characters between the brackets. The corresponding 
argument must point to a character array. 

The conversion characters d, 0, and x can be capitalized 
and/or preceded by 1 to indicate that a pointer to long 
rather than to int is in the argument list. Similarly, the 
conversion characters e and f may be capitalized and/or 
preceded by 1 to indicate that a pointer to double rather 
than to float is in the argument list. 

The fscanf conversion terminates at EOF, at the end of the 
control string, or when an input character conflicts with the 
control string. In the latter case, the offending character 
is left unread in the input file~ 

RETURN VALUE: 

The fscanf function returns the number of successfully 
matched and assigned input items: this number can be zero in 
the event of an early conflict between an input character and 
the control string. If the input ends before the first 
conflict or conversion, EOF is returned. 

NOTE 

Trailing white space (including a newline character) 
is left unread unless matched in the control string. 

DIAGNOSTICS: 

This function returns EOF at the end of input and a short 
count for missing or illegal data items. 

NOTE 

The success of literal matches and suppressed assign­
ments is not directly determinable. 

4-94 HH07-01 



fscanf 

EXAMPLES: 

The call: 

int i; float x; char name(50); 
fscanf (names, "%d%f%s", &i, &x, name); 

with the input line: 

25 54.32E-l brenda 

assigns to i the value 25, to x the value 5.432, and name 
contains brenda\O. Or: 

int i; float X; char name(50); 
fscanf (data, "%2d%f%*d%(1234567890)", &i, &x, name); 

with input: 

56789 0123 56a72 

assigns 56 to i, 789.0 to X, skip 0123, and places the string 
56\0 in name. The next call to get char returns a. 

RELATED FUNCTIONS: 

atef, getc, printf, scanf, sscanf. 

4-95 HH07-01 



fstat 

fstat 

Get file status. 

SYNTAX: 

# include <types.h> 
# include <stat.h> 

int fstat (fildes, buf) 
int fildes; 
struct stat *buf; 

ARGUMENTS: 

fildes 

File descriptor of the open file. 

buf 

Pointer to a static structure into which information is 
placed concerning the file. 

DESCRIPTION: 

The fstat function obtains information about an open file 
known by the file descriptor fildes, obtained from a 
successful open, creat, or dup function. 

The contents of the structure pointed to by buf include the 
following members: 

ushort 
ino_t 
dev_t 

dev_t 

short 
ushort 
ushort 
off_t 
time_t 
time_t 

st_mode; 
st_ino; 
st_dev; 

st_nlink; 
st uid; 
st=gid; 
st_size; 
st_atime; 
st_mtime; 

/*File mode */ 
/*lnode number (N/A in MOD 400) */ 
/*ID of device containing */ 
/*a directory entry for this file */ 
/*ID of device */ 
/*This entry is defined only for */ 
/*character special or block special 

files */ 
/*Number of links (N/A in MOD 400)*/ 
/*User ID of the file's owner */ 
/*Group ID of the file's group */ 
/*File size in characters (N/A) */ 
/*Time of last access */ 
/*Time of last data modification */ 
/*Times measured in seconds since 

00:00:00 GMT, Jan. 1, 1970 */ 

4-96 HH07-01 



fstat 

The st atime member is the date/time when the file was ~ast 
accessed. It is changed by the functions creat and read. 

The st mtime member is the date/time when the file was ~ast 
modified. It is changed by the functions creat and write9 

The st_ctime member is the date/time when the file was 
created= It is changed by the functions creat, link, unlink, 
and write. 

Information is not available in the members st_ino, st_nlink, 
and st_size. 

The fstat function fails if: 

• The fildes argument is not a valid open file 
descriptor [EBADF]. 

• The buf argument points to an invalid address 
[EFAULT). 

RETURN VALUE: 

Upon successful completion a value of a is returned. 
Otherwise, a value of -1 is returned and errno is set to 
indicate the error. 

RELATED FUNCTIONS: 

creat, link, stat, time, unlink. 

4-97 HH07-01 



fwrite 

fwrite 

Buffered output. 

SYNTAX: 

# include <stdio.h> 

fwrite (buf-ptr, size, nitems, file) 
int size: 
int nitems: 
char *buf-ptr: 
FILE *file: 

ARGUMENTS: 

buf-ptr 

Buffer address pointer. 

size 

Item size in characters. 

nitems 

Number of items to write. 

file 

File pathname. 

DESCRIPTION: 

The fwrite function appends at most nitems of size size 
beginning at buf-ptr to the named output file. It returns 
the number of items actually written. 

RELATED FUNCTIONS: 

fopen, fread, gets, printf, putc, puts, read, scanf, 
write. 

4-98 HH07-01 



Output conversion. 

SYNTAX: 

char *gcvt (value, ndiait, buf) 
double value; 
int ndigit; 
char *buf; 

ARGUMENTS: 

value 

Value to be converted. 

ndigit 

Number of significant digits. 

buf 

Pointer to output string. 

DESCRIPTION: 

gcvt 

The gcvt funct ion converts the ar-gument value to a 
null-terminated string pointed to by buf and returns buf. It 
attempts to produce ndigit significant digits in FORTRAN 
F-format if possible: otherwise it produces output in 
E-format, ready for printing. Trailing zeros are suppressed. 

NOTE 

The return values point to static data whose con­
tents are overwritten by each call. 

RELATED FUNCTIONS: 

ecvt# fcvt, printf. 

4-99 HH07-01 



getc 

Gets character from file. 

SYNTAX: 

# include <stdio.h> 

int getc (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The getc function returns the next character from the buffer 
associated with the named input file. The function obtains a 
new buffer's worth of characters whenever all the characters 
have been returned. 

DIAGNOSTICS: 

This function returns the value -1 when it encounters the end 
of a file. 

NOTE 

Because it is a macrocall, getc treats incorrectly 
a file argument with side effects; for example: 

getc(*f++); 

RELATED FUNCTIONS: 

ferror, fgetc, fopen, fread, getchar, gets, getw, putc, 
scanf. 

4-100 HH07-01 



get char 

Gets character from stdin file. 

S-YNTAX: 

# include <stdio.h> 

int getchar ( ) 

ARGUMENTS: 

None. 

DESCRIPTION: 

getchar 

The getchar function is identical to getc(stdin). This 
function is implemented as a macrocall; it cannot be 
redefined. 

DIAGNOSTICS: 

This function returns the value -1 when it encounters the end 
of a file. 

RELATED FUNCTIONS: 

ferror, fgetc, fopen, fread, getc, gets, getw, putc, 
scanf .. 

4-101 HH07-01 



getc~d 

getcwd 

Get current working directory. 

SYNTAX: 

char *getcwd (buf, size) 
char *buf; 
int size; 

ARGUMENTS: 

buf 

Returned current working directory string. 

size 

Buffer size in characters. 

DESCRIPTION: 

The getcwd function returns a pointer to the null-terminated 
character string of the current working directory. 

The value of the size argument must be at least one character 
longer than the pathname to be returned. Under Multics, the 
maximum length of a directory path is 168 characters. 

If the buf argument is a null pointer, getcwd obtains size 
characters of space using the malloc function. In this case, 
you can use the returned pointer in a subsequent call to the 
free function. 

If the buf argument is not a null pointer, the string is 
placed in buf, and the pointer to buf is returned. 

DIAGNOSTICS: 

If an error occurs, a null pointer is returned. 

4-102 HH07-01 



getenv 

Get environment name. 

SYNTAX: 

char *getenv (name) 
char *name; 

ARGUMENTS: 

name 

Environment name. 

DESCRIPTION: 

getenv 

The getenv function searches the environment list for a 
string of the form name and returns a pointer to that value 
if such a string is present; otherwise, it returns a null 
pointer. 

4-103 HH07-01 



getgid 

getgid 

Get real group ID. 

SYNTAX: 

i nt getgid ( ) 

ARGUMENTS: 

None. 

DESCRIPTION: 

The getgid function returns the real group ID of the calling 
process. 

RELATED FUNCTIONS: 

getuid. 

4-104 HH07-01 



getlogin 

Get login name. 

SYNTAX: 

char *getlogin 

ARGUMENTS: 

None. 

DESCRIPTION: 

\ . 
I , 

getlogin 

The getlogin function returns a pointer to a static string 
containing the login name of the calling process. 

DIAGNOSTICS: 

This function returns a null pointer if the name is not 
found. 

4-105 HH07-0l 



getopt 

getopt 

Get option letter from argument. 

SYNTAX: 

int getopt (argc, argv, optstring) 
int argc; 
char **argv; 
char *optstring; 
extern char *optarg; 
extern int optind; 

ARGUMENTS: 

argc 

Index into *argv. 

argv 

Input string of options. 

optstring 

String of valid options. 

DESCRIPTION: 

The getopt function returns the next option leLLer in argv 
that matches a letter in optstring. The argument optstring 
is a string of recognized option letters; if a letter is 
followed by a colon, the option is expected to have an 
argument that mayor may not be separated from it by white 
space. The pointer optarg is set to point to the start of 
the option argument on return from getopt. 

The getopt function places in optind the argv index of the 
next argument to be processed. Because optind is external, 
it is normally initialized to zero automatically before the 
first call to getopt. 

RETURN VALUE: 

When all options have been processed (that is, up to the 
first nonoption argument), getopt returns EOF. The special 
option minus (-) can be used to delimit the end of the 
options; EOF is returned, and minus (-) is skipped. 

4-106 HH07-01 



get opt 

DIAGNOSTICS: 

The getopt function displays an error message and returns a 
question mark (?) when it encounters an option letter not 
included in optstring. 

EXkl.iPLE: 

The following code fragment shows how one might process the 
arguments for a command that can take the mutually exclusive 
options a and b, and the options f and e, both of which 
require arguments: 

4-107 HH07-01 



getopt 

main (argc, argyl 
int argc; 
char **argv; 
{ 

int c: 
ex'tern int opt ind; 
extern char *optarg; 

. 
while t(c = getopt (argc, argY, "abf:o~"» != EOF) 
switch (c). { 

} 

} 

case "'a lt
': 

if (bfg) 
errfg++:' 

e-lse 

break:· 
case "'b": 

if (afg) 
errfg++; 

else 

brea,k; 
case "f": 

bproc() : 

ifile = optarg: 
break; 

case "0";, 
ofi1e = optarg; 
bufsize = 512; 
break; 

case "?": 
errfg++; 

if (errfg) { 

} 

fprintf (stderr, "usage: ••• "); 
exit; 

for ( ; optind < argc; optind++) { 
if (access (argv[optind], 4»' { 

• 
1 

.0 . 
} 

4 . .:...10B HH07-01 



getpid 

Get process ID. 

SYNTAX: 

getpid ( ) 

ARGUMENTS: 

None. 

DESCRIPTION: 

getpid 

The getpid function returns the process ID of the calling 
process. 

4-109 HH07-01 



gets 

Gets string from stdin file. 

SYNTAX: 

# include <stdio.h> 

char *gets (s) 
char *5; 

ARGUMENTS: 

s 

Pointer to buffer that will hold string. 

DESCRIPTION: 

The gets function reads a string into s from the standard 
input file stdin. The string is terminated by a newline 
character, which is replaced in s by a null character. The 
gets function returns its argument. 

DIAGNOSTICS: 

The gets function returns a null pointer if it encounters the 
end of a file or an error. 

The gets function deletes the newline character 
ending its input. 

RELATED FUNCTIONS: 

ferror, fgets, fopen, fread, getc, puts, scan. 

4-110 HH07-01 



getuid 

Get real user ID. 

SYNTAX: 

int getuid ( ) 

ARGUMENTS: 

None. 

DESCRIPTION: 

getuid 

The getuid function returns the real user ID of the calling 
process. 

RELATED FUNCTIONS: 

getgid. 

4-111 HH07-01 



getw 

Gets word from file. 

SYNTAX: 

# include <stdio.h> 

int getw (file) 
FILE *file; 

ARGUMENTS: 

file 

File pathname. 

DESCRIPTION: 

The getw function returns the next word from the named input 
file. It returns the constant EOF when it encounters the end 
of a file or an error, but since that is a valid integer 
value, feof and ferror should be used to check the success of 
getw. The getw function assumes no special alignment in the 
file. 

DIAGNOSTICS: 

This function returns the value -1 when it encounters the end 
of a file. 

RELATED FUNCTIONS: 

feof, ferror, fgetc, fopen, fread, getc, getchar, gets, 
putc, putw, scanf. 

4-112 HH07 .... 01 



gmtime 

Convert date and time to ASCII. 

SYNTAX: 

struct tm *gmtime (clock) 
long *clock; 

ARGUMENTS: 

clock 

Military time. 

DESCRIPTION: 

gmtime 

The gmtime function returns a pointer to a structure 
containing the components of the time. The gmtime function 
converts directly to Greenwich Mean Time (GMT). 

The structure declaration from the include file is: 

struct tm { 
int tm .... seci 
int tm_mini 
int tm_hour; 
int tm_mday; 
int tm_mon; 
int tm ··ear· -Y , 
int tm_wdaYi 
int tm_ydaYi 
int tm_isdsti 

} ; 

These quantities give the time on a 24-hour clock, day of 
month (1-31), month of year (0-11), day of week (Sunday - 0), 
year - 1900, day of year (0-365), and a flag that is nonzero 
if daylight savings time is in effect. 

The external long variable timezone contains the difference, 
in seconds, between GMT and local standard time (in EST, 
timezone is 5*60*60); the external variable daylight is 
nonzero if, and only if, the standard u.S. daylight savings 
time conversion should be applied. 

4-113 HH07-01 



gmtime 

NOTE 

Th~ return values point to static data whose con­
tents are overwritten by each call. 

RELATED FUNCTIONS: 

asctime, ctime, localtime, time, tzset. 

4-114 HH07-01 



hypot 

Euclidean distance. 

SYNTAX: 

# include <mathoh> 

double hypot (x, y) 
double x, y; 

ARGUMENTS: 

x 

Double-precision value. 

y 

Double-precision value. 

DESCRIPTION: 

The hypot function returns 

(x2 + y2) 

taking precautions against unwarranted overflows. 

RELATED FUNCTIONS: 

sqrt. 

4-115 HH07-01 



ioet) 

ioctl 

Contr()l device. 

SYNTAX: 

ioctl (fildes, request, arg) int fildes, request; 

ARGUMENTS: 

tildes 

A file descriptor. 

request 

One of the request types described bel()w. 

arg 

Either a pointer to the termio structure (see below), or 
an integer, depending on the request type. 

DESCRIPTION: 

NOTE 

The Multics implementation of ioctl is incomplete. 

ioctI performs a variety of functions on stdin, stdout, and 
stderr. Although the mode settings have been translated as 
closely as possible to Multics mode settings, there may be a 
difference in the actual actions taken. It is suggested that 
the user create an intermediate to call the specific I/O 
module with the desired functionality. 

ioctl will fail if one or more of the following are true: 

• fildes is not a valid open file descriptor [EBADF]. 

• fildes is not associated with stdin, stdout and stderr 
[ENOTTY] • 

• Request or arg is not valid [EINVAL]. 

RETURN VALUE: 

If an error has occurred, a value of -1 is returned and errno 
is set to indicate the error. 

4-116 HH07-01 



ioctl 

REQUEST TYPES: 

1. The primary ioctl system calls have the form: 

ioctl (fildes, request, arg) struct termio *arg; 

The requests using this form are: 

TCGETA 

Get th~ parameters associated with the terminal and 
store in the termio structure referenced by arg. 

TCSETA 

Set the parameters associated with the terminal from 
the structure referenced by arg. The change is· 
immediate. 

TCSETAW 

Wait for the output to drain before setting the new 
parameters. Use this form when changing parameters 
that will affect output. 

TCSETAF 

Wait for the output to drain, then flush the input 
queue and set the new parameters. 

2. Additional ioctl calls have the form: 

ioctl (fildes, request, arg) int arg; 

The requests using this form are: 

TCSBRK 

.Wait for the output to drain. If arg is 0, then send 
a break (zero bits for 0.25 seconds.) 

TCFLSH 

If arg is 0, flush the input queue; if 1, flush the 
output queue: if 2, flush both the input and output 
queues. 

4-117 HH07-0l 



ioctl 

SPECIAL CHARACTERS: 

ERASE (tI) 

Erases the preceding character. It will not erase 
beyond the start of a line, as delimited by a NL, 
EOF, or EOL character. 

KILL (@) 

Deletes the entire line, as delimited by a NL, EOF, 
or EOL character. 

EOF (control-d or \F) 

May be used to generate an end-af-file from a 
terminal. - When received, all the characters waiting 
to be read are immediately passed to the program, 
without waiting for a new-line, and the EOF is 
discarded. Thus, if there are no characters waiting, 
which is to say the EOF occurred at the beginning of 
a line, zero characters will be passed back, which is 
the standard end-of-file indication. 

NL (ASCII LF) 

The normal line delimiter. It cannot be changed or 
escaped. 

STOP (Control-s or ASCII DC3) 

Used to temporarily suspend output. It is useful 
with CRT terminals to prevent output from 
disappearing before it can be read. 

START (Control-q or ASCII DCl) 

Used to resume output that has been suspended by a 
STOP character. While output is not suspended, START 
characters are ignored and not read. The start/stop 
characters cannot be changed or escaped. 

4-118 HH07-01 



TERMIO STRUCTURE: 

Several ioctl system calls apply to terminal files. The 
primary calls use the following structure, defined in 
<termio.h>: 

#define NCC 8 
struct termio { 
int c_iflag; /* input modes */ 
int c_oflag; /* output modes */ 
int c_cflag; /* control modes */ 
int c_Iflag; /* local modes */ 

ioct.l 

char c_line; /* line discipline */ 
unsigned char c_cc[NCC] ; /* control chars */ 
} ; 

The special control characters are defined by the array c_cc. 
The relative positions and individual values for each 
function are as follows: 

o 
1 
2 
3 
4 
5 
6 
7 

VINTR 
VQUIT 
VERASE 
VKILL 
VEOF 
VEOL 
reserved 
switch 

# 
@ 

EDT 

The c_iflag field describes the basic terminal input control: 

IGNBRK 
BRKINT 
ISTRIP 

. INLCR 
IUCLC 
IXON 
IXOFF 

0000001 
0000002 
0000040 
0000100 
0001000 
0002000 
0010000 

Ignore break condition. 
Signal quit on break. 
Strip character. 
Map NL to CR-NL on input. 
Map uppercase to lowercase on input. 
Enable start/stop output control~ 
Enable start/stop input control. 

If IGNBRK is set, the break condition (a character framing 
error with data all zeros) is ignored, that is, not put on 
the input queue and therefore not read by any process. 
Otherwise if BRKINT is set, the break condition will generate 
a quit signal. - . 

If ISTRIP is set, valid characters are first stripped to 
7-bits, otherwise all a-bits are processed. 

If INLCR is set, a received NL character is translated into a 
CR character. 

4-119 HH07-01 



ioctl 

If IUCLC is set, a received uppercase alphabetic character is 
translated into the corresponding lowercase character. 

If IXON is set, start/stop output control is enabled. A 
received STOP character will suspend output and a received 
START character will restart output. 

If IXOFF is set, the system will transmit START/STOP 
characters when the input queue is nearly empty/full. 

The initial input control value is defined by the initial 
setting for the terminal type on Multics. 

The c_oflag field specifies the system treatment of output: 

OPOST 
OLCUC 
ONLCR 

0000001 
0000002 
0000004 

Postprocess output. 
Map lowercase to uppercase on output. 
Map NL to CR-NL on output. 

If OPOST is set, output characters are post-processed as 
indicated by the remaining flags, otherwise characters are 
transmitted without change. 

If OLCUC is set, a lowercase alphabetic character is 
transmitted as the corresponding uppercase character. This 
function is often used in conjunction with IUCLC. 

If ONLCR is set, the NL character is transmitted as the CR-NL 
,..'h~ .... ~,..+ .............. ~:; .... 
,",,~~u..&. u.,""",,~.&. .t-'u.~.&.. 

The initial output control value is defined by the initial 
setting for the terminal type on Multics. 

The c_cflag field is unused and set to 0 on Multics. 

The c_lflag field of the argument structure is used by the 
line discipline to control terminal functions: 

ISIG 
I CANON 
ECHO 
ECHONL 

0000001 
0000002 
0000010 
0000100 

Enable signals. 
Canonical input (erase and kill processing). 
Enable echo. 
Echo NL. 

If ISIG is set, each input character is checked against the 
special control characters INTR, and QUIT. If an input 
character matches one of these control characters, the 
function associated with that character is performed. 

4-120 HH07-01 



ioctl 

If ICANON is set, canonical processing is enabled. This 
enables the erase and kill edit functions, and the assem~ly 
of input characters into lines delimited by NL and EOF. If 
ICANON is not set, read requests are satisfied directly :rom 
the input queue. A read will not be satisfied until at least 
MIN characters have been received. This allows fast bursts 
of input to be read efficiently while still allowing single 
character input. 

If ECHO is set, characters are echoed as received. 

When ICANON is set, the following echo functions are 
possible. If ECHONL is set, the NL character will be echoed 
even if ECHO is not set. This is useful for terminals set to 
local echo (so-called half duplex). 

The c_line is unused with a value of '\0' on Multics. 

4-121 HH07-0l 



isalnum 

isalnum 

Character classification (alphanumeric). 

SYNTAX: 

# include <ctype.h> 

int isalnum (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

The isalnum macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The isalnum function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF (see isascii8). The function is nonzero 
if c is an alphanumeric (letter or digit). 

RELATED FUNCTIONS: 

isalpha, 
• - + lspunc ... , 

isascii, 
isspace, 

iscntrl, isdigit, islower, isprint, 
isupper, isxdigit. 

4-122 HH07-01 



isalpha 

Character classification (alphabetic). 

SYNTAX: 

# include <ctype.h> 

int isalpha (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

isalpba 

The isalpha macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, z~ro for false. The isalpha function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a 
letter. 

RELATED FUNCTIONS: 

isalnum, isascll, iscntrl, isdigit, islower, isprint, 
ispunct, isspace i isupper, isxdig it • 

. 4-123 HH07-01 



is ascii 

isascii 

Character classification (7-bit ASCII). 

SYNTAX: 

# include <ctype.h> 

int isascii (e) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

The isascii macrocall classifies 7-bit ASCII-coded integer 
values by table lookup. The macrocall is a predicate 
returning nonzero for true, zero for false. The isascii 
function is defined on all integer values. The function is 
nonzero if c is a 7-bit ASCII character, that is, a 
non-negative integer less than hexadecimal 80. 

RELATED FUNCTIONS: 

isalnum, isalpha, iscntrl, isdigit, islower, isprint, 
ispunct, isspace, isupper, isxdigit. 

4 .... 124 HH07-01 



isatty 

isatty 

Determines if association is to a terminal. 

SYNTAX: 

int isatty (fildes) 

int fildes; 

ARGUMENTS: 

fildes 

File descriptor. 

DESCRIPTION: 

The isatty function returns 1 if fildes is associated with a 
terminal device; otherwise, it returns a O. 

4-125 HH07-01 



iscntrl 

iscntrl 

Character classification (control character). 

SYNTAX: 

# include <ctype.h> 

int iscntrl (c) 
int Ci 

ARGUMENTS: 

C 

Single-character value. 

DESCRIPTION: 

The iscntrl macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The iscntrl function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a 
delete character (hexadecimal 7F) or ordinary control 
character (hexadecimal 0 through 17, 84 through 97, and 9B 
through 9F). 

RELATED FUNCTIONS: 

isalnum, isalpha, isascii, isdigit, islower, isprint, 
ispunct, isspace, isupper, isxdigit. 

4-126 HH07-01 



isdigit 

Character classification (digit). 

SYNTAX: 

# include <ctype.h> 

int isdigit (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

, is digit 

The isdigit macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The isdigit function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a digit 
[0 through 9]. 

RELATED FUNCTIONS: 

isalnum, isalpha, isascii, iscntrl, islower, isprint, 
ispunct, isspace, isupper, isxdigit. 

4-127 HH07-01 



islovver 

islower 

Character classification (lowercase alphabetic). 

SYNTAX: 

# include <ctype.h> 

int islower (c) 
int c: 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

The islower rnacrocall classifies ASCII-coded integer values 
by table lookup. The rnacrocall is a predicate returning 
nonzero for true, zero for false. The islower function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a 
lowercase letter. The lowercase letters are hexadecimal 61 
through 7A, EO through F6, and F8 through FF. 

RELATED FUNCTIONS: 

isalnurn, isalpha, isascii, iscntrl, isdigit, isprint, 
ispunct, isspace, isupper, isxdigit. 

4-128 HH07-0l 



isprint 

Character classification {printing character}. 

SYNTAX: 

# include <ctype.h> 

int isprint {c} 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

isprint 

The isprint macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The isprint function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a 
printing character; that is, hexadecimal 20 (space) through 
7E (tilde), or hexadecimal AO {no-break space} through FF 
{small letter y with diaeresis}. 

RELATED FUNCTIONS: 

isalnum, isalpha, isascii, iscntrl, isdigit, islower, 
ispunct, isspace, isupper, isxdigit. 

4-129 HH07-01 



ispunct 

ispunct 

Character classification (punctuation character). 

SYNTAX: 

# include <ctype.h> 

int ispunct (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

The ispunct macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The ispunct function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a 
punctuation character (neither control nor alphanumeric). 

RELATED FUNCTIONS: 

isalnum, isalpha, isascii, iscntrl, isdigit, islower, 
isprint, isspace, isupper, isxdigit. 

4-130 HH07-01 



isspace 

Character classification (whitespace character). 

SYNTAX: 

# include <ctype.h> 

int isspace (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

isspace 

The isspace macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The isspace function is 
defined only where isascii8 is true and on the single 
non-ASCII value EOF. The function is nonzero if c is a. 
space, tab, carriage return, newline character, vertical tab, 
formfeed, or no-break space. 

RELATED FUNCTIONS: 

isalnum, isalpha, isasci i, iscntrl, isdigi t, islower, 
isprint, ispunct, isupper, isxdigit. 

4-131 HH07-01 



isupper 

isupper 

Character classification (uppercase alphabetic). 

SYNTAX: 

# include <ctype.h> 

int isupper (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

The isupper macrocall classifies ASCII-coded integer values 
by table lookup_ The macrocall is a predicate returning 
nonzero for true, zero for false. The isupper function is 
defined only where isasciiB is true and on the single 
non-ASCII value EOF. The function is nonzero if c is an 
uppercase letter. The uppercase letters are hexadecimal 41 
through 5A, CO through D6, and DB through DE. 

RELATED FUNCTIONS: 

isalnwu, isalpha, isascii, 
isprint, ispunct, isspace, 

4-132 

scntrl, isdigit, islower, 
sxdigit. 

HH07-01 



isxdigit 

Character classification (hexadecimal). 

SYNTAX: 

# include <ctype.h> 

int isxdigit (c) 
int c; 

ARGUMENTS: 

c 

Single-character value. 

DESCRIPTION: 

isxdigit 

The isxdigit macrocall classifies ASCII-coded integer values 
by table lookup. The macrocall is a predicate returning 
nonzero for true, zero for false. The isxdigit function is 
defined only where isasciiS is true and on the single 
non-ASCII value EOF (see isasciiS). The function is nonzero 
if c is a hexadecimal digit ([0 through 91, [A through Fl, or 
[a through fl). 

RELATED FUNCTIONS: 

isalnum, isalpha, isasci i, iscntrl, isdigi t, islower, 
isprint, ispunct, isspace, isupper. 

4-133 HH07-01 



kill 

kill 

Sends a signal to a process. 

SYNTAX: 

int kill (pid, sig) 
int pid, sig; 

ARGUMENTS: 

pid 

Process ID to be signaled (ignored). 

sig 

Signal to be sent. 

DESCRIPTION: 

The kill function signals the passed signal to the current 
process according to actions specified by any previous calls 
to signal. Any signals not defined cause a -1 to be 
returned. The process id is ignored. 

RELATED FUNCTIONS: 

signal. 

4-134 HH07-01 



ldexp 

Exponential function. 

SYNTAX: 

double ldexp (value, exp) 
double value; 
int exp: 

ARGUMENTS: 

value 

Double-precision value. 

exp 

Exponent. 

DESCRIPTION: 

The ldexp function returns the quantity value*2exp. 

RELATED FUNCTIONS: 

frexp, modf. 

4:-135 

Idexp 

HH07-01 



link 

Link to a file. 

SYNTAX: 

int link (pathl, path2) 
char *pathl, *path2; 

ARGUMENTS: 

pathl 

Pathname of an existing file. 

path2 

Pathname of the new directory entry to be created. 

DESCRIPTION: 

The link function creates a new link (directory entry) for an 
existing file. 

The link function fails and no link is created if: 

• A component of either path prefix is not a directory 
[ENOTDIR) • 

• A component of either path prefix does not exist 
[ENOENT] • 

• A component of either path prefix denies search access 
[EACCES] • 

• The file named by pathl does not exist [ENOENT]. 

• The link named by path2 exists [EEXIST) • 

• Pointer path2 points to a null pathname [ENOENT]. 

• The requested link requires writing in a directory 
without write access [EACCES). 

4-136 HH07-01 



link 

RETURN VALUE: 

Upon successful completion, a value of 0 is returned. 
Otherwise, a value of -1 is returned and the variable errno 
is set to indicate the error. 

RELATED FUNCTIONS: 

unlink. 

4-137 HH07-01 



localtime 

localtime 

Convert date and time to ASCII. 

SYNTAX: 

# include <time.h> 

struct tm *localtime (clock) 
long *clock; 

ARGUMENTS: 

clock 

Long integer pointer to the time in seconds since Jan. 1, 
1970 (such as returned by time). 

DESCRIPTION: 

The localtime function returns a pointer to a structure 
containing the components of the time. The localtime 
function corrects for the time zone and possible daylight 
savings time. 

The structure declaration from the include file is: 

struct tm { 
int tm_sec: 
int tm_min; 
int tm_hour: 
int tm_mday: 
int tm_mon: 
int tm_year: 
int tm_wday: 
int tm_yday: 
int tm_isdst: 

} : 

These quantities give the time on a 24-hour clock, day of 
month (1-31), month of year (0-11), day of week (Sunday - 0), 
year - 1900, day of year (0-365), and a flag that is nonzero 
if daylight savings time is in effect. 

The external long variable timezone contains the difference, 
in seconds, between GMT and local standard time (in EST, 
timezone is 5*60*60): the external variable daylight is 
nonzero if and only if the standard U.S. daylight savings 
time conversion should be applied. 

4-138 HH07-01 



NOTE 

The return values point to static data whose con­
tents are overwritten by each call. 

RELATED FUNCTIONS: 

asctime, ctime, gmtime, time, tzset. 

4-139 

localtime 

HH07~01 



log 

Natural logarithm function. 

SYNTAX: 

# include <math.h> 

double log (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

The log function returns the natural logarithm of x. X must 
be positive. 

DIAGNOSTICS: 

The log function returns a huge negative value and sets errno 
to EDOM when x is nonpositive. 

RELATED FUNCTIONS: 

4-140 HH07-01 



10910 

Common logarithm function. 

SYNTAX: 

# include <math.h> 

double 10glO (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

loglO 

The 10glO function returns the common logarithm of x. X must 
be positive. 

DIAGNOSTICS: 

The log function returns a huge negative value and sets errno 
to EDOM when x is nonpositive. 

RELATED FUNCTIONS: 

exp, hypot, log, pow, sinh, sqrt. 

4-141 HH07-01 



longjmp 

longjmp 

Non-local goto. 

SYNTAX: 

# include <setjmp.h> 

void longjmp (env, val) 
jmp_buf env: 
int val; 

ARGUMENTS: 

env 

Pointer to a label structure set by a previous call to 
setjmp. 

val 

Value to be returned. 

DESCRIPTION: 

The longjmp function restores the environment saved by 
most recent call to setjmp having env as its argument. 
then returns in such a way that execution continues as 
call to setjmp had returned with the value val instead 

the 
It 

if the 
of 

.,'"'~,.... I ~re .:,.. ~1-..,.,. ......... "..,.". •• .: .... '\.... .... \... ..... 4_ ... ___ .a... ___ r ... ___ - _. _._- - \ 
""''I;;~V \U.;) .I..;) L.UC \".Qi:)C W~l..u. l..UC l..LUC LCI...U1U L1UlIl ~~{.JIIlPJ. Tne 
function that called setjmp must not itself have returned in 
the interim. If longjmp is invoked with a val argument of 
zero, it behaves as if I had been used instead. 

RELATED FUNCTIONS: 

kill, setjmp, signal. 

4-142 HH07-01 



malloc 

Heaps memory allocator. 

SYNTAX: 

char *malloc (size) 
unsigned int size; 

ARGUMENTS: 

size 

Size of the desired memory block in characters. 

DESCRIPTION: 

lLallOC 

The malloc function is part of a general-purpose heap memory 
allocation package. The malloc function returns a character 
pointer to the beginning of a double-word-aligned block of at 
least size characters. Such blocks are suitable for storing 
objects of any type. 

The heap is managed by the C functions malloc, calloc, 
realloc, and free. 

The heap consists of one or more areas~ each consisting of 
one or more segments. Heap areas are expanded, or new areas 
are created, as the need arises. 

DIAGNOSTICS: 

If the heap does not contain enough memory and cannot be 
sufficiently expanded to meet the request, the variable errno 
is set to ENOMEM or ENOSPC and a null char-acter pointer is 
returned. 

RELATED FUNCTIONS: 

calloc, free, realloc. 

4-143 HH07-0l 



memccpy· 

memccpy 

Memory-to-memory copy. 

SYNTAX: 

# include <memory.h> 

unsigned char *memccpy (SI, s2, c, n) 
unsigned char *sl, *S2; 
unsigned char C; 
int n; 

ARGUMENTS: 

Pointer to target memory area (output). 

Pointer to source memory area (input). 

c 

Last character to copy (if found in S2). 

n 

Number of characters to copy. 

DESCRIPTION: 

The memccp¥ function copies characters from memory area s2 
into sl, stopping after the first occurrence of character c 
has been copied, or after n characters have been copied, 
whichever comes first. If n is less than or equal to zero, 
no characters are copied. 

This function operates efficiently on memory areas (arrays of 
characters bounded by a count, not terminated by a null 
character). This function does not check for the overflow of 
any receiving memory area. 

4-144 HH07-0l 



memccpy 

RETURN VALUE: 

This function returns a pointer to the character after the 
copy of c in sl, or (unsigned char *) 0 if c was not found in 
the first n characters of s2. 

NOTE 

This function is declared in the <memory.h> 
header file. 

RELATED FUNCTIONS: 

memchr, memcmp, memcpy, memset, umemchr, umemcmp, 
umemcpy, umemset. 

4-145 HH07-01 



memchr 

memchr 

Locates character in memory. 

SYNTAX: 

# include <memory.h> 

unsigned char *memchr (s, c, n) 
unsigned char *s; 
unsigned char c; 
int n: 

ARGUMENTS: 

s 

Pointer to memory area to check. 

c 

Character to seek. 

n 

Size of memory area in characters. 

DESCRIPTION: 
m\....,...,. '-"" .-... .......... \... .... .& ............. .L. .: ....... ""'""" .... _ ..L. ... _ _ _ _ __ ! _ ..... _ _ .L. _ L '- _ .c! ___ .L. ____________ _ 

.1.11'::: m':::Ul\,;.IIJ. LUU\..LJ.UJI J.':::LUJ.J1i:) a lJUJ.lll.~J. l.U l.U~ J.J.J.:::tl. U~~Ul-l-~ll~~ 

of character c within the first n characters of memory area 
s, or (unsigned char *) 0 if c does not occur. 

This function operates efficiently on memory areas (arrays of 
characters bounded by a count, not terminated by a null 
character). 

NOTE 

This function is declared in the <memory.h> 
header file. 

RELATED FUNCTIONS: 

memccpy, memcmp, memcpy, memset, umemchr, urnemcmp, 
umemcpy, urnemset. 

4-146 HH07-0l 



memcmp 

Memory-to-memory compare. 

SYNTAX: 

# include <memory.h> 

int memcmp (Sl, s2, n) 
unsigned char *sl, *s2; 
int n; 

ARGUMENTS: 

Pointer to first memory area to be compared. 

Pointer to second memory area to be compared. 

n 

Size of memory areas in characters. 

DESCRIPTION: 

memcmp 

The memcmp function compares its arguments, looking at the 
first n characters only. 

This function operates efficiently on memory areas (arrays of 
characters bounded by a count, not terminated by a null 
character). It executes without a stack frame of its own, 
and it makes use of commercial instructions. 

RETURN VALUE: 

This function returns an integer less than, equal to, or 
greater than zero, depending on whether sl is less than, 
equal to, or greater than s2. If n is less than or equal to 
zero, equality is indicated. 

4-147 HH07-01 



memcmp 

NOTES 

1. This function is declared in the <memory.h> 
header file. 

2. The memcmp function uses 8-bit ASCII 
comparisons. Comparison proceeds from left 
to right until an unequal pair of characters 
is found or until all characters have been 
compared without finding an unequal pair. If 
an unequal pair is found, their ordering in 
the 8-bit ASCII code set determines the 
ordering of the two operands. 

RELATED FUNCTIONS: 

memccpy, memchr, memcpy, memset, umemchr, umemcmp, 
umemcpy, umemset. 

4-148 HH07-01 



memcpy 

Memory-to-memory copy. 

SYNTAX: 

# include <memory.h> 

unsigned char *memcpy (Sl, s2, n) 
unsigned char *sl, *s2; 
int n; 

ARGUMENTS: 

Pointer to target memory area (output). 

Pointer to source memory area (input). 

n 

Number of characters to copy_ 

DESCRIPTION: 

memcpy 

The memcpy function copies n characters from memory area s2 
to sl. 

This function operates efficiently on memory areas (arrays of 
characters bounded by a count, not terminated by a null 
character). This function does not check for the overflow of 
any receiving memory area. It executes without a stack frame 
of its own. 

RETURN VALUE: 

This function returns sl. 

NOTES 

1. This function is declared in the <memory.h> 
header file. 

2. The memcpy function produces unspecified 
results if the memory areas overlap but are 
not identical. 

4-149 HH07-01 



memset 

memset 

Initializes memory. 

SYNTAX: 

# include <memory.h> 

unsigned char *memset (s, c, n) 
unsigned char *s; 
unsigned char c; 
int n; 

ARGUMENTS: 

s 

Pointer to memory area to initialize. 

c 

Character to fill memory area. 

n 

Size of memory area in characters. 

DESCRIPTION: 

The memset function sets the first n characters in memory 
area s to the value of character c. If n is less than or 
equal to zero, no characters are set. 

This function operates efficiently on memory areas (arrays of 
characters bounded by a count, not terminated by a null 
character). This function does not check for the overflow of 
any receIvIng memory area. It executes without a stack frame 
of its own, and it makes use of commercial instructions. 

RETURN VALUE: 

This function returns *s. 

NOTE 

This function is declared in the <memory.h> 
header file. 

4-150 HH07-01 



mktemp 

Makes a unique file name. 

SYNTAX: 

char *mktemp (template) 
char *template: 

ARGUMENTS: 

template 

Template character string plus six trailing xs. 

DESCRIPTION: 

mktemp 

The mktemp function replaces template by a unique file name, 
and returns the address of the template. The template should 
look like a file name with six trailing Xs, which will be 
replaced with a unique string. The letter is chosen so that 
the resulting name does not duplicate an existing file. 

NOTE 

It is possible to run out of letters. 

RELATED FUNCTIONS: 

getpid. 

4-151 HH07-01 



·modf 

Return fraction part of value. 

SYNTAX: 

double modf (value, iptr) 
double value, *iptr; 

ARGUMENTS: 

value 

Double-precision value. 

iptr 

Pointer to integer part of value. 

DESCRIPTION: 

The modf function returns the signed fractional part of value 
and stores the integer part indirectly, through iptr. 

RELATED FUNCTIONS: 

frexp, ldexp. 

4-152 HH07-01 



Opens for reading or writing. 

SYNTAX: 

# include <stdio.h> 

int open (path, of lag) 
char *path; 
int of lag; 

ARGUMENTS: 

path 

Pathname of file to open. 

of lag 

Access flag (see below). 

DESCRIPTION: 

open 

The open function opens a file descriptor for the named file 
and sets the file status flags according to the value of 
of lag. The path pointer refers to a pathname naming a file. 
Of lag values are constructed by performing a logical OR 
operation on flags from the following list: 

o RDONLY 

O_WRONLY 

o CREAT 

Open for reading only. 

Open for writing only. 

Open for reading and writing. 

Create a new file. If the file already 
exists, this flag has no effect. 

Only meaningful in combination with O_CREAT; 
these flags together specify that the file 
must not already exist. 

The file pointer (used to mark the current position within 
the file) is set to the beginning of the file. 

This function also works with dynamic and device files. To 
open an interactive device file (such as a terminal), use the 
O_RDWR flag; to open a noninteractive device file (such as a 
printer), use O_RDONLY or O_WRONLY, as appropriate. 

4-153 HH07-01 



open 

No process can have more than 20 file descriptors open 
simultaneously. 

The open function does not allocate a buffer until it is 
needed. 

RETURN VALUE: 

Upon successful completion, a file descriptor (a nonnegative 
integer) is returned. Otherwise, a value of -1 is returned 
and the variable errno is set to indicate the error returned 
from Multics. 

RELATED FUNCTIONS: 

close, creat, dup, fcntl, read, write. 

4-154 HH07-01 



perror 

System error messages. 

SYNTAX: 

void perror (s) 
char *s; 

extern int errno; 

extern cahr *sys_errlist[ ]; 

extern int sys_nerr; 

ARGUMENTS: 

s 

A pointer to a message string. 

DESCRIPTION: 

perror 

Perror produces a message on the standard error output, 
describing the last error encountered during a call to a 
system or library function. The argument string s is printed 
first, then the message and a new-line. To be of most use, 
the argument string should include the name of the program 
that incurred the error. The error number is taken from the 
external variable errno, which is set when errors occur but 
not cleared when non-erroneous calls are made. 

To simplify variant formatting of messages, the array of 
message strings sys_errlist is provided; errno can be used as 
an index in this table to get the message string without the 
new-line. Sys_nerr is the largest number provided for in the 
table; it should be checked because new error codes may be 
added to the system before they are added to the table. 

4-155 HH07-01 



pow 

Power function. 

SYNTAX: 

# include <math.h> 

double pow (x, y) 
double x, y; 

ARGUMENTS: 

x, y 

Double-precision values. 

DESCRIPTION: 

The pow function returns xY. The values of x and y cannot 
both be zero. If x is less than or equal to zero, y must be 
an integer. 

DIAGNOSTICS: 

The pow function returns a huge value when the correct value 
would overflow. A truly outrageous argument can also result 
in errno being set to ERANGE. 

The DOW function returns a hUQe neaative value and sets errno 
to EDOM when x is nonpositive-and y is not an integer, or 
when x and yare both zero. 

RELATED FUNCTIONS: 

exp, hypot, log, sinh, sqrt. 

4-156 HH07-01 



printf 

Formats output. 

SYNTAX: 

# include <stdio.h> 

int printf (format [, arg] ••• ) 
char *format; 

ARGUMENTS: 

format 

Format string. 

arg 

Optional argument to be printed. 

DESCRIPTION: 

printf 

The printf function writes output to the user-out file.. It 
is equivalent to a call to fprintf with the argument stdout 
inserted before the arguments to fprintf. 

For more information on this function, refer to the 
description of fprint. 

RELATED FUNCTIONS: 

ecvt, fprintf, putc, scanf, sprintf. 

4-157 HH07-01 



putc 

Puts a character on a file. 

SYNTAX: 

# include <stdio.h> 

int putc (c, file) 
char c; 
FILE *file; 

ARGUMENTS: 

c 

Character to be appended to the file. 

file 

File pathname. 

DESCRIPTION: 

The putc function appends the character c to the buffer 
associated with the named output file, writing the buffer 
whenever it is full. 

RETURN VALUE: 

The putc function returns the character appended. 

DIAGNOSTICS: 

This function returns the constant EOF when it encounters an 
error. Since this is a good integer, ferror should be used 
to detect putw errors. 

NOTE 

Because it is a macrocall, putc treats incorrectly 
a file argument with side effects, for example, 
pu t c ( c, * f + + ); • 

RELATED FUNCTIONS: 

ferror, fopen, fputc, fwrite, getc, printf, putchar, 
puts, putw. 

4-158 HH07-01 



putchar 

Puts character on stdout file. 

SYNTAX: 

# include <stdio.h> 

putchar (c) 

ARGUMENTS: 

c 

Character to be appended to the file. 

DESCRIPTION: 

putchar 

The putchar(c) function is defined as putc(c, stdout). 

DIAGNOSTICS: 

This function returns the constant EOF when it encounters an 
error. Since this is a good integer, ferror should be used 
·to detect putw errors. 

RELATED FUNCTIONS: 

ferror, fopen, fputc, fwrite, getc, printf, putc, puts, 
putw. 

4-159 HH07-01 



puts 

Puts string on stdout file. 

SYNTAX: 

# include <stdio.h> 

int puts (s) 
char *s; 

ARGUMENTS: 

s 

String to be written to the file. 

DESCRIPTION: 

The puts function copies the null-terminated string s to the 
user-out file and appends a newline character. 

This function does not copy the terminating null character. 

DIAGNOSTICS: 

This function returns EOF on error. 

NOTE 

The puts function appends a newline character. 

RELATED FUNCTIONS: 

ferror, fflush, fopen, fputs, fwrite, gets, printf, putc. 

4-160 HH07-01 



Puts a word on a file. 

SYNTAX: 

# include <stdio.h> 

putw (w, file) 
int Wi 
FILE *filei 

ARGUMENTS: 

w 

Integer to be written to the file. 

file 

File pathname. 

DESCRIPTION: 

putw 

.The putw function appends the integer w to the output file. 
The putw function neither assumes nor causes special 
alignment in the file. 

DIAGNOSTICS: 

This function returns the constant EOF when it encounters an 
error. Since this is a good integer, ferror should be used 
to detect putw errors. 

RELATED FUNCTIONS: 

ferror, fopen, fputc, fwrite, getc, printf, putc, 
putchar, puts. 

4-161 HH07-01 



rand 

Generate random numbers. 

SYNTAX: 

iht rand() 

ARGUMENTS: 

None. 

DESCRIPTION: 

The rand function uses a multi~licative congruential random 
number generator with period 2 2 to return successive 
pseudorandom numbers in the range from 0 to 215 -1. 

RELATED FUNCTIONS: 

srand. 

4-162 HH07-01 



Reads from a file. 

SYNTAX: 

int read (fildes, buf, nchar) 
int fildes; 
char *buf: 
unsigned nchar; 

ARGUMENTS: 

fildes 

read 

File descriptor obtained from a creat, open, dup, fcntl, 
or pipe function call. 

buf 

Pointer to buffer. 

nchar 

Number of characters to read. 

DESCRIPTION: 

The read function attempts to read nchar characters from the 
file associated with fildes into the buffer pointed to by 
buf. 

Text file end-of-file processing is compatible with a UNIX 
operating system. 

The read function does not allocate a buffer until it is 
needed. 

RETURN VALUE: 

Upon successful completion, a nonnegative integer is returned 
indicating the number of charac~ers actually read and placed 
in the buffer. A value of -1 is returned when an end of file 
has been reached. A -1 is returned and the variable errno is 
set to indicate the error. 

RELATED FUNCTIONS: 

creat, fcntl, open. 

4-163 HH07-01 



realloc 

realloc 

Reallocates heap memory. 

SYNTAX: 

char *realloc (ptr, size) 
char *ptr: 
unassigned size: 

ARGUMENTS: 

ptr 

Pointer to memory area to be reallocated. 

size 

New size, in characters. 

DESCRIPTION: 

The realloc function allocates an area of size and copies the 
value of the previous block into the new block for the 
specified size. 

DIAGNOSTICS: 

If the heap does not contain enough memory, and cannot be 
sufficiently expanded to meet the request: the variable errno 
is set to EN OMEN at ENOSPC and a null character pointer is 
returned. When realloc returns a null pointer, the block 
pointed to by ptr may have been destroyed. 

RELATED FUNCTIONS: 

calloc, free, malloc. 

4-164 HH07-01 



Changes data segment space allocation. 

SYNTAX: 

char *sbrk (incr) 
int incr; 

ARGUMENTS: 

incr 

Number of characters to add to brk value. 

DESCRIPTION: 

sbrk has been converted to operate in the same manner as 
malloc. 

sbrk 

4-165 HH07-01 



scanf 

scanf 

Formatted input conversion. 

SYNTAX: 

# include <stdio.h> 

scanf (format [,pointer] ••• ) 
char *format; 

ARGUMENTS: 

format 

Control string format. 

pointer 

Set of arguments indicating where the converted input 
should be stored. 

DESCRIPTION: 

The scanf function reads from the standard input file stdin. 
This function reads characters, interprets them according to 
a format, and stores the results in its arguments. It 
requires a control string format and a set of optional 
pointer arguments indicating where the converted input should 
be stored. 

The scanf function is equivalent to a call to fscanf with the 
argument stdout inserted before the arguments to scanf. 

For more information on this function, refer to the 
description of the fscanf function. 

RELATED FUNCTIONS: 

atof, fscanf, getc, printf, sscanf. 

4-166 HH07-01 



setbuf 

Assign buffering to a file. 

SYNTAX: 

# include <stdio.h> 

setbuf (file, buf) 
FILE *file; 
char *buf; 

ARGUMENTS: 

file 

File pathname. 

buf 

Pointer to buffer address. 

DESCRIPTION: 

setbuf 

The setbuf function is used after a file has been opened but 
before it is read or written. It causes the character array 
buf to be used instead of an automatically allocated buffer~ 

A manifest constant BUFSIZ tells how big an array is needed: 

char buf[BUFSIZ]; 

RELATED FUNCTIONS: 

fopen, getc, putc. 

4-167 HH07-01 



setjmp 

setjmp 

Non-local goto. 

SYNTAX: 

# include <setjmp.h> 

int setjmp (env) 
jmp_buf env; 

ARGUMENTS: 

env 

Pointer to a label structure for later use by longjmp. 

DESCRIPTION: 

The setjrnp function saves a label structure in env for later 
use by longjrnp. 

This routine is useful for dealing with errors and interrupts 
encountered in a low-level subroutine of a program. 

RETURN VALUE: 

This function returns the value zero. 

RELATED FUNCTIONS: 

kill, longjrnp, signal. 

4-168 HH07-01 



signal 

signal 

Specifies what to do upon receipt of a signal. 

SYNTAX: 

# include <signal.h> 

int (*signal (sig, func»() 
int sig; 
int (*func)(); 

ARGUMENTS: 

sig 

Signal to be processed. 

func 

SIG_DFL, SIG_IGN, or a function address (see below). 

DESCRIPTION: 

The signal function allows the calling process to choose one 
of three ways to handle the receipt of a specific signal. 
The sig argument specifies the signal and the fune argwuent 
specifies the choice. 

A signal is generated by some abnormal event, such as a 
Megabus error, receipt of a kill, or your pressing Break. 
Normally, all signals terminate the process. The signal 
function allows a process to ignore a signal or cause an 
interrupt to a specified location. 

The sig argument can be assigned from the following: 

SIGHUP 
SIGINT 
SIGQUIT 
SIGILL 
SIGTRAP 
SIGIOT 
SIGEMT 
SEGFPE 
SIGKILL 
SIGBUS 
SIGSEGV 
SIGSYS 
SIGALRM 

01 
02 
03* 
04* 
05* 
06* 
07* 
08* 
09 
10* 
11* 
12* 
14 

Hangup 
Interrupt 
Quit 
Invalid instruction 
Trace trap (not reset when caught) 
lOT instruction 
EMT instruction 
Floating-point exception 
Kill (cannot be caught or ignored) 
Megabus error 
Segmentation violation 
Invalid argument to function 
Alarm clock 

4-169 HH07-01 



signal 

SIGTERM 
SIGUSRI 
SIGUSR2 
SIGCLD 
SIGPWR 

15 
16 
17 
18 
19 

Software termination signal 
User-defined signal 1 
User-defined signal 2 
Death of a child (see note) 
Power failure recovery (not reset 
when caught) 

The actions prescribed by the sig argument are: 

• SIG DFL -- Pass the signal to the default_error 
handler (refer to Multics Programmer's Reference 
Manual) • 

• SIG_IGN The signal sig is to be ignored: the 
setting of func remains as SIG_IGN. 

• function address -- Upon receipt of the signal sig, 
the receiving process is to execute the signal­
catching function pointed to by func. 

Upon return from the signal-catching function, the 
receiving process resumes from the point where it was 
when the signal was caught. The value of func for a 
caught signal is reset to SIG_DFL unless the catching 
function executes a call to the signal function to set 
it otherwise. 

RETURN VALUE: 

Upon successful comoletion. sianal returns the previous value 
of func for the specified signal sig. Otherwise, a value of 
-1 is returned and the variable errno is set to indicate the 
error. 

DIAGNOSTICS: 

The signal function fails if: 

• The argument sig is an illegal signal number, 
including SIGKILL [EINVAL]. 

If a signal catcher is invoked while a process is executing a 
heap management function, and that signal catcher causes a 
recursive invocation of a heap management function by calling 
(even indirectly) any heap management function, the heap can 
be left in an inconsistent state. The heap can also be left 
in an inconsistent state if such a signal catcher abandons 
the heap management function using a nonlocal goto. The 
default signal catcher does neither of these things. (For 
the purpose of this note, the heap management functions are 
cal1oc, malloc, and free.) 

4-170 HH07-01 



RELATED FUNCTIONS: 

kill, setjrnp. 

4-171 

signal 

HH07-01 



sin 

Sine function. 

SYNTAX: 

# include <math.h> 

double sin (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

The sin function returns the sine of a radian argument. The 
magnitude of the argument should be checked by the caller to 
make sure the result is meaningful. 

RELATED FUNCTIONS: 

acos, asin, atan, atan2, cos, tan. 

4-172 HH07-01 



Hyperbolic sine function. 

SYNTAX: 

# include <math.h> 

double sinh (x) 
double x; 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

sinh 

The sinh function computes the hyperbolic sine function for 
real arguments. 

DIAGNOSTICS: 

The sinh function re-turns a huge value of appropriate sign 
when the correct value would overflow. 

RELATED FUNCTIONS: 

cosh, tanh. 

4-173 HH07-0l 



sleep 

sleep 

Suspend execution for interval. 

SYNTAX: 

unsigned sleep (seconds) 
unsigned seconds: 

ARGUMENTS: 

seconds 

Number of seconds to suspend execution. 

DESCRIPTION: 

The sleep function suspends the current process from 
execution for a specified number of seconds. The actual 
suspension time may be less than that requested for two 
reasons: because scheduled wakeups occur at fixed I-second 
intervals, and because any caught signal terminates the sleep 
following execution of that signal's catching routine. Also, 
the suspension time may be longer than requested by an 
arbitrary amount due to the scheduling of other activity in 
the system. The value returned by sleep is the "unslept" 
amount (the requested time minus the time actually slept) in 
case the caller had an alarm set to go off earlier than the 
end of the requested sleep time, or premature arousal due to 
a caught signal. 

The routine is implemented by setting an alarm signal. The 
previous state of the alarm signal is saved and restored. The 
calling program may have set up an alarm signal before 
calling sleep. If the sleep time exceeds the time until such 
an alarm signal, the process sleeps only until the alarm 
signal would have occurred, and the caller's alarm catch 
routine is executed just before the sleep routine returns. 
If the sleep time is less than the time until such an alarm, 
the prior alarm time is reset to go off at the same time it 
would have without the intervening sleep. 

RELATED FUNCTIONS: 

alarm, signal. 

4-174 HH07-0l 



sprintf 

Formats output. 

SYNTAX: 

# include <stdio.h> 

int sprintf (s, format [, arg] ••• ) 
char *s, format; 

ARGUMENTS: 

format 

Format string. 

arg 

Optional argument to be printed. 

s 

Address of location to begin output. 

DESCRIPTION: 

SPlintf 

The sprintf function places "output," followed by the null 
character (\0) in consecutive characters starting at *s; you 
must ensure that enough storage is available. 

This function is equivalent to a call to fprintf, except that 
the argument s specifies an array into which the generated 
output is written instead of a file. 

For more information on this function, refer to the 
description of printf. 

RELATED FUNCTIONS: 

ecvt, fprintf, printf, putc, scanf. 

4-175 HH07-01 



sqrt 

Square root function. 

SYNTAX: 

# include <math.h> 

double sqrt (x) 
double x; 

ARGUMENTS: 

Double-precision value. 

DESCRIPTION: 

The sqrt function returns the square root of x. X cannot be 
negative. 

DIAGNOSTICS: 

The sqrt function returns zero and sets errno to EDOM when x 
is negative. 

RELATED FUNCTIONS: 

exp, hypot, log, pow, sinh. 

4-176 HH07-01 



srand 

Reset random number generator. 

SYNTAX: 

srand (seed) 
unsigned seed; 

ARGUMENTS: 

seed 

Seed value. 

DESCRIPTION: 

srand 

The srand function reinitializes the random number generator 
function. It can be set to a random starting point by 
calling srand with any argument. 

RELATED FUNCTIONS: 

rand. 

4-177 HH07-01 



sscanf 

sscanf 

Formatted input conversion. 

SYNTAX: 

# include <stdio.h> 

sscanf (s, format [,pointer] ••• ) 
char *s, *format: 

ARGUMENTS: 

s 

Input character string. 

format 

Control string format. 

pointer 

Set of arguments indicating where the converted input 
should be stored. 

DESCRIPTION: 

The sscanf function reads from the character string s. This 
function reads characters, interprets them according to a 
format, and stores the results in its arguments. It requires 
a control string format and a set of optional pointer argu­
ments indicating where the converted input should be stored. 

The sscanf function is equivalent to a call to fscanf, except 
that the argume~t s specifies an array from which input is 
obtained rather than a file. 

For more information on this function, refer to the 
description of fscanf. 

RELATED FUNCTIONS: 

atof, fscanf, getc, printf, scanf. 

4-178 HH07-01 



Get file status. 

SYNTAX: 

# include <types.h> 
# include <stat.h> 

int stat (path, buf) 
char *path: 
struct stat *buf: 

ARGUMENTS: 

path 

stat 

File pathname. Read, write, or execute access to the 
named file is not required, but all directories listed in 
the pathname leading to the file must be searchable. 

buf 

Pointer to a static structure into which information is 
placed concerning the file. 

DESCRIPTION: 

The stat function obtains information about the named file. 

The contents of the structure pointed to by buf include the 
following members: 

ushort 
ino_t 
dev_t 

dev_t 

short 
ushort 
ushort 
off_t 
time_t 
time_t 

st_mode: 
st~ino; 
st_dev; 

st_nlink; 
st uid" - , 
st_gid; 
st_size; 
st_atime; 
st_mtime; 

/*File mode 
/*Inode number (N/A in MOD 400) 
/*10 of device containing 
/*a directory entry for this file 
/*10 of device 

*/ 
*/ 
*/ 
*/ 
*/ 

/*This entry is defined only 
/*character special or block 

for */ 
special 

files 
/*Number of links (N/A in MOD 400) 
/*User ID of the file's owner 
/*Group ID of the file's group 
/*File size in characters (N/A) 
/*Time of last access 
/*Time of last data modification 
/*Time measured in seconds since 

00:00:00 GMT, Jan. 1, 1970 
/*Time of creation 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 

4-179 HH07-01 



stat 

The st atime member is the date/time when the file was last 
accessed. It is changed by the functions creat and read. 

The st mtime member is the date/time when the file was last 
modified. It is changed by the functions creat and write. 

The st ctime member is the date/time when the file was 
created. It is changed by the following functions: creat, 
link, unlink, and write. 

Information is not available in the members st ino, st_nlink, 
and st_size. 

RETURN VALUE: 

Upon successful completion a value of 0 is returned. 
Otherwise, a value of -1 is returned and errno is set to 
indicate the error. 

DIAGNOSTICS: 

The stat function fails if: 

• A component of the path prefix is not a directory 
[ENOTDIR1. 

• The named file does not exist [ENOENT1. 

• Search access is denied for a component of the path 
prefix [EACCES1. 

RELATED FUNCTIONS: 

creat, fstat, link, stat, time, unlink. 

4-180 HH07-01 



strcat 

Concatenates strings. 

SYNTAX: 

char *strcat (SI, S2) 
char *Sl, *s2; 

ARGUMENTS: 

Null-terminated strings. 

DESCRIPTION: 

streat 

The strcat function appends a copy of string s2 to the end of 
string sl. It returns a pointer to the null-terminated 
result. This function does not check for overflow of any 
receiving string. 

NOTE 

All string movement is performed character by 
character, starting at the left. Thus, over­
lapping moves toward the left work as expected, 
but overlapping moves to the right may not. 

RELATED FUNCTIONS: 

strchr, strcmp, strcpy, strcspn, strlen, strncat, 
strncmp, strncpy, strpbrk, strrchr, strspn, strtok. 

4-181 HH07-0l 



strchr 

strchr 

Finds character in string. 

SYNTAX: 

char *strchr (s, c) 
char *s, c: 

ARGUMENTS: 

s 

String to search. 

c 

Character to seek. 

DESCRIPTION: 

The strchr function returns a pointer to the first occurrence 
of character c in string s, or NULL if c does not occur in 
the string. The null character terminating a string is 
considered to be part of the string. 

The strchr function operates on null-terminated strings. 
This function does not check for overflow of any receiving 
string. 

RELATED FUNCTIONS: 

strcat, strcmp, strcpy, strcspn, strlen, strncat, 
strncmp, strncpy, strpbrk, strrchr, strspn, strtok. 

4-182 HH07-01 



strcmp 

Compares strings. 

SYNTAX: 

int strcmp (Sl, S2) 
char *51, *52; 

ARGUMENTS: 

Null-terminated strings. 

DESCRIPTION: 

strcmp 

The strcmp function compares its arguments and returns an 
integer greater than, equal to, or less than zero, according 
to whether sl is lexicographically greater than, equal to, or 
less than s2. This function does not check for overflow of 
any receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcpy, strcspn, strlen, strncat, 
strncmp, strncpy, strpbrk, strrchr, strspn, strtok. 

4-183 HH07-01 



strcpy 

strcpy 

Copies string. 

SYNTAX: 

char *strcpy (Sl, 52) 
char *sl, *s2: 

ARGUMENTS: 

sl, s2 

Null-terminated strings. 

DESCRIPTION: 

The strcpy function copies string s2 to sl, stopping after 
the null character has been moved. It returns sl. This 
function does not check for overflow of any receiving string. 

NOTE 

All string movement is performed character by 
character, starting at the left. Thus, over­
lapping moves toward the left work as expected, 
but over- lapping moves to the right may not. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcspn, strlen, strncat, 
strncmp, strncpy, strpbrk, strrchr, strspn, strtok. 

4-184 HH07-01 



strcspn 

Substring operation. 

SYNTAX: 

int strcspn (SI, S2) 
char *sl, *s2 

ARGUMENTS: 

Null-terminated strings. 

DESCRIPTION: 

strcspn 

The strcspn function returns the length of the initial 
segment of string sl which consists entirely of characters 
not from string s2. This function does not check for 
overflow of any receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strlen, strncat, strncmp, 
strncpy, strpbrk, strrchr, strspn, strtok. 

4-185 HH07-01 



strlen 

strlen 

Finds length of string. 

SYNTAX: 

int strlen (s) 
char *s; 

ARGUMENTS: 

s 

Null-terminated string. 

DESCRIPTION: 

The strlen function returns the number of non-null character 
in s. This function does not check for overflow of any 
receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strncat, 
strncmp, strncpy, strpbrk, strrchr, strspn, strtok. 

4-186 HH07-01 



strncat 

Concatenates portion of string. 

SYNTAX: 

char *strncat (SI, s2, n) 
char *sl, *s2; 
int n: 

ARGUMENTS: 

Null-terminated strings. 

DESCRIPTION: 

stnncat 

The strcat function appends at most n characters of string s2 
to the end of string sl. It returns a pointer to the 
null-terminated result. This function does not check for 
overflow of any receiving string. 

NOTE 

All string movement is performed character by 
character, starting at the left. Thus, over­
lapping moves toward the left work as expected, 
but over- lapping moves to the right may not. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncmp, 
strncpy, strpbrk, strrchr, strspn, strtok. 

4-187 HH07-01 



strncmp 

strncmp 

Compares to portion of string. 

SYNTAX: 

int strncmp (Sl, s2, n) 
char *sl, *s2; 
int n; 

ARGUMENTS: 

Null-terminated strings. 

n 

Number of characters to check. 

DESCRIPTION: 

The strncmp function looks at up to n characters of string sl 
and compares it to argument s2, and returns an integer 
greater than, equal to, or less than zero, according to 
whether sl is lexicographically greater than, equal to, or 
less than s2. This function does not check for overflow of 
any receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, 
strncpy, strpbrk, strrchr, strspn, strtok. 

4-188 HH07-01 



strncpy 

Copies n characters. 

SYNTAX: 

char *strncP¥ (SI, s2, n) 
char *sl; *s2: 
int n; 

ARGUMENTS: 

sl, s2 

Null-terminated strings. 

n 

Number of characters to copy. 

DESCRIPTION: 

stnmcpy 

The strncpy function copies exactly n characters of string s2 
to sl, truncating or null-padding s2: the target might not be 
null-terminated if the length of s2 is n or more. It returns 
sl. This function does not check for overflow of any 
receiving string. 

NOTE 

All· string movement is performed character by 
character, starting at the left. Thus, over­
lapping moves toward the left work as expected, 
but overlapping moves to the right may not. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, 
strncmp, strpbrk, strrchr, strspn, strtok. 

4-189 HH07-01 



strpbrk 

strpbrk 

Locates substring. 

SYNTAX: 

char *strpbrk (51, S2) 
char *sl, *52; 

ARGUMENTS: 

Null-terminated strings. 

DESCRIPTION: 

The strpbrk function returns a pointer to the first 
occurrence in string sl of any character from string s2, or 
NULL if no character from s2 exists in sl. This function 
does not check for overflow of any receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, 
strncmp, strncpy, strrchr, strspn, strtok. 

4-190 HH07-01 



strrchr 

Finds last occurrence of substring. 

SYNTAX: 

char *strrchr (s, c) 
char *5, c; 

ARGUMENTS: 

s 

Null-terminated string. 

c 

Character to check for. 

DESCRIPTION: 

strrchr 

The strrchr function returns a pointer to the last occurrence 
of character c in string s, or NULL if c does not occur in 
the string. The null character terminating a string is 
considered to be part of the string. This function does not 
check for overflow of any receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, 
strncmp, strncpy, strpbrk, strspn, strtok. 

4-191 HH07-01 



strspn 

strspn 

Gets length of substring. 

SYNTAX: 

int strspn (SI, S2) 
char *sl, *s2; 

ARGUMENTS: 

Null-terminated strings. 

DESCRIPTION: 

The strspn function returns the length of the initial segment 
of string sl which consists entirely of characters from 
string s2. This function does not check for overflow of any 
receiving string. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, 
strncmp, strncpy, strpbrk, strrchr, strtok. 

4-192 HHO 7 .... 01 



strtod 

convert string to double-precision number. 

SYNTAX: 

double strtod (str, ptr) 
char *str, **ptr; 

ARGUMENTS: 

str 

A pointer to a null-terminated string. 

ptr 

A pointer to the return value. 

DESCRIPTION: 

s~d 

strtod returns as a double-precision floating-point number 
the value represented by the character string pointed to by 
str. The string is scanned up to the first unrecognized 
character. 

strtod recognizes an optional string of "white-space" 
characters (as defined by isspace in ctype), then an optional 
sign, then a string of digits optionally containing a decimal 
point, then an optional e or E followed by an optional sign 
or space, followed by an integer. 

if the value of ptr is not NULL, a pointer to the character 
terminating the scan is returned in the location pointed to 
byptr. If no number can be formed, *ptr is set to str, and 
zero is returned. 

4-193 HH07-01 



strtok 

strtok 

String token operation. 

SYNTAX: 

char *strtok (sl, s2) 
char *sl, *s2; 

ARGUMENTS: 

sl, s2 

Null-terminated strings. 

DESCRIPTION: 

The strtok function considers the string sl to consist of a 
sequence of zero or more text tokens separated by spans of 
one or more characters from the separator string s2. The 
first call (with pointer sl specified) returns a pointer to 
the first character of the first token, and will have written 
a NULL character into sl immediately following the returned 
token. Subsequent calls with zero for the first argument 
work through the string sl in this way until no tokens 
remain. The separator string s2 may be different from call 
to call. When no token remains in sl, a NULL is returned. 
This function does not check for overflow of any receiving 
string. 

NOTE 

All string movement is performed character by 
.character, starting at the left. Thus, over­
lapping moves toward the left work as expected, 
but overlapping moves to the right may not. 

RELATED FUNCTIONS: 

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,· 
strncmp, strncpy, strpbrk, strrchr, strspn. 

4-194 HH01-01 



strtol 

convert string to integer. 

SYNTAX: 

long strtol 
char *str 
int base; 

(str, prt, base) 
**ptr; 

ARGUMENTS: 

str 

A pointer to a character string. 

ptr 

A pointer to a return value. 

base 

Specifies the conversion base. 

DESCRIPTION: 

strtDI 

strtol returns as a long integer the value represented by the 
character string pointed to by str. The string is scanned up 
to the first character inconsistent with the base. Leading 
"white-space" characters (as defined by isspace in ctype) are 
ignored. 

If the value of ptr is not NULL, a pointer to the character 
terminating the scan is returned in the location pointed to 
byptr. If no integer can be formed, that location is set to 
str, and zero is returned. 

If base is positive (and not greater than 36), it is used as 
the base for conversion. After an optional leading sign, 
leading zeros are ignored, and "Ox" or "OX" is ignored if 
base is 16. 

If base is zero, the string itself determines the base 
thusly: after an optional leading sign a leading zero 
indicates octal conversion, and a leading "Ox" or "OX" 
hexadecimal conversion. Otherwise, decimal conversion is 
used. 

Truncation from long to int can, of course, take place upon 
assignment or by ,an explicit cast. 

4-195 HH07-01 



swab 

Swap bytes. 

SYNTAX: 

swab (fr, to, nbytes) 
char *fr, *to; 
int nbytes; 

ARGUMENTS: 

fr 

Pointer to memory area from which bytes are taken. 

to 

Pointer to memory area in which bytes are placed. 

nbytes 

Number of bytes to move; argument should be an even 
number. 

DESCRIPTION: 

The swab function copies nbytes bytes pointed to by fr to the 
position specified by to, exchanging adjacent even and odd 
bytes. 

This function is useful on machines where strings of 
characters are stored from right to left within words and 
from left to right from word to word, and where words are two 
characters wide. 

4-196 HH07-01 



system 

Issues a Multics command. 

SYNTAX: 

# include <stdio.h> 

int system (string) 
char *string; 

ARGUMENTS: 

string 

Command line. 

DESCRIPTION: 

system: 

The system function causes the string to be given to Multics 
as input as if the string had been typed as a command at a 
terminal. The current process waits until the command has 
completed, then returns the exit status of the command. 

DIAGNOSTICS: 

An exit status return of -1 is returned if the command 
processor could not be called successfully. 

4-197 HH07-01 



sys_errlist 

System error messages. 

SYNTAX: 

char *sys_errlist []: 

ARGUMENTS: 

None. 

DESCRIPTION: 

To simplify variant formatting of error messages, the vector 
of message strings sys_errlist is provided: the variable 
errno can be used as an index in this table to get the 
message string without the newline character. The variable 
sys_nerr is the largest message number provided for in the 
table; it should be checked because new error codes may be 
added to the system before they are added to the table. 

RELATED FUNCTIONS: 

errno, perror, sys_nerr • 

• ,nn 
"-~!JO 

'H11:1'\ "'1 1'\, run" I-V~ 



Number of largest system error message. 

SYNTAX: 

int sys_nerr; 
char *sys_errlist 

ARGUMENTS: 

None. 

DESCRIPTION: 

r , a 
L J , 

sys_nerr 

To simplify variant formatting of messages, the vector of 
message strings sys_errlist is provided; the variable errno 
can be used as an index in this table to get the message 
string without the newline character. The variable sys_nerr 
is the largest message number provided for in the table; it 
should be checked because new error codes may be added to the 
system before they are added to the table. 

RELATED FUNCTIONS: 

errno, perror, sys_errlist. 

4-199 HH07-01 



tan 

Tangent function. 

SYNTAX: 

# include <math.h> 

double tan (x) 
double x: 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

The tan function returns the tangent of a radian argument. 
The caller should check the magnitude of the argument to make 
sure the result is meaningful. 

RELATED FUNCTIONS: 

acos, asin, atan, atan2, cos, sin. 

4-200 HH07-01 



Hyperbolic tangent function. 

SYNTAX: 

# include <math.h> 

double tanh (x) 
double X; 

ARGUMENTS: 

x 

Double-precision value. 

DESCRIPTION: 

tanh 

The tanh function computes the hyperbolic tangent function 
for real arguments. 

RELATED FUNCTIONS: 

cosh, sinh. 

4-201 HH07-0l 



time 

Gets time. 

SYNTAX: 

long time «long *) 0) 

long time (tloc) 
long *tloc; 

ARGUMENTS: 

tloc 

Pointer to memory area in which result is returned. 

DESCRIPTION: 

The time function returns the value of time in seconds since 
00:00:00 GMT, January 1, 1970. 

If tloc is not null, the return value is also stored in the 
location to which tloc points. 

RETURN VALUE: 

Upon successful completion, time returns the value of time. 
Otherwise, a value of -1 is returned, and the variable errno 
is set to indicate the error. 

DIAGNOSTICS: 

The time function fails if tloc points to an invalid address 
[EFAULT] • 

HHQ7-0:). 



times 

Get process and child process times. 

SYNTAX: 

#include <sys/types.h> 
#include <sys/times.h> 

long times (buffer) 
struct tms *buffer; 

ARGUMENTS: 

buffer 

A pointer to a tms structure (see below). 

DESCRIPTION: 

times 

Times fills the structure pointed to by buffer with 
time-accounting information. The following are the contents 
of this structure: 

struct 

} ; 

tms { 
time_t 
time_t 
time_t 
time_t 

tms_utime; 
tms_stime; 
tms_cutime; 
tms_cstime; 

This information comes from the calling process and each of 
its terminated child processes for which it has executed a 
wait. 

tms utime is the CPU time used while executing instructions 
in the user space of the calling process. 

tms stime is the CPU time used by the system on behalf of the 
calling process. Will be zero. 

tms cutime is the sum of the tms_utimes and tms_cutimes of 
the-child processes. will be zero. 

NOTE 

tms_cstime is unavailable on Multics. 

times will fai1 if buffer points to an illegal address 
[EFAULT] • 

4-203 HH07-0l 



times 

RETURN VALUE: 

Upon successful completion, times returns the elapsed real 
time, in GOths (100ths) of a second, since an arbitrary point 
in the past (e.g., system start-up time). This point does 
not change from one invocation of times to another. If times 
fails, a -1 is returned and errno is set to indicate the 
error. 

4-204 HH07-01 



tmpnam 

Creates a name for a temporary file. 

SYNTAX: 

# include <stdio&h> 

char*tmpnam (s) 
char *s; 

ARGUMENTS: 

s 

Address of array to receive result. 

DESCRIPTION: 

bnpnam 

The tmpnam function generates a file name that can safely be 
used for a temporary file. If (int)s is zero, tmpnam leaves 
its result in an internal static area and returns a pointer 
to that area. The next call to tmpnam destroys the contents 
of the area. If (int)s is nonzero, s is assumed to be the 
address of an array of at least L_tmpnam characters, where 
L_tmpnam is a constant defined in stdio.h; tmpnam places its 
result in that array and returns s as its value. 

The tmpnam function generates a different file name each time 
it is called. 

Files created using tmpnam and either fopen or creat are only 
temporary in the sense that they reside in a directory 
intended for temporary use, and their names are unique. You 
must use unlink to remove the file when its use is ended. 

RELATED FUNCTIONS: 

create, unlink, fopen, mktemp. 

4-205 Inf07-01 



toascii 

toascii 

Character translation. 

SYNTAX: 

# include <ctype.h> 

int toascii (c) 
int c; 

ARGUMENTS: 

c 

Character to translate. 

DESCRIPTION: 

The toascii function translates a character into 7-bit ASCII. 

The toascii function yields its argument with all bits turned 
off that are not part of a standard 7-bit ASCII character; it 
is intended for compatibility with other systems. 

RELATED FUNCTIONS: 

ctype, getc, tolower, toupper. 

4-206 HH07-01 



tolower 

Character translation. 

SYNTAX: 

# include <ctypeeh> 

int tolower (c) 
int c; 

ARGUMENTS: 

c 

Character "to translate. 

DESCRIPTION: 

tolower 

The tolower function has as a domain all a-bit ASCII codes 
(hexadecimal 0 through FF). If the argument represents an 
uppercase letter, the result is the corresponding lowercase 
letter. All other arguments in the domain are returned 
unchanged. 

RELATED FUNCTIONS: 

ctype, getc, toascii, toupper. 

4-207 HH07-01 



_tolower 

_tolower 

Character translation. 

SYNTAX: 

# include <ctype.h> 

int _tolower (c) 
int c; 

ARGUMENTS: 

c 

Character to translate. 

DESCRIPTION: 

The _tolower macrocall takes as an argument an uppercase 
letter. The result is the corresponding lowercase letter. 
All other arguments cause unspecified results. 

RELATED FUNCTIONS: 

ctype, getc, toascii, toupper. 



toupper 

Character translation. 

SYNTAX: 

# include <ctype.h> 

int toupper (c) 
int c: 

ARGUMENTS: 

c 

Character to translate. 

DESCRIPTION: 

toupper 

The toupper function has as a domain all a-bit ASCII codes 
(hexadecimal 0 through FF). If the argument represents a 
lowercase letter that has a corresponding uppercase letter, 
the result is that uppercase letter. All other arguments in 
the domain are returned unchanged. 

RELATED FUNCTIONS: 

ctype, getc, toascii, tolower. 

4-209 HH07-01 



_toupper 

_toupper 

Character translation. 

SYNTAX: 

# include <ctype.h> 

int _toupper (c) 
int c; 

ARGUMENTS: 

c 

Character to translate. 

DESCRIPTION: 

The _toupper macrocall takes as an argument a lowercase 
letter that has a corrseponding uppercase letter. The result 
is the corresponding uppercase letter. All other arguments 
in the domain cause unspecified results. 

RELATED FUNCTIONS: 

ctype, getc, toascii, tolower. 

4-210 HHOi-Ol 



tzset 

tzset 

Set time zone. 

SYNTAX: 

void tzset () 

DESCRIPTION: 

The tzset function sets the external variables timezone, 
daylight, and tzname, using either the external variable TZ 
(if present) or the system time zone. It is called by the 
asctime function, but you can also call it directly. 

The value of TZ must be a time zone acronym, a time offset, 
and an optional daylight-savings time zone acronym. 

• The time zone acronym is up to four characters long. 

• The time offset represents the difference between 
local time in the designated time zone and GMT. The 
difference is represented by a string of digits with 
an optional leading minus sign (for locations east of 
Greenwich, England) and with an optional trailing .5 
(for locations some odd number of half-hours from 
Greenwich). 

• The optional daylight savings time zone acronym is up 
to four characters long. 

For example, the setting for Boston would be EST5EDT. 

RELATED FUNCTIONS: 

asctime, ctime, gmtime, localtime, time. 

4-211 HH07-01 



ulimit 

ul imi t 

Get and set user limits. 

SYNTAX: 

long ulimit (cmd, newlimit> 
int cmd; 
long newlimit; 

ARGUMENTS: 

cmd 

The command to execute. The cmd values available are: 

1 Get the file size limit of the process. 

2 (On Multics the maximum segment size is set by 
system defaults). 

3 Get the maximum possible allocation si~e. 

newl imi t 

The new size. 

DESCRIPTION: 

This function provides for control over process limits. 

RETURN VALUE: 

Upon successful completion, a non-negative value is 
returned. Otherwise, a value of -1 is returned and errno is 
set to indicate the error. 

4-212 HH07-01 



ungetc 

Pushes character back into input file. 

SYNTAX: 

int ungetc (c, file) 
char c; 
FILE *file; 

ARGUMENTS: 

c 

Character to push. 

file 

Pathname of input file. 

DESCRIPTION: 

ungatc 

The ungetc function pushes the character c back on an input 
file. That character is returned by the next getc calIon 
that file. The ungetc function returns c. 

One character of pushback is guaranteed provided something 
has been read from the file and the file is actually 
buffered. Attempts to push EOF are rejected. 

DIAGNOSTICS: 

The ungetc function returns EOF if it cannot push a character 
back. 

RELATED FUNCTIONS: 

getc, setbuf. 

4~213 HH07-01 



unlink 

unlink 

Removes directory entry. 

SYNTAX: 

int unlink (path) 
char *path; 

ARGUMENTS: 

path 

Pathname of directory entry. 

DESCRIPTION: 

The unlink function deletes the file entry named by the path 
argument. If path is a link, the link is removed. If path 
is a file, the file is deleted. 

RETURN VALUE: 

Upon successful completion, a value of 0 is returned. 
Otherwise, a value of -1 is returned and the variable errno 
is set to indicate the error. 

DIAGNOSTICS: 

The unlink function fails if: 

• The volume is write protected [EROFS). 

RELATED FUNCTIONS: 

close, link, open. 

4-214 HH07-01 



utime 

Set file access and modification times. 

SYNTAX: 

#include <sys/types.h> 
int utime (path, times) 
char *path; 
struct utimbuf *times; 

ARGUMENTS: 

path 

utime 

Path points to a path name naming a file. utime sets the 
access and modification times of the named file. 

times 

On Multics utime can only change the access times to the 
current time. 

DESCRIPTION: 

The times in the following structure are measured in seconds 
since 00:00:00 GMT, Jan. 1, 1970. 

struct 

} ; 

utimbuf 
time_t 
time_t 

{ 
actime; 
modtime; 

1* access time *1 
1* modification time *1 

utime will fail if one or more of the following are true: 

• The named file does not exist [ENOENT]. 

• A component of the path prefix is not a directory 
[ENOTDIR] • 

• Search permission is denied by a component of the path 
prefix [EACCES]. 

RETURN VALUE: 

Upon successful completion, a value of 0 is returned. 
Otherwise, a value of -1 is returned and errno is set to 
indicate the error. 

4-215 HH07-01 



varargs 

varargs 

Handle variable argument list. 

SYNTAX: 

#include <varargs.h> 

va_del 

va_list get_arg(), last_arg(): 
va __ l ist pvar: 

pvar = get_arg: 

void va_start(pvar) 
va_list pvar; 

type va_arg(pvar, type) 
va_list pvar: 

void va_end(pvar) 
va list pvar: 

DESCRIPTION: 

This set of macros allows portable procedures that accept 
variable argument lists to be written. Routines that have 
variable argument lists (such as printf) but do not use 
varargs are inherently nonportable, as different machines use 
different argument-passing conventions. 

va~alist is used as the parameter list in a function header. 

va del is a declaration for va_alist. No semicolon should 
follow va_del. 

va list is a type defined for the variable used to traverse 
the list. 

get_arg is a routine that returns a va_list pointer to the 
required argument. Due to the argument list structure on 
Multics a direct relationship between an arguments address 
and its position in the argument list does not exist. 
get_arg is used to return the required va_list pointer to the 
argument. In the call pvar = get_arg: get_arg will return a 
va_list pointer to the third argument in the routines 
argument list. 

4-216 HH07-01 



varargs 

last_arg returns a va_list pointer to the last argument being 
passed. This will usually be the return argument. last_arg 
is used by va_end to test for the last argument. 

va_start is called to initialize pvar to the beginning of the 
list. If the argument is the first argument then va_start 
can be used to get a va_list pointer to the first argument. 
If an argument in another position is required as the 
starting position then get_arg must be used. 

va_arg will return the next argument int he list pointed to 
by pvar. Type is the type the argument is expected to be. 
Different types can be mixed, but it is up to the routine to 
know what type of argument is expected, as it cannot be 
determined at runtime. 

va_end is used to clean up. 

Multiple traversals, each bracketed by va_start or get_arg 
va_end, are possible. 

The following example is a possible implementation of execl: 

#include <varargs.h> 
'define MAXARGS 100 

1* execl is called by 
execl(file, argl, arg2, ••• , (char *)0): 

1* 
execl(va alist) 
va dcl -
{ -

va_list ap; 
. char *file; 
char *args[MAXARGS]; 
int·argno = 0; 

va_start (ap) : 
file = *va_arg(ap, char *); 
while «args[argno++] = *va_arg(ap, char *» != (char *)0) 

} 

va_end(ap; 
. , 

return execv(file, args); 

4-217 HH07-01 



varargs 

or execl could be done as follows using get_arg: 

'include <varargs.h> 
'define MAXARGS 100 

1* execl is called by 
execl (file, argl, arg2, 

*1 

execl (file, va_alist) 
char *file; 
va del 
{ -

va_list ap; 
char *args [MAXARGS]; 
int argno = 0; 

NULL) ; 

ap = get_arg; 1* returns a va_list pointer to the 
second argument *1 

while «args [argno++] = *va_arg (ap, char *» != NULL) . , 
va_end ( ap); 
return execv (file,args); 

} 

4-218 HH07-01 



vprintf, vfprintf, vsprintf 

Print formatted output of a varargs argument list. 

SYNTAX: 

#include <stdio.h> 
#include <varargs.h> 

int vprintf (format, ap) 
char *format; 
va_list ap; 

int vfprintf (stream, format, ap) 
FILE *stream; 
char *format; 
va_list ap; 

int vsprintf (s, format, ap) 
char *s, *format; 
va_list ap; 

ARGUMENTS: 

stream 

A file pointer. 

format 

A pointer to a null-terminated string. 

ap 

A pointer to a varying argument list. 

s 

A pointer to the return value. 

DESCRIPTION: 

vprintf 

vprintf, vfprintf, and vsprintf are the same as printf, 
fprintf, and sprintf respectively, except that instead of 
being called with a variable number or arguments, they are 
called with an argument list as defined by varargs. 

4-219 HH07-01 



vprintf 

EXAMPLE: 

The following demonstrates how vfprintf could be used to 
write an error routine. 

#include <stdio.h> . 
#include <varargs.h> 

1* 
* error should be called like 
* error (function_name, format, argl, arg2 ••• ); 
*/ 
I*VARARGSO*/ 
void 
error(va alist) 
1* Note that the function_name and format arguments cannot be 
* separately declared because of the definition of varargs. 
*/ 

{ 

} 

va_list args; 
char *fmt; 

va_start(args); 
1* print out name of function causing error *1 

(void)fprint(stderr, "ERROR in %8 ", va_arg(args, char *»; 
fmt = va_arg(args, char *); 
1* print out remainder of message *1 
(void)vfprintf(fmt, args); 
va_end(args); 
(void)abort ( ); 

4-220 HH07-01 



write 

Writes on a file. 

SYNTAX: 

int write (fildes, buf, nchars) 
int fildes; 
char *buf; 
unsigned nchars; 

ARGUMENTS: 

fildes 

write 

File descriptor obtained from a creat, dup, open, or pipe 
function. 

buf 

Address of buffer containing characters to be written. 

nchars 

Number of characters to write. 

DESCRIPTION: 

The write function attempts to write nchars characters from 
the buffer pointed to by buf to the file associated with the 
file descriptor fildes. 

On devices capable of seeking, the actual writing of data 
proceeds from the position in the file indicated by the file 
pointer. Upon return from write, the file pointer is 
incremented by the number of characters actually written. 

On devices incapable of seeking, writing always takes place 
starting at the current position. The value of a file 
pointer associated with such a device is unspecified. 

If the 0 APPEND file status flag is set, the file pointer is 
set to the end of the file before each write. 

4-221 HH07-01 



write 

If a write requests that more characters be written than 
there is room for (ULIMIT or the physical end of a medium), 
only as many characters as there is room for will be 
written. For example, if there is space for 20 characters 
more in a file reaching a limit, a write of 512 characters 
returns 20. The next write of a nonzero number of characters 
gives a failure return (except as noted below). 

The write function does not allocate a buffer until it is 
needed. 

RETURN VALUE: 

Upon successful completion, the number of characters actually 
written is returned. Otherwise, -1 is returned and the 
variable errno is set to indicate the error. 

DIAGNOSTICS: 

The write function fails and the file pointer is unchanged 
if: 

• The fildes argument is not a valid file descriptor 
open for writing [EBADF). 

RELATED FUNCTIONS: 

creat, dup, open, pipe. 

4:-222 HH07-01 



Appendix A 
CCOMPTLER 

. DIAGNOSTIC MESSAGES, 

This appendix lists the C compiler diagnostic messages. in 
alphabetical order. In messages, [---] indicates a variable. 

A-I HH07-0I 



Table A-I lists the C compiler diagnostic messages. These 
messages are written to the error-out file. 

Table A-I. C Compiler Diagnostic Messages 
(Sheet I of 3) 

Message 

[name] evaluation order undefined 
[name] may be used before set 
[name] redefinition hides earlier one 
[name] set but not used in function [name] 
[name] undefined 
bad structure offset 
[name] unused in function [name] 
=<[character] illegal 
=>[character] illegal 
BCD constant exceeds 6 characters 
a function is declared as an argument 
ambiguous assignment: simple assign, unary op assumed 
argument [name] unused in function [name] 
array of functions IS illegal 
assignment of different structures 
bad ASM construction 
bad scalar initialization 
can't take & of [name] 
cannot initialize extern or union 
case not in switch 
comparison of unsigned with negative constant, 
constant argument to NOT 
constant expected 
constant in conditional context 
constant too big for cross-compiler 
conversion from long may lose accuracy 
conversion to long may sign-extend incorrectly 
declared argument [name] is missing 
default not inside switch 
degenerate unsigned comparison 
division by 0 
duplicate case in switch [number] 
duplicate default in switch 
empty array declaration 
empty character constant 
enumeration type clash, operator [operator] 
field outside of structure 
field too big 
fortran declaration must apply to function 
fortran function has wrong type 
fortran keyword nonportable 
function [name] has return(e); and return;, 
function declaration in bad content 

A-2 

Class 

Warning 
Warning 
Error 
Warning 
Error 
Error 
Warning 
Error 
Error 
Error 
Warning 
Warning 
Warning 
Error 
Error 
Error 
Error 
Error 
Error 
Error 
Warning 
Warning 
Error 
Warning 
Error 
Warning 
Warning 
Error 
Error 
Warning 
Error 
Error 
Error 
Warning 
Error 
Warning 
Error 
Error 
Error 
Error 
Warning 
Warning 
Error 

MH07-01 



Table A-I. C Compiler Diagnostic Messages 
(Sheet 2 of 3) 

~--------------------------------------------------------~-------.-
Message 

function has illegal storage class 
function illegal in structure or union 
function returns illegal type 

. geos BCD constant illegal 
illegal array size combination 
illegal break 
illegal character: [number] (octal) 
illegal class 
illegal combination of pointer and integer, op [name] 
illegal comparison of enums 
illegal continue 
illegal field size 
illegal field type 
illegal function 
illegal hex constant 
illegal indirection 
illegal initialization 
illegal lhs of assignment operator 
illegal member use: [name] 
illegal member use: [name] 
illegal member use: perhaps [name].[name] 
illegal pointer combination 
illegal pointer subtraction 
illegal register declaration 
illegal structure pointer combination 
illegal type combination 
illegal type in : 
illegal use of field 
illegal zero sized structure member: [name] 
illegal { 
loop not entered at top 
member of structure or union required 
newline in BCD constant 
newline in string or char constant 
no automatic aggregate initializer 
non-constant case expression 
non-null byte ignored in string initialization 
nonportable character comparison 
nonportable field type 
nonunique name demands struct/union or 

struct/union pointer 
null dimenstion 
null effect 
old-fashioned assignment operator 
old-fashioned initialization use = 
operands of [operator] have incompatible types, 
pointer required 

A-3 

Cless 

Error 
Error 
Error 
Error 
Warning 
Error 
Error 
Error 
Warning 
Error 
Error 
Error 
Error 
Error 
Error 
Error 
Error 
Error 
Error 
Warning 
Warning 
Warning 
Error 
Error 
Warning 
Error 
Error 
Error 
Warning 
Error 
Warning 
Error 
Error 
Error 
Error 
Error 
Warning 
Warning 
Error 
Error 

Error 
Warning 
Warning 
Warning 
Error 
Error 

HH07-01 



Table A-2. C Compiler Diagnostic Messages 
(Sheet 3 of 3) 

Message 

possible pointer alignment problem 
precedence confusion possible: parenthesize! 
precision lost in assignment to (sign-extended?) 

field 
precision lost in field assignment 
questionable conversion of function pointer 
redeclaration of [name] 
redeclaration of formal parameter, [name] 
pointer casts may be troublesome 
size of returns value less than or equal to zero 
statement not reached 
static variable [name] unused 
struct/union [name] never defined 
struct/union or struct/union pointer required 
structure [name] never defined 
structure reference must be addressable 
structure typed union member must be named 
too many characters in character constant 
too many initializers 
type clash in conditional 
unacceptable operand of & 
undeclared initializer name [name] 
undefined structure or union 
unexpected EOF 
unknown size 
unsigned comparison with O? 
void function [name] cannot return value 
void type for [name] 
void type illegal in expression 
zero or negative subscript 
zero size field 
zero sized structure 
} expected 
long in case or switch statement may be truncated 
bad octal digit [digit] 
floating point constant folding causes exception 
old style assign-op causes syntax error 
main() returns random value to invocation environment 
'[name]' may be indistinguishable from '[name]' due 

to internal name truncation 

A-4 

Class 

warning 
Warning 
Warning 

Warning 
Error 
Error 
Error 
Warning 
Warning 
Warning 
Warning 
Warning 
Warning 
Werror 
Error 
Warning 
Error 
Error 
Error 
Error 
Warning 
Error 
Error 
Error 
Warning 
Error 
Uerror 
Error 
Warning 
Error 
Error 
Error 
Warning 
Warning 
Error 
Warning 
Warning 
Warning 

HH07-01 



AppendixB 
C ENVIRONMENT 

SUPPORT COMMANDS 

The following commands were ported from UNIX System V •. They' 
are available to -aid in the porti-ngprocess. 

B-I HH07-01 



touch 

Update access and modification times of a file. 

SYNTAX: 

touch [ -amc ] files 

DESCRIPTION: 

Touch causes the access and modification times of each 
argument to be updated. The file name is created if it does 
not exist. The current time is used. The -a and -m options 
cause touch to update only the access or modification times 
respectively (default is -am). The -c option silently 
prevents touch from creating the file if it did not 
previously exist. 

The return code from touch is the number of files for which 
the times could not be successfully modified (including files 
that did not exist and were not created). 

B-2 HH07-01 



env 

Set environment for command execution. 

SYNTAX: 

env [ - ] [ name=value ] ••• [ command args ] 

DESCRIPTION: 

env obtains the current environment, modifies it according to 
its arguments, then executes the command with the modified 
environment. Arguments of the form name=value are merged 
into the inherited environment before the command is 
executed. The - flag causes the inherited environment to be 
ignored completely, so that the command is executed with 
exactly the environment specified by the arguments. 

If no command is specified, the resulting environment is 
printed, one name-value pair per line. 

8-3 HH07-01 





byte 

GLOSSARY 

A Multics byte is nine bits long. In this manual, the terms 
byte and character are synonymous. 

character 

In this manual, the terms character and byte are synonymous. 

character array 

file 

A sequence of characters. 

File names consisting of up to 32 characters are allowed. 
~he Multics file naming conventions are listed in the Multics 
Programmer's Reference Manual. 

file access 

File access is controlled in accordance with standard Multics 
conventions as described in the Multics Programmer's 
Reference Manual. 

HH01-01 



file descriptor 

heap 

An integer from 0 to 19 that designates a file to be 
processed by low-level I/O. See low-level I/O. 

The area in which all memory allocation takes place, 
including all global and C static variables, but not 
including local variables. 

high-level I/O 

Functions (such as fopen and fprint) that return a pointer to 
a file. See low-level I/O. 

low-level I/O 

Functions (such as close, open, read, and write) that use 
file descriptors. See high-level I/O. 

null character (NUL) 

The ASCII character 00. In C, it is represented as \0. 

null pointer 

The value obtained by casting 0 into a pointer. This value 
never matches any legitimate pointer, so many functions that 
return pointers will return a null pointer to indicate an 
error. 

search rules 

Search rules are described in the Multics Programmer's 
Reference Manual. 

string 

A sequence of characters ending with a null character. 

g-2 HH07-0l 



abs, 4-24 

acos, 4-26 

Additive Operators, 2-3 

asin, 4-30 

atan, 4-31 

atan2, 4-32 

atof, 4-33 

atoi, 4-34 

ato1, 4-35 

calloc, 4-36 

ceil, 4-37 

char, 2-2 

clearerr, 4-38 

close, 4 .... 40 

Conversions, 2~2 . 

cos, 4-41 

cosh, 4-42 

creat, 4-43 

ctime, 4-44 

Data Type, 2-1 

Declarations 
Structure and Union 
Declarations, 2-3 

Diagnostic Messages 
C Compiler Diagnostic 

Messages (Tbl), A-2 

Double, 2-2 

e2big, 4-19 

INDEX 

i-I 

eacces, 4-19 

eagain, 4-19 

ebadf, 4-19 

ebusy, 4-20 

echild, . 4-19 

ecvt, 4-49 

edom, 4-21 

eexist, 4-20 

efault, 4-19 

efbig, 4-21 

eidrm, 4-22 

eintr, 4-18 

einva1, 4-20 

eio, 4-18 

eisdir, 4-20 

emfile, 4-20 

emlink, 4-21 

enfile, 4-20 

enodev, 4-20 

enoent, 4-18 

enoexec, 4-19 

enomem, 4-19 

enomsg, 4~22 

enospc, 4-21 

enotb1k, 4-20 

enotdir, 4-20 

HH07-01 



enotty, 4-21 

enxio, 4-19 

eperm, 4-18 

epipe, 4-21 

erange, 4-21 

erofs, 4-21 

errno 
errno, 4-50 
Reporting Errors via 
errno, 4-18 

Error 
Check for I/O Error 

(ferror) Function, 4-72 
Error Returns, 4-18 
File Status Inquiry 
Cl~ar Error Indicator 
(clearerr) Function, 4-38 

Number of Largest System 
Error Message (sys nerr) 
Function, 4-199 

System Error Message Number 
(errno) Function, 4-50 

System Error Messages 
(sys errlist) Function, 
4-198 

Errors 

INDEX 

fabs, 4-65 

fclose, 4-66 

fcvt, 4-69 

fdopen, 4-70 

feof, 4-71 

ferror, 4-72 

fflush, 4-73 

fgetc, 4-74 

fgets 
Gets Characters From a File 

(fgets) Function, 4-75 
Gets String From stdin File 

(fgets) Function, 4-110 

File Status Inquiry -- Clear 
Error Indicator (clearerr) 
Function, 4-38 

fileno, 4-76 

Float, 2-2 

Floor, 4-77 

fmod, 4-78 

Reporting Errors via errno, fopen, 4-79 
4-18 

Unix Errors, 4-18 fprintf, 4-80 

espipe, 4-21 fputc, 4-85 

esrch, 4-18 fputs, 4-86 

etxtbsy, 4-21 fread, 4-87 

exdev, 4-20 free, 4-88 

exit, 4-63 freopen, 4-89 

exp, 4-64 frexp, 4-91 

Explicit Pointer Conversions, fscanf, 4-92 
2-3 

i-2 HH07-01 



fwrite, 4-98 

gcvt, 4-99 

getc, 4-100 

getchar, 4-101 

getcwd, 4-102 

getenv, 4-103 

getgid, 4-104 

getlogin, 4-105 

getopt, 4-106 

getpid, 4-109 

getuid, 4-111 

getw, 4-112 

Heap 
Frees Heap Memory (free) 
Function, 4-88 

Heap, 4-143 
Heap Management, 4-170 
Reallocates Heap Memory 

(real10c) Function, 4-164 

hypot, 4-115 

int, 2-2 

Integers 
Characters and Integers, 

2-2 

isalnurn, 4-122 

isalpha, 4-123 

isascii, 4-124 

isatty, 4-125 

iscntrl, 4-126 

isdigit, 4-127 

INDEX 

i-3 

is10wer, 4-128 

isprint, 4-129 

ispunct, 4-130 

isspace, 4-131 

isupper, 4-132 

isxdigit, 4-133 

kill, 4-134 

Idexp, 4-135 

Lexical Conventions, 2-1 

Libraries 
Subroutines and Libraries, 

4-15 

Library 
Mu1tics C Standard Library 

(Sorted by Name) (Tb1), 
4-2 

System Calls and the 
Runtime Library, 2-7 

link, 4-136 

localtime, 4-138 

log, 4-140 

10g10, 4-141 

Longjmp, 4-142 

mal10c, 4-143 

memccpy, 4-144 

memchr, 4-146 

memcmp, 4-147 

memcpy, 4-149 

memset, 4-150 

HH07-01 



Messages 
C Compiler Diagnostic 

Messages (Tbl), A-2 
System Error Messages 

(sys errlist) Function, 
4-198 

mktemp, 4-151 

modf, 4-152 

Multics 
C Support of Multics File 

Types, 4-14 
Issue a Mu1tics Command 

(system) Function, 4-197 
Multics C Routines (Sorted 

by Function Group) (Tbl), 
4-7 

Multics C Standard Library 
(Sorted by Name) (Tbl), 
4-2 

Multics Trap Support of 
Unix Signals (Tb1), 4-16 

Null 
Null Pointer (null), 4-15 
The Null Pointer Value, 2-7 

Open, 4-153 
Open a File (fdopen) 

Function, 4-70 
Open a File (fopen) 

Function, 4-79 
Opens for Reading or 
Writing (open) Function, 
4-153 

Operators 
Additive Operators, 2-3 
Shift Operators, 2-3 

Pointer 
Explicit Pointer 
Conversions, 2-3 

Null Pointer (null), 4-15 
The Null Pointer Value, 2-7 

Pointers, 2-5 

INDEX 

i-4 

Portability 
C Program Portability, 

2-4 

pow, 4-156 

printf, 4-157 

putc, 4-158 

putchar, 4-159 

puts, 4-160 

putw, 4-161 

rand, 4-162 

read, 4-163 

realloc, 4-164 

Reporting Errors via errno, 
4-18 

Returns 
Error Returns, 4-18 

Revisited 
Types Revisited, 2-3 

Routines 
C Routines not Supported 

(Tb1), 4-11 
Multics C Routines (Sorted 

by Function Group) (Tbl), 
4-7 

Run-time Routines, 4-22 

Run-time Routines, 4-22 

sbrk, 4-165 

scanf, 4-166 

setbuf, 4-167 

setjmp, 4-168 

Shift Operators, 2-3 

Sign Extension, 2-2 

HH07-01 



Signal 
Sends a Signal to a Process 

(kill) Function, 4-134 
Signal, 4-169 

Signals 
Multics Trap Support of 

Unix Signals (Tbl),- 4-16 
Software-generated Signals 

(Tbl), 4-17 
Traps and Signals, 4-16 

sin, 4-172 

sinh, 4-173 

sleep, 4-174 

sprintf, 4-175 

sqrt, 4-176 

srand, 4-177 

sscanf, 4-178 

stat, 4-17"9 

stderr, 4-15 

stdin 
Gets Character From stdin 
File (getchar) Function, 
4-101 

Gets String From stdin File 
(fgets) Function, 4-110 

stdin, 4-15 

stdout 
Puts Character On stdout 
File (putchar) Function, 
4-159 

Puts String On stdout File 
(puts) Function, 4-160 

stdout, 4-15 

strcat, 4-181 

strchr, 4-182 

strcmp, 4-183 

INDEX 

strcpy, 4-184 

strcspn, 4-185 

strlen, 4-186 

strncat, 4-187 

strncmp, 4-188 

strncpy, 4-189 

strpbrk, 4-190 

strrchr, 4--191 

strspn, 4-192 

strtok, 4-194 

Structure and Union 
Declarations, 2-3 

Subroutines and Libraries, 
4-15 

swab, -4-196 

sys errlist, 4-198 

sys nerr, 4-199 

system, 4-197 

tan, 4-200 

tanh, 4-201 

Time 
Converts Date and Time to 

ASCII (ctime) Function, 
4-44 

time, 4-202 

tmpnam, 4-205 

toascii, 4-206 

tolower, 4-207, 4-208 

toupper, 4-209, 4-210 

HH07-01 



Trap 
Multics Trap Support of 

Unix Signals (Tbl), 4-16 

Traps and Signals, 4-16 

tzset, 4-211 

ungetc, 4-213 

Union 
Structure and Union 
Declarations, 2-3 

Unix 
Multics Trap Support of 

Unix Signals (Tbl), 4-16 
Unix Errors, 4-18 

unlink, 4-214 

Unsigned Char, 2-2 

Unsigned Int, 2-2 

Unsigned Long, 2-2 

write, 4-221 

INDEX 

""""n.., n, nnu/-UJ. 



HONEYWELL BULL 
Technical Publications Remarks Form 

TITLE 
MULTICS 
C USER'S GUIDE 

ERRORS IN PUBLICATION 

SUGGESTtONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
..t\.. and action will be take.n as required. Receipt of all forms will be 0 
V acknowledged; however, if you require a detailed reply, check here. 

PLEASE FILL IN COMPLETE 
ADDRESS BELOW. 

FROM: NAME _____________________________________ __ 

TITLE _________________________________ _ 

COMPANY _________________________________ ___ 

ADDRESS _____________________________ _ 

ORDER NO. HH07-01 

DATED November 1987 

DATE ______ _ 



• 

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA 02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL BULL 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Hon~ell Bull 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

c 
~ 
C 
-< 
t 
c: 
I 
I 
I 
I 
I 



HoneMel1 Bull 
Corporate Headquarters: 

3800 West 80th St., Minneapolis, MN 55431 
U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154 

Canada: 155 Gordon Baker Ad., North York, ON M2H 3P9 
Mexico: Av. Constituyentes 900, 11950 Mexico, D.F. Mexico 

U.K.: Great West Ad., Brentford, Middlesex TW8 90H Italy: 32 Via Pirelli, 20124 Milano 
Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

49314,1087, Printed in U.S.A. HH07-01 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-148
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	4-160
	4-161
	4-162
	4-163
	4-164
	4-165
	4-166
	4-167
	4-168
	4-169
	4-170
	4-171
	4-172
	4-173
	4-174
	4-175
	4-176
	4-177
	4-178
	4-179
	4-180
	4-181
	4-182
	4-183
	4-184
	4-185
	4-186
	4-187
	4-188
	4-189
	4-190
	4-191
	4-192
	4-193
	4-194
	4-195
	4-196
	4-197
	4-198
	4-199
	4-200
	4-201
	4-202
	4-203
	4-204
	4-205
	4-206
	4-207
	4-208
	4-209
	4-210
	4-211
	4-212
	4-213
	4-214
	4-215
	4-216
	4-217
	4-218
	4-219
	4-220
	4-221
	4-222
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	g-01
	g-02
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	replyA
	replyB
	xBack

