


Honeywell THE MUL TICS VIRTUAL MEMORY 

MULTICS 

, 

PR6PERtY'~<?~=S~' 
~"......-.crz;_£1t,"1~~~~Y7· 

SUBJECT: 

Technical Papers on the Multics Virtual Memory as Designed for Model 645 Implemen­
tation. 

SPECIAL INSTRUCTIONS: 

These technical papers are reprinted here for theoretical and historical purposes only. 

DATE: 

June 1972 

ORDER NUMBER: 

AG95, Rev. 0 



PREFACE 

This document consists of three technical papers which describe the theory and 

practice of Multic s virtual memory implementation. Multics (Multiplexed lnformation and 

Computing Service) is a general purpose computer system which has been designed to be a 

"computer utility." As such, it is essential that Multics provide its users with sufficient 

re'sources to do a wide variety of tasks. and that the system be protected from destructive 

interac.tions between users. The papers address the theory, the practice, the hardware, 

and the software used to provide an effectively infinite memory to each user and to protect 

both the users and the system. 

The first paper discusses the concept of a virtual memory and explores several ways 

in which such a memory could be implemented. The method used to implement the Multics 

virtual memory on the Series 600 Model 645 processor is developed in detail. This paper 

is of historical importance and presents valid Multics design theory although the Model 645 

is no longer used as the Multics processor; 

The second paper extends the discussion further into the subject of protection. The 

theory of the Multic s ring structure is introduced and its implementation on the Model 645 

is described. This theory is still valid although the Model 645 is no longer used as the 

Multics processor. 

The third paper shows how the features described in the two earlier papers are 

handled by hardware under the optional Multics modifications to Series 6000 processors. 

Several new processor features are introduced and described. Use of these features allows 

Multics to run on the Series 6000 processors, specifically the Model 6180, with greatly 

increased efficiency as compared with the ~arlier implementation of Multics on the Series 

600 processors. 

€- 1970, General Electric Company, U. S. A. 
~1972, Honeywell Information Systems Inc. File No.: ILW3 



, . .' 

An alphabetized list of abbreviations and acronyms used in all three papers has been 

included as an aid to the reader. 

Papers in this document were written to further the understanding of the Multics 

design philosophy and practices. They are not intended to be specifications of the Multics 

system or its components. Authors have made simplifying assumptions at times to make the 

main point clearer and easier to understand. Persons requiring design specification details 

are requested to c<?ntact the Multics development staff for guidance and assistance. 

"The Multics Virtual Memory" was first published as Technical Information Series 

Report R69LSD3, Copyright 1970 by General Electric Company, U. S. A. 

"Access Control to the Multics Virtual Memory" was first published as Technical 

Information Series Report R69LSD4, Copyright 1970 by General Electric Company, U. S. A. 

iii 



A. 

B. 

c. 

D. 

CONTENTS 

The Multics Virtual Memory 

Access Control to the Multics Virtual Memory 

Series 6000 Features for the Multics Virtual MerlDry 

Abbreviations and Acronyms 

iv 

Page 

v 

119 

165 

191 



A. The Multics Virtual Memory 

v 



Chapter Title 

1 General Properties of the 
Hultics Virtual Memory 

2 Overview of the Inplementation 

3 Directory Structure 

4 Making a Segment lCnown to a 
Process 

5 Segment Fault Handling 

6 Page Fault Handling 

7 Secondary Storage Management 

8 Device Interface Modules 

vi 



PREFACE 

In the past few years several well-known systems have 
inplemented large virtual memories which permit the execution 
of programs exceeding the size of available core memory. These 
implementations have been achieved by demand paging in the 
Atlas computer, allowing a program to be divided physically into 
pages only some of which need reside in core storage at anyone 
time, by segmentation in the B5000 computer allowing a program 
to be divided logically into segments, only some of which need 
be in core, and by a combination of both segmentation and pag-
ing in the 645· and the IBM 360/67 for which only a few pages 
of a few segments need be available in core while a program is 
running~ . 

As experience has been gained with remote-access, multiprogrammed 
systems, however, it has become apparent that, in addition to 
being able to take advantage of the direct addressibility of 
large amounts of information made possible by large virtual . 
memories, many applications also require the rapid but controlled 
sharing of infonnation stored on-line at the central facility. 
In Multics (~iplexed lnformation and £omputing §ervice), 
segmentation provides a generalized basis for the direct ac~ess­
ing and sharing of on-line information by satisfying two design 
goals: 1) it must be possible for all on-line information 
stored in the system to be addressed directly by a processor and 
hence referenced directly by any computation. 2) it must be 
possible to control access, at each reference, to all on-line 
information in the system. 

The fundamental advantage of direct addressability is that 
information copying is no longer mandatory. Since all instruc­
tions and data items i.n the system are processor-addressible, 
duplication of procedures and data is unnecessary. This means, 
for example, that core images of programs need not be prepared 
by loading and binding together copies of procedures before 
execution; instead, the original procedures may be used directly 
in a computation. Also,.partial copies of data files need not 
be read, via requests to an I/O system, into core buffers for 
subsequent use and then returned, by means of another I/O 
request, to their original locations; instead the central 
processor executing a computation can directly address just 
those required data items in the original version of the file. 
This kind of access to information promises a very attractive 
reduction in program complexity for the programmer. 

vii 



·If all on-line information in the system may Lc cad'll" ~.<::ed 
directly by any computation, it becomes inperative L·) De able 
to limit or control access to this information both for the 
self-protection of a computation from its own mishaps, and for 
the mutual protection of conputations using the same system 
hardware facilities. Thus it becomes desirable to 
compartmentalize or package all information in a directly­
addressible memory and to attach to these information packages 
access attributes describing the fashion in which each user 
may reference the contained data and procedures. Since all . 
such information is processor-addressible, the access attri­
butes of the referencing user must be enforced upon each 
processor reference to any information package. 

Given the ability to directly address all on-line information 
in the system, thereby eliminating the need for copying data 
and procedures, and given the ability to control access to this 
information, then controlled information sharing among several 
conputations follows as a natural consequence. 

In Multics, segments are packages of information which are 
directly addressed and which are accessed in a controlled 
fashion. Associated with each segment is a set of access 
attributes for each user who may access the segment. These 
attributes are checked by hardware upon each segment reference 
by any user. Furthermore all on-line information in a Multics 
installation can be directly referenced as segments while in 
other systems most on-li.ne information is referenced as files. 

viii 



Chapter 1 

GENERAL PROPERTIES OF THE MULTICS VIRTUAL MEMORY 

1. INTRODUCTION 

In recent literature the term "virtual memory" has become 
quite familiar. The. adJective "virtual" suggests that this 
mf!mo.t'Y is the image of an ideal memory that one would like 
to have, since it·complies with the actual needs of a multi­
programming, multiple-access computer utility. This "ideal 
memory" is not available as a hardware device and has been 
simulated by the Multics system using a conventional memory 
with the assistance of additional hardware and software 
features. 

This chapter describes the properties of the ideal memory, 
justifies the desire for these properties, and explains the 
principles of the simulation of this memory. 

2 • THE· IDEAL MEMORY 

In order to describe this ideal memory the terms "segment" 
and "segmented memory" need to be defined first. 

2.1. Segments 

A segment is an entity defined by: 

1) A ~ which uniquely identifies the segment. 
2) A descriptor which describes the properties or 

"attributes" associated with the segment. 
3) A body which is an array of consecutive elements. 

The name is a character string of arbitrary length. 

The descriptor contains all attributes the system designer 
needs to attach to the segment: the s.ize and the physical 
location of the body, access rights for differ.ent users with 
respect to this segment, the date it was created, etc. 

The body of the segment is an ordered set of elements, called 
words, each of which is identified within the segment body by 
an integer i, its index. The m.unber of elements in the body 
is called the length of the segment. 

1 



2.2. Segmented Memory 

A segmented memory will be defined as a memory with the 
following properties: 

1) It is capable of containing segments and only segments. 
2) If it contains a segment named n, then n is the 

address of the descriptor of this segment and the 
pair [n,il is the address of the ith element in the 
body of this segment. ' 

3) It is capable of performing operations on the 
descriptor and the body of any segment,- in accordance 
with the attributes recorded in the descriptor. 

2.3. Ideal Memory 

The ideal memory can now be defined as a large, segmented 
memory directly accessible by the processor, where by "large" 
it is meant that the maximum number of segments that one can 
store in it is adequate for the needs of the system. 

A simple representation of such a memory is shown in Figure lj 
it comprises a memory controller (MC), a large number of 
descriptors each of which contains the name and the attributes 
of a segment, and a large number of linear memories each of 
which is connected to a descriptor and can contain the body of 
a segment. 

The processor can send two types of requests to the Me: requests 
for operations on descriptors and requests for operations on 
bodies. In both cases the processor must communicate to the 
MC the identification of the user on behalf of whom the 
operation is requested. 

2.4. Qperations on Descriptors 

The general form of a request sent by the processor to the Me 
for operations on descriptors, is 

where: 

OPCODE n arguments userid 

- OPCODE designates operations, such as "create a 
segment", "change the length of a segment", "chanle 
access rights"; 

2 



- n is the name of the segment. The Me uses it to 
locate the appropriate segment descriptor; 

- arguments are parameters associated with the function 
defined by OPCODE; 

- userid is the identification of the user on behalf 
of whom the operation is requested. The Me uses this 
userid in order to determine from the attributes of 
the segments whether this particular user has the 
right to perform this particular operation. 

2.5. Operations on Segment Bodies 

The general form of a request sent by the processor to the Me 
for operations on segment bodies is 

where: 

OPCODE [n,i) userid 

- OPCODE designates operations j such as "read", "write", 
"instruction fetch"; 

- n is the name of the segment; the Me uses it to locate 
the appropriate segment descriptor. It then uses the 
segment descriptor to locate the segment body; 

- i is the index of the word within the segment to 
which the operation 1s to be applied; 

- userid is used by the Me as above. 

3 



.f:'-

\ 

name ;:: a II name = b 
attributes attributes 

MDfORY CON.TROLLER (MC) 

Figure 1. Organization of the Ideal Memory 

\. 

------1 name = n 
attributes -

'~>{/ 



3. JUSTIFICATION OF THE IDEAL MEMORY PROPERTIES 

The ideal memory has. 'been defined as a "large segmented memory 
directly accessible by the processor". The advantages of such 
an ideal memory will be explained by successively introducing 
the advantages of a memory, that is: 1) large (but not 
segmented); 2) segmented (but not large); and finally, 3) 
large and segmented. 

3.1. Large, Unsegmented Memory 

Because the memory is large and directly accessible by the 
processor, the, user is provided with a core memory large 
enough for any of his computations. Therefore, he can run 
a program without being concerned with its size. However. no 
matter how large the core memory is. if it is a linear memory 
accessible by a single number, no sharing of information in 
core can be tolerated between programs of different users since 
no protection mechanism is in effect at the time a word is 
accessed. 

3.2. Small, Segmented Memory 

Because the memory is segmented and directly accessible by the 
processor, the user is provided with several independent 
linear core memories in each of which he can store one of his 
segments, deciding who can access it and how. Therefore, the 
same segment can be shared in core by several user programs 
without the danger of unauthorized accessed to this segment. 
However, even though the memory is segmented, if the m.unber 
of segments that one c'an store in it is small, the user is 
faced with the problem of overlays. 

3.3. Large, Segmented Memory 

By having the two properties "large" and "segmented" a 
directly accessible memory provides the user with: 

a large machine-independent memory. There is a one­
to-one correspondence between the ~ by which the 
user references a one-word datum and the physical 
location in memory where the datum resides. As a 
consequence, users are provided with a simple means 
of writing programs such that, when executed, they 
access common information in core. They merely have 
to reference this information by its name. 

5 



a protection mechanism. This mechanism is in effect 
during execution at any memory access and protects 
segments from \D'lauthorized access. 

3.4. Note on Information Sharing 

It is worth making some remarks about information sharing_ 
Information to be shared consists of data and procedures. 

Sharing data or procedures in core requires: 

a) A mechanism by which a reference to a segment by 
its name X will cause segment X, and not a copy 
segment X, to be referenced during program execu­
tion. 

b) A mechanism by which the shared information can 
be protected from unauthorized access while it is 
in core. 

Sharing procedures in core also requires: 

c) A mechanism by which one can produce pure 
procedures that can be executed simultaneously by 
several programs. 

The memory described here provides a) and b), but not c). 
In fact the memory itself cannot provide c); writing a pure 
procedure implies the ability of communicating as parameters 
to this procedure the names of any information private to the 
program on behalf of which the procedure is executing. These 
names cannot be stored in the memory itself; they have to be 
stored in processor registers whose names are invariant. 
During execution of a pure procedure by a processor on behalf 
of a program, the names of data segments private to the pro­
gram are stored in processor registers whose names are stored 
in the pure procedure. The processor requests the data from 
the memory controller using t.he name found in the appropriate 
processor register. 

6 

'../' 



4. PRINCIPLE OF THE SIMULATION 

The memory presented here is simulated in the Multics system, 
this simulation being achieved by a combination of hardware 
and software features. Hardware segmentation has been inple-
mented in the 645 and constitutes the most important of . 
the hardware features mentioned above. Paging has also been 
implemented in the 645; although of immense help to the 
implementation, we do not regard paging as a concept funda­
mental to a description of the principles of the ideal memory 
simulation and shall postpone the discussion of paging until 
the end of this section. 

Let us first examine how much of the ideal memory capability 
has been integrated into the hardware. Then a discussion of 
the software functions needed to compensate for those 
capabilities which are not provided by thE:' hardware will 
follow. 

4.1. Hardware Segmentation in the 645 

Concepts of segment name, segment descriptor, and segment 
body have been integrated into the hardware as follows. 

4.1.1. Segment Names. A segment name for the hardware is an 
integer s, called segment number, such that 0 < s < 218. 

4.1.2. Segment DesCri~tors. The segment descriptor of 
segment "s" is the st entry of a table called a Descriptor 
Segment. The descriptor segment is in core memory and its 
absolute address is kept in a processor register. A descrip­
tor segment entry is called a Segment Descriptor Word (SOW). 
SOW number s will be designated by the notation SOW(s). . 

Attributes that can be recorded in an SOW area are: 

The absolute core address of the head of the segment 
body. 

The length of the segment body. 

Access rights for only ~ user with respect to the 
segment body. 

An invalid attribute flag. F, which, when ON, 
signals the absence of the above attributes in the 
SOw and causes the processor to fault. 

7 



Since an SIJI can contain access rights for one user only, 
each user program must be provided with a private descriptor 
segment. (See Figure 2.) 

Descriptor Segment Descriptor Sas-ent 
of USER. 2 of USER 1 , 
~----. I 

I 

sl~ 

Segment 
body 

Figure 2. Hardware Segment Descriptors 

8 

Is2 
I 

core L acc F ' 



4.1.3. Segment Bodies. The segment body is an array of 
contiguous words in core memory and its maximum length is 
218 words. 

4.1.4. Address Transformations. Word number i of the body 
of segment s is addressed by the pair [s,iJ and is accessed 
through SDW(s) by the processor. 

Provided that the absolute core accress me of word 0 of the 
segment"is stored in SDW(s), the processor transforms -

- the processor segment name s into the core memory 
address roo using the descriptor segment which provides 
the mapping mo = Z(s). 

~ the processor 4ddress [s,i] into the core memory address 
mt by the translation mi = mo+i, that is mi = Z(s)+i. 

4.1.5. Access Rights Checking. Before accessing word mi the 
processor performs a check on -

- the length of the segment by comparing i to the 
length recorded in SDW(s). 

- The access rights for the user with respect to segment 
s by using the access rights recorded in SDW(s). 

This hardware organization presents the following advantages 
over more conventional hardware. 

The set of proce~sor addresses [s,iJ is sufficiently 
large that all words referenced by a program can be 
assigned unique processor addresses. The user does 
not have to organize a large program into overlays 
provided that he uses no more than 218 segments. 

- Processor addresses are independent of physical memory 
addresses. Addresses which appear in the instructions 
of a program are invariant when segments are moved 
from one location ~o another 1n core memory. 

- Each access to core memory is subject to access rights 
checking. 

However, the hardware has only a restricted understanding of 
the concept of segments and needs to be complemented by 
appropriate software features. 

9 



4.2. Software Segmentation 

Given the foregoing hardware segmentation capabilities, the 
corresponding software segmentation capabilities required 
to implement the Multics virtual memory can be described. 

4.2.1. Segment Names. A segment name is a character string 
called a symbolic segment name. The set of symbolic seg­
ment names is larger than 218. Therefore, the supervisor 
must map a large set of symbolic segment names into a smeller 
set of segment numbers. 

4~2.2. Segment Descriptors. The hardware does not permit 
one to -

- retrieve attributes of a segment given the 
symbolic name of the segment. The software pro­
vides this capability. 

- store all attributes of a segment in a hardware 
segment descriptor or SDW. The software provides 
complete segment descriptors for each segment and 
stores them in a catalog. See Figure 3. 

Segment 
name Segment Attributes 

a 

b 

core/secondary Access for user 1 other 
c address length Access for user 2 attributes 

Ac;.cess for user 3 

d 

• 

Figure 3. Representation of a Catalog 

10 

-' 



4.2.3. Segment Bodies. The body of a segment is an array of 
contiguous words in ~ or in secondary memory. Since the 
processor can fetch data and instructions only from core­
resident segments, the software must intercede when B 

segment is found to be missing from core. 

4.2.4. Address Transformations. Assuning for the moment that 
all segments are in core memory, the supervisor performs the 
following three transformations to make segments accessible 
by the processor. 

First, for any segment in the system, the supervisor must 
provide a one to-one mapping from its symbolic name n into 
its memory address mo ' where m is the address of the be­
ginning of the segment. This ~pping mo =X(n)O is recorded 
in the catalog. See Figure 4. 

Next, for each segment referenced by a user program, the 
supervisor must provide a one-to-one mapping from its 
symbolic name n into the segment nunber s assigned to it in 
this user program. This mapping s = Y (n)is recorded in 
a table associated with the user program and called the 
Known Segment Table (KST). 

Finally, for each segment that has been assigned a segment 
number s in a user program, the supervisor must provide 
a one-to-one mapping between the segment nunber s and its 
memory address mo. This mapping lllo=Z(s) is recorded in the 
descriptor segment associated with the user program. 

The transformation X is independent of the user program; 
transformations Y and Z for user program u are user­
dependent and will be denoted as Yu and Zu. 

11 



In order to permit several user programs to ahare the same 
segment by merely referenc1na it by the same name, these 
transformations must be 8uch that, for any U8er prolram, 
X(n) ~ Zu(Yu(n». 

Yu 

x Catalolue Zu 

Filure 4. Address Mapping Tables 

12 



To this point we have assumed that all segments are in core. 
In fact, core memory being limited, the supervisor has to move 
segments between core and secondary memory. 

The transportation of segment n from core memory address mn to 
secondary memory address Mo must be associated with the follow­
ing address mapping modifications: 

- mo must be replaced by Mo in the catalog entry for n. 
- mo must be replaced by an undefined value in any SDW 

in which it appears. This is done by setting the 
invalid attribute flag ON in the SDW. 

Note that the mapping between nand s remains unchanged in 
any user program. 

A subsequent reference to segment n by segment number s in a 
llser program will cause the processor to fault since the 
invalid attribute flag is ON in SDW(s). This fault will be 
referred to as a missing segment fault. Using the KST 
associated with this user program, it is possible to determine 
the name n of the segment s. Knowing n, the catalog entry for 
n can be found. The segment must be moved from secondary 
memory address Mo to some (generally different) core memory 
address m~. This move must be associated with the following 
address mapping modifications: 

- Mo must be replaced by m' in the catalog entry for n. 
- The undefined value (Fla~) in SDW(s) must be replaced 

by m~. 

Note again that the mapping between nand s remains unchanged 
by the· move. 

4.2.5. Access Rights Checking. We have seen how the supervisor 
responds to a missing segment fault occurring ina user pro­
gram but the description was not complete. A missing segment 
fault is a. signal to evaluate the segment attributes in a 
specific SOW. Only the evaluation of the core address attri­
bute has been described. Moreover, when the supervisor ex­
tracts core address information from the catalog, it also 
extracts the length and access rights attributes and stores 
them in the SDW. Each subsequent hardware reference to the 
segment by this user program is made through the SDW with the 
hardware performing access checking. 

13 



However, when performing operations onse~ent attributes the 
supervisor itself must do the necessary validation for any 
operation requested by a particular user since the hardware 
does not provide for access checking on attributes. 

4.3. Paging 

In a system in which the maximum size of any sesment were 
very small compared to the size of the entire core memory, 
the "swapping" of complete segments into and out of core 
would be feasible. Even in such a system, if all segments 
did not have the same maximum size, or had the same maximum 
size but were allowed to grow from initially smaller sizes, 
there remains the difficult core management problem of 
providing space for segments of different sizes. 

Multics, however, provides for segments of sufficient 
maximum size that only a few can be entirely core-resident 
at anyone time. Also, these segments can grow from any 
initial size smaller than the maximum permissible size. 

By breaking segments into equal-sized parts called pages 
and providing for the transportation of individual pages to 
and from core as demand dictates, several practical problems 
encountered in the implementation of a segmented virtual 
memory are solved. 

First, since only the referenced page of a segment need be 
in core at one instant, segments need not be small compared 
to core memory. 

Second, "demand paging" permits advantage to be taken of any 
locality of references peculiar to a program by transporting 
to core only those pages of segments which are currently 
needed. Any additional overhead associated with demand 
paging should of course be weighed against the alternative 
inefficiencies assOciated with dedicating core to entire 
segments which have been swapped into core but which maybe 
only partly referenced. 

Finally, since pages are all of equal size, space allQcation 
is il1l11ensely simplified. The "compaction" of information in 
core and on secondary storage characteristic of systems deal­
ing with variable-sized segments or pages is thereby elimi­
nated. 

14 

"-



The basic principles of paging in the Multics virtual memory 
may be briefly summarized as follows. 

When a segment is not paged, the memory location of its 
element i is defined by relation (1), where m is the memory 
location of element O. . 0 

When a segment is paged into pages of K elements, the memory 
location of its element i is defined by relation (2), where 
~K is the memory location of element pK; that is, the memory 
location of the page number p of the segment. 

(2 ) 

mi = ~K + j 

j = i mod K 

p = (i-j)/K 

If N is the number of pages in a segment, paging this segment 
requires -

- a segment map with N entries, one for each page. 

- a relocation capability in the hardware. 

In the 645 the N entries of the segment map are provided 
by a "page table" and the relocation is performed by the 
processor itself. Furthermore, a page table entry contains 
a missing-~ flag such that, if found ON by the processor 
while attempting to perform relocation, causes the processor 
to trap to the supervisor. 

The missing-page flag is ON when the corresponding page is 
not in core. When, upon at"tempting to access a missing page, 
the processor traps to the supervisor, the supervisor must 
move the requested page into core. In order to do so the 
supervisor must maintain a segment map of N entries in the 
software descriptor, i.e., in the directory entry. Each time 
page p is moved from one location to another, this move must 
be associated with the following address mapping modifications. 

15 

- .- -.-----~--"'--~ 



- Update the mapping in entry p of the segment map 
located in the directory entry •. 

- Update the mapping in entry p of the page table. 

Although paging need not be considered essential to a 
description of the simulation principles of an ideal memory, 
it is a basic feature for the implementation of such a memory. 

The next chapter describes in some detail how the ideal 
memory has been simulated in the Multics system, using hardware 
segmentation and hardware paging as implemented on the GE-64S. 

16 

-' 



Chapter 2 

IMPLEMENTATION OF THE MULTICS VIRTUAL MEMORY: OVERVIEW 

1. INTRODUCTION 

As we have seen in Chapter 1, the Multics virtual memory is 
a large, segmented memory. Each segment can be referenced by 
its name .in a user prol~.m; a ~.f.~.nce by nam. will 'cause 
the segment to be accessed by the processor according to the 
access rights of the user with respect to that segment. The 
memory is called "virtual" because it is not available as 
a hardware device. Instead, it is simulated using a conven­
tional non-segmented memory, a set of processor registers· 
which provide the second dimension of a segmented memory and 
a supervisor which compensates for the difference in 
capabilities between the 645 hardware and the ideal memory 
described in Chapter 1. 

Although the hardware checks each user's access rights to a 
segment wh.enever it accesses that segment, a certain number 
of additional functions must be provided by the supervisor 
in order to give the illusion that all segments are directly 
accessible by name by the processor. 

- The hardware cannot retrieve the attributes of a 
segment using its symbolic name; the suPervisor 
organizes segment attributes into "directories" 
where it can retrieve them. 

- The hardware cannot interpret access rights for 
segment attributes; all operatiqns on segment 
attributes are done by the supervisor. 

- The hardware cannot reference a segment by a symbolic 
name; it does it by a segment number. The. supervisor 
translates all symbolic segment names into segment 
numbers. 

- The hardware cannot access a segment if it is not in 
core memory; each reference to a segment which is 
not in core will cause the supervisor to move the 
segment from secondary memory to core memory. In 
order to help the supervisor in core memory allocation, 
the hardware provides a paging capability. 

17 



This chapter builds upon the ideas developed in Chapter 1 
to show in some detail how the ideal memory is simulated. 
The major topics covered are: 

2. 

- Segmentation and paging on the 645 processor. 

- The organization of segment attributes into 
hierarchically ordered directories and the 
manipulation of these attributes by the super­
visor. 

- Segment accessing and all the supervisory functions 
needed to make a segment directly accessible by the 
processor. 

- The structure of the supervisor itself, showing how 
parts of the supervisor are able to utilize the 
virtual memory provided for user programs. 

THE 645 PROCESSOR 

This paper discusses only those features of the 645 processor 
which are of interest for the implementation of a virtual 
memory. They can be grouped into two different classes -­
segmentation and paging -- and are treated separately below. 

2.1. Segmentation 

Any address in the 645 consists of a pair of integers 
[s,i]. The range of sand i is 0 to 218-1. s is called the 
segment number, i the index within the segment. Word rs,i) 
is accessed through a hardware register which is the sth 
word in a table called a descriptor segment (DS) •. This 
descriptor segment is in core memory and its absolute address 
is recorded in a hardware register called a descriptor base 
register (DBR). Each word of the DS is called a segment 
descriptor word (SDW); the sth SDW will be referred to as 
SDW(s). See Figure 1. 

The DBR cont.ains the follOWing values: 

- DBR.core which is the absolute core address of the 
DS. 

- DBR.L which is the length of the DS • 

. 18 



Segment descriptor word number s contains the following 
values: 

SDW(s).core which is the absolute address of the 
segment s. 
SDW( s). L which is the length of the segment s. 
SDW(s) .. ace which describes the access rights for 
the segment. 
SDW(s).F which is a flag that can be ON or OFF. 
This is the invalid attribute flag mentionE'd in 
Chapter 1. 

The algorithm used by the hardware for executing an instruction 
of the type OPCODE (s,i] is as follows: 

. 

If DBR.L<s, generate a fault. 
Access SDW(s) at absolute location DBR.core + s. 
If SDW(s).F = ON, generate a missing segment 
fault. 
If SDW( 5). L < i, generate a fault. 
If SDW(s).acc is incompatible with OPCODE, generate 
a fault. 
Apply OPCODE to the word whose absolute address is 
SDW( 5) .core+i. 

DS DBR 
J core IL J --. I 

I 

SEGMENT"s" SDW(s) .$ 
I - corelL\acclF • -. 

I 
I 

~ 
.( 

I 
I --I 

word(s,i) • 

Figure 1. Hardware Segmentation in the 645 

The above description assumes that segments are not paged; 
in fact, paging is implemented in the 645 hardware. 

19 



2.2 Paging 

A bit in an SDW indicates whether the corresponding segment 
is paged or not. Another bit in the SDW indicates whether 
the page size is 64 or 1024 words. Analogous bits in the 
DBR serve the same purpose for the descriptor segment. 

However, in the Multics implementation, all segments are 
paged and the page size is always 1024 words. Therefore, 
this description makes the following two assumptions: 

All segments are paged. 
The page size is a constant, K, equal to 1024 
words. 

No further reference will be made to these two bits in the 
SDWand DBR. 

Element i of a segment is the yth word of the xth page of 
the segment, x and y being defined by: 

{
y=imodK 
x = (i-y)/K 

where K is the page size. 

Since K = 1024 = 210 , the processor can compute x and y from 
the 18 bit-binary representation of i by merely dividing i 
into two parts. The right part, which consists of the 10 
least significant bits of i, represents the binary value of 
yj the left part, which consists of the 8 most significant 
bits of i, represents the binary value of x. 
C)ee Figure 2. 

17 o 
I i I 

17 • 9 .r o 
I x 1 y J 

Figure 2. Hardware Interpretation of the WOrd Number 

20 



The 2!&! table (PT) of a segment is an array of physically 
contiguous words in core memory. Each element of this array 
is called a ~ table word (PTW). 

Page table word number x contains the following items. 

PTW(x).core which is the absolute core address of 
page Ix. 
PTW(x).F which is a flag that can be ON or OFF. 
This is the missing page flag mentioned in 
Chapter 1. 

The meaning of DBR.core and SDW(s).core is now as follows: 

DBR.core = Absolute address of the PI of the DS. 
SDW(s).core = Absolute address of the PT of 
segment Is. 

The full algorithm used by the hardware to access word [s,i] 
is (see Figure 3): 

If DBR.L < s, generate a fault. 
Split s into sx and sy such that sy = s mod K and 
sx = (s-sy)/K. 
Access PTW(sx) at absolute location DBR.core + sx. 
if PTW(sx).F = ON, generate a missing page fault. 
Access SDW(s) at absolute location PTW(sx).core 
+ sy. 
If SDW(s).F = ON, generate a missing segment fault. 
If SDW(s).L < i, generate a fault. 
If SDW(s).acc is incompatible with OPCODE, generate 
a fault. 
Split i into ix and iy such that iy = i mod K and 
ix = (i-iy)/K. 
Access PTW(iX) at absolute location SDW(s).core 
+ ix. 
If PTW(ix).F = ON, generate a missing page fault. 
Apply the DPCODE to the word whose absolute 
location is PTW(ix).core + iy. 

21 



N 
N 

p. ~GE"ix"of SEGMENT"s" -- . 
I 

I 
I 

iy 
I 
I 
I 

WRD(s.i) • 

PT of 
SEGMENT"s" 

PTW(ix) 
core 1" 

PAGE"sx" of DS _ 

--+ 
I 
I 

. sr 
I 
I 

SDW(s) 
, 

"tiX 
corelLlacclF 

I • 

, 

Figure 3. Hardware Segmentation and Pagina in the 645 

( ( 

DBR 

~ 
~ corelL J 

PTW~slll 
Isx • ~ore J F 

( 



3. SEGMENT ATTRIBUTES 

3.1. Directory Hierarchy 

The association between the name of a segment and its 
attributes is recorded in a catalogue. This catalogue 
consists of a table with one entry for each segment in the 
system. An entry contains the name of the segment and all 
its attributes (length, memory address, list of users allowed 
to use that segment with their respective access rights, date 
the segment was created, etc.). 

In Multics·this catalogue is divided into. several segments 
called directories, which are organized into a tree struc­
ture. A naming convention permits one to search the tree 
structure for a given name without having to search all 
directories. 

A segment name is a list of subnames reflecting the position 
of the entry in the tree structure, with respect to the 
beginning of the tree or root directory. By convention, 
subnames are separated by the character ">". Each subname 
is cal1ed.an entryname and the list of entrynames is called 
a pathname. 

There are two types of directory entries called branches and 
links. A branch is a directory entry which contains all 
attributes of a segment while a link is a direct.ory entry 
which contains the pathname of another directory entry. 
This chapter will deal only with entries of the branch type. 

!h! pathname .!! the only .!l!!!!!! ..Ev which ~ segment.£!!! ..E! 
searched !2! in the directory hierarchy. 

The attributes associated with a segment whose pathname is 
ROOT> A> B> C are found as follows (see Figure 4): 

Search the root directory for an entry whose entry 
name is A. This entry contains attri~utes for the 
directory segment whose pathname is ROOI' > A. These 
attributes permit one to locate the directory 
ROOI'> A in memory. 

23 



Search directory ROO!' > It. for an entry whose entry 
name is B. This entry contains attributes for the 
directory segment whose pathname is ROOT > A> B. 
Theae attributes permit one to locate the directory 
ROOT > It. > B in memory. 

Search directory ROOT > It. > B for an entry whoae 
entry name i. C. This entry containa attributes fo.­
the segment ROOT > It. > B > C. 

24 



lOOT> A> B > C 

F1lura 4. Directory Hiararchy 

25 

ttributes 
ttributes 

Squara. ara diractory saaments. 
Circle. are non-directory •• amants. 



3.2. Operations on Segment Attributes 

All operations on segment attributes are done by supervisor 
primitives. There is a set of primitives available to the 
user which allow him, for example, to: 

Create a segment. 
Delete a segment. 
Change the entryname of a directory entry. 
Change the access rights of a segment. 
List a directory. 

Any of these operations is performed on behalf of a user by 
the supervisor only if the user has the right to perform 
them. 

Some further details about one of these operations, segment 
creation, are important to an understanding of the topic of 
segment accessing developed in the ne~ section. 

Creatins a segment whose pathname is ROOT > A > B > C consists 
,basically of taking the following actions: 

- Check, by searching the directory hierarchy, that 
this segment does not exist already in the system. 

Allocate space for a branch in directory 
ROOT,'> A> B. 

Store in the branch the following items: 

• 

• 

• 

• 

The entry name C. 

The access list, given by the creator. 

The segment map which consists of a secondary 
storage address for each page of the segment. 
This segment map is manufactured by the 
supervisor. 

The segment status "inactive", meaning that there 
is no page table for this segment. 

Once the segment has been created, the user can reference 
it. Note that no segment number has been assigned to the 
segment at creation time, and the only way to refer to it 
1s by the pathname. 

26 



4. SEGMENT ACCESSING 

We are now in a position to understand a description of 
the functions that are provided by the supervisor in order 
to make accessible by the processor segments which are 
referenced by name in a user program. Figure 5 is key to 
an appre'ciation of the Multics virtual memory implemen­
tation. Although. frequent references to Figure 5 follow, 
the full implicat~ons of its contents will not be apparent 
until the entire section has been read. 

4.1. Concept of Process and Address Space 

A process is generally understood as being a program in 
execution. A process is characterized by its state-word 
defining, at any given instant, the history resulting from 
the execution of the program. 

A process is also characterized by its address space. The 
address space is the set of processor addresses that this 
process can use to reference the memory. In Multics the 
address space of a process is defined as the set of segment 
numbers that the process can use to reference segments in 
the virtual memory. As explained in Chapter 1, a segment 
number can be used to reference the virtual memory only 
if it has been associated with a segment name, i.e., a 
pathname. This association [pathname, segment number] 
is recorded in a table called the Known Segment Table (KST) 
which defines the address space of the process. There is a 
one-to-one correspondence between Multics processes and 
address spaces. The action of adding a new pair [pathname, 
segment number] in a KST ls referred to as making the seg­
ment with that pathname known to the process. 

4.2. Making a Segment Known to a Process 

Each t-imea segment is referenced ina process by its 
pathname, the pathname must be translated into a segment 
number in order to permit the processor to address the seg­
ment. This translation is done by the supervisor using the 
KSTassociated with the process. The KST is an array 
organized such that the entry number "s", KSTE(s), contains 
the pathname associated with segment number s. See Figure 5. 

27 



If the association rpathname. segment number) is found 
in the 1ST for this process. then the seament is known to 
the process and the segment number can be used to referenc~ 
the sepent. 

If the association [pathname. segment number) is not found 
it means that this is the first time the segment is refer­
enced in the process and the segment has to be made known. 
This is done by assigning an unused segment number "s" in 
the process and by establishing the pair [pathname, segment 
number] in the KST by recording the pathname in KSTE(s). 
Furthermore, the directory hierarchy is searched for this 
pathname and a pOinter to the corresponding branch is 
entered in KSTE(s) for later use (see Section 4.3.). 

This stage is fundamental because, in the Multics system. 
it is impossible to assign a unique segment number to each 
segment. The reason is that the number of segments in the 
system may be larger than the number of segment numbers 

. available in the processor. 

When a segment is made known to a process by segment number 
"s" its attributes are not placed in SDW(s) of the descrip­
~or segment of that process. SDW(s) has been initialized 
with an invalid attribute flag. Therefore, the first 
reference in this process to that segment by segment number 
"s" will cause the processor to generate a fault. In Multics 
this fault is called a "missing segment fault" and transfers 
control to a supervisor module called the segment fault 
handler. 

4.3. The Segment Fault Handler 

Upon the occurrence of a missing segment fault, control is 
passed to the segment fault handler whose function is to 
store the proper segment attributes in the appropriate SDW 
and to set the invalid attribute flag OFF in the SDW. 

This information, we recall, consists of: 

The page table address. 
The length of the segment. 
The access rights of the user 
segment. 

28 

with respect to the 

.--

.-



The information initially available to the supervisor upon 
occurrence of a missing segment fault is: 

The segment number s. 
The process identification. 

The only place where the .needed information can be found 
is in the branch of the segment. Using the process 
identification, the supervisor can find the KST for this 
process. It can then search this KST for the segment number 
s. Having found the KST entry for s, it can find the 
required branch since a pointer to the branch has been 
stored in the KST entry when the segment was made known to 

o! that process. See Section 4.2. 

Using the active switch (see Figure 5) in the branch, the 
supervisor can determine whether or not there is a page table 
for this segment. Recall that this switch was initialized 
in the branch at segment creation time. If there is no page 
table, one must be constructed. A portion of core memory is 
permanently reserved for page tables. All page tables are 
of the same length and the number of them is determined at 
system initialization. 

29 



.. 

... 

I I 

... 

I 
I 
I 

.. .. ,.. .. 
& i 

I 

t 

" . 

.. .. .... 
iii. ;:;: 
• • 

.I: I • u .. !) i .. ... .. 
t .. .. .. • • a .I: • .. 04 N , J ! • II I • ~ DB • 

........ .. . . 

-. 

I 

. . 

." 

· • · • · · • • 

• 
~ 

! .. 
E ... 

r0-

t' I 
~ 1 
i !: ... > • • ... u o ... .. 
t i • 
J ! ... .. .. 
o ... i 
j i 
• .. o .. 
8 1 
.: :I 

I ~ .. 
u .. ... 

i i ... .. 
!~ r JIft;" 
Go 1 ... 

~ 1 ! ; 
~ II ~ • 

t ii i ! 
: i . a 

• 
I 

.-



The supervisor divides these page tables into two lists: 
the "used list" and the "free list". Manufacturing a page 
table (PT) for a segment could consist only of selecting 
a PT from the free list, putting its absolute address in 
the branch and moving it from the free to the used list. 
If this were actually done, however, then the servicing 
of each missing page fault would require access to a 
branch since the segment map is kept there. 

Since all directories cannot be core-resident, page fault 
handling could thereby require a secondary storage access 
in addition to the read required to transport the page 
itself into core. Although this mechanism works, effi­
ciency considerations have led to the "activation" 
convention between the segment fault handler and the page 
fault handler. 

4.3.1. Activation. A portion of core memory is permanently 
reserved for recording attributes needed by the page fault 
handler, i.e., the segment map and the segment length. 
This portion of core is referred to as the active segment 
table (AST). The AST contains one entry (ASTE) for any 
segment that has a PT. A PT is always associated with an 
ASTE, the address of one inplying the address of the other. 
They may be regarded as a single entity and will be 
referred to as the [PT,ASTEJ of a segment. 

A segment which has a [PT,ASTEJ is said to be active. 
The property of being active or not active is an attribute 
of the segment and, therefore, has to be recorded in the 
branch. When this active switch is set ON it means that 
both the segment map and the segment length are no longer 
in the branch but are to be found in the segment's 
rPT,ASTE) whose address has been recorded in the branch 
during "activation" of the segment. 

To activate a segment the supervisor must: 

Find a free [PT ,ASTEJ. Assume temporarily that at 
least one is available. 

Move the segment map and the segment length from 
the branch into the ASTE. 

31 



Set the active switch in the branch. 

Record the pointer to rPT,ASTEJ in the branch. 

Having defined activation, the actions taken up to now by 
the segment fault handler cancbe summarized as: 

Use the segment number s to access the KST entry. 

Use the KST entry to find the branch. 

If the active switch is OFF, activate the segment. 
If it is ON, then activation is unnecessary at this 
time as the. segment was already activated for 
another process. 

By pairin~ an ASTE with a PT in core, the segment fault 
handler has guaranteed that the segment attributes needed 
by the page fault handler are core-resident, thus per­
mitting efficient page fault servicing. 

4~3.2. Connection. Now that the segment is active, the 
corresponding SDW must be "connected" to the segment. 

To connect the SOW to the segment the supervisor must: 

Get the absolute address of the PT, using the 
[PT,ASTEJ painter kept in the branch, and store 
it in the SOW. 

Get the segment length from the ASTE and store it 
in the SOW. 

. . 
Get the access rights for the user from the branch 

'." .:~. and store them in the SOW. 

Turn off the flag which caused the fault from the 
SDW. 

32 



Having defined activation and connection, segment fault 
handling can finally be summarized as: 

Use the segment number s to access the KST entry. 

Use the KST entry to find the branch. 

If the active switch in the branch is OFF, activate 
the segment. 

Connect the sow. 

·Note that segment sharing in core is "automatically" 
guaranteed by the use of the active switch and [PT,ASTEj 
pOinter kept in the segment branch since all SOW's describ­
ing this segment will point to the same PT. 

Now that the segment has an SOW pointing to the PT, the 
hardware can access the appropriate page table word. If 
the page is not in core, a missing page fault occurs, 
transferring control to the supervisor module called the 
page fault handler. 

4.4. The Page Fault Handler 

When a page fault occurs the page fault handler is given 
control with the follOWing information: 

The PT address. 
The page number. 

The information needed to bring the page into memory is: 

The address of a free block of core memory into 
which the page can be moved. 

The address of the page in secondary memory. 

A free block of core must be found. This is done by using 
a data base called the core map. The core map is an array 
of elements called core map entries (CME). The nth entry 
contains information about the nth block of core (the size 
of all blocks is 1024 words). The supervisor divides this 
core map in two lists; the used list and the free list. 

33 



The job of the page fault handler is to: 

Find a free block of core. (Assume temporarily 
that there is at least one free block in the 
free list.) 

Access the ASTE associated with the PT and find 
the address in secondary memory of the missing 
page. 

Issue an I/O request to move the page from 
secondary memory into the free block of core. 

upon completion of the I/O request, store the 
core address in the PTW and remove the fault from 
the PTW. 

4.5. Page Multiplexing 

It was assumed that a free block of core was available in 
the core map free list; however, this is not always the 
case since there are many more pages in the virtual memory 
than there are blocks of core. Therefore, in order to get 
a free block of core, the page fault handler may have to 
move a page from core to secondary memory. This requires: 

An algorithm to select a page to be removed. 

Knowing the address of the PTW which holds the 
address of the selected page in order to set a 
fault in it. 

Knowing where to put the page in secondary memory. 

The selection algorithm is based upon page usage. The 
hardware provides valuable assistance by the fact that, 
each time a page is accessed,. a bit is set ON in the 
corresponding PTW. This bit is called the ~ bit. 

34 



The selection algorithm will not be described here; however, 
it should be noted that candidates for removal are those 
pages described in the core map used list. Therefore, each 
core map entry which appears in the used list must contain 
a pointer to the associated PTW in order to permit one to 
examine the used bit. The action of storing the PTW pOinter 
in the core map entry must be added to the list of actions 
taken by the page fault handler when a page is moved into 
core (see Section 4.4.). 

A fault is stor.ed in the PTW •. 

The secondary storage address for the page is found 
in the ASTE whose address can be computed from the 
P'I'Waddress. 

An I/O request is issued to remove the page to 
secondary storage. 

Upon completion of the I/O request, the core map 
entry is removed from the used list and put in the 
free list. 

By this mechanism, blocks of core are multiplexed among all 
pages of all active segments in the system. 

It is important to realize that a page is either in core or 
in secondary storage. There is no such thing as a "copy" of 

. a page. When a page is moved from secondary storage to core, 
its secondary storage address, located in the ASTE, could be 
freed; it is no longer needed since the address of the page 
is now in the PTW. When the page is to be removed, a free 
block of secondary storage could be assigned to it. It is 
only for practical reasons that the block of secondary 
storage is not freed each time a page is moved into core. 

Page multiplexing maintains a "perpetual motion" between core 
and secondary storage of pages of active segments. If the 
set of active segments in the system were invariant, then 
pages of other segments would never have a chance to be in 
core. 

35 



4.6. [PT,ASTE] Multiplexing 

In the description of segment fault handling, when a segment 
had to be activated, a pair [PI' ,ASTEJ was assumed available 
for assignment to that segment. In fact, the number of 
[PI',ASTEJ pairs is limited in the system and is, by far, 
smaller than the number of segments in the virtual memory. 
Therefore, these [PT,ASTE] pairs must be multiplexed among 
all segments in the virtual memory. 

This means that making a segment active may il11'ly making 
another segment inactive thereby disassociating this other 
segment from its [PT,ASTE]. Since each process sharing the 
same segment will have the address of the PT in an SOW it is 
essential to invalidate this address in all SOW's before 
removing the page table. It is also essential to move to 
secondary memory all pages of that segment which are in core 
before removing the [PT,ASTE], since the ASTE is needed to 
remove a page. Then, and only then, can (PT,ASTEJ be 
disassociated from the segment. 

This operation requires: 

An algorithm to select a segment to be deactivated. 

Knowing all SOW's that contain the address of the 
page table of the selected segment in order to 
invalidate this address. 

The removal of all pages of the selected segment 
that are still in core. 

Moving the attributes contained in the ASTE back to 
the branch and changing the status of the segment 
from active to inactive in the branch. 

The selection algorithm is here. again based. on segment usage. 
The only thing of interest at this point is that selection 
is done by scanning the ASTE used list. Therefore, the ASTE 
must provide all the information needed for removing the 
[PT,ASTEJ. This means that during activation and connection 
this information must be made available as explained below. 

36 



During activation, a pOinter to the branch must be placed in 
the ASTE; during connection, a pOinter to the SOW must be 
placed in the ASTE. Since more than one SOW is connected 
to the same PT when the segment is shared by several pro­
cesses the supervisor must maintain a list of pOinters to 
connected SOW's. This list is called a connection list. 
See Figure 5. ----

Now we are in a position to understand how a [PT,ASTE] can be 
disassociated from a segment. After the selection algorithm 
decides on an ASTE to be freed, actions to be taken consist 
of two steps called "disconnection" and "deactivation". 

Disconnection consists of storing a segment fault in each 
SOW whose address appears in the connection list in the 
ASTE. 

Deactivation consists of removing all pages of this segment 
that may be in core, moving the segment map from the ASTE 
back to the branch, resetting the active switch in the branch 
and putting the [PT,ASTE] in the free list. 

4.7. Segment Number Multiplexing in a Process 

The number of segments that a process can describe in its 
descriptor segment is limited to 218. It is unlikely that 
a process needs to access more than 218 segments from the 
time it is created to the time it is destroyed. However, 
if this should happen, a facility is provided to a process 
to remove an association [pathname, segment-number] by an 
explicit call to the supervisor. This action is referred to 
a s making a segment unknown. When segment A which is known 
to a process by the segment number "s" is made unknown to that 
process, no attempt is made by the supervisor to remove 
residual [s,iJ pairs that may have been generated and stored 
during the time that s was assigned to A. Making segment A 
unknown to the process implies freeing KSTE(s). If sub­
sequent ly another segment, say B, is made known to the process, 
the supervisor may assign this unused segment number s to 
segment B, entering the pathname B in KSTE(s). From this 
point qn, any reference by segment number s in this process 
will cause segment B to be accessed. Therefore, it is 
entirely the responsibility of the programmer, after segment 
A is made unknown, not to reuse any residual pair rs,i] that 
was generated for accessing segment A. 

37 



4.8. Directory Entry Multiplexing 

When a segment is deleted, the branch of that segment is 
deleted. No attempt is made by the supervisor to remove 
residual KST entries that contain a pOinter to this branch. 
However, the supervisor can detect references by residual 
segment numbers, to segments which have been destroyed as 
follows: . 

When segment A is created, the supervisor assigns a 
unique number NA to segment A and stores it in the 
branch. 

When segment A is made known to a process P by the 
segment number s, NA is copied from the branch to 
KSTE(s) for process P along with the pOinter to 
branch A. 

If segment A is deleted by any process, the supervisor 
disconnects the corresponding SDW in process P, if 
it was connected, and deletes the branch together with 
NA• 

If the same directory entrY is reused to record the 
branch information of another segment B, a new unique 
identifier NB will be stored in the branch. 

Now, if process P uses the segment number s in order 
to access segment A, a segment fault will occur; the 
KST entry contains a pOinter to the directory entry 
which is supposed to be the branch A. But by compar­
ing the NA of the KST entry and NB of the directory 
entry, the supervisor can discover that segment A 
has been deleted. 

Therefore, it is possible to detect the deletion of a branch 
even though its former directory entry has been reused for 
another segment. 

5. STRUCTURE OF THE SUPERVISOR 

Up to now supervisor functions have been described, but 
supervisor structure has not been discussed. In this section, 
the different components of the supervisor are covered and the 
ability of portions of the supervisor to partially utilize 
the virtual memory is demonstrated. 

38 

\-



5.1. Functional Modules 

Three functional modules can be identified in the supervisor 
describedj.they are called directory control (DC), segment 
control (SC), and page control (PC). . 

5.1.1. Directory Control. Directory control is that part of 
the supervisor which can manipulate all segments in the 
system. DC identifies a segment by its pathname which 
un.iquely defines a segment in the system. Data bases that 
are manipulated- by DC are the directories and KST's of all 
processes (see Figure 6). DC provides all primitives to 
simulate operations on segment attributes; it also provides 
the assignment of a segment number to a segment within a 
process. 

5.1.2. Segment Control. Segment control is that part of 
the supervisor which can manipulate only those segments which 
are known to at least one process. SC identifies a segment 
by either its segment number within a particular process, 
which uniquely defines a sewnent in the system, or by its 
[PT',ASTEJ address which uniquely defines an active segment 
in the system. Data bases that are manipulated by SC are 
directories, KST's of all processes, descriptor segments of 
all processes and [PT,ASrE] pairs of all active segments. 
SC provides the functions of activation, connection, dis­
connection and deactivation. 

5.1.3. Page Control. Page control is that part of the. 
supervisor which can manipulate only those segments which 
are active. PC identifies a segment by its [PT,ASTEJ 
address which uniquely defines an active segment in the 
system. Data bases that are manipulated by PC are [PT ,ASTEJ 
pairs of all active segments and the core map. PC provides 
the mechanism to move pages ·of active segments between 
secondary storage and core. 

39 



DIRECTORY 
CONTROL 

.... .... ... 

SEGMENT 
CONTROL 

Figure 6. Supervisor Functional Modules and Data Bases 

5.2. Use of Segmentation in the Supervisor 

Previous to this no assumptions were made about the type of 
addressing used by the supervisor. It could be written so 
as not to use segment addressing of course; but organizing 
the supervisor into procedures and data segments permits one 
to use in the supervisor the same standard conventions that 
are used in a user program. For in~tance~ the CALL-SAVE­
RETURN conventions made for user programs can be used by the 
supervisor, the standard way to manufacture pure procedures 
in a user program can be used in the supervisor, etc. Thus, 
it seems desirable to use segmentation in the supervisor, 
and the following (temporary) assUl'lq.>tion will be made: 

Assumption 1: 

a. The address space of the supervisor is entirely defined 
by a desc~iptor segment. 

b. All segments used by the supervisor ere always in core. 

Assumption l.b is not realistic, however, since it generally 
is not possible to dedicate enough core to contain the entire 
supervisor. It is, therefore, interesting to determine 
whether there is a way to use the page fault handler to 
transport supervisor as well as user pages. 

40 



5.3. Use of PC in the Supervisor 

For the purpose of this paper, let us assume the validity of 
the following statement. "Page fault handling for a page 
x must be performed without referencing page x". 

It is certainly possible to design a PC module which allows 
recursive page faults provided that the above condition is 
always satisfied. Each recursive invocation of the page 
fault handler should use a set of pages which does not include 
any of the pages that caused the previous invocations; 
furthermore, the number of recursive invocations must be 
guaranteed to be finite. The technique that has been chosen 
in Multics for page fault handling is to fix this finite 
number to 1 and thus no recursive page faults will ever 
occur. This decision has been made for reasons of effi­
ciency and design simplicity. Therefore, it is assumed that 
all segments used in PC are always in core. 

We can observe that the page fault handler need not know if 
a missing page belongs to a user Or to the supervisor; it 
only expects to find the information it requires in the 
[PT,ASTEJ of the segment to which the missing page belongs. 
Therefore, if all segments used in SC and DC are always 
active, then their pages need not be in core since PC can 
load them when they are referenced. 

Thus, assumption 1 can be replaced by the following one 
(aga in tempora ry) : 

Asstmtption 2: 

a. The address space of the supervisor is entirely defined 
by a descriptor segment. 

b. All segments used in PC are always in core. 

c. All segments used in SC and DC must be active and 
connected. 

This convention turned out to be satisfactory i.n the Multics 
implementation except for directories. Recall that segments 
used by SC and DC are: (a) SC and DC procedures, (b) KST's 
and OS's, and (c) Directories. 

41 



The number of segments in class (a) and (b) is relatively 
. small. On the contrary, the number of directory segments 

may be very large and keeping them always active is not a 
realistic app~ach, since a large number of [PT,ASTEJ pairs 
would have to be permanently assigned to them. Therefore, 
it is desirable to use SC to activate and connect directory 
segments. 

5.4. Use of Segment Control in the Supervisor 

A necessary condition for handling a segment fault for 
segment x in a process is that segment x be known to that 
process. If SC is to handle segment faults taken by the 
supervisor for directories, all directories must be known 
to the supervisor. This means that the address space of 
the supervisor must be defined not only by its descriptor 
segment but also by KST, which contains one entry for .each 
directory. After its KST has been so ipitialized, the 
supervisor looks like any other process. 

Assuming that all directories are known to the supervisor 
process, but not necessarily active, a supervisor reference 
to a directory x may cause a segment fault. Recall that 
when handling this fault, the segment fault handler must 
reference the parent directory of segment x, where the 
branch for x is located. This reference to the parent of 
x could, in turn, cause a recursive invocation of the seg­
ment fault handler. Recursive invocations can propagate 
from directory to parent directory up to the root. If there 
is a way of stopping the recursion, then any segment fault 
on directories can be handled. . 

One way of stopping the recursi~n is to keep the root active 
and connected, so that a segment fault never occurs for it. 

Asstmlption 2 can now be replaced by asstmlption 3, again 
temporary. 

Ass'Lm1J)tion 3: 

a. The address space of the supervisor process is defined 
by a descriptor segment and a KST. 

b. All segments used in PC are always in core. 

c. All segments used in SC and DC are always active and 
connected, except directories. 

42 

-' 



d. The root directory is always active and connected. 

e. All directories are known to the supervisor pro~ess. 

However, it is unsatisfactory to keep all directories known. 
We would like to keep known only those which may possibly be 
used in a segment fault handling, provided that other 
directories can be made known by directory control when 
needed. 

5.5. Use of the Make Known Facility in the Supervisor 

Making a segment x known implies searching for its pathname 
in the KST. If not found, the parent of x must first be 
made known and so on up to the root. If the root directory 
is always known to the supervisor, then any directory can 
be made known to the supervisor by the supervisor itself. 

Assumption 3 will now be replaced by the final assumption: 

Final Assumption: 

a. The address space of the supervisor process is defined 
by a descriptor segment and a KST. 

b. All segments used in PC are always in core. 

c. All segments used in SC and DC, except directories, are 
always active and connected. 

d. The root directory is always active and connected. 

e. If a segment is known to any process, its parent 
directory must be known to the supervisor process. 

f. The root directory is always known to the supervisor 
process. 

Given the above assumptions, supervisor segments as well as 
user segments can be stored in the virtual memory that the 
supervisor prOVides. 

43 



5.6. The Supervisor Address Space 

Unlike most supervisors, the Multics supervisor does not 
operate in a dedicated process or address space. Instead, 
the supervisor procedure and data segments are shared among 
all Multics processes. Whenever a new process is created, 
its descriptor segment is initialized with descriptors for all 
supervisor segments allOWing the process to perform all of the 
basic supervisory functi.ons for itself. The execution of the 
supervisor in the address space of each process facilitates 
communication between user procedures and supervisor procedures. 
For example, the user can call a supervisor procedure as if 
he were calling a normal user procedure. Also, the sharing 
of the Multics supervisor facilitates simultaneous execution, 
by several processes, of supervisory functions, just as the 
sharing of user procedures facilitates the simultaneous 
execution of functions written by users. 

Since supervisor segments are in the address space of each 
process, they must be protected against unauthorized 
references by user programs. Multics provides the user 
with a ring protection mechanism which segregates the seg­
ments in his address space into several sets with different 
access privileges. The Multics supervisor takes advantage 
of the existence of this mechanism and uses it, rather than 
some other special mechanism, to protect itself. 

6. SUMMARY 

If only a few pOints discussed here were to be remembered, 
they should be those mentioned below. They have been separ­
ated into two classes: the pOint of view of the user of the 
virtual memory, and the pOint of view of the supervisor 
itself. 

User Point of View 

- The Multics virtual memory is capable of containing 
a very large number of segments that can be identified 
by their symbolic names. 

Segment attributes are stored in special segments 
called directories, which are organized into a tree 
structure; there is a naming convention, of which the 
user must be aware, by which a segment name must be 
the pathname of its branch in the direct0ry tree 
structure. 

44 



.. Any operation on directory segments must be done via 
a call to the supervisor. 

- Any operation on a non-directory segment can be done 
directly in accordance with the access rights that 
the user has for this segment; any word of any 
segment which resides in the Virtual memory can be 
referenced with a pair [pathname,i) by the user. 

-'A process can have only a limited number of segments 
in its address space. If the programmer wants to 
overlay a segment A by a segment B in the process 
address space, he can call the supervisor to do it 
but he must be aware of the dangers that this 
operation may present. 

Supervisor Point of View 

- The supervisor must simulate a large segmented 
memory directly addressable by segment name such that 
any access to the memory is submitted to access rights 
checking. 

- It maintains a directory tree where it stores all 
segment attributes. It can retrieve the attributes 
of a segment given the pathname of that segment. 

- The supervisor itself is organized into segments and 
runs in the user process address space. 

- Any segment, be it a di.rectory or a non-directory 
segment, is identified by its pathname but can be 
accessed only using a segment number. For each 
segment name the supervisor must assign a segment 
number by which the processor will address the 
segment in the process. 

- The processor accesses a word of a segment through the 
appropriate SDW and PTW and subject to the access rights 
recorded in the SDW. 

- A segment fault is generated by the processor whenever 
the page table address or access rights are missing 
in the SDW. The supervisor then, using the KST entry 
as a stepping stone, accesses the branch where it 
finds the needed information. If a PT is to be 
assigned, the supervisor may have to deactivate another 
segment. 

45 



- A page fault is generated by the processor whenever 
a PTW does not contain a core address. The supervisor 
then, using the ASTE associated with the PT, moves the 
missing page from secondary storage·to core. This may 
require the removal of another page. 

46 



Chapter 3 

DIRECTORY STRUCTURE 

1. INTRODUCTION 

A virtual memory system must include some means of storing 
and retrieving information. A segment is the unit of 
information in the Multics virtual memory which is so stored 
and retrieved • 

. 
All information about a segment such as its length and its 
location are called "attributes" of the segment. If the 
attributes of a segment can be located, then the segment 
itself can be found. ' 

The attributes of segments are stored in special segments 
called "directories" and the directories are organized into 
a tree structure called "the directory hierarchy". All of 
the attributes of one segment are recorded in one entry in 
a directory. The entries in a directory can be referenced 
by literal string names called "entrynames". 

The discussion which follows gives some of the details of 
the directory hierarchy structure, the naming of entries and 
segments and the contents of directory entries. Segment 
creation and deletion are also described since those 
operations are closely related to the creation and deletion 
of the attributes of a segment. 

Other chapters describe the details of the search for a 
segment and how segments themselves are handled. 

2. THE DIRECTORY HIERARCHY AND TERMINOLOGY 

2.1. The Structure 

A tree structured directory hierarchy is shown in Figure 1. 
Directory segments are shown as squares and non-directory 
segments are shown as circles. The lines between segments 
are branches of the tree structure and in Hultics, denote 
the fact that the attributes of a segment at the l~er end 
of a line are recorded in an entry in the directory at the 
upper end of the line. Thus the attributes of the segment 
labeled C in Figure 1, are recorded in the directory labeled 
B. The directory entries in which the attributes of segments 
are recorded are called "branch entries" or "branches". 

47 



A directory is said to be the parent of a segment if it 
contains the branch with the attributes of that segment. 
The parent directory of a segment is said to be "inunediately 
superior to" the segment and the segment is "immediately 
inferior to" its parent. In Figure 1, the directory at the 
top of the structure labeled "root" and called "the root 
directory" or simply "the root" is the parent of or 
immediately superior to the segment labeled D. The root 
is superior to the segment labeled E, but not immediately 
superior to E. The segment labeled E is inferior to the 
root and the segment labeled D is immediately inferior 
to the root. 

The root is the starting point in the search for segments. 
Note that the root has no branch. rts attributes, among them 
its location, are assumed to be known to the modules which 
perform the search. 

There is one and only one branch per segment in the Multics 
system. This rule arose from the difficulty of finding 
and updating all the branches of a segment if one of its 
attributes should be changed. For cases in which it is 
useful to have a branch in more than one directory a link 
(see below) can be used. 

2.2. Entrynames and Pathnames 

An entryname is used to locate an entry in a given directory, 
but a "pathname" is needed to search the directory hierarchy 
for a particular entry. In order to uniquely locate a 
particular entry in a directory, an entryname must be unique 
in that directorye However, an entry can have several 
names (synonyms). 

A pathname is the concatenation of an ordered sequence of 
entrynames. The entries must be located in the order they 
were named in order to follow the path from the root to the 
desired entry. The entrynames are separated by the character 
">,, • 

The name of-a segment is the pathname which addresses its 
branch. 

48 



B 

c 

x 

A 

z 

root 

/ 
/. 

....... / 
....... , / 

....... L " ------' 

/ 
/ 

/ 

D 

/ 

/ 

/ 

O 
Non-directory 
segments 

D 
Directory 
segments 

Figure 1. Tree structure directory hierarchy 

49 

E 



The narnp <;; root > A and root > D > E > Z are examples of 
pathnarn(,s for segments in the hierarchy shown in Figure 1. 
The name root> A > B > C > Z is the name of the segment 
p,)intl.~;:·_() by the vertical arrow. Since all pathnames begin 
with ('.;.)': -:-., the leading symbol,> j s use'd to mean root >. 
The 118',:"" ;.Ihove become> A, > 0 > E > Z and> A > B > C > Z. 

An exaJ~le of the search for the attributes of the segment 
> B > Z in Figure 2 i s in~tructive. The root is searched 
for a branch wi th the name B. The segment > B is accessed 
using the information in this branch. Next, the directory 
segment> B is searched for a branch with the name Z. 
When the branch Z is found in the directory> B then the 
search is finished. 

It must be emphasi.zed that the only way in which the search 
modules can find a segment is through use of a pathname. 

A pathname can have synonyms since the entrynames from which 
it is constructed can have synonyms. However, a given 
pathname cannot lead to more than one segment. 

2.3. Links 

Then.~ can exist in a directory a second type of entry in 
.:,1 '" i 'r' 'C" the hnn:('h entry. This is called a "link entry" 
L' ..• '. i:l.'~"'. A link entry has a name just as branch entry 
dr,,"· ;:nd 1 ike a branch is used to access a segment or its 
at t r i hl.ltes. A link contains no attributes but only the 
";'dtlma-;l('" ,-,f anotht'r entry. In Figure 1, the dotted line 
labeled L is an example of a link. The entryname of the 
~ ; 'lk is L. Loops such as might be generated by tw.O links 
d11Ch reference each other should not be allowed in the 
director) ,liera rchy. 

L;nks are addressed by pathname just as branches are. 
R,"t'crencing the link, > A > B > C > L, in Figure 1, will 
cause accessing of the segment > D > E > X, as that path­
n~~0 is recorded in the link. 

3. DESIGN CONSIDERATIONS 

A directory is needed as a place to look up the addresses of 
ottler segments. Once a directory exists, there are other 
advantages to be gained from it. The directory 1s a 

50 -' 



convenient pla'ce to store the access rights of a user to a 
segment so they may be checked at the same time that the . 
address of the segment is located. It may also be useful 
to reference the attributes of a segment without necessarily 
accessing the segment body, e.g., to find the length of a 
segment. For these reasons, all of the attributes of a 
segment are collected into a list and the lists are stored 
together in a directory. Why then have more than one 
directory? 

root 

B Attributes 

A 
B 

> A 
> B 

Figure 2. Directories and Attributes. 

51 



The most important reason for having multiple directories 
is to avoid the problem of naming conflicts. It is very 
likely that many users will attempt to use the same names 
for the different segments they will create. Long and 
complicated unique names are difficult to remember and 
inconvenient to look up both for people and computers. 
If each user is assigned one or more directories then this 
naming conflict disappears. The key to this simplification 
is to allow the user to reference the segments of a pre­
assigned directory by entryname. Pathnames are constructed 
by prefixing the directory pathname to the user given 
entryname and referencing the desired segments via these 
constructed pathnames. 

There are other advantages to be gained with multiple 
direct<.iries. Directories can be used for classification 
of segments, e.g., all segments of a math library could 
he accessed through a math library directory, > math­
library. Protection is aided since ,access to directories 
(and, therefore, complete classes of segments) can be 
restricted to specific users. 

The tree structure carries two advantages. It allows an 
even better scheme of classification than a linear or limited 
level structure of directories and it also facilitates an 
efficient directed search for a given segment .in the 
hierarchy. 

4. INTERNAL DIRECTORY AND ENTRY STRUCTURE 

Each directory has a small area at its beginning called a 
header which contains pOinters to other areas and items 
in the directory. There is also in the header a count of the 
branches in the directory. The header is followed by an 
array of entries. 

Figure 3 shows a directory with a branch entry and a link 
displayed in some detail. All entries contain the following: 

a name list pOinter, 
a unique identifier and 
a branch or link switch. 

52 



If the entry is a link, it contains a pathname and no 
attributes. If the entry is a branch it also contains 

an access list pOinter, 
a segment map, 
segment length, 
an active switch, 
a PI'-ASTE pointer and 
a directory flag. 

53 

".' t 



r 

HEADER 

rL--'----
! I Name List Pointer 

! I ::~~: ~~;:~~fier(Uid) 

I 
l 

l 

Access List Pointer 

Segment Map 

--------------------
S~gment Length 
Active Switch 
PT-ASTE Pointer 
Directory Switch 

~--------------- _. __ . - --

Name List Pointer 
- .- .--- --- -- .. 

Uni ue Identifier(uid) 
r--~~---------~~~--------

Link Switch 

Pathname 1----------------------_. -------

Figure 3 - Structure of a Directory 

54 

Name List 

Access List 

Name List 



4.1. The Name List Pointer 

A branch or link entry can have several names. These are 
stored in a threaded list. Supervisor primitives exist to 
add names to the list and to delete names from it. The name 
list pointer is a pOinter to the threaded list of names of 
the entry. 

4.2. The Unique Identifier 

The unique identifier, uid, is permanently attached to the 
entry. It cannot be changed or destroyed while the entry is 
in use (contains valid branch or link information). All 
uid's are constructed in part from numbers representing the 
date and an instant during the creation of the entry, so that 
a uid can never be repeated. The uniqueness of the uid for 
each entry in the entire directory hierarchy is thus 
guaranteed. The uid is used to aS$ure that the correct 
segment is being accessed when a segment is referenced or 
activated. Its use will be desc'ribed in more detail in 
Chapters 4 and 5. 

4.3. The Branch or Link Switch 

The branch or link switch is used to tell the search modules 
the kind of information to be found in the entry. 

4.4. Access List Pointer 

The access list pOinter is a pOinter to a threaded list of 
user names and associated access rights. As an example, 
user Tom may have the right to execute the contents of a 
segment and to mOdify the contents of that segment while 
~ser Frank may only be permitted to execute the contents 
of the segment. The access list contains the name's of all 
users permitted to access the segment, and is described in 
detail in a companion paper, "Access Control to the Multics 
Virtual Memory". ' 

4.5. The Segment Map 

As the name indicates, the segment map gives the address of 
the segment in secondary storage. The segment map consists 
of two parts, the device indentifier, did, and a page address 
list. The did is a number which uniquely identifies the 

55 



particular drum, disc or other device on which the segment 
resides. For each page up to a maximum of sixty four, there 
is an address in the page address list which locates that 
page on the device. For unused pages, there is an unassigned 
address. The order of the addr.esses in the address list 
corresponds to the order of the pages in a segment. 

4.6. The Segment Length 

The segment length is given in pages. It is one plus the 
number of the highest page accessed counting from zero. 
There is a maximum of sixty-four pages 'for any segment • 

4.7. The Active Switch 

The active switch, when ON, indicates that some of the segment 
attributes are to be found in the page table,Pl',and its 
associated active segment table entry, ASTE.The segment may 
be in core or secondary storage or partly in both ~hen this 
switch is ON. It is always in secondary stora'gewhen the 
active switch is OFF. 

4.8. The PT-ASTE Pointer 

The PT-ASTE pOinter is a pointer to the location of those 
attributes of the segment in the page and active segment 
tables. It is only valid when the active switch is ON. ,One 
of the attributes found in the active s,egment table at that 
time is the segment map. 

4.9. The Directory Switch 

Finally, the directory switch indicates whet he'%' the segment 
is a directory or not. This informat-ion is used when delet­
ing segments and will also be needed for segment handling 
which is explained in later chapters. 

Other attributes are found in the branch. Some of these 
will be introduced and explained where needed in later 
chapters. 

56 



5. SEGMENT CREATION 

A segment is created by establishing for it a branch in a 
directory. A module is called with the arguments segment 
name (pathname of the segment to be creat~d), access to the 
segment and directory switch. The parent directory of the 
segment to be created is accessed using the pathname argument 
with the final entryname truncated from it. 

To create a segment, information must be written into its 
parent directory. This requires that a hardware address 
be assigned to that directory and, therefore, that the 
directory be assigned a segment number. The assignment 
of a segment number is called "making a segment known to a 
process" and is described in Chapter 4. Subsequent 
addressing is by segment number and the segment control and 
page control modules handle the problems of activating the 
segment and bringing its pages into core. 

When the parent directory has been accessed in this manner, 
a free entry is found in it. The entryname to be given this 
new branch is checked to make sure that it is not already 
in use in the parent directory. Space is allotted to the 
name and access lists and they are moved into their allotted 
places. Pointers to the name and access lists are placed 
in the entry. A uid is created for the new branch by a 
special subroutine and the uid is placed in the branch. 
The segment map is initialized by assigning to the segment 
a device identifier and setting all of the page addresses 
to unassigned. Page control will assign addresses to the 
pages as they are referenced. The branch count of the 
parent directory is then incremented by one. 

At this pOint all that need be done to create a non-directory 
segment has been completed. A test is made to see if a 
directory is being created. If so, the directory being 
created is assigned a segment number and accessed. The 
necessary pointers are placed in its header and its branch 
count is set to zero. Creation of a directory segment is 
now complete. 

An error return with an appropriate comment would have been 
executed if a free entry had not been found or the entryname 
had already been in use or the name and access list area had 
been full. No segment or entry would have been created in 
any of those cases. 

57 



6. SEGMENT DELETION 

As in creation, segment deletion is for the most part 
deletion of a branch entry. However, before £ segment may 
be deleted, several checks must be completed. 

The parent directory of the segment to be deleted is accessed 
as in segment creation. The directory switch is tested to 
see if the segment to be deleted is a directory. If so, it 
is accessed and its branch count is checked. A directory 
cannot be deleted if any branches remain in it since that 
would break the path to all of its inferior segments. If 
there are no branches in the directory to be deleted then 
the execution continues as if it were a non~directory seg­
ment. 

When the directory switch is tested and a non-directory 
segment is to be deleted, then the active switch in the 
branch to be deleted is checked. The segment cannot be 
deleted while this switch is on for that would leave traces of 
the segment in core and possibly even in other processes. 
Therefore, segment control is called to deactivate it. 

Deactivation removes all traces of the segment from core, in 
particular from any descriptor segments and from the page 
table and active segment table entry assigned to this segment. 
(This forces any subsequent reference of the segment by any 
process to execute a segment fault thus referencing the branch 
and seeing that it has been deleted.) Page Control is called 
to free all secondary storage used by the segment to be 
deleted. The branch itself is deleted by zeroing its uid. 
Fina lly, the branch count of the pa rent directory is decre­
mented by one and the segment deletion is complete. 

58 



Chapter 4 

MAKING A SEGMENT KNOWN TO A PROCESS 

1. INTRODUCTION 

Segments in Multics are identified system-wide, to all users 
and processes, by their pathnames. However, the hardware 
references segments by numbers called segment numbers. . 
Therefore, during execution a segment m.nnber must be associa­
ted with each segment. The segment number associated with any 
particular segment may differ from one process to another. 
A segment is said to be "known to a process" (or simply "known") 
while at least one of its pathnames is associated with a seg­
ment number and this association is recorded in a per process 
segment called the Known Segment Table. 

A segment is "unknown to a process" or "unknown" until it has 
been made known and can again be made unknown to a process 
by terminating it, that is, by erasing the record of the 
pathname-segment number association from the Known Segment 
Table, KST. This breaks the association between pathname and 
segment number since the record in the KST is the only record 
of that association. 

This chapter describes the way in which segments are made known 
to a process and the way in which they are made unknown. 

2. DATA BASES 

There are two major da"ta bases involved in making a segment 
known. These are the directory hierarchy and the Known 
Segment Table, KST. Directory structure and contents are 
discussed in Chapter 3. The KST is discussed in this 
section. 

The KST is a" segment with an array of KST entries. Figure 1 
is a diagram of the KST with one KST entry, KSTE, displayed 
in detail. A KSTE contains: 

a name list pointer 
a segment number 
a unique identifier, uid 
a branch pointer 
a directory switch 
an inferior count 
and other information. 

59 



The header shown in Figure 1 contains housekeeping information 
pertinent to the KST such as a pointer to the next free KSTE. 
The v~rious elements in the KSTE are explained below. 

2.1. The Name List Pointer 

The name list pointer is a pOinter to a threaded list of 
pathnames. The pathnames are all the different synonyms 
which have so far been used by this process to refer to the 
same segment, the one associated with this KSTE. 

2.2. The Segment Number 

Note that there is no segment n~ber in a KSTE. The index 
of a KSTE in the KSTE array is the segment number associated 
with that KSTE. It is, therefore, the segment number of the 
segment whose name is pointed to by the name list pointer. 
In Figure 1, "s" is the segment number of the segment whose 
names are in the pathname list of the expanded KSTE. 

2.3. The Unique Identifier, uid 

The uid is copied from the branch of the segment when the 
segment is made known. The uid uniquely identifies a branch 
and is described in Chapter 3. 

2.4. The Branch Pointer 

When a segment is made known a pOinter to its branch is 
placed in its KSTE. The presence of the branch pOinter in 
the KSTE is necessary since the name of the segment could 
be changed while the segment is known. It also allows the 
segment-fault handler easy access to the attributes of a 
segment without having to repeat the search for the branch. 

60 



Figure 1. Structure of the Known Segmen~ Table (KST) 

61 



2.5. The Directory Switch 

The directory switch simply tells whether a segment is a 
directory or not. It is present because of a special rule 
rega~ding the handling of directories when making them 
unknown. 

2.6. The Inferior Count 

The inferior count is used for directory segments. It is a 
count of the number of immediately inferior or daughter 
segments known in the process to which this KST belongs. 

2.7. Other Information 

There is other information in a KSTE which is put there for 
use in access control, for example, but which is not perti­
nent to this discussion. No further mention will be made 
of it. 

3. MAKING A SEGMENT KNOWN 

The procedure executed in order to make a segment known is 
illustrated. by the flow chart in Figure 2. Entry is through 
a call to MAKE-KNOWN. The pathname of the segment to be 
made known is passed to MAKE-KNOWN and the segment number 
and a code are returned. 

The KST is searched for the pathname and if the pathname is 
found, MAKE-KNOWN returns a segment number. The third 
argument, code, is set to inform the caller whether or not 
the segment just made known is a directory directory. If 
the pathname passed to MAKE-KNOWN was not found in the KST, 
then it is tested to determine if it is the root directory 
pathname. This step is very important as it assures an end 
to the recursive loop which is described below. 

If the pathname is not that of the root directory, then the 
pathname is parsed and is broken into two parts, a new path­
name, and an entry name. The new pathname is the pathname 
of the directory in which the new entry name can be found. 
For example, if > A > B > C > D were the original pathname, 
then the parse would yield the new pathname > A > B > C 
and the entry name D. MAKE-KNOWN is then called recursively 
to make the new directory pathname known. This recursive 
loop is executed until a directory pathname is found in the 
KST or until the root directory is encountered and made 
known. 

62 



A call to make the root directory known always terminates 
the recursive loop. Since all pathnames begin with the root 
pathname it is assured that the recursive loop will always 
be terminated. 

When MAKE-KNOWN returns from a recursive call the code 
argument is checked to make sure that a directory was found. 
The directory is searched for the entryname separated from 
a previous pathname by the parse. 

An example is useful at this point. Assume that the segment 
with pathname > A > B > C is to be made known and that MAKE­
KNOWN has been called twice (once recursively) for this 
segment. On the initial call the pathname > A > B > C was 
passed to MAKE-KNOWN and on the second call (first recursive 
call) > A > B was passed to it. Assume that directory 
segment > A > B was found to be known, then upon return from 
the last call (the recursive call) the code argument is 
tested to see if > A > B is a directory. If so, then entry 
C is looked up in > A > B. We now return to the description 
of MAKE-KNOWN. 

If the entryname is found in the directory whose segment 
number was just returned, then the entry is tested to deter­
mine if it is a branch or a link. If it is a branch, then 
its uid is looked up in the KST to make sure that the seg­
ment is not already known by some other name. If the seg­
ment is already known by some other name then the new name 
is added to its pathnarne list, the segment number is returned 
and the code argument is set from the directory switch in 
its KSTE. If the segment is not known, then a free KSTEis 
found. The pathnarne is allocated space and placed in that 
space. The name list pOinter is set to point at the 
pathname, the uid and the directory switch are copied from 
the branch into the KSTE and the branch pointer is set in the 
KSTE. The code argument is set from the directory switch 
in the branch and the KSTE inferior count of the parent . 
directory is incremented by one. Finally, MAKE-KNOWN returns 
to its caller (itself or some external caller). 

When there is a cdll to make the root known a special 
procedure in MAKE-KNOWN is used. Special data is entered into 
the KSTE for the root without searching the directory hier­
archy or attempting to find a branch for it. Its segment 
number and code are returned in the normal manner. 

63 



When a link entry is found, then MAKE-KNOWN is called with 
the pathname found in the link and the flow continues in 
the normal manner. 

If an error is encountered such as not finding a directory 
on return from a recursive call to MAKE-KNOWN, then an error 
code is set into the code argument and a null segment number 
is returned. 

64 



Is segment 
known 

No 

Yes 

Make root 
known with 
special 
data 

Parse PATHNAME to NEW-PATHNAME and NEW-ENTRYNAHE ------

call MAKE-KNOWN (NEW-PATHNAME,SEGNO, CODE) II 
,--rsDirectory No 

] 

~itch ON ~-----------------------, 

Not Found 
nd NEW-ENTRYNAME in SEGNO 

No 

Yes 
I 

Pick up PATHNAME from .link entry I 

Add a 
pathname 

Find a free KST entry 
Copy PATHNAME 
Set the Name List Pointer 
Copy uid and Directory 
switch 

Figure 2. MAKE-KNOWN 

65 

MAKE-KNOWN 



4. MAK LNG UNKNOWN 

Normally, a user will experience no dif~iculty because of the 
limited size of the KST. However, since there are many more 
segments in the directory hierarchy than there are KSTE's, 
a user might wish to free a KSTE (making a segment unknown) 
so that it can be reused. In any case, certain precautions 
must be taken before a segment can be made unknown. 

Fir~t, the directory switch in the KSTE is checked. If the 
segment to be made unknown is a directory then its inferior 
count is checked. A directory cannot be made unknown if any 
of its inferior segments are known. This convention is 
stated in Chapter 2. It arises from our desire to be able 
to take segment faults on segments used in the Multics 
supervisor and not to distifiguish between supervisor and 
user segments. 

Second, segment control must be notified that a segment is 
being made unknown since the KST is prepared for and used by 
segment control. This is done by a special call to segment 
control. Upon recei.ving this call, segment control Will 
disconnect the SOW associated with this segment in this 
process (see Chapter 5). When segment control has been 
notified the segment can be made unknown by freeing the 
area where its name(s) was stored and threading the KSTE 
onto a free KSTE list. The parent directory's KSTE inferfor 
count is then decremented by one and the operation of making 
segment unknown is complete. 

Finally, a few words must be said about the danger of making 
a segment unknown and reusing its KSTE. Addresses are pre­
pared using segment numbers. All of these addresses Cannot 
be found when a KSTE is to be freed. If such an address is 
used after the KSTE has been.reused, it will cause informa­
tion in the corresponding KSTE to be used without further 
checking. Incorrect segment referencing would result •. 
Therefore, a segment should not be made unknown and its 
KSTE reused unless it is assured that no address which 
references that segment will be used again during the 
existence of the process. 

66 

-



s. INITIAL REQUIREMENTS 

The question may be asked, "how much apparatus is required to . 
make a segment known for the first time in a process?" 

The data bases used are the directory hierarchy and the KST. 
The procedures used are MAKE-KNOWN and the procedures called 
by it. It has been shown that all directories including the 
root directory may be made known. However, the root directory 
requires special code. The KST must already have a segment 
number in order to make a segment known so the KST cannot be 
made known in this way. Some of the modules called by MAKE­
KNOWN could possibly themselves be made known, however,special 
codes would be necessary to do this. Therefore, MAKE-KNOWN 
and dll of the procedures used by it as well as the KST for 
a process are assigned segment numbers before the process 
begins executing as a part of process initialization. 

6. OTHER MULTICS CONSIDERATIONS 

The fact that some segments must have segment numbers before 
MAKE-KNOWN can be executed gives a clue to the Multics 
implementation of segment numbers. There is a group of 
segments in the Multics supervisor which must have segment 
numbers assigned in a process before the process can begin 
execution. These are called hardcore segments. They have no . 
KSTE's. The actual segment numbers assigned to segments when 
they are made known are the KSTE index plus the highest 
segment number assigned to a hardcore segment. 

67 





_' .. ·'·F _ 
.,-- .. _ .. - ~-. "-

Chapter 5 

SEGMENT FAULT HANDLING 

1. INTRODUCTION 

In the Multics Operating System, each process address space 
is divided into 64K-word items called segments. A segment 
enters a process address space by being "made known to the 
Process" (see 'Chapter 4). In the course of being made 
known, a segment has a per-process segment number assigned 
to it. A correspondence is established between this segment 
number and the segment's pathname and attributes 'in a per­
process table called the "Known Segment Table". Once in a 
process address space, a segment may be referred to by seg­
ment number. 

Whenever a process references memory, the 645 hardware 
ref·erences "per process" and "per system" regi sters. The 
"per process" information in the hardware accessing path 
is recorded in a Descriptor Segment which contains one word, 
called a Segment Descriptor Word (SOW), per segment number. 
The function of the Nth SOW is to point to the Page Table 
(see Chapter 6) of the segment which is known to the process 
as segment #N and to specify the process access rights with 
respect to that segment. ' 

The Page Table of a segment (and various other data required 
by the paging mechanism of Multics) must' be stored in core. 
Since there are more segments in Multics than places in core 
for Page Tables, not all segments can have Page Tables at 'the 
same time. When a segment has a Page Table, the segment is 
called ACTIVE. At other times it is called INACTIVE. 

An SOW can, of course, c~ntain the address of a segment's 
Page Table only if the segment is active. If an SOW contains 
the address of the segment's Page Table and specifies the 
process access and the segment's length, then the SOW 
is called CONNECTED; otherwise, it is called FAULTED or 
DISCONNECTED. A faulted SOW in fact contains a bit pattern 
which, when encountered by the 645 addressing hardware, 
causes the process to "take a Segment Fault" thereby invok­
ing the Segment Fault Handler. See Figure 1. 

69 



In view of the above, we may say that: 

The function of the Segment Fault Handler is to provide 
the process with the illusion that all segments known to 
it are active and all SOW's corresponding to known seg­
ments are connected; in short, to render all known seg­
ments directly accessible by segment number. 

Connected SDW 
Page Table 
Address [ 

Figure 1. Connected and Disconnected SOW's 

2. PREVIEW OF THE SEGMENT FAULT HANDLER (SFH) 

2.1. Procedure 

A segment fault occurs when a process attempts to access a 
"target" segment via a faulted SOW. The Segment Fault 
Handler (SFH), called to repair the faulted SOW, must obtain 
the address of the Page Table for the "target" segment as 
well. as the process access rights to the segment and store 
the information in the SOW. 

To do this, the SFH must: 

a. Check the validity of the segment number given to the 
SFH. It may have been incorrectly generated. 

b~ Use the segment number of the "target" segment (which 
the SFH is given) to find a pOinter to the segment's 
branch. This "branch pointer" was put into the 
segment's entry in the process Known Segment Table 
(KST) when the segment was made known. (See Chapter 
4) • 

c. Check the branch to see if it in fact corresponds to 
the "target" segment. This check is necessary due 
to the dynamic nature of the File System in which 
segments can, at any time, be created and destroyed 
or moved from one directory to another. In checking 
the branch, a unique identifier (UID) is used which 
was stored in the segment's KST entry when the seg­
ment was made known. 

70 



d. Look in the branch, which contains the segment's 
attributes, to find the process access to the seg­
ment and to locate the segment's Page Table. 

e. Repair the SOW and return. 

2.2. Data: Active Segment Table (AST) 

We have stated that Page Tables and other data describing 
active segments must be stored in core, a requirement imposed 
by the Page Fault Handler (see Chapter 6). Use is, therefore, 
made of a system-wide table, the Active Segment Table (AST), 
which resides permanently in core. The AST is a linear array 
containing one entry per active segment. An active segment's 
AST Entry (ASTE) contains the segment's Page Table and other 
paging data and, as we shall see, other data needed by the 
Segment Fault Handler. 

71 



Steps (a) through (e) above and the description of the AST 
lead to the picture of the data structures used by the Segment 
Fault Handler and the relations between them shown in Figure 2. 

Descriptor 
Segment 

SDW 

Segment II 

I J AST 

n I ASTE : 

I
' , 
Page " 
Table 

Page Table 

KST 

KSTE 

Branch 

Pointer 

ASTE 

----------~. I~~.---------
I 

! Address Index 
, 

....... , , , 
/ Directory 

I 

I 

\ ..... 
- --

Figure 2. Principal Data Structures Used by the Segment Fault Handler 

2.3. Program of Exposition 

In order to make segment fault handling more easily 
comprehensible, it will be useful to discuss the procedures 
for handling segment faults in three sections corresponding 
to three successively more likely assumptions about the state 
of activity of the segments of the system. 

72 '-



These assumptions are: 

1. All segment5 are active simultaneously. 
2. All segments .£2.!} be active simultaneously. 
3. All segments cannot be active simultaneously. 

3. SEGMENT FAULT HANDLING WHEN ALL SEGMENTS ARE ACTI\'E 

Let us examine the very unlikely case in which all segments 
are active. The Segment Fault Handler (SFH) begins by find­
ing the "target" segment's KST entry and branch as explained 
in Section 2. Two kinds of errors may happen. First, if no 
s~gment is "known" by the faulting segment number, then no 
KST entry exists. This error may happen, for example, if a 
memory reference is made via a randomly generated segment 
number. This error is detected through structural details of 
the KST which do not interest us here. 

Second, as mentioned in Section 2, the branch pOinter in the 
KST entry will be incorrect if the "target" segment has been 
destroyed since this process made it known. To check the 
correctness of the branch pOinter, the SFH compares the unique 
identifier (UrD) in the branch with the one in the KST entry. 
If they are the same, then the branch pointer is alright; 
otherwise, the "target" segment has been destroyed and the 
segment fault cannot be satisfied. 

If the branch pointer is valid, the SFH gets the process 
access rights to "target" segment and the index of the "target" 
segment's ASTE from the branch. (The branch of an active 
segment must, of course, contain a pOinter to the segment's 
ASTE. The ASTE index is that pointer.) The address of the 
"target" segment's Page Table can be calculated easily from 
the ASTE index. The length of the segment (in pages) can be 
obtained from the ASTE. 

With the table address, the segment length, and the access 
information, the SFH has e~ough information to correct the 
faulted SDW. The SDW is corrected and the SFH returns. 

4. SEGMENT ACTIVATION 

We wish now to see how segment fault handling must differ if 
it is possible that the "target" segment may not be active. 
We assume that there is room in the AST to make an ASTE for 
any segment. TWo new data structures must be introduced. 

73 



First, a new piece of information must be added to the branch: 
an active switch. This switch indicates whether or not the 
segment is active; i.e., whether the ASTE index in the branch 
may be used. Second, a new data structure must be added to the 
AST - a list of available entries. 

This structure is called the AST free list. In this section, 
we assume that the AST free list is never exhausted. 

Now let us look at segment fault handling. Onc~ the branch 
has been accessed, the SFH must inspect the "active switch". 
If the segment is active, the processing is as described 
above. If the segment is not active, it is necessary to 
activate it, that is, to: 

1. Find an entry in the AST free list. Remove it from 
the AST free list. 

2. Set the ASTE index in the branch to point to this 
entry. 

3. Copy the paging data from the branch to the ASTE. 
Initialize the Page Table in the ASTE. 

4. Set the branch's "active switch" on. 

After activating the segment, the SFH proceeds as before to 
repair the faulted SOW. 

5. SEGMENT DEACTIVATION 

Let us now consider the real case in which the size of the 
AST limits the number of segments which can be active 
simultaneously. The discussion of this case is sufficiently 
long that we will divide it into two parts. In this section 
we will introduce the pieces of the design. In the follow­
ing section we will put the pieces together. 

The assumption that all segm~nts cannot be active simultaneously 
implies that it may sometimes be necessary to activate a seg­
ment at a time when the AST is "full"; i.e., there are-no ASTE's 
in the AST free list. When this happens it becomes necessary 
to: 

a. Choose an active segment to be deactivated. 
b. Deactivate this segment. 
c. Return the ASTE of the deactivated segment to the 

AST free list. 

74 

-

-



Let us defer discussion of how an active segment is chosen 
for deactivation until the mechanism of deactivation has it­
self been discussed. 

Deactivation of a segment may be characterized as doing all 
things necessary to disassociate the segment's ASTE from 
the segment, thus permitting the ASTE to be used to activate 
another segment. It is important to note at this point that 
the segment being deactivated is not necessarily "knoWn" to 
the process performing the deactivation. Many of the details 
of the design arise from this fact. Section 9 discusses the 
matter further. 

Deactivation is done in the following three steps: 

i page removal 
core. 

forcing the segment's pages out of 

ii disconnection - seeing that all SOW's associated 
with this segment are faultedl 

iii restoring the branch - moving back to the branch 
the (presumably altered) values of those attributes 
of the segment which were moved to the ASTE when 
the segment was activated. 

5.1. Page Removal 

A Page Table for a segment can only exist when the segment is 
active; when the segment is deactivated, the Page Table is 
destroyed. Thus, one function of deactivation is to remove 
the segment's pages from core and to inhibit the Page Fault 
Handler from bringing any of its pages into core during 
deactivation. To accomplish this, the SFH calls a special 
entry of the paging module which removes the segment's re­
maining pages from core and causes page faults (in other 
processes) on pages of this segment to be transformed into 
segment faults on this segment. 

5.2. Disconnection 

Disconnection obviously amounts to faulting all SOW's 
connected to the segment at the time of deactivation. .There 
may, of course, be many other SOW's associated with the 
segment, but as they are not connected they must (already) 

75 



be faulted. In order to make disconnection possible~ a 
data structure must be associated with each segment which 
lists all the SOW's connected to the segment. Since this 
connection list can only be non-empty when the segment is 
active, it can be stored in the segment's ASTE and need 
never appear in the segment's branch. When a segment is 
activated, the connection list is empty. Whenever an 
SOW is connected to a segment, a pointer to the SOW is 
added to the segment's connection list. When the segment 
is deactivated, each of the SDW's on the associated connec­
tion list is faulted. 

5.3. Restoring the Branch 

After page removal and disconnection have been done, all 
that xemains of deactivation is to restore the segment's 
branch. It is necessary to move back to the segment's 
branch those attributes which were moved from the branch 
to the ASTE when the segment was activated (which may have 
changed during the period of activation) and to reset the 
"active switch". In order to manipulate the segment's branch 
in this way, the SFH makes use of another data element in 
the ASTE of each segment, a pOinter to the segment's branch. 
This branch pointer must be stored in the ASTE when the seg­
ment is'activated so that it can be used again when the seg­
ment is deact iva ted. 

5.4. A Note on Certain Necessarily Active Segments 

The reader can easily convince himself that the main path 
through the SFH (excluding the deactivation path) can only 
be viable if certain segments are perpetually active: for 
example, all segments required by the Page Fault Handler, 
the SFH procedure itself, the per-process KST segment, etc. 
To permit such segments to be held active, another item is 
added to the ASTE, the entry hold switch, which may be set 
to prevent the deactivation of the segment. We will consider 
these matters further in Section 8 on "Recursion and 
Initialization." Here we wish to consider a different 
problem. 

76 

__ ,J" 



During deactivation of a segment the SFH must access all the 
descriptor segments which contain SDW's connected to the 
segment being deactivated; it must fault these SDW's. The 
SFH must also access the segment's branch. In order to assure 
that these segments may be accessed easily, the following 
rules are established: 

Rule 1 - A Descriptor Segment containing a connected 
SDW must be active. 

Rule 2 - A Directory Segment with an active daughter 
segment must be active. 

Rule I may be enforced by use of the entry hold switch. The 
enforcing of Rule 2 is more complicated. A new data element 
is associated with each active segment, the inferior count. 
This is a count of the active daughter segments of the given 
segment. (For non-directory segmerits the inferior count is 
necessarily zero.) When a segment is activated, its own 
inferior count is set to zero and one is added to its parent's 
inferior count. When a segment is deactivated, one is sub­
tracted from its parent's inferior count. Needless to say, 
no segment is chosen for deactivation whose inferior count 
is non-zero. To enable the deactivation machinery to access 
the parent directory's inferior count, each ASTE also con­
tains another d~ta element: the parent's ASTE index. 

5.5. The Deactivation Algorithm 

We have now presented all of the data structures needed to 
permit deactivation of a segment. Let us now discuss the 
"deactivation algorithm" which must choose the segment to be 
deactivated. To facilitate deactivation, another list is 
introduced, the AST used list, which contains all of the 
ASTErs corresponding to active segments. 

In order to keep deactivation economical, the deactivation 
algorithm chooses segmehts with as few pages in core as 
possible. In practice, it is very often able to choose a 
segment with BE pages in core. The algorithm essentially 
passes through the AST used list as many times as necessary; 
on the Nth pass it looks for a segment with fewer than N 
pages in core whose inferior count and entry hold switch are 
both zero. When such a segment is found, the search stops and 
the segment is deactivated. 

77 



6. FLOW OF THE COMPLETE SEGMENT FAULT HANDLER 

Correct Segment Fault 

1. Given segment ntmlber, find KST entry. 
Check validity of KST entry. 
In KST entry, obtain pOinter to the branch. 
Check va 1 idi ty of the branch pOinter by compa·ring 
the KST entry's and the branch's version of the 
unique identifier. 

2. If the "active switch" is set, go to Step 8. 

Activate the Segment 

3. Inspect the free list. If there is a free ASTE, 
then go to Step 7. 

Obtain a Free Entry 

Choose a Segment to be Deactivated 

4. Pass through the AST used list as many times as 
necessary; on the Nth pass look for a segment 
having fewer than N pages in cOre with inferior coynt 
and entry hold switch equal to zero. When a segment 
is found in this way, go on to Step 5. 

Deactivate the Segment 

5. Remove the pages of the segment from core by a 
call to the paging module. 
Disconnect all of the SOW's listed in the segment's 
connection list. 
Use the ASTE's branch pointer to move the segment's 
attributes back to the segment's branch. 
Reset the "active switch" in the branch. 
Use the parent's ASTE index in the ASTE to locate 
the parent's inferior count, from which subtr4ct 
one. 

6. Remove this entry from the AST used list. 
Put it in the AST free list. 

78 



Activate the Segment 

7. Move the ASTE from the AST free list to the AST 
used list. 
Move certain attributes from the branch to the 
ASTE. 
Set the branch's ASTE index and set the "active 
switch". 
Initialize the Page Table in the ASTE. 
Set the segment's inferior COtmt to zero. 
Set the segment's entry hold switch to zero. 
Find the parent's ASTEj store its index in the 
segment's ASTE. 
Add one to the parent's inferior count. 

Connect the SDW 

8. Get the page table address and segment length 
from the ASTE. 
Get the access field for the SOW by inspecting the 
Access Control List in the branch. 
Store the page table address, segment length, and 
access field in the sow. Reset the Segment Fault 
Flag. 

9. Return. 

7. DATA USED IN SEGMENT FAULT HANDLING 

7.1. AST (Active Segment Table) 

The AST consists of a Header and a linearly indexed array 
of AST Entries of which there is one per active segment. 
The AST Header contains: 

a. The head of the AST free list. 
b. The head of the AST used list. 
c. The branch of the root directory. 

Each AST Entry contains, in addition to forward and 
backward pointers used in threading the entries into the 
various lists, 

a. Paging data 
1. The PAGE TABLE. 
2 • The SEGMENT MAP. 
3. Various other paging data. 

79 



b. Data used in choosing a segment for deactivation. 
1. The INFERIOR COUNT. If the segment is a 

directory segment, the inferior count is the 
number of its active daughter segments. 
Otherwise it is zero. 

2. The NUMBER OF PAGES IN CORE (a counter maintained 
by the paging mechanism). 

3. The ENTRY HOLD SWITCH. When set, this switch 
makes the segment ineligible for deactiv~tion. 

c. Data required to deactivate the segment. 
1. BRANCH-POINTER 

i ASTE index of the segment's parent directo.ry. 
ii Offset of the segment's branch within the 

parent directory. 

2. CONNECTION LIST, the list of SOW's which point 
to the Page Table of this segment and which 
must be faulted before the segment can be 
deactivated. Each element of the list consists 
of: 

i ASTE index of the descriptor segment containing 
the SDW. 

ii Offset within that descriptor segment of the 
SDW (i.e., the segment number within that 
process of this segment). 

1.2. SOW (Segment Descriptor Word) 

A Descriptor Segment is a linear array whose entries are 
words called SDW's (Segment Descriptor Words). The index 
of an SDW in a process Descriptor Segment in the segment 
number, in that process, of the segment associated with 
the SDW. An SDW consists ot: 

a. The ACCESS FIELD 
1. If zero, this field causes a segment fault 

to occur upon an attempted access via this 
SDW. In this case, items (b) and (c) below 
are meaningless. 

80 

--



2. If non-zero, this field indicates the accessing 
permission that this process has toward the 
segment associated with this SOW (e.g., "read", 
"write", or "execute" permission). 

b. The PAGE TABLE ADDRESS of the associated segment. 

c. The SEGMENT LENGTH (in pages) of the associated 
segment. 

7.3. KST (Known Segment Table) 
7.4. Branch 
7.5. Page Table. Segment Map 

8. RECURSION AND INITIALIZATION 

See Chapter 4. 
See Chapter 3. 
See Chapter 6. 

The phrase "recursive segment fault" refers to a segment 
fault taken by the SFH. In Section 5, we asked the reader 
to believe that segment faults must not be permitted to 
occur on certain segments; e.g., the AST. In this section, 
we shall show why this is so and how such segment faults 
can be avoided. We shall then consider the recursive 
segment faults which £2n be permitted and will conclude 
with an example. 

We may regard each segment fault "taken by the user" as the 
first in a sequence of segment faults, the rest of which 
are taken "recursively" by the SFH in handling the first 
one. It is a design requirement that all such sequences 
be finite. This implies that the last segment fault in the 
sequence must be handled entirely by segments which are 
active and connected in the process handling the faults. 
Thus, certain segments must be active and connected in a 
process before the first. segment fault is taken. 

Which segments must be active? Certainly all segments must 
be active and connected which are necessarily called in the 
course of handling every segment fault. In the present 
design these comprise the AST, KST, SFH procedure and of 
course all segments required by the paging mechanism (since 
the SFH references segments which do not reside permanently 
in core and may take page faults). 

81 , 



Multics initialization must make all of these segments, 
except the per-process KST, active before the first pro­
cess is created. Process creation and initialization must 
create and activate the KST and connect all of these seg­
ments b~fore the first segment fault is taken. These 
segments may be kept active in various ways. Per system 
segments like the AST and SFH procedure may be kept active 
by leaving their ASTE's off the AST us~d list. The per 
user KST may be kept active by setting the entry hold switch. 
in its ASTE while the process itself is active. 

The.only segments referenced by the SFH beside those 
discussed above are directories, the segments which contain 
branches. The only way to avoid recur~~ve segment faults 
altogether is to require that every directory, any daughter 
segment of which is known to any process, be active and 
appropriately connected. This idea must be rejected as 
impractical. Hence, recursive segment faults must be 
reckoned with. 

We shall give an example of a sequence of recursive segment 
faults at the end of this section. We shall show there 
that all such sequences can be handled if a segment fault 
on the root directory can be handled. Let us prepare for 
the example by considering the root directory more closely. 

Every segment in Multics except the root directory has a 
branch in a directory; the branch contains the attributes 
of the segment. Since no directory is superior to the 
root, it cannot have a branch in a directory·. Nevertheless, 
if the root is to be accessed, its attributes will have to 
be recorded somewhere. Since we normally think of a branch 
as the locus of a segment's attributes, we may provide for 
the root's accessibility by providing it with a branch. 
This branch must itself be accessible; since no process can 
take a segment fault on the AST, it is sufficient that: 

The root directory has ,a branch whIch resides in the 
AST segment. 

82 



Whenever the root directory is "made known" in a process, 
a pOinter to this branch is placed in its KST entry. 
Segment faults on the root can obviously be handled in 
the normal way whether or not the root is active at the 
time of the segment fault. 

NOTE: In practice, a more efficient (if less straightforward) 
SFH may be obtained by handling segment faults on the 
root with special code. If this is done, the "branch" 
of the root disappears from the AST and, by way of 
trade-off, the SFH procedure segment gets longer. 

We have noted that the only segment fault that the SFH 
can take while handling a segment fault for a segment is a 
fault on that segment's parent directory. Thus, every sequence 
of recursive segment faults corresponds to a path up the . 
directory tree structure toward the root directory. Let 11S 

now discuss the canonical example of a sequence of recursive 
segment faults. 

B.l. Example of Recursion 

Let us assume that a segment fault is taken for a segment 
with pathname 

root> dl > d2 > ••• > dN > seg 

Let us further assume that the process SDW's for all the 
di rectories "root", "dl", etc., are faulted. Early in 
handling the fault on "seg" , the SFH references the branch 
of "seg" which causes a segment fault on "dN". The corres­
ponding reference to the branch of "dN" causes a fault on 
"dN-l" and so it goes until there is a fault on "root". 
Since the branch of "root" lies in the AST which is active 
and connected, this segment fault can be handled without 
another segment fault. With the "root" connected, the 
SFH can go on with handling the fault on "dl"e . When "dl n 

has been connected, "d2" can be handled, and so on. Thus, 
the only recursive segment fault permitted in the present 
design is that on a segment's parent; and we have shown 
that the recursion terminates due to the special treatment 
of the root directory. 

B3 



9. SPECIAL ADDRESSING IN DEACTIVATION 

9.1. Basic Problem 

The deactivation of a segment requires the accessing of a 
directory (the segment's parent) and of one or more 
Descriptor Segments (those containing SOW's connected to 
the segment). 

It is very unlikely that these segments are all "known" to 
the process performing the. deactivation. How) then, can 
the branch pOinter and the SDW pOinters in the connection 
list in the ASTE be implemented? 

9.2. The Multics Solution 

In the present design, the parents of active segments and 
all.descriptor segments connected to active segments are 
required to be active. This requirement enables the use of 
the ASTE index as segment specifier for all of the special 
addresses needed in deactivation. Thus, the branch pOinter 
and SOW pointers are all of the form: 

(segment's ASTE index, offset) 

Let us look in detail at the trick by which one of these 
special addresses is used, say the "branch-pointer Yl • A 
special segment number is reserved in each process for use 
by the SFH. To access the branch during deactivation, the 
SFH uses the branch's ASTE index to compute the branch's 
page table address. This page table address and read and 
write access permissions are then stored in the SDW which 
corresponds to the reserved segment number in the deacti­
vating process Descriptor Segment. A pOinter using the 
segment number and the offset given in the "branch-pointer" 
is then constructed and used to access the branch through 
the just manufactured SOW. 

In effect, the reserved segment number and the corresponding 
SDW constitute a "window" through which a process can ~efer­
ence a segment not formally known to it. 

10. SPECIAL ENTRIES OF THE SEGMENT FAULT HANDLER 

There are four functions related to segment fault handling 
which are accomplished by special entries of the SFH. 

84 

'-

,-



10.1. Obtaining a Free ASTE 

Some procedures need to be able to obtain a free ASTE in 
order to activate a segment "by hand". For example, the 
process creation procedure must make up an active descriptor 
segment for a new process. A special entry in the SFH is 
provided which obtains a free ASTE (whether from the AST 
free list or by .deactivation), detaches it from the free 
list, does not thread it into the AST used list, and returns 
its index to the caller. 

10.2. Setting Faults for All Users of a Segment 

Certain procedures wish to fault all SDW's connected to a 
segment. For example, the Access Control Module will do 
this if the access control data in the segment's branch has 
been modified in certain ways. These faults are set by 
using the part of the deactivation code which disconnects 
SDW' s. 

10.3. Deactivating a Segment 

Certain procedures must be able to deactivate a segment, for 
example, the procedure which destroys a segment. Deactiva­
tion is accomplished by using the deactivation path in the 
SFH. 

10.4. Disconnecting anSDW from a Segment 

Some procedures, for example, the procedure which makes a 
segment "unknown" to a process, need to be able to disconnect 
an SDW from a segment. Code in a special entry of the SFH 
is provided which faults the SDW and removes it from the 
list of SDW's connected to the segment. 

11. CONCLUDING REMARKS 

The' functions of the Segment Fault Handler (SFH) are: 

• to make (the Page Tables of) all segments which are 
"known" to a process accessible to the process by 
segment number. 

• to multiplex the system's relatively few AST Entries 
(or, equivalently, Page Tables) among all of the 
segments "known" to all of the processes executing 
in the system. 

85 



To accomplish these functions, the SFH must establish 
(activate) and dis-establish (deactivate) the pageability 
of segments and must establish (connect) and dis-establish 
(disconnect) the use of such pageability'by processes. It 
is instructive to separate these four functions into two 
groups. 

11.1. Connection and Activation - Process Oriented 
Functions 

The primary tasks in handling a segment fault, connection 
and activation, are done on a demand basis according to the 
needs of a process. These functions are performed using 
only data segments "known" to the process - the per-process 
KST and Descriptor Segment, the directories superior to the 
"target" segment, and the AST segment. In this part of 
handling a segment fault, two types of error may occur. 
The segment number may (a) not correspond to a segment 
"known" to the process, or (b) may correspond to a segment 
which has been destroyed. In either case, the process 1s 
trying to access a segment which does not exist and should 
note the error. For all of these reasons, we say that the 
connection and activation aspects of segment fault handling 
are "process oriented functions"; i.e., that the SFH in 
performing them is acting "for the process". 

11.2. Disconnection and Deactivation - System Oriented 
Functions 

The secondary tasks of segment fault handling, disconnection 
and deactivation, are undertaken by the SFH during activation 
only when the state of the system demands it, the relevant 
state of the system being the emptiness of the AST free list. 
The choosing of the segment to be deactivated is independent 
of the process in which the SFH is executing. Deactivation 
and disconnection of a segment require the SFH to access 
segments not (necessarily) "known" to the process execut~ng 
the SFH: the parent directory of the segment being deacti­
vated and the Descriptor Segments containing SDW's connected 
to the segment. The method by which these segments are 
accessed by the SFH (see Section 9) is clearly independent 
of the address space of the process in which the SFH is 
executing. 

86 

0-

'-



(The number of directory segments and Descriptor 
Segments in the system may well exceed 218. All of 
these segments are potentially referenceable by any 
process which is executing in the SFH deactivation 
path. ) 

No errors are detected (or caused) during deactivation and 
disconnection and no per-process errors affect their opera­
tion. For these reasons, we say that the deactivation and 
disconnection aspects of segment fault handling are "system 
oriented functions", i.e., that the SFH in performing them 
is acting "for the system". 

87 




