Chapter 6

PAGE FAULT HANDLING

1. INTRODUCT ION

In the Multics Operating System, segments are composed of
1024-word- contiguous blocks of data called pages. At a

given time, any number of pages of a segment may be located
in core memory, but since that memory is limited in size, °
the hardware blocks of 1024-word core registers must be
multiplexed among the many pages of data and procedures which
may be referenced. It is the purpose of this chapter to
detail the structure of the mechanism which accompllshes
(block or) page multiplexing in Multics.

The page multlplexlng strategy is similar in broad outline

to the page table multiplexing performed by the segment fault
handling module (see Chapter 5). However, there are differ-

" ences in detail which arise in great part due to the 645
hardware used in page fault handling. Page fault handling

is closely bound to the various registers and logic functions
which the 645 processor can perform; indeed the major purpose
of the paging modules is to create the proper environment
for hardware access to pages. This access is made through
several registers, but the one which uniquely concerns page
multiplexing is the page table word (or PTW). This 36-bit
register, located in the page table for a segment, contains
all of the information used by the 645 processor to deal
with a page. The proper maintenance of a PTW is page
multiplexing's most basic job.

As a vehicle for carrying the description of page multiplexing,
there is a convenient set of machine configurations whose"
physical capabilities obviate the need for various parts of

the page multiplexing function. Considered in order of increas-
ing likelihood they are: | '

1) Infinite core storage and no secondary storage,
2) Infinite core storage, with secondary storage, and
3) Finite core storage with secondary storage.

Although no multiplexing is required in the first two cases,
we shall describe the Multics page fault handling strategy

as it would be performed on each of these three configurations,
since in this way the real strategy can be described incre-
mentally.
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Before discussing the handling of page faults in detail,

we shall describe briefly the environment which allows a

page fault to occur. It is important to remember that a

page fault cannot occur if there is no page table for the
segment in question - for a page fault is only generated

by hardware reference to a page table. The table is
provided for a segment by the segment fault handler when it
activates the segment. Also at this time, the Active Segment
Table Entry for the segment is initialized by the segment
fault handler with all the information needed by the page
fault handler. Finally, the page table is set with page
faults for each page of the segment, so that the page fault
handler will be invoked upon first reference to each page.
These actions prepare the environment for page fault handling.

2. PAGE FAULT HANDLING ON A MACHINE WITH INFINITE CORE
AND NO SECONDARY STORAGE

When a process attempts to reference a page whose PIW has
a fault set, the paging modules are invoked to remove the
fault and insert the proper core location of the page into
the PTW. The first action, upon receiving notification of
the fault, is to locate the page being sought. From the
PTW address, the address of the Active Segment Table Entry
(ASTE) for the segment can be found. The ASTE contains the
segment map (the list of page locations) which yields the
actual address of the page (as described in Chapter 7).

The segment map is actually split between the ASTE and the
page table; however, we will ignore this complication for
the moment. '

Since we are now assuming a configuration involving only
core, the address must be that of a 1024-word block of
core. Hence, the paging module need only insert the
proper core address into the PTW and fill in the page
fault field of the PTW to prevent further page fault$ on
this page. Thereafter, references to the page through the
PTW would proceed by hardware without interruption.

The repairing of a page fault in a PTW need be done only

once in the environment we are assuming, because all Segment
Descriptor Words (SDW's) for a segment point to the same
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page table and, therefore, to the same PIW for each page.
If, however, a segment were deactivated (its page table
destroyed), then before further references could be made
to the segment, the page faults set by segment activation

would have to be satisfied in the way described above.

Page locations being constant assures us that the informa-
tion stored in a PIW is valid as long as the page table is.

3. THE ADDITION OF SECONDARY STORAGE

If we introduce secondary storage into our machine
configuration, we add two problems to the page fault
handling mechanism. Since the location of a page can now

be outside of core, there is a need to transport that page
from its resident device; and also, we must find an appro-
priate core block into which to put it. The page fault path
becomes slightly longer and necessitates referencing a new
data base - the core map free list. For, in order to pick

- an appropriate block of core for the page, we must avoid
those blocks currently in use. Since we are postulating
infinite core, we need not be concerned with depleting the
free page supply. The functions required in this configura--
tion are:

1) Receive the fault, go from the PTW to the ASTE to
get the segment map and determine the secondary
storage location of the page.

2) Access the core map free list to obtain a 1024-word
block and delete it from the list, and

3) call a Device Interface Module (DIM) to retrieve the

page and deposit it in the newly acquired block of
storage.

The DIM's functions in transporting pages are to queue
requests for pages, to make the device perform as effi-
ciently as possible in satisfying the requests, to monitor
the device operation, and to notify the page fault handler
when input has been completed.
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The notification function is performed in such a way as to
allow the process which took the page fault to wait for the
page without wasting processor time or making unnecessary
memory accesses. The page fault handler in the faulting
process, after calling the DIM to initiate page transpor-
tation, calls the System Traffic Controller to wait for the
page. At some later time, when the page has been imported,
the Traffic Controller will be called to inform the waiting
process that it may continue its computation.

4. RESTRICTION IN CORE SIZE

when we restrict our configuration to have a finite amount
of core, we reach the true Multics case where multiplexing
is necessary. In addition to the functions previously
described, the page multiplexor must also be responsible

for finding a free block of core when all blocks are being
used. This condition requires a selection algorithm for
removing pages from core to secondary storage; and this
algorithm requires a new data base - the core map used block
list. '

The two lists of core blocks - free and used - are implemented
by means of an entire core map. The core map consists of one
core map entry (CME) for each 1024-word block of core. Each
entry serviced by the page fault handler is threaded into one
of the two queues - free or used - depending upon its current
status, but the entry and its physical block remain associa-
ted throughout any change in status. The free list is

singly threaded, since only its first element is ever used,

but the used list is circularly threaded to allow continuous
searching.

The actual information contained in a CME can be deduced from
the part it plays in the removal algorithm. Clearly it must
allow one to obtain the absolute core location of the
beginning of the 1024-word block. But a pointer to the PIW
for the page currently residing in the block is also '
necessary if the block is being used, since the removal of
the page means that access to it should be inhibited by
setting a page fault in the PIW which controls it.
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The sequence of actions for handling a page fault in the
limited core environment is:

1)

2)

3)

4)

As before, get the fault, find the device address
from the segment map in the ASTE.

Access the core map free list to obtain a free
block: if successful, place a pointer to the
PTW in the CME selected, unthread the CME from
the free list, flag it as being used for I/0 and
thread it into the used list. (Continue at Step
'6)- - :

If the free list is empty, perform the replenishment
algorithm to find a block in which the referenced
page can be put.

The replenishment algorithm is driven by a bit in
the PTW called the "Page has been used" or PHU bit.
This bit is set by the 645 hardware whenever the
page is accessed. when a page must be removed,

the used block list of the core map is accessed
and the entries are examined in the order of their

threading, starting where the last search stopped.
- Each entry is examined to determine whether the

PHU bit has been turned on. Each page's PHU bit is
turned on by the software when the page is brought
to core, but after each examination during the
removal algorithm the page fault handler turns it
off. Therefore, the effective criterion for removal

is whether the page has been used since it was last

examined for removal. (For further information
about the philosophy of this algorithm, see "A
paging experiment with the Multics System", F. J.
Corbato, Multics Repository Document M0104.)

Having found a candidate for removal, set a page
fault in the PTW, determine the device address
from the ASTE and call the DIM to transport the
page to secondary storage.
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5)

6)

7)

8)

Figure 1
strategy
interest

1)

In order to avoid unnecessary page transportation,
the 645 hardware maintains a "page has been modified"
bit in each PTW which is turned on only if the page
has been written into. Unless this bit is on, the
page need not be returned to secondary storage.

In contrast to the page important strategy, do not
wait for this page to be moved, but continue to
select candidates for removal and call the DIM to
transport them until a block appears on the free
list. This block will have been placed on the free
list by the DIM when a page has been completely
transported.

Using the device address developed in step 1), call
the DIM to import the desired page into the newly
acquired block of core.

Call the Traffic Controller to wait for the page
to arrive.

Since the PTW's page fault switch and CME's I/0
busy switch are reset by the process which called
the Traffic Controller to awaken the waiting pro-
cess, the page fault has been entirely repaired
and the page fault handler may return. -

is a gross flow chart of the page fault handling
as described in Section 4. Special points of
are: ‘ ’

Any call to the DIM, whether for reading or writing,
causes all transactions to be observed and the com-

- pleted ones to be "posted". The posting process

2)

for a write operation consists of threading the
CME out of the used list and into the free list.
For a read, posting requires that the page fault
switch be reset and that any processes which might
be waiting for the page to be imported be informed
of its arrival (through the Traffic Controller).

The call to the Traffic Controller to wait for a
page to be read is only made for reasons of
efficiency and plays no logical part in the page
fault handling strategy.

94



-{Find address
of page

-t

Is there a i\\\ o N
free block on : o

the free list

N

Yes

Tntheead From ‘ Can next block "\ No
free list, flag on used ligt be
for 1/0 and add removed? o

to used list

Yes

Set page fault

DIM (read) ' No

as page been
\_ modified

No _
fae the 2259 [rur bio
‘ on free " DIM (write)
Yes list '
Wait via the ' '
traffic : — -t
controller ' :

[ : Update used list I

next block pointer
thurn !

Figure 1. The Page Fault Handler

95



5. RECAPITULATION OF PAGE FAULT DATA BASE USE

Having followed the basic paths through the page fault
handler, we have seen all of the data bases used by page
multiplexing. However, not all of the items in these data
bases have been specified, only those portions significant
to a general understanding of page fault handling. This
section describes all of the data items referenced by the
page multiplexor and indicates their uses. (See also
Figures 2 and 3).

The most basic page multiplexing data base for a segment
is the page table, which contains the page table words for
each page. Page tables in Multics are allocated at system
initialization time in a permanently core-resident system-
wide segment, the System Segment Table (see Figure 3).
Hence, references to a page table are made through the
normal segment addressing mechanism - although no page
faults are ever taken on such references. Each PTW has
six types of data used by the page fault handler. These
types can be divided further into hardware referenced data
and solely software referenced. Both types are important
to page multiplexing. :

The set of hardware referenced data in a PIW consists of
three items - the page fault switch, the core address

field and the page has been modified/used bits. Whenever
the core address is not meaningful, the page fault switch

is set to inhibit processor attempts to access through

that address. Since the address field is not used when

the page fault switch is on, the page multiplexor makes

use of the storage thus provided by placing part of the
device address in that field. Logically, the entire address
can be considered to be in the Active Segment Table Entry

as mentioned earlier, but to save storage space, the
"segment map entry" for a page is stored in the core address
field of its PTW when the page is not in core. The PHM and
PHU bits, set by the hardware and reset by the software
when appropriate, have already been described.

The data in the PTW which is only referenced by software
consists of two flags used by the I/0 handlers and a bit
which designates "wired down" status. The latter is
interpreted by the page fault handler during the page

removal algorithm to mean that this page may not be removed.
The two former flags are: one to signify that there is I/O
pending for this page (and whether read or write) and another
which is set if an I/O error is encountered while transport-
ing the page.
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- Notes for Figure 2.

NOTE:

A,

.To bring in a page from secondary storage, start with the PTW

which took the fault. Go to the ASTE to get the Device I1,D,
Use the core map free list to get a suitable CME, Fill in the

pointer to the PTW and transfer the file map to the CME, then

read in the page and remove the fault,

To remove a page from core, start with the CME picked from the
core map used list, Go to the PIW by the pointer and set a
fault; thence to the ASTE for the Device 1,D, to complete the
secondary address, Move the file map back to the PIW. If the
page has been modified, write it out.

It may seem that Multics has two copies of a data page when the
data is in core. Logically there is only one and we could
easily free the storage used by the old page each time it was
read in. There are three reasons of efficiency why we do not
do so, '

1)
2)
3)

Assigning and reassxgnlng secondary storage blocks takes
processor time,

If the page to be removed from core has not been modified and
we have retained the old copy, we do not need to write it out,
If the system were to crash, losing core but not secondary
storage contents, we would still have a (possibly obsolete)
copy of the data..
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Figure 3. The System Segment Table
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A fourth item of information, the address of the segment's
ASTE, although not contained in the PTW, is implicit in its
address; the ASTE's (which are fixed in length) are stored

in an array parallel to the page tables, thereby yielding
the ASTE address from the page table (or PTW) address. This
information is necessary to provide the rest of the device
address for a page when reading it in from secondary storage.

" Another data base important to page fault handling is the
Active Segment Table Entry (ASTE) for a segment. The ASTE
contains more data than is used by the page multiplexor, but
that portion which is used consists of the device I.D., the
page fault count, a "no page fault" switch, the number of
pages in core for the segment and the current segment length,
in pages. Of these, only the device I.D. (see Chapter 7) is
crucial to page fault handling - the others are measurements
for tuning purposes and aids to Segment Activation and
Deactivation which can be best provided by the page multi-
plexor. Additional comment is made on these items in Section-
6 of this paper.

The third, and last data base used by the page fault handler
is the core map. The core map is also allocated in the System
Segment Table whose header contains pointers to the head of
the free list and to the next entry to be examined on the

used list. Each core map entry (CME) has two threading
pointers: the entries in the free list use only the "forward"
pointer, since entries are removed from the top and added
there, while the used list employs both "forward" and
"backward"” pointers to allow insertion of an entry between
any two other entries.. A CME on the free list has no other
useful information contained in it. , The core location of

the block controlled by a CME is implicit in its position
within the core map, since as many CME's are allocated as
there are 1024-word blocks of core. We note that not all
CME's are put on the free or used threads - only those

blocks to be serviced by the page fault handler. All
permanently core-resident pages of core are represented by
CME's which are not pointed to by entries on one of the
threads. In this way, the removal algorithm need not
explicitly check entries which could never be removed.

99



Two other items are kept in the CME for a page only if the
CME is on the used list. First, the segment map entry for
the page, which was kept in the PTW while the page resided
in secondary storage, is transferred to the CME before the
core address is inserted into the PTW. Clearly the core
address could be kept in this space in the CME when it was
threaded on the free list if the information were not
implicitly available. Second, a pointer to the PIW is
maintained to permit the segment map entry to be replaced
and the page fault switch to be reset when the page is
removed .from core.

We are now in a position to understand the initial
requirements of the page fault handler in order that it
be abie to function. First, the core map entries for
multiplexible blocks must all be threaded onto the free
list. Then, for each segment which is to be referenced,
each page table word must be filled in with a segment map
entry and page fault switch setting; and also the Active
Segment Table Entry must be initialized in its Device I.D.
and other entries. This work would allow a page fault to
be serviced for non-page-fault-handling procedures.

But what of the page multiplexor itself? May it use the

same page fault mechanism which it provides? Not entirely.
While selected parts of the data and procedures of ‘the
multiplexor could be transportable, at least one path
through the multiplexor must be guaranteed page-fault free
to prevent infinite recursion. In Multics, the choice has
been made to prevent any page faults whatever from occurring
during the handling of a page fault. To this end, all of

the page fault handling procedures are permanently core-
resident, and for this reason the ASTE is used by the page
multiplexor. For although all of the necessary information
about the pages of a segment can be found in the branch for
that segment, branches are not wired down and are, therefore,
susceptible to page faults. Hence, that part of the infor-
mation kept in the branch which must be referenced by.the
page fault handler is transferred to the ASTE at segment
activation time, to keep it in a permanently core-resident
data base. This choice permits Multics to follow a more
predictable and shorter path while handling page faults.
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6. ADDITIONAL REMARKS

Several important functions of the page multiplexor have
been excluded from the previous discussion since they are
not necessary to allow page multiplexing. Some of these
functions receive additional coverage in chapters written
to explicate the areas in which they are used, but their
appearance in this paper is germaine to a better under-
standing of the page fault handler's importance in Multics.

An especially complex area in any multiplexed computing
system is that of synchronization of processes. Empirical:
evidence has led Multics to the path of least complexity where
possible. An example is the synchronization of multiple
processes, all of which may desire the handling of a page
fault at the same time. To prevent interference between the
various processes in handling common data, only one process

is allowed to execute in the page multiplexor at a time.
Other processes wishing to deal with a page fault are

forced to wait their turn.

It is also necessary to synchronize the physical devices
which transport pages and the processes which have requested
the transportation. As we have seen, there is no problem

of synchrony when writing pages. Any process which needs

to have a write operation completed in order to continue its
computation simply loops on the core map free list and calls.
to the DIM until a block appears in the free list. When
reading pages, synchrony is established through communication
with the Traffic Controller - both to wait and to notify.
The only remaining problem is to ensure that the DIM is
called subsequent to the completion of every read so that:
notification can be performed.

The DIM is normally called by the next process to take a

page fault. But if the DIM is not called in a sufficiently
long time (this could happen if each process were waiting for
a pagel!), the secondary storage devices cause interrupts
which are directed to a special process whose sole purpose

is to wait for these interrupts and call the DIM in response
to them (see Chapter 8).

101



Another function performed by the page multiplexor is

the assignment of blocks of secondary storage (see

Chapter 7). No secondary storage is assigned to a page
until it has been referenced. A special device address

(the "null" address) is assigned to all pages of a’

segment which have never been referenced. when such an
address is encountered by the page fault handler, it

creates a page of zeroes in core rather than reading in
data. Ideally, then, the page need not be written out

until the page-has-been-modified (PHM) bit has been turned
on by the hardware. In fact, the Multics page fault handler
causes the assignment of a secondary storage address at
first reference and sets the PHM bit to force write-out of
the page. This sometimes results in storing a page of
zeroes in secondary storage but eliminates a check for "null"
addresses in the page removal path.

Actual device storage handling is incorporated into a
separate module whose algorithm for assigning storage on a
particular device can be easily changed to accommodate any
system discipline (such as directory segments on Drum and
non-directory segments on Disk).

The movement of data from one device to another is also
accomplished in the page multiplexor. Chapter 7 describes
the function in detail, but the basic mechanism used is

an additional item in the ASTE for a segment which can
specify a "move device I.D." and a bit in the segment map
entry which specifies whether or not the page (which must
be in core) has already been moved. Using these items, a
segment can be moved by setting the move device to I.D. when
activating the segment. Then, whenever a page is brought
to and subsequently removed from core, it is rewritten onto
the new device.

The final functional area incorporated into the page
multiplexing modules is that of services to the segment
activation and deactivation module. A special set of
entry-points allows individual page manipulation on demand.
Specifically, the functions are: :

1) To read or write a page from/to secondary storage.
2) To "wire" or "unwire" a page by setting the "wired

down" bit in the PIW which allows a page to be
skipped by the removal algorithm (this function is
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used only for temporary wiring). Pages are
"wired" (made permanently core-resident) by
leaving their CME's off the core-map used list.

3) To truncate a segment by destroying all pages
beyond a certain page and returning their
secondary storage to the free pool.

4) To cleanup all traces of a segment in preparation
for its deactivation. This function consists
of exporting the entire segment (removing all of
its pages) and waiting until the pages have all
been exported to their resident secondary storage.

7. THE HISTORY OF THE MULTICS PAGE MULTIPLEXOR

The entire Multics file system has gone through two
incarnations. The original version carvried the Multics
penchant for elaborate original design to some lengths and
was successfully implemented. Its performance and amenability
to debugging left something to be desired. Therefore, this
second attempt was made, using the knowledge gained from the
first to avoid areas of difficult implementation and slow
execution.

There were two principal changes respecting paging. First,

a single page size of 1024-words was chosen, replacing the
previous strategy in which pages of two sizes, 1024-words
and 64-words, were allowed. This simplification resulted in
the elimination of elegant but time-consuming algorithms for
page removal and for "change-making" and coalescing free
blocks in core and in secondary storage. Second, a single
segment size of 64 pages (implying a single page table size
of 64 words) was chosen, replacing the previous strategy

in which segments could vary in size from 64 to 256 pages
(always in units of 64 pages). This simplification resulted
in a greatly simplified Page Table-Active Segment Table
Entry arrangement to the benefit of all the modules involved:
page control, segment control, core control. As a result of
these changes, the present implementation has avoided several
lengthy computations in the most frequently used path in
page fault handling, achieving a great advantage in average
execution time over the former implementation.
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Chapter 7

SECONDARY STORAGE MANAGEMENT

1. INTRODUCT ION

Secondary storage management cuts across many parts of
the Multics virttal memory system. In this chapter, we
shall try to minimize repetition by discussing only those
points which have not been discussed elsewhere.

We shall discuss the assignment of a segment to a secondary

storage device and the assignment to its pages of blocks of

secondary storage. We shall also discuss "moving" a segment
from one secondary storage device to another, i.e., changing
a segment's assigned device.

2. ORGANIZATION OF SECONDARY STORAGE

The physical devices used for storing information in Multics--
core, disks, drums--are divided into 1024-word "blocks"
corresponding to the division of segments into 1024-word
"pages". Addresses of blocks in secondary storage are given
as pairs:

block address = (device identifier, block number)

For the most part, the "device identifier" specifies a
particular physical device. It is possible, however, that
one device identifier specifies part of.a large device or
a collection of small devices. We should, therefore, use
the phrase "logical device identifier."

Each (logical) device of secondary storage has an associated
"Device Map" which records which of its blocks are assigned
to pages of segments and which are free. The "Device Map"
contains one bit per block of the device. This bit is set
to "1" to indicate that the block is free and to "0" to
indicate that the block is assigned to a page.

To assign a block on a device to a page, it suffices to
search the appropriate Device Map for a bit set to "1", note
the corresponding block number, and reset the "l1" to "0".

To free a block (when a page is destroyed, for instance) it
suffices to reset the corresponding bit in the Device Map
from "O" to "1". -
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3. SECONDARY STORAGE OF SEGMENTS AND PAGES

3.1. Strategy for Secondary Storage of Segments and

Pages
3.1.1. Segment Assignment. Devices of secondary storage

are not equivalent. Due to differences of latency and
transmission timings and to differences in the accessing
code, some devices prove to be faster than others. For
example, in the present Multics configuration, the drum is
faster than the disk. Because of this non-uniformity, each
segment is assigned to a single secondary device: segments
expected to be used often are assigned to fast devices,
segments expected to be used more rarely are relegated to
slower devices. (When we say that a segment is assigned to
a device, we mean that the pages of the segment are to be

-~ stored in blocks of that device.)

A segment is assigned to a device of secondary storage when
the segment is created. The algorithm by which segments are
initially assigned to devices of secondary storage is called
the "Multi-Level Storage Algorithm". The phrase "Multi-
Level" emphasizes the differences in device characteristics.
A discussion of the Multi-Level Storage Algorithm is beyond
the scope of this paper. We shall examine only the
mechanisms used to execute this algorithm's decisions.

3.1.2. Page Assignment. When a segment is created, its

64 pages are also, in a sense, created. But before a page
is referenced for the first time, it cannot contain any
information. ‘

Although a few segments may ultimately contain 64 information-
filled pages, many segments never contain more than a few
such pages. It would be wasteful to tie up blocks of secon-
dary storage for pages that contain no information and may
never be referenced. Therefore, pages are assigned blocks

in secondary storage only after they have been referenced.

3.2. Data Relating to Secondary Storage of Segments
and Pages :
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3.2.1. Segment Map. We may now specify the "Segment Map",
that attribute of a segment which tells where the pages of
the segment are stored in secondary storage. The Segment
Map consists of: -

® device identifier
® 64 block numbers

3.2.2. The "Null" Block. A special block number, called the
"null" block number, is used to indicate that a page has

not been assigned a block of secondary storage. We often
say of such a page that it is assigned the "the null block".
- The null block may be regarded as a page of zeros.

3.3. Procedural Implications of Secondary Storage
Strategy

3.3.1. Creating a Segment. When a segment is created, the
Multi-Level Storage Algorithm is used to assign the segment
to a device of secondary storage. The segment's 64 pages,
which have not been referenced, are all assigned the "null"
block. The device identifier and the 64 "null" block
numbers are all recorded in the segment's Segment Map.

3.3.2. Bringing a Page to Core. When a page is referenced
for the first time, the Page Fault Handler (PFH) is asked
to "bring to core" a page which is "stored" in the "null"
block. The PFH handles such a request by:

® assigning a block to the page from the segment 's
assigned device.

e zeroing out the block in core which is to contaln
the new page.

® setting the "page has been modified" switch in the
page's PTW to make sure that the page will ulti-
mately be moved to its newly assigned block.

3.3.3. Removing a Page from Core. When the PFH wishes to

use a block of core presently occupied by a page, it inspects
that page's "page has been modified" switch. If the page

has been modified, then it must be written into its assigned
‘block in secondary storage. If the page has not been modi-
fied, then it may be overwritten directly since it is equi-
valent to the information in the assigned block of secondary
storage.
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4. MOVING A SEGMENT FROM ONE SECONDARY STORAGE DEVICE
TO _ANOTHER

4.1. Strategy for Moving a Segment

It is occasionally necessary to "move" a segment from one
secondary storage device to another. A "move" is necessary,
for instance, if a secondary storage device becomes full

or if a segment's usage changes substantially. The decision
to re-assign a segment to a new device (to "move" a segment)
is made by the same Multi-Level Storage Algorithm which
assigned the segment to a device at segment creation time.

4.2. The Segment Map Revised to Permit "Moves"

The Seguent Map must be revised if it is to be possible to
move a segment from one device to another. The Segment Map
must indicate not only the device to which the segment is
assigned (in the case of a move, the segment is assigned to
the new device) but also the device to which the segment
was assigned. During the move, information must also be
stored to show to which of these two devices the segment's
64 pages are assigned. Llast, the Segment Map must show
whether or not a "move" is in process.

The revised Segment Map has the form:

@ device identifier (or, in case of a move,
' "old device identifier")

® new device identifier _ :

(non-zero only if a move is

- in progress; thus acts also

as a "move in progress" switch)
e 64 block numbers
e 64 "moved" switches : .
(a page's "moved" switch shows
to which of the two devices the
pages are assigned; the "moved"
switch is meaningful only when
a "move" is in progress)

4.3. Procedural Implications of "Moves"
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4.3.1. Bringing a Page to Core. Wwhen a page is brought to
core, it must be brought from its presently assigned block
in secondary stovage. The Page Fault Handler (PFH), by
inspecting the "new device identifier", "old device
identifier", and the page's "moved" switch, can determine
the device to which the page is assigned. The page's secon-
dary storage address then consists of the device identifier
so calculated and the page's block number.

In the case of a "null" block assignment, the page referenced
for the first time i: assigned to a block of the new device.

4.3.2. Removing 2 Page from Core. When the PFH removes a
page from core it mus? see that the page is removed to a
block in the correct device. This means that:

(a) If the segment is being moved from one secondary
storage cevice to another, and

(b) if the p:ze's "moved" switch shows that the page
has NOT teen moved, then the PFH must

(¢) release the block assigned to the page on the
"old"™ device,

(d) assign a block to the page on the "new" device, .

Faa
[y
p

rec
set

T O

¢
poie 1

d the new assignment in the Segment Map,
ing the "moved"” switch,; and

(f) move the page from core to its newly assigned
block in secondary storage.

4.3.3. Deactivating = Segment - Completing a Change of Devices.
We know that when a segment is deactivated, the Segment Fault
Handler calls a specizl entry of the paging module to force
the segment's remaining pages out of core. Before it removes
any pages from core, this procedure checks to see if the
segment being deactivated is being moved from one device to
another. If the segmsnt is being moved, code is executed
which brings to core those pages of the segment which are
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stored in blocks of the "old" device (that is, pages which
have non-"null" block numbers and whose "moved" switches say
"not moved".) wWhen this has been done, the job of removing
the segment's pages from core is performed. The pages are
removed from core as described in the previous paragraph.
Thus, at the end of the page removal, all of the segment's
pages are necessarily assigned to blocks of the "new" device.

When the page removal procedure returns to the Segment

Fault Handler, the latter updates the Segment Map to show
the correct device identifier, a zero new device identifier,
and all "moved" switches showing '"not moved'". With this,
the move is conplete; we see that deactivation completes a
"move".

4.3.4. Performing a "Move". We may now describe the procedure
which the Multi-Level Storage Algorithm uses to move a segment
from one device to another. The "new-device" identifier is
placed in the Segment Map of the segment (in the branch if the
segment is not active, in the ASTE if the segment is active).
If the segment is not active, it is made active. Finally,

the segment is deactivated by means of a call to a special
entry of the Segment Fault Handler. By supplying a "new-
‘device" and activating the segment, the "move" is initiated.
By forcing the deactivation of the segment, the "move" is
terminated, as described in the previous paragraph.
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Chapter 8

DEVICE INTERFACE MODULES

1. INTRODUCTION

The responsibility of the Device Interface Module (DIM)
respecting paging is (a) to initiate transfers of pages
between blocks of core and blocks on secondary storage
devices as requested by the Page Control Module, and (b)
to notify the Page Control Module upon the completion of
these transfers. In general, there is a considerable time
lapse between the performance of these two functioms.

Page Control uses the DIM by (a) initiating a transfer and
then (b) waiting to be notified by the DIM of the completion
of the transfer. The DIM must, therefore, perform its
notification function with respect to a given transfer
without being called by the process which requested that
transfer. :

Notification of completed transfers is usually performed

by the DIM just after the latest transfer is initiated.

The DIM inspects its data bases, determines which transfers
(by whatever process requested) have been completed, and
performs the necessary notifications. It then returns

to its caller which may in turn wait for notification.

It may happen that all processes are waiting and, thus, that
no process will (by taking a page fault) invoke the DIM.
Therefore, as a precaution, the DIM arranges to have an
interrupt sent to the processor by the secondary storage
device sometime after it completes its last pending transfer.
This interrupt will cause a special process to be wakened
which will call the DIM and cause the required notifications
to be performed. The DCW (see below) which causes this
interrupt also disconnects the controller; we call it the
"last" DCW. '

2. GENERALITIES

2.1. DCW's

We are concerned with the I/0 transactions of transferring
a page from a block of core to a block of secondary storage
(or vice versa) involving the GE-645 computer and its peri-
pheral units. The Page Control Module "requests" such a
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transfer by a call to the DIM of the appropriate device.
The DIM passes the request along to the device controller
via a special word, called a DCW - Data Control Word.

A DCW contains the following information of interest to
us in this paper:

- op-code read, write, or no-op (on some
devices)

- core address
- device address

- disconnect bit causes the device to disconnect
after satisfying the request
specified in the op-code

- interrupt bit causes the controller to send an
interrupt to the processor after
‘the request has been satisfied

2.2, DCW Lists

Each device controller is driven by a list of DCW's which

it runs through, consecutively, interpreting the DCW's,

until it -encounters a DCW with a disconnect bit set after
satisfying which the controller disconnects itself and

waits to be reconnected. The DCW lists are all regarded as
circular in the sense that the controller accesses the DCW's
consecutively, modulo some N. The DCW lists are finite in
the sense that the DIM's always store a DCW with a disconnect
bit somewhere in each DCW list. This DCW, whose interrupt
bit is also set, is called the "last" DCW.

2.3. Stétus Queues

While the device controllers obtain their instructions from
DCW lists, they record the status of requested transfers

in special "status queues". A word in the status queue

is associated with a DCW and written into by the controller
after the transfer specified by the DCW is begun. The

status word will show whether the action begun was completed,
whether there was a parity error, etc. '
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2.4, Function of the DIM

The DIM for a particular device interfaces with the device
through the two data bases discussed above, the DCW lists
and the status queues. The DIM interfaces with the user
(the Page Control Module, in our case) as follows:

- on being called, the DIM sets up appropriate DCW's,

- makes sure that the interrupt and disconnect bits
are set in the proper DCW, and

- connects the controller if necessary.

After acting for the particular user, as above, the DIM

- inspeéts the status queue,
- "posts" all completed transfers in the associated
Page Table Words,

- "notifies" the processes waiting for the completed
transfers, and

- = cleans up the SDw 115t and status queue as requ1red.

2.5 Normal Operation

It is expected that enough page faults will occur that
"requests" for page transfers will, in general, occur while
each DCW list is non-empty. This means that the controller
has not yet reached the "last" DCW with its disconnect and
interrupt bits set. The DIM accordingly establishes new
DCW's (as indicated above) and then advances the "last"

DCW, that is, resets the disconnect and interrupt bits in
the DCW in which they are presently set and sets them instead
in the now appropriate DCW, further along on the circular DCW
~list. (We will discuss in detail below just which DCW is
"last".) In this way, it is expected that the controller
will run for a long time without reaching the "end" of the
DCW list and will consequently remain connected and will

not have to send interrupts. Since the purpose of the
interrupts would be to force the invocation of the DIM to
‘"notice" the completion of transfers, and since the DIM will
be called quite often as part of paging, there is no need
for interrupts. The interrupt associated with the "last"
DCW takes care of the unlikely case that all processes are
waiting for page I/0 and that no more calls to the DIM from
the "user" will occur. In this case, the interrupt will
force a special process to be wakened which will call the
DIM and so enable the noticing of completed transfers,

their "posting", and the associated notification.
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3. DRUM

3.1. Drum Configuration

The drum contains M*N blocks of 1024 words as shown in Figure 1,
As the mth row of blocks comes under the read/write head, any of the
N blocks in the row can become part oi a transfer.

— ' Rgad/Write Head

\
\\
Row #3

szﬁ\fg

Figure 1., Drum Configuration

3.2. Drum's DCW List Configuration

The drum DIM maintains a circular DCW list for the drum of
length L*M where L>>N. Each DCW contains the following
information: : : '

(read, write, or no-op), core address, m, n, ("last"
or ™not-last")

where "last" means the disconnect and interrupt bits are
set (in one DCW only), m is the row number, and n is the
number of the block in the row. The drum's DCW list is
initialized with all of the m's set, in order, so that the
DCW list consists of L one-entry-per-row coverings of the
drum. As the drum rotates and as the controller advances
through the DCW list, the number of the drum's "presenting"
row equals the row number of the DCW then pointed at by the
controller. For this reason, the drum DCW may have a no-op
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op-code to specify that no transfer is to occur involving
a block on the mth row at this time. See Figure 2. It
should be emphasized that this L-fold "covering" of the
drum by the DCW list and the consequent parallelism
between the drum's physical position and the words of the
DCW list is not required by the hardware but is a software
construct (of some beauty.)

@ =

Drum Physical Position (Row=8)

? Alternative View of Drum
DCW List as L-fold Covering

/! Controller's
‘ DCW

>/ W
| 1]

Figure 2, Drum DCW List Configuration

3.3. The "last" DCW

Whenever it is called, the drum DIM resets the "last" DCW
to be the DCW last passed by the controller, that is, the
DCW for which the drum controller has just completed the
recording of final status. This guarantees that the drum
controller will never generate an interrupt (and disconnect)
until L revolutions of the drum after the last call to the
drum DIM. The drum DIM maintains a pointer to the "last"
DCW and, upon being called, erases the "last" information
from the presently "last" DCW and writes it into the DCW
just passed by (as explained above), resetting the "last"
pointer.
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3.4. DCW List Management for the Drum

wWhen a transfer request is sent to the drum DIM, a pair
(m,n) is sent as drum block address. The DIM examines the
DCW list and finds that unique DCW in the L*M DCW's of the
list which (a) will first be in the controller's path,

(b) has a no-op op-code, and (c) has the given value of

m in its row number slot. Therec are L DCW's with row number
m and it is expectued that at least one of them is no-op.
(If all L of them are in real use, the DIM loops, waiting
for one of them to come free.) wWhen such a DCW is found,
the DIM writes the appropriate value of n into the DCW

and sets the appropriate op-code (read or write). The

DIM then goes through the usual steps of setting the "last"
position correctly, observing, posting, and notifying for
completed transactions. One part of cleaning up after com-
pleted transactions is to reset to "no-op" the op-code of
DCW's whose requests have been serviced.

It is expected that the drum controller will, in gerneral,
continuously run through the circular DCW list, the "last"
DCW running along i. ra2volutions behind it, with a band of
non-null DCW's just in front of the current controller posi-
tion in the list. See Figure 3.

"Last" DCW

4 Requests which are Completed but not
"Posted" .
Conctrollerts DCW Pointer

_Requests not yet Serviced

Figure 3. Density of Non-Null DCW's in Drum's DCW List
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4. DISK

4.1. Disk Configuration

The "disk" consists of 1 platters each with one movable

I/0 head. The I/0 head for any platter may be moved to any
of J tracks. Each track has K blocks which come under the
I/0 head as the disk rotates. A disk DCW specified:

(read or write), core address, i, j, k, ("last" or
"not-last")

4.2. Digk DCW List Configuration

The disk's DCW list is circular only in the sense that its
DCW's are accessed by the controller consecutively modulo
the list length. DCW's are put on the list in the order
received; there are no no-op DCW's, and the last DCW to be
put on the list is always the "last" DCW in the sense that
it contains the disconnect and interrupt bits.

4.3. Expected Operation

The Disk DCW list is ordered randomly in the sense that _
requests are put on the list as received and hence without
regard for the position of the disk (k) or of the 1 arm
positions j(i). This technique is chosen because of the
large amount of processing that would otherwise have to be
done to keep track of the arm positions, the value of k,
"and the list of unsatisfied DCW's; and because of the low
probability that such processing would pay off.

No interrupt and disconnect will occur as long as there is
at least one request in the queue. Since no reuse of old
DCW's is made (as in the drum's case), there is no need,
in cleaning up, to erase the contents of the DCW's of
completed requests. '
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B. Access Control to the Multics Virtual Memory
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INTRODUCTION

An important trend in the design of large computer
systems is the inclusion of hardware and software for

the sharing of information, both procedure and data.
Thus, the concept of pure, re-entrant procedure has lost
its novelty and the sharing of data, as in multiuser
information retrieval systems, has become commonplace.
The introduction of sharing into large systems has, how-
ever, brought the difficult problem of access control
into the realm of the computer system. The comparatively
easy problem of protecting the supervisor in a batch
environment has grown into the complex task of permitting
the flexible sharing of information between system and
user and between user and user.

The Multics access control system has been described in
a number of places with a number of purposes. Graham3
discusses the fundamental reasoning behind the chojce of
the Multics ringed access control system; Organick™ dis-
cusses the details of the implementation and use of this
system; and the Multics System Programmers' Manual goes
into even greater detail on implementation. The purpose
of the present paper is not to duplicate any of the ex-
cellent material already available but rather to high-
light certain aspects of the Multics ringed access control
system which are thought to be of particular interest to
system programmers.

In this paper we shall develop the ides of the ringed
access control system -as an approximation of access con-
trol conditioned on the identity of the procedure in
execution, as suggested by Evans and Leclerc®; we shall
describe "ringed hardware" to support the ringed access
control system; we shall show how this "ringed hardware"
is simulated on the 645 processor; and we shall discuss
at some length the software mechanisms which are 1mp11ed
by the concept of "ring".

This paper was written in conjunction with, and lo%lcally
follows, another paper, The Multlcs Virtual Memory
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Chapter 1

ACCESS CONTROL PHILOSOPHY

In the Multics virtual memory, the segment is the unit
of information to which access is controlled. In fact,
the possibility of controlling access to shared infor-
mation was a principal justification for designing a
segmented memory system. In Multics, every segment is
directly addressable and it is, therefore, necessary,
upon each attempted memory access, for the accessing
hardware to answer the question:

Shall this attempted access be permitted?

The answer to this question, with respect to a given
segment, is obtained by interpreting a data base associat-
ed with the segment, the segment's "access control attri-
butes". It is the purpose of this chapter to discuss the
basis on which the hardware might go about answering this
question, hence, to specify the content of a segment's
access control attributes.

We feel that, at the least, a segment's access control
attributes should indicate:

1. who may access the segment; a segment may
be accessible to a single user only or
shared by a number of users.

2. how each of these users may access the
segment; distinct users may have distinct
access rights.

3. in what circumstances each user may exercise
' his access rights to a segment; a user's
rights may be made to depend, in some way,
on what he is doing.
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User~-Name. Let us look at these points in turn. To
begin with, it is a process executing on a processor
which attempts to access memory, not a user. For this
reason, every process has associated with it the name
("user-name") of the user on whose behalf it is ex-
ecuting; all access rights of the process derive from
the process' user-name.

We note that the security of an access control mechanism
depending in this way on the user-name depends strongly
on the technique by which a process is assigned a user-
name.

A simple and perhaps sufficient technique for assigning
'user-names to processes 1s to require each user, when
he "logs in", to specify a user-name and then give a
secret password which validates his right to use the
given user-name. All processes which subsequently act
for him as a result of this "login" will then do so
with the authority of the given, validated user-name.

Access-Mode. The basic types of memory access are READ,
WRITE, and EXECUTE. We use the term "access-mode" to
refer to any combination of these types including the
null combination. It is clear that a process' access
rights respecting a4 segment are at any moment char-
acterizable in an access-mode.

If a process' access rights were to be independent of

its activities, chen a segment's access control attributes
could be reccocrded in a list of user-name/access-mode
pairs. A process' right to access a segment in a given
way would then be determined by (a) whether the process!
user-name appeared in the segment's list and (b) whether
the given access type appeared in the corresponding
access-mode. This system of access control is illustrated
in Figure 1. The access control mechanism takes as .
arguments the process' user-name, the type of the attempted
access, and the name of the target segment. It then
searches the target segment's access control attributes
list for the given user-name. If it is found, the
corresponding access-mode is then searched for the given
access type. The access is permitted only if the user-
name and access type are found. '
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‘The system of access control just described is

already quite powerful.

It permits a user who has

created a segment to grant himself READ-and WRITE-
access to it, to store information in the segment,
and then to give & number of other users READ-access

to it.

He and these others may now read the segment

whereas he retains for himself the right to change it.

1. target segment
2. user-name _
3. access-type _ | User—name, access-mode,
obtain target segment's _ - :
access control -
attribute list
& user-name . access-mode .
is "user-name" \no - pu
in the list? = -7
- -~
‘ - -~
-
is "access-type" in\\\ -~
the associated no_ -~
access-mode? /’ )
Target Segment's Access
l yes Control Attribute List
permi‘t the cause the appropriate.
access access violation

fault to occur

Figure 1. Illustrating an Access Control Mechanism
Depending on User-name and Access-type
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Circumstance-Dependence of Access Rights. There are two
reasons why a process' access rights should somehow be
made to depend on the process' current business. First,
the problem of error may suggest that access, particular-
ly WRITE-access, to a segment should be limited to de-
bugged procedures or groups of procedures. Second, the
problem of intentional misuse of a segment may suggest
that semi-trusted users be forced to access the segment
via procedures or groups of procedures specifically
designed for their use.

As an example of the latter, consider a Management In-
formation System with a data base including individual
salary information. This data base would generally be
"readable" by all users of the system; but the less pri-
vileged users would have to "read" the segment via pro-
cedures designed not to disclose individual salaries.

In the remainder of this chapter we shall take for
granted the dependence of access rights on user-name and
shall concentrate on finding a good and workable way to
make & process' access rights to a segment circumstance-
dependent.

1. ACCESS CONTROL BY PROCEDURE

- The most obvious way to achieve circumstance dependence

in access control would be to condition a process' access
rights on the procedure by which the access is attempted.
A segment's access control attributes would then be
recorded, in effect, in a user-name versus procedure table
whose entries are access-modes.

Figure 2 illustrates this system of access control. The
access control mechanism takes as arguments the process'
user-name, the type of attempted access, the name of the
procedure in execution, and the name of the target seg-
ment. The target segment's access control attribute
table is then searched for an entry corresponding to the
given user-name and procedure. If the entry is found,
the corresponding access-mode is then searched for the
given access type. The access is permitted only if an
entry with a suitable access-mode is found.
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This type of control would permit access control as
illustrated in the following example:

user-1 "owns" data segment D and procedure P and
gives user-2 WRITE-access to D only when executing
P and EXECUTE-access to P only when executing in
procedure P (and, of course, P itself).

This implies that user-2 can only write in D by calling
P from P (to which user-2 has access from some source
other than user-1l).

3. access-type
.. procedure

1, target segment

:

btain tar%et segment's
rol

ccess con

ttribute table

f

is "user-name"
an entry in the

table?

yes

is "procedure"
an entry in the

table?

. user—-name —
] H
- .
o [
- | -
=) 3
L
______ [
™ o | 3]
o o
o L 15
user=-name, U o B
-
-
no =
user-name . %7 < .
- - 7 M= N z -~
-
/’ : !
P ’/,
-~ /’
\ -~
- ’/
> Pl
-
no s
/
N
.

yes

is "access-type" 1n
the corresponding

- access-mode.k]
!

Target Segment's Access
Control Attribute Table

access-mode?
\ yes
permit the cause the appropriate
access access violation

"fault to occur

A

Figure 2. Illustrating an Access Control Mechanism
Depending on User-name, Access-type, and
Procedure )
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2.  ACCESS CONTROL BY SET

The idea of conditioning access rights on the procegure-
in-execution has been proposed by Evans and Lecler.“ and
is an idea that occurs to many system programmers at

some point when they are struggling with difficult access
control problems. We would recommend this technique were
it not for some difficulties which render it infeasible.
The principal hindrances to the conditioning of access’
rights on the procedure-in-execution are:

e no hardware presently exists which would permit
this type of access control to be practiced in
any but an interpretive mode

e too much effort and space must bé‘éxpended in
constructing and updating each segment's table
of access control attributes

e too much must be foreseen: This technique requires
knowledge of all of the uses to which each segment
may legitimately be put.

A natural idea for approximating the procedure-in-
execution strategy is based on grouping related procedure
segments into "sets" and basing access rights to segments
on the identity of the set to which the procedure
attempting the access belongs.

There is no reason, by the way, to suppose that these
sets of procedures would be dis joint; indeed, service
procedures such as PL/1l runtime routines would probably
be included in every set.

Access control by procedure-set appears to have two advan-
tages over access control by procedure. First, ‘each seg-
ment would have a somewhat smaller table of access control
attributes, a practical system presumably having fewer sets
than procedures in sets. Second, updating the per-segment
access control attributes tables should be easier, since
adding another procedure to a set would mean revising the
definition of the set, not amending the access control.
attribute tables of a large number of segments.
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Figure 3 illustrates access control based on set-in-
execution. The form of a segment's access control at-
tributes and the interpretation of these attributes by
the access control mechanism are just as in access con-
trol by procedure, as described in Section 1 above,
except that "set" replaces "procedure" wherever it
occurs.

The concept of "sets" introduces a number of interesting
problems. Given that each procedure is potentially an
element of several sets, and stipulating that a change
of set can only occur upon a change of procedure (i.e.,
upon a call or return), how shall the access control
mechanism determine to which set to change (if any)

upon each transition between procedures? How shall the
composition (membership) of sets be initially defined
and by what mechanism shall the composition of sets

be changed? Shall the composition of sets be determined
in a system-wide way or per-user or per-project? And

so on.

We have introduced this concept of "sets" of procedures
in order to make the definition of "rings" (see below)
less abrupt and also to put the concept of "rings" in
perspective. ‘

3. ACCESS CONTROL BY RING

The implementation of an access control strategy based
on sets, as described above, is judged infeasible due
to the difficulty of defining sets, of unambiguously
defining all transitions between sets, etc. It is use-
ful to define a restricted theory which produces the
more useful concept of "rings".

We use the term "rings" to refer to "sets" (as described
above) to which access rights to all segments are
assigned in such a way that the sets can unambiguously
by ordered by increasing power or privilege. Precisely,
we say that a collection of sets is a collection of
rings if the sets can be numbered 0, 1, 2, ... in such
a way that the possession by a particular user of an
access right to a segment in set k implies the pos-
session by that user of that segment for all sets j,
j<k.
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1. target segment
2. user-name
3. access-type

. 4. set
obtain target segment's e
access control pr = - - - o5
attribute table 2 e
{ user-name, P
]
is "user-name"\ no : »
an entry in the M= 3-’
table? ——_— e —-—— ,_.._—’ -~ J //,""-\\
yes 2 _ .-
-~ - -
is "set" an \/’,’ : 1-
entry in the > P
table? no "
~
yes , -~ <
. - access-mode .
, . — - JK
is "access-type" in \( -_————1
the corresponding } - Target Segment's Access
access-mode? no Control Attribute Table
lyes
permi{ the cause the appropriate
access - access violation

fault to occur

Figure 3. Illustrating an Access Control Mechanism
' Depending on User-name, Access-type, and
Set

130



A corollary of this definition is that a user's
access rights to a segment can in part be expressed
as an access-mode and a triple of ring numbers -
r(READ), r(WRITE), and r(EXECUTE) - indicating that

a given access type, X, if present in the access-mode,
1s to be available to the user in the rings O-r(X),
inclusive. We shall defer to the next chapter con-
sideration of how a process changes from one ring to
another. ' '

Figure 4 illustrates access control base on the ring
in which the process is executing. The essential
point to notice 1s that a segment's access control
attributes can be very concisely recorded. The
interpretation of the access control attributes is as
discussed in the preceding paragraph.

A few comments about rings may be in order. First,
the introduction of rings greatly simplifies the
recording of a segment's access control attributes,
as indicated above. Second, the fact that rings are
ordered removes the ambiguity about the changing of
power that was inherent in the idea of a transition
between sets: when the processor changes from ring
i to ring j, j>1 implies an increase (or at least no
decrease) of power or privilege with respect to all
segments; and j<i implies a decrease. This homo-
geneous and evident change of power with the change
of ring makes it much easier to think about the
problems of changing rings than it could ever have
been to think about the changing of sets. As we
shall see, and notwithstanding the previous remark,
most of the difficulty in the fully worked out
strategy of access control by ring nevertheless
resides in the mechanics of changing rings.

The following points seem to pe necessary elements of
any access control strategy based on the idea of rings:

e Attempts by the processor to pass control from

one ring to another must be supervised by the
access control mechanism.
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e The transition from one ring to another can
only occur upon a call or return; the
transition (if any) associated with every call
and return must be unambiguously defined.

e The concept of a "return" from a call must be
extended to imply returning to the ring from
which the call was made.

3.1 Multics Terminology; Gates

In Multics the term "inward" is used to characterize
a transition from one ring to a more privileged ring,
the term "outward" to characterize a transition in
the other direction. Procedures which may be called
by "inward" calls are called "gate" procedures since
they are, in effect, gates through which the processor
may enter the more privileged ring. We shall see
that the major difficulties in the design of a ringed
access control system relate to allowing outer ring
prccedures to use inner ring procedures without
allowing them to defeat the protection purposes
responsible for the existence of rings.
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Chapter 2

MULTICS RING STRUCTURE PHILOSOPHY

In Chapter 1 we discussed access control and dev-
eloped the idea of rings in a general (i.e., non-
Multics) ways We now turn to Multics itself. In
this chapter we shall enlarge on the subjects of
rings and gates, state and justify the full Multics
‘ring structure strategy, and show how this strategy
can be implemented with the aid of suitable hard-
ware.

In this and the following chapters, the emphasis

in the definition of "ring" will shift slightly.

We will think of a ring not as a process state de-
fined by a set of procedures, but rather as an
abstract process state in which, by virtue of the
access control rules of the system, a particular.

set of procedures may be permitted to execute.

There are 64 rings in Multics which are conventionally
numbered, in order of decreasing power, from 0 to 63.

1. THE PRELIMINARY STRATECY

A preliminary (and conceptually useful) idea for the
use of rings is based on specifying a user's access
rights to a given segment with an access-mode, a
single ring number "r", and a gate-switch.

The Rules. The ring number r, gate-switch and access~-
mode are interpreted as follows. (Note that all ring -
intervals are inclusive).

a. If the user's access-mode contains WRITE,
the user may, in rings (O,r), write in the
segment. o

b. If the user's access-mode contains READ,

the user may, in rings (O,r), read the -
segment . - : '
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c. If the user's access-mode contains EXECUTE,
the user may,

1. in ring r, call and execute the segment

2. 1in ring R<r, call the segment, switching
to ring r to execute it

3. in ring R«r, but only if the gate-switch
is set, call the segment, switching to
ring r to execute it

Every attempt by the process to
switch to a lower numbered ring

in this way must pass a legitimacy
test imposed by the access control
mechanism and by the procedure
being entered.

d. All ring switching must be done under the
supervision of the access control mechanism.

e. The concept of "return from a call" must be
extended to imply a return to caller's ring.

The Need for "Gates". Since an "inward" call (i.e.,

a call through a "gate") increases the processor's
power, it is necessary that a test be made to verify
that the process has attempted to enter the more
powerful ring on a legitimate errand. For, if the
process could freely change its ring so as to increase
its power, the protection offered by the ring aspect
of the access control mechanism would be wholly
illusory. The kind of testing is occasioned by an
attempted inward ring change will be discussed in
detail in Chapter 3. As an obvious example, we note
that a call to a gate segment should be permitted only
if the target address is in fact an entry point of '
the segment.

2. THE "RING BRACKET" STRATEGY

The principal difficulty with the "preliminary"
strategy described above is that procedure segments may
be executed in one ring only. This means that a pro-
cedure likely to be called in several rings will often
be called from a ring other than its ring of execution,
occasioning a great deal of ring changing, an expensive -
business as we shall later see. A second difficulty
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with the "preliminary" strategy is that users with

both READ- and WRITE-access rights for a segment have
these rights equally in all of the rings from O to r.
Since the ability to write in a segment is intrinsi-
cally more powerful than the ability to read it, it
would be desirable to be able to grant write permission
to a user in a (relatively privileged) subset of the
rings in which he may read. As a result of these and
other considerations, Multics has re jected the "pre-
liminary" strategy for a "ring bracket" strategy.

Under the "ring bracket" strategy, a user's access
rights respecting a given segment are encoded in an
access-mode and a triple of ring numbers, (rl, r2, r3),
called the user's "ring brackets" for the given segment.

The Rules. The ring brackets, (rl, r2, r3), which
must satisfy the relations r1<r2$r3 are interpreted as
follows. (Note that all ring intervals are inclusive).

a. If the user's access-mode contains WRITE the
user may, in rings (0O,rl), write in the segment.

b. If the user's access-mode contains READ the
user may, in rings (0,r2), read the segment.

c. If the user's access-mode contains EXECUTE
the user may,

1. in rings (rl,r2) call the segment without -
~changing ring

2. in riﬁgs (0,rl-1), call the segment,
switching to ring rl

3. in rings (r2+1,r3), call the segment,
switching to ring r2 :

Every attempt by the process to switch
to a lower numbered ring in this way
must pass a legitimacy test imposed by
the access control mechanism and by the
procedure being entered.
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d. All ring switching must be done under the
supervision of the access control mechanism.

e. The concept of "return from a call" must be
extended to imply a return to the caller's
ring.

Under these rules we see that a utility routine may
be given ring-brackets (0,63,63) and so be callable
in all rings, but never occasion a change of rings
upon being called. On the other hand, a critical
system procedure might have ring brackets (0,0,0) and
so be callable and executable only in ring O.

We also see that a user who has read and write per-
mission for a data segment may be given ring brackets
\a,b,b) with a<b so that the domain in which he has
write permission, rings (0,a) is a relatively pri-
vileged subset of the domain in which he has read
permission, rings (0,b). These comments show how the
ring bracket strategy corrects the defects which we
noticed in the preliminary strategy.

Ring Changing Calls. Let us now discuss inward and
outward calls. The "rules" provide that every pro-
cedure segment for which O<rl may be entered via an
outward call (from ring O, for instance) and that
those procedure segments for which r2<r3 are "gate"
segments and may, therefore, be entered via inward
calls (from ring 13, for instance). What is the
nature of such calls?

An inward call is made when a procedure in an outer
ring wants to inciease the power of its process tem-
porarily in order to do a job requiring such increased
power. For example, a user procedure may call a
system procedure in ring O. The notion of "inward
call" brings to mind "the tail wagging the dog", since
lesser power directs the use of greater power. The
only segments which can be entered via inward calls
are, therefore, ths: "gate" segments. The duty of a
gate segment, as a gate segment, is to perform a test
of the legitimacy «f the inward call, that is, to see
that the caller has not, by accident or design, asked
the gate segment tc behave irresponsibly. Whether

or not a segment is a "gate" for a particular user
depends on that user's ring brackets and access-mode
respecting that segment.
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An outward call is made when a procedure executing
in an inner ring wants a job done which can (and
perhaps must) be accomplished with the comparatively
feebler power of an outer ring. For example, a
process in Multics initializes itself ( a system
function) in ring O but calls out to a user ring when
ready to do the user's work. In this case, the pro-
cess must call out since a Multics convention forbids
user work to be done in ring O. For another example,
a programmer with a collection of more or less
debugged procedures may use several rings, keeping
the more debugged procedures and their data in the
- inner rings so that damage from the other procedures
will be isolated in the outer rings. If these pro-
cedures call each other freely, outward calls will
presumably occur.

3. RECORDING AND RECOVERING ACCESS CONTROL RIGHTS

In "The Multics Virtual Memory"!, we find that all of
& segment's attributes of interest to the system are
ctored in the segment's "branch" in a "directory"
segment. The access control attributes of a segment
ere stored in its branch in a variable length table
called the access control list (ACL). Each entry of
a segment's ACL specifies a particular user's access
rights respecting the segment and is of the form:

user-name, access-mode, ring brackets

The procedure responsible for determining a user's
access rights for a given segment searches that seg-
ment's ACL for the user's user-name. If it is not
found, then the user has no rights. If it is found,
then the user's access rights are determined by the
associated access-mode and ring brackets.
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4. "RINGED HARDWARE"

In "The Multics Virtual Memory"1 we discussed the

use of the 645's descriptor segment and Segment
Descriptor Word (SDW) in providing the Virtual
Memory. It was noted that part of each SDW was
reserved for an access control field. In this sec-
tion we shall discuss hardware similar to the

645's which is consistent with the description

given in "The Multics Virtual Memory" and which per-
mits a simply described implementation of the Multics
ringed access control strategy. In Chapter 4, we
shall describe the actual 645 hardware and discuss
the software modifications needed to provide for the
differences from the hardware described here.

We propose "ringed hardware" with the following
features: -

1. The processor has a ring register whose value
defines the process' ring. This register
may be changed by instructions only in ring O,
that is, when its value is O.

2. The SDW's access control field contains the
process' access-mode and ring brackets.

3. The processor has an access control mechanism
which checks attempted memory accesses
according to the rules stated in Section 2
and causes the processor to fault (trap) to
an appropriate procedure in ring O in cases
where the attempted access cannot be (or
cannot be directly) performed. Such a
fault causes the hardware to set the ring
register to O.

It should be clear that a procedure executing in ring
n should not be able to change the value of the ring
register to m, m<n, simply by executing an instruction.
It might, however, seem that ring changing should be
accomplished by the hardware itself, during the
execution of a transfer instruction, by a simple change
of the contents of the ring register— We have

avoided specifying such hardware, for, as we shall

see in Chapter 3, changing rings is quite complex and
requires considerable software assistance. In light
of this fact and considering the hardware organization
described above, we may describe the functioning of
this system as follows:
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When a memory access is attempted, the type of
access (read, write, or execute) and the pro-
cessor's ring register are compared, by the pro-
cessor's access checking mechanism, with the
access-mode and ring brackets fields of the target
segment's SDW. As a result of the comparison,
three actions may be taken:

1. The memory access is performed and the
ring register is unchanged.

2. The memory access is a ring changing
transfer; the processor faults to the
ring changing fault handler, in ring O.

3. The access attempted is illegal; the pro-
cessor faults to a suitable access violation
fault handling procedure, in ring O.

Note that the fault handling mechanism must have the
power to change the ring register. This is achieved
by making the fault handling procedure executable

in ring-0 only, making the hardware enter ring O
upon taking a fault, and making the ring register
changeable (by instruction) in ring O only.
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Chapter 3

SOFTWARE FUNCTIONS IN RING CHANGING

We indicated, in Chapter 2, that ring changing is a
complex activity requiring considerable software
assistance. In this chapter we will discuss various
aspects of an operating system imposed by a ringed
access control system and will discuss the software
functions consequently required in ring changing.

We will structure our exposition by separately des-
cribing the four types of ring changes, inward and
outward calls and returns, attending to points of
interest as they arise. That done, we will conclude
with a discussion of important facts and concepts and
a quick once-over of the ring changing software.

Many of the functions to be described below might be
performed, at least in part, in the inner-ring pro-
cedure involved in the change of ring rather than in
the procedures of the ring changing mechanism, and
some of the functions might more naturally be per-
formed there. We take the point of view, however,
that the code required to perform ring changes should
be concentrated in a single place and we give the ring
changing mechanism responsibility for performing all
of these functions. In order to handle ring changing
in this way, it is necessary to establish certain
conventions between the ring changing mechanism and
the inner-ring procedures involved in ring changes, as
we shall see below.

1. INWARD CALLS

Detection. An inward ring changing call is detected
when an inward ring changing fault occurs as the
result of a "call" (rather than of a "return") type of
instruction. The fault handler obtains the number of
the target ring from the process' ring brackets for
the target segment; according to the rules of Chapter
3, Section 2, the target ring is "r2".
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Gate Address Validation. The handler's first business

is to verify that the address to which the caller wish- e
es to transfer is indeed a gate entry point for the
process. This verification is based on a "gate-list"
(i.e., a list of gate entry points) associated with the
target segment; this gate-list may be system-wide in
the sense that all users who may use the segment as a
gate may use the same gate entry points or may be per-
user in the sense that each user who may use the seg-
ment as a gate has a private gate-list. In today's
Multics, the gate-list is system wide and is stored in
the procedure segment (rather than, for instance, in
the segment's access control attributes in the seg-
ment's branch).

Per Ring Data. We must now consider the nature of the
"workspaces" of the calling and of the called pro-
cedures. In the ringed environment, all data must be
"ring bracketed", including workspace data, e.g., the
PL/1 static and automatic data. Since a procedure
executing in ring r may freely copy into the (ring r)
workspace any data readable in ring r, including all
such data not readable in ring r+l, it is clear that
ring r must use a workspace with ring brackets (r,r,r).
Thus, assuming that any workspace segment has an , ——
access-mode implying read and write permission, the
workspace for ring r is readable and writeable in rings
O to r and cannot be accessed at all in the rings r+l
to 63. The above considerations imply that the pro-
cess needs distinct workspace segments corresponding

to the rings in which the process executes. Hence,

the inward ring changing fault handler will have to
provide the proper workspace for the called procedure.

The Environment. We may generalize from the idea of a
workspace segment to the idea of an environment. Object
procedures expect to execute and, therefore, to be
transferred to, in a conventional environment defined
by various appropriately valued hardware registers and
data structures. Among other things, the environment
specifies the workspace to be used by the procedure.
(Thus, for example, Multics procedures expect certain
processor base registers to be pointing to appropriate
"stack" and "linkage" segments). Since this conven-
tional environment is assumed, it is obviously a duty
of the ring changing mechanism to create the environ-
ment which the procedure being entered will expect to
use.
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Argument Validation. Now let us consider the arguments
which may be passed by the caller to the called (gate)
procedure. To begin with, providing a suitably ini-
tialized environment for the called procedure involves
copying the address of the argument-list (or copying
the argument-list itself) into the environment of the
called procedure. Certain precautionary measures then
become necessary which relate to the need for a '"gate"
to act responsibly, as discussed in Sections 1 and 2

of Chapter 2. Let us motivate the discussion of these
precautions by considering two examples of inward calls
which should be aborted by a careful ring changlng
mechanism.

1. A ring-50 procedure calls a gate procedure in
ring-32 and specifies a return argument in
the workspace of ring-40. If the call is not
aborted, the gate procedure may write in the
ring-40 segment at the explicit request of
the ring-50 procedure. The gate procedure
would thus in effect permit the ring-50
procedure to overwrite the ring-40 segment, a
clear violation of the access control phil-
osophy. '

2. A ring-50 procedure calls a gate procedure in
ring=-32, specifying return arguments in ring-
50 segments and input arguments in ring-40
segments. If the call is not aborted, the
gate procedure may copy ring-40 data into ring-
50 segments. The gatc procedure would thus in

- effect permit the ring-50 procedure to read '

ring-40 data, another violation of access con-
trol philosophy. '

The responsibility of a gate procedure may be character-
ized as avoiding the improper use, on behalf of an
outer ring procedure, of that part of its accessing
power which exceeds that of its caller. To fulfill this
responsibility, a gate procedure must, before accessing
memory via an address obtained from its caller (or from
any other outer ring source), verify that the intended
type of access could have been performed by the caller.
We shall refer to this as "validating the address".

Once all addresses obtained from outer rings have been
validated, the gate procedure may freely proceed,

since it is clearly safe to use all other addresses.
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Although this "address validation" can all be done
by the gate procedure itself, our point of view
suggests that as much of it as reasonably possible
be done by the ring changing mechanism. Since most
of the addresses supplied to a gate procedure by its
caller are the addresses of arguments, we assign the
business of validating these addresses to the ring
changing mechanism and we leave it to the gate pro-
cedure itself to validate all other suspect addresses.
Checking the addresses of the arguments is called
"argument validation". Argument validation should
include checking that the caller has READ-access for
all of the arguments being passed and WRITE-access
for those arguments, including "return" arguments,
in which the called procedure may write. Argument
‘validation implies a further step in inward ring
changing: argument-list copying. For, if a pointer
is checked to see that its value may safely be used,
then the pointer may not safely be left in a seg-
ment where it may be changed by a process executing
in a ring less privileged than the gate's. Therefore,
all addresses to be checked must be copied into the
gate segment's workspace prior to such checking.

It is clear that the argument validation mechanism
must make use of an argument-list-descriptor, pre-
sumably coded as data, associated with the gate
entry point. This descriptor tells how many
arguments are expected and how they are to be used
(i.e., whether they will be read and/or written in).

The argument-list-descriptor(s) for a gate segment
may be implemented in many ways, for example, as
part of the gate segment's gate-list. In any case,
it is clear that the argument-list-descriptor, like
the gate-list, must be supplied to the ring changing
mechanism by the gate (inner-ring) procedure rather
than by the calling procedure.

Figure 5 illustrates a gate procedure segment, with

its gate-list and argument-list-descriptors, in a
straightforward implementation. When this segment.

is called from an outer ring, the ring changing
mechanism validates the attempted transfer address

by finding it on the gate-list and validates arguments
by checking that the caller has the access rights to-
ward the arguments which are specified in the argument-
list-descriptor associated with the transfer address.
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2. OUTWARD RETURNS

The Detection Problem. The detection of an outward
return is not straightforward. Since the procedure
to be returned to may well have ring brackets per-
mitting it to execute in the returner's ring and,
indeed, in a number of other rings, one may well
wonder how the ring changing fault associated with
the return is generated and how the ring changing
mechanism decides which ring to return to.

An example may make these remarks clearer. Consider
a call from ring-20 to a procedure P with ring
brackets 5-10-20 and a call by it to a procedure Q
with ring brackets 3-7-12. The first call takes the
process into ring-10 and the second takes it into
ring-7. It is clear that an ordinary return from
procedure Q would not cause a ring changing fault.
It is also clear that if it did cause a fault, the
fault handler would have to choose a ring to return
the process to from the interval ring-5 to ring-10.

Forcing A Fault. We see that in the case of a ring
changing return, the ring bracket mechanism cannot

by itself be dependent upon to cause the necessary
ring changing fault or to provide the information
required to identify the caller's ring. A special
trick is, therefore, used to cause the fault. The
normal return pointer in the returner's workspace

is over-written with a conventional replacement so
that when the process attempts to return via this
"return pointer", a fault will occur which is
associated with the ring changing return fault handler.
This device for forcing a return fault applies equally
to inward returns and is also used in that case.
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The Return Stack. When the artificial ring changing
‘return fault occurs, as a result of a "return" type

of instruction, the ring changing return mechanism

is invoked. It must not look in the returner's work-
space to find the information that it needs to per-
form the return - caller's ring number and the return
pointer - for these items could be manufactured by

the "returner" to imply a "return" to a more privileged
ring. The ring changing mechanism, therefore, main-
tains a ring-0 data base called the "return stack" in
which it records all the information needed to perform
all uncompleted ring changing returns, both inward

and outward. At any time, the last entry on this stack
specifies the return from the ring in which the pro-
cess i1s then executing. We may now say that an outward
ring changing return is a return which causes a ring
changing return fault and whose entry in the return
stack indicates a return to an outer ring.

Address and Argument Validation. There is no need,
from an access control viewpoint, to validate a return
address for an outward return since an inner ring
procedure may in any case freely enter an outer ring
at any point. However, to protect against error, the
return pointer recorded in the return stack may be
compared against a "validation return pointer" stored
in the returner's workspace. Both the validation
return pointer and the return pointer in the return
stack would be recorded at the time of the correspond-
ing call by the ring changing mechanism. If these
return pointers disagree, then the ring changing
return can be regarded as an error and treated according-

ly.

There is no need for argument validation at the time of
an outward return; the work was done at the time of the
corresponding call.

The Restoration of the Environmment. Finally, let us
note that it is necessary, in servicing an outward
return, to re-establish the environment that existed
at the time of the corresponding call. The caller's
workspace must be re-established, base registers must
be restored, the entry on the return stack must be
removed, etc. Any information which may be needed
for this work must be found in the return stack entry
for this return and must thus have been stored there
at the time of the call.
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3. OUTWARD CALLS

An outward ring changing call is detected when an
outward ring changing fault occurs as the result

of a "call" type of instruction. The ring to be
entered is determined from the target procedure's
ring brackets; according to the rules of Chapter 2,
Section 2, the target ring is "rl". There is no
need to validate the target address of the call,
for gates govern inward calls only. As with the
inward call, there is a need to establish the
environment required by the called procedure.

Argument Copying. If, as is usual, the caller's
arguments are stored in the caller's workspace, the
arguments will be inaccessible to the called pro-
cedure in its outer ring. It is, therefore,
insufficient to copy only a pointer to the argument-
list or the argument-list itself into the work-
space of the called procedure. It is necessary to
- copy the arguments themselves. This in turn
implies that a new argument-list must be fabricated
in the workspace of the called procedure which
contains the addresses of the local copies of the
arguments. ' '

There is no need to perform access validation on -
the arguments. The inner ring procedure may judge
for itself what data to pass to the outer ring.

The copying of arguments is done, of course, with
the authority of the calling procedure's ring, if
not by the calling procedure itself. If the copying
is actually done in a ring more privileged than the
caller's, e.g., by the ring changing fault handler
(which executes in ring-0), then the arguments must
be access validated to make sure that no data are
copied into the workspace of the called procedure
to which the caller itself does not have access.

Note that argument copying depends on information,
represented as a "copying descriptor", associated
with the outward call (see Figure 6). The copying
descriptor tells how many arguments there are, how
they are to be used (i.e., whether or not they are
to be written into), and what their lengths are (so
that they can be correctly copied). We will dis-
cuss the question of arguments which are to be
written into by the called procedure in the follow-

ing section.
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4. INWARD RETURNS

Inward returns are detected when the artificial
ring changing fault occurs (see the discussion of
outward returns in Section 2) and the return stack
entry indicates an inward return. The return
pointer in the return stack entry may be compared
with a validation return pointer in the returner's
workspace in order to avoid erroneous ring changing
returns.

The arguments which the outer ring procedure may

have written in, as identified in the copying des-
criptor, are then copied from the returner's work-
space into the locations specified for them in the
caller's (original) argument-list. Validation of
these addresses is only necessary if the copying

is done in a ring more privileged than that being
returned to, e.g., by the ring changing fault handler
which executes in ring O.

Once these arguments have been copied, the ring
changing mechanism re-establishes the environment
of the calling procedure and returns to it.

5. REVIEW AND DISCUSSION

Detection. A ring changing transfer is detected when
the ring changing mechanism is invoked in response to

a suitable fault. The ring bracket mechanism (i.e.,

a mechanism respecting the rules set forth in Chapter
2, Section 2) will produce such a fault in the case

of inward and outward calls; such calls are in fact

so defined. Ring changing returns, though, are de-
fined as returns from ring changing calls and the ring
bracket mechanism cannot be depended on to detect these
r2turns. The strategy of the "artificial ring changing
return fault" was introduced (see Section 2) to guar-
antee that these returns would always be detected.
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Transfer Address Validation. The basic fact about a
ringed access control system is that a process' power
depends on the ring in which it executes. This is
meaningful only because of the rules which govern
inter-ring transfers. The basic rule is that outward
(power decreasing) transfers may be made at the pro-
cedure's discretion whereas inward (power increasing)
transfers may be made only with "the permission of
the ring to be entered". Transfer address validation,
which consists of making sure that the target

address 1s an address at which the target ring will
permit entry, thus applies only to inward transfers.

In the case of an inward call, the target address is
validated by finding it on the target procedure's
gate-list, that is, finding it to be the address of
a gate entry point. In the case of an inward return,
the target address (which is obtained from the
return stack) is validated implicitly by virtue of
the fact that it was earlier supplied to the ring
changing mechanism by the outward calling procedure,.
the very procedure being returned to.

The Return Stack. The return stack was introduced
(see Secticn 2) as the data base in which the ring
changing mechanism stores the ring number and return
address of a caller so that the ring changing return
mechanism can subsequently validate the return.

The return stack must thus be accessed by the ring
changing mechanism upon every ring changing call and
return, being "pushed" at each such call and "popped"
at each such return. To the extent that the ring
changing mechanism may profit from storing other
information from the time of a call to the time of
the corresponding return, the return stack is
evidently the "right" data base to use. Without
going into detail we suggested, for example, that the
return stack was a good place to record information
needed for the restoration of the calling procedure's
environment.
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Argument Validation. Whenever an inner ring pro-
cedure accesses memory via an address obtained from
an outer ring source, there is the danger that the
supplier of the address is "using" the more pri-
vileged procedure to "get around" access control
restrictions. Addresses obtained from outer rings
are, therefore, suspect and must be used with
discretion.

The most outstanding examples of suspect addresses
are the addresses of arguments associated with in-
ward calls. "Argument validation" is a technique
by which the ring changing mechanism, acting on
behalf of the class of gate entry points, does a
standard and generally sufficient job of checking
these addresses.

Argument validation is not only used in the case of
inward calls but in the case of those outward calls
where arguments are coplied as well. When the
arguments for an outward call are copied into the
workspace of the called procedure and later, when
the return arguments are copied back into the work-
space of the calling procedure, the copier of these
arguments, being part of the ring-O ring changing
mechanism, obtains its arguments from the rings of
the calling and called procedures and must validate
these addresses. '

Although argument validation doesn't handle all v
cases of "suspect" addresses, the existence of argument
validation does have the useful effect of isolating
the cases which aren't covered, making life easier
for the programmer of a gate procedure. For, if he
can make sure that all of the suspect addresses to

be used by the gate procedure and its dynamic des-
cendents are the addresses of arguments, he may be
assured that he has written a proper gate procedure.
And if there are a few other addresses requiring
checking, he can handle them on a case by case

basis.
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OUTLINE OF RING CHANGING SOFTWARE

Inward Calls

1.

2‘

8.

Check that the specified address is a gate
entry point. :

Store information in the "return stack"
specifying the caller's environment, in-

- cluding caller's ring number and the

return address specified by caller.

Determine the ring (NEW-RING) to be
entered; that is the value r2 from the
called procedure's ring brackets.

Create an environment for the called pro-
cedure in NEW-RING.

Copy the addresses of the arguments into
the environment of the called procedure
and perform "argument validation".
Associate a ring-changing-return fault
with the normal return from the calle
procedure. '
Set the ring register to NEW-RING.

Perform the call.

OQutward Returns

1.

2.

3.

6.

Check that this return corresponds to the
last entry in the "return stack".

Clean up the environment of the returning
procedure (undo A-4).

Determine the ring to be returned to,
OLD-RING, from the "return stack".

Restore the caller's enviromment, as.
specified in the "return stack”.

Set the ring register to OLD-RING.

Return to the caller at the address specified

in the return stack.
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Outward Calls

1.

2.

7.

Store information in the "return stack"
describing the caller's environment.

Determine the ring, NEW-RING, to be
ercered; this 1is the value rl from the
called procedure's ring brackets.

Create an environment for the called pro-
cedure in NEW-RING.

Copy the caller's arguments into the new
environment and create an argument-list
pointing to the copied values, also in
the new environment.

Associate a ring-changing-return fault
with the normal return from the called
procedure.

Set the ring register to the value NEW-
RING.

Perform the call.

Inward Returns

1.

2.

Check that this return corresponds to the
last entry in the "return stack".

Determine the ring, OLD-RING, to be
returned to from the "return stack".

Copy the return arguments back into the
caller's environment (in OLD-RING).

Clean up the returning procedure's environ-
ment. .

Restore the caller's environment, as
specified in the "return stack".

Set the ring register to OLD-RING.

Return to caller at the address specified
in the return stack.
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Chapter 4

SIMULATION OF RINGS USING THE 645

The 645 differs from the "ringed hardware"
described in Chapter 2 in several respects which,
taken together, add up to the fact that the 645

is a 2-ring rather than a 64-ring machine. In
this chapter we shall discuss the relevant aspects
of the 645 hardware and show how the ringed access
control strategy described in Chapters 2 and 3 can
be simulated on the 645.

1. FEATURES OF THE 645 NEEDED FOR THE SIMULATION

1.1 The 645 does not have a "ring register" but
does have two states, called master mode and slave
mode. The processor has greater power when in
master mode than when in slave mode; in particular,
(a) certain instructions can only be executed when
the processor is in master mode and (b) the access
control field of the 645's SDW permits the specifica-
tion, in addition to the access-mode, of a limiting
descriptor - "accessible in master mode only."

1.2 The access control field of the 645's SDW con-
tains no information about rings; in particular it

does not contain ring brackets. It does, however,

contain either:

a. access-mode information possibly including
either of the two descriptors:

- accessible in master mode only
- master mode procedure

b. the specification of one of eight special

"directed" faults (traps) which is to
-occur whenever the SDW is accessed.
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The processor is only "in master mode" when
executing a procedure whose SDW indicates a "master
mode procedure." The processor may enter master
mode while executing a slave mode procedure by:

- faulting A
- taking an interrupt

There is another way of switching from slave mode to
master mode; it will be discussed later since it
invokes a hardware feature that is not needed to
.simulate a ringed machine.

1.3 The 645 processor's access control machinery
interprets the SDW during the addressing cycle and
causes an appropriate action to occur depending on
the SDW and (usually) on the attempted access, as
follows:

a. If the SDW implies a particular "directed
fault", then that fault occurs.

b. Otherwise, if the SDW does not permit the
attempted access, the appropriate access
violation fault occurs.

c. Otherwise, the SDW permits the attempted
access and the access is performed.

When a fault occurs, the 645 enters master mode and
transfers control to the appropriate master mode
fault handling procedure.

1.4 Among the instructions which are "master mode
only" are those which access the processor's DBR
(the Descriptor Base Register, which contains the
absolute address of the descriptor segment currently
in effect) and all I/O connect instructions.

2. SIMULATING THE "RINGED HARDWARE" ON THE 645

The technique of simulating the "ringed hardware" on
the 645 can practically be deduced from the require-
ments of that simulation: ,
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1. It must be possible to simulate being in a
given ring.

2. It must be possible to simulate changing
from one ring to another.

To simulate being in a ring; it must be possible to
set up a 645 descriptor segment to define the same
set of potential actions in response to potential
attempted accesses as is defined by any given
"ringed descriptor segment, ring register" pair.
The potential actions will be the same in the 645
as on the "ringed hardware" if (a) permitted acc-
esses are performed by the 645 without causing a
fault and (b) if accesses which would cause a
fault on the "ringed hardware" cause a fault on
the 645.

To simulate changing from one ring to another it

is obviously necessary to be able to change the

645 descriptor segment. This may be done in two
ways. If space is felt to be at a premium, the
645's master mode fault handlers may "change rings"
by over-writing the existing descriptor segment
with the values appropriate to the other ring. On
the other hand, if processing time is felt to be
more important than space, the fault handler in
master mode may "change rings" by altering the DBR
to point to that descriptor segment (waiting in the
wings, so to speak) which corresponds to the ring
being entered. This second technique, used in
Multics, requires one descriptor segment per-ring

~ for each process. The per-ring descriptor segment .
thus becomes part of the "environment" which
pertains to each ring, and switching descriptor
segments becomes part of the job of the ring chang-
ing mechanism.
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3. AN ADDITIONAL FEATURE OF THE 645

The 645 processor has the ability of switching from
slave mode to master mode without invoking the trap
mecharism, as follows:

A slave mode procedure can transfer to a master mode
procedure M provided that:

a) the segment descriptor of M contains the
"accessible in slave mode" attribute, and

b) the transfer be directed to location zero
of M.

This technique for increasing a process' power differs
from ring changing in the sense that no fault is
generated. However, the philosophy remains the same.
By checking that conditions (a) and (b) are true,

the hardware performs the "gate validation". The
fact that the transfer is guaranteed to be into
location zero permits one to code explicitly any type
of subsequent validation in the procedure M and to
guarantee that the validation code will be executed.
(The only system responsibility is to make sure that .
the transfer is directed to a gate; the gate pro-
cedure must take care of the rest.) This feature is
used in Multics as explained below.

4. MASTER MODE AND SLAVE MODE IN RING ZERO

Master mode is the most powerful state of the 645
processor; ring zero is the most powerful state of
the ringed processor simulated on the 645. It
should follow that executing in ring zero means
executing in master mode, and it would so follow,
were it not for the 645 fedature discussed in Section
3 above. That feature is used in order to permit
the ring zero supervisor to execute partly in master
mode and partly in slave mode, easily switching

from one mode to the other.
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The Multics ring zero can be regarded as being
itself composed of two concentric rings. The
more powerful or "master ring O" contains all
master procedures and also all data accessible
only in master mode. The less powerful or "slave
ring O" contains all slave procedures and also
all data accessible in slave mode. Going from
slave ring O to master ring O can be done through
gates provided by master ring O; these gates are
in fact master procedures accessible in slave
mode, with the entry point at location zero of
the segment. This technique permits efficient
switching between slave and master mode in the
supervisor and this is the motivation for this
additional hardware feature in the GE 645.

Two questions are raised by this discussion.
First, why don't "ring zero" and "master mode"
coincide? And second, why isn't the special
mechanism for entering master mode more generally
used? '

The supervisor should use master mode only for
jobs requiring its special power. To use it for
other purposes would increase the chance of dis-
astrous errors due to hardware and software bugs
since, for example, all I/O connect instructions
are executable in master mode only. But since

the supervisor must use master mode fairly frequently,
it is desirable that the supervisor have a way of
entering master mode which involves just enough
validation to prevent accidental entry. Thus the
special mechanism. And thus the restriction of
the use of the special mechanism to "slave ring
zero."
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INTRODUCTION

Experience to date with the Model 645 hardware and the Multics software

has uncovered many areas in which system performance and maintainability
could be substantially improved by certain modifications of the 645
specifications. Four areas have been investigated and shown to be of major
importance to the performance of Multics. The Multics extensions of Series
6000 processors both allow execution of Multics on these processors and

provide considerable improvements in system performance. These features
include:

1. Hardware aids for improved campatibility with other
product line software.

2. Refinements of the paging and segmentation hardware to
improve the performance of the system software.

3. Implementation of Multics ring protection mechanism
entirely in hardware to improve system performahce
and reduce software camplexity.

4. Mddition of instructions for string manipulation and
decimal arithmetic.

HARDWARE COMPATIBILITY

The issue of campatibility with product line software is really two

issues stemming fram two distinctly different motivations. One issue

is that of "stand-alone campatibility,” which allows the running of standard
product line software (e.g., GCOS, T and D monitor) on a stand-alone machine.
The other issue is that of "slaVe program canpatibility," which allows for
the efficient execution of Series 600/6000 slave programs under the control
of the Multics system. A camwpatibility switch on the processor is used to
handle the problem of stand-alone campatibility, while a program-settable
mode is used as a software aid in handling the problem of slave program
canpatibility. The issues of stand-alaone and slave program ccmpat:.blllty
are treated separately in the following discussion.

MODIFICATIONS OF PAGING AND SEGWENTATICN HARDWARE

This paper describes a nuwber of modifications of the 645 paging and
segmentation hardware which improve the performance of the Multics
software and simplify same areas now felt to have been overdesigned in
the 645. The changes in 645 specifications are summarized below (and .
are described in detail later in the paper):

l. The address field in the segment descriptor word is extended
to a full 24-bit absolute address to allow page tables (and
. unpaged segments) to begin on any legal memory address. This
modification allows the software a great deal more flexibility -
in the allocation of page table space and greatly reduces the
amount of wired-down core storage reserved for page tables.
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2. The processor supports only a single page size rather
than the two page sizes supported by the 645. Provision
is made to allow the page size to be modified by field
engineering in an orderly and well understood fashion.

3. Each of the eight pointer registers of the processor is ex-
tended to contain both a segment number and a word number
portion. The 645 concept of internal and external base
regisce. s and control fields is dropped. Each of the eight
pointer registers on the processor behaves as a 645 base
register pair. In addition, each of the new pointer registers
contains a bit offset field for use by new instructions for
string manipulation and decimal arithmetic.

-4, Same minor changes have been made in the definition of the
645 master and slave modes, which are renamed respectively
as the privileged and unprivileged modes to awvoid confusion
with existing terminology. A minor change has also been made
in the treatment of execute-only segments, to allow entry at
locations other than zero.

5. The access control information contained in the 645 page table
word (not used in Multics) has been removed. In the new pro-
cessor, all access control is implemented in the segment des-
criptor word.

HARDWARE IMPLEMENTATION OF MULTICS RING PROTECTION

The Multics concept of protection rings, ring crossing, and argument
validation has been implemented as an integral part of the paging and
segmentation hardware on the processor. The hardware implementation of
rings is really a further modification of the 645 paging and segmentation
hardware. However, the modification is introduced separately at this point
since it involves perhaps the most significant deviation fram the 645 spec-
ification and, as such, deserves samewhat more motivation. In the current
version of Multics running on the 645, the ring protection mechanism is,

of necessity, completely simulated by the Multics software. The current
system maintains, in parallel, separate descriptor segments for each ring
of each process. The ring crossing is simulated by a rather costly and
complex fault processing mechanism which includes the copying and validation
of argument pointers and the switching of descriptor segments to simulate
the effect of switching rings. The cost of the current simulation amounts
to approximately '10-20 percent of the useful chargeable CPU time and con-
tributes substantially to the overall camplexity of the system. 1In the
new processor, ring crossing and argument validation are handled directly
by the hardware without costly software intervention. As a result, a call
to an inner ring will require no-more CPU time that a call to a procedure
in the same ring.
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INSTRUCTIONS FOR STRING MANIPULATION AND DECIMAL ARTTHMETIC

Extension of the 645 instruction set to include instructions for string
manipulation and decimal arithmetic allows considerable simplification of
both supervisor and user programs. The Series 6000 Extended Instruction
Set (EIS) provides camnands to directly process bytes, BCD characters,
packed decimal data, and strings. The supervisor will take full advantage
of the savings allowed by these new instructions. The language campilers
will also take advantage of these space and time saving instructions.

SEGMENTATION AND PAGING IN NEW PROCESSOR

This section describes in detail the segmentation and paging hardware for
the new processor. In most respects, the mechanism is quite similar to the
645 appending hardware, with the addition of sane refinements to improve
the performance of the system software. The single substantial deviation
from the 645 specification is the addition of hardware to implement the
Multics ring protection mechanism.

Segment Descriptor Word

In order to accamodate the hardware-implemented ring crossing and
argument validation and other changes, the Segment Descriptor Word (SDW)
has been extended to a 72-bit double precision word to be interpreted as
described below.

Word 0 ADDR }[ R1 | R2 R3 |F|FC
Word 1 - |\l BOUND S; E{W[P|UIG cL
ADDR (0-23) Is a full 24-bit absolute address and specifies the

core address of either a page table (for a paged
segment) or the first location of an unpaged segment.

Rl (24-26) Specifies the highest ring number of the read/write
bracket for this segment (0-R1) 1.

R2 (27-29) Specifies the highest ring mmber of the read/execute
bracket of this segment (R1-R2) 1

R3 (30-32) Specifies the highest ring nunber of the call bracket
of this segment ((R2 + 1) - r3)1 :

1 . .
See following section on Rings and Ring Brackets.
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F (33)

FC (34-35)

BOUND (1-14)

R (15)

E (16)

W (17)

- specified in the FC field (see below).

1s a directea fault indicator and if off (=0) specifies
that the processor is to execute the directed fault

Indicates (if F is off) which of the four directed
faults (DFO-DF3) the processor is to execute.

Is the boundary field and indicates the highest 16-word
block of the segment which can be addressed without
causing an out-of-bounds fault. If the high order 14
bits of an address to this segment is greater than the
value of the boundary field, an out-of-bounds fault is
generated. A boundary field of 14 bits is chosen be-
cause same instructions (e.g., the new version of STB)
reference up to 16 contiguous words. (The boundary
field could be maintained to the nearest word, but
special checks would have to be made for instructions
which reference two or more contiguous words.) A
further implication is that the software is expected to
allocate unpaged segments in a zero mode l6~word boundary.

Is the read-permit indicator. Data fetches by other
segments are permitted to this segment only if this
indicator is on (=1) and if the processor is executing
in a ring less than or equal to R2 (i.e., within the
read/write or read/execute bracket).

Is the execute~-permit indicator. Instruction fetches

fran this segment are permitted only if this indicator ~—
is on (=1) and if the processor is executing in a ring
greater than or equal to Rl and less than or equal to

R2 (i.e., within the read/execute bracket; see below).
Note that when the E indicator is on and the R indicator
is off, the segment is to be treated as an "execute-only"
procedure segment. An execute-only procedure segment

is permitted to reference data within itself (i.e., within
the same segment) in spite of the lack of the read in-
dicator. However, read permission is denied to other

segments.

Is the write-permit indicator. Attempts to store into
this segment are honored only if this indicator is on
(=1) and if the processor is executing in a ring less
than or equal to Rl (i.e., within the read/write bracket;
see below) .

lsee following section on Rings and Ring Brackets.
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P (18

U (19)

G (20)

CL (22-35)

Page Table Word

Is the privileged mode indicator. If this indicator

is on (=1) and if the processor is executing in ring 0,
the procedure segment is permitted to execute pr1v11eged
instructions and inhibit interrupts under control of
bit 28. Privileged procedures need no further powers
and are subject to all other access checking (read,
write permission bounds checking, etc.). Since privi-
leged procedures can be executed only in ring 0, it is
no langer necessary to limit calls to privileged pro-
cedures to enter via word 0 of the segment.

Indicates whether the segment is paged (=0) or unpaged
(=1). If the segment is unpaged, ADDR is the full
absolute address of the first word (word 0) of the seg-
ment. If the segment is paged, ADDR is the full ab-

‘solute address of the beginning of the page table for

the segment.

Is the gate indicator and if off (=0) any call to this
segment fram a different segment must be directed to
an address value less ﬂ'xan the value of the CL field
(see below).

Is the call limiter. If G is on, any external transfer
to this segment via the new CALL instruction (described
below) must be directed to a word number less than the
value of this field.

The fomat of the page table word (PIW) has been samewhat simplified fram
the 645 version in that no access control is performed at the PIW level.
The PIW format is described below.

ADDR

ADDR (0-17)

Is the high order 18 bits of the 24-bit absolute ad-
dress of the first word of the page. The hardware
assumes that all pages begin on addresses which are zero
modulo the page size. For example, if the page size is

_set to 1024 words, the hardware assumes that each page

begins on a zero modulo 1024 address and that the low
order 10 bits of the 24-bit absolute address are zero.

171



S (18-23)

U (26)

M (29)

F (33)

Is reserved for the use of the system software for the
maintenance of page status information and is never
modified (or used) by the hardware.

Indicates whether (=1) or not (=0) the page has been used
since the last time this bit was interrogated (and reset)
by the system software. Whenever this bit is zero and the
processor addresses any word within the page (corresponding
w this PIW), the processor sets this bit to 1 using a
3-bit store-by-zone cammand for bits 24-26. The store-by-
zone is used to avoid a race condition with another pro-
cessor attempting to set the "modified" bit (see below)
for the same page. This technique is necessitated by

the lack of a read-alter-rewrite command in the memory
controller. A further implication of the lack of read-
alter-rewrite is that the software must reset this bit
via a store to the third 9-bit field (character) in the
PIW in order not to disturb the modified bit. Note that
any usage of the page between the time the used bit is
read by the software and then reset (if on) is not noticed
by the software. Since the used bit is used only for
maintaining the core-usage statistics, this race between
hardware and software has no effect, insamuch as (1) if
the page is heavily used (i.e., needed in core) it will
be used again turning the used bit back on, and (2) the
software does not reset the bit if it is already zero.

Indicates whether (=1) or not (=0) the page has been mod-
ified since the last time this bit was interrogated (and
reset) by the system software. Whenever this bit is zero
and the processor modifies any word within the page, the
processor sets this bit and the usage bit to 1 using a
6-bit store-by-zone camand for bits 24-29. The software
uses this bit to determine whether or not the contents of
a page must be written on secondary storage before the core
is released for other usage. As a result, the software is
expected to store a directed fault in the PIW and clear the
associative memories of all processors before the modified
bit may be safely tested and then reset. 1In addition, the
directed fault must be stored using a store to the sixth
6-bit field (character) of the PIW to campensate for the
lack of read-alter~rewrite.

Is the directed fault indicator and if off (=0) indicates

that the directed fault indicated in the FC field is to be
executed by the processor.
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FC (34-35) Indicates (if F is off) which of the four directed
faults (DFO-DF3) is to be executed by the Processor.

Modlfx.mg the Page Size

As indicated by the format of the SDW, the new processor supports only

a single page size (the 645 allows two page sizes). However, it is ex-
tremely desirable to have the ability to change the page size in order

to allow system optimization with respect to core "breakage" and storage
device access times. For example, replacing the current highspeed drum
with a bulk core would most likely give even better performance with a page
size smaller than 1024 words.

Since a decision to change the page size is not a casual one and should not. be
- made very often, the page size is changeable by field modification to any
power of 2 fram 64 words to 4096 wcrds.

Absolute Address annation

For each memory reference we assume the program presents the processor
with the following address:

SEGNO WORDNO

'SEQNO (15 bits) Specifies the desired segment (i.e., index into the
descriptor segment). The segment number is constrained
te 15 bits (rather than 18) hy considerations described
later in this document. :

WORDNC Specifies the desired word address (18 bits) within the
(18 bits) specified segment. :

We also assume (for discussion only) that the processor has the following -
two internal registers:

PN PO
PN (12 bits) Is used to hold the page number (i.e., index into page
table) when forming an absolute aduress within a paged
segment.

PC (12 bits) Is used to hcld the offset within the page when forming
' an absolute eaadress within a paged segment.

PN is initialized with the Ligh-order portion of WORDNC tc obtain an index

relative to the base of the page table of the segment. PO is initialized
with the remaining portion of WORLNO and is augmented by the ADLCR field of
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the PIW to form the absolute address. The "break" in WORDNO is determined
by the current page size. For example, if the page size is 1024 words
(initial setting), the high order 8 bits of WORDNO are used to initialize
PN and the low order 10 bits of WORDNO are used to initialize PO.

Figure 1 sumarizes the major steps necessary to transform a program gen-
erated address (SEQNO/WCRINO) into an absclute address (ABSADDR). In most
respects, the address formation is simpler than the 645 mechanism, in that
there is onl,; one page size to consider and that no access control is
specified at the P..J level.

Note that Figure 1 and all the flow charts in this paper make use of the
fcllowing PL/1 rotations: '

1. A.B 1is used to denote the quantity B contained in A.

' For example, PIW.ADDR denotes the ADDR field within the
PIW.

2. The double vertical bar (]|) is used to denote con-

catenation (e.g., PIW. ADDR || 000000).

3. The single vertical bar (|) is used to denote the logical
inclusive OR. '

Descriptor Segment Base Register

The Descriptor Segment Base Register (DSBR) is an internal prccessor registe.
used to locate the current descriptor segment. In the new processcr, the
CSER has been exterded to 51 bits to accammociate the longer address and
bound fields and to contain a stack offset. The DSBR is loaded fram and
stored into a doubleword having the same format as a Segment Descriptor
Word (SDW) with the exception that unused fields are ignored during loading
of the DSER and are set to zero when the LCSBR is stored. Only the following
four SDW fields have meaning when loaded into a DSBR.

1. ADDR (24 bits)
2. BOWD (14 bits)
3. U (paged/unpaged switch; 1 bit)
4. STACK (12 bits)

The STACK field specifies the upper 12 bits cf the 15-kit stack segment
rnuarber. This register is used only during the execution cf a CALL in-
struction. ' '

RINGS AND RING BRACKETS

A Multics process consists of procedure and data segments which are all
directly addressable throuwgh the descriptor segment of that process. How-
ever, a process may access a segment only when the process is running at
an appropriate level of privilege. For example, all the segments of the
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1 INImALIZE

PN AND PO
FETCH SDW . » FROM WORDNO

FOR SEGNO

SOW.ADDR + PN
DIRECTED —= ABSADDR

FAULT

FETCH PTW FROM
C(ABSADDR)

ILLEGAL DIRECTED
& WORDNO (09) PROCEDURE FAULT
SAR.BOUND FAULT
WORDNO+(8AR.BASE ! PTW.ADDR {}
{I 00..0) = WORDNO m..,galsnga

BOUNDARY
VIOLATION

STORE
INSTRUCTION

ACCESS
VIOLATION

—

1 - PTW.U
AND PTW.M

1= PTWU

SOW.ADDR+WORDNQ
—= ABSADDR

Figure 1. Appending Cycle
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hardcore supervisor are shared and accessible to all Multics processes
but only when executing at the highest level of privilege.

The Multics system allows segments to be grouped into an ordered set of
collections called rings in which segments requiring the highest level

of privilege to reference can be accessed only fraom within the innermost
ring ‘of the set. Each ring is identified with a ring number designating
the required level of privilege necessary to access segments in that ring.
In Multics, the ring 1 .th the highest privilege is ring 0, which ccntains
th2 procedures and data bases of the hardcore supervisor. Each user pro-
cess has at least two rings, one for the hardcore supervisor and cre for
user programs and data. The user process may generate mcre rings (levels
of lesser privilege) if desired.

Frequently, it 1s useful to allow a segment to be accessible in more than
orne ring. For example, it is often useful for a data base which is writeable
ir an inner ring to be readable in an outer ring. For this reason, the con-
cept of ring brackets was introduced.

The access of a user to a specific segment is ocontrolled by two quantities:
the access attributes (e.g., read, execute, write) and the ring brackets.
The ring brackets of a segment are specified by three integers (Rl, R2,

and R3) each of which must be greater than or equal to the preceding
nuber. The first nunber (Rl) specifies the top (highest ring number)

of the read/write bracket, the second number (R2) specifies the top of the
read/execute bracket, and the last number (R3) specifies the top of the
call bracket.

Read/Write Bracket (Rings (-Rl)

Attempts to read or write a segment by a procedure executing in a ring
within the read/write bracket are allowed if the appropriate (read or

write) access indicators are on for the segment being referenced. Execution
of a procedure in a ring within this bracket is permitted only at the top
of the read/write bracket (Rl), which is also the bottam of the read/execute
bracket. Note that the highest ring fram which a segment can be written is
specified by Rl. As a result, the data in the segment is no more reliable
than the procedure segments which operate in that ring.

Read/Execute Bracket (Rings R1-R2)

Attempts to read or execute -(transfer to) a segment by a procedure executing
in a ring within the read/execute bracket are allowed if the appropriate
(read and execute) indicators are on for the segment being referenced.
Writing of a segment within its read/execute bracket is permitted only from
the ring at the bottam of the bracket (Rl), which is also the top of the
read/write bracket. If R2 is equal to Rl, the read/execute bracket specifies
a single ring (Rl). '
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Call Bracket (Rings (R2 + 1) - R3)

Attempts to call a (procedure) segment fram a segment executing in a
ring above the read/execute bracket but within the call bracket of

the procedure to be called are allowed if the execute indicator of the
procedure to ke called is on and if the new CALL instruction (described
below) is used. When the CALL instruction is directed to a procedure
in an inner ring which has the appropriate execute access and call
bracket, the processor atuamatically switches to the ring specified as
the R2 of the procedure being called. The call bracket and the CALL
instruction are the only means (except for faults) by which control
can be passed fram an outer ring to an inner (more privileged) ring.
If R3 is equal to R2, the call bracket is null and the procedure
cannot be called frcm an outer ring.

Summary

Assuning that the appropriate (read, execute, or write) indicators are
on, the following list surmarlzes the effects of the three ring
brackets:

1. Writing is permitted fram a ring within the read/write
brackets only (i.e., if ring < Rl).

2. Reading is permitted from a ring within the read/write
bracket or the read/execute bracket (i.e., ring < R2}.

3. Execution (or transfer of control) is permitted only
fram a ring within the read/execute bracket (i.e., Rl
< ring < R2). '

4. = Calling (via CALL only) is pemmitted fram a ring within the
read/execute or call brackets (i.e., Rl < ring < R3).

5. The CALL instruction is the only instruction which may be
used to access a segment in a ring within its call bracket
(i.e., R2 < ring < R3).
6. No access is permitted to a segment fram a ring higher than
the call bracket (i.e., ring > R3).

PROCESSOR ADDRESS REGISTERS

Like the 645, the new processor has 10 address or pointer registers
(PRs). Elght of these pointer registers can be directly accessed and
modified by the software, one is used to locate the current instruction,
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and one is used exclusively by the processor for effective address cal-
culations. Unlike the 645, each of the eight program addressable pointer
registers specifies a full segmented address including the segment number
and the word nunber in a single pointer register. These registers have
also been extended to include a bit number.

Instruction Pointer Register

The instruction pointer register (IPR). is used by the processor to locate
the current instruction and may be modified by the software to effect a
transfer of control. The IPR is actually an extension of the PBR and IC
of the 645. The contents of the 36-bit IPR are outlined below.

PRR PSR IC

PRR (3 bits) Is the procedure ring register and specifies the ring
(level of privilege) in which the processor is currently
executing. PRR may be set to a higher value only by an
RTCD or RCU instruction. It may be set to a lower value
only by a CALL instruction (see below) or by a fault or
interrupt.

PSR (15 bits) Is the procedure segment register (same as the PBR in the
645) and specifies the segment number of the current pro-
cedure segment.

IC (18 bits) Is the instruction counter (same as in the 645).

Temporary Pointer Register

The temporary pointer register (TPR) is used exclusiwvely by the processor
for operand address calculations and serves the same general purpose as
the TBR and carmputed address (CA) of the 645.

TRR

TSR CA BITNO

TRR (3 bits) Is the temporary ring register and is used to maintain
the lowest level of privilege (i.e., highest ring num-
ber) encountered during operand address calculation.

The TRR is initialized with the value of the PRR field
of the IPR at the beginning of each instruction. During
the operand address calculation, TRR is used to record the
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highest value of SDW.Rl (the top of the read/write

bracket) of any segment used, in the address calculation.
For example, if an indirect address is fetched fram segment
X, TRR is set to the larger of TRR (its current value) and
the Rl field in the SDW for segment X. Note that during
the operand address calculation, the value of TRR may get
larger but never smaller.

TSR (15 bits) Is the temporary segment register (same as the TBR in the
: 645) and is initialized with the value of the PSR field
of the IPR at the beginning of each instruction. During
operand address caiculation, TSR contains the segment
nunber portion of the current address calculation.

CA (18 bits) Is the camputed address and serves the same function as
the 645 register of the same name. The camputed address
is initialized at the beginning of each instruction with
the contents of the instruction counter of the IPR.
During operand address calculation, CA contains the word .
nunber portion of the current address calculation.:

BITNO Is a bit-offset relative to the first bit in the word

(6 bits) specified by CA. This field is ignored by all instructions
except the new instructions specifically designed for string
manipulation or decimal arithmetic.

Once an operand address calculation is camplete, the value of TRR is cam-
pared with the ring brackets of the segment containing the operand ad-
dress to determine whether the operation is to be allowed. For example,-
if the instruction intends to store into this operand, the value of TRR

must be less than or equal to the Rl (in the SDW) of the segment to be
modified. '

Eight Pointer Registers

The new processor contains eight program accessible pointer registers, which
replace the eight address base registers (ABRs) of the 645. The PRs of the
new processor differ fram the ABRs in that each PR contains both a segment
nunber and a word nunber portion. In effect, each PR of the new processor
behaves as a 645 base register pair. The contents of each 42-bit PR are
outlined below. :

SEGNO | WORDNO ' BITNO
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RN (3 bits)

SEGNO
(15 bits)

WORDINO
(18 bits)

BITNO
(6 bits)

Is used by the software to specify the level of privilege
{(i.e., ring number) at which the processor is to treat the
address contained in the address register. When the pro-
cessor uses the contents of a PR for address modification
(e.g., bit 29 in the instruction word is on) the value of
TRR is set to the larger of TRR (its current value) and the
RN field of the specified PR. The use of the RN field of
a PR allows the software to save the TRR of an operand ad-
dress calculation — e.g., throuwgh the use of an EAP (ef-
fective address to pointer) instruction.

Specifies the segment number portion of the segmented
address.

Specifies the word number portion of the segmented address.
Specifies a bit-offset relative to WORDNO and is ignored

by all instructions except those designed specifically for
string manipulation or decimal arithmetic.

The software may store the contents of a PR into an ITS (indirect to
segment) word pair with the use of an STP (store pointer) instruction.

The software may then address indirectly through the ITS indirect word
rather than using the original PR. Alternatively, the software may reload
another PR fram the ITS word pair through the use of the EAP instruction.
In either case, it is necessary to save the value of the RN of the PR in
the ITS word pair so that the privilege level of the original operand
address calculation is not lost. As a result, the ITS word pair is mod-
ified to include a ring number field as outlined below.

SEGNO RN - ITS

WORDNO BITNO MOD

SEGNO (3-17)

RN (18-20)

Is the segment number field (as in the 645). Note that
bits 0-2 of the ITS word pair are set to zero for cam-~
patibility with 645 programs expecting an 18-bit segment
number in the upper half of the first word.

Is set to the value of the RN field of the PR during the

- STP instruction. If the processor attempts to indirect
through an ITS word pair, TRR is set to the larger of

TRR, RN (of the ITS), and Rl of the segment containing

the ITS. Note that an improper value of RN in an ITS word
pair has no ill effect, since the processor always takes
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the maximum of TRR and RN. In other words, it is
impossible for an ITS word palr to specify a higher
privilege than the segment in which it resides.

ITS (30-35) Specifies the modifier code (octal 43) for the ITS
modifier (same as in the 643).

WORDNO Is the word number portion of the saved PR.

(0-17) :

BITNO Is the bit-offset of the PR saved by the STP instruction.
(21-26) The strange placement of the BITNO field is necessary to

remain campatible with the current PL/]1 software implemen-
tation of bit-offsets.

MOD (30-35) Is set to zero by the STP mstructlon but may be set by

the software to specify further address modification
(same as in the 645).

Since most Multics campilers (notably PL/1) calculate addresses via an

EAP instruction, it cdn be expected that compiler generated code can 'l:'.ake'
full advantage of the ‘hardware protection mechKanism with little modification.
If all addresses of all input parameters are calculated and saved (for use
as outgoing argument pointers) via the use of the EAP and STP instructions,
it will be poss:.ble for a procedure operatmg in ring 1 to pass to ring 0

a parameter given to the procedure fram ring 2, without checking the address
of the parameter. The access checking is fully autamatic as long as the

TRR of the original address calculation continues to be malnta.med and A
passed along as the RN field of a PR or ITS word pair.

The STCD (store control double) instruction is modified to store_the PRR
in the same manner as STP stores the RN field of a PR. The PRR is stored
by the STCD to allow an RICD (return control double) instruction to return
to the proper ring.

ACCESS OONTROL MECHANISM

Figures 2 throuwgh 6 attempt to flow chart the entire access cont.:rol mecl}-
anism fram the instruction fetch up to actual execution of the instruction.
In order to concentrate on the access control mechanism, many details have
been left out of the flow charts (indexing, IT modifiers, etc.). If all
the access control checks are successfully met, control will end up in a
circle marked "done." The contents of the flow charts are sumarized below.

Figure 2 begins with the instruction fetch and continues through the ini-
tial address calculation.
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Figure 3 shows how indirect addressing affects the access camputation.
(The notation "Rl (ITS)" is used to denote the Rl of the segment con-
taining the ITS word pair.)

Figure 4 shows the access checks made for all instructions except for
transfer of control.

Figure 5 shows the access checks performed on all transfer instructions
with the exception of the CALL instruction. Note that the PRR canrot
be changed by a nomal transfer instruction (even to a higher wvalue).
However, it is possible to set the PKR to a higher value with the nod-
ified RICD (described below).

Figure 6 shows the access checks performed by the CALL instruction (the
only slave instruction permitted to set the PRR to a lower value).

CALL INSTRUCTION

The CALL instruction is provided as the only means by which a procedure
segment may call a procedure in an inner ring (i.e., set PRR to a lower
value). The CALL instruction is to be used in all standard J_ntexprocedure
calls and is intended to replace the transfer instruction as the last in~
struction of the standard Multics calling sequence. '

The CALL instruction uses two PRs: PRn and PRn+l, where n is even.

The value of n is wired into the processor and is currently 6. It is |
possible for a field engineer to change this value to 4, 2, or 0 by an
corderly procedure. It must not be possible, however, to change this value
~under user program control. (This use of a pair of PRs involves two full
PRs (RN, SEGNO, WORDNO, and BITNO) and should not be confused with a 645
base register pair.) When the CALL instruction is used to transfer control
to another ring, the assumption is made (by conwvention) that the stack
segment of the target ring has a segment number e¢qual to the ring number
of the target ring (i.e., the stack segment for 1ing X is a segment number
X). The CALL instruction behaves as a TRA (transfer) instruction with the
following exceptions:

1. The access checking for a CALL instruction allows PRR
to be set to a lower value, provided that the call is
made fram a ring within the call bracket of the target

segment (see Figure 6).

2. 'If an attempt is made to call a procedure in an outer ring
(a relatively rare case), an access violation occurs. Be-
cause of the necessity of copying all arguments, the standard
call, save, and return sequences cannot handle calls to an
outer ring without excessive software overhead. Therefore,
calls to outer ring procedures will continue to cause a fault
to allow the system software to interpret the call.
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3. At the beginning of the CALL, the contents of PRn are
assumed to point to a location (i.e., the beginning of the
current stack frame) within the stack segment of the calling
ring. During the execution of the CALL, the processor sets
.the contents of PRn+l to point to word 0 of the stack segment
of the target ring in one of two ways:

a. If control is to remain in the current ring (i.e.,
TRR = PRR), the SEQNO portion of PR+l is set to
the SEGNO of PRn and the WORINO portion of PRn+l is
set to zero.

b. If control is to be passed to an inner ring (i.e.,
TRR < PRR), the SEGNO portion of PRn+l is set to the
value of the target ring number (TRR) and the WORDNO -
of PR+l is set to zero.

'If an attempt is made to call to an outer ring (i.e., TRR > PRR), an
access violation is generated as indicated in Figure 6.,

Figure 7 details the operation of the CALL instruction after the effective
address camputation has been campleted (i.e., TPR has been camputed), and
TRR is set to the target ring nuwber (see Figure 6). '

The software stores a pointer to the end of the current (or last used)
stack frame in the beginning of that stack. The standard call and save
sequences might then be modified as follows:

Calling Sequence: ZERO ARGLIST ZEROpOints to ARGLIST
STCD 61} 20 Set return location
CALL ENTRYPOINT Call external procedure
Save Sequence: - EAPl 7| NEXT,* Load pointer with base
of new stack frame
STP6 1} 16 Save pointer to old
- frame
EAP6 il o0 Switch to new frame
EAP1 6| TEMP Campute pointer to next
frame (allocate new frame)
STP1 6| 18 Save pointer to next frame
STP1 7| NEXT Update stack base
STPO 6] 26 Save ARGLIST PR
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ASSOCIATIVE MEMORY

As in the 645, the new processor requires a small associative memory in
order to avoid memory fetches of frequently used SDWs and PIWs. A series
of measurements and experiments has determined the effectiveness and be-
havior of the 645 associative memory. The experiments were conducted and
measurements taken during normal Multics operation, under varying user
loads. ' '

The experiments indicate that the current 645 associative memory is quite
effective. It appears that the most significant aspect of the associative
memory is in the speed of the search, since it is not possible to overlap
campletely the associative lookup with other work. This aspect suggests
that a one-pass lockup would be a desirable cbjective. There are at least
three ways in which the effect of a one-pass lookup can be achieved:

1. Ones approach is derived fram the fact that the "hit rate"
on SDWs for paged segments on the 645 is extremely low
(about 0.21 percent). This fact suggests a one-pass search
of an associative memory containing only PIWs and SDWs for
unpaged segments. The search would look for an unpaged
SDW for the referenced page within the segment. The copy
of the PIW in the associative memory must be extended to
include access control information fram the original SDW for
the segment. This approach has the drawback that any change
in the operating enviromment (e.g., the use of smaller page
sizes) whilch causes SIDWs for paged segments to be in higher
demand would begin to degrade system performance.

2. Another approach is to achieve the effect of a one-pass search
© using a two-pass search and overlapping the first pass during
address preparation. In this approach, the single associative
memory contains both SDWs (paged and unpaged) and PIWs extended
with access control informmation. During address preparation,
the associative memory is searched for the SIW of the segment
to be referenced. After address preparation, a second pass is
made to locate the PIW for the page to be referenced. Only if
the second pass fails are the results of the first pass inter-
rogated. If the first pass had succeeded, only the PTW must be
fetched fram core memory. Otherwise, both the SIW and the PIW
must be fetched fram core memory.

3. A third approach is to search two associative memories in
parallel, one for SDWs and the other for PIWs. If either the
SIW or PIW is not found in its respective associative memory,
it is retrieved fram core memory and updated into the appropriate
associative memory. Although this approach requires duplicate
circuitry, it is appealing in its logical simplicity and is the
method chosen.
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ADDR
“AST
ASTE
CA
cM
CME
DBR
DC
DCwW
DID
DIM
DS
DSBR
IC

IPR

ITS
KsT
KSTE
MC
PC
PHM
PHU
PN

PO

D. Abbreviations and Acronyms

Address portion of PTW
Active Segment Table
Active Segment Table Entry
Computed Address

Core Map

Core Map Entry
Descriptor Base Register
Directory Control

Data Control Word

Device Identifier

Device Interface Module

Descriptor Segment

Descriptor Segment Base Register

Instrudtion Counter

Instruction Pointer Register

Indirect to Pointer Register
Indirect To Segment

Known Segment Table

Known Segment Table Entry
Memory Controller

Page Control

Page Has Been Modified
Page Has Been Used

Pagé Number

Page Offset
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PR
PRR
PSR
PT

PTW

SC

SDW

SFH

SST

TPR

TRR

TSR

UIibD

Pointer Register

Procedure Ring Register
Procedure Segment Register
Page Table

Page Table Word

Ring Alarm register

Ring Number

Segment Control

Segment Descriptof Word
Segment Fault Handler
Systems Segment Table
Temporary Pointer Register
Temporary Ring Register
Tempbrary Segment Register

Unique Identifier
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