
'-'"

'~'

••• w .. __ ~ __ •••• ;, • .>.:. ... : . .:..""-...:...::..:.:.

Honeywell MESSAGE SEGMENT FACILITY
PROGRAM LOGIC MANUAL

SERIES 60 (lEVEL 68) MULTICS

RESTRICTED OISTRIBUTIOfi

.V

SUBJECT:

Internal and User Interfaces of the Message Segment Facility.

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Manual (PLM) describes certain internal modules
constituting the Multics System. It is intended as a reference for only
those who are thorou~hly familiar with the implementation details of the
Multics operating system; interfaces described herein should not be used by
application programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external interfaces
are described in the Multics Programmers' Manual, Commands and Active
Functions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers' Guide (Order No. AK92). .

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLM is one of a set, which when complete, will supersede the System
Programmers' Supplement to the Hultics Programmers' Manual
(Order No. AK96).

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
TO RECEIVE COPIES. TH!S DOCUMENT SHALL· NOT BE REPRODUCED OR
ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

~.------------------

F'ebruary 1975

ORDEn NUfvlBE:H:

AN69, Hev. a

PREFACE

HU~~:¢~,~~rog,:, am Logic Manuals (PLMs) are intended for use by
Mul tics sf:s;~er.n m~J.}ltenance personnel, development personnel, and
others who ~re~¥hgroughly familia~ with Hultics internal system
operation. Ther;i.;'1:(.r.e·,n9.t intended for application programmers or
subsystem writers'~ " :.'t~~'.~

"·'·::,.:~:,~;}t: .
The PLMs contain"'escriptions of modules that serve as

internal interfaces and perform special system functions. These
documents do not describe, external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Programmers' Supplement iQ the Multics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mailing list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

~) 1975 ~ Honeywell Information Systems Inc. File No.: 2L13

AN69 --.,I

Section I

Section II

Section III

Section IV

CONTENTS

Page

Overview ~ 1-1

Design Goals................................. 2-1
Requirements. 2-2
Design. .. 2- 3

Properties and Structure 3-1
Properties. 3-1
Structure................................. 3-1

Message Segment Structure 3-1
Message Block Structure 3-3

Details of the Primitive Message Segment
Facility

Creating and Deleting Message Segments .. .
Opening and Closing Message Segments
Manipulating Extended Access
Locking and Unlocking Message Segments .. .
Manipulating Messages

Checking Access and Dispatching Calls.
Reading and Deleting Messages
Adding Messages

Manipulating Only Caller Messages
Salvaging Message Segments '"
Converting Message Segments

mseg_
mseg_add_
mseg_convert_
ms_sal yager _vll-
ms_salv_util_vll-
mseg_util_vll-

iii

4-1
4-2
4-3
4-3
4-4
4-4
4-4
4-6
4-7
4-7
4-8
4-9
4-9
4-10
4-10
4-10
4-11
4-11

AN69

Section V

CONTENTS (cont)

The Message Segment Data Base•......•
Executing in the User Ring•.••..
The Message Segment Command Utility •.•..•

Message Segment Applications•....
Extended Ac cess•...••.....•.•.•..•.•
The Queue Message Segment Facility •••....

The Queue Message Segment Module
The Queue Message Segment
Subroutine Interface '

Creating and Deleting Queue
Message Segments•

create
delete It ••••••••••••••••

Manipulating Queue Message Segment
Extended Access•.....•......•

ms_acl_add
ms_acl_delete•...
ms_acl_list
ms_acl~replace•..•.....•....

Renaming Queue Message Segments
chname_file

Opening and Closing a Queue
Message Segment .•...• ~ .•..........

open••.••.........•....
close

Obtaining Queue Message Segment
Header Status ..•..................

check_sal v_bit
get_message_count

Obtaining Effective Access to a
Message Segment ..•................

get_mode••..•.•..•.......•
Adding Messages to a Queue

Message' Segment •.•••.........•.....
ad d •.....••••••••••••••••.••••••

Deleting Messages from a Queue
Message Segment •..••..•...........

delete

iv

... ~
.~

Page

4-11
4-11
4-12

5-1
5-1
5-1
5-2

5-2

5-6
5-6
5-6

5-7
5-7
5-7
5-8
5-9
5-10
5-10 --.. ,,,,,l

5-11
5-11
5-11

5-12
5-12
5-13

5-14
5-14

5-15
5-15

5-16
5-16

AN69

Appendix A

CONTENTS (cont)

Reading Messages from a Queue
Message Segment•..•........

read
incremental_read .•.........•....

Combined Read and Delete from a
Queue Message Segment ••..•••••.•..

read_delete
Rewriting Messages in a Queue

Message Segment•..•.
updating_message•...••.•.

Reading Caller Messages from a
Queue Message Segment•.

own_read
own_incremental_read .•.•.••...•.

The Queue Message.Segment Command
In terface

ms_add_name, msan ...••.....••...••.
ms_create, mscr ...•........•..•..•.
ms_delete, msdl
ms_delete_acl, msda •......••••.....
mS_delete_name, msdn•.......•
ms_list_acl, msla•..•.......•
ms_rename, msrn .•.....•....••......
ms_set_acl ,ms sa•...•....•..••

The Mailbox Message Segment Facility ...•.
The Mailbox Message Segment Module ..•.
The Mailbox Message Segment
Subroutine Interface •.•.•............

The Mailbox Message Segment
Command Interface .•.....••......•....

extended_access_data •........••.............
ms block_hdr
Ins_block_trailer
r.lseg_data_ ..•. ,•.•.•...•..........
mseg_hdr ..•....•...•.........•.••...........

v

Page

5-11
5-11
5-18

5-19
5-19

5-20
5-20

5-21
5-21
5-22

5-23
5-23
5-24
5-25
5-26
5-21
5-28
5-29
5-30
5-31
5-31

5-32

5-33

A-1
A-2
A-3
A-4
A-5

AN6')

CONTENTS (cont)

~ ..

Page

ILLUSTRATIONS

figure 2-1. Sample Message Segment Facility
Configuration. 2-5

vi AN69

SECTION I

OVERVIEW

The message segment facility enables the user to create and
delete repositories for messages. It can perform a set of
operations on the repository and control access to it in a unique
way called extended access.

The message segment facility is layered. It consists of a
primitive facility on which software for specific applications
can be built. The subsystem programmer can define a class of
repository and a subset of the available operations.

The message repository used by the facility is an inner ring
segment that will be referred to as a message segment.

1-1
AN69

.~.

SJ!;CTION II

DESIGN GOALS

The message segment facility is designed to:

1. Provide for the protected and ordered exchange of
messages between processes and within processes.

2. Provide a partitioned facility to allow various higher
level applications.

3. Be able to restore its message data to a consistent form
so that it continues functioning if a message is damaged.

4. Make the time during which any primitive operation puts
the message data in an inconsistent state as small as
possible, so as to minimize the chance that it will be
left in this state by crash or malfunction.

5. Allow the size of the message data storage unit to be
changed easily so that the most efficient unit size can
be determined and used.

6. Be executable in the user ring for debugging purposes.

2-1
AN69

REQUIREMENTS

The requirements of the message segment facility are
threefold. It must have one higher level subsystem to provide a
queue facility for the 1/0 and Absentee Daemons. This queue
facility must perform the operations listed below:

1. Enter a request so that its order is retained in the
queue.

2. Obtain a request in some ordered fashion from the queue.

3. Delete a request from the queue.

4. Rewrite the request within the queue.

5. Obtain certain status concerning the queue.

This higher level queue facility must also provide the
appropriate access control that allows use~s of the facility to
enter, obtain, and cancel their own requests without being able
to tamper with requests of other users.

There must be a second higher level subsystem to support the
mail and send_message facilities. Within this subsystem the user
must be able to:

1. Add, read, and delete mail and messages in an ordered
fashion.

2. Send, obtain, and delete mail and messages without
affecting mail and messages sent by other users.

3. Allow and defer messages.

The message segment facility must also provide the user with
the ability to specify other types of message segments and to
design high level subsystems to implement these types of message
segments.

2-2
AN69

- ." ~ ,,- ; --
- -... _--'.-

.~)

...

DESIGN

Use of extended access requires that the message repository
Rnd the procedures that acce3S it are in an inner ring restricted
to system use. Ring 1 has been reserved for this purpose. All
message segments are bracketed 1,1,1.

The internal consistency of a message segment is protected
RS follows:

1. The sequence of operations that leave the message segment
in an inconsistent state is short to minimize the
probability of being interrupted by system failure.

2. Quits are inhibited during this sequence so that the user
cannot interrupt it.

3. A switch is turned on while the sequence is executing.
In the rare case when system failure or an unrecoverable
error has left the message segment inconsistent, this
switch will be on.

4. There is a salvager, called by any message operation when
the switch is found to be on, that is capable of
restoring the message segment to a usable state. This
salvager cannot be responsible for the text portion of a
message because the text does not follow any particular
rules.

The choice of what message operations should be available is
influenced by the need to make each one brief. The read
operations in particular are affected by this consideration. If a
message segment contains messages in threaded form and a user
wishes to perform a read operation that involves chasing the
threads (i.e., read the fifth message, or read all messages with
a given property), then one call can take considerable time. To
avoid this problem, only the following read operations exist:

1. Read the first message.

2. Read the last message.

3. Read the next message.

4. Read the previous message.

2-3
AN69

The c;llier thus has the ability, by combining calls, to find any
dC8ired message. The chasing of message threads is done in the
user ring.

The implementation of these read operations poses a problem
with respect to access control. Assume a user wishes to read a
me~sav,e from the message segment but has access to read only his
own messages and no access to obtain status information such as
the number of messages in the message segment. If a read
operation returned nothing when it encountered a message that the
user does not have access to read, the user could find out how
many messav,es there are and which ones are his. To avoid this,
the read first operation should, for example, return the first
message that the user has access to.

A set of own read operations are provided for this purpose.
These operations are implemented a level above the actual read
operations in the administrative ring. They invoke the
appropriate read operations repetitively until they read a
message sent by the caller and then return that message.
Although they are in the administrative ring, they do not access
the repository directly and therefore can be interrupted.

To facilitate adding new types of message segments to the
system, the primitives are partitioned. All code specific to one
type of message segment is placed in a separate module. Each
module performs the appropriate checks for an individual type of
message segment and then passes the calIon to the primitive
message facility. The relationship can be diagrammed as follows.
Solid arrows represent the flow of control between modules.
Notice that control can pass from module I downward to either the
own or nonown entries in the primitive facility.

2-4
AN69

v

.

commands for
type A
message
segments

1

commands for
type N
message
segments

1------

gate A gate N

i I

module A module N
for type A .. for type N
message message
segments segments , ~

t ,~
;

I I
I I
l __ J. . nonown

own primitive
primitive .

module·
module

.. ~

User Ring

Administrative Ring

Figure 2-1. Sample Message Segment Facility Configuration

2-5
AN69

SECTION III

PROPERTIES AND STRUCTURE

PROPERTIES

A message segment is accessible only in the administrative
ring. It has a suffix name defined for some type of message
segment. A subset of the extended access bits in its ACL entries
is defined for that type of message segment. These bits are set
by the administrative ring software and used by that software to
determine access to the message segment. A message segment may
not be a multisegment file.

STRUCTURE

Message Segment Structure

The first block of words in the message segment is the
message segment header. It contains:

1. A lock (a word set by the standard Multics locking and
unlocking operations).

2. An identification bit
segment primitive to
message segment.

pattern checked by the message
help ensure the identity of the

3. An offset to the beginning of the first message in the
message segment.

4. An offset to the beginning of the last message in the
message segment.

3-1
AN69

5. A count of the number of messages in the message segment.

6. A version number.

7. A block of words for a special header message.

8. A count of the number of bits in this header message if
the header message is present.

9. Switches:

a. A switch that is on whenever the message segment is
being manipulated by the primitives and is in an
inconsistent state.

b. A switch that is on whenever the message segment has
been restored by the message segment salvager.

c. A switch that is on whenever a special message is
present in the message segment header.

To maintain the ability to vary the size of the block in
which messages are stored, the following data is also kept:

1. An allocation bit string where each bit represents a
block of words in the message segment. A particular bit
is turned on when the block corresponding to it is in
use.

2. A number indicating the length of the allocation bit
string.

3. A number indicating the size of a message block.

4. A count of the number of unused blocks in the message
segment.

The remainder of the message segment consists of messages.
Each message is threaded to the next and previous message with a
forward and backward thread. A message consists of one or more
message blocks. Each block of a message is threaded to the next
block of that message with a forward thread.

3-2
AN69

.... ~

Message Block Structure

The first portion of every message block contains the
following header information:

1. An offset to th~ next block in
current block in the message
value is zero.

the message. If the
is the last block, this

2. A first block switch that is on if the current block is
the first block in the message.

3. A count of the number of message bits used in the

Following the header is all or part of a message.
only in the first block of each m~ssage is a message
trailer, consisting of:

block.

Present
block

1. A unique bit pattern used to identify the beginning of
the trailer when dumping message segments.

2. An offset to the first block of the next message in the
message segment. If the current message is the last
message in the segment, this value is zero.

3. An offset to the first block of the previous message in
the message segment. If the current message is the first
message in the segment, this value is zero.

4. The size, in bits, of the current message.

5. The time the message was sent.

6. The validation level of the sender of the message.

7. The Person_id.Project_id identification of the sender of
the message.

The include files that describe the message segment header,
the message header, and the message trailer are in Appendix A.

3-3
AN69

SECTION IV

DETAILS OF THE PRIMITIVE MESSAGE SEGMENT FACILITY

The primitive message segment facility consists of the
following modules:

1. A module to create and delete message segments.

2. A module to open and close message segments. These
operations are analogous to initiating and terminating a
segment. When the message segment is opened, an index is
returned. This index is used to refer to the message
segment in subsequent operations.

3. A module to manipulate the extended access of a message
segment. This module contains entries analogous to the
current ACL primitive entries.

4. A module to lock and unlock a message segment.

5. A module to manipulate messages.

6. A module to manipulate own messages.

7. A module to salvage a message segment.

8. A data base containing constants relevant
operation of the message segment primitives.

to the

9. A module to convert a message segment from a previous
format.

10. A metering data base.

Following is a description of ea~h module.
None of these modules can be called from the user ring. Each is

4-1
AN6g

called by the administrative ring module that
particular type of message segment. References to
are implemented in such a way that if the user has
access to certain system procedu~es, he can
primitives in any ring.

CREATING AND DELETING MESSAGE SEGMENTS (msu_)

defines a
ring number
approp~iate

execute the

This procedure has two entries: one to create a message
segment and one to delete a message segment. Both entries accept
pathname and entryname arguments. The create entry accepts an
extended access bit string argument representing full extended
access privileges for the given type of message segment to be
created.

Creating a message segment consists of:

1. Setting the validation level to the called ring.

2. Creating the message segment with rew real access and
null extended access for *.*.*.

3. Adding the creator to the ACL with rew real access and
full extended access.

This particular sequence is followed to ensure that no
window to access the segment occurs during creation. The segment
is created first with null access and then access is added.

Deleting a message segment consists of:

1. Setting the validation level to the called ring.

2. Verifying that the segment is a message segment. This is
done by checking the name of the segment and its ring
brackets when it is initiated.

3· Checking that the caller has appropriate extended access
to delete the message segment, currently delete extended
access Cd, the second extended access bit, must be on).
This access check serves also as a further identity
check.

4. Setting up a cleanup handler to turn off guarnnteed
eligibility. This step is needed because the locking
procedure called next turns on guaranteed eligibility.
If a crawlout occurs in the locking procedure, a return

4-2
AN69

~-'jo(

to the user ring with guaranteed eligibility on must be
prevented.

5. Locking the message segment.

6. Deleting the message segment.

7. Turning off guarant~ed eligibility.

8. Resetting the validation level to the calling ring.

OPENING AND CLOSING MESSAGE SEGMENTS (mseg_index_)

It is a violation of access control conventions to initiate
a message segment in an inner ring and pass a pointer to it
across rings. Therefore a message segment is opened and closed
rather than initiated and terminated. This procedure opens and
closes message segments and maintains the correspondence between
inner ring pointers to message segments and the indices used in
outer ring references to message segments.

The procedure mseg_index_ contains an entry to open a
message segment, an entry to close a message segment, and an
entry to return a pointer to a message segment given its index.
The last is used by the other primitive functions and is not
available in the user ring.

MANIPULATING EXTENDED ACCESS (mseg_access_)

This procedure
access. It contains
primitive entries.
entries.

is used to manipulate and to read extended
entries corresponding to the hardcore ACL
Calls are mapped and passed to the hardcore

The procedure mseg_access_ also ensures that at least two
entries are maintained on the Access Control List (ACL) of the
message segment. A call to delete all the entries from the ACL
of a message segment is mapped by this procedure into a call to
replace the ACL with two entries, one for *.*.* and one for
.SysDaemon., with rew real access and null extended access.
These ACL entries must be maintained so that the primitives
themselves will never be denied real access to the message
segments and backup will always be able to dump and reload
message segments.

4-3
AN69

LOCKING AND UNLOCKING MESSAGE SEGMENTS

This procedure locks and unlocks message segments to prevent
simultaneous access by more than one process. It makes use of the
standard file system locking mechanism.

This procedure must be able to validate an existing lock.
If a process terminates while it has a message segment locked,
the Multics salvager does not unlock the message segment.
Therefore, when this locking procedure encounters a locked
message segment, it makes a call to a hardcore procedure, which
checks the process ID in the lock. If the process ID does not
correspond to an existing process, the hardcore procedure relocks
the message segment with the process ID of the caller.

ring_1_lock_ makes a specified number of attempts at locking
a message segment. After each unsuccessful attempt, it goes
blocked for a short while before trying again.

Unlocking is accomplished with the standard
instruction.

unlocking

ring_1_lock_ turns on guaranteed eligibility when it locks a
message segment and turns off guaranteed eligibility when it
unlocks a message segment. Cleanup handlers exist to ensure that
guaranteed eligibility is always off on an abnormal return.

MANIPULATING MESSAGES

The module that actually manipulates messages is composed of
three procedures: a procedure that checks access and dispatches
calls; a procedure that reads and deletes messages; and a
procedure that adds messages.

Checking Access and Dispatching Calls (mseg_)

This procedure is the heart of the message segment facility.
It is the lowest level primitive through which all calls to
access the message segment are routed. It does the following:

1. Gets a pointer to the message segment.

2. Checks the identity of the segment being referenced.

3. Checks the user's access to tlj"3 message segment and
rejects the call if access is insufficient.

4-4
AN6g

" ".~,.;I

.'
.. ,

4. Locks the message segment.

5. Converts the message it it is not in the current format.

6. Establishes a cleanup. handler to invoke the message
segment salvager, return appropriate arguments to the
caller, and turn off guaranteed eligibility.

7. If the call is one that reads or sets data in the header,
performs the required action.

8. If the call is to read or delete a message, dispatches it
to the appropriate procedure.

9. If the call is to add a message, fills in the header of
the message segment if empty and dispatches the call.

10. If the operation leaves no information in the message
segment, truncates the message segment to zero length.

All the variables for the creation of the message segment
header are computed from the block size in the message facility
data base. The algorithm for this computation is:

1. Get the maximum size of the message segment.

2. Get the block size from the message facility data base.

3. The number of possible blocks in the message segment is
equal to 1 divided by~. Since the allocation bit string
contains one bit for each block, the computed value is
the bit length of that string.

4. Compute the number of blocks needed for the header of
the message segment. This is done by taking the length
of the header, adding the length of the allocation bit
string, and dividing by the block size.

5. Compute the number of blocks remaining for messages.
This is J. - .1.

The purpose of this computation is to eliminate dependence on a
particular block size.

Whenever mseg_ discovers
inconsistency in the message
~egment salvager and returns.

an inconsistency or possible
segment, it invokes the message

4-5
AN69

Heading and Deleting Messages (mseg_util_)

This procedure is one of several called by mseg_. Its
function is to return and/or delete messages.

All operations begin by gathering the data necessary to
locate a message. This data is taken from the header of the
message segment and the message facility data base. Data taken
from the data base consists of:

1. The length in words of a message header.

2. The length in words of a message trailer.

If the length of either structure is changed, that value must be
updated in the data base.

The next step common to all operations is to locate the
desired message. This can be the first message, the last
message, or an incremental message. If the message desired is
the first or last message, its offset is stored in the message
se~ment header. Two argumen~s supplied by the caller are used to
locate an incremental message: the location and time of the
messa~e from which to read incrementally and the direction in
which to increment. (The caller obtains the location and time
from the previous read operation.) The format of the message is
then checked. Information regarding the message is extracted
f'rom the trailer.

A final access check is made. An argument determines
whether the call is being made from an own entry or from a nonown
entry. If the call is own and the user did not send the message
(Person_id.Project_id in the message trailer does not match
Person_id.Project_id in the group ID), then only the data
extracted from the trailer is returned. This sequence of
operations allows the own module (see Figure 2-1) to call mseg_
repeatedly and get back only the information needed for another
incremental read until mseg_ reads a message sent by the caller.

The message thread is now chased. If the message is being
returned, it is copied out to a user area. If it is being
deleted, the aip bit is turned on, the appropriate blocks are
zeroed out, the header information is updated, and the alp L~t is
turned off.

11-6
AN6g

. ~ ..

Adding Messages (mseg_add_)

To add a message, this procedure:

1. Computes the number of blocks needed for the messag€.

2. Finds that number of unused blocks in the segment.

3. threads these blocks together.

4. Fills the message and block header and trailer data into
the blocks.

If processing is interrupted during one of the above steps,
the message segment is left in a consistent state. The blocks
containing the new message are not yet threaded into the segment
itself or recorded in the header as in use.

5. Turns on the aip bit in the header of the message
segment.

6. Threads the message into the segment.

7. Updates the header.

8. Turns off the aip bit .

This procedure contains an entry to add a message
sender ID specified by the caller. The entry is used
conversion module described under the heading "Converting
Segments" and is not available in the user ring.

MANIPULATING ONLY CALLER MESSAGES (mseg_own_)

using a
by the
Message

This procedure provides controlled access to a message
segment by returning to the caller only messages placed there by
the caller. It calls the appropriate entry in mseg_ to read a
message. If a nonzero length message is returned, mseg_own_
returns this message to the caller. Otherwise it calls to read
another message.

Since mseg_own_ does not access the message
directly, it does not turn on guaranteed eligibility.

4-7

segment

AN69

SALVAGING MESSAGE SEGMENTS

The module that salvages message segments is invoked to
restore the message segment to a consistent state. The basic
approach to salvaging is to save only those messages that are in
a consistent state and not to attempt to repair messages. The
reason for this approach is twofold:

1. The salvager cannot ensure the correctness of the text of
the message. Even if it could restore damaged threads,
header, and trailer data, the message itself might be
garbled. Furthermore, mes~ages that are contained in
damaged blocks are more likely to be garbled than those
in undamaged blocks.

2. The salvager is much simplified by this implementation.

The salvager
ms_salv_util .

is divided into two procedures, ms_salvager_ and
The procedure ms_salvager_ does the following:

1. Establishes a cleanup handler to truncate the message
segment. This step prevents repeated crawlouts from the
administrative ring.

2. Computes the variables needed in salvaging. These are the
same variables used by mseg_ (See the description of
mseg_ earlier in this section). ~

3. Calls ms_salv_util_ to attempt a forward salvage.

4. If all messages were saved, skips the next step.

5. Calls ms_salv_util_ to attempt a backward salvage.

6. If anything was saved, updates
information in the message segment.

the inconsistent

No changes are made to the message segment until it is determined
that some data has been saved. This sequence is necessary
because the salvager is used in the conversion module to check
the format of a message segment before it is converted. If the
message segment salvager wrote into a message segment of an
incorrect format, it would render the segment useless.

4-8
AN69

CONVERTING MESSAGE SEGMENTS

This module
from one format
procedures:

is responsible for converting message segments
to another. It consists of the following

This is the dispatching procedure through which all calls to
manipulate message segments are routed. After checking access to
the message segment, mseg_ takes the following steps:

1. Checks the version number of the message segment. A
version 1 message segment lacks a unique identifier in
the second word of the message segment header. All other
message segments contain the version number in a fixed
location in the header.

2. If a format error is detected, salvages the message
segment and returns.

3. If the version number 1n the message segment header is
not equal to the version number stored in the message
segment data base, attempts to convert the message
segment. The conversion is accomplished by calling a
procedure with a standard calling sequence. This code
should not have to be changed if another version of
message segments is created.

4. If the conversion is successful, continues the operation.

5. If the conversion is unsuccessful because a needed
procedure was missing (error_table_$improper_data_format
returned from mseg_convert_), returns this code to the
user, unlocks the message segment, and returns.

6. If the conver~ion was unsuccessful for any other reason,
assumes a format error in the current version and
attempts to salvage.

4-9
AN69

mseg add

This procedure is
segment. It normally
get_group_id_. An entry
conversion purposes to
the caller.

used to add a message to a message
obtains the user ID of the message from

named mseg_add_$convert is provided for
add a message with a user ID specified by

This procedure is called by the mseg_ routine and is
responsible for performing the conversion. It accepts as
arguments the version number of the message segment to be
converted and the version number to which to convert it. The
procedure mseg_convert_ executes the following steps:

1. Checks for the existence of procedures needed to convert
the message. segment to the version just previous to the
current version. If these procedures are not present,
returns the code error_table_$improper_data_format.

2. If the old version is less than the current
calls itself recursively, decrementing
version by 1.

version - 1,
the current

3. If the old version is equal to the current version - 1,
then:

a. Invokes the salvager corresponding to the old version.
This step is executed to ensure consistency of the
message segment.

b. Invokes the conversion procedure to convert from old
version to old version + 1.

This procedure is made from the previous version salvager
when a new version of message segments is created. Q is the now
previous version number. Steps are:

1. Remove code to truncate bad message segments.

2. Change proc: and end statements and rename.

4-10
AN6g

ms salv util vn =
This procedure is created from the previous version

procedure by changing the proc: and end statements and renaming.

This procedure is created from the previous version
procedure by changing the proc: and end statements and renaming.

THE MESSAGE SEGMENT DATA BASE (mseg_data_)

This data base contains all the constants needed by the
message segment facility. A copy is included in Appendix A.

EXECUTION IN THE USER RING

A set of procedures exists that allow the facility to be
executed in the user ring for debugging purposes. These
procedures enable the caller to set breaks using debug and to run
the facility without endangering installed message segments. - To
use this debugging environment:

1. The user must have access to phcs_.

2. The installed primitives must not have been initiated by
the user's process. If uncertain, it is wise to do a
new_proc at this point.

3. To set up the environment, the user executes the
following commands:

b. in dummy_admin_gate_ admin_gate_
in dummy_message_segment_ message_segment_
in dummy_mail box_ mailbox_
(These commands initiate private versions of the gates
used by the message segment facility.)

4-11
AN69

c. Various procedure~ that manipulate message segments
have entries to set the pathname of the directory
containing the messag~ segment. These entries should
be called with the pathname of the user's test
directory. (See the 10 Daemon PLM, Order No. AN58.)

d. Message segments can now be. created in the test
directory and message segment c~mmands executed on
them. For a description of these cQmmands, see the PLM
on the 10 Daemon and the two sectio'ns of this docu1l1ent
describing the queue message segment facility and the
mailbox message se~ment facility.

THE MESSAGE SEGMENT COMMAND UTILITY

The message segment command utility (ms_create) has separate
entries for queue message segment and mailbox commands and ~an be
modified to add entries for new types of message segments. Data
particular to each type of mess.ge segment is kept in an include
file called extended_access_data (see Appendix A). The commands
check that the segments they work on have certain properties
described in extencted_access_data. Among these are the name
suffix and the number of extended access bits defined~

The commands are described in Section V
Interface" sections for each application.
appropriate message segment subroutine calls by:

under
They

"Command
dispatch

1. Concatenating gate and entrynames for the type of message
segment, obtained from extended_access_data.

2. Calling hcs_$make_ptr to get a pointer to the gate entry.

3. Calling cu_$ptr_call to call through the pointer with a
uniform set of arguments.

The module has its own name duplication handler to remove
names from and to delete message segmehts. These operations
require calls to message segment primitives.

4-12
AN69

i

The ACL commands (ms_list_acl, mbx_delete_acl, etc.) call
find_common_acl_names_ (described in the Command Implementation
PLM, Order No. AN67) to return all the ACL entries that match a
given set of access control name arguments.
find_common_acl_names and its caller share data in the following
structure:

1 data aligned based (datap),
2 aclp pointer,
2 bsp pointer,
2 acl_count fixed bin(17),
2 extended_access_bit_length fixed bin(17),
2 real_access_bit_length fixed bin(17);

Each ACL command with its list of access control name
arguments does the following:

1. Calls find_common_acl_names_$init to list the ACL of the
message segment, setting aclp.

2. Allocates and initializes
corresponding to the ACL
this bit string. Allocates
all the access names.

to zero a string of bits
entries. Sets bsp to pOint to
an array big enough to hold

3. Calls find_common_acl_names for each access control name
argument. Gets back an updated bit string and an array
of all matching names that were not returned by previous
calls. Adds these names to an ACL array that it is
building. The ACL array contains no duplicated entries.

4. After all arguments have been processed, calls the
appropriate ACL primitive with the new ACL array.

5. Frees the bit string, the ACL arrays, and the array of
names.

Access control names are of the form:

<component1>.(component2>.(component3>

4-13
AN6g

The matching strategy used by find_common_acl_names_ can be
summarized in three rules:

1. A literal component name, including *, matches only a
component of the same name.

2. A missing component name not delimited by a period (eg.
*.Multics, in which the third component is missing) is
treated the same as a literal * Missing components on
the left must be delimited by periods.

3. A missing component delimited by a period matches any
component.

for examples, see "Notes" under the description of the
ms_delete_acl command in Section V of this manual.

4-14
AN69

.~.

: .

'~-

SECTION V

MESSAGE SEGMENT APPLICATIONS

This section describes
message segment facility.
mailboxes.

two specific applications of the
These applications are queues and

EXTENDEQ_ACCESS

The extended access attributes. defined fol" both kinds of
message segment are:

a allows a user to add a message.

d allows a user to delete any message.

r allows a user to read any message.

r) allows a user to read and/or delete messages sent by him.

8 allows a user to find out the number of messages in the
message segment and whether or not the message segment­
has been salvaged.

Jli~ __ QUEUE MESSAGE SEGMENT FACILITY

The queue message segment facility is used to implement the
I/O Daemon and Absentee Daemon queues.

Topics discussed below include the subroutine calls and
commands that work on queues.

5-1
AN6g

The queue message segment module is that portion of the
message segment facility that defines queue message segments. It
is composed of:

1. A gate (message_segment_) from the user
administrative ring. It contains all
queue message segment primitives.

ring into the
the entries to

2. A defining procedure (queue_mseg_) called through the
ga te. Be fore passi'lg the calIon to the appropriate
primitive, this procedure checks that the name of the
segment being referenced ends in the suffix ms. It also
checks for any call involving the ACL of a message
segment that only the first five bits of extended access
(adros) are on.

The~uElue Message Segment Subroutine Interface

The following is a list of standard error codes returned by
queue message segment facility subroutines.

Heaning

an inconsistency was detected
in the message segment causing
it to be salvaged. The call
should be made again.

extended
insufficient
operation.

access is
to perform the

the requested message was not
found.

error_table_$improper_data_format a message segment of different
version number was encountered
and the software necessary to
perform the conversion cannot
be found.

5-2
AN69

The following is an alphabetized list of arguments used in
the described calls.

acl count (fixed bin) is the number of entries in the
structure pointed to by aclp.

ac lp (po inter) is a pointer to the
structure:

following

declare 1 acl_entries (acl_count) aligned based (aclp),
2 access_name char(32) aligned,

where:

modes

2 modes bit(36) aligned,
2 extended_access bit(36) aligned,
2 reterr fixed bin(35);

is the access name (in the form
Person_id.Project_id.tag) that
identifies a class of users.

is the real access for this access
name.

extended_access is the extended access for this
access name.

reterr is a standard Multics status code.

areap (pointer) is a pointer to a user defined
area.

ar~p (pointer) is a pointer to the
structure:

declare 1 mseg_return_args aligned based (argp),
2 ms_ptr ptr,
2 ms_Ien fixed bin(18),
2 sender_id char(32) aligned,
2 level fixed bin,
2 ms_id bit(72) aligned,
2 sender_authorization bit(72),
2 access class bit(72)j

5-3

following

AN6g

where:

ms len

sender_id

level

ms id

sender_authorization

access class

code (fixed bin(35))

dir name (char (*))

direction (bit(2) aligned)

ent name (char(*))

index (fixed bin)

is a pOinter to
message.

the returned

is the bit length of the returned
message.

is the 1D of the sender
message in the
Person_id.Project_id.tag.

is the validation level
sender of the message.

of the
form

of the

is the 1D of the returned message.

is the access authorization of the
sender.

is the access class of the message.

is a standard file system error
code.

is the pathname
containing the
be referenced.

of the directory
message segment to

is a switch indicating the
direction of an incremental read.
IOO"b => current message; "10"b =>
previous messa~e; "01"b => next
message.

is the ehtryname of the message
segment to be referenced.

is an index to the message segment
to be referenced.

5-4
AN69

rnessa~e count (fixed bin)

message_id (bit(72) aligned)

is the number of messages in the
message segment.

is a unique identifier
corresponding to a message in the
message segment.

message_length (fixed bin(18») is the length, in bits, of a
message.

message_wanted (bit(1) aligned) is a switch indicating which
message is wanted. "O"b => first
message; "l"b => last message.

~essagep (pointer)

new_name (char(.»

old name (char(*»

salvaged_bit (bit(1) aligned)

turn_off (bit(1) aligned)

is a pointer to the message.

is the name to which to rename a
message segment.

is the name of the
segment to be renamed.

message

is a switch indicating)whether or
not the message segment has been
salvaged. "O"b => no;
"l"b => yes.

is a switch indicating whether or
not to turn off salvaged_bit.
"O"b => no; "l"b => yes.

The following is a list of subroutine calls to the queue
message segment facility. They are grouped by class.

5-5
AN69

CREATING AND DELETING QUEUE MESSAGE SEGMENTS

~nta: messar.;e_segment_$create

This entry point is used to create a queue message segment.

declare message_segment_$create entry
(char(*), char(.), fixed bin(35»;

call message_se~ment_$create
(dir_name, ent_name, code);

1. di r _name Input

Input

~. code Output

This entry pOint is used to delete a queue message segment.

declare message_segment_$delete
(char(*), char(*), fixed bin(35»;

call message_segment_$delete
Cdir_name, ent_name, code);

I. dir name Input

2. ent name Input

3. code Output

5-6
AN69

.",

" . ."..,---

MANIPULATING QUEUE MESSAGE SEGMENT EXTENDED ACCESS

This entry point is used to add one or more entries to the
access control list of a queue message segment.

1.

2.

3.

4.

5 .

declare message_segment_$ms._acl_add
entry (char(*), chare*), ptr, fixed bin,
fixed bin(35»;

call message_segment_$ms_acl_add
(dir_name, ent_name, aclp, acl_count, code);

dir - name Input

ent - name Input

aclp Input

acl count Input

code Output

This entry point is used to delete one or more entries from
the access control list of a queue message segment.

declare message_segment_$ms_acl_delete
entry (char(*), char(*), ptr, fixed bin, ptr,
fixed bin(35»;

call message_segment_$ms_acl_delete
(dir_name, ent_name, aclp, acl_count, areap, code);

1. dir _name Input

;:. ent_name Input

5-7
AN6g

3. aclp see "Note"

4. acl - count see "Note"

5. areap see "Note"

6 . code Output

Note

If acl_count is equal to -1, areap is assumed to point to a
user area. In this case the entire ACL is replaced with two
entries, one for *.*.* and one for *.SysDaemon.*, both with null
extended access. Information about these entries is returned in
the area pointed to by areap. aclp is set to point to the
allocated data and acl_count is set to the number of entries. If
acl_count is not -1, then aclp is assumed to point to a structure
containing the ACL entries enumerated by' acl_count. The entries
for * * * and *.SysDaemon.* cannot be deleted.

This entry point is used to list one or more items from the
access control list of a queue message segment.

1 •

2.

3 .

4 .

5.

6.

declare message_segment_$ms_acl_list entry
(char(*), char(*), ptr, fixed bin, ptr, fixed bin(35»;

call message_segment_$ms_acl_list (dir_name, ent_name,
aclp, acl_count, areap, code);

dir - name Input

ent - name Input

aclp see "Note"

acl count - see "Note"

areap see "Note"

code Output

5-8
AN69

.-...... /

-.j

~ If acl_count is -1, areap is assumed to point to a user

'y ..

defined area. A list of the entire ACL is returned in space
allocated in this area and aclp is set to point to the list. If
aCl_count is not -1, areap may be null and aclp is assumed to
point to an ACL data structure in which data is returned.

This entry point is used to replace the access control list
of a queue message segment.

Usage

declare message_segment_$ms_acl_replace entry
(char(*), char(*), ptr, fixed bin, fixed bin(35»;

call message_segment_$ms_acl_replace
(dir_name, ent_name, aclp, acl_count, code);

1 • dir - name Input

2. ent - name Input

3. aclp Input

4. acl - count Input

5 . code Output

The list of entries replacing the current access control
list must contain entries for * * * and *.SysDaemon.*.

5-9
AN69

RENAMING QUEUE MESSAGE SEGMENTS

This entry point is used to rename a queue message segment.

Usage

declare message_segment_$chname_file entry
(char(*), char(*), char(*), char(*) fixed bin(35»;

call message_segment_$chname_file
(dir_name, ent_name, old_name, new_name, code);

1 . dir - name Input

2 . ent - name Input

3. old - name Input

4 . new name Input -
5 . code Output

The remaining primitives in this section can be called
either of two ways:

1. The message segment can be opened using
message_segment_$open and calls made with the index thus
obtained.

2. The primitive can be called directly using dir_name and
ent_name to reference the segment.

The former method is more efficient for repeated calls as it
avoids repeated initiations and terminations of the message
segment in the administrative ring.

The entries are documented in pairs corresponding to the two
modes of use.

5-10
AN6g

,...;'

OPENING AND CLOSING A QUEUE MESSAGE SEGMENT

Entry: message_segment_$open

This entry point is called to opert and get an index to a
queue message segment.

Usage

declare message_segment_$open entry
(char(*), char(*), fixed bin, fixed bin(35));

call message_segment_$open
(dir_name, ent_name, index, code);

1. dir _name Input

2. ent name Input

3. index Output

4. code Output

EntJ::.v.: rnessage_segment_$close

~. This entry point is used to close a queue message segment
after it has been opened.

declare message_segment_$close entry
(fixed bin, fixed bin(35));

call messa~e_segment_$close
(index, code);

1. index Input

2. code Output

5-11
AN69

OBTAINING QUEUE MESSAGE SEGMENT HEADER STATUS

~~tLY: message_segment_$check_salv_bit_index
message_segment_$check_salv_bit_file

This entry point is used to check whether or not a queue
message segment has been salvaged.

or:

1.

')
L.

3.

4.

5.

6.

declare message_segment_$check_salv_bit_index
entry (fixed bin, bit(1) aligned, bit(1) aligned,
fixed bin(35»;

call message_segment_$check_salv_bit_index
(index, turn_off, salvaged_bit, code);

declare message_segment_$check_salv_bit_file entry
(char(*), char(*), bit(1) aligned, bit(1) aligned,
fixed bin(35»;

call message_segment_$check_salv_bit_file
(dir_name, ent_name, turn_off, salvaged_bit, code);

index Input

turn off Input -

salvaged_ bit Output

code Output

dir --name Input

ent name Input

tiote

The caller must have s extended access to the message
se~ment. If the turn_off bit is on, indicating that the caller
wishes to turn off the salvaged bit, the caller must have delete
extended access to the message segment.

5-12
AN69

'~"

Entry: message_segment_$get_message_count_index
message_segment_$get_ message_count_file

This entry point is used to obtain the number of messages in
a message segment.

Usage

or:

1 •

2.

3 .

4 .

5.

declare message_segment_$gE:t_message_count_index
entry (fixed bin, fixed bin, fixed bin(35»;

,
call message_segment_$get_message_count_index

(index, message_count, code);,

declare message_segment_$get_message_count_file
entry (char(*), char(*), fixed bin, fixed bin(35»;

call message_segment_$get_message_count_file
(dir_name, ent_name, message_count, code);

index Input

message_ count Output

code Output

dir - name Input

ent - name Input

The caller must have status extended access to the message
segment.

5-13
AN69

OBTAINING EFFECTIVE ACCESS TO A MESSAGE SEGMENT

l~r.lt;s-y: me ssage_segment_$get_mode_index
message_segment_$get_mode_file

This entry point is used to find out
extended access to a message segment.

the
,

user s

declare message_segment_$get~ode_index entry
(fixed bin, fixed bin(5), fixed bin(35»;

() l' :

call message_segment_$get_mode_index
(index, mode, code);

dc~c lare messap.;e_segment_$get_mode_file entry

effective

(char(*), char(*), fixed bin(5), fixed bin(35»;

'")
<

).

4.

5 .

call rne.ssage_segment_$get_mode_file
(dir_name, ent_name, mode, code);

i 11 '1e x Input

mode Output

code Output

chr - name Input

ent - name Input

5-14 AN69

'·-4

ADDING MESSAGES TO A QUEUE MESSAGE SEGMENT

~ntLY: message_segment_$add_index
messa~e_segment_$add_file

This entry point is used to add a message to a message
segment.

or:

1 •

2.

3.

4.

5.

6 .

7,

declare message_segment_$add_index entry
(fixed bin, ptr, fixed bin, bit(72) aligned,
fixed bin(35»;

call message_segment_$add_index
(index, messagep, message_length, message_id, code);

declare message_segment_$add_file entry
(char(*), char(*), ptr, fixed bin, bit(72) aligned,
fixed bin(35»;

call message_segment_$add_file
(dir_name, ent_name, messagep, message_length
nessage_id, code);

index Input

messagep Input

message_length Input

message_ id Input

COd8 Output

dir - name Input

ent name Input

The caller must have append extended access to the message
sep;ment.

5-15
AN69

DELETING MESSAGES FROM A QUEUE MESSAGE SEGMENT

~rrtCY: nessage_segment_$delete_index
message_segment_$delete_file

This entry point is used to delete a message from a message
se~ment.

declare message_segment_$delete_index entry
(fixed bin, bit(72) aligned, fixed bin(35»;

call message_se~ment_$delete_index
(index, message_id, code);

or:

" declare message_segment_$delete_file entry
(chad*), char(*), bit(72) aligned, fixed bin(35»;

call message_segment_$delete_file
(dir_name, ent_name, message_id, code);

1 • index Input

2. me ssage_ id Input

3. code Output

il. dtr name Input

r-
) . ent name Input

!i2.t§.

To delete a message sent by the caller, owner and/or delete
extended access to the message segment is required. To delete a
Message sent by someone other than the caller, delete extended
access to the message segment is required.

5-16
AN6g

' .--.1.

.~
-;--.,

:i, ..
~

READING MESSAGES FROM A QUEUE MESSAGE SEGMENT

~ntry: message_segment_$read_index
message_segment_$read_file

This entry point is used to read the first or last message
from a message segment.

or:

1.

2.

3 .

4 .

5.

6.

7.

declare message_segment_$read_index entry
(fixed bin, ptr, bit(1) aligned, ptr, fixed bin(35»;

call message_segment_$read_index
(index, areap, message_wanted, argp, code);

declare message_segment_$read_file entry
(char(·), char(.), ptr, bit(1) aligned, ptr,
fixed bin(35»;

call message_segment_$read_file
(dir_name, ent_name-, areap, message_wanted, argp,
code) ;

index Input

areap Input

me ssage_wanted Input

argp Input

code Output

dir - name Input

ent - name Input

The caller must have read extended access to the message
segment.

5-17
AN69

E.!ltry: message_segment_$incremental_read_index
message_segment_$incremental_read_file

This entry point is used to read a message incremental to
another message. The message_id of the message from which the
incremental read is to take place must be supplied as an
argument, therefore the read entry must be called prior to
calling this entry.

or:

1 •

2.

3.

4 .

5 .

6.

7.

8 .

declare message_segment_$incremental_read_index
entry(fixed bin, ptr, bit(2) aligned, bit(72) aligned,
ptr, fixed bin(35»;

call message_segment_$incremental_read_index
(index, areap, direction, message_id, argp, code);

declare message_segment_$incremental_read_file
entry (char(*), char(*), ptr, bit(2) aligned,
bit(72) aligned, ptr, fixed bin(35»;

call message_segment_$incremental_read_file
(dir_name, ent_name, areap, direction, message_id,
argp, code);

index Input

areap Input

direction Input

message_ id Input

argp Input

code Output

dir - name Input

ent - name Input

5-18
AN69

The caller must have read extended access to the message
segment.

COMBINED READ AND DELETE FROM A QUEUE MESSAGE SEGMENT

&rr~~: message_segment_$read_delete_index
message_segment_$read_delete_file

This entry pOint is used to read and delete the first or
last message from a queue message segment.

Usage

or:

1 •

2.

3 .

4.

5.

6.

declare message_segment_$read_delete_index
entry (fixed bin, ptr, bit(1) aligned, ptr,
fixed bin(35»;

call message_segment_$read_delete_index
(index, areap, message_wanted, argp, code);

declare message_segment_$read_delete_file entry
(char(*), char(*), ptr, bit(1) aligned, ptr,
fixed bin(35»;

call message_segment_$read_delete_file

index

areap

(dir_name, ent_name, areap, message_wanted, argp,
code) ;

Input

Input

message_wanted Input

argp Input

code Output

dir - name Input

5-19
AN69

6. dir _name Input

Input

The caller must have read and delete extended access to the
message se~ment.

REWRITING MESSAGES IN A QUEUE MESSAGE SEGMENT

Entr.y: message_segment_$update_message_index
message_segment_$update_ message_file

This entry point is used to rewrite an existing message in a
queue message segment.

or:

declare message_segnient_$update_message_index
entry (fixed bin, fixed bin(18), bit(72) aligned, ptr,
fixed bin(35»;

call rriessage_segment_$updat.e_message_index
(index, message_length, messa~e_id, messagep, code);

declare message_segment_$update_message_file
entry (char(*), char(~), fixed binC·,8),
bit(72) aligned, ptr, fixed bin(35»;

ca 11 me ssage_segment_$upda te-,'llessage_file
(dir_name, ent_name, message_length, message_id,
messagep, code);

1. index Input

Input

Input

5-20
AN69

.~.

~

4. messagep Input

5. code Output

6. dir - name Input

7. ent - name Input

Notes

The caller must have delete extended access to the message
segment.

The lengths of the old and new messages must be the same.

READING CALLER MESSAGES FROM A QUEUE MESSAGE SEGMENT

These entries return a message that was sent by the caller.
In contrast to the read and incremental read entries, which
require read extended access, these entries require read and/or
owner extended access.

~ntry: message_segment_$own_read_index
message_segment_$own_read_file

This entry point is used to read the first or last message
placed by the caller in a queue message segment.

Usage

declare message_segment_$own_read_index
entry (fixed bin, ptr, bit(1) aligned, ptr,
fixed bin(35»;

call message_segment_$own_read_index
(index, areap, message_wanted, arg_ptr, code);

5-21
AN69

or:

1 •

2 .

3 .

4 .

5 .

6.

7.

declare messa~e_segment_$own_pead_file
entry (charC*), char(*), pt~, bit(1) aligned, ptr,
fixed bin(35»;

call message_segment_$own_read~file
(dir_name, ent_name, areap, message_wanted,
arg_ptr, code);

index Input

areap Input

message_wanted Input

arlS_ptr Input

code Output

dir - name Input

ent - name Input

En!:'!:y: message_segment_$own_incremental_read_index
message_segment_$own_incremental_read_file

This entry point is used to read a message placed by the
caller in a queue message segment incremental to another message
placed by the caller in that message segment. The message_id of
the message from which the incremental read is to take pla~e must
be supplied, therefore the own_read entry must be called prior to
calling this entry.

or:

declare message_segment_$own_incremental_read_index
entry (fixed bin,. ptr, bit(2) aligned, bit(72) aligned,
ptr, fixed bin(35»j

call message_segment_$own_lncremental_read_index
(index, areap, direction, message_id, argp, code);

5-22
AN69 ,j

y

1.

2 .

3.

4.

5 .

6.

7.

B.

declare message_se~ment_$own_inaremental_read_file
entry (char(-), char(*), ptr, bit(2) aligned,
bit(72) aligned, ptr, fixed bin(35»;

call message_segment_$own_incremental_read_file
(dir_name, ent_name, areap, direction, message_id,
argp, code);

index Input

areap Input

direction Input

message_ id Input

argp Input

code Output

dir - name Input

ent - name Input

I~ueue Message Segment Command Interface

The following· is an alphabetized list of the commands that
manipulate queue message segments.

The ms add name command adds alternate names to the existing
name(s) of a message segment.

where:

1. path is the pathname of a message segment. The star
convention is allowed.

2. entries are names to be added. The equal convention is
allowed.

5-23
AN69

If the suffix ms does not appear at the end of path, it is
assumed.

entry must be unique in the directory. If there is a name
duplication and the old segment has only one name, the user is
interrogated as to whether the old segment is to be deleted. If
the old segment has other names, the conflicting name is removed
and a message is printed to that effect.

causes the name io_queue_3.ms to be added to the message segment
iO_daemon_3.ms in the directory >ddd>idd.

Name: ms_create, mscr

The ms_create command creates a message segment of a given
name in a given directory.

ms_create paths

where paths are the pathnames of message .. segments to be created.

If the suffix msdoes not appear at the end of path, it is
assumed.

The user must have append (a) access to the containing
directory.

Name duplication is handled Similarly to ms_add_name.

The user is given adros extended access to the message
segment created. Null extended access is given to *.*.*.

5-24
AN69

mscr iO_daemon_3.ms >ddd>idd>io_daemo~_2

causes the message segment io_daemon_3,ms to be created in the.
working directory and the message segment io_daemon_2.ms to be
created in the directory >ddd)idd.

Name: ms_delete, msdl

The rns_delete command deletes message segments.

Usage

rns_delete paths

where paths are the pathnames of message segments to be deleted.
The star convention is allowed.

Notes

If the suffix rns does not appear at the end of path, it is
assumed.

~ The user must have modify (m) access to the;ontaining
r directory and delete (d) extended access to the message segment.

If delete extended access is lacking, the user is interrogated as
to whether the message segment is to be deleted.

ExarnQles

deletes all message segments in the working directory.

msdl a.ms >udd>m>Doe>b

deletes a.rns in the working directory and b .. ms in >udd>m>Doe.

5-25
AN69

This command deletes some or all of the items on the Access
Control List (ACL) of a message segment.

where:

1. path

2. acnames

is the pathname of a message segment. The star
convention is allowed.

are access control names. If there is no acname
specified, the user's process group ID is assumed;
if it is -all (-a), the entire ACL is deleted.
Otherwise, acname must be of the form
Person_id.Project_id.tag .. Every ACL entry whose
name matches the access control name is deleted.
See "Notes" below for a description of the
matching strategy.

If the suffix ms does not appear at the end of path, it is
assumed.

An asterisk (*) in the access control name means the literal
star character. Therefore, *.*.* matches only the ACL entry
..*. If a missing component is not delimited by a period, it is
assumed to be a literal star. *.Multics matches only the ACL
entry *.Multics.*. If a missing component is delimited by a
period, however, it matches any component.

Multics

. fvlultics.

null string

matches the
.:.. leading
component .
matches any

ACL Multics.*.*. The absence of
period makes Multics the first

t1ultics
,matches
matches
matches

entry with middle component

any ACL entry
any entry whose last component is *
any entry ending in .*.*

5-26
AN69

Examples

msda faa .Multics .. a

deletes from the ACL of foo.ms all entries ending in .Multics.*
and all entries with instance tag a.

msda foo.ms *.Multics.* Fred ..

deletes the entry *.Multios.* or prints an error message and
deletes all entries with first component Fred.

This command deletes names from message segments having
multiple names.

Usage

where paths are the pathnames of message segments. The entryname
portion is the name to be deleted. The star convention is
allowed.

~_ Notes

If the suffix ms is missing from path, it is assumed.

If deleting a name would leave no
segment, the user iSinterrogaied as
segment is to be deleted.

Example

msdn alpha >udd>Multics>Doe>beta

names on the message
to whether the message

deletes the name alpha.ms from the list of names for the
appropriate message segment in the current working directory and
deletes the name beta.ms from the list of names for the
appropriate message segment in the directory)udd)Multics)Doe.

5-27
AN69

This command lists some or all of the items on the Access
Control List (ACL) of a message segment.

where:

1. path

2. a cnames

is the pathname of a message segment. The star
convention is allowed.

are access control names. If there is no acname
specified or if it is -all (-a), the entire ACL of
the message segment is listed. Otherwise, acname
must be of the form Person_id.Project_id.tag. All
ACL entries with names matching the access control
name are listed. The strategy for matching is
described under "Notes" for mS_delete_acl.

If the suffix ms does not appear at the end pf path, it is
assumed.

msla foo .Multics .. a

lists from the ACL of foo.ms all entries ending in .Multics.* and
all entries with instance tag a.

5-28
AN69

... --1

.j

~ The ms_rename command replaces a specified name on a message
segment, without affecting any other names the message segment
has.

ms_rename pathi namei ... pathn namen

where:

1. path! specifies the old name. The star convention is allowed.

2. name! specifies the new name (i.e., replaces the entryname
portion of path!). The equal convention is allowed.

If the suffix ms does not appear at the end of path! or
name!, it is assumed.

Name duplication is handled similarly to ms_add_n~me.

Example

msrn alpha beta >udd>Multics>Doe>gamma.ms delta.ms

causes alpha. ms in the current working directory to be renamed
beta.fis, and gamma.ms in the directory >udd>Multics)Doe to be
renamed delta.ms.

5-29
AN69

N§)),!g: ms_set_acl, ms sa

This command adds items to the Access Control List (ACL) of-J
a message segment.

where:

1. path

2. aci

3. acnamei

acn. acnamen.

is the pathname of a message segment.
convention is allowed.

The star

is the access to be given. It can consist of any
or all of the letters adros or it can be null, n,
or "" to denote null access.

is an access control name .. It must be of the form
Person_id.Project_id.tag. If all three components
are present, the ACL is searched for an entry by
that name. If one is found, the access is changed.
Otherwise, a new ACL entry is added. If one or
more components are missing from the access
control name, the access is changed on all entries
that match the access control name. The strategy
for matching is described under "Notes" for
ms_delete_acl.

If the suffix ms does not appear at the end of path, it is
assumed.

Examples

mssa n ad Joe.Proj

adds to the ACL of the message segment n. ms an entry for
Joe.Proj.* with add and delete access.

mssa ** adros *
gives *.*.* "adros" abcess to every message segment in the
working directory.

5-30
AN69

THE MAILBOX MESSAGE SEGMENT FACILITY

The mailbox message segment facility implements user
mailboxes for interprocess mail and messages. It resembles the
queue message segment facility, with the following differences:

1. The suffix on a mailbox is mbx instead of ms.

2. Two additional extended access bits determine what kinds
of wakeups can accompany mailbox messages. These bits
are:

w - allows a user to send a normal wakeup when adding
a message.

u - allows a user to send an urgent wakeup when
adding a message.

The Mailbox Message Segment Module

The gate mailbox_ is similar to the gate message_segment_ in
the queue message segment module. It has fewer entries. These are
listed under "Subroutine Interface".

The defining procedure mbx_mseg_ is similar to queue_mseg_
in the queue message segment module and makes similar checks
before passing on its calls. Unlike queue_mseg_, it reserves the
front part of each message for data peculiar to mailbox
applications. The include file mail_format.incl.pI1 contains a
structure describing this data:

where:

dcl 1 mail_format aligned,
2 version fixed bin(17),
2 sent_from char(32) aligned,
2 lines fixed bin(17),
2 text_len fixed bin(17),
2 switches aligned,

3 wakeup bit(1) unaligned,
3 urgent bit(1) unaligned,
3 has_been_read bit(1) unaligned,
3 acknowledge bit(1) unligned,
3 others bit(32) unaligned,

2 text aligned
char (text_lengthrefer(mail_format.text_len»;

5-31
AN69

1. version is a version number for the mailbox.

2. is a terminal ID or other ID.

3. lines is the number of lines in text.

4. text_len is the number of characters in text.

5. wakeup is on for a wakeup message.

6. urgent is on for an urgent wakeup message.

7. has been_read is on for an old message.

8. acknowledge is on if acknowledgement is desired.

9. text is the actual text of the message.

10. text_length is the actual number of characters in text.

The Mailbox Message Segment Subroutine Interface

mailbox_$entry calls are similar to message_segment_$entry
calls and take the same arguments. The following entries are
available:

create
delete
chname
open
close

add_index
delete_index
read_index
read_delete_index
incremental_read_index
own_read_index
own_incremental_read_index

get_message_count_index
get_mode_index
check_salv_bit_index

mailbox_ ACL calls are
message_segment_ calls, though

similar to the
they recognize

5-32

corresponding
seven extended

AN69

access bits instead of five. The ACL calls are:

mbx_acl_add
mbx_acl_delete
mbx_acl_list
mbx_acl_replace

The Mailbox Message Segment Command Interface

The commands mbx_<command> (mbcc) perform the same functions
on mailboxes that ms_<command> (mscc) commands perform on queue
message segments. They have the same user interface. Commands
that work on ACLs recognize nor.mal wak.eup and urgent wakeup
extended access. If the pathname of a mailbox does not end in
mbx, that suffix is assumed.

5-33
AN69

APPENDIX A

del typ_count fixed bin(17) aligned int static init (2),

1 segdata (2) aligned int static,
2 gate_name char(32) aligned

ini t ("message_segment_", "mail bOX_") ,
2 acl_prefix char(8) varying aligned

ini t ("ms_", "mbx_-'),
2 segment suffix length fixed bin(17) aligned init (3, 4),
2 se~ment_suffix char(8) aligned init (".ms~, ".mbx"),
2 full_extended_access bit(36) aligned

init ("111110000000000000000000000000000000"b,
" 1111111 OOOOOOOOOOOOOOOOOOOOOOOOOOOOO"b) ,

2 first_extended_access_bit fixed bin(17) aligned init (1, 1),
2 mode~letter_count fixed bin(17) aligned init (5, 7),
2 made_letters (36) char(1) unaligned

init (lIa ll
, "d", "r", "0", "s", (31)"",

"a", "d", "r", "0", liS", "w", "u",(29)"I);

A-1 AN69

del bloek_ptr pointer, 1* pOinter to message block *1

1 ms_block_hdr aligned based (block_ptr),
1* message block header structure til

2 f_offset bite 18) unaligned,
I'll offset to next block of message *1

2 first - block bit (1) unaligned,
1* ON if block is first in message *1

~ 2 block_count bit(17) unaligned;
1* number of message bits in block 'III

'.

A-2 AN69

~.
/

dcl tr_ptr pointer, 1* pointer to message block trailer *1

1 rns_block_trailer alirrned based (tr_ptr),

2

2

2

2

2

2

2

1* message. block trailer structure *1
tr_pattern bit(36) aligned,

1* to identify beginning of trailer *1
f_offset bit(18) unaligned,

1* offset to next logical message *1
b_offset bit(18) unaligned,

1* offset to previous logical message wI
ms_size bit(18) unaligned,

1* bit count of the message *1
time bit(54) unaligned,

1* time the message was sent *1
ring_no bit(18) unaligned,

Iw validation level *1
pad bit(18) unaligned,

2 sender_id char(32) aligned;
1* id of message sender *1

AN69

segdef
sep:def
segdef
sep;def
segdef
segdef
segdef

max_message_size:
block_size:
version_number:
block_hdr_data:
block_trailer_data:
mse?:_b36:
mseg_tr36:

end

max_message_size
block_size
version_number
block_hdr_data
block trailer data
msegj)36 -
mseg_tr36

dec 2048
dec 32
dec 2
dec 1
dec 13
oct 252525252525
oct 777777777777

AN69

,-.-

dcl mptr pointer, Iw pointer to message segment *1

1 mseg_hdr aligned based (mptr), 1* .message segment header *1
2 lock bit(36) aligned, 1* standard file system lock *1
2 mseg_pattern bit(36) aligned, 1* to identify a message seg *1
2 pad (6) fixed bin(17) aligned, .
2 first_ms_offset bit(18) aligned, 1* offset to 1st message oftl
2 last_ms_offset bit(18) aligned, 1* offset to last message *1
2 alloc_len fixed bin, 1* length of alloc~ion bit string *1
2 space_left fixed bin, 1* number of empty blocks *1
2 number_of_messages fixed bin, Iw message count *1
2 block_size fixed bin, 1* message block ~ize *1
2 switches unaligned,

3 aip bit(l), 1* ON if allocation is in progress *1
3 os bit(l), 1* ON if message segment was salvaged *1
3 ms_in_hdrbit(1), I~ ON if there is a header message *1
3 pad2 bit(33), .

2 version_number fixed bin, 1* version of message seg *1
2 hdr_ms_len fixed bin, 1* length of header message *1
2 hdr_ms char(hdr_ms_len), loft space for header message *1
2 alloc_bits bit(alloc_len) aligned;

1* a110caion bit string *1

A-5 AN6g

