
MULTICS TECHNICAL BULLETIN MTB-l20 

TO: Distribution 

FROM: J. W. Gintell 

DATE: September 30, 1914 

SUBJECT: New probe command 

Attached is the documentation on the new pro be command. Any 
comments may be submitted to Jeff Broughton or John Gintell. 

Multics Project internal working documentation. Not to be reproduced 
or distributed outside the Multics Project. 



MULTICS PROGRAMMERS~ MANUAL 

~t probe, pb 

probe 

Command 
07/16/74 

The probe command Is a symbolic debugoinq aid that allows 
the user. to interactively examine the state of his pro~ram. 
Commands are provided to displRY and alter the value of 
variables, to interrupt a runninq program at a ~articular 
statement by use of breakpoints, to list the source proqram, to 
examine the stack of block invocations, and to invoke external 
subroutines and functions. 

In order to debug a program with probe, the proqram must 
have a standard symbol table that contains information about 
variables defined in the proqram.and a statement map qlvlnq the 
correspondence between source statements and object code. A 
symbol table and statement map is produced by the PL/I and 
Fortran compi 1 ers if the U-tableJI option is spec i fi ed. (A 
program may also be compiled with the II-brief_tablen option 
which will produce only the statement map and disable the 
ability to reference variables.) 

To store certain information about programs being debuo0ed, 
probe uses a segment in the' user-'s home directory cAlled 
Username.probe where Username is the user's oersonid. This 
seqment is created automatically when needed. 

The primary use of probe Is to examine a proaram whose 
execution has been suspended. This· can occur In one of several 
ways. 

First, execution may be interrupted as a result of an error 
occurrinQ- in the program such as zerodivide or overflow. After 
an error message is printed on the user's console, and a new 
command level entered, probe may be called and commands issued 
to it to identify the cause of the error. 

Second, the user can, as always, stop a run-away proaram by 
"qui t tinq". 

Third, the user may' deSignate, by use of probe's break 
commands, statements on which the program is to stop and directly 
enter probe. A list of commands associated with the break 
would then be executed automatica lly. These commnnds COlI Id print 
a variable, tell what line was Just executed, or cause probe to 
read additional commands from the console. In this way, the user 
can follow the progress of his proaram before an error occurs. 

~ 1974, Honeywell Information Systems Inc. 



probe MULTICS PROGRAMMERS' MANUAL 

Paae 2 

In all of the cases above, an active proqram has been 
suspended. This means that variables of all storaoe classes, in 
particular automatic, exist and may be displayed. Probe may 
also be used to examine a non-active program one that has 
never been run or that has completed. Used in this manner, probe 
can be used to look at static variables, and the program source, 
though the most common use -is to set breaks before actually 
running the program. 

Probe maintains three "pointers" that can affect the 
execution of many commands. They arel the sourc~ pointer which 
marks a particular source program statement as the "current 
statement .. and the program as the "current program"; the s~mbQl 

.llQ.i.n1.e.x: which indicates the .rlcurrent block" and generation of 
storaqe (I.e. stack frame) In which to evaluate symbolic 
references to variables; and the ,oatrol golnter which 
des·iqnates the statement at which control was suspended in the 
procedure of interest • 

.usao~s 

probe -<procedure>-

Where <procedure> is an optional argument qlving the name of an 
entry which the user is interested in. If the procedure is 
active, the control and source pOinters will be set to the lAst 
statement executed, and the symbol pointer will be set to the 
most recent invocation of the procedure. If it is not active, 
then the control and source pointers will be set to point to the 
entry statement, ~nd the symbol pointer will desionate the 
outermost block of the procedure. 

If a <procedure> is not specified, probe will. check if an 
error or qui t has occurred and, by defaul t, use the procedure 
that was executing. The pointers will be set as if the user had 
specified it explicitly. If no error has occurred, then probe 
will print a message and return. 

When probe is entered as the result of executing a procedure 
with a breakpoint set in it, the control and source pointers Are 
set to the statement on which the break was set, and the symbol 
pointer to the block that contains that statement. 

In general, after an error, quit, or break, things will be 
set up by default much as one would expect. The user should, 
however, explicitly name a <procedure> when he is interested in 
working with a non-active one. 



MULTICS PROGRAMMERS' MANUAL probe 

Once probe has been entered, the user may issue co~mands to 
it in order to examine his proqram. 

C.QmmaruL~n:tax: 

The command language recognizes three constructs: simple 
commands, command lists, and conditional commands. Loosely, a 
simple command is a basic probe request, and a co~mand list is a 
list of co~mands separated by semi-colons (or newlines). A 
conditional command is a simple command or list (surrounded bv 
parentheses) prefixed by a conditional predicate controlling when 
the request is to be performed. Examples follow in the next 
section. 

In the discussion of commands that follows, 
symbols will be used for certain constructs (e.g. 
Their meaning should be apparent from context and 
given. A complete discussion will be found 
wri teup. 

meta-language 
<expression». 
from examples 
later in this 



p~ob~ • MULTICS PROGRAMMERS' MANUAL 
__ -_I 

Page 4 

Sast c. Commands 

print, (l. 

print {<expression>:<cross section>} 

Output on the console the ·value of <expression>. The print 
request allows the user to display the value of variables, 
builtin functions such as addr and octal, and the value returned 
by An external function. 

print var 
print p -> a.b(J).c 
print addr (i) 
print octal (ptr) 
print function (2) 

Array cross-sections may be displayed by speCifying the upper and 
lower bound of the cross-section as to llows' 

pr 1 n t a rr a y (1' 5 , 1) 

which would print array(l,I), array(2,l), ••• , array(5,1). More 
than one dimension ~ay be iterated; for instance a(I'2,1'2) would 
pr in t, in ord e r, a ( 1 , 1 ) , 'a ( 1 ,2 ), a ( 2 t 1 ), a ( 2 ,2 ) • 

.lat, 1 

let {<variable>:<cross section>} = <expression> 

Set the <variable> specified to the value of the <expression>. 
If the types are not the same, conversion will be performed 
accordinq to the rules of PL/I. Array cross-sections may be 
used with the same syntax as in print. Note that one may not 
assign one array cro5s-section to another. 

let var = 2 
let array (2,3) = 1 + 1 
let p -> a.b(I'2).c = lOb 
let ptr = null 

Warning: because of compiler optimization, the change may not 
have immediate effect In the program. 



MULTICS PROGRAMMERS' MANUAL probe 

Pace 5 

CQnt1nu~, k 

continue 

Cause probe to return to its caller. If entered from command 
level, probe will return to command level. After a break, the 
user's program will, in effect, be re~tarted. To abort a 
debugginq session, the quit button must be used • 

.c.ali,tl 

call <procedure>([<expression>[,<expression>] ••• ]) 

Call the subroutine with the arguments given. If the procedure 
has descriptors giving the type of the arguments expected, the 
ones given wi 11 be converted, to the expected type; otherwise, 
they will. be passed as they are. The print request may be used 
to invoke a function, with the same sort of araument conversion 
taking place. Note. if the procedure has no arquments, a null 
arqument list,"()", must be aiven. 

call sub (lIabc", p -> p2 -> bv, 250, addr(j» 
call sub_noarqs () 
print funct ion <liD 1 D"b) 

oo.to. , gQ .to, gQ, .0 

goto <label> 

Cause an exit from probe and a non-local qoto to the statement 
. speci fi ed. 

qoto label_var - transfer to value of lAbel 
variable 

qoto action (3) - transfer to label constant 
qoto 29 - transfer to statement on line 29 

of current prO('fram 
goto $110 transfer to line lAbeled 110 in 

the fortran program 

Warnino: because of compiler optimization, unpredictable results 
may occur. 



probe MULTICS PROGRAMMERS' MANUAL 

Paqe 6 

Sourc~ G.!lmmand5 

llst, 1s. 

list [c.] 

Direct one or D statements beginning with the current statement 
(i.e." the source pOinter) to be printed. Note: only executable 
stAtements for which code hAS been generated can be listed; 
however, if several statements are requested, interveninq text 
such as comments and non-executable statements will be included 
in the output. 

position <label> 
;1osition {+:-}o 

Set the source pointer to the statement indicated or to plus or 
minus U executable statements relative to the current state~ent. 

oosition 18bel 
position action (3) 
position 2-14 

position +2 

position -5 

fiod., t. 

find n<string>" 

- set the source otr to labels ••• 
- to AC t ion (3) I .' •• 

- to statement on line 14 of file 2 
of the program 

- move forward 2 statements in the 
source 

- move back 5 statements 

Search for an executable statement containina the characters in 
<string> and if found, set the source pOinter to that statement. 
The search beains after the current statement and continues 
around the proq~am as in the editors edm and aedx. Notel because 
of reorderlnq of statements by the compiler, which, amona other 
thinqs, moves suboroqrams to the end. the search may not 
nece~5arl1v find thin~s 1n the same order as one would expect 
from a source 11stinQ"of the oroar~m. 

find n W r i t e ( 6 , 1 0) II 

find IIstr = IIlIa" 
find U q + 2 "; lIst 

- locate the stAtement in the 
prom-am 

- locate str = "a 
- locate and print the statement 



MULTICS PROGRAMMERS' MANUAL probe 

Paqe "7 

Symbol Commaoa.s. 

~aCk, s..k 

stack [[l,lnl (all] 

Trace the stack backward from the ith frame for n frames. If no 
limits are qiven, the entire stack will be traced. The trace 
consists of a list of active procedures and block invocations 
(including quick blocks) beginning with the most recent. In 
addition to the name of the block, a frame or level number is 
qiven, as is the name of any conditions rAised in the frame. 

stack 
stack 3 
stack 3, 2 

- trace the whole stack 
- trace the first three frames 
- trace th 3rd and 4th frames 

Normally, system or subsystem support procedures will not be 
included in the stack trace. If desired, they may be included by 
specifying tlali ll • 

stack all 
stack 3,5 all 

use «block>] 

Selects a new block or procedure to be examined. If no <block> 
is given, then the block originally used when probe was .entered 
will be assumed. The symbol pointer is set to the <block> 
specified so that variables in that block can be referenced. In 
a~ditiont the source OOinter is set to the last statement 
executed in the block; in this way, the point at which the block 
exited may be found with the help of the list co~mRnd. 
Acceptable <block>s include: 

<procedure> 
<label> 
level 1 
- n 

Here <procedure> is the name of a procedure whose frame is 
desired; its usaoe is essentially the same as if used on the 
command line. A <label> denotes the block containing the 
statement identified by the label or line number -- for instance, 
the label on a beqin statement denotes that begin block. It the 
<label>s block is not active, the source pointer will be set to 
the statement specified. "level ill will use the ith block frame 



I 

• 
: probe 
I 

• 

Page 8 

MULTles PROGRAMMERS' MANUAL 

from a stack trace. it-nil will use the nth previous 
the current block allowing one to move back 
recursion level. (If more frames are requested 
exist, the last one found will be used.) 

instance of 
to a previous 

than actually 

use sub 
use label 
use level 2 
use -1 

use -999 

symbol <identifier> 

- use block procedure sub occupies 
- use block containino label: ••• 
- use second frame in stack trace 
- use previous instance of current 

block 
- use first (oldest) instance 

Display the'-attributes of the variable specified and the name of 
the block in which its declaration is found. If the variable has 
variable size or dimensions, an attempt will be made to evaluate 
the size or extent expression; if the value 1s not Available, 
then "*" will be used instead. 

w:bere, ~ 

where [source:symbol:controll 

Display the current value of one or all of the pOinters. Source 
and control will give the statement number of the correspondina 
statement. Symbol will give the name of the block currently 
beina used, if the block is active, its level number will also 
aopear. 

where - give value of all three painters 
where source - give the value of the source 

pOinter 



MULTICS PROGRAMMERS' MANUAL 

Break G.ammands. 

1.n~.t, i 

insert [<label>] I {<command>: «command list»} 

• , 
: probe 
• I 

'---' 
Paqe 9 

Set a breakpoint before the statement specified by <label> and 
cause the commandCs) given to be associated with the break. If 
no <label> is given, the current statement will be assumed.' When 
the running program arrives at the statement, probe will be 
entered ~fQre the statement is executed, and the commands wil! 
be processed automatically. When finished with the commands, 
probe wil! return, and the program will resume at th~ statement 
at which the break was set. In effect, the user may .uinsert" 
probe commands into his program. 

insert: (print var; print var2) 
- set a break b~fore the 

insert quicka print x 
statement 

- set a break before the 
labeled quick 

current 

statement 

Note that the command list may extend across line boundaries if 
necessary. 

append [<labe!>]1 {<command>:«command list»} 

is the same as insert except that the break is set afte~ the 
statement designated. This means that the command list will be 
interpreted after the statement has been executed. If the 
statement branches to another location in the program, probe will 
ua1 be entered. The difference between· appending at one 
statement and inserting at the next is that a transfer to the 
next statement would cause a break for the insert case but would 
not for the aopend one. 

stop 

Causes probe to stop processing its current input and read 
commands from the console. A new invocation of probe is created 
with new pointers set to the values at the time "stopH was 
executed. It 1s of primary use as part of a break command list 
as it enables the the user to enter commands while a program is 
suspended by a break. In effect, he may halt a running program. 
A subsequent continue command would cause probe to resume what it 



probe MULTICS PROGRAMMERS~ MANUAL 

Page 10 

was doing before stopping .- tor instance, finish a break command 
list and return to the program. The command. 

insert 29. stop 

would cause the program to halt at statement 29 and allow the 
user to enter probe commands. Continue would restart the program. 
Similarly' 

append. (print a, stop, print b) 

would cause the value of a to be printed before the program 
halted, later, after .the user entered a '''continue" command, the 
value of b would be pr1nted, and the execution of the program 
resumed. 

reset 
reset (at:after:before) <label> 
reset <procedure> 
reset * 

Dalete breaks set by the 1nsert or append commands. Just "res et·" 
deletes the lest break that occurredl the <label> form deletes 
breaks set before and/or after a statement, <procedure> and "*" 
may be used to reset all the breaks 1n a segment, and all breaks 
in all segments, respectively. 

reset - delete the current break 
reset at 34 

reset after 

reset sub 
reset * 

status, :it 

status 

34 

- delete breaks 
appended at 34 

- delete the break 
34 

- delete all breaks 
- delete all breaks 

status {at:afterlbefore} <label> 
status <procedure> 
status * 

inserted 

appended 

in sub 
known 

and 

after 

G1ve information about what breaks have been set. The scope of 
the requests Is similar to "reset"' 

status - list the current break 
status before label - list the break inserted at Isbell 



• • • • MULIICS PROGRAMMERS~ MANUAL : probe :. 
• ,:..t...:.:;,." ......... .;:*""t' ... 

. ,----
Page'11 

status sub - tell what breaks have been set 1n 
sub . 

status * - te 11 what procedures. have breaks 
set In them 

pause 

Equivalent to "stop' reset" In a break command lIst, it causes 
the procedure to execute a break only once ...... stopping, then 
resetlng the break. 

s..t..fUi. ..a 

step 

Set break consisting of ·pause" after the statement following the 
control pOinter and ·continue ll • It enables the user to step 
through his program one statement at a time. Notel that if a 
statement transfers elsewhere, the break will not happen until 
somet1 me later, 1 t ever. 

11Sc811aoeousCdmmaods 

tttlef, b 

bri et [on :off] 

Turn brl ef message mode on or o.ff. In brl ef mode t most messages 
generated by probe will be much shorter and others will be 
surpressed altogether. The default Is off • 

execute '''<string>'' 

Pass <string> to the command processor to be executed as a normal 
Multlcs command. 



• • 
: probe 
• ,. -". ',' "p 

1-

MULTICS PROGRAMMERS' MANUAL 

CQndltlooal 2radicates 

if <conditional>1 (<simple command> I «command list»} 

The,command(s) w1ll be executed if the <conditional> evaluates to 
true. The <conditional> may be of the form 
<expression><op><expression> with <=. <. =, 4111.=, >, >= allowed as 
<op>s. 

if a < bl let p = addr (a) 

This predicate is of most use in a break command list as it can 
be used to cause a conditional stop. 

insert' if z 4111.= Ml0"bl stop 

would cause the program to stop only when z A= .ttl0"b. 

tLbl Jet w.l. 

while <conditional>' (<simple command>:«command list»} 

Allows iteration by executlna the command(s) as lonq as the 
<conditional> Is true. 

while p A= null' (print p -> r.val, let p = p -> r.next) 



MULTICS PROGRAMMERS' MANUAL 

Expressions: 

• • 
probe : 

'~' ,., . ----, 
Page 13 

Allowable <expression>s include simple scalar variables, 
constants, and probe builtin functions. The sum 1 and difference 
of computational values can also be used. 

Variables may be simple identifiers, subscripted references, 
.. structurequalif ted references, and locator qualified references. 

Subscripts are also express!oris. Locators must be offsets or 
pOinter variables or constants. 

running_total 
salaries (p -> 1 - 2) 
a.b(2).c(3) or a.b.c(2,3) etc. 
x.y -> var 

ArithmetiC, string, bit, and pointer constants are 
supported. Arithmetic constants may be either deCimal or binary, 
fixed or float, real or complex. Also, octal numbers are 
permitted as abbreviations for binary integers (e.g. 120 = 10). 

-123 
lOb 

45.37 
4.73el0 

2.1-0.31 
123456700 

Character and bi t strings wi thout repeti tion factors are allowed. 
Character strings may include newline characters. Octal strings 
may be used in the place of bit strings (e.g. "123"0 = 
'''.00 101 0011 lib) • 

"abc" 
JI quote,lIltins tringll 

"1010"b 
"01234567 11 0 

Pointer constants are of the form: seq#:word#(bit#). The seal 
and word# must be in octal. The bit# is-optional and must be In 
decimal. They may be used as locators. 

214:5764 

Three builtin functions are provided by probe: addr, null, 
and octal. The addr function takes one arqument and returns a 
pointer to that argument. Null, taking no arguments, returns a 
null pointer. They are the same as in PL/I. The fUnction octal 
acts very 'much like PL/I's unspec builtin in that it treats its 
argument as a bit string of the same lenqth as the raw data 
value, and may be used In a similar manner as a psuedo-variable. 
However, when used in the print command the value is displayed in 
octal. (Data items not occupying a multiple of three bits will 
b'e padded on the z:1.ah.t..) 



----• • • • 
: probe : MULTIes PROGRAMMERS' MANUAL 
I . • 
I _I 

Page 14 

Label Refere~: 

A <label> identifies a source program statement and may be a 
label' variable or constant, a line number as it appears on a 
source listing (i.e. [~-]l1n~), or a special statement 

. desiqnator l $c representing the "current statement", $b 
reoresenting the statement on which the last break occurred, and 
$D.lllIlb.ar. for fortran labels. An optional offset of the form ",s." 
is also allowed. 

label 
label_var 

t 7 
3-14,2 
$b 

$c,1 
$100 

erQce~e Ref~~encesl 

- statement at labe 11 ••• 
- statement that label_var is set 

to 
statement on line 17 of program 

- statement 2 on line 14 of file 3 
- statement at which last brenk 

occurred 
- statement after current statement 
- fortran statement labeled 100 

A <procedure> is considered to be a reference to an entry 
variable or constant. External names may be used. 

EYa 1 t ra:t.i.Qn...Q.f •. ~a r 1 a bl.e R e fe r en c e S : 

When a variable is referenced in a COMmand, probe will 
attempt to evaluate it by first checkinq for an apolicable 
declaration in the current block as indicated by the symbol 
pointer, and if necessary in its parents. If not found, the list 
of builtin functions will be searched. Finally, when the context 
allows a <procedure>, a search will be made following the user's 
search rules. 

The block in which to look for a variable may be altered by 
the use command which sets the symbol pointer. For example, if 
"print var" dl splays the value of var in the current blocl<, then 
"use -1; print var Jl disolays the value of var at the previous 
level of recursion. A shorthand is available for referencinQ 
variables in other blocks - an optional block spec if icatlon: 

<variable> L<block>l 

where block is the same as in the use command. The use of 
<block>s in this manner does not alter the symbol pOinter. 



MULTICS PROGRAMMERS' MANUAL 

. var[-11 
abc[other_blockl 
xyz(391 
n.m(level 4] 
q(2)(sub] 

probe 
• • '--' 

PS('Je 15 

- looks for previous value of var 
- looks In "other_bl.ock" for abc 

looks in block containing line 39 
- looks in block ~t level 4 
- looks in procedure sub 

A block specification may be used on an identifier anywhere the 
variable could be used. However, a block specification on a 
label or entry constant is ignored unless 1) the relative (-0) 
format is used, and 2) the label or entry is itself used in a 
block specifcation~ In such a case, it is taken to mean the nth 
previous instance of the block designated by the label or entry; 
that is, "var[sub[-2]]" references var in the second previous 
invocation (third on the stack) of sub. . 



• I 

----~, 

(probe : 
• • '---' 
Page 16 

Samele ,DebUgginO Sess.1aD.= 

MULTles PROGRAMMERS' MANUAL 

The followina is a sample attempt at debuaginq a prograM. 
It Is not claimed that the program does anythina useful, or that 
this is the best way to debug the program. The purpose is merely 
to give an example of how certain probe commands can be applied. 
A lis tinq of the source of the program, test, 1s oi ven on the 
next paqe; the sample outout follows with 11>" used to denote 
lines typed by the user. 

In order to use probe to debuq a program, the proqrarn must 
be complIed with the II-tablen option. Generally, the user should 
generate a symbol table for any proqram that he does not have 
good reason to believe will work. 

On line 5, the user calls his proqram; noticinq that it 
seems to be loopinQ, he stops it by hitting the quit button. 
After the user invokes probe, it responds by tellin9 that the 
internal function "fun lf was executing line 38 when interrupted. 
Since the source pointer was automatically set to that line, ~ 
request to print the current statement with "listH , displays the 
source. The statement causinq an error could be displayed in a 
similar manner. 

The stack command was then used to see what called what. 
The ouput shows that procedure "test" was called from command 
level, and then, in turn, called fun. While fun was executinQ, a 
quit occured and established a new command level. To determine 
whether fun was called from line 17 or line 27 of test, the use 
command is used to find the pOint at which test exited. Since 
"use" also sets the symbol pointer at the same time, the user cptn 
check it tls.num" has the correct VAlue with the print command. 

The user decides that it would be worthwhile to trace the 
value of i. Rather than recompiling his proqram with a put 
statement added in a strateqic location, probe allows him to set 
a break containina a print command to accomplish the same thinq. 
Wanting to set the break after the do statement on line 16, the 
user searches for it with the find command. IIlist~ is used to 
verify that the correct line was found. The continue co~mand 
then causes probe to return (to command level). 

To abort the suspended program test, the user gives the 
release command to Mul tics. I f he had don e this just atter 
quitting, he could not have used probe to find out much about 
what happened. 



MULTICS PROGRAMMERS' MANUAL 

1 testa procedure; 
2 
3 declare 
4 
5 (1, j) f1xed binary, 
6 1 5 structure based (p>, 
7 2 num fixed binary, 
8 2 b (n refer (s.num» float binary, 
9 p pOinter, n f1xed b1nary, 

10 sysprint fi Ie; 
J 1 
12 
13 n = 5; 
14 allocate 5 set (p), 
15 

.16 do i = 1 to s.num; 
17 s.b(i) = fun (i, 1), 
18 end; 
19 put skip list (s.b); 
20 
21 do j = s.num to 1 by -1; 
22 s~b(j) = fun (-J, -1); 
23 end; 
24 put skip 11st(s.b); 
25 
26 return; 
27 
28 

• I 

probe : 
1 • -- . 

Page 17 

29 fun: procedure (b, 1) returns (float binary), 
30 
31 declare 
32 (b, 1) fixed binary; 
33 
34 if b = 0 
35 then return (I), 
36 else do; 
37 b = b - i; 
38 return (2**b + fun (b, i», 
39 end; 
40 
41 end fun; 
42 
43 
44 end test; 



--• • • • 
: probe : · " ,'.. , __ I 

Page 18 

MULTICS PROGRAMMERS' MANUAL 

The program is started once again, but now, after each time 
line 16 is executed, the break occurs and probe prints the value 
of i. Clearly, it is not being incremented as it should. Since 
this approach is not producing any useful information, the user 
aborts the program and trys to delete the break. The status 
command is used to tell what breaks have been set in the segment 
test, and then to see the break set. The break is then deleted 
with the reset command. Note that if there had also been a 
"Break before 16", then the command '''reset at 16" would have 
de leted both. 

The user next decides to see what is qoing on In fun, so he 
sets a~break to halt it every time it Is invoked. By looking at 
the listing, he knows that the f1rst statement in fun is on l1ne 
34, so he "positions" the source pOinter to that statement Rnd 
"Inserts" a "stop". To accomplish the same thina, "insert 341 
stop" could have been used. 

The program halts when the break before lIne 34 is reached. 
The user displays band 1 gettIng the values he expected. The 
where command is also used to see what the state of thinqs Is. 
Continue (HCn ) restarts fun which calls itself recursively and 
stops again. The stack command (showing the last five frames) 
verifies that fact. The user prints the b in the current 
instance of fun (at level 2) and in the previous one (at level 
3). Mistakenly expectino the b's at different levels to be 
different, he gets suspicious. The variable "in has the value 
expected, but the symbol command shows that it is wrong one­
the parameter to fun, not the loop index. To qet the correct 
one, he must look In the frame belonoing to the procedure test. 
This "I" has been set to zero. The user then realizes his error. 
The function is modifyinq its argument (the loop index "1") on 
lIne 37. Done with debuqqing the program, "reset" is used to 
delete the currently active break (the one that just occurred), 
and the program is aborted. 



MULTICS PROGRAMMERS~ MANUAL probe 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

23 
29 
30 
31 
32. 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

> pll test -table 
PL/I 
r 1248 3.211 28.336 280 

> test 
(quit) 

QUIT 
r 1250 5.371 6.702 52 level 2, 10 

> probe 
Condition quit raised at line 38 of fun. 

> list 

I : . I ._---, 
Page 19 

return (2**b + fun (b, i»; 
> stack 

1 command_processor_ 
2 release_stack 
3 unclaimed_signal 
4 real_sdh.-
5 return_to_ring_O_ 
6 fun 
7 test 
8 command_processor_ 
9 listen_ 

10 process_overseer_ 
11 real_init_admin_ 

> use level 7 
> list 

s • b ( i) = fun (i, 1); 
> print s .nurn 

5 
> find "i = 1"; list 

do i = 1 to s.num; 
> append a print 1 
> continue 

r 1252 1.375 16.394 354 level 2, 10 

> release 
r 1252 .126 .922 19 

> test 

(quit) 
QUIT 

1 
1 
1 
1 

r 1252 3.069 .650 25 level 2, 12 

quit 



• • , I 

: probe : MULTICS PROGRAMMERS' MANUAL 
• • 1 ___ ' 

Paae 20 

49 > release 
50 r 1253 .092 .937 20 
51 
52 > probe test 
53 > status test 
54 Break after line 16. 
55 > status after 16 
56 Break after line 16: print i 
57 > reset at 16 
58 Break reset after 11ne 16 of test. 
59 > position 34 
60 > list 
61 if b = 0 
62 then return (1); 
63 > insert: stop 
64 > continue 
65 r 1255 .781 12.356 333 
66 
67 > test 
68 Stopped before line 34 of fun. 
69 > print b 
70 I 
71 > where 
12 Current line is line 34 of test. 
73 Usinq level 2: fun. 
74 Control at line 34 of fun. 
75 > print i 
76 1 
77 > c 
78 Stopped before line 34 of fun. 
79 > ~tack 5 
80 1 break 
81 2 fun 
82 3 fun 
H3 4 test 
84 5 command_processor_ 
85 > print b 
86 0 
87 > print b[-I] 
A8 a 
89> print i 
90 1 
91 > symbo 1 i 
92 Attributes are: fixed binary(17,O) aligned parameter. 
93 Declared in: fun. 
94 > use test 
95 > print i 
96 ° 



, , 
I • 

MULTICS PROGRAMMERS' MANUAL : probe : , , ,----, 
Paqe 21 

97 > reset 
98 Break reset before line 34 of test. 
99 (qui t) 

1 no QUIT 
101 r 1307 4.870 64.788 1544 level 2, 18 
102 
103 > release 
104 r 1307 .076 .992 31 


