MULTICS TECHNICAL BULLETIN

TO:
FROM:
DATE:

SUBJECT:

Distribution
J. W. Gintell
September 30, 1974

New probe command

MTB-120

Attached is the documentation on the new probe commeand. Any
comments may be submitted to Jeff Broughton or John Gintell.

Multics Project internal working documentation.
or distributed outside the Multics Project.

Not to be reproduced

MULTICS PROGRAMMERSZ MANUAL probe

sm—

Command
07/16/74

Names probe, pb

The probe command 1s a symbolic debugging aid that allows
the wuser to interactively examine the state of his pronram.
Commands are provided to display and alter the value of
variables, to interrupt a running program at a particular
statement by use of breakpoints, to list the source prooram, to
examine the stack of block invocations, and to invoke external
subroutines and functions.

In order to debug a program with probe, the program nust
have a standard symbol table that contains information about
variables defined in the program and a statement map giving the
correspondence between source statements and object code. A
symbol table and statement map is produced by the PL/I and
Fortran compilers if the H-table" option 1is specified. (A
program may also be compiled with the W-brief_table" option
which will produce only the statement map and disable the
ability to reference variables.)

To store certain information about orograms being debuoned,
probe wuses a segment 1In the user’s home directory called
Username.probe where Username is the user’s personid. This
segment 1s created automatically when needed.

Introduction:

The primary use of probe is to examine a program whose
execution has been suspended. This. can occur in one of several
ways.

First, execution may be interrupted as a result of an error
occurring in the program such as zerodivide or overflow. After
an error message 1is printed on the user’s console, and a new
command level entered, probe may be called and commands 1ssued
to it to identify the cause of the error.

' Second, the user can, as always, stop a run-away program by
Hguitting®.

Third, the wuser may designate, by use of probe’s break
commands, statements on which the program is to stop and directly
enter probe. A list of commands associated with the break
would then be executed automatically. These commands could nrint
a variable, tell what line was just executed, or cause probe to
read additional commands from the console. In this way, the user
can follow the progress of his proaram before an error occurs.

© 1974, Honeywell Information Systems Inc.

probe MULTICS PROGRAMMERS/ MANUAL

Page 2

In all of the cases above, an active proaram has been
suspended. This means that varliables of all storage classes, in
particular automatic, exist and may be displayed. Probe may
also be used to examine a non-active program -—- one that has
never been run or that has completed. Used in this manner, probe
can be used to look at static variables, and the program source,
though the most common use 1is to set breaks before actually
running the proaram.

Probe maintains three ‘"pointers"™ that can affect the
execution of many commands. They are® the source painter which
marks a particular source program statement - as the "current
statement® and the program as the "current program%; the symbol
pointer which 1indicates the "current block" and generation of
storage (i.e. stack frame) in which to evaluate symbolic
references to variabless and the gcopntrol pointer which
designates the statement at which control was suspended in the
procedure of interest.

Usages
probe =<procedure>-

where <procedure> 1is an optional argument alving the name of an
entry which the user is interested in. If the procedure is
active, the control and source pointers will be set to the last
statement executed, and the symbol pointer will be set to the
most recent invocation of the procedure. If it is not active,
then the control and source pointers will be set to point to the
entrvy statement, and the symbol pointer will desianate the
outermost block of the procedure.

If a <procedure> is not specified, probe will check if an
error or aquit has occurred and, by default, use the procedure
that was executing. The pointers will be set as if the user had
specified 1t explicitly. If no error has occurred, then probe
will print a message and return.

When probe is entered as the result of executing a procedure
with a breakpoint set in it, the control and source pointers are
set to the statement on which the break was set, and the symbol
pointer to the block that contains that statement.

In general, after an error, quit, or break, things will be
set up by default much as one would expect. The user should,
however, explicitly name a <procedure> when he is interested in
working with a non-active one.

MULTICS PROGRAMMERSZ MANUAL probe

W

Pane

Once probe has been entered, the user may issue commands to
it in order to examine his program.:

Command Syntaxs:

The command languaqge recognizes three constructs: simple
commands, command lists, and conditional commands. Loosely, a
simple command is a basic probe request, and a command list is a
list of commands separated by semi-colons (or newlines). A
conditional command is a simple command or 1list (surrounded bv
parentheses) prefixed by a conditional predicate controlling when
the request is to be performed. Examples follow in the next
section.

In the discussion of commands that follows, meta-lanqguage
symbols will be used for certain constructs (e.g. <expression>).
Their meaning should be apparent from context and from examples
given. A complete discussion will be found 1later in this
writeup,

probe MULTICS PROGRAMMERS” MANUAL

-_———. we
- ww oo

Page 4

Basic Commands

print, p

print {<expression>!<cross section>)

Output on the console the wvalue of <expression>. The print
request allows the wuser to display the value of variables,
builtin functions such as addr and octal, and the value returned
by an external function.

print var

print p => a.b(]j).c
print addr (i)
print octal (ptr)
print function (2)

Array cross—-sections may be displayed by specifying the upper and
lower bound of the cross—-section as follows:

print array (135, 1)

which would orint array(i,1), array(2,1), ..., array(5,1). More
than one dimension may be iterateds for instance a(1:2,13:2) would
print, in order, a(l,1), a(1,2), a(2,1), a(2,2).

let, 1
let (<variable>i<cross section>} = <expression>

Set the <variable> specified to the value of the <expression>.
If the types are not the same, conversion will be performed
according to the rules of PL/I. Array cross-—-sections may be
used with the same syntax as in print. Note that one may not
assign one array cross—-section to another.

let var = 2

let arrav (2,3) =1
let p => a.b(132).c
let ptr = null

+ |
= {0b

Harnings because of compiler optimization, the change may not
have immediate effect in the program.

MULTICS PROGRAMMERSZ MANUAL H prqbe :
Paage 5
continue, <
continue

Cause probe to return to its caller. If entered from command
level, probe will return to command level. After a break, the
user’s program will, in effect, be restarted. To abort a
debugging session, the quit button must be used.

call, ¢l
~call <procedure>([<expression>[,<expression>l...])

Call the subroutine with the arguments given. If the ©procedure
has descriptors giving the type of the arguments expected, the
ones given will be converted to the expected types otherwise,
they will be passed as they are. The print request may be used
to invoke a function, with the same sort of arcument conversion
taking place. Notes if the procedure has no arauments, a null
arqgument list, "()", must be agiven.

call sub (*abc", p => p2 -> bv, 250, addr(j))
call sub_noarqgs ()
print function ("010"b)
goto, Qo Lo, 90, g
goto <label>

Cause an exit from probe and a non-local qgoto to the statement
specified.

goto label_var - transfer to value of label
variable

goto action (3) - transfer to label constant

goto 29 - transfer to statement on line 29
of current proaram

goto $110 - transfer to line labeled 110 in

the fortran program

Harning: because of compiler optimization, unpredictable results
may OCCUr. '

- H
! probe | MULTICS PROGRAMMERS”Z MANUAL
Page 6
Source Caommands
‘ list [n)

Direct one or n statements beginning with the current statement
(i.e. the source pointer) to be printed. Note: only executable
statements for which code has been generated can be 1listeds
however, if several statements are requested, intervenina text
such as comments and non—executable statements will be included
in the output. '

pasition, nps

position <label>
nosition {(+i-)n

Set the source pointer to the statement indicated or to plus or
minus n executable statements relative to the current statement.

nosition label - set the source ptr to labels ...

position action (3) - to action(3)s ...

position 2-14 - to statement on line 14 of file 2
of the proagaram

position +2 - move forward 2 statements in the
source

nosition -5 - move back 5 statements

find, L

find "<string>"

Search for an executable statement containing the characters in
<string> and if found, set the source pointer to that statement.
The search bobeains after the current statement and continues
around the proaram as in the editors edm and qgedx. Notes because
of reorderinc of statements by the compiler, which, among other
things, moves suborograms to the end, the search mavy not
necessarilv find thinas in the same order as one would expect
from a source listina of the orooram.

find "write (6,10)" - locate the statement in the
oroaran

find "sty = uugn " = locate str = "j

find Yqg+2%; list - locate and print the statement

MULTICS PROGRAMMERSZ MANUAL probe

- w- -
- m~ -

Page 7

Symbol Commands
stack, sk
stack [[i,ln] [all)

Trace the stack backward from the jth frame for n frames. If no
limits are oaiven, the entire stack will be traced. The trace
consists of a list of active procedures and block invocations
(including aquick blocks) beainning with the most recent. In
addition to the name of the block, a frame or level number Iis
given, as is the name of any conditions raised in the frame.

stack - trace the whole stack
stack 3 - trace the first three frames
stack 3, 2 - trace th 3rd and 4th frames

Hormally, system or subsystem support procedures will not be
included in the stack trace. If desired, thev may be included by
specifying "all¥,

stack all
stack 3,5 all

Jnﬂﬁyu
‘use [<block>]

Selects a new block or procedure to be examined. If no <block>
is aglven, then the block originally used when probe was entered
will be assumed, The symbol pointer is set to the <block>
specified so that variables in that block can be referenced. In
addition, the source pointer 1is set to the last statement
executed in the blocks in this way, the point at which the block
exlted may be found with the help of the 1list command.
Acceptable <block>s include: :

<procedure>
<label>
level 1

-

Here <procedure> is the name of a procedure whose frame 1is
desireds its wusaqge 1is essentially the same as if used on the
command line. A <label> denotes the block containing the
statement identified by the label or line number — for instance,
the 1label on a beqgin statement denotes that beagin block. If the
<label>s block 1is not active, the source pointer will be set to
the statement specified. "level i® will use the ith block frame

MULTICS PROGRAMMERS’ MANUAL

i)
p1
Q
o
@

from a stack trace. "-n" will use the nth previous instance of
the current Dblock allowing one to move back to a previous
recursion level. (If more frames are requested than actually
exist, the last one found will be used.)

use sub - uUse block procedure sub occupies
use label - use block containina label: ...
use level 2 - use second frame In stack trace
use -1 - use previous instance of current
block
use =999 - use first (oldest) instance
symbal

symbol <identifier>

Display the-attributes of the variable specified and the name of
the block in which its declaration is found. If the variable has
variable size or dimensions, an attempt will be made to evaluate
the size or extent expressions if the value is not available,
then "%" will be used instead.

where, wh
where [sourceisymbolicontroll

Disnlay the current value of one or all of the pointers. Source
and control will give the statement number of the correspondinag
statement. Symbol will give the name of the block currently
beina useds if the block 1s active, its level number will also
anpear.

where - give value of all three pointers
where source - glve the wvalue of the source
pointer

MULTICS PROGRAMMERSZ MANUAL probe

- - w-
- —-we

Page 9

Break Commands
Insert, 1
' insert [<label>]t: {<command>}(<command list>))}

Set a breakpoint before the statement specified by <label> and
cause the command(s) given to be associated with the break. If
no <label» is given, the current statement will be assumed. When
the running program arrives at the statement, probe will be
entered before the statement is executed, and the commands will
be processed automatically. When finished with the commands,
probe will return, and the program will resume at the statement
at which the break was set. In effect, the user may "insert"
probe commands into his program. ‘

inserts (print vars print var2))
- set a break before the current
statement
insert quicks orint x - set a break before the statement
labeled quick ' :

Note that the command list may extend across line boundaries if
necessary.

append, a
append [<label>lt: {<command>i(<command list>)}

is the same as insert except that the break 1is set gafter the
statement designated. This means that the command list will be
interpreted after the statement has been executed. If the
statement branches to another location in the program, probe will
not be entered. The difference between appending at one
statement and inserting at the next is that a transfer to the
next statement would cause a break for the insert case but would
not for the append one.

siop, sp
stop

Causes probe to stop bprocessing 1its current input and read
commands from the console. A new invocation of probe is created
with new pointers set to the values at the time "stop" was
executed. It is of primary use as part of a break command 1list
as 1t enables the the user to enter commands while a program is
suspended by a break. In effect, he may halt a running program.
A subsequent continue command would cause probe to resume what it

probe MULTICS PROGRAMMERS/ MANUAL

Page 10

was doing before stopping — for instance, finish a break command
list and return to the program. The commands

insert 29: stop

would cause the program to halt at statement 29 and allow the
user to enter probe commands. Continue would restart the progranm.
Similarlys ‘

append: (print as stops print b)

would cause the value of a to be printed before the program
halteds later, after the user entered a *continue® command, the
value of b would be printed, and the execution of the program
resumed. v

reset, c

reset

reset {atlafteribefore} <label>
reset <procedure>

reset *

Delete breaks set by the insert or append commands. Just "reset®
deletes the 1last break that occurredi the <label> form deletes
breaks set before and/or after a statement$ <procedure> and "x¥
may be used to reset all the breaks in a segment, and all breaks
in all segments, respectively.

reset - delete the current break
reset at 34 - delete breaks inserted and
appended at 34

reset after 34 - delete the break appended after
: 34 ,

reset sub - delete all breaks in sub

reset * - delete all breaks known

status, st
status

status {at!afteribefore) <label>
status <procedure>
status *

Give information about what breaks have been set. The scope of
the requests is similar to "reset":

status - list the current break
status before label ' - list the break inserted at label:

MULTICS PROGRAMMERS” MANUAL - { probe !
. ’

Page 11
status sub - tell what breaks have been set in
sub A '
status * - tell what procedures have breaks
' set in them :
Rause, pa
pause

Equivalent to ¥stops reset¥ in a break command list, it causes
the procedure to execute a break only once — . stopping, then
reseting the break.

step, s

step
Set break consisting of "pause" after the statement following the
control pointer and ®continue®. It enables the user to step
through his program one statement at a time. Notes that 1f a

statement transfers elsewhere, the break will not happen until
sometime later, if ever.

| .11ane . 4
brief, b
brief [onioff]
Turn brief message mode on or off. In brief mode, most messages
generated by probe will be much shorter and others will be
surpressed altogether. The default is off .
execute, exec, ex

execute "<string>"

Pass <string> to the command processor to be executed as a normal
Multics command.

MULTICS PROGRAMMERS” MANUAL

o
t .
e) .
T s
)

Conditional Predicates

if <conditional>t (<simple command>}(<command list>)}

The command(s) will be executed if the <conditional> evaluates to
true. The <conditional> may be of the - form

<expression><op><expression> with <=, <, =, *=, >, >= allowed as

<op>s.
if a < bt let p = addr (a)

This predicate is of most use in a break command list as it can
be used to cause a conditional stops

inserts if z ®= M{0"bs stop
would cause the program to stop only when z “= #{0%b,
while, ul |
while <conditional>: {<simple command>}(<command list>)}

Allows 1iteration by executing the command(s) as long as the
<conditional> is true.

while p *= nulls (print p => r.vals let p = p => re.next)

MULTICS PROGRAMMERS“ MANUAL probe

-— oo we
- e o

Page 13

Expressionss

Allowable <expression>s 1include simple scalar variables,
constants, and bprobe builtin functions. The sum¥and difference
of computational values can also be used.

Variables may be simple identifiers, subscripted references,
"structure qualified references, and locator qualified references.
Subscripts are also expressions. Locators must be offsets or
pointer variables or constants. -

running_total
salaries (p => 1 - 2)
a.b(2).¢c(3) or a.b.c(2,3) etc.

Arithmetic, string, bit, and pointer constants are
supported. Arithmetic constants may be either decimal or binary,
fixed or float, real or complex. Also, octal numbers are

permitted as abbreviations for binary integers (e.a. 120 = 10).
-123 ' 45.37 2.1-0,31
10b 4,73e10 123456700

Character and bit strings without repetition factors are allowed.
Character strings may include newline characters. 0Octal strings
may be wused in the place of bit strings (e.g. %"123%" =
n0010100114b), ’ "

"abch "1010%p
Nquote®Minstring® 101234567"0

Pointer constants are of the form: seg#iword#(bit#). The seq#
and word# must be in octal. The bit# is optional and must be in
decimal. They may be used as locators.

21415764 23217413(9)

Three builtin functions are provided by probet addr, null, .
and octal. The addr function takes one argument and returns a
pointer to that argument. Null, taking no arguments, returns a
null pointer. They are the same as in PL/I. The function octal
acts very much like PL/I’s unspec builtin in that it treats its
argument as a bit string of the same lenagth as the raw data
- value, and may be used in a similar manner as a psuedo-variable.
However, when used in the print command the value is displayed in
octal. (Data items not occupying a multiple of three bits will
be padded on the righti.)

o

probe MULTICS PROGRAMMERSZ MANUAL

—

Page 14

Lahel Ref -

A <label> identifies a source program statement and may be a
label ° variable or constant, a 1line number as it appears on a
source listing (i.e. [file-Jlline), or a special statement
“designator: $c representing the Mcurrent statement", 3$b
reoresenting the statement on which the last break occurred, and
$number for fortran labels. An optional offset of the form ",s"
"is also allowed.

label - statement at label: ...
label_var - statement that label_var is set
to
17 - statement on line 17 of program
3-14,2 - statement 2 on line 14 of file 3
$b - statement at which 1last break
' occurred
Sc,! - statement after current statement
$100 "= fortran statement labeled 100
Procedure Referencess

, A <procedure> 1is considered to be a reference to an entry
variable or constant. External names may be used,

Evaluation of Variable References:

When a variable is referenced in a command, Drobe will
attempt to evaluate it by first checking for an apolicable
declaration in the current block as indicated by the symbol
pointer, and if necessary in its parents. If not found, the list
of builtin functions will be searched. Finally, when the context
allows a <procedure>, a search will be made following the user’s
search rules.

The block in which to look for a variable may be altered by
the use command which sets the symbol pointer. For example, if
“print var" displays the value of var in the current block, then
"uyse =13 o»print var® disolays the value of var at the previous

level of recursion. A shorthand 1is available for referencing
- variables in other blocks — an optional block specification:

<variable> [<block>]

where block 1s the same as in the use command. The use of
<block>s in this manner does not alter the symbol pointer.

- : :
MULTICS PROGRAMMERS” MANUAL i probe |
: ‘ i —1t
Paqge 15
-varl=-11 - looks for previous value of var
abclother_block] - looks in "other_block" for abc
xyz[391] -~ looks in block containing line 39
n.m{level 4] - looks in block at level 4
q(2)[subl - looks in procedure sub

A block specification may be used on an identifier anywhere the
variable could be used. However, a block specification on a
label or entry constant iIs ignored unless 1) the relative (-n)
" format 1is wused, and 2) the label or entry is itself used in a
block specifcation. In such a case, it is taken to mean the nth
previous instance of the block designated by the label or entrys
that is, "varlsub[-211" references var in the second previous
invocation (third on the stack) of sub. :

{"probe ! MULTICS PROGRAMMERS’ MANUAL
[} - [}
] 1

Page 16

Sample Debugging Sessions

The - following 1is a sample attempt at debuaging a program.
It is not claimed that the program does anythina useful, or that
this is the best way to debug the program. The purpose is merely
to give an example of how certain probe commands can be applied.
A listing of the source of the program, test, is aiven on the
next pages the sample outout follows with ">" used to denote
lines typed by the user.

In order to use probe to debug a program, the proagram must
be compiled with the "=table" option. Generally, the user should
generate a symbol table for any program that he does not have
good reason to believe will work.

On line 5, the user calls his proograms; noticing that it
seems to be looping, he stops it by hitting the quit button.
After the user invokes probe, it responds by telling that the
internal function "fun" was executing line 38 when interrupted.
Since the source pointer was automatically set to that 1line, a
request to print the current statement with "list®, displays the
source. The statement causing an error could be displayed in a
similar manner.

The stack command was then used to see what called what.
The ouput shows that procedure "test® was called from command
level, and then, in turn, called fun. While fun was executina, a
quit occured and established a new command level. To determine
whether fun was called from line 17 or line 27 of test, the wuse
command 1is used to find the point at which test exited. Since
"use" also sets the symbol pointer at the same time, the user can
check if "s.num"™ has the correct value with the print command.

The user decides that it would be worthwhile to trace the
value of i. Rather than recompiling his program with a put
statement added in a strategic location, probe allows him to set
a break containinag a print command to accomplish the same thing.
Wanting to set the break after the do statement on line 16, the
user searches for it with the find command. "list®" is used to
verify that the correct line was found. The continue command
then causes probe to return (to command level).

To abort the suspended program test, the user gives the
release command to Multics. If he had done this just after
quitting, he could not have used probe to find out much about
what happened.

i
MULTICS PROGRAMMERS” MANUAL _ i
1]

test: procedures

declare

(i, j) fixed binary,
1 s structure based (p),
2 num fixed binary,
2 b (n refer (s.num)) float binary,

p pointer, n fixed binary,
sysprint files

n = 5%
allocate s set (p)s

do i = 1 to s.nums

Ssb(i) = fun (i, 1)
ends
put skip list (s.b)s

do j = s.num to | by =13
s.b(j) = fun (-j, -=1)3

ends

put skip list(s.b)s

returns

fun¢ procedure (b, i) returns (float binarvy)s

declare
(b, 1) fixed binarys

ifb=20
then return (1)
else dos
b_b"il
return (2%%xb + fun (b, i))s
ends

end funs

44 end tests

probe MULTICS PROGRAMMERSZ MANUAL

The program is started once again, but now, after each time
line 16 is executed, the break occurs and probe prints the value
of i. Clearly, it is not being incremented as it should. Since
this approach 1is not producing any useful information, the user
aborts the program and trys to delete the break. The status
command is used to tell what breaks have been set in the segment
test, and then to see the break set. The break is then deleted
with the reset command. Note that 1if there had also been a
"Break before 16%, then the command *reset at 146" would have
deleted both.

The wuser next decides to see what is going on in fun, so he
sets a~break to halt it every time it is invoked. By looking at
the 1listing, he knows that the first statement in fun is on line
34, so he U“positions" the source pointer to that statement and
"inserts® a M“stop". To accomplish the same thina, "insert 34:
stop" could have been used.

The program halts when the break before line 34 is reached.
The wuser displays b and i getting the values he expected. The
where command is also used to see what the state of things I1is.
Continue (¥c") restarts fun which calls itself recursively and
stops again. The stack command (showing the last five frames)
verifies that fact. The user prints the b in the current
instance of fun (at level 2) and in the previous one (at level
3. Mistakenly expecting the b’s at different levels to be
different, he gets suspicious. The variable "i" has the value
expected, but the symbol command shows that it is wrong one —
the parameter to fun, not the loop index. To qget the correct
one, he must look in the frame belonging to the procedure test.
This "i" has been set to zero. The user then realizes his error.
The function is modifying its argument (the loop index #i®) on
line 37. Done with debuoging the program, "reset" is used to
delete the currently active break {(the one that just occurred),
and the program is aborted.

L]
MULTICS PROGRAMMERSZ MANUAL { probe |
Page 19
1 > pll test -table
2 PL/I
3 r 1248 3,211 28.336 280
4
5 > test
6 (quit)
7 QUIT .
8 - r 1250 5.371 6.702 52 level 2, 10
9
10 > probe :
11 Condition quit raised at line 38 of fun.
12 > list
13 return (2%xb + fun (b, i));
14 > stack :
15 1 command_processor_
16 2 release_stack
17 3 unclaimed_signal
18 4 real_sdh_
19 5 return_to_ring_0_
20 6 fun quit
21 7 test
22 8 command_processor..
23 9 listen_,
24 10 process_overseer_
25] real_init_admin_
26 > use level 7
27 > list
23 Seb(i) = fun (i, 1)}
29 > print s.num
30 5
31 > find i = ("3 list
32 doi =1 to s.nums
33 > appends print {1
34 > continue
35 r 1252 1.375 16.394 354 level 2, 10
36
37 > release
38 r 1252 .126 .922 19
39
40 > test
41 1
42 1
43 1
44 1
45 (quit)
46 QUIT
47 r 1252 3.069 .650 25 level 2, 12

T
i
o]
o
®

Paage 20

49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
57
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92
93
94
95
96

MULTICS PROGRAMMERS’ MANUAL

release
r 1253 .092 .937 20

probe test
status test
Break after line 16.
status after 16
Break after line 16t print i
reset at 16
Break reset after line 16 of test.
position 34
list

ifb=20

then return (1)3

insert: stop
continue
r 1255 ,781 12,356 333

test
Stopped before line 34 of fun.
print b
1
where
Current line is line 34 of test.
Using level 2: fun.
Control at line 34 of fun.
print i
1
c
Stopped before line 34 of fun.

stack 5
| break
2 fun
3 fun
4 test
5 command_processor_
print b
0
print bl-11]
0
print i
1
symbol i

Attributes are: fixed binary(17,0) aligned parameter.
Declared ins fun.
use test
print i1
0

MULTICS PROGRAMWMERS” MANUAL

probe

pace 21

o7 > reset

93 Break reset before line 34 of test.
99 (quit)

100 QUIT

101 r 1307 4.870 64.738 1544 level 2, 18
102 . ‘

103 > release

104 r 1307 .076 .992 31

