Multics Technical Bulletin MTB-129

Tos Distribution

Froms Jerry A. Stern and Jeroid C. WHhitmore

Date? October 29, 1974

Sub]ectl I/0 Daemon Modifications for the Access Isolation
Mechanism

Intrceduction

This MTB describes proposed changes to the I/0 Daemon in support
of the Access Isolation Mechanlism. The reader is assumed to be
famjitiar with the basic principles of the Access Isolation
Mechanisms, as well as the relevant terminologys defined in
MTB-100e

The modlificatlions suggested here werey, for the most . part,
origlnally proposed to satisfy certaln requirements of the Air
Force Data Services Cenfer. However, as with other features of
the Access Isolation Mechanism, most of the new features proposed
for the I/0 Daemon wil!l be of general use at many Multics sltes.
The tollowing four requirements are specifically considered in
this MTB2 :

1) It must be possible to Instruct a device driver process to
handle only requests of a8 specified range of access cjasses.

2) The head sheet for each printout nmust contain a banner
identifylng the access class assigned to the printout.

3) A user must be able to specify, by means of dprint command
options or defaults, that header and footer labels be placed
on each page of printed output.

4) Each printer driver process must be capabie of preparing an
"accountability form"™ for each plece of printed output. (In
the case of AFDSCs an accountabliity form will be used to
officially record the transmission of a classitied printout to
an appropriately authorlzed user. At other sites, forms of
somenwhat different format may be used for a similar purpose.)

Since the wuse of the above features is at the discretion of the
individual site or usery, no change in I/0 Daemon operation will
result unless desired. :

Multics project Iinternal worklng documentation. Not to Dbe
reproduced or distrjbuted outside the Multics project.

-1-

MTB=-129 Mulitics Technlcal Bulletin

In the discussion which follows, the implications of each of the
above four requlrements is examineda and an Implementatlion |is
described. Afterwards, some access control problems posed by the
Access Isoiation Mechanism for the 170 Daemon are lnvestigated.
Finaliy, a summarization of atll proposed changes s presented.

Access Class Ranges for Dewvice Dcivers

It Is deslred that an access class range be associated with each
device driver process and that onily requests within this range be
handled by the driver. In order to understand the meaning and
implications of thls ideay It is worthwhile to briefly revieu
some features of the I/0 Daemon organizatlon and operation.

The coliection of user requests into queues and the subsequent
distribution of these requests to drjiver processes revolves
around the notion of device classes. When a user submits an I/0
requesty he either explicitly specifies a device class or else a
detault device class 1Is assumed. The device class uniquely
determines a set of qgueues, each of which represents a3 different
priority. Such a set of queues niil be referred to hereafter as
a "queue group."” Each driver process [s uniquely associated with
@ device ciass and hence with a gqueue group. Drivers of the same
devlce <class are conslidered to be equivalent in the sense that
any one of them can handle any request from the appropriate queue
group. Thus,y when a driver informs the coordinator that it is
ready for work, the coordinator simply selects the oldest request
of highest priority from the queue group associated with the
- driver®s device class.

With the advent of the Access Isolation Mechanismy, each drilver
process wlll be assigned a specitic authorization. To the
greatest extent possible, driver processes will not make use of
any system privilegess Therefore, if we were to alliow arivers ot
different authorizatlons to belong to the same device class,
these drivers couid no ionger be considered equlvalient, A
segment accessible to one of the drivers might not be accessible
to another. Hence, in order to preserve the meaning of device
classesy all drivers of the same device class wlll have the sanme
authorization. Cleariyy, this authorlzation defines an upper
access limit for the device classe ‘

A simple way to proceed Iin achieving the deslred access ranges
tfor arivers Ils to assoclate the access range with the device
class. Ignoring the detalls of thls approach for the moment,
only one conceptual problem Is evident. Hhere In the current
system there now exists one device cliass and one queue group for
a category of devices, e.gey central site printers, there would
be perhaps several device classes and several corresponding gueue
groups In fthe new scheme, each having a different access range,

-2—

Multics Technical Bulitletin MTB-129

Such an arrangement {s by no means technically infeasible, but it
does create Inconveniences for the user and the operations staff.
The user certalinly does not wish to concern himself with which
access range is appropriate for his reqguest. This should and
could be determined automatically by the system. However, 3 more
serious problem arlses over the fact that the access ranges
assoclated with a device <class are intended to be dynamically
reconfligurabie. For exampie, a sife with three printers may
ordlnariiy have three device classes with three different access
ranges for these printerse If one printer should faily however,
it may be desirabie to reconfigure the access ranges of the
remalning two printers so as to process the requests formerly
handled by the [Inoperative printer., Unfortunately, there is no
easy way to accomplish thls reconfiguration silnce the requests
have already been segregated [nto separate queues based on the
original three access rangese.

In order to solve the preoblem described above, It [Is proposed
that the one=to-one mapping between device classes and queue
groups be changed fo a3 many~-to-one mapping. In other words, it
will be possible for one queue group to serve many device
classes. Actually, it is convenient to think of the queue group
as definlng a "“statlic™ devlce class which s ldentical to the
current notlon of device class. Hhen a user submits an 1I/0
requesty he will specify {(expliclitiy or Implicitiy) the static
devlce class. Drilver processes will be associated with "dynamic"
device classes, many of which can dramw requests from the same
static device class. Thus, nhenever it is desired to reconfigure
the access ranges of the dynamlc device classesy no reshuffling
of the queues Is necessary.

Aflthough the change described above may sound rather severe, thls
approach has pbeen chosen for the very reason that [t requires
relatively few changes to the 1/0 Daemon software. As far as the
relationshlp between the c¢oordinator and drivers ls concerned,
the implementation of device classes is baslically unchanged. A
new parameter for the 1I/0 Daemon parms flile will be defined which
permits specificatlon of the access range of a (dynamic) device
ciasse Alsos a3 second newsw paramefer will be dqefinea which
permits specification of a queue group name for a device class.
When the parms flie iIs examined during the initiallzatlon of the
cooralnator, all device classes sharing the same queue group will
be threaded together. Furthermore, a new data base, called the
queue group table, will be constructed which contains one entry
for each queue group. Each entry wiil have a pointer to the heag
of the fthreaded 1ist of associated device classes as well as
pointers to (or indexes of) the message segments In the queue
groupes Each device class entry will contain a pointer to its
associated queue group entrye.

Aside from the extra initiallzation described above, only one
other section of the I/0 Coordinator will require significant

-3-

MTB~-129 ‘ _ Muttics Technical Butletin

modi ficatlon. (Note that no changes to the drivers are necessary
to implement access class ranges.) The subroutine responsible
for reading requests from the gueues, called find_next_request_,
must undarcstand the davice clasgss to aqueue groun mabpning. When
given a device <classy find_next_request_ wnill ascertain the
appropriate queue group and read the oldest request from highest
priority non-empty queue (as it does nowl. It wmust then
determine If the access class of the request message Is within
the access range of the specified device class. It sos the
request is returned as usual. If not, find_next_request_ will
scan the threaded Ilst of device classes for the queue group
untit tinding a device class ulith the proper access range. The
message ID of the request wili then be added to a “waiting list"™
for that device class. The reading of messages, and the adding
ot these messages to walting lists, wlll continue until a message
is found within the access range of the specitfled device class or
untii the queue group is exhausted. Thus, It can now be seen,
that the algorithm folloned by flna_next_requast_ Is to first
check the waiting list for a device class andy iIf this Is empty,
to then beglin reading messages from the associated queues.

The effect of the above scheme |[s to dejay the binding between a
request anad a dynamic device class untli the moment the request
Is read from the queues. Furthermore, thls binding can always be
reconfigured, even for requests In the waiting Ilists. This is
accompl ished by simply changing the parms flle and then
reinitlatlizing the coordinator. The old walting |Ilists are
discarded and new ones are created for the new dynamlc device
classes. No Juggling of the queues [Is ever necessary. Note also
that at installatlons which continue to maintain 3 one-to-one
correspondence between queue groups and dynamic device classes,
no requests witl ever be added to a waltlng list.

Access Class Banners

Just as the access ciass stored in a branch Is used Internally to
protect segments, so too wll! the access class banner on a head
sheet be used externally to protect printouts.e The access class
banner provides an administrative control over the distribution
ot printouts which supersedes the existing discretionary controls
(ilee. person and project name banners).

A general rule of the Access Isolation Mechanism dictates that an
object s assighed an access class equal to the authorizatlion of
the process that created (t. A strict interpretation of this
rule would suggest that the access class assigned to a printout,
leeey the access class banner, should equal the authorlzation of
the arlver process that created ite Unfortunately, this scheme
would result in widespread over-classificatlion of printouts since
the drlver process authorlizatlon Is always at the top of the
access range of reguests handieds Although some slites might be

-"-

Mul tics Technical Bulletin M1B8-129

willing to accept this drawback In fthe iInterest of maximum
security, it seems ilikely that most sites would find It extremely
objectionable. Since the driver process is really Just a trusted
Iintermegiary which creates a. printout on behalf of a user
processy, it seems logicaly and a great deal more practical, to
choose the authorlzation of the requesting user process as the
access class for a printoute In orcer to satisfy those slites
which may prefer the more conservative choicey a new parameter
will be defined for the I/0 Daemon parms flle which allows an
installatlon to specify a minimum access class banner for each
device class. If this parameter Is not speciflied, the default
minimum will be the bottom of the device class access range.

The new format for a head sheet wiif! Incluae a third line of *big
letters™ containing the printout access classe Actually, a
single blg~letter Ilne cannot be expected to hol{d an arbitrarily
fong access ciass strings Therefore, only the ftirst component of
the access class string wiil be printed In big tetters. Beneath
this, the fuil access class will be printed in reguiar type.
This implies that at sites using sensitivity tevels, the access
banner will be a jevel name. At sites using categorlies but not
levelsy the access banner will be the ftirst category name.
However, if an access class string is null, as might be desired
for the system |oWw access ciassy then no access cliass banner will
be printed. This implies, of course, that at sites using nelther
fevels nor categories, the access banner will always be omitted,

Page Labels

The requlrement for page header and footer labels to be added to
printed output by the I/0 Daemon stems from the neea to place
access class labels on each page of certain printouts, However,
it s Intended that this feature be generallzed to allow a user
to supply any arbitrary character string for the labelis. This
kind of feature has actually been considered before outside the
context of the Access Isolation Mechanism, The dprint message
format already provides space for a page header string, although
the mechanism ltself has not yet been implemented.

Several optlons wili{ be added to the dprint commana to support
the page Ilabel feature. If the user simply wishes to0 use the
segment access class for the page labely he will speclity the
“=-access_JIlabel"™ option. If the wuser wishes to suppiy his own
fabel he wild specify the “=-label®” option follonwed immediately by
the jabel stringe If nelther of these options is specltied, then
no labels will be added unless the site has chosen to add labels
by default. This will be indicated by 3 new parameter in the I/0
Daemon parms flie. The effect of this default labeling will be
an Implicit *“-access_label™ option for all aprint commands

MTB-129 Multics Technlical Bultletin

issued. However, a user can override the default label with the
"-fabel*™ option or can request no labels by speclfying the
“-no_label!*"™ option.

Implementation of the labeling feature would best be accomplilshed
by providing a new orger call to the printer DIM for specitying
tabels. Thisy iIin turn, would require modifications to the
printer DCM which does essentijally ail of the work for the
printer DIM. It is intended that the labels be placed in the top
and bottom margins of each page so as not to disturb the format
of the oufput. Because a number of printer DIM enhancements are
already In progresss it will most \llkely not be practlical to
begin work on the Jabel feature in the very near future.
Therefore, In order to meet the deadiline for dellvery of ¢this
feature to AFDSCy an Interim solutlon may be adopted. A new
I0SIM can be provided for the printer driver process whichy, when
spliced In before the printer DIM, nli! insert labels. By use of
the "noskip™ mode In the printer DIM, iabels can still be placed
in the top and bottom page margins as desirede. Obviousiy, this
second approach is less efficlent than the first and therefore
will only be used temporarily it at all.

Accountability Forms and Qriver Control Iecminal

The reguirement for accountablliity ftorms Is primarlly to provide
a means of recording and controlilng the distribution of
classified output, It also serves a direct securlty functlon Iin
the separatlion of output. The distributlon staft can check to be
sure that there ls one piece of output (@«g.y listing, card deck)
tfor each accountablliity torm. Thils check wlil prevent a
maliclous user from imbedaing headers and ftrallers within his
data which would fool the distribution staftf Into believing a
phoney access class banner. A separate terminal from the current
daemon console must be used to prepare the accountablility forms
and it should be located near the associated device.

A byproduct of the accountablilty form termlnal Is its ability to
.also functlon as a dariver control terminale The usefulness of a
driver control terminal stems from physical hardware arrangement,
Some sites locate one or more fiine printers (or other 1I/0
devices) !n physically separated areas from the central computer.
However, the daemon driver console must remaln In the central
computer room to prevent privliieged access from falling In the
hands of untrusted personnels. On the other handy the local
device operator s In the best position to determine which
requests should be restarted, etc. Another termlnal physically
focated beside the device could allow the device operator +to
enter benign operatlonal requests wlthout compromising security
and without requiring assistance from central operatlonse. The
use of this control/accountabiliity form terminal would, of
course, be at the option of the site.

Muttics Technical Butletin HfB-129

To impiement this new teature we wlill add a new per device class
parameter fto the I0 daemon parms flle which Indicates whether a
control terminal is required for the driver. The default for an
unspeclfied parameter wlill be *“not reaqulred.” When the termlinal
Is not requiredy, the driver process will operate exactly as it
does today.

When a control ferminatl 1Is required, the ariver wilt wait for a
terminal to be dlaled to the process before telling the 1I/0
coordinator that |t is ready t0o process requests. However, the
current impiementation of the aial command Is too restrictive to
be wusefu! in this context. It only allows one instance of a
process_group_ld to request dlaled devices. Under the current
Impiementation, drivers and the I0 coordinator are logged in as
I0.SysDaemon. Hence, we must implement the changes to the dlal
command suggested by T.H.VanVieck Iin MTB 013.

During normal operation of the driver, the control terminal will
print one accountablility form for each copy of requested output
from the driver process. The form may contain information which
describess? the requestors header and destination options,
sequence number, banner access classy date-time, Instaliation,
pathname and access class of segment. (Note: The module which
formats the output ¢to the control terminal wlll be site
replaceable. The normal mogaule will print the same Information
provided by the I/0 Daemon today which does not require a form.)

A "start™ command must be issued from the control terminal before
processing wili begin to alliow the device operator to align the
accountablliity forms being used. A command to print a sample
form nill be provided for this purpose. Since the output to the
control terminal! may be formatted to preprinted forms, commands
may not be entered wilthout destroylng the allgnment. Therefore,
commands wili be honored onily after the device operator presses
“quit™ on the control! terminale This allows for realignment
before resuming operation (we will reset the write buffers).

The conftrol terminal will never be aliowed to enter arbitrary
commands for securlty reasons. Also, we must restrict the set of
commands, normaliy acceptable to the ariver, which may be entered
from this terminatl. Specitically, the commands return, debug,
detachy, attachy, and reattach wiill not be honored from the control
terminale. The other commands will not create security problems
{iecey Start, cancely killy restart, save, reinit, logout, sampie
{new)).

We don®t want to remove the site operator®s abllity to control
the driver, Therefore, when the driver expects Input, [t will
first look for commands from the master driver console anda then
from the control terminal,. {Control terminal quits will be

MTB-129 Mutltics Technical Bulletin

disabled while the master terminal has control of the process).
The master consolie will also be able to Indicate that turther
and quits from the control terminal be accepted or

It the control terminal gets disconnectedy, the master console
will be notified and the driver wilil walt for Instructlons. The
operator may request that the driver contlnue without the control
terminal or that the driver wait for another dialed terminal
(reinit).)

A remote driver which communicates to a device over high speed
phone {lines will also be able to utillze a control terminal.
This, of coursey woula reguire a second phone Iline. Driver
commands may be input from the control terminal as described
above. Commands which may be entered from the remote devlice
itselt (e.gey from cara reader) must be subject to the same
restrictions as commands from the control terminal for security
reasons.

Access Control Considerations

The precealng sectlons described changes to the I/0 Daemon to
support certain new features, This section, however, primariily
describes changes necessary to cope with the Impact of the Access
Isolation Mechanism on the I/70 Daemon environment. Also, an
existing securlty probiem Is discussed.

The I/0 Coordinatory by iIts very nature, cannot operate strictiy
within the rules of the Access Isolatlon Mechanism. Since |t
handies information of all access classesy it wlll run with a
system-high access authorizatlione. In order to send wakeups to
driver processes, it will have the ipc privilege fiag enabled.
In order to create ana modlfy segments of varylng access classes,
it will make use of privileged access to segments and
directorles. In order to read and deliete messages of all access
classesy, the coordinator wiil have privileged access to message
segmentse.

Several segments exist in lo_daemon_dir which hold messages and
message descriptors read by the coordinator from the message
segment queues. Slnce these messages wlll range in access class
up to system hlgh, they must be protectea In a system hlgh
segment after extraction from the message segments. Therefore, a
subdirectory of lo_daemon_dir wlili be created having a
system-hlgh access classe In this alrectory the coordinator will
create the request_seg {(used to hold messages), the reqg_desc_seg
{used to hold message descriptors)y, and the new waltlng Iist
segment.

Multics Technical Bulletin . MTB-129

Uniike the coordinator, driver processes arey, for the most part,
nell-suited to ablding by the restrictlons of the Access
Isotation Mechanism. Therefore, a number of minor changes wiftl
be made fo the I/0 Daemon to avoid the unnecessary use of special
access privilegese.

The current scheme tor initjalizing driver processes wlil! requlre
slight modificatlons. Each driver process attempts to verify
that a8 coordalnator process doess in fact, exlst by locking a
coordinator lock kept in a special segment. If the lock is tound
to be valldly locked,; then a coordinator exlsts. Howevery, 1! a
driver succeeds In locking the locky, then no coordinator existse.
Unfortunately, 1ocking the lock means writing In the segment.
Since drivers wil! have differing authorizations, they cannot all
write In the same segment. Therefore, the drivers will instead
copy the lock to a private data area and then attempt to lock the
copys. This works even better than the present scheme since [t
ellminates the need for a secondary lock now used to prevent
interference among drivers,

The initialization of driver-coordinator communication wili ailso
require some smali{ changese. All drivers create a temporary
“communication™ seghent containing informatlion for the
coorainator in io_daemon_dire. Due to differing adrlver
authorizatlonss this Wwill no longer be possible. Theretore,
these temporary segments wiill Instead be c¢reated In each driver's
process directorye. Upon receiving a "new driver® wakeup from a
drivery the coordinator examines the communication segment,
valjdates the driver, and then creates a "driver status™ segment
used for future communication. The driver status segment, now
created Iin lo_daemon_dir, must be writable by the driver process
and therefore musft have an access class equal to the driver*s
authorlzatione. Since driver status segments of dlffering access
classes cannot coexist in a8 single directory, the coordinator
will create a separate upgraded subdirectory in lo_daemon_dir to
hcid each dgriver status segment.

As mentioned above, messages and messSage descriptors njlil be
stored in segments of system high access class and hence will not
be accessible to all drivers. Message descriptors are alreaay
copled to the driver status segment by the coordinator each time
a driver 1s given a request. Currently, the driver reads the
message itself directly from the request_seges Since this wii! no
fonger be possible, the message wll! also be copied to the driyer
status segment by the coordinator at the same tlme as the message
descriptor.

To this polnt, every effort has been made to ensure that ariver
processes would not require the wuse of any special access
privileges. Unfortunately, there are two cases in which the use
of such privileges seems unavoldable. Following each dprint, a
driver process executes a program called *charge_user_*" which

-9-

MTB8-129 Multlcs Technical Bulletin

upagates accounting information in the pdt entry of the requesting
user., Since pdt segments have system-low access classes, yet
driver authorlzations may range up to system highy, it will be
necessary for fthe arivers to obtain prilviliesged access tc pdt’s.
The other circumstance In which speclal access 1Is required Is
nithin the message routing DIM. All daemons attached via the
message routing DIM must write In a common segment. Therefore,
mrdim_ wlil be modified to detect the need for special access and

to attempt to obtaln special access.

A security probliem exists due to the fact that the coordinator
process ID and event channe! ID are stored iIin a segment
accessible to all processes. This makes it possible for any
process to impersonate a driver, i.e.y to draln requests from the
queues and to lssue varilous commands to the coordinator such as
“restart.” This problem 1is easily corrected simply by setting
the ACL of the segment contalining the coordinator event channel
ID to aeny access to ail but I0*.* .

Detailed List of Changes

A. For Access Ranges

1. Change lodc_8init to create the queue group table/walting
list segment and to store a polnter to this segment In
lodc_static.

2« Change lodc_parse_parms_ to recognize the new *access_range"
and "queue_group”™ keywords. Initlallze the queue group table
and thread together device class table entries of the same
queue group. Place In each device class table entry the
offtset of the associated queue group table entry.

3. Change iodc_$new_driver to check if a new driver Is the flrst
of 1Iits device class and [f this device class Is In turn the
first ot its queue groupe. If so, open the message segments
in the queue group.

4. Change find_next_reauest_ to use the queue group tabie and to
manage the waiting lists as described.

5« Change save_request_ to wuse the queue group table to
determine from which message segment a given message should
be deleted.

Be For Banners?

1. Change head_sheet_ to print the access class banner.

Multics Technical Bulletin ﬁTB—iZQ

Ce.

1.

2e

3.

be

5.

6.

1.

2.

3.

ba

5.

be

7Te

For Page Labetls?

Change the dprint command to recognize the new -3ccess_label,
-labets and -no_label options.

Change jogc_parse_parms_ to recognize the new *“labet"
parameter whilich causes Ilabels to be added to prinfouts by
defaulte

Change output_request_ to check for the label option and fto
make the appropriate order call If it [s requested.

Change printer_aim_ to recognlze a new *“label"” order cail!l and
to pass this on to the printer DCM.

Change prtnter_bcm_ to recognize the Jabel order cali and to
insert labeils in the ftop and bottom page margins.

If changes & and 5 cannot be made soon enough fto meet the

delivery deadliine, then [mpiement a new IOSIM to add labelis
as described.
For Accountablillty Form/Deylce Control Terminals

Change lodc_parse_parms_ to recognize the "“control_terminai*
keyword,

Change iodd_sfati¢c to hold control terminal attachment datae.

Change remote_2init and lo_daemon_driver_ to attach control
terminal if required.

Change iodd_quit_handier to conditlonally recognize Input
from control terminai and implement sample command.

Change Input_cmd_ and remote_ to separate commands from
master and control terminal.

Change output_request to call accountability form printing
module 1f a control terminal Is attached.

Change the answering service dial facility per MTB (13.

For Access Control Consideratjions?

Change iodc_inlt to enable the necessary speclal access
priviteges for the coordinator. Create a system high
girectory in which to place requesf_seg, req_desc_segs and
the queue group table segment.

MTB-129 Multics Technical Bultletin

2e

4.

5.

6.

Change lod_overseer_ to copy the coordlnator lock before
testing it for a driver process.

Change driver_iniv_3$signai o creats the driver_comm segment
in the process dlrecforv and to store the process
authorlization In the driver_comm structure

Change iodc_$new_driver to create an upgraded dlrectory and
hoid each driver status segment.

Change jodc_gdriver_signal to copy each dprint message to the
driver status segment.

Change charge_user_ and mrdim_ to use privilieged segment
access as described.

