MULTICS TECHNICAL BULLETIN ' ‘ : MTB- 134

Tol Distribution
Froms Gary C. Dixon
Date! November b6y 1974

Subject? New Library Toolss Design Principles

For the past several years, efforts have been unaervway to rewrlite
ana- generally clean up the coge in the tools which are used to

maintain the Multics System Librarijies. A major phase of the
effort ended with +the installation of the update_seg commanc,
which installs segments in the Online Libraries. Now a3 second

major phase is coming to fruition. This MTB summarjizes fthe work
which was cone as part of this second phase.

Sinca the work was begun before MIBs or the MCR board came into
peings it has been proceeding without having an approvec MCR. It
is 1wy intention now to hold a Design Review of the basic designs
summarized belowy and then to submit several MCRS rzquesting the
Installation of the new or modifiec library toolse.

Gpals of Phase Iwo

Phasa Two of the <clean up campaign aadresses {(at least) 7
different tools which are used in library maintenance. These
are?t msi_info; msi_global_format) ms{_short_format;
get_library_sourcs; cleanup) icref; and cross_reference.
Respactivelyy these tools: printead brilef information about
entries in the library on the user®s ferminal; generated
detailed library status information in a segment} generated
brief ilibrary status information in a segment) extracted source
segmants from the libraryj actually delete from thz Online
Librarlies those segments wWhich were replaced as part of an
instaliationy but which could not be celeted at instaliation time
becasuse they might have been in uUse in someone®s processs
cross-reference the use of include segments by Jibrary entries;}
cross-reterence the wuse of library entries by other library
entries. (1)

{1) 2ast tense is usea in some of the gescriptions above to
indicate a change in the operation of certaln tools. For
example, Wwe no longer have MSLs (Multics Segment Lists), so the
msi programs have been replaced by three new programs which
perform the same function In 3 different wWaye. These programs are
gescribea in a forthcoming MT3. When the Online Libraries were

Multics Prolect internal working documentation. Not to be
reproduced or distributed outside the Multics Proleqf.

MULTICS TECHNICAL BULLETIN MT8=- 134

Each of these tools has one or both of the foliowing deslgn
flanws?

. eifher fhe Tooi used & speciai iibrary data base which
was lnvarlably out-of=-sync with the actual library
contents (the MSL data base)y or

o both the 1ogical ana physical organization of +the
Multics System Libraries is coded into the tool ani
therefore the tool has to be modified whenever the
fogical or physlcal organization changes Iin any wWay.

Theraforey the goals of the cliean up campaign are to3

++ eliminate the information from the MSLs which is
cuplicatec elsewhere Iin the libraries (e.ges status
information for library entries, name of bound segment
containing a component, language type of a component)
ana to store the remaining information in a o©ata base
which s simpler to maintainy, easier fto check for
consjistencys and which does not interact wlth the
fibrary installation toolss anag

++ store the organization of the Multics System Libraries
(the glrectory structure, naming conventions, and
knowleuge of the types of segments in particular
directories) in a single data base which can be used by
each tooly, and which can be centrally updated when
reorganizations occur.,

Replagcing the MSL

It has been fairly easy to meet the first goal stated above,
because the only MSL information not contalned elsewhere in the
libraries {either as segment status information or as archive
component header informsation) is the ID of the particular systenm
in wnich a Hardcore or Salvager Library entry was tast modiflied.
Howevery there is a airect relationship between the aate on which
a ({ibrary entry was liast modifiedsy and the date on which a
particular system was Installed in the |lbraries. Therefore, we
can replace the MSL data bases with a8 much simpler data base
consisting of a list of system IDs for Hardcore and Salvager
systemsy, and the aate on which those systems were installea in
the libraries. Then, by comparing the aate wmodified of each
Hardcore or Salvager Library entry with thls 1isty, we can
agetermine in which system the entry was last mocified,

The 1ist of system IDs is implemented as an array of system ID =
gate palrsy sortea by aate (and therefore by system ID too). New

re-organized, get_library_source was extended to allow extraction
of oblect segments from the Online Libraries ana was therefore
renamed get_library_segment,

MULTICS TECHNICAL BULLETIN MTB- 134

commanas add an entfry to the botfttom of the list each time a
Hardcore or Salvager system is updated Into the {ibrariess and
replace or defete entries which are in error. HWhen given a gate
last modified for a library entry, 3 new subroutine returns the
appropriate system ID.

Note that the Ilist is easy to maintain and fto check for
consistencys ana that it does not interact with the Hardcore
uUpaatery, but is upcatec Insteas (via commanc) by the installer at
the end of the Hardcore or Salvager instaliation process,

Having repiaced the MSL with the system ID listy it has also been
necessary to replace the msl tools which reported on the
Information stored in the MSLs. msi_info will be replaced by
fibrary_info (cocing is iIn progress), and msi_short_format and
msli_global_format have been replaced by library_map. These new
tools wWill be described in 3 forthcoming MTB.

Proplem With Library Qrganlzation

One of the biggest problems confronting the tibrary maintenance
tools is the organizatjon of +the libraries themselves. For
various reasons, the system 1is divided into different loglical
tibrarles, and these {ibraries are in turn diviaea into
sub=libraries {(or directories). Thusy, wWe have the standard
iibrarys, unbundied Llibrarys +tools |library, author-maintained
{ibrary, installation-maintainec library, netuork 1ibrarys esess
And we have, within each library, source directories, oblect
directoriess, bind list directories, execution airectories (those
seen by the userl)s, bound component directoriesy, info directories,
include girectorieSy eeces

Even more of a problem than the ever proliferating number of
logical libraries 1is the mapping of these logical entities onto
the physical directories of the Multics Storage System. Ada to
these the di fferent naming conventions used in different
librariesy, the differing search procedures, the restrictions on
the ftypes of entries placed in libraries, etc and yvyou have an
aimost unmanageable set of rules for maintaining anad accessing
entries in the l|libraries. Implementing reasonably efficient
search procedures which can treat all of the Jlibraries in a
fairly uniform manner is an extremely difficult task.
Implementing such procedures in gagh of the many library
maintenance tools woula be impossiblie.

The evidence In the paragraph above led directiy to the

conclusions? that the libraries must have the simplest
organization possible while providing reasonable storage and
access efficiencyy that all libraries should have the same
organizations if possible; and that the procecures for

maintaining and accessing entries Iin the libraries should be

MULTICS TECHNICAL BULLETIN MTB- 134

common to all library maintenance toolsy and shoula pbe centrally
located in a single external module which can be easily modifjied.
Acting on these conclusions,y in 1971 wWe began fthe process of
reorganizing the librariesy, starting with the Online Libraries
(the Jargest). The new {ibrary organization was chosen for |ts
efficient storage of entries, its ease and efficiency of access
to entries, and its simplicity. (2)

It is our goal (though 3 distant one) to promulgate this new
organization throughout ail of the Multics System Librarjes. The
biggest barrier to & wuniform {lbrary organization are the
Harccore ana Salvager Librarless which are currentiy organizea in
a manner to optimize the installation of large groupns of
modifications (rew systems) at one timey rather than to promote
ease ana efficiency of access to entries and sjimplicity of
organization.

Thus, there are currently two different organizations used in the
Muitics System Librarliesy and we are likely to retain these two
organizations for the foreseeable future.

GCentralizing Library Qraganization Information

Having «ecided to centralize the knowlecge of library
organization into a single moduley, we first had to decide what
knowl edge was neededs. The list below outiin2s the IiInformation
whicn is currently being storecs or is known to be needea in the
near future for proposed extensions to library maintenance
commindsSe.

A, the logical structure of the |libraries, incluaing
fibrary names, directory names,y, ana the relationship
between the various directories of a given library.

Be the mapping of this logical structure onto the physical
directories of the Multics Storage System.

Ce the conventjions for separating the wvarious types of
library centries among the directorias of a given
library (e.g9.s sSource segments go 1In the source

alrectorys info segments go in the info agirectory of a
library, etc).

De the conventions for storing the various types of
Vibrary entries 1In the library airectories, and for
naming those stored entries (esges the source for bound
segments is stored in a source archlive, the archive is
nameyd bounu_Seg_name_sSs.archivey, anu has additional

D e —— ——— —

{(2) The new library organization ls described in MSB8-87, “Plan
for Multics System Library Conversion and for Shifting Library
Maintenance to the 618(0".

MULTICS TECHNICAL BULLETIN MTB- 134

names for each of the source components it contains).

E. the conventions for accessing library entries in
fibraries with differing organizationse.

Fa the atiributes of new entries piacea in a&a iibrary
(eeges ACLs ring bracketsy, AIM controls, etcl.

Ge. the type of information which should be raturned, by

gefaulty for the entrles of various librarjies (e.g.s in
the Online Librariesy, ring brackets are important}
they are not in the Hardcore Llbraries).

Ha the conventions for mocifying ana deleting Ilibrary
entries as part of the normal installation process.

The next step was to deciae in what form to store this highly
variad set of informations, While some of the information |is
simple In nature and can easily be tabularized in some data
structure, much of the information is too complex to be described
by any data base generation language, or even to be stored in a
general data base structure. Therefore, the information was
split into two partst that which coulg be tabuilarlzed in a oqata
base} and that which had to be sncoded into a3 program. A new
data base and program were then createds along wWwith a simple
compiler for the aata base. The aata base is known as the
fiorary descriptor, and the program is called the library search
programs

Ihe Library Qescciptor

Currently, the 1ibrary descriptor containss

1 a definition of the roots of the {ipbrary, the parts of
the library which remain constant across modifications
made to the libraryy and from which . a search ¢an bpegin
for library entries. ,

2o the names by which each library root can be referenceda.

3 the relationship between a libra~y and its
sub-librariesy as expressed by common name components
{esgs9s the libraries stanaard.sourcey standard.oblect,
and standard.lists share a name component, and are
therefore related; similarliy, standard.source,
unbunclea.sources tools.source, anu adth_maint.source
share a name component and are relatea).

b the path name of the physical directory (3) which is
the realization of the logical {ibrary root in the
Multics Storage System.

-

{3) An archive may also be a library root, with its components:
being the library entries. For example, the bind_maps.archive of
the Hardcore anu Salvager libraries is a library root which
containsy as arcnive components, the bind listings for the
Hardcore Library bound segments.

MULTICS TECHNICAL BULLETIN MTB- 13k

5. an entry variable which acefines the entry point in tha
library search program +to be called to ss2arch for
entries in the library root.

Future plans call for associating the following sdditional
-information with each {ibrary roott

O the ACL, ring brackets, anad AIM controls which are usei
by default when installing new entries in the tiobrary
root.

7. a list of suffixes which definey, through naming
conventions, .the types of entries which may bDe

instatlec in the liorary root (e.ges a source lipbrary
root c¢an contain only **.s.archivey *.pily *.alm,
*,fortrany *.bcpl, *eaBCy nes)e

8. an entry varjable which ceflnes the entry point in 2
library installation program to be called to install an
entry in the library root,.

In acgition, the library descriptor aefines the default library
names and search names which are to be usead with each of the
library maintenance commandse. These g¢efault values must be
specified In the library descriptor, because they depend upon the
names of the libraries defined in the descriptor, and on the
naming conventions wuseu Tfor entries in the {iorarvy. For each
library maintenance command which uses the library descriptor,
tne following Information is storeg:

g, a sWwitch inaicating whether or not the command is
supportea by the library descriptor and library search
programs,

10e an array of default library names (which may be empty).

an array of aefault search names (names used to search
for library entriess this array may also be empty).

[
(=
L)

A simple data base language was developed to define the contents
of &2 licrary gescriptor. Definitions written in this language
3~e¢ stor2a in liorary aescriptor source segments, which have a
nams suffix of Lfas they are compilecd into an ALM data segment
oy the jibrary_cescriptor_compiler (tdc), 3
regucztion_compiter=-generatea compiler.

ALl reterences to library descriptors are maae through 3
sdubroutine called lib_descriptor_, wnich (s responsible for
maintaining a constant user interface to the I[Intormation across
changes in the internal structure of the wuata.

MULTICS TECHNICAL BULLETIN' MTB=- 134

Ibe Library Searcgh Progran

The library search program contains one antry point for each
class of library root. Llibrary rootvs are ciassified accorading to
the following criterjal

G the kind of entries stored in the library root (e.g.9
source entries, or info entries, or executabie entries,
efc)e.

D the type of entries stored in the library root (€eeQey
links, Ssegmentss directoriesy archivess MSFs).

Coe the naming convention usea in the library root, and the
associated procedure for searching for library entries.

Ge the way in which moaitications are instalied into the

rooty and the mechanism for flagging obsolete entries
awaiting aeletion. :

€. the type of status information which should be returned
by agefault for the various types of library entries in
the root. ,

fe the depth in the library hierarchy (of Jdirectorjes,
archives and MSFs) at which searching for a library
entry telow the root should be aiscontinuad.,

Each entry point in the |library search program performs the
searching functions for the various fiiprary maintznance commands
accorcing to the criterijia appropriate to one library root classe.
The searching criteria are codea in normal PL/I code.

The result of the search is an information tree containing the
status of aill found library entries, plus the status of tha
parent, grandparent, ees Of each found library entry uo to and
inctdaing status for the tibrary root containing the founa entry.
The tree represents the physical (as opposed to logical) library
structure contsining the founa library enfries. The status
intormation delineates each noce 0f the tree as a linky segment,
directory, archive, archive component, MSF, or MSF component, ani
incluges enough other status information to perform the
appropriate library maintenance function on founa entries without
further information., '

Eatry points are provided in the lib_descriptor_ subroutine to
perform the +type of searching appropriate to the particular
library maintenance function being performed. This maintenance
function information (s passed 1o the library search program,
which must tailor its searching criteria according to the lipbrary
maintenance functione.

Gepecal Library Maintepapnce Ioeolds

By using the library uescriptor anc library search programs KWe
have not only centralized the library organization into a single

MULTICS TECHNICAL BULLETIN HTB-13h

modutes but have also enabled a sub-system maintainer to replace
tnis moaule with one dagescribing his sub-system libraries. He
then has a complete set of {ibrary maintenance tools which will
operate on his sub-system {ibrary in The same wdy as on the
Multics System Librariess This genearalization of the library
tools beyond the Multics System Libraries is a pleasant slge
effect of centralizing the library=-adependent information.

