Multics Technical Bulletin ‘ MTB-144

To: Distribution

From?} Jerold C. Whitmore

Sublect: Restructuring of the I/0 Daemon Driver Software
Date: December 12, 1974

I. Motivation for the Restructuring

During our work in providing some new features for the Air
Forcey we needed to create a new type of device driver which
woula be controllea by the I/0 Coordinator. However, due to
the current structure of the driver software, we found this
task very difficult. Specifically, It would be necessary to
introduce a new operator response at I0 Daemon injtiatlzation
time and write new software to be executed for the remainder
of the process. Limitations within existing modules, due fto
the assumptions about possible device types and how they would
be controlled, prevent their use in new drijivers,

It occurred to wus that |[f we are having this trouble now,
others will have the same problem in the future as more
devicesy which could be controlied by a device driver, are
addea to the system. For exampley, the MIT/IPC effort to write
a spooling tape dim with a command interface shows one attempt
to 2aa a tape driver within the current structure, In the
future we may want to add pifotters, COM or other devices,
which may be controlied by queued requests.

Therefore, now that we have a need for a new driver type, it
Wwill be easier to generalize the driver structure at this time

‘rather than rewrite even more software Iin the future. This

MTB adaresses this generalization with the following goals?

1. Allow the easy addition of new driver software for new
gevices (or device <classes) without recomplling existing
software or changing the operator interface except for
device specific functions.

2+ Separate the driver control sof tware into generic
functional modules for easy maintenance and sharing or
tailoring to new ariverse.

3. Generalize the specifications of devices and device classes
within lo_daemon_parms allowing parameters to determine the
control module which will be calied.

Multics prolect Internal working documentation. Not to be
reproduced or disfributed outsigde the Multics project.

-~

MTB=-144 Muttics Technical Butiifetin

II.Problems with the Current Driver Software

The statements made in the first paragraph were very general,
so the tollowing is presented as further justificatlon. The
reader may wish to Jlook af the source programs in
bound_lodd_sSe.archive in the tools fibrary to clarify some of
the specifics.

1. All modules of the driver software assume either print or
paynch device speclfics throughout. Extenslive checking of
new “switches* would be required if this sottware were to
be used for new devices.

2. The format of a user request assumes printer or punch
control functions which may not apply to other devices.
{Only a small amount of cgata in the front ot the structure
is shared by the I0 Coordinator,)

3. Current data sreas in lodd_static assume that there will be
no more than two loglcal devices per physical device (e«Jey
the printer and punch of a mohawk). This makes the
aagaition of new multi-function devlces more difficult.

4. Only the remote_ module knows how to find the two Ilogical
gevices associated with a multi-function device using the
“remote_tab"™ (which also (limits +the logical devices +to

“prt_name" and “pun_name') . This forces the single
function ana multi=-function device initlatization
atgorithms +to be compiletely different. The limitation of
multi-function devices *to remote_ Is also seen in

lo_caemon_parms.

5. The mogule input_cmd_y which does 9eneral driver command
processingy assumes that only remote_ could have device
specific operator commands.

6. To share code between the print and punch requests for
local ana remote drivers (and for historical reasons), the
module output_request_ carefuliy formats printer head and
tail sheets for punch reauests and writes them through the
discard_output_ aime.

7. The module lodd_iisten_y which dispatches a wuser reguest
(from the coordinator) to bDe processed by the driver,
assumes that only one module KkKnows how to handle the
requesty Nno matter what device [s to be used.

In summaryy, the I0 daemon driver is structured as an output only
driver which knows how to print and punch with on site or remote
{mohawk) devices. The dim_name in io_daemon_parms atlows some
flexipilityy, but not enough for completely new functions with the
existing software.

-2-

Multics Technical Bulletin MTB=144

IIT.Proposed Changes

At initialization time for any I0.SysDaemon the operator is
aswked whether the process ([s to be a "coordinator, driver,
remote or cards."” This wiil be <changed fto allow only
"coordinator or ariver', moving the distinction between remote
and focal darivers until fater In the process so we can use
some common general prececures for assignment of devlces and
device classes. {"cards" does not have to run as
I0.SysDaemon. The removal of the ‘'cards'" optior is the
sublect of another MTB.)

The current iodd_overseer_ will take on additional functijions
from io_caemon_driver_, remote_, and driver_init_,y, providing
centralization of all initialization <code and a wuniform
approach to searching the lod_device_tab. This is a necessary
step since the “remote" response has been removed (above) and
we must now determine the existence of multiple logical
gevices differently.

To accomplish thisy, we will introduce the concepts of major
and minor aevices to io_daemon_parms and to the
iod_device_tabe A "ma)or cevice®™ |s a generic name associated
with a physical device. A "minor device™ is a generic name of
a logical device assoclated with a malor device. There may be
up to ten (10) minor devices per majlor device. (Ten 1is an
arpitrary number chosen to limit table size and still allow
flexibliity.)

Each major qevice corresponds to a3 physical piece of hardware
attached to the process through a physical I/70 or TTY channel.
The per device attributes such as channeity, dimy driver module,
device dial id (for remote devices), and control terminal dial
ia (see MTB 129), are associated with the malor device. Each
minor device then has the device type anc default device class
assocjiated with jit,

NoWws when the operator is asked tfo give the "gevice name and
optional aevice classy™ he will specify the ma)or device name
{assume no device class for the present). The module
ioad_overseer_ will then proceed by requesting the IO
coordinator to associate each of the minor devices which
belong to the major device with the driver process. Separate
griver status segments will be created for each minor devices.
The driver may now behave as separate logical arivers for each
minor device at its discretion. The driver may even lgnore
one or more of the minor gevices. This does not tie wup
resources unnecessarily since they are all part of the same
physical device and can only be attached to one process at a
time.

MTB-144 Muitics Technlicai Bulietin

There are two cases which <c¢an arise when the operator
specifies the optional device class. Firsty when there is
only one minor device for the malor device (esges a8 printer
connected to the IOM) the specified device cilass will override
the default device class defined in lo_daemon_parms. There |s
no ambiguity in the operator®s intent |[In this case., The
secongd case occurs when there are multiple minor devices for
the major gevice. Currently, only the cefaujt device class
for each device may be useds Since we do not know to which
minor device the optlonal device c¢class should apply, we
propose that the operator bpe asked if the specified agevice
class is to be associated wWwith each minor device, in turn,
gliving the operator the abitity to choose a different device
class or retaln the aefault for each minor device. This
approach is chosen to simplify the operator interface for the
common situatlon (In tact,y it will not <change at all}) and
still aliow the operator to sWwitch the processing of any
device class to any driver which can handle it, local or
remote.

A new aata item will be adaed to io_daemon_parms, called
“driver_module®”. This wlil be assoclated with the maj)or
cevice ang will define the program to be called by
iodd_overseer_ after the initial driver-coordinator protocols
are completed. By convention, there will be standard entry
polnt names in the ariver moaule for Initialtization, reauest
processingy, commang processing and condition handling. Entry
varlables will be added to lodd_static so each of the <common
ariver subroutines (e«gesy ioda_tisten_ and lnput_cmd_) can
have standara calls to perform driver specific functions.

New driver modules may need new data from Jjo_daemon_parms,.
Therefore, to avolid modifylng several programs anad data
structures for each new driver, the method of speclfying the
major ano minor device attributes In the lo_acaemon_parms flle
needs to be generalized. Only those attributes which are
needed auring the common initialization of all drivers wiil
have keyworas in the parms fite. Those atfributes which may
be more daynamic, on a per driver module basis, will be
described by a guoted string after the new keyword ‘args®.
This allows the addition of new driver control moaules to be
completely parameterizedess N0 recompilation should be
NEecessarve

The format of the user request cgata structure which iIs stored
in the message segment must also become more general. This
will allow cevice options and ariver options to be tailored to
each driver module rather than changing one include file and
recomplliing altl modules which use It (currentily there are nine
{9) external procedures which reference dprint_msg.incl.pil).
We will establish a3 standard header structure which wilt
define that part of the request data which must be known by

Mul

IV.

tics Technical Bulletin MTB=-144

the coordinator as well as all drivers. The "print_punch”
variabie will be changed to indicate the driver module which
is expected to pertform the request. Only the driver module
and the command setting the value need to agree on the value
(but it must be wunique among driver modules). Each ariver
module will check to ensure that the reguest is meant for that
particular driver. Then the remainder of the request data can
be Interpreted on a per arjiver module basise The cooralnator
does not <care how Jltong the request 1is$ it only needs the
time, pathname, delete switch and wversion of the request
heager.

Summary
These proposed changes proviage the structure needed to
completetly generaiize the driver software, A new type of

gevice driver <c¢an Dbe agded by writing a driver moaule which
meets the conventions and knows how to control the device,
T hen the lo_daemon_parms tile can be edlted by an
aagministrator to Incluce the new devicey, device class and
other attributes.

The operator interface will not change for the new dgriver
except for new driver specific commands. Each driver can make
use of the same overseer, which wlil handle afll inltlal
ariver=~coorainator protocol. Some of the drlver subroutlnes
can be directly used by the new driver module without changes}
others can be easily tallored to meet new requirements.

These changes imply that alimost every module of the current
driver process will be either rewritten, restructured or
removed. Oriver mocules for controlling the printer, punch
and mohawk devices will have to be written. At installation
time, al{ driver modules and lo_daemon_parms will have fo be
replaced since they will now be incompatiblie with older
versions.

MTB-144

Multics Technlical Bulietin

APPENDIX I

I0 DAEMON PARMS KEYHWORD LIST - ORDERED BY OCCURENCE

/¥ PL/1 style comments may appear anywhere in the parms file */

There are tWwo keywords which specify global values for +the IO

coordinator ang

Time:

Max_qgueues?

must appear at the beginning of the parms file?

Defines the time [n minutes that each
completed request will be saved to allow for
resfarting. Normally, a delete option will
not be completed until after this time has
elapsed.

Defines the maximum number of message segment
queues to be created or read for each gueue
group defined.

The next group of keywords are used to deflne the devices which

driver processes

may uUSe. The device data is used oy the IO

coorainator to buiid the "“device_tabie™. All device definitions
must appear ahead of the aevice class definitions.

Devicet?

driver_modules:

argss

channel?

dev_dial_jiadzs

Defines the name of a major device
(requirea - 32 char max)

Defines the pathname or search name of the
program which runs the device
(regquired - 168 char max)

Defines an arbitrary character string for the
driver module to decode which describes the
major device. (optional - 128 char max)

Defines the IOM channel of the device for
dlrect attachment by the process. This must
be specified i(f the dev_dial_ld keyword is
omitted and mus t be omitted It the
dev_dial_id [Is specifieag. (8 char max)

Defines the dial_id to be used if the device
Is to bpe dialted to the process over a tty
channel. Immediate attachment ¢to a hard
nired tty channel will be specified In the
aial table If gesired by the sjite. Thils
keyword may not be specified if the channel
keyword Is used. (8 char max)

Multtics Technical Bultetin MTB=-144

ctt_dial_id?

ctli_device?

minor_devices

argss

gefault_classs

like?

Defines the -diat Id to be wused for the
control terminal to be cialed to the processe.
Optional - if omitted, no controi terminal is
requireaq ‘ for . the ariver.,
(optional - 8 char max)

Defines the device name expected for the
attachment of the control terminal. Examplet
ctil1 for the message coordinator, neti103 for
the arpa nety tty142 for the DN355. This
keyworc 1ls primarily includea for the message
coordinator since there will be no check to
ensure that this 1[Is the actual channel
assigned. (optional = 8 char max)

Defines the name of a minor device associated
with the last named majlor device. If omitted,
the minor device name is taken to be the same
as that of the major device,
{(optional - 32 char max)

After the minor device keyword, args defines
another arbltftrary character string used by
the driver mogdule to describe the minor
device. There may be one args keyword per
minor dJdevice. If omitted for any minor
gevicey a null character string is assumed.
{optional - 128 char max)

Defines the default device class to be used
for this minor device. If omitted, the
operator must specitfy the gevice class during
initiatlizations f(optional - 32 char max)

This keyword is used to reduce the amount of
text in the parms file when there are several
major devices with similar attributes. Al
missing attributes Iin the specification of
the major device, including minor device
namesy, are taken from the majJor device name
which . is the value of the keynord.
(optional -~ 32 char max) {[Note: fthe major

‘gevice named must have been previously

specified if the file.l

The follonwing keywords deflne the device classes used by the 1I0

coorginator - and

garivers. The device ciass definitions must

follow the definitions of +the devices to help simplify the
parsing of the parms file.

MTB= 144

Device_class?

device?

driver_userias

accounting?

Queue_group?

min_access_class?

max_access_class!?

Muitics Technical Bulletin

Defines the name of a dynamlc device class.
{required - 32 char max)

Defines a minor device which may process
requests of the last named Device_ciass. One
or more instances of this keyword must be
associatea with a device cltass. The value is
of the form major.minor to distinguish
between minor devices of the same name in

agifferent major devices. It oniy one
component is specified as the value, then
major.major is assumed,

(requireag =~ 65 char max)

Defines the oniy process group id which may
be used to handle requests in thls device
class. It omitted, I0.SysDaemon is assumed.
A personid of * [s atliowed, but the projectid
must be specified. {optionat - 32 char max)

Defines the pathname of the accounting
procedure to be wused for the driver. If
omittedy, or if the value of ‘'systea”™ Is
specifiedy, the standard system accounting
procedure will be used. The accounting
procedure specitied must be found auring
process initialization, or the driver will
abort. (optional = 168 char max)

Defines the message segment gueues to be used
for requests in this device class. It
omittedy the queue group will be taken to be
the same as the device class. Examplet
printer means use the oprinter_N.ms queues.
{optional = 32 char max)

Defines the lowest access class request which
a driver of thls device class may process
from the specified queue group. If omiftted,
the system_low access ciass will be assumed.
The strilng must be acceptable to the
convert_authorization_ subroutine.
(optional)

Detines the highest access c¢lass request
which a driver ot thls device class may

process from the specified queue group. The
access authorization of the driver must be
equal or greater than this value, The

max_access_class must be equal or greater
than the min_access_class according to the
rules of the access isolation mechanism. TIf

-Bc

Multics Technical Bufietin c MTB-144

min_banner?

End:

omittedy, the value of min_access_class is
assumede. -The string must be acceptable to
the convert_authorization_ subroutine.
{optional)

Defines the lowest access class to be used in
marking the output generated by a drilver
processSe it omittea, the value of
min_access_class is assumed. The string must
be acceptable to the convert_authorjzatlon
subroutine. f{optional)

3

This keyword has no value associated with j[t,
It onty serves to define the end of fthe parms
files {(required)

