
Multlcs Technical Bulletin HTB-144 

To: DIstribution 

Froml Jeroto C. Whitmore 

SubJect: Restructuring of the 1/0 Daemon Driver Software 

Date: December 12, 1974 

I. Motivation for the Restructuring 

During our work in proviaing some new features for the Air 
Force, we needed to create a new type of device driver which 
woulo be contro •• ea by the 1/0 Coordinator. However, due to 
the current structure of the drIver software, we found this 
task very dIffIcult. Specificallv, it would be necessary to 
introduce a new operator response at 10 DaeMon initIalIzation 
time and write new software to be executed for the remainder 
of the process. Limitations w'ithin existing modules, due to 
the assumptions about possib'e aevlce types and how ,they would 
be controlled, prevent their use in new drivers. 

It occurred to us that If we are having this trouble now, 
others wilt have the same proble~ in the future as more 
devices, which could be contro"ed by a d.vlce driver, are 
aoceQ to the system. For exampje, the MIT/IPC effort to write 
a spoolIng tape dim with a command interface shows one attempt 
to aOd a tape driver within the current structure. In the 
f~ture we may want to aad ptotters, COM or other devices, 
which may be controlled by Queued requests. 

Therefore, now that we have a need for a new driver type, it 
wil' be easier to generalIze the driver structure at thIs time 
rather than rewrite even more software in the future. ThIs 
MTS adoresses thIs generalization with the followIng goalsl 

1. AI.ow the easy addition of new driver software for new 
devices (or devIce classes) without recompiling existing 
software or changing the operator interface except for 
device specifIc functions. 

2. Separate the ~river control software 
functional mOdules for easy maintenance 
taIloring to new arivers. 

Into generiC 
and sharing or 

3. Generalize the specifications of devices and device classes 
within lo_daemon_parms al lowing paramete~s to determine the 
control module which will be calted. 

Multics proJect internal working documentation. Not to be 
reproduced or distributed outsiae the ~ultics proJect. 

-1-



HTB-144 Muttics Technical Bulletin 

II.Problems with the Current Driv~r Software 

The statements made in the first paragraph were very general, 
so the following is presented as further JustifIcatIon. The 
reader may wish to look at the source programs in 
bound_lodd_.s.archive In the tools library to clarifv some of 
t he s p e c i f i c s • 

1. Atl modules of the driver software assume either print or 
pJnch device specIfIcs throughout. Extensive checking of 
new "switches" would be reouired if this software were to 
b~ used for new devices. 

2. The format of a user reQuest assumes printer or punch 
control functions which may not apply to other devIces. 
(Only a sma. I amount of cata In the front of the structure 
is shared by the 10 Coordinator.) 

3. Current data areas in iOdd_statIc assume that there wi' I be 
no more than two logical devices per physical device (e.g., 
the printer and punch of a mohawk). ThIs makes the 
aaoltion of new multi-functIon devIces .ore dlfficult. 

4. Only the remote module knows how to fi~d the two logical 
aevices associated with a multi-function device using the 
'·remote_tab'· (which also t imits the logical devices to 
"prt_name" and "pun_name"). This forces the sIngle 
function ana multi-function device InitIalization 
algorithms to be completely different. The limitation of 
multi-functIon devIces to remote_ Is also seen In 
10 _oa emon _par II'IS. 

5. The moaule input_cmd_, which does 
processing, assumes that only 
soecific operator commands. 

general driver command 
remote_ could have aevice 

6. To share code between the prInt and punch reQuests for 
local ana remote arlvers (and for historical reasons), the 
module output_reouest_ careful'y formats printer head and 
tall sheets for punch reauests and writes them through the 
discard_output_ aim. 

7. The module IOdd_listen_t which dispatches a user reQuest 
(from the coordinator) to be processed by the driver, 
assumes that only one module knows how to hand'e the 
reQuest, no matter what device Is to be used. 

In summary, the IO da~mon driver is structured as an output only 
driver which knows how to print and pu~ch wIth on site or remote 
(mohawk) devices. The dim_name in 10_daemon_parms allows some 
flexioillty, but not enough for comp'etely new functions with the 
existing software. 



Muttics Technical Bulletin MTB-144 

III. Proposed Changes 

At initialization time for any IO.SysDaemon the operator is 
aSked whether the process is to be a "coordinator. drIver, 
rem 0 teo rca r d s • .. T his wIt t bee han g edt 0 a I low on I y 
"coorOlnator or ariver", moving the distinction between remote 
and 'ocal drivers until aater In the process so we can use 
some common general procedures for assignment of aevices and 
device classes. (I·cards" does not have to run as 
IO.SysOaemon. The removal of the ··cards" optlor. is the 
subject of another MrS.) 

The current iodo_overseer_ wi" take on addItIonal functions 
from lo_oaemon_orlver_, remote_, and driver_lnit_, provIdIng 
centralization of all initialization code and a uniform 
approach to searching the 10d_devlce_tab. This is a necessary 
step since the "remote" response has been removed (above) and 
we must now determine the existence of multiple logical 
aevices differently. 

To accomplish this, we wi'. Introduce the concepts of maJor 
ana minor oevices to iO_daemon_parms and to the 
lod_devIce_tab. A "major oevIce" Is a generic na~e associatea 
with a physical device. A "minor device" is a generic name of 
a logical device associated with a malor device. There may be 
UP to ten (10) ~lnor devices per major device. (Ten Is an 
aroitrary number chosen to limit table size and still alfow 
flexibIlity.) 

Each MaJor aeVLce corresponds to a physical piece of hardware 
attached to the process through a physIcal 1/0 or TTY channel. 
The per aevice attributes such as channel, dim, ariver modu'e, 
device dial id (for remote devices), and control terminal dial 
10 (see HTB 129), are associated with the maJor device. Each 
minor aevlce then has the device type anC default devIce class 
associateo with it. 

Now, when the operator is aSk~d to gIve the "oe,vice name and 
optional aevlce class," h€ wll' specify the malor device name 
(assume no device class for the present). The modu'e 
iood_overseer_ wIll then proceed by reQuesting the 10 
coordinator to associat~ each of the ~jnor devices which 
belong to the major device with the driver process. Separate 
arlver status segments will be created tor each minor aevice. 
The driver may now behave as separate logical drivers for each 
minor aevice at lts discr~tion. The driver may even ignore 
one or more of the minor aevices. This aoes not tie UP 
resources unnecessarily since they are aJ I part of the same 
physical device and can only be attached to one process at a 
time. 

-3-



MTB-144 Multlcs"Technlcal Bulletin 

There are two cases ~hich can arise when the operator 
specifies the optional devIce class. First, when there Is 
only one mInor device for the major device (e.g., a printer 
connectea to the 10M) the specified device class wit I override 
the default device class defined In lo_daemon_parms. There Is 
no ambiguIty in the operator·s intent In this case. The 
secona case occurs when there are ~ultiple mInor devIces for 
the major aevice. Currently, onlv the oefault device class 
for each device may be used. Since we do not know to which 
mInor device the optional device class should apply, we 
propose that the operator Oe asked If the specified aevlce 
class is to be associated with each minor device, in turn, 
glvI~g the operator the abIlIty to choose a dIfferent device 
class or retain the aefault for each ~inor device. This 
approach is chosen to simplify the operator interface for the 
common situation (In fact, It will not change at all» and 
still allow the operator to switch the processing of any 
device class to any driver which can handle it, local or 
remote. 

A new aata item w1' I be adaed to 1o_daemon_parms, called 
•• dr 1 v e r _ mod ute" • T his wI' I be ass 0 c I ate d wIt h the 111 a J 0 r 
oevice an"o ... 1,. define the prograll to be cal'ea by 
iodo_overseer_ after the initial d~lver-c~ordinator protocols 
are completed. By convention, there will be standard entry 
point names in the arlver mOQule for initialization, re~uest 

processing, commana processing and condition handling. Entry 
variables will bE aaded to todd_static so each of the com~on 
uriver subroutInes (e.g., iodo_'lsten_ and InDut_c.d_) can 
have standara calls to perform drIver specific functions. 

New drIver modules may need new data from Io_daemon_parms. 
Therefore, to avoid ModIfyIng several programs and data 
structures for each new drIver, the method of specIfying the 
maJor ana minor Qevlce attributes in the io_oaemon_parms fIle 
needs to be generalized. Only those attrIbutes which are 
needed during the common inItialization of al' drIv~rs will 
have keyworas in the par~s file. Those attributes which ~ay 

bE more aynamic, on a per driver module basis, will be 
described by a Quoted string after the new keyword ·'args". 
This allows the aaa1tion ot new driver control ~oau.es to be 
completely parameterized ••• no recompllatlon should be 
necessary. 

The format of the user reQuest aata structure which Is stored 
in th~message segment must also become more genera.. ThIs 
wi'. al low oevice options ana arlver options to be taitored to 
each driver module rather than changing one include fite and 
reco~pliing all modules whIch use It (currently there are nIne 
(g) external proceaures which reference dprint_msg.lncl.pI1). 
WE wilt establish a standard header structure which will 
define that part of the reQuest data which must be known by 



Multles Technical Bul'etln HTB-144 

the coordinator as well as a.1 drivers. The "prInt_punch" 
varlab'e will be changed to indicate the driver module which 
is expected to perform the request. Only the driver module 
and the command setting the value need to agree on the value 
(but it must be unIque among ~river mooules). Each driver 
mOdule wlll check to ensure that the request 1s meant for that 
particular driver. Then the remainder of the reQuest data can 
be Interpreted on a per ariver module basis. The cooralnator 
does not care how long the request is; it only needs the 
tIme, pathname~ delete switch and version of the request 
heaoer. 

I V. Summary 

These proposed changes proviae the structure needed to 
completely generalize the driver software. A new type of 
aevlce drIver can be aOded by wrlting a driver mOQule which 
meets the conventions and knows ho~ to control the device. 
Then the lo_oaemon_parms file can be edited by an 
aomlnistrator to Incluoe the new devIce, device class and 
other attributes. 

The operator interface will not change for the new drIver 
except for new driver specific commands. Each driver can make 
use of the same overseer. which wIll handle al. inl tIa' 
oriver-coorolnator protoco'. Some of the ariver subroutines 
can be directlv used by the new driver module wIthout changes; 
others can be easily tailored to meet new reQuirements. 

These changes imply that aJmost every module of the current 
driver process will be eIther rewritten, restructured or 
removea. Driver mOQules for controllIng the printer. punch 
and mohawk devices will have to be written. At installation 
time, all driver modules and IO_daemon_parms wi' I -have to be 
repJacea since they wlll now be inco_patlble with older 
versions. 

-5-



MTB-144 ~uttics Technical Bulletin 

APPENDIX I 

10 DAEMON PARMS KEYWORD LIST - ORDERED BY OCCURENCE 

I' PL/I style comments may appear anywhere in the ~arms file 4/ 

There are two keywords which specify global values for the 10 
coorOlnator ana must appear at the beginnIng of the parMs filel 

Time: 

MaX_Queues: 

Defines the time in minutes that each 
completed reQuest wIll be saved to allow for 
restarting. Normally, a delete option will 
not be completed until after this time has 
elapsed. 

Defines the maxiMum number of message segment 
Queues to be created or read for each Queue 
group defined. 

The next group of keywords are used to define the devIces which 
arlver processes may use. The devIce data is used oy the 10 
coo r a ina tor t 0 b u 1 I a the •• de \I Ice _ t ab • e" • A I Ide" lee d e fIn 1 t ion s 
must appear aheaa of the aevlce class definitIons. 

Device: 

driver_module: 

args: 

channel: 

Defines the name of 
(reQuirea - 32 char max» 

a malor 

Defines the pathname or search name 
program which runs the 
(reQuired - 168 char ~ax) 

device 

of the 
device 

Defines an arbitrary character string for the 
driver module to decode which aescribes the 
maJor device. (optional - 128 char max) 

Defines the 10M channel of the devIce for 
direct attachment by the process. This Must 
be specified if the aev_dial_ld keyword is 
omitted and must be omitted if the 
aev_dlal_id Is speclfiea. (B char max) 

Defines the dial_ld to be used if the device 
Is to be dialed to the process over a tty 
channel. Immediate attachment to a hard 
wIred tty channel wIlt be specified in the 
aia. table if aeslred by the sIte. This 
keyword may not oe specifIed if t.he channel 
keyword Is used. (8 char max) 



Multles TechnIcal BulletIn MTB-144 

args: 

like: 

Defines the dial Id to be used for the 
control termina. to be ala'ed to the process. 
Optional - if omitted, no control terminal is 
reQuirea for the driver. 
(optional - 8 char max) 

Defines thE device name expected for the 
attachment of the control terminal. Examplel 
ctt1 for the message coordInator, net103 for 
the arpa net, ttY142 for the DN355. This 
keyworc Is primarIly IncJudea for the message 
coordinator since there will be no check +0 
ensure that this is the actual channel 
assigned. (optional - 8 char max) 

Defines the name of a minor device associated 
with the last named major devlce. If omitted, 
the minor device name Is taken to be the same 
as that of the major device. 
(optional - 32 char max) 

After the minor device keyword, args defines 
another arbitrary character string used by 
the driver mo~ule to describe the minor 
device. There may be one args keyword per 
minor device. If omitted for any mInor 
device, a null character ·string is assumed. 
(optional - la8 char max) 

Defines the defau.t device class to be used 
for this minor device. If omitted, the 
operator must specify the aevice class during 
initialization. (optiona' - 32 char max) 

This keyword is used to reduce the amount of 
text in the parms file when there are several 
major devices with Similar attrIbutes. All 
missing attrIbutes in the specification of 
the major device, including minor device 
names, are taken from the maJor device name 
which is the value of the keywora. 
(optional - 32 char max. [Note: the major 
aevlce named must have been prevIously 
specified if the file.] 

The following keywords define the device cjasses used by the 10 
coorcinator ana arivers. The device class definitions must 
follow the definitions of the devices to help simplify the 
parsing of the parms file. 

-7-



MTB-144 

device: 

driver_userio: 

a c c 0 un tin g I 

Queue_group: 

Multics Technical Bulletin 

Defines the name of a dynamIc oevlce caass. 
(reQuired - 32 char max) 

Defines a minor device which may process 
reQuests of the last named Device_class. One 
or more instances of this keyword must be 
associateo with a device class. The value Is 
of the form maJor.minor to dIstinguish 
between minor devices of the same name in 
alfferent major devices. If only one 
component is specified as the value, then 
ma)or.maJor Is assu~ed. 

(reQulrea - 65 char max) 

Defines the only process group id which may 
be used to handle reQuests In thIs devIce 
class. If omitted, IO.SysDaemon is assumed. 
A personid of + Is allowed, but the pro)ectid 
must be specifIed. (optIonal - 32 char _ax) 

DefInes the pa t hnalle of the accounting 
procedure to be used for the driver. If 
omitted, or if the value of "systell" is 
specIfied, the st andard system accounting 
procedure wit' be used. The accountIng 
proceaure speclflea lIust be founa aurln5J 
process initialization, or the driver wi I I 
abort. (optional - 168 char max) 

Defines the 1Iess age segment Queues to be used 
for reQuests In this device class. If 
omItted, the Queue group wI' I be taken to be 
the same as the device class. Examplel 
prInter means use the orlnter_N.ms Queues. 
(optIonal - 32 char- lIax) 

Oefines the lowest access class reQuest which 
a driver- of this device class .ay process 
from the specified ~ueue group. If o.itted, 
the system_low access class wi' I be assuMed. 
The string IIUSt be acceptable to the 
convert_authorization_ subroutine. 
(optional) 

Defines the hIghest access class reQuest 
which a driver of thIs device class may 
process from the specified Queue group. The 
access authorization of the driver Must be 
eQual or g~eater than this value. The 
max_access_c.ass must be eQual or greater 
than the mln_access_class according to the 
rules of the access isolation mechanism. If 

-8-



Muftles Technlcat BulletIn HTB-l~4 

omItted, the value of mln_access_class is 
assumed. . The string Must be acceptable to 
th~ convert_authorization_ subroutine. 
(optiona') 

DefInes the lowest access class to be used In 
marking the output generated by a drIver 
process. If omlttea, the value of 
min_access_ctass is assumed. The string must 
be acceptable to the convert_authorizatlon_ 
subroutine. (optional) 

This keyword has no value associated with It. 
It only serves to define the end of the parms 
fl'e. (reQuired) 


