
MUlTICS TECHNICAL BULLETIN MTB - 154

Tos Distribution

From: Richard G. Bratt

Date: 12/12/74

SubJects A Proposal for Removing Name Space Management from Ring
Zero.

Multles a.lows objects in Its storage system hierarchy
to be referencea by three distinct classes of names: path names,
reference names, and segment numbers. The bindIng of these names
to obJects In the hIerarchy Is controlled by directory control,
name space control, and address space control respectively.
Currently the modules In the hardcore supervisor that implement
these functIons are. more interconnected than need be. This HTB
proposes a restructuring of address and name space control which
allows name space control to be removed from the security kernel
of Muftles. Together wIth Phi. Jansons previously compJeteJ
user-rIng lInker , this deSign produces a simpler, smaller
supervIsor with a simpler interface.

Currently a process· nalle space has two distinct
components: a segment name space and a directory name space. The
segment name space associates names with non-directory segments.
This nalle space is under explicIt user control. That Is, the
process Is free to associate ~ name or group of names with a
segllent. Furthermore, a process may dynamically modify its
segment name space. The dIrectory name space which associates
names wIth directory segments, however, is not subJect to
exoliclt user control. Instead, it Is managed by ring zero which
constraIns names of directories to be absolute pathnames of the
alrectory.

The distinction between segm~nt reference names and
directory reference names seems somewhat artifical. A process
should be free to associate any name it chooses with a directory.
Consider how easily the working directory and search directory
concepts fit Into such a scheme. We could bind the name
"worklng_dlr" to a process· working directory and "search_dlr_n'·
to Its n·th search dIrectory. A process could then reference
these directorIes by name using the normal name space management
mechanisms.

The primary goa' of the design presented in thIs MTS is
to remove name space management from the securIty kernel of

Hultlcs ProJect Internal working documentation. Not to be
reproduced or distrIbuted outside the Multlcs ProJect.

- 1 -

Muitics. It has been argue~ that a serIous conseQuence of any
scheme which realizes this goal is that a process· name space can
no longer ref lect name changes in the hierarchy. This argument
is baseo on a confusion between reference names and directory
entry names. It Seems obvIous that a process does not want its
name space to 'change without its consent. Changing a segment·s
name aoes not change a process· access to It. A prime aavantage
of reference names is precisely this ability to insulate a
process from name changes in the hlerarchy~ We should
dIstInguIsh reference names from Oirectory entry names. A
reference name is a name we temporarily bind to a segment. A
dIrectory entry name Is a selector of a particular entry In a
dIrectory. We neeo directory entry names only to physIcally
select a branch for the first time; after that we should be free
to call It whatever we choose. If any valid reason exists for
notiflng a process that the names on a segment or directory that
it is using have changed. the system could sIgnal a
name_change_on segment_x condition. ThIs would reQuire the
addition of some sort of KST trailer mechanism to the system.
This may eventually be necessary If for no other reason than
Huttics will eventually run for extremely long unlnterupted
stretches. If a orocess were to stay permanently loggeo in it
would reQuire notification of on-lIne installations. ThIs in
Itself Is a diffIcult problem which I do not intend to address
here. The only poInt I wish to make is that the process and not
the system should control the duration of name bindings.

WhIle there does not appear to be any IntrInsIc neej
for the Multlcs security kernel to support name space .anagement,
1 ts removal from rIng zero is complIcated by the fact that the
current Multles address space manager, which provides a
legitimate kern~1 function, depends on the name space manager.
SpecIfically, the address space manager uses the name space
manager to manage an assocIatIve memory of (oirectory pathname,
segment number) pairs. It is therefore necessary to decouple
address space management from name space management before the
latter can be removed from ring zero.

The oependence of address space control on name space
control manifests itself in the recursive procecure find_ which
the adOress space manager uses to map directory pathna~es into
directory segment numbers. When flnd_ is Invoked it calls the
name space manager with the pathname it Is given. If the na~e
space manager returns a segment number then flnd_ is done.
Otherwise, flnd_ splits the pathname into a pathname of the
oarent oirectory of the target airectory and the name of the
target directory. It then calls itself recursively to obtain a
segment number for the parent directory. USing this segment
number as a pointer to the parent directory, 11no_ attempts to
initiate the target directory. If 1t suceeds it adds the pair
(path name of target, segment number of target) to the name space
manager·s oata base and returns.

- 2 -

ThIs proposal suggests a radical change in the ring
zero aacress space manager. The essential result of this change
is that find_, as described above, need no longer be called by
the address space manager. ThIs allows both flnd_ and name space
managenent to be removed from ring zer06

Currently, determining whether a process should be
permItted to initiate an arbltrary 11rectory Is QuIte dIfficult
since we wish to prevent a process from detecting whether or not
a gIven dIrectory exists unless it has access to that directory.
This difticuttystems from the fact that the ACL of a branch and
its physical storage map reside in its parent. Since we wish the
ACl of a branch to exercise complete control over access to that
branch, we must permIt a process to initiate all superiors of
accesslbae segments independent of access to these superiors! To
avoid thIs dlfflcut ty, Hultlcs inexorably couples the initiation
of a dIrectory Nlth Initiating an inferior segment. This
inabIlity to Initiate directories directly has lead to many
needlessly complex mechanisms for manipulating dIrectories. In
additIon it has forced us always to refer to directories by
pathname. Not only Is this inefficIent, but it ~eQuires that the
address space manager be able to call find. If we could
InitIate directories directly then we could use segment numbers
as directory specifIers. Aadress space control could then take a
segment number instead of taking a pathname as a directory
specifier. Since address space control would no longer ne-e-a to
ca II f Ind_ It cou I d move out of ring zero along wI th name space
management without compromising the security of address space
cont ro ••

Actually, coupling alrectory and segment inItIation
does not solve the problem. SInce a process cannot read the
access control list of a segment until its parent is knovtn, the
system stil' must permIt a process to initiate dIrectories which
it may not have the right to know exist! By causing the
initiation of these superior oirectories to occur in a single,
lndivisable ring zero call, the system could, In principle,
prevent securIty leaks. This coulO be accomplished by terminating
those intermediate dIrectories which had to be Initiated only to
find that the process had no access to the terminal segment,
before returning to the caller. Unfortunately, the current system
does not do so. This allows any process to determine the
existence of any postulated directory. Certainly one aporoach is
to correct this flaw In the current system. However. there seem
to be many ways of forCing such a scheme to compromise
information. For example, suppose a process fitted UP its
aodress space Intentionally and then callea ring zero to initIate
>secret>x. If ring zero was not very careful it might cause the
process to die due to a KST overflow if and only if >secret
existea. This woutd at tow the existence of >secret to be inferred
by whether or not the process died.

I propose that we decouple segment and directory

- 3 -

InItiatIon. As was noted earlier the basic problem to be solved
Is how can the system decIde whether a process should be allowed
to initiate a given directory. There are essentially four
schemes for making this decision. The first scheme involves
recognIzIng that if the access controi ilst oi a directory 1s to
completely express access to that directory we must make explicit
the now "hidden" permission to initiate a directory If some
descendent of the directory is accessible to the process. The
obvIous way to accomplish this is to Invent a new directory
access mode called "initiate'·. This mode allows the named
principal to initiate a dIrectory and to use the informatIon It
contains which is reI event to accessing descendents of that
directory. This makes the decision of whether or not a process
should be al lowed to inItIate a directory Quite simple. If the
process has non-nul I access to the oirectory then It may initIate
It. Otherwise, it may not. Unfortunately, this scheme defeats
our des I re to have t he access cont ro I 11 sf 0 f a segment or
directory completely express what processes may access that
segment or dIrectory.

A second way to decide whether a process may InItiate a
directory Is
directory.
thIs subtree
directory
IneffIcIent

to search the hIerarchy subtree rooted at that
If the process has non-null access to any meMber of
then the process shoulo be allowed to InItiate the

in Question. Naturally, this scheme is far too
to consider serIously.

A third method of oecioing whether a process may
inItIate a directory is to reQuire non-null access to the
directory. ThIs scheme has the dIsadvantage, sharea by the fIrst
5chpme discussed, of preventing the access control lIst of a
dirEctory or segment from being the sole arbIter of access to
that cirectory or segment. Inorder to lnitiate a seg~ent 3

process would need non-null access to the superIors of that
segment.

I propose that we take a forth approach to the problem
of initiating directories. Insteaa of worryIng about whether or
not a process has the right to initIate a dIrectory let us allow
al I processes to initiate any dIrectory - whether or not it
exIsts! The key to this scheme Is preventing the user from
detecting any dIfference between an InItiated airectory whIch
does not exist and an initiated directory which exists but whIch
the USEr has not proven his right to know exists. How this Is to
be oone wIll be discussed later. The ring zero adaress space
manager interface resulting from this approach seems QuIte
natura •• RIng zero no longer concerns Itself ~lth pathnames.
Insteao, It accepts airectory segment numbers for directory
specifiers. To allow this scheme to bootstrap itself we will
define the segment number of the parent of the root to be zero.
InitiatIon of segments ana directories wili be controlled by
initiate which wli' accept a parameter speclfing whether a
segment or directory Is to be Inltlted. The rationale behInd

- 4 -

dIstinguishing directory and segment initiation Is that a process
usually has a preconceived idea about the type of a branch It
wIshes to inItiate. When rea'lty aoes not support this
preconceIved Idea the process is usually In error. Forcing the
process to make explIcIt the type of branch it Is exp~ctlng

alloMs ring zero to lmmeaiately catch all such errors. ThIs
prevents a careless process from bumbling along thinking all is
well only to die when It attempts to access a directory as a
segment or vIce versa.

An important consequence of not handling pathnames in
rIng zero Is that fIle system links can no longer be interpreted
In ring zero. This requires that links be readable In the outer
rings whIch raIses the QuestIon of what, if any, access control
shoulo be placed on readIng fInks. The simple approach, which is
taken in the current system, is to make links completely public,
readable in all rIngs by all processes. This has the dIsadvantage
that If some process can guess the pathname of a real link then
it can prove the existence of the parent directories of that
lInk. At the other end of the spectrum we could place access
control lists on links thereby explicitly naming those processes
which may read the link. This seems a bit too bulky. I propose
that we consider a link to be part of Its containing directory,
readable only by processes havIng status permIssion on that
dIrectory. This scheme has the vIrtues of being simple, easy to
Implement, and plugging the information hoJe which uncontrolled
access to links provIdes in the current system. WhIle thIs scheme
does make one class of currently lega' uses of links il legal,
this restriction doeS not seem too severe.

When lnitlate_ encounters a link it will return the
link and a status code whIch informs the outer ring procedure
that a fInk was encounterea. The outer ring procedure may then
try the new path specified by the .lnk. Since this is happening
In an outer rIng we need no longer have a standard interpretation
of links. That is unless the function moves out of the kernel but
not out of the supervisor. If ,however, it resides In the user
rIng the process may interpret lInks In any manner it chooses.
Why not let lInks contain relative pathnames ,offsets, or even
arbitrary character strings? The Important point is that whi Ie
the kernel may be the keeper of links It does not interpret them.
Naturally the restriction on link depth, which was intended to
keep ring zero from gettIng into trouble, vanishes.

We can use this same mechanism of reflecting
informatIon out to an outer ring by setting a status code to
indIcate the fact that a segment·s copy switch was set. This
allows the concept of a copy swItch to move out of ring zero.
Whether it is still handled withIn the supervisor but in a higher
ring or within the user·s rIng depends on whether it Is to be
considered a basic, unchangable system function or not.
Personally I would move It to the user ring!

- 5 -

To complete our new ring zero address space manager
interface we must introduce a termInate primitIve. This
primitive accepts three arguments. The fIrst argument specifies
the segment number to be terminated. The second argument
specifies whether or not the reieased segment number Is fU be
reserved. The final argument is a status code. It should be
noticed that thIs orimitive may be cat led with eIther a segment
or "clrectory segment number. In the case of terminating a
directory one constraint is enforced. Since the system reQuIres
that a known segment·s parent afso be known. terminate wil' not
terminate a oirectory with known Inferiors.

Since this scheMe removes the important function of
name space management from ring zero we must provide a name space
manager in the outer ring. Again it is a matter of opinion
whether name space management should be handled In the supervisor
or In the user ring. If it reslaes In the supervIsor It cannot be
clobbered by the user -- neither can It be changed. It is my
opinion that it should reside In the user rIng. Perhaps the
system coulc also provide a secure address space m~nager which
could be used by those users not interested in providing their
own. I will assume that name space management will be moved to
the user ring. Regaraless of where it Is placed all ring zero
primItives which currently accept pathnames witl have to become
write arounds In some outer rIng. These wrIte arounds must fIrst
call an outer ring procedure which, through appropriate calls to
the outer ring name space manager and the new ring zero address
spaCE primItIves. translate pathnames Into segment "numbers. This
corresponos to the function now performed In rIng zero by flna_.
These segment numbers may then be passed to the new ring zero
primitives whIch wlll not accept pathnames.

So far everything seems rosey. This scheme seems to
remove many functions from ring zero and to simplIfy the ring
zero Interface in the bargaIn. Where Is the hitch? 00 we get all
this for free? The answer is, of course, no. I have glossed over
one important poInt. In order to decouple dIrectory and segment
inItiatIon we must be able to sucessfulty cloak the physical
inItIation of directorIes from a process· detecti~n until It has
established its right to know of the existence of the directory.
As was pointeo out earlier, this need for aeceptlon is intrinsic
to the hierarchy structure ~nd functionality of the current
system. While this proposal makes the system~s need to deceIve
the user more obvious, it is not responsible for the reQuired
deceit.

I will cat I a dIrectory detectable If a process has
established its right to know that the directory exists.
Detectability may be establIshed eIther by having non-nul' access
to the cirectory or by having non-null access to its oarent or by
establishing the detectabillty of an inferior of the directory.
The reason that non-null access on the parent of a branch
establishes oetectabllity Is that either status , modify or

- 6 -

append permission is sufficient to allow the process to detect if
the branch In Question actually exists. It shou'o be noteo that
the oetectablilly of a directory Is a function of the process·
history and the ring of execution. A dIrectory Is detectable by
a process In rings zero through the hIghest ring in whIch -It has
detectably initiated some member of the tree rooted at that
directory. This highest detectable ring number of a directory is
kept In its KSTE.

We must prevent a process from detectIng any difference
between an initiated directory which does not exIst and an
initiated existing but undetectable directory. If a process
could detect a dIfference in these two cases then It could
establish the existence of ao~ postulated path in the hierarchy.
This would constItute a clear violatIon of security. To
accomplish this means abandoning the current one-to-one ana onto
mapping which exIsts between occupied segment numbers and known
segments and directories. We must allow multiple segment numbers
for the same directory. The reason for this is simple. SInce
the ACl of a segment completely controls the right to initiate
that segment there Is no need to allow a process to Initiate a
segment to whIch It has no access. This allows us to hide the
physical existence of a segment from a process which has no right
to know if the segment exists by return1ng the amb1guous status
code noln10 in response to an initIate reQuest. This simple
mechanism fails for directorIes since we Must always allow a
process to inItiate an existing dlrectory in case It has access
to some inferior of that directory. This forces us to return more
than one segment number for a directory in some cases in order to
prevent the process from detecting the exIstence of physically
initiated but logically undetectable directorIes. If Inltiate_
returned the same segment number for two different entries then
the process could be assured that the correspondIng dIrectory
exIsts! ThIs reQuires that we return a new segment number If a
process relnitlates a directory which is stIli undetectable with
a new name. In fact we will even return a new segment number If
it tries to initlate an undetectable directory with the same name
twice. If we returned the same segment number then inorder for
directories which 00 not phvsically exist to appear the same to
the user ring, ring zero would have to remember the name of every
phoney directory. This Is a needless complIcation of ring zero.

This scheme wIll merrily allow a process to inItIate
vast trees of directories whIch do not exist! These directories
will be indIstinguishable from rea. undetectable directorIes.
The potential multIplIcIty of segment numbers for directories
Impl ies that if we compare two directory pointers and find them
to be not eQual we cannot conclude that the objects poInted to
are not one and the same. SInce processes running outsioe the
supervisor cannot currently use segment numbers for directories,
no user code can be effected by this new restriction.· To allow
processes to Quickly determine if two segment numbers are bound
to the same object the system should support a function for

- 7 -

mapping a segment number Into the unique identifier of the object
it is bouna to. Naturally, thIs function must return an error If
the object is not detectable to the process. The system must
also insure that if the user attempts to reference through any
dirEctory pointer in an outer ring he "Iii get the appropriate
access violation whether our not the segment number he used
corresponded to a rea. or phoney directory.

The action to be taken by ring zero in response to a
reQuest to inItiate a dIrectory depends on four boolean state
variables of the target with respect to the accessing process.
These variables can be encoded as a bit string with the
interpretatIon of each bIt given oetowo

- 8 -

ll2ll
1000
0100
0010
0001

ll.U!L~ti

U.a.D.lo.g
target·s parent is phoney
target detectable
t ar get e x 1st s
target already has KSTE

The possible actions which rIng zero can take In
reQuest to initiate a directory are encoded
omItted the case where the target Is a lInk as
alreacy been olscussed.

res PO n set 0 a
be. ow. I have

this case has

aas
ene

ena

rps

sd

sdz

actlQo~~

assign a segment number to the airectory
return a status code indicating that
directory does not exist
return a status code IndIcating that
directory either does not exist or that
process has not established Its rIght to
that It exists

the

the
the

know

return segment
Indicat ing that

number and a status coce
the directory was already

known
update highest aetectable ring fie.a of thIs
KSTE and Its superior KSTEs to the maximum of
their current value ana the ring of execution
set highest detectable ring field to zero

ThIs encodIng allows us to compactly characterize the functioning
of InltIate_ In the followIng table. Entries in the state column
encode a possible state. EntrIes in the action column encode the
actIons to be taken given the state represented In the state
co I umnG

ll.2ll
00--
010-
0110
0111

~l..wl
aas,sdz,end
ene
aas,so
rps
aas,sdz,end

Two possIble obJectIons I can see to this scheme are
that it can potentIally waste segment numbers and it reQuires
inspecting the parent·s ACL. A close examinatIon of the
preceedlng chart indicates that there are only two ways to assign

- 9 -

a segment number which Is not directly connected to a olrectory.
The first way Is to relnitlate an undetectable directory. The
second is to initiate a phoney directory. Neither of these
operations should occur In normal operation. They could, however,
arise in an attempt to use a mlsspel led pathname. To eradIcate
this problem the outer ring variant of find_ could terminate
those directories which might be phoney If the terminal segment
could not be initiated. This would prevent a habitual misspeller
from cluttering up his address space. It seems that wIth thIs
addition a process must go out of Its way inorder to clutter up
its address space. If that is what it wants fine! Even If a
orocess wastes at I its segment numbers it can recover by
terminating no longer needed segment numbers. The apparent
inefflcency of inspectIng the ACL of the parent of a branch
during InItiation of that branch is not serious slnce It Is
normally not reQuIred. Onlv wheh a process has null access to a
branch and has not prevIous.y established detectabIllty for that
branch Is It necessary to Inspect the ACL of the parent.

In the 010 KST scheme. the names stored with each KSTE
provlded a means of teiling what rings still had the associated
segment or dIrectory inltlateo. SInce these names wIll no longer
be kept In the KST some new mechanism Must be Invented to supply
this Information. ThIs is easily accomplIshed by adding an eight
bIt flela. catted rings, to each KSTE. If the 1 th bite 0
origlned. In this fIeld is on then the corresponding ring has the
segment or dIrectory initiated. ThIs alloNs ring zero to detect
when c segment or cirectory may be physical IV termlnateo, thereby
preVEnting one ring from terminating a segment or dirEctory that
Is beIng used by another rIng.

It should be carefully noted that the termInation
primitive terminates a segment number. Only If the last segment
number for a alrectory is being termInated and Its inferior count
Is zero wilt it be physically terminated! We can use the same
method to describe the action of the terminate primItive as was
usee to oescrlbe the actIon of the initIate prImitIve.

- 10 -

.ll~
100
010
001

rr
tf
tr

state ~a~

.fJ1.e£alCl.9
KSTE has inferiors known

KSTE known in other rIngs
reserve reQuested

reset this ring·s known bit
thread KSTE onto free chain
threac KSTE onto reservea chain

~!lQn of termIo~~mltlve

tlaa
00 a
001
-1-
1--

~12n
rr~tf
rr~tr

rr
rr

In summary~ this proposal calls for the complete
removal of name space management from ring zero. As a resutt the
concepts of pathnam£ and file system lInks also depart rIng zero.
In the process of removIng name space management from rIng zero,
I have reorganized and improved the rIng zero interface and
address space manager. The KST has been simplified and contains
onlv two components: a KSTE array, and a UlO hash table. The
contents of each KSTE and theIr maJor uses are summarlze~ below.

KllE 11elg

forward pol nter,
backward pointer

uniQue identifier

Inferior count

entry pointer

directory switch

Used to thread KSTE onto free or
hash class '1st as requIred.

Unchanged (a phoney directory wIll
have auld = 0).

Unchanged.

A packed pointer to the dIrectory
entry of this branch.

Unc han ge d.

transparent modIfIcation switch,
transparent usage swItch Unchanged.

- 11 -

rings An eIght bit field containing one
bIt per rIng. Whenever ring 1 has
thIs segment number initiated then
bIt 1 of this field is on.

highest aetectable ring A number which specifies the
highest ring in which this process
has estabGlshed its right to know
of the existence of this alrectory.

The proposed rIng zero segment number manager interface Is as
f 0 t • ows.

initIate (dirsegno,ename,dlrsw,rsw,llnk,segno,code)

dirsegno segment number of the parent (input)
ename en try name 0 f tar ge t (input)
dirsw directory switch(input)
rsw reserved segment swltch(input)
link Ilnk(output)
segno segment number of target(if rsw then Input
coce status code(output)

segno
rsw
code

segment number to be termlnated(lnput)
see above
see above

To help clarify the ideas presenteo in this proposal
let us consider the followIng senario in which a process trys to
initiate the segment >a>b>c>d>e>f in ring four. We will assume
that directory e and segment f do not exist and that the process
has no permission on a, b or d, and append permission on c In
rIngs zero through four. To simplify matters we wll I ignore the
existence of the outer ring name space manager and we will assume
that we are operating In a virgIn environment. What follows is
how the outer ring fino_ would proceed in this case.

step 0 call inrt iate_(O,·· .. ,l,O, link,segno_of_root,code)

The root oirectory will be InItIated, its detectble
field in the KSTE will be set to four, and a status
code of zero will be returned.

step 1 call
initlate_(segno_of_root,"a",l,o,link,segno_of_a,code)

The directory will be inItiated, its detectable field
In the KSTE will be set to four, and a status code of
zero witl be returned.

- 12 -

step 2

step 3

step 4

step 5

step 6

step 7

The directory wIll be Inltlate~ , its oetectable fIeld
in the KSTE will be set to zero, and the status code
nolnfo wll! be returned.

The directory wIll be Initiated, Its detectable field
In the KSTE ~1'1 be set to four, and a zero status code
will be returned. In addition thIs initiation
establishes the process· right to know of the existence
of superIor olrectorles at least In rings zero through
four. This is reflected, in this case, by setting the
detectable fIeld in the KSTE of >a>b to four.

The directory d wl.1 be Initiated, Its detectable fIeld
In the KSTE will be set to four, ana a zero status coae
wIll be returned.

The non exlstant directory e will be assigned a KSTE
which wilt be marked as phoney and th~ status code
noln10 wIll be returned.

No KSTE wIll be assigned and the status code nolnfo
wIll be returned.

The segment number assigned to e will be released on
the grounds that e may really not exist.

The address space manager proposed In this MTB has been
written and is many times simpler and smaller than the current
rIng zero address space manager. In some modules the reduction
In size is on the order of a factor of ten! In addItion, a
version of hardcore which preserves the current ring zero
Interface is being aebuggea which is buIlt on this new aOoress
space manager.

- 13 -

AeeENOIX A

The maIn data base for the current ring zero address
and name space manager Is the Known ~egmenT labie. The KST Is a
per-process, ring zero segment. Logically it contains four Items.
FIrst, it contains an array of KST EntrIes. KSTEs are indexed by
segment number and contain all per-process information necessary
for the proper care "and feedIng of the segment or directory
associated with the Indexing segment nu~ber. Second, It contaIns
a hash coded mapping from the space of UniQue lnentifiers onto
the space of segment numbers, or equivalently the space of KSTEs.
This mapping provides the means of locating the KSTE of an
already initiated segment should it subseQuently be initiated by
a different name. Third, It contains a hash coded mapping from
the space of names onto the space of segment numbers. ThIs
association is mainty of use to the dynamic lInking mechanism.
Forth, it provides a repository for per-ring search rules. This
later KST function wi. I be consIdered no further as the user-ring
dynamic linker removes this information from the KST. The current
contents of a KSTE and their major usages are given in the
fol lowIng tab.€.

- 14 •

forward pointer9
backward pointer

unIQue IdentIfier

name poInter

inferIor count

parent segment number

offset of branch

oirectory switch

transparent modifIcation,
transoarent usage switch

Used to chaIn the KSTE onto a lIst
of free
reQuIred.

or reserved KSTEs as

Used to validate UIn hash searches
and to properly identIfy the
correspondIng branch after an
on-lIne saluage.

Used to chaIn together a lIst of
the reference names associated wIth
this segment or dIrectory and the
rings in which they are known.

Used to prevent a directory from
being terminated whIle it has known
sons. If thIs were not done
segment faults would fall!

Used at segment fault time to
locate this branch·s parent. It
also Is used to translate' seg~ent

numbers Into pathnames.

Used to locate the branch within
the parent directory.

Used to special case access settIng
for directories at segment fault
tIme.

Used to control whether this
process· usage and/or modifIcatIon
of thls segment or alrectorv shoulj
be transparent to the system.

- 15 -

