MULTICS TECHNICAL BULLETIN MT8 - 154
Tot Distribution

From?! Richard G, 8ratt

Date: 12/712/74

Subjectt A Proposal for Removing Name Space Management from Ring
Zero.

Multics alfows objects in [ts storage system hierarchy
to be referencea by three distinct classes of namess path names,
reference namesy, and segment numbers. The binding of these names
to oblects in the hlerarchy is controlled by directory control,
name space control, and address space control respectivelye.
Currently the modules In the hardcore supervisor that implement
these functions are. more interconnected than need be., This MTB
proposes a restructuring of address and name space control which
allows name space control to be removed from the security kernel
of Multics. Together with Phil Jansons previousiy completed
user=-ring linker 4, this design produces a simpler, smaller
supervisor with a silmpler Interface.

Currently a process® name space has two distinct
components: a3 segment name space and a directory name space. The
segment name space associates names with non-gdirectory segments.
This name space is under explicit wuser control. That is, the
process Is free to assocliate any name or group of names wlith a
segment, Furthermore, a process may dynamically modify its
segment name space. The dlrectory name space which associates
names with directory segments, however, is not sublect to
expiicit wuser control. Instead, it is managed by ring zero which
constrains names of directories to be absolute pathnames of the
girectory.

The adistinction between segment reference names and
directory reference names seems sSomewhat artificals A process
should be free to associate any name it chooses with a directory.
Consider how easily the working directory and search directory
concepts fit Into such 'a scheme. We could bind the name
“"worklng_dir® to a process® working directory and *search_dir_n"
to its n®th search directory. A oprocess could then reference
these directories by name using the normal name sSpace management
mechanisms.

The primary goal of the design presented in thls MTB is
to remove name space management from the security kernel of

Multics Prolect 1nternal working dJdocumentation. Not +to be
reproduced or distributed outside the Multics Prolect.,

Muitics. It has been argued that a serious consequence of any
scheme which reatizes this goal is that a process® name space €an

no longer refiect name changes in the hlerarchy. This argument
Is basec on a confusion between reference names and directory
entry names., It seems obvious that a process does not want its

name space to <change without iIts consent. Changing a segment®s
name does not change a process' access to it. A prime advantage
of reference names 1is precisely this ability to insulate a
process from name changes in the hlerarchye He should
distingulsh reference names from airectory entry names. A
reference name is a name we temporarily bind to a segment. A
directory entry name Is a selector of a particular entry In 2
directory, HWe neec directory entry names only to physicaliy
select a branch for the first time; after that we shouid be free
to call It whatever we choose. If any vaild reason exlists for
notifing a process that the names on a segment or directory that
it is wusing have changed, the system could signal a
name_change_on segment_x condition. This would require the
addition of some sort of KST trailer mechanism to the system.
This may eventually be necessary [f for no other reason than
Multics will eventually run for extremely Ilong uninterupted
stretches. If a oprocess were to stay permanently loggea in it
would require notification of on-line Instaliations. This in
Itsett s s difficult problem which I do not intend to address
here. The only polnt I wish to make is that the process and not
the system should control the duration of name bindings.

While fthere does not appear to be any Intrinsic need
for the Multics security kerne{ to support name space management,
its removal from ring zero is complicated by the fact that the
current Multics adcress space managers which provides a
legitimate kernzl function, depends on the name space manager.
Specificatlyy, the address space manager wuses the name space
manager to manage an assocjiative memory of (directory pathname,
segment number) pairs. It 1is ftherefore necessary to decouple
address space management from name space management before the
latter can be removed from ring zero.

The dependence of address space contre! on name space
control manlitests [tself In the recursive procecure find_ which
the adgress space manager uses to map directory pathnames into
directory segment numbers. When find_ Is Invoked It <calls the
name space manager with the pathname {t is glven. If the name
space manager returns a segment number then find_ is done.
Otherwise, find_ spiits the pathname into a pathname of the
narent clrectory of the target dlrectory and the name of the
target directory. It then calls itself recursively to obtain a
segment number for the parent directory. Using thls segment
number as a pointer to the parent directory, flno_ attempts to
initiate the target directory. 1If it suceeds it adds the pair
{path name of target, segment number of target! to the name space
manager®s data base and returns.

Thlis proposal suggests a radical change in the ring
zZero adcress space manager. The essential result of this change
is that find_, as described above, need no longer be called by
the address space manager. This allows both find_ and name space
managenent to be removed from ring zero.

Currently, determining whether a process should be
permlitted to initiate an arbltrary directory Is qulte difflcult
since we wish to prevent a process from detecting whether or not
a glven directory exlsts unless It has access to that directory.
This difficuity stems from the fact that the ACL of a branch and
its physical storage map reside in its parent. Since we wish the
ACL of a branch to exercise complete control over access to that
branchy we must permlt a process to Initiate all superiors of
accessibie segments independent of access to these superiorst?! To
avold this dlfflicufty, Multics Inexorably couples the Iinitiation
of a dlrectory with Initiating an Inferior segment. This
inability to initfiate directories directliy has lead fto many
reedlessiy complex mechanisms for manipulating directories. In
addition it has forced us always to refer to directories by
pathname. Not only is this inefficient, but it requires that the
address space manager be abie to cail find_. If we could
Initiate directories directly then we could use segment numbers
as directory specifiers. Address space control could then take a
segment number Instead of taking a pathname as a directory
specifier. Since address space control would no longer need to
calli find_ it could move ouf of ring zero along with name space
management without compromising the security of address space
controi.

Actuallyy, coupling directory and segment initiation
does not solve the probliem. Since a process cannot read the
access control fist of a segment until its parent is known, the
system stili must permit a process to lnitiate directories which
it may not have the right to know exist! By c¢asusing the
initiation of these superior airectories to occur in a single,
indivisablie ring zero calils the system couidy In principle,
prevent security leaks. This could be accomplished by terminating
those intermediate directories which had to be initiated only +to
find that the process had no access to the terminal segment,
before returning to the catler. Unfortunately, the current system
does not do sO. This allows any process to determine the
exlstence of any postulated directory. Certalinly one approach lIs
to correct this flaw In the current system. However, there seem
to be many ways of forcing such a scheme to compromise
information. For example, suppose a process tilled up Its
agdress space Intentionally and then called ring zero to inltiate
>secret>x., If ring zero was not very careful it might cause the
process to die due to a3 KST overfiow if and only 1f »>secret
existec. This would altow the existence of >secret to be inferred
by whether or not the process died,

I propose that we decouple segment and directory

initiation. As was noted earlier the basic problem to be solved
is how can the system decide whether a process shoui{d be allowed
to initiate a given directory. There are essentiailiy four
schemes for making this decision. The first scheme invofives
recognizing that if the access coniroi iist of a directory is +to
completely express access to that directory we must make explicit
the now "hidden™ permission to Initiate a directory [If some
descendent of the directory is accessibie to the process. The
obvious way to accomplish this s fto Invent a new directory
access mode called *“initiate"™. This mode allows +the named
principal to initiate a dlrectory and to use the information [t
contzins which Is relevent to accessing descendents of that
directory. This makes the decision of whether or not a process
shou!d be alionwed to Initiate a directory gqulte simple. If the
process has non-null access to the cirectory then [t may initiate
ite Otherwise, it may not. Unfortunateiy, this scheme defeats
our desire to have the access control list of a segment or
directory completely express what processes may access that
segment or directory.

A second way to declde whether a process may lnitlate a
directory is to search +the hierarchy subtree rooted at that

directory. If the process has non=nuill access to any member of
this subtree then the process shoula be aliowed to Initiate the
directory in question. Naturally, this scheme is far too

inefflcient to conslder serlousiy.

A third method of decigdlng whether 3 process may
initiate a directory is to require non=nulli access to the
directory. Thls scheme has the disadvantage, sharedg by the first
scheme discussedy, of preventing the access control {ist of a
directory or segment from being the sole arbiter of access fto
that clrectory or segment. Inorder to initlate a segment a
process would need non-null access to the superiors of that
segment.,

I propose that we take a forth approach to the probliem
of initiating directories. Instead of worrying about whether or
not a process has the right to initjiate a directory let us aflown
all processes to initiate any directory = whether or not it
exlsts! The key to this scheme s preventing the user from
detecting any difference between an [Initlated dlrectory which
does not exist and an initiated directory which exists but which
the wuser has not proven hls right to know exists. How this Is to
be cone will be discussed later. The rilng zero adaress space
manager Intertace resulting from this approach seems qulte
naturai. Ring zero no longer concerns Itself with pathnames.
Insteaa, it accepts alrectory segment numbers for directory
speciflerse To allow thlis scheme t0 bootstrap itself we wllli
define the segment number of the parent of the root to be zero.
Initiation of segments and directories wili be controlied by
initiate_ which wiil accept a parameter specifing whether 3
segment or directory Is to be Initited. The ratlonale opehlind

distinguishing dlrectory and segment initiation [s that a process
usually has a preconceived jdea about thz type of a3 branch it
wishes to Inltiate. When reality does not support this
preconcelved jidea the process is usually In error., Forcing the
process to make expilclt the type of branch 1t 1Is expecting
allows ring zero +to Immediately catch all such errors. This
prevents a careless process from bumbling along thinking all is
well only to die when It attempts to access a directory as a
segment or vice versa.

An important consequence of not handiing pathnames 1in
ring zero is that file system llnks can no ionger be interpreted
In ring zero. This requires that links be readable in the outer
rlngs which ralses the aquestion of what, if any, access control
shoulc be placed on reading {inks. The simple approach, which is
taken in the current system, is to make links completely public,
readable In all rings by all processess Thlis has the disadvantage
that If some process can guess the pathname of a3 real link then
it can prove the existence of the parent directories of that
ilnk. At the other end of the spectrum we could pliace access
control lists on tinks thereby explicitly naming those processes
which may reaag the linke This seems a bit too bulky. I propose
that we conslder a link to be part of its containing dlrectory,
readable only by processes having status permission on that
directory. This scheme has the virtues of being simple, easy to
implements and plugging the information hole which uncontrolled
access to links provides in the current system. While this scheme
does make one class of currently legal uses of 1links illegal,
this restriction does not seem t00 severe.

Hhen iInitliate_ encounters a 1{ink it will return the
link and a status code which informs the outer ring procedure
that a tink was encountered. The oufter ring procedure may then
try the new path specified by the {inke Since this 1iIs happening
in an outer ring we need no ftonger have a3 standard Interpretation
of links. That s unless the function moves out of the kernel but
not out of the supervisor. If showever, it resides in the user
ring the process may interpret llnks In any manner it chooses.
Why not let 1lnks contaln relative pathnames j,0ffsets, or even
arbitrary character strings? The important point is that while
the kernel may be the keeper of llnks It does not Interpret them.
Naturaliy the restriction on link depth, which was intended to
keep ring zero from getting into trouble, vanishes.

We can wuse this same mechanism of reflecting
information out to an outer ring by setting a status code to
indicate the fact that a segment®s copy switch was set. This
altows the concept of a copy switch to move out of ring zero.
"Hhether it is still handied within the supervisor but in a higher
ring or within the user®s rlng depends on whether it is to be
cons ldered a basic, unchangable system function or not.
Personally I would move [t to the user ring!

To complete our new ring zero address space manager
interface we must introduce a3 terminate primitive. This
primitive accepts three arguments. The first argument speclifies
the segment number +to be terminated. The second argument
specifies whether or not the reieased segment number IS *T0o be
reserved., The tinal argument is a status code, It should be
noticed that thls primitlve may be calied with either a8 segment
or clrectory segment number. In the case of terminating a
directory one constraint is enforced. Since the system requires
that a known segment®s parent also be known, terminate wili not
terminate a airectory with known Inferjiors,)

Since this scheme removes the Important function of
name space management from ring zero we must provide a name space
manager in the outer ring. Again it is a matter of opinion
whether name space management shoulda be handled In the supervisor
or in the user ring. If It resldes In the supervisor [t cannot be
clobbered by the user =-- neither can it be changed. It is my
oplnion that it should reside In the user ring. Perhaps the
system coulc also provide a secure address space manager which
coulcd be used by those users not interested in providing their
own. I wlll assume that name space management will be moved +fto
the user ring. Regaraless of where It Is ptaced all ring zero
primitives which currently accept pathnames wWwill have to become
write arounds in some outer rings. These write arounds must first
cati an outer ring procedure which, through appropriate catis to
the outer ring name space manager and the new ring zero address
space primltives, translate pathnames into segment numbers., This
corresponags to the function now performed In ring zero by fina_.
These segment numbers may then be passed to the new ring zero
primltives which wili not accept pathnames.

So far everything seems rosey. This scheme seems to
remove many functions from ring zero and to simplify the ring
zero Interface in the bargain. Where is the hitch? Do we get all
this for free? The answer ise Of course, noe. I have glossed over
one [mportant polnt. In order to decoupie directory and segment
initiation we must be able to sucessfully cloak the physlicai
inltiation of directories from a process® detection untii it has
established its right to know of the existence of the dlrectorye.
As was polntea out eariier, this need for ageception Is Intrinsic
to the hierarchy structure and functionality of the current
system. Whille this proposal makes the system®s need to decelve
the user more obvious, It is not responsible for the required
deceit,

I wilt call a directory detectable 1f a process has
established its right to know that +the directory exists.
Detectability may be established either by having non=-nulil access
to the clirectory or by having non-null access to Its parent or by
establishing the detectability of an inferior of the directory.
The reason that non=-null access on the parent of a branch
estabiishes cetectability is that either status » modlfy or

append permission is sufficient to allow the process to detect if
the branch Iin question actualiy exists. It shoula be notea that
the cetectabiliiily of a directory is a function of +the process*®
history and the ring of executions A directory lIs detectabie by
a process In rings zero through the hlghest ring in which-it has
detectably initjiated some member of +the tree rooted at that
directory. This highest detectable ring number of a directory Is
kept In Its KSTE.

We must prevent a process from detecting any dlfference
between an Initiatecd «directory which does not exlist and an
initiated existing but undetectable directory. If a process
could detect a difference In these two <cases then 1t could
establish the existence ot gpy postulated path Iin the hlerarchy.
This would constlfute a clear violatlon of securjitye. To
accomplish thls means abandoning the current one-to-one anc¢ onto
mapping which exists betWeen occupied segment numbers and known
segments and directories. We must allow multiple segment numbers
for the same directory. The reason for this is simple. Since
the ACL of a segment complately controls the right to lInitiate
that segment there Is no need to allow a process to Inltiate a
segment to which it has no access. This allows us to hlde the
physical existence of a segment from a process whlch has no right
to know If the segment exists by returnlng the amblguous status
code noinfo In response to an initiate request. This simple
mechanism fails for directories since we must always aliow a
process to initiate an existing directory in case It has access
to some Iinferior of that directory. This forces us to return more
than one segment number for a directory In some cases in order to
prevent. the process from detecting the existence of physicaliy
initiated but ltogically undetectable directorles. If initiate_
returned the same segment number for two different entries then
the process could be assured that the corresponding dlirectory
exists! This requires that we return a new segment number If a
process relnitiates a directory which is stil] undetectable with
a new name. In fact we wiill even return a new segment number |f
it tries to Initiate an undetectable directory with the same name
twice. If we returned the same segment number then Iinorder for
directorles which do not physically exlst to appear the same to
the user ring, ring zero would have to remember the name of every
phoney directory., This is a needless complication of ring zero.

This scheme will merrily aliow a process to Iinitlate
vast trees of directories which do not existt These directories
will be Indistinguishable from real undetectable directories.
The potentiai multipliicity of segment numbers for directories
Impiies that [f we compare two directory pointers and find them
to be not eaqual we cannot conclude that the oblects polnted to
are not one and the same. Since processes running ouftside fthe
supervisor cannot currently use segment numbers for directories,
no user code can be effected by this new restrictions To ailow
processes to quickly determine if two segment numbers are bound
to the same object the system should support a function for

mapping a segment number Intco the unjigue jdentifier of the oblect
it is bouna to. Naturally, thls function must return an error if
the oblect is rot detectable to the processe. The system wmust
also insure that if the user attempts to reference through any
directory pointer in an outer ring ne wiii get the appropriate
access violation whether our not the segment number he used
corresponded to a real or phoney dJdirectory.

The action to be taken by ring zero in response *to a
request to initiate a dlrectory depends on four booiean state
variabtes of the target with respect to the accessing process.
These varlables c¢an be encoded as a bit string with the
interpretation of each bit given pelows

state codes

state meaning

1000 target®s parent is phoney
0400 target detectable

0010 target exlists

0001 target already has KSTE

The possible actlons which rilng zero can take in response to a
request to initiate a directory are encoded below, I have
omitted the case where the target Is a 1ink as this case has
alreacy been discusseds.

action _cgodes
aas assign a segment number to the girectory
ene refurn a status code indicating that the
directory does not exist
enc : return a status code Iindicating that the

directory eaither does not exist or that the
process has not established its right to know
that [t exists

ros return segment number and a status code
Indicating that the dlrectory was already
known

sd update highest getectable ring ficla of this

KSTE and Its superlor KSTEs to the maximum of
their current value ana the ring of execution
sdz set highest detectable ring fietd to zero

This encoding allows us to compactly characterize the functioning
of initiate_ In the foliowing table. Entries in the state column
ancode a possible state., Entries In the action column encode the
actions to be taken given the state represented in the state
column,

action ot injtiste

siate action

00=~ aasssdzyend
010~ ene

01160 a3as eSS0

p111 rps

b Eatadd aasssdzsend

Two possible oblections I can see to this scheme are
that it can potentially waste segment numbers and It requires
inspecting the parent®s ACL. A close examination of the
preceeding chart indicates that there are only two ways to assign

a segment number which Is not directiy connected to a clrectorye.
The first way is to relnitiate an undetectabie directory. The
second is to Inltlate a phoney directory. Nejither of these
operations should occur in normal operation. They could, however,
arise in an attempt 7o use a misspeiied pathname. To eradicate
this problem the outer ring wvarjiant of find_ could terminate
those cirectories which might be phoney 1f the terminal segment
could not be initiated. This would prevent a habitual misspeller
from cluttering up his address space. It seems that wlth this
addition a process must go out of Its way Inorder to clutter up
its address space. If that is what it wants fine! Even {§f a
process wastes all its segment numbers [t can recover by
termingting no longer needed segment numbers. The apparent
inefficency of inspecting the ACL of the parent of a branch
quring Initiation of that branch (s not serlous since [t Is
normally not required. Only when a process has null access to a
branch and has not previous.y established detectability for that
branch Is 1t necessary to Inspect the ACL of the parent.

In the ola KST schemey the names stored with each KSTE
provided a means of telling what rings still had the assoclated
segment or dlrectfory lnitiated. Since these names wiitl no {onger
be kept in the KST some new mechanism must be invented fo supply
thls Information. This is easily accompl ished by adding an eight
blt fieldy calted ringsy to each KSTE., If the 1 th bit{(0
origined) in this fielg¢ is on then the corresponding ring has the
segment or directory Initiatedes This atlons ring zero to detect
when & segment or cirectory may be physlically terminateacy, thereby
preventing one ring from terminating a segment or directory that
is belng used by another ring.

It should be carefully noted that the termination
primitive terminates a segment number. Only If the 1ast segment
number for a alrectory is being terminated and its inferlor count
Is zero wWitll [t be physically terminated! We can use the same
method to describe the actlon of the terminate primitive as was
usec to cescribe the actlon of the inltlate primitive.

state codes

state meaning

100 KSTE has inferlors known

g10 KSTE known in other rings

001 reserve requested
action_cogdes

rr - reset this ring®*s known bit

tf thread KSTE onfo free chain

tr threac KSTE onto reservea chain

action of terminate orimitive

state action
g0g rrytf
001 rrstr
-i- re

1-- rr

In summary, this proposal calls for the complete
removal of name space management from ring zero. 4s a resuit the
concepts of pathname and file system links also depart ring zero.
In the process of removing name space management from ring 2zero,
I have reorganized and limproved the ring zero interface and
address space manager. The KST has been simplified and contains
oniy two components: a KSTE arrays and a UID hash table. The
contents of each KSTE and their major Jyses are summarized below.

KSTE _fleid Use

forward pointer,

backward polinter Used to thread KSTE onto free or
' hash class tist as reqguired.

unigue identifier Unchanged (a phoney directory will
have a uld =).

inferior count Unchanged.,

entry polinter A packed pointer to the directory
entry of this branch.

directory switch Unchanged.

transparent modification switch,
transparent usage switch Unchanged.

rings An elght blt fleld contalining one
bit per ring. Khenever ring i has
this segment number iIniltiated then
bit i of this field iIs on.

highest detectable ring A number Wwhich specifles t he
highest ring In which this process

has estabiished its right to knou
of the existence of this directorve.

The oproposed ring zero segment number manager interface [s as
follows.

initiate_ (dirsegnosenamesdirswsrswylinkssegnoscode)

dirsegno segment number of the parent (input)

ename entry name of target{input)

dirsw directory switchi{input)

rsSw reserved segment switch{input)

link link(output) '

segno segment number of target(if rsw then Input)
coge status codef{output)

terminate_{(segno,rswycode)

segno segment number to be terminated{input}
rsw see above
code see above

To help clarify the jdeas presentec Iin this proposail
let us consider the following senario in which a process frys to
Initlate the segment >a>b>c>d>e>f in ring four. We wili{ assune
that directory e and segment f do not exist and that the process
has no permission on a, b or dy, and append permission on ¢ In
rings zero through four. To simpilfy matters we will Ignore the
existence of the outer ring name space manager and we wiil assume
that we are operating In a virgin environment. What follows Is
how the outer ring fina_ would proceed In thls case.

step 0 call initiate_(0+""s140slinkysegno_of_root,code)
The root cvlirectory will be Initiateds, Its detectbie

field in the KSTE wiil be set to four, and a status
code of zero will be returned. '

step 1 call
initlate_(segno_of_root,"a",14+0+1lnkesegno_of_aycode)
The directory will be initiatedy iIts detectable fieid

in the KSTE wil! be set tc four, and a status code of
zero wili be returnede.

- 12—

step 2 catl Initiate_{(segno_of_a+"b"ys1,0,linkssegno_of_b,ycode)

The directory wiil be Initlated » its cetectable field
in the KSTE wilil be set to zero, and the status cogde
nolinfo wil! be returned.

step 3 call Initiate_(segno_of_b,*c"y1,0,1inkysegno_of_cycode)

The directory will be injtiated, its detectable field
in the KSTE will be set to foury, and a zero status code
will be returnede. In addition this initiation
establ ishes the process® right to know of the exlistence
of superlor airectorlies at least In rings zero through
four. This is reflectedy in this casey, by sefting the
detectable fleid In the KSTE of >a>b to four.

step &4 call initlate_(segno_of_cs+" d"41+0stinkysegno_of_d,code)
The directeory d wili be Initiated, Its detectable fleld
In the KSTE wit!{ be set to foury and a zero status code
will be returned.

step 5 cali Initlate_{segno_of_ds*“e",1,+0,1inkysegno_of_e,code)
The non existant directory e will be assigned a KSTE

which wili be marked as phoney and the status code
noinfo will be returned,

step 6 call initiate_(segno_of_e,"f*,0,0slinkysegno_of_f,code)
No KSTE wlll be assigned and the status code noinfo
will be returned.

step 7 call tTerminate_{(segno_of_e40ycode)
The segment number assigned to e will be released on

the grounds that e may really not exist.

The address space manager proposed In thls MIB has been
written and is many times simpler and smaller than the current
ring zero address space manager. In some modules the reduction
in =size is on the order of a factor of ten! 1In addition, a
verslion c¢f hardcore which preserves the current ring zero
interface 1is being debuggea which Is built on this new adaress
space manager.

APPENDIX A

The maln data base for the current ring zero address
and name Space manager s the Known Jegment Jabie. The K57 Is &
per=process, ring zero segment., Logically it contains four jitems.
Firsty it contains an array of KST Entries. KSTEs are indexed by
segment number and contain all per-process information necessary
for the proper care and feeding of the segment or directory
associated with the indexing segment number, Second, it contains
a hash coded mapping from the space of Unique JDentiflers onto
the space of segment numbers, or equivalentily the space of KSTEs.
This mapping provides the means of locating the KSTE of an
already initiated segment should it subsequently be initlated by
a different name., Third, it contains a hash coded mapping from
the space of names onto the space of segment numbers. This
association 1is mainly of use to the dynamlic linking mechanismne.
Forthy it provides a repository for per=ring search rules, This
tater KST function will be consldered no further as the user=-ring
dynamic {inker removes this information from the KST. The current
contents of a . KSTE and their major usages are glven in the
following table.

KSTE field

forward pointers
backward pointer

unlique identlifier

name pointer

inferior count

parent segment number

offset of branch

airectory switch

transparent modificationy
transparent usage switch

Use

Used to chaln the KSTE onto a 1ist
of frae or raserved KSTEs as
required.

Used to valldate UID hash searches
and to properly identify the
corresponding branch after an
on-line salvage.

Used to chaln together a Ilist of
the reference names associated with
this segment or dlirectory and the
rings in which they are known.

Used to prevent a directory fronm
being terminated while It has known
SONSs If thls were not done
segment faults would fail!

Used at segment fault time to
locate this branch®'s parent. It
aiso is used to transiate segment
numbers Into pathnames.

Used to locate the branch within
the parent diractorye.

Used to special case access setting
for directories at segment fault
flmeo

Used to control whether this
process® wusage and/or modjification
of this segment or alrectory should
be transparent to the system.

15 =

