
Multics Technical Bulletin MTB-162

To: Distribution

From: J. A. Weeldreyer

Date: February 28, 1975

Subject: Multics Removable Disk 1/0 Module

INTRODUCTION

There appears to be substantial technical justification for
the development of a cap~bility on Multics to perform explicit
inputloutput operations fromlto disk, treating it -as a removable
medium. It would be desirable that this capability be available
via language liD statements, rather than merely through
subroutine calls. This facility could be used to provide for
disk file transfers between Multics and other (Multics or
non-Multics) computer systems. Also, the backup-to-disk
application needs a facility such as -this. Finally, this
capability will be useful to other system processes,as well as
user processes, which require explicit disk liD.

Suggestions and comments will be greatly
Please send them to me by Multics mail on System M
Multics), or give me a call at (HVN) 357-3182.

GENERAL DISCUSSION

appreciated.
(Weeldreyer

The following possibilities were considered prior to
deciding which capabilities should be implemented in the initial
version of the Removable'Disk 1/0 Module:

1. Support of PL/I stream 110,

2. Support of PL/I record 110,

3. System controlled sharing of disk by multiple users,

4. Support of a basic, physical device oriented liD
capability which would be useable via PL/I record liD
statements,

5. Support of stranger pack formats, e.g. GCOS removable
packs,

6. System controlled label checking as a form of disk pack
access control, and

7. Support of some form of device accounting.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-162

The following assumptions affected the decision:

1. A new storage system with a removable segment facility
is to U~ implemented for MR 4.0. Therefore, most
applications requiring disk for Multics files will (or
should) utilize this feature with vfile_.

2. There may be some system functions, e.g. backup, which
will find the Removable Disk liD Module useful.

3. Another application for this capability would be to
provide access to stranger, e.g. GCOS, disk packs.

Under· these assumptions, it becomes rather obvious that
there is no immediate need to support the full PL/I liD
capability since this will soon be available on another form of
removable disk via the new storage system and vfile_. Also, the
capability for system-controlled sharing of removable disk files
will soon be provided by the new storage system.

Clearly, some form of "negative" label checking should be
implemented prior to the advent of the new storage system. This
would prevent the mounting of and tampering with removable file
system packs. However, this would logically be a function of the
Resource Control Package (rcp_) rather than this liD module. The
only other relatively near-term possible requirement for label
checking would be for the backup-to-disk application. However,
backup is a trusted system process running in ring 1, and will
perform its own label checking as part of a comprehensive data
validation scheme. Therefore, it does not appear necessary to
provide a label checking capability in the initial version of
this 1/0 module, although it may be prudent to provide for the
reservation of a label area on each pack to prevent the necessity
for user program modification if label checking is eventually
implemented.

The device accounting function is something which is not
unique to any particular liD module, and would therefore appear
to be a function of rcp_.

Although we have assumed that one possible application of a
removable disk liD module would be the accessing of stranger
packs, it is not clear at this point that there is a great
customer demand for such a facility, nor that it would be
desirable to define stranger formats to be su.pported without some
customer feedback. Therefore, the logical approach would _aem to
be the providing of a very basic initial capability which would
provide a means of accessing the data on a disk pack, but would
leave the formattinglunformatting of the data as an exercise for
the ambitious user programmer. If, at some time in the future,
it becomes apparent that a more comprehensive stranger pack
support capability is required, such a facility (or facilities)

MTB-162 Page 3

could be developed as "piggy-back" 1/0 modules which would
utilize this "basic" 1/0 module.

This approach also satisfies the other near-term
requirements for a removable disk 1/0 module~ The
backup_to_disk facility requires only a means of accessing the
disk, since it will already be in existance when the Removable
Disk 1/0 Module comes into being, and will already have the
capability to formatlunformat its data. Finally, such a facility
would provide for language 1/0 fromlto disk because it will be
accessable via a limited subset of the record 1/0 statements of
PLII and FORTRAN.

PROPOSED 110 MODULE DESCRIPTION

1/0 MODULE

Name: rdisk_

This 1/0 module supports 1/0 fromlto removable disk packs.
Only direct mode files are supported.

Entries in this module are not called directly by users;
rather, the module is accessed through the 1/0 system. See the
MPM section, the Multics 1/0 System, for a general description of
the 1/0 system, and see the MPM section, File 1/0, for a
discussion of files.

Attach Description

The attach description has the following form:

3 · opti

-write

is a character string identifying
the model number of the required
disk devi6e. Currently, only the
DSS191 is supported. The device_id
for the DSS191 is "D191".

is a character string identifying
the disk pack to be mounted.

may be
options.
once.

one of the following
An option may occur only

indicates that the disk pack is to
be written. If omitted, the
operator will be instructed to
mount the pack write inhibited.

Page 4

-size n

MTB-162

indicates that the value of n is to
override the value of buff_len as a
record size limit for the
read_record operation. (See
notes.)

The attachment causes the specified disk pack to be mounted
on a drive of the specified type. The privileged version of the
disk attach mechanism will be automatically invoked for system
processes. (See the I/O Interfacer documentation.)

Opening

The only opening modes supported are direct_input and
direct_update. If an I/O switch attached via rdisk_ is to be
opened for update, the -write option must occur in the attach
description. This operation has no effect on the physical
device.

Delete Record Operation

This operation is not supported.

Read Length Operation

This operation is not supported.

Read Record Operation

If the amount of data to be read does not terminate on a
sector boundary, the excess portion of the last sector will be
discarded. A zero code will be returned in this case. (See
notes for further discussion.)

Rewrite Record Operation

This operation is the only output operation s~pported. If
the amount of data to be written does not terminate on a sector
boundary, the remaining portion of the last sector will be filled
with binary zeros. A zero code will be returned in this case.
(See notes for further discussion.)

Seek Key Operation

This operation will return a zero status code for any key
which is a valid sector number. The record length returned will
always be 64 (current physical sector size) for any valil key.
(See notes for further discussion.)

Control Operation

The following orders are supported when the I/O switch is
open, except for getbounds, which is supported while the switch

MTB-162

is attached.

changepack

get bounds

setsize

Modes Operation

Page 5

causes the current pack to be
dismounted and another pack to be
mounted in its place. The info_ptr
should point to a varying character
string (maximum of 32 characters)
containing the identifier of the
pack to be mounted.

causes the lowest and highest
sector numbers accessible by the
caller under the current modes to
be returned. The info_ptr should
point to a structure like the
following:

dcl 1 bounds,
2 low fixed bin (35),
2 high fixed bin (35);

causes the value
override setting
info_ptr should
bin(35) quantity
override value.

of the record size
to be reset. The
point to a fixed

containing the new

The modes operation is supported when the 1/0 switch is
attached. The recognized modes are listed below. Each mode has
a complement indicated by the character ,,"'n (e.g. ""'label") that
turns the mode off.

label, label

alttrk,"alttrk

specifies that a system-defined
number of sectors at the beginning
of the pack are reserved for a pack
label, and that a seek_key
operation is to treat any key
within this area as an invalid key.
(Default is on.)

specifies that the pack has been
formatted with the assignment of
alternate tracks, so that a
system-defined number of sectors at
the end of the pack are reserved
for an alternate track area.
Therefore, a seek_key operation is
to treat any key within that area
as an invalid key. (Default is
off.)

Page 6

wrtcmp,Awrtcmp

Write Record Operation

MTB-162

specifies that the
Write-and-Compare
instruction,rather than the Write
instruction will be used for the
rewrite_record operation. This
causes all data written out to be
read back in and compared to the
data as it was prior to being
written. This mode should be used
with discretion, since it doubles
the data transfer time of every
write. (Default is off.)

This operation is not supported.

Closing

The closing has no effect on the physical device.

Detaching

The detachment causes the disk pack to be dismounted.

Notes

This I/O module provides a very elementary, physical device
oriented I/O facility, and is the basic user-level interface to a
disk device. All operations are performed through calls to
various I/O Interfacer (ioi_) and Resource Control Package (rcp_)
entries. This I/O module provides the capability to read/write
a caller-specified number of characters to/from a disk_pack,
beginning at a caller-specified sector number. Currently, the
DSS191 is the only device type which is supported.

The entire disk pack is treated as a keyed direct file, with
keys interpreted literally as physical sector numbers. Hence,
the only allowable keys are those which can be converted into a
fixed binary integer which falls within the range of valid sector
numbers for the given disk device under the current modes, as
returned by thegetbounds control order.

If an attempt is made to read or write beyond the end of the
user-accessible area on disk, the code error_table_$device_end is
returned. If a defective track is encountered or if any other
unrecoverable data transmission error is encountered, t'~e code
error_table_$device_parity is returned.

The record length is specified via the buff_len parameter in
the read_record operation, and via the rec_len parameter for the
rewrite operation, unless overridden by a -size option in the
attach description. (Since the file is defined to consist of the

MTB-162 Page 7

entire pack, the write operation has no meaning in this 1/0
module.)

The following items must be c6nsidered when using this 1/0
module with language 110:

1. Device Attachment and File Opening:

a. PL/I: A file can be attached to a disk pack in
PL/I by specifying the appropriate attach description
in the title option of an open statement. The open
statement should also specify the record and keyed
attributes, plus either the in~ut or ,update attribute,
as is appropriate. After opening, the desired modes
should be set, and the current sector bounds should be
obtained, through direct calls to iox_$find_iocb,
iox_$modes, and iox_$control.

b. FORTRAN: It is not possible to attach a file to a
disk pack within FORTRAN. Here, the attachment must be
made external to the FORTRAN program, e.g. via the
io_call command or through use of a PL/I subroutine.
FORTRAN will automatically open the file with the
appropriate attributes. Also, it is impossible to set
modes or obtain sector bounds from within FORTRAN.
This ~hould be done through use of a PL/I subroutine
prior to the first FORTRAN reference to the file.

2. Input!

a. PL/I: The PL/I read statement with the into and
key options is used to read data from a disk pack. The
input record length (buff_len) is determined by the
size of the variable specified in the into option. The
set option should not be used. The key should be a
character string containing the character
representation of the desired sector number.

b. FORTRAN: The unformatted, keyed version of the
FORTRAN read statement is used. The key must be an
integer, the value of which is the desired sector
number. In FORTRAN, buff_len has no relationship to
input variable size. Hence, the -size option must be
specified in the attach description if the disk pack is
to be read via FORTRAN. The size should be set to the
length of the longest expected record.

3. Output:

a. PL/I: The PL/I rewrite statement must be used to
perform output operations to a disk pack. The from and
key options must be specified. The size of the
variable referenced in the from option determines the

Page 8 MTB-162

length of the record written to disk. The key should
be a character string containing the character
representation of the desired s~ctor number.

b. FORTRAN: The unformatted, keyed version of the
FORTRAN write statement must be used to perform output
operations to a disk pack. The size of the output
record is determined by the amount of data specified in
the write list. The key must be an integer, the value
~f which is the desired sector number.

