
Multics Technical Bulletin MTB-168

To: DISTRIBUTION

From: Steve Webber

Subject: New Command Processor Conventions

Date: 3/3/75

INTRODUCTION

This memo describes a proposed new calling sequence for
command and active functions. The major change is that the
command processor and the active function processor
(proc_brackets_. today) will examine the entry descriptors of the
command or active function about to be called and prepare an
argument list appropriately.

Before describing the proposed new command calling sequences
it should be noted that it is not being prop6sed that arbitrary
argument lists be prepared or that any conversions be done by the
command processor. Rather, the command processor will look for
certain argument lists (that expect only character strings) and
treat any that don't fall into this set the same way they are
treated today. namely by calling them with the given number of
char (*) unaligned arguments.

NEW COMMAND ARGUMENT LISTS

There are three basic formats of argument lists that the
command processor will initially special case. These are:

1 . command: proc (args);

2. active func: proc (args. af~witch. ret_ptr);

and 3. command: proc (arg1. , ... argN);

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 I"1TB-16e

where:

1. args is an array of varying length character strings declared
in one of the following ways (N and M are constants):

i. (*) char (*) varying.

ii. (N) char (*) varying.

iii. (*) char (M) varying. and

iv. (N) char (M) varying.

2. af_switch is a switch, set by the command processor or active
function processor, indicating the entry was called as a
command Ct'oub) or as an active function ("l"b) ..

3. retJtr is a pointer set by an active function to point to
the value of the active function. (See below.)

4. argi are varying strings of fixed or variable maximum length.

A command writer chooses one of the above formats depending
on whether the command can also be called as an active function.
It" the command can also be called as an active function or if the
prop;ram can only be called as an active function. the second
format is used. Otherwise. the first format will ~enerally be
used. The third format will be used by commands that always
expect/require the same number of ar~uments The third form of
pro~ram will never be called by the command processor (it cannot
be used as an active function) unless exactly the correct number
of arguments were given.

The args array can be declared by the command in the most
appropriate way for the command. In particular~ if the command
must receive a given. fixed number of arguments (and form 3 is
not wanted) the command should declare args as

(N) char (*) varying. or

(N) char (M) varying.

If N arguments are not given on the command line, the
command processor will not even call the command but will rather
print an error message such as:

Incorrect number of arguments passed to <commanG name).

This isolates such checking in the command processor so that each
command need not do it.

If a command is willing to accept a variable number of
arguments one of the following declarations for args should be

MTB-168 Page 3

used:

(*) char (*) varying. or

(*) char (M) varying.

When this is the case, the command can easily (and efficiently)
find the number of arguments by using:

hbound (args ~ 1)

Similarly. to reference the n'th argument one merely uses:

args (n)

rather than a
cU_$af_argytr.

(more costly) call to

A further advantage is the ease with which a command that
can also be used as an active function can be written. Ar~uments
would be referenced in the same way regardless of how the program
is being used.

Note that the fewer asterisks' in the declaration of args.
the faster will be the accessing code in the command program. It'
either

(*) char (M) varying. or

(N) char (M) varying

were specified and the command line gave arguments longer than M
characters, the command processor would not call the command but
would rather print a message such as:

Argument <N) passed to (command. name> is too long.

In many cases this relieves the command program from checking the
length of its arguments.

RETURNING ACTIVE FUNCTION VALUES

A special entry in cu will be provided for active function
use. The effect is a returns (char (*)[varying]) but done with
fewer data copies and hence more efficiently. ~he use is:

declare cU_$return_value entry options (variable);

call cU_$return_value (value of active function);

Page 4 MTB-168

This program extends the stack frame of its caller's caller and
copies the given string into the extended region. (The parameter
"value of active function tl may be a varying or nonvarying string
expression.) It also sets the third argument to its caller's
caller (ret ptr. above) to the first word of the extended re~ion.
The buffer contains a based, varying string -- hence the returned
value is referenced as:

declare returned_value char (100000) varying based (ret_ptr);

The active function processor may release the storage allocated
by cU_$return_value by a call to cU_$shrink_stack_frame.

CHANGES TO EXTERNAL INTERFACES

The above proposal makes the following entries in cu
unnecessary:

The new entry cu $return value must be provided. The
cU_$ptr_call entry is necessary because of the inconvenience and
inefficiency in converting pointer variables to entry variables
in Multics PL/I and will certainly have to be retained for other
reasons. (All entries will. of course. have to be retained
forever.)

WHAT NEEDS TO BE DUNE

The following tasks must be completed in order to complete
the proposed changes:

1. The PL/I compiler must be changed to generave the
(newly proposed) standard entry structures which make
it more easy and efficient to find entry descriptors.
The basic change in the entry definition is the
movement of the entry descriptor pointers from the
definition section to the text section.

MTB-168 Page 5

2. The programs (lcommand_processor _tJ and "proc_brackets_d

must be changed to examine entry descriptors (if and
only if the entries are of the new form) It' entry
descriptors are used (the command expects explicit
arguments) appropriate action as mentioned above is
taken.

The command processor and active function processor
will also be changed at this time to take appropriate
action when an incorrect number or size of arguments is
noticed.

3. As time permits~ commands should be modified (probably
as part of some other optimizing project) to use the
new conventions. Full documentation must have been
provided to allow command writers (and readers) to know
what the conventions are.

