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INTRODUCTION 
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This paper describes the Multics multilevel paging system, 
the Page Multilevel algorithm or PML for short, with particular 
emphasis on the algorithms used to move pages from one level of 
the storage hierarchy to another. The paper also discusses some 
of the history and background of the development in particular 
where it relates to changes in the algorithms. 

Although Multics has been in working existence for many 
years, many of its features are still novel and implemented on 
few if any other operating systems. For this reason, a 
discussion of some of the terminology as it relates to Multics 
is also included as background for the reader. Finally, a 
discussion is presented which predicts probable future 
developments both on Multics and other systems with respect to 
hierarchically organized memories (storage hierarchies) in light 
of what we have learned from Multics. 

BACKGROUND AND TERMINOLOGY 

Multics (C2) is a demand-paged system in which all 
addressable information is divided into 1024-word blocks, or 
pages, that are automatically read into main memory when 
referenced, if not already there. A page referenced that is not 
in main memory causes a ~ fault. The occurrence of a page 
fault is, of necessity, transparent to the executing program 
(although a real-time delay may be observed). The division of 
information into pages is likewise transparent to programs 
dynamic address translation hardware effects both the page 
mapping and the detection of page faults (B1). 

The software that oversees paging activities, resolves page 
faults, and manages the paging data structures is known as ~ 
control. 

In a demand-paged system, the resolution of a page fault 
usually requires the eviction of some page of data from main 
memory to make room for the page that has been faulted upon. The 
choice of which page to evict is crucial since the minimization 
of page faults (and, hence, paging overhead) is a function of 
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success in evicting those pages least likely to be used in the 
near future. (The optimal replacement algorithm can be shown to 
be that which evicts the page that will not be needed for the 
longest time of any of those currently in main memory.) This 
requires some prediction of program behavior. 

The Multics main memory management algorithm uses an 
approximation of the Least-Recently-Used (LRU) algorithm to model 
program paging behavior (M1). The model implied by this 
algorithm maintains that pages not used recently are less likely 
to be needed than those used recently. 

Other than pages in use as peripheral I/O buffers, any data 
page may occupy any ~ frame of main memory. A page frame of 
secondary storage is known as a record. For the most part, the 
paging scheme does not recognize "ownership" of pages, or 
recognize any special attributes of the data objects of which 
given pages are a part. All pages are equivalent with respect to 
replacement. In the current scheme, pages faulted upon by one 
user can replace pages faulted upon by himself as well as others 
-- the various management algorithms view usage only in the 
global context of the whole system. 

Thus, pages form a single large collection of data objects, 
moving among levels of the paging hierarchy, each level forming a 
single pool of page frames, without regard to "ownership" of 
pages. 

Hultics employs a segmented virtual memory_ The term 
virtual memory has been used in the past few years to denote at 
least two distinct, although not altogether unrelated concepts. 
The first is roughly the concept of demand paging. A user 
program "sees" an address space potentially "larger" than the 
size of physical main memory_ The second denotes a file system, 
or similar data-object management system, in which data objects 
are directly addressable by hardware, i.e., the file system is 
part of the "virtual address space" of running programs. 
Multics's use of the term virtual memory resolves this ambiguity 
by conforming to both definitions (B1). Multics maintains a 
directory hierarchy, a hierarchically organized collection of 
segments, that are either directories (non-terminal nodes) or 
non-directory segments (terminal nodes). Note that the (logical) 
directory hierarchy should not be identified with or confused 
with the (physical) storage hierarchy mentioned above. 

Segments are data objects, each consisting of an a: ray of 
words. Programs, data bases, work areas, and the various 
components of the supervisor itself, are all segments. 
Directories are segments as well. They are catalogues, 
containing branches for the segments and directories inferior to 
them. A branch describes the names, access rights, and creation 
and usage information for the segment or directory it describes, 
and whether it is, in fact, a directory or a terminal segment. A 
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branch also includes a record of the physical location of the 
segment. A segment is transparently divided into pages, each of 
which has a home on disk. The branch gives the disk address of 
the home of each page. 

A Hultics process can be defined as an address space and an 
execution point therein. An address space is a dynamically 
variable subset of the directory hierarchy constrained by the 
access rights of the associated process. (A process is roughly 
analogous to and usually associated with a logged-in ~.) 

Any data addressable by user or supervisor programs is 
conceptually in some segment. All CPU instructions develop two 
numbers, a segment number and a word number, for each memory 
reference. The dynamic address translation (appending) hardware 
of the CPU maps the segment number, through a per-process mapping 
table (the descriptor segment) into a ~ table. This page 
table is uniquely bound to some segment in the directory 
hierarchy. Its function is to map all references made by that 
user using that segment number (or, significantly, any other user 
using some other segment number for this segment) into main 
memory addresses, if possible, or page faults, if not. The 
identification of this page table with a particular segment in 
the directory hierarchy provides for the resolution of a page 
fault by reading the corresponding page of the segment into main 
memory. Thus, the illusion of addressing "files" is maintained 
by these disciplines. 

Segments may have their pages scattered over a disk storage 
subsystem: within each disk subsystem, one pool of unused disk 
pages is maintained. No attempt to perform input/output of 
contiguous pages is made. This is a result of the aforementioned 
equivalence of pages. 

The large number of segments and the limited space available 
for page tables (which must be resident in main memory) 
necessitate a page-table multiplexing strategy_ Another 
pseudo-LRU scheme is used to deactivate segments when a page 
table is needed. Deactivation consists of removing the segment 
from the address space of all processes whose descriptor segments 
reference its page table, irreversibly flushing all of its pages 
from main memory, updating usage information in its branch, and 
finally, freeing its page table, and marking in its branch that 
it now has no page table. Subsequent reference by any process 
via the segment number which had described the segment in that 
process causes a segment fault to occur in that process. The 
hardware, being asked to use the specially-marked entry in the 
descriptor segment of that process, produces this type of 
exception. The resolution of the segment fault consists of 
determining the identity of the segment from the supervisor data 
bases of that process, inspecting its branch to see if it is 
active (has a page table), activating it (creating a page table 
by deactivating some other segment) if not, and making a 
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descriptor segment entry to point to that page table. The 
software responsible for activating and deactivating segments is 
known as segment control. 

This activation/deactivation strategy causes problems for 
the paging scheme. There exist special entries in page control 
for evicting all pages of a segment and page table replacement. 
Page control must be cognizant of segments being deactivated, and 
aware that a page table may denote many segments in succession in 
time. 

PML partitions storage into a cost/si~e/access-time paging 
hierarchy. It is based upon the use of three storage media (in 
the current system fast main (core) memory, slower core memory 
(originally "drum"), and movable head disk) of decreasing average 
access speed and decreasing average cost per bit. It was by and 
large motivated by experience with Multics on the Honeywell 645 
(GE-645), which employed a drum and a moving head disk subsystem 
(the drum, in actuality, was a very high speed six-platter 
fixed-head disk). 

Advantage was taken of the speed and hardware queuing 
characteristics of the drum. As processes were suspended from 
active execution in main memory, as demanded by the job 
scheduling algorithm, drum-resident pages which were "attributed" 
to the departing process by several heuristics were written out 
en masse to the drum, in order to increase the ease of replacing 
these pages in main memory. This technique, post-purging, took 
advantage of the knowledge that those pages had an extremely 
small likelihood of being used while the departing process was 
not active in main memory. 

Another technique dependent upon the drum's performance was 
~-12aging, which attempted to avoid page-fault overhead by 
reading in a subset of those pages which were post-purged when a 
process resumed active execution in main memory. The assumption 
here was that parallel issuance of I/O requests for these pages, 
with their identity already known, is more efficient than 
sequential faulting via demand paging, the latter incurring 
substantially more overhead and real time. 

Although pre-paging and post-purging may bring to mind 
"swapping" on earlier systems, the intent was quite different. 
In their original conception and implementation, they were both 
schemes to take advantage of the large drum channel capacity and 
of position sensitive hardware queuing by the drum hardwa~e and 
software. \Jere pages on disk post-purged or pre-paged, the 
resulting demands upon the disk channels would have been 
unacceptable. 
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HISTORY 

As mentioned earlier, Multics in its early years made use of 
a drum. . This drum had a transfer rate of one page in 2. i 
milliseconds and an average latency of around 18 milliseconds. 
The first use of the drum was as a normal secondary storage 
device with no special treatment by page control. It was soon 
learned that the drum's speed could be better utilized if those 
segments which resulted in most paging activity were placed on 
it. This was done by det~rmining the device on which a segment 
would reside when that segment was created. 

Static Device Assignment 

To better use the drum a program was called at segment 
creation time to determine through somewhat limited and 
artificial, but effective, heuristics exactly which of the 
secondary storage devices the segment should reside on for its 
lifetime. Since the drum was limited in size (4,096 pages) it 
was ~portant to make a good decision at segment creation time. 
Unfortunately, the only information available at segment creation 
time are items' such as: 

1. location in directory hierarchy 
2. directory/segment status 
3. per-user status 

Note that it has been a Multics policy not to' accept user 
inputs on matters such as these; more consistency and 
dependabili~y result if the operating system ·itself attempts to 
set and determine parameters related to performance and tuning. 
Hence, there was not and still is not any means available for a 
user to indicate what kind and degree of use a segment (or page) 
will get. 

The early algorithm was basically as follows: 

1. if the segment is a directory place it on th~ drum, 
2. if the segment is a temporary per-process segment (and, 

hence, contains short-lived information) place it on the 
drum, 

3. if the segment is in one of the system libraries (and, hence, 
probably used a good deal as well as being shared) place it 
on the drum, 

4. otherwise, place it on one of the slower disk subsystems. 

Note that decisions 2. and 3. above can be made solely from 
the segment's position in the directory hierarchy. Also, it 
should be pointed out that the appropriate overflow tests were 
made and that a segment would not be placed on the drum if there 
were not enough room, even if it passed the heuristic tests. 
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The final device assignment algorithm used before PML was 
installed placed the following segments on the drum: 

1. supervisor segments 
2. system library segments 
3. the first 9 segments created in a user's 

per-user) directory. 
process (temporary 

/' 

This scheme had several problems. First, it placed system 
files which may not be used at all on the drum. Mere presence in 
a system library does not guarantee use, let alone heavy use. 
Second, the scheme placed a segment entirely on the drum or not 
at all. This meant that a segment with a few heavily used pages 
might reside on the drum, thereby wasting critical drum records 
for the unused pages of the segment. Third, segments grow after 
they are created and often after they have been around for a 
while. The test to determine if there were enou~h drum records 
available was not deterministic and drum overflows could (and 
did) result. (The "obvious" choice of using the sum of the 
maximum lengths of all segments on the drum as an overflow 
criteria would have wasted most of the drum.) 

Of these flaws the first was the worst. By placing 
little-used segments on the drum it wasted drum space and 
prevented other heavily used segments from being placed on the 
drum. For this reason, the following extensiori was incorporated 
into the system. 

Segment Higration 

Segment migration is the term given to the technique used to 
move segments from one secondary storage device to another as a 
function of recent (but not transient) use. The use of a segment 
was determined by the number of page faults incurred by the 
segment per unit time. The method to effect the movement of 
segments to their most appropriate device was as follows: first 
a pass was made over the entire directory hierarchy to determine 
the use of each segment and select the most heavily used for the 
fastest device (the drum), the next most heavily used for the 
next fastest device, and so on. After the first pass, came a 
second pass which 

1. reset the usage statistics, and 
2. moved each selected segment, page by page, to its new device. 

Although a criterion is still needed for determininf the 
initial device for a segment, the criterion now could be more 
conservative about placing segments on the drum since highly used 
segments will migrate there. 

The actual segment migration algorithm was amended to look 
at several attributes of a segment to determine the final device 
assignment. In particular, segments not used in, say, N days 
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would not be placed on the drum. Also, segments created within, 
say, H hours would not be placed on the drum (this eliminated 
some problems with transients). 

The program to "adjust" t he contents of the devices (place 
segments on their appropriate storage device) was run weekly. 
Hence, any mistake in the algorithm could be corrected the next 
week. Although it was not done so, it would have been easy to 
perform the adjustment automatically with no external initiation 
at any specified intervals. 

The actual system overhead of this scheme was about 2 hours 
of system down time per week. This was less than 2 percent of 
the system availability. This scheme was used for over a year 
and although it was better than the static device assignment, it 
still could not solve the last two problem~ mentioned in the 
earlier section, namely unused pages of a heavily used segment 
would be placed on the drum, and drum overflow could still occur. 

OBJECTIVES 

Up to now we have been assuming the truth of the statement 
that minlmlzlng the time to get a page into main memory after a 
page fault would improve system performance. What we really 
would like to do is minimize the weighted average page wait delay 
(weighted by percentage of faults from each device) for all 
devices. We do this if we can force the system to take as many 
of its page faults as possible from the fastest device. This is 
why the various attempts were made to get pages onto the drum. 

There are, however, other strong reasons why minimizing the 
average page wait delay is advantageous. User response time, 
system effic:Lency, and cost effectiveness are all improved if we 
do. The user response time on a paging system such as Multics 
must include real time delays to re-establish the set of pages in 
main memory necessary for useful work to proceed, i.e., the 
user's working set (D1). The more pages in the working set and 
the more of these not on a fast device the slower will be the 
user's response time. Pre-paging (mentioned earlier) can 
decrease this delay but only pages on a device such as the drum 
can reasonably be pre-paged. 

The system efficiency can be increased as well. While a 
process is waiting for a page, it can not proceed. While it 
remains dormant another process is usually run which itself will 
likely cause a page fault. Any such page fault by other 
processes has the potential of forcing one of the initial 
process's pages from main memory resulting in potential 
thrashing. Such behavior , although possiblyc ontrolled by main 
memory partitioning in some manner, is a prime cause of overhead 
in a demand-paged system such as Multics. By minimizing the page 
wait delay the likelihood of having one of the process's pages 
claimed by another process is likewise minimized. 
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By increasing system efficiency the cost 
the system with the same hardware 
interesting question, then, is what hardware 
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effectiveness 
is improved. 

is required 

of 
An 
to 

achieve the same system efficiency and user response glven a new 
algorithm. \Je will touch on this briefly later on. 

So, to decrease the average page wait delay and to solve the 
problems mentioned earlier (unused pages on the drum and' drum 
overflow) the page multilevel algorithm described in the next 
section was devised. 

THE SOLUTION - PAGE MULTILEVEL 

Until PML was introduced into Multics, a page was either in 
main memory or it was not. If it was not in main memory (and it 
was non-null) it resided on some secondary storage record. If it 
was in main memory, the secondary storage copy, if it existed, 
was not necessarily up to date. There are 3 valid states of a 
page in this scheme: 

1 .. in main memory - disk copy up to date 

2 • in main memory - disk copy old or not yet created 

3 · not in main memory - disk copy up to date 

PML adds a third level to this memory structure. A page can 
be in main memory, on the Qaging device, on disk, or some 
combination thereof. The actual legal combinations is a function 
of the algorithms used. 

The advantages of such a scheme are obvious. The most 
recently used pages would be left on this intermediary paging 
device. They would be retrieved from the paging device at page 
fault time rather than from disk and hence the average page wait 
delay would be reduced. The use of such a scheme relies 
completely on the LRU algorithm and the associated behavior 
necessary for such an algorithm to succeed. 

By organizing the scheme on a per-page basis the earlier 
problem of wasting drum records is avoided. By having 
appropriate fallback options when a record of the paging device 
is needed but none are available, the problem of drum overflow is 
solved. By making appropriate choices as to when to place a page 
on the paging device, the system reacts much faster to changes in 
the entire set of pages used by all users on the system. 

Ihe Choice of ~ Algorithm 

There are three basic decisions which must be 
designing a page multilevel algorithm such as this. 

made when 
These are: 
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1. How and when do we update the secondary storage disk, 

2. How and when do we update the paging device, and 

3. What type of replacement algorithm is to be used for the 
paging device. 

None of the questions has an obvious answer, but we will 
describe why we made the choices we did. 

Updating Secondary Storage 

We considered three obvious options for updating secondary 
storage. These were specifically: 

1. Update secondary storage whenever the paging device is 
updated (store through), 

2. Update secondary 
updated but only 
store through), 

storage whenever the paging device is 
for certain classes of pages (conditional 

3. Don't update secondary storage until the paging device copy 
is being deleted from the paging device to make room for a 
more heavily used page. 

The advantage to option 1. is that no mechanism need .be 
created to move pages from the paging device to secondary storage 
when freeing a paging device record. Also, secondary storage 
would always be up to date so that little would be lost if a 
system failure were to occur and the contents of the paging 
device were unrecoverable. The main disadvantage with this 
scheme, and the reason it was not chosen, is that it would cause 
an unnecessarily high amount of traffic to the secondary storage 
devices. In particular, so many write requests would be queued 
that the page wait delays attributable to secondary storage I/O 
queueing would almost always be significant as the system waited 
for a write to complete before queueing any reads. 

The advantage to option 2. over option 1. is that the amount 
of secondary storage traffic can be controlled by limiting the 
types of pages written immediately to secondary storage. The 
disadvantage here is that a mechanism must be provided for moving 
pages from the paging d~vice to secondary storage for use by the 
paging device replacement algorithm. 

The advantage to. option 3. is that still less secondary 
storage traffic results. However, the need for a function to 
move pages back to secondary storage st ill exists. 

Multics actually implements a combination of options 2. and 
3. whereby the type and number of pages written immediately to 
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secondary storage is controlled administratively. The options 
are: 

1. Store through all (non-temporary) pages, 

2. Store through only directory pages, and 

3. Store through no pages. 

Since it is not guaranteed that all pages will be written 
automatically to secondary storage, the function of moving a page 
from the paging device to secondary storage had to be provided. 
This function, known as a read-write sequence is described later. 

As will be discussed 
read-write sequence to 
paging device is needed. 

Qpdating the Paging Device 

later, it is not necessary for a 
be performed each time a record of the 

The following options for moving pages to the paging device 
were considered: 

1. \~ite a page to the paging device if it is not there but must 
be evicted from main memory. 

2. ~~ite a page to the paging device if it is not there, must be 
evicted from main memory, and has already been evicted from 
main memory once since it was activated. 

3. \~ite a page to the paging device if it is modified and must 
be evicted from main memory, and 

4. Do not write a page to the paging device if it belongs to a 
certain class of segments which are never to be written to 
the paging device. 

All of these options are available to Multics with the 
appropriate setting of administrative parameters. A fifth 
option, that of dynamically monitoring the use of a page over a 
period of time and using this information to determine when to 
write it to the paging device was rejected because it was too 
costly to implement and because it did not react in time to be 
fully effective. (Again, program behavior consistent with the 
LRU algorithm is assumed.) 

The standard mode of operation is that described by uption 
1. \menever a page is evicted from main memory, it is moved to 
the paging device if it is not there. This subsumes Option 3. 
Option 2. can be set by administrative control and is intended 
to be used when the system is running many programs that 
reference pages exactly once and not agiin for a long time. (If 
there is only one reference nothing is gained by moving the page 
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to the paging device.) This type of program behavior might 
appear when long, sequential searches or data copying are 
frequent. (Any pages really used repetitively will be moved to 
the paging device on the second reference under this scheme.) 

A feature was added to the system to allow all segments 
referenced by only one process (in the Hul tics sense) to be 
conditionally moved to the paging device. This again, would be 
used by processes knowing t heir behavior, a priori, and is of 
limited use. One such process is the Multics backup dumping 
process which copies data from disk to tape and typically touches 
each page only once. 

The Replacement Algorithm 

There were several choices before us when the replacement 
algorithm was undertaken. These were reduced to the following: 

1. Evict pages from the paging device as needed, i.e., when a 
paging device record is needed. 

2. Keep a free pool of paging device records to be used when 
needed. 

The advantage to the first scheme is that it does not waste 
paging device records in the free pool as in the second scheme. 
The disadvantage with the first scheme is rooted in the heart of 
the Mul tics main memory r eplacement algorithm. . When a page faul t 
occurs (and in certain other cases), a program is called that is 
to return a frame of main memory that can be used as the caller 
sees fit. This same program must be called by the paging device 
replacement algorithm to get a frame of main memory for,a 
read-write sequence. Further it is this same program that needs 
to force a page to the paging device as part of the general PML 
scheme. It can readily be seen that an awkward recursion problem 
arises if the paging device eviction is done at main memory page 
eviction time. To avoid this recursion and the associated bugs, 
overhead and complexity, the second alternative of managing a 
pool of free paging device records was chosen. This pool could 
be replenished at more convenient times. Indeed, when to 
replenish this pool is an interesting decision. It was decided 
to replenish the pool when the number of records in the pool fell 
below a given threshold and that this threshold is checked just 
prior to handling each page fault, but before any potentially 
recursive code is entered. 

The Implementation of PML 

PML was implemented in late 1971 in the context of the page 
control subsystem as it existed at that time. Thus, many of the 
primitives were extensions to existing primitives, while the 
others relied heavily upon them. 
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The management of the paging device is carried out by means 
of the ~ng device map (PDMAP), a main-memory resident map of 
the paging device, with an entry for each record of it. Each 
entr'Y which corresponds to an in=use record contains the 
corresponding disk address, a pOinter to the page-table entry 
corresponding to this page (if and only if it belongs to an 
active segment), and various status flags. The map is indexed by 
paging device address. 

The PDMAP entries are kept in a linear paging device list, 
as well. One end of the list contains all free entries. The 
rest of the list implements an LRU discipline on the paging 
device, with the end not having the free entries being most 
recently used. Hence, replenishment consists of converting least 
recently used entries into free entries. 

The LRU discipline is maintained on the assumption that main 
memory is substantially smaller than the paging device. Hence, 
any page that is in main memory, if it appears on the paging 
device, must be among the most recently used on the paging 
device. Thus, PDMAP entries are threaded to the 
most-recently-used list position upon: 

1. page fault on that page -- this is actual use. 

2. discovery of this page in main memory by the paging device 
replacement code. 

3. eviction of this page from main memory. 

Paging device space is allocated when a page in main memory 
must be replaced, and no copy of it exists on the paging device. 
At this time, a record of paging device is allocated (removed 
from the free list), and the main memory page written out to it, 
regardless of whether or not the page is identical to its disk 
copy. (Pages are never written to a record to which they are 
known to be identical.) Hence, the next fault referencing this 
page may be resolved from the paging device. 

At the time that paging device space is allocated, free 
paging device records must exist. If none exist, none can be 
allocated. None can be created at this time, because paging 
device replenishment invokes read-write sequences, which 
themselves require pages of main memory, and the previously 
mentioned recursion problem is created. Therefore, one of the 
first duties of the page-fault handling routine is to insure that 
a fixed number of free paging device records are available, in 
anticipation of need for paging device space during the search 
for main memory for resolution of the page fault. 

Replenishment of the paging device consists of freeing 
enough records to make a fixed number of free records. The 
records freed are the least recently used records on the paging 
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device. Freeing a given record consists of insuring that the 
disk copy, which always exists, is not different from the paging 
device copy. A flag is maintained in the PDMAP entry, which is 
set ON whenever the corresponding page is noticed to have been 
modified while it was in main memory. If this flag is OFF, the 
record may be freed immediately , as the paging device copy must 
be identical to the disk copy. If it is ON, a read-write 
sequence (RWS) must be performed, updating the paging device copy 
to disk, for the paging device copy contains modifications not 
present in the disk copy. 

Performing a read-write sequence consists of four steps: 

1. Finding or creating a free frame of main memory. This may 
include allocating (using up a free) paging device entry, but 
a critical assumption here is that this is unlikely, as most 
of the pages of main memory will have paging device copies. 

2. Reading the paging device frame into the main memory frame. 
With the current slow-core paging device, this is done as an 
indivisible operation of page control, i.e., no change in the 
state of the page of data or frame of main memory can occur 
while it is in progress. 

3. Starting a write to disk. The actual disk operation can take 
some time, and hence this cannot be treated as an indivisible 
(protected) operation. Thus, while this write is in 
progress, attempts may be made to deconfigure (remove) the 
main memory frame being used as a buffer, destroy the page of 
data, or fault upon it. 

While memory deconfiguration will await the completion 
of the RWS, an attempt to fault on the page will cause a 
special event known as an RWS abort to occur. This causes 
step 4. below not to free the paging device record, but 
instead, reinstate it and resolve the page fault (using the 
frame of main memory used by the RWS). 

An attempt to destroy the page causes an R\JS truncate to 
occur. This causes step 4. below to take special action. 

4. Freeing the paging device record. Or, if an abort has 
occurred, rethreading the paging device map entry to the 
most-recently-used end of the paging device list and 
connecting the page table to the buffer frame. 

Of the above four steps, steps 1. through 3. are performed 
at the time replenishment of the paging device is sought. Step 
4. is performed at interrupt time. 

The store through option is implemented as a flag set at the 
time a paging device write is started. At the (interrupt) time 
this write completes, the flag, if ON, is reset, and a disk write 
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started. 

In the Multics page control subsystem, interrupt time 
operatlons happen either d~ the time of a physical device 
interrupt, or "on demand", when a traffic bottleneck is detected. 
This latter operation, known as running, polls all device control 
routines for completed operations. As masking inhibits 
interrupts, and a lock excludes other processors during paging 
operations, this is the only way to learn of operations completed 
at these times. Running is performed when an excess of writes 
(30) have been queued by main-memory management in search of a 
free frame, and by paging device replenishment when an excess of 
read-write sequences are in progress. Device control routines 
often "run" themselves to free queue space, representing 
completed operations, when called to initiate an operation. 
Interesting problems of recursion and asynchrony are posed here. 

An auxiliary data base used by the segment control subsystem 
in interfacing to PML is the paging device hash table. This 
table is necessitated by the policies of keeping pages of 
segments which are not active (have no page table) on the paging 
device, and not marking the permanent branches of these segments 
as to if and where on the paging device these pages might exist. 
Hence, the paging device hash table maintains a "mapping from disk 
address into paging device map entries. This table is organized 
as a table of equivalence classes, being selected by the low bits 
of the disk address. The most recently allocated PDMAP entry in 
this class is selected, and it is the first of a list of entries 
1n this class. At the time a segment is activated, all disk 
addresses in it must be hashed into the PDMAP so that the correct 
paging device address may be placed in the page table being 
created if the page exists on the paging device. Also, if a page 
of a non-active segment is destroyed, any paging device map entry 
which may exist must be freed. The paging device hash table 
serves this need as well. Although the strategy of keeping pages 
of non-active segments on the paging device may appear 
unwarrented since only a very small number of such pages are 
usually found on the paging device, experiments indicate that the 
necessary hashing is an almost unmeasurably small fraction of 
syst em overhead. 

RELIABILITY 

A good deal of design effort was spent to ensure that use of 
the paging device would not be a cause of unreliability. In 
particular, since it was decided not to use a complete store 
through algorithm, the most up to date (or only) copies of 
segments (and directories) might well be only on the paging 
device. If the system were to fail such that we could not update 
all the information to secondary storage, we must be able to 
recover as much as possible from main memory and the paging 
device itself. The critical data base here is the paging device 
map which maps the data on the paging device to its home address 
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on secondary storage. This map is in main memory and may be lost 
if a power failure destroys the contents of main memory. Since 
the map is so critical it was decided to frequently write it onto 
the paging device itself so that if the contents of main memory 
are lost the mapping will not be. The map is currently written 
out once each second. 

As a further check against loss caused by a system failure, 
the option of using store through (at the expense of secondary 
storage channel queueing) was provided. This is used primarily 
for directories at some Multics sites but can be used for all 
pages if desired. 

Another safety check against the loss of the contents of the 
paging device itself is the requirement that certain critical 
segments not be allowed to be placed there. The free storage 
maps for secondary storage and the directory hierarchy root are 
two such segments. 

Extensive software for automatically 
deconfiguring faulty (unreadable) records of the 
was added. 

EVALUATION 

(and manually) 
paging device 

PML meets its objectives as already defined. On a Multics 
system, using 2.0 microsecond core memory as a paging dev~ce 
(2048 pages for 300 pages of main memory), from 85% to 90% of all 
page faults occur on pages already on the paging device. 

The disadvantages of the implementation are several. Many 
of these problems point out design tradeoffs, or are reflections 
of larger design decisions in Multics as a whole. 

The need for read-write sequences introduces paging-related 
overhead. An estimated 1.2% of system CPU time is spent in this 
activity. Read-write sequences require main memory, and the 
allocation of main memory requires writing out pages. Writing 
out pages may require the allocation of paging device records, 
which requires the freeing of the same. As this freeing involves 
read-write sequences, a recursion is created, whose full solution 
involves an unacceptable overhead in terms of Multics page 
control. Hence, recursion escapes and heuristics are involved in 
place of ihis recursion. 

PML complicates the main memory replacement algorithm 
substantially, as pages in main memory which are identical to 
their disk copies must be written to the paging device when being 
evicted from main memory. 

The decision to write a page in this manner is somewhat 
complex and thus, the replacement algorithm is slowed finding a 
main memory frame with which to resolve a page fault. 
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The policy of keeping pages of deactivated segments on the 
paging device is questionable at this point •. Less than one 
percent of the pages on the paging device represent deactivated 
segments. The need for keeping track of these pages necessitates 
the paging device hash table, and th~ complexity associated with 
it. \~re such pages simply flushed from the paging device at the 
time that these segments were deactivated, there would be no need 
for this data base. 

All of the considerations so far have contributed to the 
complexity of the page control subsystem: the effectiveness of 
the Multics virtual memory is inversely related to the time spent 
in paging overhead. What is more, the high degree of asynchrony 
employed in the page control subsystem causes problems in this 
area to be particularly difficult to diagnose, and often 
irreproducible. Hence, complexity is a larger issue in this 
area than in most other areas of the operating system. 

METERING 

The Multics system has extensive software meters throughout 
the supervisor and the page multilevel algorithm is no exception. 
Records (counts) are kept for all normal and abnormal events 
including average retention period for pages on the paging 
devices. The cost of the entire page multilevel system is 
recorded. Some typical values for a typical system are: 

if Page faults 3111214 
Average time on PD 10 minutes 
% faul ts from PD 85% 
% writes forced .03 

(recursion escape) 
if RWS 71621 
% PD records modified 30% 
% PD records free 2% 
% P D records active 99% 
% system overhead 2. 1% 

These figures are from a 384K main memory, 2 processor, 2 
million word paging device over an eight-hour period with from 40 
to 70 users logged in. 

Another meter of interest is a histogram that shows how 
recently used each page faulted on is by noting where the map 
entry for the page occurs in the paging device list of the PDMAP. 
Discussions of the results of this meter can be found in (G1) and 
(S 1 ) • 

The performance of the system as a whole has also been 
measured with different sizes for the paging device. A certain 
script of 40 jobs will run on a system (256K main memory, 
processor) with 2 million words of bulk store in about 60 
minutes. The same script with only 256K of bulk store will run 
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in over 200 minutes. 

When Multics converted the drum from a segment migrated 
secondary storage device to a paging device (same aillount and kind 
of storage, ju~t used in a different way) a 20% to 25% increase 
in useful work done by the system was noticed. 

FUTURE 

The future of PML in its present form is unclear. As memory 
technology makes main memory cheaper, vast amounts of main memory 
will reduce page fault rates to an extent where resolution of all 
page faults from- disk may be acceptable. Were the two million 
words of slow core memory being used as a paging device 
addressable as main memory, none of the overhead Of transfers and 
read-write sequences would be necessary. Processor cache 
technology can increase the effective processor store access rate 
to the point where "slower" main memory, with a cache, is 
measurably faster than the "faster" main memory alone. 

The concept of a multilevel storage hierarchy is not 
obsolete: cache is the extension of main storage on the faster 
side; on the slower side, any of various forms of automatic and 
user or administratively invoked migration schemes can be 
envisioned. Tape backup forms a part of such a hierarchy. 

Faster disks are creating interest in techniques akin to 
"swapping" in older time-sharing systems and pre-page/post-purge 
in Multics. A scheme is being investigated where working sets 
may be "swapped"in and out using scatter/gather I/O to a single 
high-speed disk track. Although this scheme combines all of the 
advantages of pre-paging (reduction of fault overhead by 
anticipating need for pages), post-purging (early freeing of main 
memory wi th Ii ttle likelihood of use), and wholesale swapping 
(maximum possible transfer rate to and from disk), the problem of 
mapping the swap images into the hierarchy seems prohibitively 
complex at this time if coordinated within the PML scheme. 

SUMMARY 

The Multics paging subsystem has been suacessfully extended 
to use high performance memories in a paging hierarchy to 
substantially increase the throughput and response of the system. 
Advances in memory technology forcing adjustment of pricing 
schemes and related price/performance values are leading us to 
study new techniques for hierarchically organizing the available 
storage devices including scatter/gather swapping and processor 
cache hardware. The value of hierarchically organizing the data 
is apparent. The actual mechanisms used will be the subject of 
many future studies. 
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