
HUlTICS TECHNICAL BULLETIN "TB-193

TOI HT8 Distribution

Froml R. ~ullen, T. Casey

Datel 19 Mav 1975

Subject. Priority Scheduler

INTRODUCTION

This document describes the functions and proposed i.ple.entation
of a schedule~ for Hultlcs Mhich wI'. allow more flexIble
administrative control of the allocation of the cpu time resource
to syste. use~s and groups of users.

It is not an objective of this proposal to atteept to achieve
greater throughput In any nu.erlcal sense. However, It Is an
explicit objective that throughput of Jobs deemed most valuable
by a system administrator will be increased. To that extent, the
value of Multics as a co.puter utility is enhanced. Of course,
every effort will be _ade to ensure the effIciency of the design
and i.ple.entation of the priority SCheduler.

THE PROBLEH

Currently, the Answering Service provideS a mechanls. (load
control) for classifv1ng users into groups, and giving each group
a specified sna~e of the system (by limItIng the number of users
from each group that .ay be logged In concurrently).

HOMever, except for the settIng of the per-process paraMefer,
timax, no control over the rate of consu.ption 0' cpu resources
bV any user or g~oup of users is provIded. (BrIeflv stated,
there Is a p~ra.eter, ti, associated fIIltheach process, which Is
roughly proportional to the amount of cpu tIme used by the
process sInce It last interacted. If the value of ti for a
process ever exceeds tlmax, It Is set to timax. The process wIth
the lowest value of tl Is always selected for ellg1bIII~y.) In
practice, the considerable advantage given to a process by a
lower-than-normal value of timax has prevented all processes but
the Inlt!allzer (and someti_es Backupt fro. being gIven tlmax·s
lower than the default value.

THE SOLUTION

This NTB proposes that the scheduler allow the grOuPing of
processes Into work classes, and provide each work class wIth a
guaranteed percentage of avaIlable cpu ti.e. Conceptua"Y, each
Mork class wi t I be aSSigned a vIrtual processor of

Multics Project internal workIng docu.entatlon. Not to be
reproduced or distributed outside the ~ultics Project.

Page 2 HTB-193

administrativelv defined computational power, available to
_e.bers of the appropriate work class on demand. Any cpu tIMe
not needed oy a work class wi" be made available to other Mork
classes, and cannot be reclaimed at a later tiMe. In thIs
respect each virtual processor Is like a real processor' tIme
unused is tl.e lost forever.

In its idealIzed for~, the scheduler proposed here provIdes each
work class with a specIfied co.putatlona' power on an
instantaneous basis. The idealized scheduler has a time constant
(or Integrating tl.e) approaching zero seconds. The service and
functIon provIded by the idealized scheduler are known constants,
not subJect to being bent out of shape by previous transients In
per-workclass loads.

The actual scheduler wil' for reasons of system efficIency,
scheduler efficiency and response, necessarilv have a time
constant on the order of several seconds. As an exa-ple,
consider the time constant required to smoothly provide servIce
to a Mork class which has been aSSigned 20 percent of a single
cpu configuratIon and whose me.bers are generally provIded with
an eligibIlity Quantu. of 2 seconds. If the scheduler functions
correctly, 50.e process In the Mork class w111 be given a two
virtual second quantu. every 10 virtual seconds, or approximately
every 20 real seconds. This iMPlIes that In some Mav the
scheduler must be 1ntegrating over the past 20 real seconds for
such a work class. Averag1ng over a considerably shorter period
would require SignifIcantly Shorter quanta and result in
increased scheduler and paging overhead. Averaging over longer
periods of tl-e moves away from the Idealized scheduler and
toward a scheduler whose behavIor Is ~ore dependent than
necessary on the past hIstory of the syste ••

The ability to lImIt the number of processes in each work class
is clearly desIrable, 1f not an absolute necessIty, and the
abilIty to ass1gn each process to a specific work class is
obviously needed.

To have two separate and independent lv-functioning Mechanisms for
classIfyIng users into groups and lImitIng the number from each
group that ma, be logged in concurrently is at best unnecessary,
and at worst, confusIng and ful' of hidden problems.

Therefore, there must be a close relatIonship between work
classes and load control groups, and a single algorIthm must be
used to deter.ine a process·s meabership in both classifications.
For exa.ple, there could either be a one-to-one correspondence
between Mork classes and load control groups, or else the work
class of a process could be a functIon of its load control group,
with posslbly More than one load control group belongIng to one
work class. We have chosen the latter, more general,
alternative.

HT8-193 Page 3

It ~ill be possible for the system administrator to specIfy the
number of work classes (a lImIt of 1& wIll be imposed by the
scheduler). and the guaranteed.percentage of each work class.

The administrator wIll be able to define the membership of each
work class. It .111 be possible to define such work classes as.
all 10 dae.ons, the Backup daemon, af I users on a certain
project, or one indIvIdual user. In each of those groupIngs, it
wIll be possiole to assIgn absentee and Interactive processes
either to the same or to different work ctasses.

The set of work class parameters, and the me.bership of each .111
be able to be changed autoMatically (at each shIft change) and
manua"Y (by the system administrator, who may install a new
table at any tl.e). Thus, the work classes of existIng processes
can change.

HARDCORE SCHEDULER

The new scheduler wIll maintain an eligIble queue consistIng of
eligible processes only and wi11 manage 16 ready Queues, one for
each work class. Each ready queue will be managed Just as the
non-elIgible portion of the current ready Queue Is managed --­
that is the Queues will each be internally sorted by ti values
and favor the most interactIve users within the Nork class. The
current method of maintaining a ready Queue is chosen for the new
schedule~ fo~ th~ee reasons I

1. It Is response oriented, and In fact has been proven· to
provide the Mlni.um mean respose tIme.

2. If such a Queue consists of processes all Nith tl = timax,
the the Queue Is largely run as a pushdown stack. ThIs
leads to very desirable paging behavior in that the most
recently ~un process (the process most Ilkeiv to have Its
working set still In core or on the paging device) will
often be the next process to be ~un.

Use of already existing code
i.ple.entation effort required.

wI I , simplIfy the

To contain 1nfor.ation pertaining to each work class, tC_data
wIll contain 1& work_class_table_entries (WCTE·s). Each WeTE
wIll contain a thread-word for accessing the members of the work
class which a~e ready, and all para.eters and .etering data
relating to the work class. This wIlt include the total allount
of virtual cpu time used by the work class, the total number of
ti_es eligibilitv ... as granted to a lItellber, the fraction of
vIrtual cpu time which the work class is to receive, and the
response time seen by its members.

Page .. HT8-193

The actual algorith. used to enforce the proper sharIng of the
cpu resource wi'l be as fol'ows. Imagine the existance of a
syste. virtual c!cck which Increments as virtual tl_e 1s used by
non-Idle processes. l.a~lne also that each work class has a
store of credits (In units of microseconds) which is continually
growing at a ~ate proportional to the speed of th~ virtual clock
multiplied bV the fraction of cpu resources which the work class
Is to receIve. Suppose further that the store of credits for the
work class Is decremented as me_bers actual IV consume virtual cpu
time. C I earl 'f .1 tis undesl,rab I e to al tow credl t5 to bull d UP
indefinitely for a work class .ith no proc~sses ready, so a
maximum value ls set on the number of credits which can be
accumulated. In addition the value Is res~rlcted from ever
beCOMing negative. The algorIthm for chos1ng the next work class
fro_ whIch to choose a process to whIch to award elIgIbIlIty may
then be as sl_ple as choosing that work class which has
accumulated the aaxlmu. nu_ber of credIts.

A worthwhIle reflne.ent wou.ld be to choose the work class for
which the ratIo of the number of credIts to the QuantuM to be
a.arced (Ie. to the top me.ber of the gIven ready queue) Is a
maximUM. ThIs tends to favor the pro_pt schedullng of the most
InteractIve users across all work classes. It does not cause
non-interactive work classes to fall far behind sInce eventually
the interactlve work classes choke off. This Is because they are
te.porarI'y uSing credIts faster than they are gaining the., and
wIll eventually have a ratIo which is arbitrarily low --- and not
be chosen.

It folloMS that the ~aklmu. build up of credIts to be allowed
must be greater than the maxImum QuantUM allowed. It should
probably be at least double that a.ou~t.

The cOMputation required for such an algorIthM w11t amount to
about 300 _icroseconds per eligIbilIty granted, less If feMer
than 1& work classes are defined. If elIgib11Ity Is awarded 10
ti-es per secoAd (a high fIgure) on a one cpu confIguration, the
loss In systeM throughput may be about .3%. This is somewhat
reduced bV the fact that all sortIng operatIons Into the ready
queue wIll be replaced by sorts Into shorter Queues.

HARDCORE INTERFACE

The Interfaces to the hardcore scheduler wIll be the folloNingl

1. A gate to define (or redefIne) the set of work classes and
theIr guaranteed percentages of cpu time. This gate Is
tentatlvelV called hphcs_Sdefine_~ork_classes. The target
of thIs gate will be a neN procedure (tc.pI1) whIch wIll
check the consistancy of its arguments, use existIng
subroutines to wIre and Mask, and lock the APT before
modIfying the work class table. Because this procedure will

Page 5

not be heavily used It wll' call wlre_procS"lre_Me rather
than being per.anently wired. It wIll be Illegal to
undeflne a work class that currently has processes In It.
If that Is attempted, the processld and work class number of
one of the "offendIng'· processes "111 be returned, In order
that appropriate action can be taken.

2. A gate to reassign one exIstlng process to a dlfferent Mork
class. It will refuse to change the work class if the new
one Is not defined. It Is tentatively called
hPhcs_Sset_process_work_c.ass. The target of thIs gate will
be pxssSset_work_class.

3. An additional paraMeter in the create_Info structure passed
to hphcS_$create_procJ the InitIal work class. It will be
Illegal to speclfv a work class that is not defIned. It
will be necessary for act_proc, the target of
hphcs_Screate_proc, to call pxssSset_work_class, to Insure
that the work class being aSSigned to the new process
currentlv exists.

A prImitIve to simultaneously redefine the work classes and
reset the work class of each process is neither required bv
logIcal considerations nor Justified by efficiency
consIderations. Furthermore such a primitive would not be able
to handle an arbitrarlly large number of processes.

In order to redefIne the Mork classes in the general case, It
will be necessary fIrst to define a transitIonal set of work
classes and percentages (including both old and new work
classes)9 tnen to reset the Mork class of each process to the
new value. and flnallv to define the new set of Mork classes. A
procedure to do this wlll be ImpleMented In the answering
service.

SUHHARY OF CURRENT LOAD CONTROL SOFTWARE

SInce work class Membership will be a functIon of load control
group me.bership, work class definitions will be stored In the
HGT, and the Imp'e.entatlon of the answering servIce and
administrator interface to the pr10rity scheduler wIll consIst
maInlV of modifIcations to the current load control software, a
summary of that software, as It now exIsts, Is presented here.

Load control group .e.bership Is specIfied In the SAT entry for
each project. In addItion, each proJect·s SAT entry contaIns an
absolute max user fIgure for that proJect that Is enforced
independently of the load control group limits.

Absentee and aaellon processes are not subject to load control.
They are alwavs logged 1n on request. They are assigned to the
load control group correspondIng to their proJects, but their
group .e.bershlp is Ignored by everyone.

Page & MTB-193

Load control g~oups are defined In the master_group_table (MGT),
whIch is a binary table maintained bV an editor (ed_mgt), and is
not subject to the instai; disciplIne. (1) ThIs table contains
lImit parameters for each group, set bV the system administrator,
and It is also used to hold current toad figures for each group,
during a session.

The group limits are defined In units of user Neight, rather than
nUMber of users. (There are, hOMever. lImIts In units of users,
for the syste. as a "-hole, and for each project.) By default,
each user has a weight of 10, so .ax_units Is ten tImes
max_users. Weight Is a function of tAe process overseer, and Is
determined by an array of weights kept in the SAT header.

There are two sets of 11.1t para.eters per group, one used to
compute primary_max_units, the other, to COMpute
absolute_aaK_units. EaCh set contains three parametersl a
constant (which aav be zero), and a nUMerator and denominator of
a fraction. The foraula for absolute __ ax_units for a group ist

absotute_.ax_units= absolute_constant +
(available_Max_unlts.absolute_nu.eratorl/absolufe_denominator

where availabte_Max_units 1s the systell_Max_units less the units
used by the absentee and daemon processes who are not sublect to
load control. The for.uta for prl.arY_lIax_unifs is the sa_e, but
using priearv_consfant, prImary_numerator, and
priMary_denoMinator.

These calculations are perforaed for alt
attempts to log in, so changes to units
daemons, changes to svstem_Max_units, or
by the systeM administrator are all
i.Mediatelv.

groups each tIMe a user
used by absentee or

changes In the MGT made
taken Into account

1. taken fro. the SAT header, for a special sessIon, or

2. set bv the operator, usIng the .axu cOMmand, In which case
autOMatic maxunits settIng Is tu~ned off, or

3. set auto.atieally at each shift change and whenever the maxu
auto comMand is gIven by the operator. The automatIc settIng
looks up the current shIft and configuratIon In the config
array in installation-parfls, and chooses the corresponding

(1) The install dIscipline Is a method used for Installing
certain crItical tables, whereby the Answering ServIce Installs
the table, "hen reQuested by a system or project admInIstrator,
ensuring that the Answering Service will not atteMpt to reference
the table while It Is being updated.

"T8-193 Page 7

values for: system_max_units, Max_absentee_users,
.ax_absentee_Queue, and response~hlgh and response_low. (The
.atter two figures are used bV the load leveler (when It Is
enabled by the maxu level com~and)f which readjusts
svstem_Max_unlts ~t every 15~.lnute _accounting update. to
keep response between th~ hlg~ and 10M figures.)

The load control decision Is rather co.p'ex, when special
privileges lIke guaranteed login, the nobuMp attribute, and
protection f~om preeMption for a specifIed grace time are taken
into account. But basIcally, If the systeM Is full (as measured
by system_max_unlts or syste-_max_users) then someone must be
bumped or else the user is refused logIn. If the system Is not
ful', but the group or the project Is full (as measured bV the
group·s absotute __ ax_unlts or the proJect·s max_users), then
someone in the group or project must be bumped, or else the user
Is refused login. If the group·s prlm~ry~max_unlts are all
allocated but Its absolute_.ax_unlts are not, then the user is
logged In as a secondary user,sub)ect to ~ree.ptlon. Secondary
users (In anr group) ~re the fIrst tabe bumped (oldest fIrst)
when so.e primary user wants to log In, folloW~d by prImary users
(In the same group) whose grace tl.e has expIred, followed bV
pract lca Ity anybody, when a us~r " 1 th th,e guaranteed logIn
attribute Is trying to log in.

The load control group .embershlp of a process never changes, but
both the proportIon of the avallable_max_unlts that each group
gets, and the number 1 tse If, ca'n vary wi th the
avaIlab'8_maK_unlts (which varies with shIft, confIguratIon, and
absentee and daemon load), becaUSe of the max_units formula
described above.

NEW ANSWERING SERVICE AND ADMINISTRATOR INTERFACE

The HGT will be reforaatted to hold work class definitIons as
wei. as load control group definitions. Since there will be a
maxImum of 1& work classes, but there Is currently no restriction
on the nUMber of load control groups, the new MGT wlll consist of
a header, followed bv a fIXed-length array of 1& work class
definitions, followed bV a variable-length array of load control
group defInItIons. The header and the load control group
deflnltlons wIll re.aIn essentIal IV unchanged, except that each
load control group definitIon Nlil contain tNO addItIonal
8-ele.ent arrays, specifvIng the work classes to which
InteractIve and absentee users In that load control group belong
on each shIft.

One or .ore load control groups can belong to each Mork class.
The max_users and max_unIts fIgures tor each Nork class wIlt be
the su. of the correspondIng figures for the load control groups
that make up the Mork class. The work class maxiMa wl" not
actually be co.puted and stored- anywhere bv the answering
service, but they will be dIsplayed by ed_mgt to assIst the

Page 8 HT8-193

system adMInIstrator In assIgnIng reasonably consIstent
percentages to the work classes and .ax user and unIt fIgures to
the load control groyps. Th@ nor.al operatIon of load control,
as descrIbed above, wIll limit the nUMber of processes in each
work class.

The ed_mgt co ... a:nd wIll be modI fled to be ab I e to store and
lIodlfv the wo·rk class para.eters, to verify, on reQuest, the
correctness, reasonableness, and consistency of Nork class
parameters and tne correspondIng load control group defInItions,
and to print Nork class definItIons and a cross reference shoMlng
the correspondence between load control groups and work Classes.
The changes to ed_mgt are descrIbed in detail In a .ater sectIon.

The install co •• and will be modified (and a new procedure,
UP_"9t_, wIll be wrItten) so that the MGT can be installed while
the system is up and users are logged in. up __ gf_ will have to,
in general, reset the Nork class of all existIng processes to the
work class specified In the newly-installed MGT.

The answer table (and dae.on and absentee user tables), and the
create_Info structure passed to hphCS_$Create_proct MIll have a
neN varIable, work_class, added.

load_ctl_S.oad_ctl_lnlt wII' call hphcs_Sdeflne_work_classes, to
define the Nork classes to be used by the scheduler, during
answering service initializatIon. (ThIs call must be made before
the daemons are logged In.)

called at eacn shift change (as
half of answering servIce
operator co •• and -.axu auto· Is

load_ctl_Sset_Maxunits, which Is
well as during the second
initialization, and whenever the
gIven) wIll redefIne the Mork
current shIft In the MGT, and
exIstIng process as requIred.

classes, as specifed for the
wIll reset the work class of each

SInce the functIon of redefining the current Nork classes and
resetting the work classes of all existIng processes .ust be
perfor.ed both at shIft change and whenever a new MGT is
installed, It NIII be Implemented as a separate procedure, called
In both situations.

To support the assign-ent of work classes on the basis of person
as well as project. the SAT and POT, and the procedures which
COMpIle, edit, and install them, will be modIfied to allow a load
control group to be specified for an Individual user rather than
Just fo~ a whole project.

A neN attribute, Igroup (indivIdual group). wIll be created. When
that attrIbute Is on in the SAT entry for a proJect, it permits
the load control group for users on that proJect to be specified
In the PDT entry for any user on that proJect. (If that attrIbute
is not on In the SAT entry, then all users on the project wIll

"T8-193 Page 9

continue to be'ong to the load control group specified in the
proJect·s SAT entry.) When the Igroup attrIbute is on In the POT
entry for an indIvIdual user, it Indicates that a load control
group is specified In that user·s POT entry. (If igroup Is not
on in a user·s POT entry, that user will continue to be a Me_ber
of tne load control group specified In the proJect·s SAT entry.)
The na.e of the individual user·s load control group will be
stored in a presently unused pad field In the POT entry. ThIs,
plus the use of igroup In the por entry as a posItive indication
that a group is specified, wIll allow thIs change to be Insta'led
without reQuiring that any exIsting PDT·s be refor.atted or
reInstalled.

Ig_ctl_ will be _odified to assign a load control group on the
basis of person as well as proJect, as described above.

load_ctl_ wIll be .odlfied to use the load control group of each
process to assign it to the work class specified In the MGT for
absentee or Interactive users in that group, on the current
shift. (Dae_on processes wIll be treated as InteractIve, for the
purpose of work class aSSIgnMent.) The assIgned work class w111
be stored In the answer table (or absentee or daemon user table)
entry for the pr~cess.

CP9_ wltl COPY' tne work class frotl the answer table entry Into
the create_info structure, before calling hphcs_lcreate_proc.

INSTALLATION PROCEDURE

The hardc·or.e systell containing the priority scheduler, and the
answering service contaIning the above .odlflcatlons, can be
1nstalled In either order. If hphcs_Sdeflne_work_classes Is not
called, a sIngle work class (work class 1) wIll exist by default,
and will have a percentage of 1001. The version nu.ber of the
create Info structure wIlt allow act_proc (the ring zero
procedure called via hphcs_Screate_proc) to determine If the new
version, contaIning the Nork class, has been passed. If the old
version of create_Info Is used, act_proc will assign processes to
work class 1 by defau.t. Th1s a.loNS tne hardcore system to be
Installed first.

The new answering service will check for the old for.at MGT, and
If it is found, none of the new gates .,ill be called, and every
process witt ~e aSSigned to work class 1, independent of theIr
load control group meMbershIp. Further, a swItch in the
refor.atted MGT, sattable by ed_Mgt, wIll allow thIs mode of
operatIon to be specified bV the syste. administrator after the
MGT Is refor.atted. Finally, a check for the exIstence of
hphcs_ldefine_"ork_classes will be made durIng answerIng service
inItIalization, and If It is not present, the old ~ode of
operation wIll be used. This wl.1 make the new answering service
compatible wIth older system tapes. It wIll also cause the
svste. to run as It does now. with only one work class9 when both

Page 10 HTB-193

the new answe~lng service and the new hardcore system are
installed. The new scheduler will not be turned on until the HGT
is reforMatted9 and the system administrator expllcItlv enables
It.

The system ad.lnlstrator will, of course, be Informed of all this
In release docuMentation. The first tl_e he uses the new ed_mgt,
It .1.1 recognIze the old for.at MGT, reforllat it autollatlcally,
define a single work class (work class 1) with a percentage of
100%, .ake all load control groups mellbers of It, and then invIte
the system adaInlstrator to define More work classes and reassign
the load control groups to them. It wIll not be required that
the ad.lnlstrator do so, but ed_mgt wIll keep remindIng him,
every ti.e he uses It, until he does.

SInce the MGT will now be subJect to the install discipline, the
reforMatted copy can not be put back In >scl. When the ·w·
request Is gIven, the reforMatted MGT (named MGT.mgt) will be
"rltten In the working directory of the administrator (which
should be >ydd>sa>ad.ln). The administrator wltl be told about
this by ed __ gt. Except for the Instance when the MGT Is
reformatted, the edited "GT wIll be written back into the Input
MGT, as Is done now. However9 the syste. adMInistrator will not
be editing the >sc1 copy any more. As a convenience. after
writing the edited copy back Into the original. ed __ gt wIll
always ask -Install'-. and if the answer Is veSt It "il I invoke
the Insta11 comfland. The administrator will of course be able to
Invoke It dIrectly.

The InstallatIon procedures described above wilt flake testing and
InItial installation of the system very convenient, and It "111
also alloN the syste. administrator at each custoMer sIte to turn
on the priority scheduler at hIs convenience. Instead of forcing
hi. to define so.~ (possibly III-considered) work classes. Just
to get the new system release to run.

The fotlowing su •• arv descrIbes only those features that are
being changed. The MGT. as seen by a user of ed_mgt, Is an array
of 'oad control group definitions. The find (f) request pOSitions
the current pointer to the specifled grouP. The next (n). top
(t), an~ - (alnus sign' reQuests move the current pointer forward
or baCKward In the array. The change (c) reQuest changes
paraMeters of the current group. The print (p) request prInts atl
information about the current group. The pall (pa, p.) reQuest
prlnt~ all Infor.ation about all groups. Only the fInd and change
requests take argu.ents. Their for.ats arel

fInd
chaf'\ge

<group naIDe>
<code> <new value> [<code> <new value> ••• l •

HT8-193 Page 11

where <code> Is the na.e of the para.eter to be changed. Typing
these requests -J.thout arguaents causes ed_flgt to prompt the user
for them. The change request puts ed_~gt into the change
subcom.and, in whIch <code> <new value> pairs are accepted. The
asterisk at the end of the lJ.ne exIts from the change subcommand
and returns to ed_Mgt request level.

Su •• ary of New Features

The find reQuest wJ.11 be modJ.fled so that a <group name>
consIstIng of one of the Integers 1 through 1& wIll refer to the
correspondIng work class.

The oeKt, top, and - requests MIll be ModifIed to prInt the naMe
and type of the entry being pointed at after the poInter Is
lIoved.

The change reQuest Mill be modIfied so that the set of codes
accepted will be dIfferent, dependIng on which type of entry
(work class or load control group) the current pointer is
poInting at. NeN codes and other arguments will be added, to
allow paraaeters of work classes, and the work class meMbership
of load control groups, to be edIted.

A new request, global_change (gc), wlfl be added, to allow the
salle (set of) change(s) to be made to all work classes or to al'
load control groups.

A new request, verlf, (v), wIll be added, to request that ed __ gt
check all ,the work-class-related paraMeters In the edl ted MGT,
and report anv errors or warnIngs that would be received If the
MGT were to be Installed.

The prInt and pal. requests will be changed to prInt the new
para.eters, and the pall request "lit take argUMents, reQuestlng
that all Nork classes, or all load control groups, or both, be
prInted, or that a cross reference of work classes and toad
control groups be printed.

DetaIled Oeserlotlons of New Features

Two new forMats for the change request will be addedl

change <code> [<shift specIficatIon» <one or More values>

change <code> «shift spec.>] <Interactlvelabsentee> <value(s»

The flrst Is used when edItIng work class para.eters; the second,
whIle changing the work class membership of a load control group.

Page 12 HTB-193

The following new <code>·s can be used In the above reQuests I

"'~~"~ft" .,~ ~, .. In,..i'_
.. ,..,. 'W' ... Xl

absentee tabs)
defined (def)
wor-k_C I a'ss (wc)

The fir-st three are used with the first form of the change
reQuest, to edit work class paraMeters. The fourth is used wIth
the second form, to change the work class Membership of a load
control group.

The for.at of the <shl't specification> Is the word ·shlft·
followed by a shlft nUMber or a range of shift nu_bers (two
nUMbers separated by a hyphen, the second greater than the
flrst)1

shIft <number>l<number>-<nu.ber>

The shift specifIcatIon is optIonal. If It Is OMitted, the
default Is a function of hOM many values are supplied. If one
value Is supplied, it Is assIgned to all 8 shifts. If a lIst of
values is supolled, they are assIgned to shifts 0. 1, ••• ,
respectively, and ShIfts for whIch values are not supplied are
not changed.

The following relationshIp exIsts between the shIft specificatIon
and the lIst of valuesl when a range of shifts is specifIed, a
sIngle data value Is e.pected 9 and Is assigned to all shIfts In
that range; when a sIngle shIft Is sDecifled, one or More values
May be supplied, and they are assIgned to shIfts, in order,
startIng wIth the specified shift.

<lnteractivelabsentee> can bel

interactive (lnt)
absentee (abs)

ThIs argu.ent Is used when settIng the work class of a load
control group. Separate work classes .ay be specIfied for
Interactive and absentee processes In the load control group, on
each shift. If thIs argument is omitted 9 but the work class
value(s) are gIven, the default is interactive.

The work class para.eters "defined- and "absentee" can have
values of "off" or ·on- (or ·0" or -1"). They are per-shift
swItches, that indIcate respectIvely, whether the work class Is
defIned on the gIven shift, and whether absentee processes are
per_itted in It on that shift.

HTB-193 Page 13

The format of the global_change request will bel

gc <type> <arguments acceptable to the change request>

where <type> can bel

load_control_group 'Icg)
work_class (wc)

The effect of this co •• and wIll be to Make each change (specified
by a change subcomMand) to a.1 entries of the specIfied type.

The format of the palt (print alt) request MIll bel

pal' <type>

where <type> can bel

load_contro'_group (Icg)
work_c I ass (wc)

c~oss_refe~ence (cref, xref)

If <type> Is oaitted, the default wlll be to prInt all three sets
of 1n'o,...atlon.

change X 10 •
change X Shift D 10 10 10 10 10 10 10 10 •
change pet shIft 0-7 10 •

The above are equIvalent ways of assigning 10X to the current
work class on all shifts.

change % shift 1 50 X shIft 2-4 30 •

The above reQuest is equivalent to the following two requests'

change X shift 1 50 •
change X shIft 2-4 30 •

c we Int shift 1 3 we shIft 2-4 Int 2 wc abs 1 •

The above sets the interactive work class of the current load
cont~ol group to 3 on ShIft 1 and to 2 on shIfts 2-49 and the
absentee work class on all 8 shIfts to 1. NotIce that the shift
specifIcatIon and the Interactlvelaosentee IndIcator may appear
in eIther order.

gc wc defined shIft 0 off defined shift 5-7 off.

The above will set all work classes to undefined except on shifts
1-4. ThIs Mould be useful at an installatIon "here onlv shifts

Page 14

1-4 Mere
commands,
" .. In+att_ ..,,. -- ..

"T8-193

In use, to SIMPlIfy the output of the prInt and pall
sInce l~for.atlon about undefIned shIfts Is nof

Note that, In the exa_ples, a perIod Is used fo fer_Inafe the
change request lines Instead of an asterisk. In the neM ed_mgt, a
perlod wIll be :accepted for that function, In addItIon to an
asterIsk, for co.patlbll1ty wIth other Mu'tlcs editors.

The exa.ples show att requIred arguments suppll~d on a sIngle
lIne. ed __ gt Mill pro.pt for mIssIng values. The example above,
In whlch the percents for shifts 1 and 2-4 were changed, would
look lIke this If the user typed onl, what was requested (I

IndIcates proMptIng .essages) I

, typel
change

! codel
X

! shIft.
1

! value(s)'
50 , code'
X

I shIft.
2-4 , value.
30

! codel
•

I tvpe l

