MULTICS TECHNICAL BULLETIN MTB8-193

To! MTB Distrilbution
Froms Re Mullens, T. Casey
Date? 19 May 1975

Subjectt Prilority Scheduler
INTRODUCTION

This document describes the functions and proposed laplementation
of a scheduler for Multics which will 2aflow more flexlble
admlnistrative control of the atiocation of the cpu time resource
to system users and groups of userse.

It Is not an objective of thls proposal to attempt to achleve
greater throughput In any numerjical sense. However, it 1s an
expllcit objective that throughput of)Jobs deemed most valuable
by a system administrator will be increased. To that extent, the
value ot Multics as a computer utitity Is enhanced. O0f course,
every effort willi be made to ensure the efficiency of the deslgn
and implementation of the priority schedulera.

THE PROBLEM

Currentiyy, the Answering Service provides a mechanlsm (load
control) tor classifylng users Into groupss and glving each group
a specltlied share of the system (by timiting the number of users
from each group that may be logged in concurrentiy).

However, except for the seftting of the per-process parameter,
timaxs no control over the rate of consumptlion of cpu resources
by any wuser or group of users [s provided. (Briefly stated,
there Is a parameter, ti, associated wlth each processy which |s
roughity proportional fto the amount of cpu time used by the
process since [t last Interacteds. If the value of t1 for a
process ever exceeds timax, it s set to timax. The process wuith
the towest value of ti ls always selected for eligibiltlty.) 1In
practlice, the consliderable advantage glven to a process by a
{ower=-than-normal value of timax has prevented all processes but
the Initiatizer (and sometimes Backup) from being given ¢timax"s
lower than the default value.

THE SOLUTION

This MNTB proposes that the scheduter allow the groupling of
processes Into work classes, and provide each work class wlth a
guaranteed percentage of available cpu time. Conceptualiy, each
work class wltl be assigned a virtual processor of

Multics Project Internal working documentation. Not +to be
reproduced or distr ibuted outside the Muitics Prolect.

Page 2 MTB-193

adminlstratively defined computational power, avallable to
members of the approprjate work ciass on demand. Any cpu tlime
net needed oy a work class wiil be made avallable to other work
classes,y, and cannot be reclaimed at a {later time. In this
respect each virtual processor is llke a real processort time
unused is time tost forever.

In its ideallzed formy the scheduler proposed here provides each
work class with a speclfiled computational power on an
Instantaneous basis. The ldeallzed scheduler has a time constant
(or integrating time) approaching zero seconds. The service and
functlon provided by the ldeallzed scheduler are known constants,
not subject to being bent out of shape by previous transients In
per-workclass loads.

The actual scheduler wlif for reasons of system efficiency,
scheduler efflilciency and responses necessarlly have a time
constant on the order of several secondse. As an example,
consider the time constant required to smoothly provide service
to a work ctitass which has been assigned 20 percent of a single
cpu contlguratlon and whose members are generally provided with
an eflglbllity quantum of 2 seconds. If the scheduler functlons
correctly, some process in the work class will be glven a two
virtual second quantum every 10 virtual! seconds, or approxlmately
every 20 real secondse. Thls 1ilmpties that In some way the
sCcheduter must be Integrating over the past 20 real seconds for
such a work classe Averaging over a conslderably shorter perliod
would require signiflcantly shorter quanta and resul t in
Increased scheduler and paglng overhead. Averaglng over |longer
perjods ot time moves away from the ldeatlzed scheduler and
toward a scheduler whose behavior s more dependent than
necessary on the past hlstory ot the system.

The ability to Iimit the number of processes In each work class
Is <clearly deslirable, It not an absolute necessity, and the
ablility to assign each process to a speclflc work class Is
obviousiy needed.

To have two separate and independentily-functionlng mechanlisms for
classlfylng users into groups and timiting the number from each
group that may be logged In concurrentiy]s at best unnecessary,
and at worst, confusing and full of hidden problems.

Therefore, there must be a close relationship between work
classes and load control groupss and a single afgorithm must be
used to determine a process®s membership in both classifications.
For example, there could elther be a one-to-one correspondence
between work cltasses and load control groupsy or else the work
ciass of a process could be a function of Its toad control group,
with posslbly more than one load control group belonging to one
work classSe He have chosen the latter, more general,
alternative.

MTB-193 Page 3

It witl be possible for the system adminlstrator to speclfy the
number of work classaes (a limit of 16 wlil! be Imposed by the
scheduler}), and the guaranteed percentage of each wWork class.

The adminlstrator wili be able to define the membership of each
work class. It mili be possible to define such work classes as!
ail I0 daemons, the Backup daemon, ali users on a certain
prolect, or one Iindividual user. In each of those groupings, it
wlll be possible to asslign absentee and Interactive processes
elther to the same or to different work classese.

The set of work class parameters, and the membership of each will
be able to be changed automaticaliy (at each shlft change) and
manually (by the system administrator, who may Install a new
table at any tlme). Thus, the work classes of exlsting processes
can change.

HARDCORE SCHEDULER

The new scheduler will maintaln an ellglble queue conslilsting of
eligible processes oniy and wiil ‘manage 16 ready queues, one for
each work class. Each ready queue will be managed Just as the
non-ellgible portion of the current ready queue |s managed -==--
that Is the gueues will each be Internally sorted by tlI values
and favor the most Interactlve users within the work citass. The
current method of maintaining a ready queue |s chosen for the newn
scheduler for three reasons?

1. It Is response oriented, and In fact has been proven fto
provide the minimsum mean respose time.

2. If such a queue consists of processes all with t1 = timax,
the the queue Is Jargely run as a pushdown stack. This
teads to very desirable paging behavior in that the most
recentiy run process (the process most likely to have its
working set still In core or on the paging device) wilil
often be the next process to be rune.

3. Use of already existing code witt simpiify the
implementatlon effort required.

To contain information. pertaining +to each work class, tc_data
wlll contaln 16 work_class_table_entrles (WCTE*s). Each HCTE
will contain a thread-word for accessing the members of the work
class which are ready, and all parameters and metering data
relating to the work classe. Thils nmlit Include the total amount
of virtual cpu time used by the work class, the totai number of
times eliglbitity was granted to a member, the fraction of
virtual cpu time which the work class 1Is to receive, and the
response time seen by its members.

Page & MTB-193

The actual algorithm used to enforce the proper sharing of the
cpu resource will be as follows, Imagine the existance of a
systea virtus! clock which Increments as virtual time 1ls used by
non-]die processes. Imagine also that each work class has a
store of credits (in units of microseconds) which is continuallty
growing at a rate proportional to the speed of the virtual clock
multiplied by the fraction of cpu resources which the work class
is to recelve, Suppose further that the store of credits for the
work class Is decremented as members actual iy consume virtual cpu
time. Clearly it is undesirable to altow credits to bulild wup
indefinitely for a work class #nlth no processes readyy, SO0 3
maxlnmnum value is set on the number of credits which c¢an be
accumulated, In addition the wvalue 1is restricted from ever
becoming negatlve. The algorithm for chosing the next work class
from which to choose a process to whlch to award ellglblilty may
then be as simple as choosing that work class which has
accumulated the maximum number of credlts.

A worthwhile reflinement nould be to choose the work class for
which the ratio of the number of credits to the quantum to be
awarded (je. to the top member of the given ready queue) is a
maximum., This tends to favor the prompt scheduling of the most
Interactlve users across all work classes. It does not cause
non-interactive work ctasses to fall far behind since eventually
the Interactive work classes choke off. This lIs because they are
temporarliy using credits taster than they are gaining them, and
wltl eventually have a ratlo which s arbitrarlily tow --- and not
be chosen.

It follows that the maximum build up of credits to be allowed
must be greater than the maximum quantum allowed. It should
probably be at least double that amount.

The computatlion requlred for such an algorithm wliil amount to
about 300 microseconds per eliglblliity granted, less 1f fewer
than 16 work ctasses are deflnedes If eliglbliity Is awarded 10
times per sacond {(a high flgure) on a one cpu confliguration, the
foss In system throughput may be about <3%Z. Thls 1s somewhat
reduced by the fact that ati sorting operations Into the ready
queue wlilt be replaced by sorts into shorter queues.

HARDCORE INTERFACE
The Interfaces to the hardcore scheduler will be the foliowings

1. A gate to define {(or redefine)l the set of work classes and
thelr guaranteed percentages of cpu time. This gate ls
tentatlvely callied hphcs_gsdefine_uwork_classese. The target
of this gate will: - be a new procedure (tc.pi4i) which wltl
check fthe consistancy ot its arguments, use existing
subroutines to wire and masks and lock the APT before
modlfying the work class table. Because thls procedure will

MTB-193 Page 5

not be heavlily used it will catll wire_proc$wire_me rather
than belng permanentiy wired. It will be fllegal to
undefine a work class that curraently has processes in 1It.
If that ls attempted, the processid and work class number of
one of the "offending®” processes wiil be returned, In order
that appropriate action can be taken.

2. A gate to reassign one existing process to a different work
class. It wlill refuse to change the work class if the nen
one is not defined. It ls tentatively called
hphcs_8set_process_work_ciasse The target of this gate will
be pxssiset_work_class.

3. An additlonal parameter In the create_info structure passed
to hphcs_S$Screate_proc: the inltiat work ctass. It will be
l1ttegal to specify a work class that [s not defined. It
wiitl be necessary for act_proc, the target of
hphcs_$%create_proc, to catl pxssdseft_work_class, to Insure
that the work <class being assigned to the new process
currently existse

A primitive to simultaneously redefine the work classes and
reset the work class of each process is neither reguired by
togical considerations nor Justified by efficiency
consjideratlons. Furthermore such a primitive would not be able
to handie an arbltraritly large number of processes.

In order to redefine the work classes In the general case, 1|t
wilt be necessary first to define a transltional set of work
ciasses and percentages (including both oid and new work
classes), then to reset the work ciass of each process to the
new valuey and flnally to define the new set of work classes. A
procedure to do this will be implemented In the answering
service.

SUMMARY OF CURRENT LOAD CONTROL SOFTHARE

Since work class membership will be a functlon of load control
group memberships work class definltions wiil be stored In the
MGTy and the Implementation of the answering service and
administrator interface to the prlority scheduler wlil conslist
mainiy of modiflcations to the current lcad control software, a
summary of that softwarey, as It now exlsts, iIs presented heree.

Load control group membershlp is specified In the SAT entry ftor
each project. In additlon, each project®s SAT entry contalins an
absolute max user figure for that projJect that Is enforced
Iindependentliy of the load control group limlts.

Absentee and daemon processes are not subject to toad control.
They are always logged In on request. They are assigned to the
{oad control group corresponding to thelr projects, but thelr
group membership Is lgnored by everyonee.

Page b MTB-193

Load control groups are deflned In the master_group_table (MGT),
which Is a blnary table maintained by an editor (ed_mgt), and Is
not subject T0 tThe instaii discipiine. {1} Thils table contalng
timit parameters for each group, Set by the system administrator,
and it is also used to hold current load flgures for each group,

during a session.

The group limits are defined in units of user welght, rather than
number of wusers. (There are, however, {ilmits In units of users,
for the system as a whoie, and for each project.) By default,
each wuser has a welght of 18, so max_units |s ten times
max_users. HWelght is a function of the process overseer, and Is
determlned by an array of welghts kept in the SAT header.

There are two sefts of ilmit parameters per group, one used to
compute primary_max_units, the other, to compute
absolute_max_unlifts. Each set contains three parameterst a
constant (which may be zero), and a numerator and denominator of
a fraction. The formula for absolute_max_unlits for a group Is?

absotute_max_units = absolute_constant +
{available_max_units*absotute_numerator)/absolute_denomlinator

where avallable_max_units ls the system_max_units less the units
used by the absentee and daemon processes who are not subject to
toad control. The formula for primary_max_unlts Is the same, but
using primary_constant, primary_numerator, and
primary_denominator.

These calculatlions are performed for all groups each time a user
attempts to 10og Iny s0 changes to unlts used by absentee or
daemonsy changes to system_max_unlts, or changes In the MGT made
by the system adminlistrator are atl taken into account
immediately.

The system_max_units flgure ls elthers
i. taken from the SAT header, for a special sesslon, or

2e set by the operatory, using the maxu command, In which case
automatlc maxunits setting Is turned off, or

3. set automatically at each shift change and whenever the maxu
auto command ls gilven by the operator. The automatic settlng
fooks up the currant shift and configuration in the config
array In installiatlon_parms, and chooses the correspondling

B e ———

{1) The Install dlsclptine 1Is a method used for. Instaltling
certain crltlcal tables, whereby the Answerlng Service installs
the table, when reguested by a system or projlect adminlstrator,
ensuring that the Answering Service will not attempt to reference
the table while It 1ls being updated.

MTB-193 Page 7

values fors system_max_units, max_absentee_usersy,
max_absentee_queues and response_hlgh and response_tow. (The
fatter two flgures are used by the load leveler (when it s
enabied by the maxu level command)ly, which readjusts
system_max_units at every i5-mlnute accounting wupdate, to
keep response between the high and low flgures.)

The (oad control decision is rather complexy, when speclal
privileges like guaranteed 1{o0glny, the nobump attrlibute, and
protection from preemption for a specifled grace time are taken
into account. But baslcaliy, It the system ls full (as measured
by system_max_units or systea_max_users) then someone must be
bumped or eise the user [s refused login. If the system 1ls not
fulty, but the group or the project Is full (as measured by the
group®s absofute_max_units or the project®s max_users), then
someone in the group or project must be bumped, or else the user
is refused logine. It the group®s primary_max_unlts are atl
allocated but |1ts absolute_max_units are noty then the user is
togged In as a secondary user, subject to preemption. Secondary
users (In any group) are the first to be bumped (otdest first)
when some primary user wants to fog Ins fotliowed by primary users
(In the same group) whose grace time has explred, followed by
practically anybody, when a user wlth the guaranteed logln
attribute is tryling to fog ina C ‘ ’

The load control group membership of a process never changes, but
both the proportion of the avalitable_max_units that each group
gets, and the number Itself, can vary with the
avaliable_max_unlits (which varies with shlft, configuration, and
absentee and daemon load)l, because of the max_units fornula
described above.

NEW ANSWERING SERVICE AND ADMINISTRATOR INfERFACE

The MGT will be reformatted to hold work class definitions as
well as load control group deflinltions. Since there will be a
maximum of 16 work classes, but there Is currently no restriction
on the number of ltoad control groups, the new MGT wWwill consist of
a headery, followed by a ftixed-tangth array of 16 work class
definitionsy, fotlowed by a varlable-iength array of load control
group deflinitions. The header and the load contrel group
definltions wiil remaln essentlally unchanged, except that each
{oad control group definitlion will contaln two . addltional
8-element arrayss speclfylng the nork classes to which
Iinteractlve and absentee users in that toad control group belong
on each shift.

One or amore {ocad control groups can belong to each work classe.
The max_users and max_unlts flgures for each work class wiil be
the sum of the corresponding figures for the load control groups
that make up the mwork classs The work class maxima will not
actually be computed and stored anywhere by the answering
servicey but they wlll be dlsplayed by ed_mgt to asslst the

Page 8 MTB-193

system administrator In assligning reasonably consistent
percentages to the work classes and max user and unilt tigures to
the load contrel groups. The normal operatlon of toad control,
as described above, wlil (imit the number of processes In each
work class.

The ed_mgt command wit! be modified to be abie to store and
modify the wWork class parameters, to verlfy, on request, the
correctness, reasonableness, and conslstency of work class
parameters and the corresponding {oad control group definitions,
and to print work class definjitions and a cross reference showling
the correspondence between l1oad control groups and work classese.
The changes to ed_mgt are described In detail Iin a later section. .

The 1Install command will be modifled (and a new procedure,
up_mgt_s willl be written) so that the MGYT can be Instalied while
the system is up and users are logged In. up_mgt_ wlil! have to,
in general, reset the work class of all existing processes to the
work class speclfled In the newly-installied MGT.

The answer table (and daemon and absentee user tables)y and the
create_info structure passed to hphcs_$create_proc, wili{ have a
new varlable, work_cltass, added.

foad_ctl_%1oad_cti_init will calli hphcs_8Sdeflne_work_classesy to
define the work classes to be used by the scheduler, durlng
answering service Initlalization. (Thls call must be made before
the daemons are logged [n.)

load_cti_%$set_maxunlts, which Is called at each shlft change (as
well as durling the second hatt of answering service
initiatization, and whenever the operator command “maxu auto™ l|s
glven) will redefine the wWork classesy as specifed for the
current shift In the MGT, and wil}l reset the work class of each
exlsting process as requlred.

Since the functlon of redefining the current work classes and
resetting the work classes of atll exlsting processes must be
performed both at shlft change and whenever a new MGT |is
Instatled, it will be Implemented as a separate procedure, cailled
in both situationse.

To support the assignment of work cltasses on the basls of person
as well as project, the SAT and POT, and the procedures which
complleys edity and Instalt themy will be modifled to allow a toad
control group to be specified for an individual user rather than
just for a whoile projecte.

A newn attribute, lgroup (individual group), wnill be created. Hhen
that attribute Is on in the SAT entry for a projecty, It pernmits
the 1{load controtl group for users on that project to be speclflied
in the PDT entry for any user on that project. (If that attfribute
Is not on In the SAT entry, then all users on the project witll

MTB-193 ‘ Page 9

continue to belong to the load control group specified In the
project®*s SAT entry.) HWhen the lgroup attrlbute Is on In the POT
entry for an indivldual user, it Indicates that a {load control
group Is specified in that user®s PDT entry. (If igroup Is not
on in a user®s POT entry, that user wlil contlinue to be a member
of the toad control group specified In the project®s SAT entry.)
The name of the individual user®s 1oad control group wii! be
stored in a presently unused pad fleld In the POT entry. Thls,
plus the use of igroup in the PDT entry as a positive indication
that a group is specifled, wlil atiow this change to be Installed
without requiring that any exlsting PBT*'s be reformatted or
reinstalilied.

lg_ctli_ will be modifled to assign a load control group on the
basis of person as well as project, as described above.

load_cti_ witl be modifled to use the load control group of each
process to assign It to the work class speclifled In the MGT for
absentee or interactlive wusers In that group, on the current
shitt. (Daemon processes will be treated as Interactlve, for the
purpose of work class assignment.) The assigned work class wlll
be stored in the answer table (or absentee or daemon user tabile)
entry for the processe

cpg_ will copy the work class from the answer table entry Into
the create_info structure, before calling hphcs_3create_proc.

INSTALLATION PROCEDURE

The hardcore system contalning the prlorlty scheduter, and the
answerling service contalning the above modiflcatlons, can be
Instalited iIn elther order. If hphcs_sdeflne_work_classes 1is not
calliedy a single work class (work class 1) wlitll exist by default,
and wlil have a percentage of 100%. The version number of the
create Info structure will altom act_proc {(the rlng zero
procedure called vla hphcs_g$create_proc) to determine If the new
versiony containing the work class, has been passed. If the oid
version of create_info lIs used, act_proc wlil§ assign processes to
work class 1 by default. This atlows the hardcore system to be
Instalied first. '

The new answering service wlli check for the old format MGT, and
1f it Is found, none of the new gates will be calledy, and every
process wlll be assigned to work class 1, Independent of thelr
load controt group membershipe. Further, a switch In the
reformatted MGT, sattable by ed_mgt, wili aliow this mode of
operation to be specifled by the system administrator after the
M6T Is retformatted. Finallyy, a check for the exlstence of
hphcs_g8define_work_classes wlll be made during answering service
inltiallzatlony, and 1f 1t 1Is not presenty, the old mode of
operatlion wlif be used. Thils wil! make the new answering service
compatibie with oider system tapes. It will also cause the
system to run as it does nows with only one work class, when both

Page 10 MTB-193

the new answering service and the new hardcore system are
Installedes The new scheduler will not be turned on untli the MGT
is reformatfedy and the system admlinictrator expliicitly enables
1te .

The system adminlistrator wlitls of course, be Informed of atl this
In release documentation. The first time he uses the new ed_mgt,
it wltl recognlze the old format MGT, reformat [t automatically,
deflne a single work class (work class 1) wlth a percentage of
100%, make all 1oad control groups members of It, and then invite
the system adminlstrator to define more work classes and reassign
the load control groups to them, It wiil not be requlred that
the administrator do sos but ed_mgt wili keep reminding him,
every time he uses It, untll he does.

Since the MGT wliil now be subject to the Install discipilnes the
reformatted copy can not be put back In >sci. HWhen the "w"
request Is glven, the reformatted MGT (named MGT.mgt) wlill be
written In the working directory of the administrator (which
should be >udd>sa>admin). The adminlstrator will be told about
this by ed_mgt. Except for the Instance when the MGT lIs
reformatted, the edited MGT witl be written back into the iInput
M6T, as ls done now. Homever, the system administrator wliil not
be editing the »sci copy any more. As a convenlence, after
wrlting the edited copy back into the original, ed_mgt will
always ask "Install?", and If the answer ls yes,y, 1t will Invoke
the Install command. The administrator will of course be able to
invoke it dlirectiye.

The instatiatlon procedures descrlbed above wlil! make testing and
iniltial instatiation of the system very convenient, and It wiil
also allow the system administrator at each customer site to turn
on the priority scheduler at hls convenience, Instead of forcing
him to deflne some (possilbly llil-consldered) work classes, Just
to get the new system reiease to run.

CHANGES T0 ed_mgt
Summary of Current ed_mgt

The following summary describes only those features that are
belng changed.s The MG6T, as seen by a user of ed_mgt, Is an array
ot 1oad control group definitlons. The find (f) request positions
the current polinter to the specifled groupe. The next (n), top
(t)y and - (minus sign) requests move the current pointer forward
or backward iIn the array. The change (c) request changes
parameters of the current group. The print {(p) request prints all
Information about the current group. The pal! (pa, p*) request
prints al! information about all groups. Only the find and change
requests take arguments. Thelr formats aret

find <group name>
change ccode> <new value> [<code> <new value> ...]1 *

MTB-193 Page 11

where <code> is the name of the parameter to be changed. Typolng
these requests without arguments causes ed_mgt to prompt the user
for thenm. The change request puts ed_mgt Into the change
subcommandys In which <code> <new value> palrs are accepted. The
asterisk at the end ot the Iine exits from the change subcommand
and returns to ed_mgt request level.

Summary of New Features

The find request will be modifled so that a <group name>
consisting of one of the iIntegers 1 through 16 will refer to the
corresponding work cliass.

The nexts tops and - requests wil!l be modified to print the name
and type of the entry belng pointed at after the pointer ls
moved.

The change request wlil be modified so that the set of codes
accepted wnlli be dlfferent, depending on which type of entry
{work ctass or load control. group) the current pointer |s
pointing ate. New codes and other arguments wlit be added, to
allow parameters of work classesy and the work ctlass membership
of load controi groups, to be edited. ‘ '

A new requests global_change (gc), wili be added, to atlow the
same {(set of) changels) to be made to all work classes or to all
toad control groupse.

A nenw request, verlfy (v)y wlil be added, to request that ed_mgt
check all the work-class-related parameters In the edited MGT,
and report any errors or warnings that would be recelved If the
MGT were to be instaltled,

The print and pall reguests will be changed to print the new
parameters, and the pall request will take arguments, requesting
that alt work classese, or all 1oad control groupsy or bothy be
printedy or that a cross reference of work classes and toad
controil groups be printed.
Detaliled Descriotlons of New Features
Two new formats for the change request will be added!

change <code> [<shift speciflcatlon>) <one or more values>

change <code> [«<shift spec.>] <interactivelabsentee> <valuel(s)>

The flrst Is used when edlting work class parameters; the second,
white changing the work class membership of a foad control group.

Page 12 MTB-193

The following new <code>*s can be used in the above reguests?

percent {pnct. Z)

absentee {abs)
deflined (def)
vork_class (wc)

The first three are used with ¢the first form of the change
requesty, t0 edlt work class parameters. The fourth lIs used with
the second form, to change the work class membership of a \load
control group.

The format of the <shift speclfication> s the word "shlft*™
foltowed by a shlift number or a range of shift numbers (two
numbers separated by a hyphen, the second greater than the
first)1

shltt <number>!<number>-<number>

The shlft speclfication is optionat., It 1t s omitted, the
default s a functlon of how many values are supplieds If one
value Is supplled, it iIs assligned to all 8 shifts. If a 1llist of
values 1Is supplledy, they are assigned 1o shifts 0y 19 eeey
respectivelyy, and shifts for which values are not suppllied are
not changed.

The foliowing retationshlp exlsts between the shift specl fication
and the 1ist of valuest when a range of shlfts ls speciflied, a
single data value Is expected, and Is assigned to all shifts In
that rangej; when a single shift is specltfledy, Oone or more values
may be suppliledy and they are assigned to shlfts, 1In order,
starting with the specifled shift.

<interactivelabsentee> can bet

Interactive (int)
absentee {abs)

Thls argument Is used when settlng the work class of a load
control groupe. Separate work classes may be speclfled for
Interactive and absentee processes [In the load control group, on
each shift. If this argument s omitted, but the work class
value{s) are glveny, the default is interactive.

The work class parameters "deflned™ and “absentee”™ can have
values of “oft"™ or “on”™ {(or *8* or "™1"). They are per-shift
switchesy that Indlcate respectively, whether the work class lis
deflned on the glven shifty, and whether absentee processes are
permitted Iin It on that shift.

MTB-193 Page 13

The format of the gliobai_change request wili bet
gc <type> <arguments acceptable to the change request>
where <type> can be?

load_control_group {(lcg)
work_class {wuc)

The effect of thlis command will be to make each change (specifled
by a change subcommand) to ati entries of the speclified type.

The format of the pall (print ait) request wil!l bes
pall <type>

where <type> can bel
load_control_group (lcgi
work_class (uc)

cross_reference {cref, xref)

It <type> is omitted, the default will be to print all three sets
of information.

Examples!
change %Z 10
change % shlift 0 10 410 10 10 10 10 10 10 .
change pct shift 0-7 410 .

The above are equivatent ways of assigning 10% to the current
work cliass on all shifts.

change %Z shift 1 50 %X shift 2-4 30 .
The above reguest Is equivalent to the following two requestst

change % shift 1 50 .
change % shift 2-4 30 .

€ WC Int shift 4 3 wc shift 2-4 Int 2 wc abs 1 .

The above sets the Interactive work ciass of the current {(oad
control group to 3 on shift {1 and to 2 on shifts 2-4, and the
absentee work class on ali 8 shifts to 1. Notlce that the shift
speciflcation and the Interactivelabsentee Indicator may appear
In elther order.

gc wc defined shift 0 off defined shift 5-7 off .

The above will set all work classes to undefined except on shifts
1=4. Thls would be useful at an Installation where onily shifts

Page 14 ‘ MTB-193

1-4 were |In use, to simpllfy the output of the print and pali
commandsy since Informatlion about undefined shifts |Is not

printed,

Note thaty, In the examplesy a perlod Is used to terminate the
change request tines Instead of an asterisk. In the new ed_mgt, a
period wili be ‘accepted for that functiony, In addlitlon to an
asterlisk, for compatibliilty with other Multlcs edltors.

The examples shom all required arguments supplied on a single
tlne. ed_mgt will prompt for missing values. The example above,
in which the percents for shifts 1 and 2-4 were changed, would
‘look tlke this If the user typed only what was requested (!
Indicates prompting messages)t

! types
change

H codet
%

L] shitts:
1

H vatue(s)?
50

! code?!
%

L shifts
2-4

L} valuetl
30

H cogdel

L] typel

