MULTICS TECHNICAL BULLETIN MTB =-.234 ' page 1

To: Distribution
From: Robert S, Coren
Date: 11/06/775

Subject:s New Strategy for Conversion of Terminal Output

INTRQDUCTIION

The parts of the ring zero typewriter DIM concerned with
character conversion == i.e.r, the. subroutines tty_read and
tty_write -- have remained largely unchanged in design for a long
time., The process of character conversion on Multics is currently
very slow and inefficients, in particular taking no advantage of
£Is. The problem 1i1s .especially acute Wwith respect to output.,
since there 1s in general about & times as much terminal output
as terminal input, accordingly tty_write is a major bottleneck in
ring 2zero. This MT8 describes a proposed redesign of tty_write
which will speed it up considerably without any loss of function.
Similar changes are planned for tty_read at a later date.

IHE _CURRENI_METHQD_QE_QUIRUI_CONVERSIOQN

In tty_write as currently implementeds, each <character of
user-supplied data s individually examined and looked up in
various tables to determine what should o©e placed in output
ouffers to be sent to the 355 and thence to the terminal. Even in
"rawo!" mode, where the wuser's data 1is passed on with no
conversions, each character is nonetheless <copied 1individually.,
with the count of characters being incrementea one at a4 time.
Wwhen either the end of the user's data is reacned or the maximum
number of ring-zero pbuffers the wuser is allowed to have is
filled, conversion stops andr, if appropriate, the data so far
converted is shipped to the 355. :

Tiis mechanism has the obvious advantage of simplicity: it
is particularly easy to keep track of how many of tne user's
characters have been transmitted and how much buffer space is
veing used. However, this aavantage is more than offset by the
loss of efficiency 1in processing characters one at a time, In
additiones the tables used for the conversion are kept, by
terminal types in a ring zero data base (tty_ctl), and pointers

Multics Project internal working documentation. Not to be
reprocuced or distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB - 234 page 2

to them are derived by tty_write every time it is called. In this
setups, no method is available for the user to substitute his/her
own translation tables., Still worses, the same table i1s used both
for determining whether a <character is '"special” (requires
escaping or the addition of delays) and for converting from ASCII
to some "foreign” code (such as EBCDIC), tnis situation makes it
virtually 1impossible to avoid - looking wup and doing something
about every character input to tty_write.

BRQROScD _NEW_UETHLD

The new design is predicated on the assumption that the vast
majority of <characters sent to the user's terminal are
"uninteresting'” =-- 1. e.r they are to be shipped as they are.,
they do not reguire delays, and each one advances the carriage by
cne position. A block of such characters can <clearly be copied
into tty_buf all at once with a single EIS instruction, or at
least in buffer-sized chunks. The only problem is identifying the
Limits of such a blocks and making the necessary additicns and
substitutions when an "interesting"” <character is encountered.
Wholesate translation (e. g.sr ASCII to EBCDIC) is a separate
issue, and can also be dealt with economically using EIS.

The functions of tty_write <can be logically divided into
four phases:

1. Prelirioary_conversion (specifically the translation of
of lLowercase letters to uppercase for a Teletype model 33
or terminals in "capo" mode:

2. Formattings i.e.r, substitution of wescape sequences.
insertion of new=-Lline characters in Llong Llines»,
canonicalization and optimiziation of white space, etc.-s

3. Translatigns as from ASCII to EBCDIC;

in tty_buf, whence they will be read by the 355,

In the current tty_write, these four phases are executed more or
tess simultaneously on each character; in particular, phases 2
and 3 (formatting and transltlation) are not distinguished, and are
driven py the same table. The new design executes each phase over
the entire input string (or as much of it as will be transmitted
at once) before passing on to the next phase, In most <casess, of
course, either phase 1 or phase 3 or both can be omitteds 1in
“rawo™ modes tty_write can and does proceed directly to phase 4.

MULTICS TECHNICAL BULLETIN MTB - 234 page 3

Fach phase 1is provided with an "input pointer" to the
location where the previous phase left the data in 1its latest
forme« This pointer points either to the user's original input or
to either of tuyo puffers in tty_write's automatic storagesr 2s

o N S) - SR

descrived later.

The only serious disadvantage to this scheme is that the
deterrination 2f how many of the user's characters are actually
to be shipped must be made in advance of conversion, and this
determination must attempt to take into account the protability
that the final output will contain more characters than the user
supplied, There 1is no ideal solution to this problem, but one has
been developed which ensures that the program will Dbehave
correctly in all casess, and in general will have the same effect
as today (in terms of the number of calls reguired to output a
given string, the pressure put on tty_bufs. etce). This solution
is descrioed later in this document. ‘

Extensive use has been made in this design of three EIS
instructions ¢ move with translation ({(mvt), test character and
transilate (tct), and scan with mask (scm). PL/I builtin functions
such as translate do not completely meet our requirements;
therefore an ALM subroutine, tty_util_» is supplied, containing
entry points to perforim the necessary functions.

The remaining sections of this MT3 contain the following:

1. A more detailed description of the four. phases of
conversion mentioned above’

2. A discussion of space allocation and character countings

3. A description of the data structures used for conversion
and translation, as well as an indication of the groposed
method for allowing the wuser to substitute his owuwn
versions of the relevant tables:

4. A module description of tty_util_.

Preliminary_Conyersign

Certain terminals require uppercase-only output; similarly.,
a wuser can specify (py entering "capo’" mode) that all lowercase
letters are to dDe converted to uppercase for output. These cases
are treated identically by tty_write: an mvt {move with
translation) instruction is used to copy the user's data into an

MULTICS TECHNICAL SULLETIN MTB - 234 page &

automatic buffer, wusing a translation table which substitutes
uppercase ASCII for lowercase., 1f the user is in "edited”" mode.,
this is all that needs to be done for this phase; if not.,
however, each letter which was originatly uppercase must De
preceded by an escape character ("\"), Therefore, in "“edited"”
modes the translation table also replaces each uppercase Lletter
with the same character with its high-order bit (the "400(8)"
bit) turned on. After the mvt is completeds, an scm (scan with
mask) instruction 1is executed to find the first character with
the "400" bit on; if one i1s found, all characters to the left of
it are copied to a second internal buffer, an escape is inserted
after the copied characters, and the high-order bit of the found
character is turned off. The scm is repeated on the remainder of
the characters in the first buffer until all characters have been
copiec to the second bufter with escapes inserted as neeced. If
no characters with the high-order bit on are found in the entire
strings, no copying 1s done.

Eormatting

The search for, and correct handling of, "interesting”
characters 1is the most crucial of tty_write's functions, and the
one to which most of the time spent in tty_write is devoted. The
identification of "interesting" characters is facilitated by the
use of the tct (test character and translate) instruction under
control of a table containing zero entries for all
“"uninteresting'” characters and various indicators identifying the
different kKinds of "interesting" ones: carriage movement
characters, ribbon shifts, and characters requiring the
supstitution of escape sequences,

The formatting phase of tty_write calls tty_util_$find_char
to find the first "interesting”" <character in the string,
tty_util_s$find_char returns a tally of "uninteresting"”™ characters
skipped over, the indicator value for the character it stopped
ates and an updated pointer to the character at which to start the
next scan. {See the module description of tty_util_ Llater in
this document.) tty_write copies the uninteresting characters
into an internal puffer (whichever one does not contain the
source string) and examines the indicator. If it designates an
escape sequence, the sequence 1S inserted in the buffer. For a
new-{ine, wvertical tab, or form-feed character, a special table
is indexed to find the appropriate representation of the
character, and another table is searched to find the correct
number of delays to be inserted depending on column position,
terminal type, and baud rate. For "white space" (horizontal tab.,
hackspace, carriaye return, or two or more blanks) tty_write
simply calculates and remembers what column position to end up
ins this information will either be used to 1insert appropriate

MULTICS TECHNICAL BULLETIN MTB ~ 234 page 5

carriage motion <characters before the next .graphic to be
inserteds or discarded if the next character involves wvertical
carriage motion. This process 1s repeated until all the source

characters are used up. 1f it happens . that the first call to
tty_util_3find_char returns an indicator of zero and has used up
the entire source strings no characters are moved by this phase.

The subroutine tty_util_3find_char uses a tct instruction to
find interesting characters, but i1t must do other things as well.
In the first onlaces, for the instruction to notice that a
character has either or both of its high=-order bits on, a table
of 512 entries would be neededr, of which 384 would be identical;
secondly, a single blank between two printing graphics is not
interesting to tty_write, but two or more consecutive blanks are
considered “white spaces," as is any combination of blank and one
or more other carriage movement characters. To cover the first
cases, tty_util_3sfind_char performs two scm instructions to find
the eariiest character (if any) which does not fit in seven pits,
Far the case of multiple blankss it is clearly undesirable to
nave & non-zerd indicator in the tct table for blank, and thus
force the tct to stop on all blanks, test to see if the next
character is a blank, and then proceed if it is not. Insteads, the
tct is preceded by an scd (scan character double) instruction
which Llooks for two successive blanks. Tne tally and pointer
returned to tty_uwrite reflect the earliest point in the source
string at which either the tcts, the scds or either of the two
scm's found anything interesting.

It will be seen from the module description of
tty_util_s$find_char Llater in this MT8 that ‘a "white space"
incicator implies that the pointer points to the beginning of a
olock of white spacer which tty_write then examines until it
finds the end of the block. Therefore if the first 1interesting
ctharacter found by tty_util_$find_char is a carriage movement
character, i1t must check to see if the immediately preceding
character is a blank, in which case it returns a pointer to the
plank rather than tne character following it.

Another responsibility of the formatting phase is the
counting of output lines and watching for full pages. In the old
tty_write, page Llength is respected only for ARDS-like screen
terminals; when the maximum line <count 1is reacheds, tty_write
stops processing characters and sets a flag in the fixed control
block (fctl) associated with the terminal. This flag gets
transmitted to the 355, which then understands that, when the
output is completeds, it must not ask for more output for that
channel until 1t receives a form—-feed character as input. The new
design extenas the <concept of page Llenygthn to all terminals
capable of receiving or transmitting a form-feed, and removes all
knowledye of the end-of-page condition from the 355. In additions

MULTICS TECHNICAL BULLETIN MTp = 234 page 6

tty_write no longer stops processing characters when the Line
count reaches maximums instead, the formatting phase inserts a
warning strinyg (such as "EOP") and a sentinel <character at the
end of the pagye, and the copying phase (see below) later removes
each sentinel and turns on a flag in the buffer that ends the
page. When dn35S (the program that actually sends the buffers to
the 355) sees this flags it ceases transmission, and ngow sets the
flag in the fctl block. when it receives input for a channel with
the end-of-page flag on, it scans this input for a form-feeds if
it finds ones it replaces it with a PAD character (177(8)), turns
off the fctl flags ana starts up output for the channel again,
(1) :

The translation phase is wvery similar to tne preliminary
convarsion pnhase described earlier. An mvt instruction is used to
copy the entire string from wherever it was left by the preceding
phase to an automatic pbuffer, translating it from ASCII to the
appropriate output code in the process. (At present the only
output codes other than ASCII known to Multics are EBCDIC and IBM
Correspondence,.) This does not complete the process for a
terminal which reguires case-shift characters (which currently
includes all terminals for which transtation 1is done); the
insertion of case-shift characters is done in a similar manner to
the insertion of escapes before capital letters as described
under "Preliminary Ccnversion.” The translation table causes the
high-order bit of each uppercase character to be turned on (in
this context the term wuppercase refers not only to capital
letters obput to all characters for which the shift key wmust be
depressed while typing) and the "200<(8)" bit of each lowercase
character to pbe turned ons characters which may be in either case
(such as space) contain no extra bits. After translation, an scm
is done to find the first character in the opposite case to the
one in which the terminal was at the start of the outputs, all
characters to the Lleft of it are copied, an appropriate shift
character is inserted after the copied characters, and another
scm is wused to find the next change of case. If all the output
ctharacters are in the same cases NO cOPYing is done. Note that it
is not necessary to turn off the high-order bits of the uppercase
characters» since these Hits will be ignored by the remainder of
the tty DIM and ultimately thrown away by the 355.

(1) A @mode may be added in future which would allow a wuser to
specify that when a page is full the tty DIM should automatically
output a form-feed rather than waiting for one to be input. On a
hard-copy terminal, this mode would probably make more sense than
the current method.

AULTICS TECHNICAL BULLETIN MT8 - 234 paye 7

[

guffer Allogatign_and_Copying

The final phase of tty_write consists of allocating buffers
in tty_buf and copying the final output into these buffers. A
buffer in tty_out is 16 words longs, of which the first contains a
forward pointer, flagss, and a tally; each buffer therefore holds
up to 60 characters, Thus one buffer is allocated by tty_write
for every &0 characters of final cutput, and the characters are
copied in 6é0-character chunks. If an end-of-page sentinel is
encountereds the end-of-page flag 1s turned on in the current
puffer, and the buffer is not filled past the sentinel. If output
already processed for the particular channel has not yet been
sents, a chain of buffers for that channel will already exists? if
the Llast buffer in this chain is not full, and does not have its
encd-~of-page flag on, it will be filled pefore further buffers are
sliccated. The newly-allocated buffers will be threaded onto the
stz c¢hain, Finally, if the "sena_output”™ flag in the fctl block
is ¢ones indicating that an355 and the 355 itself are preparea to
nandle output for the channel, tty_write calls dn3553ioc_commanc
to cause a mailbox to be sent to the 355 telling it that output
is on the way. ' ' ‘

SPACE _ALLOCATION AND_CHARACTEK COUNTING

P A . - — - — -

because the input string undergoes wholesale modification at
several points, 1t is necessary to decide how many of the user's
characters to process pefore actually doing anything. Certain
canstraints wnhich exist in the present i1mplementation will be
ratained: no more than a certain fraction of available buffers in
tty_ouf are to be assigned to a single channel at any time; and
no output chain of more than a certain number of buffers will be
ouilt, The particular numbers involved are, for the sake of
convenience and simplicitys, preset system-wide constants. The
current values, which appear reasonable, are 1/4 and 16
respectively; 1.e.r, no channel 1s ever assigned more than 1/4 as
many buffers as are free at the time of assignment, ang a maximum
of 16*6y = 960 characters will be processed by a single call to
tty_write.

The first determination made by tty_write, then, is the
maximum number of buffers the caller is allowed to havesr which
1s:

maxbuf = ain(16, (pbuffers_Lleft/4) - buffers_assijneaq)

The number of characters to process may then be expressed as

MULTICS TECHNICAL BULLETIN MTB - 234 page 8

nchars = min(chars_supplied, maxbufxchars_per_buffer)

It the terminal 1is in "rawo" moder, this is the number of
characters that will actually be shippeds, and nothing further
need be done. In general, howevers, the number of characters
actually output 1is scmewhat Llarger than the number supplied;
meters dJone at wvarious times show an average growth ratio of
about 6:5. Accordingly, for non-raw outputs, tty_write will
multiply nchars as calculated above by 0.8 to allow for growth
(this sctually allows for a growth ratio of 5:4, which gives wus
some leeway). As a results the size of the output string can
jrow by as much as 25% without requiring more buffers than one
line 1s "supposed” to haves; however, the restriction to 1/4 of
the available buffers is a very conservative one, so if it
occasionally proves necessary to allocate an "extra” pbuffer the
overall effect on available buffer space should not be
noticeable,

An additional consideration arises from the use of internal
buffers in tty_write. Because of the possibility of more than one
intermediate copys, two such buffers are neededs, and rather than
create two seyments so as to allow each buffer to grow
essentially without Limit, it was decided to set aside fixed-size
puffers in tty_write's stack frame. .The size chosen for each of
these buffers is the maximum allowable output chain sizer, 1. e.»
360 characters.

Clearly growth ratios yreater ‘than 5S:4 can and will occur;
there are patholoyical cases such as an object or other non-ASCII
segment beiny printeu on a 2741 terminal, which involves a growth
ratio of more than 531 (<upper_shift> ¢t <lower_shift> ann for
each input character, plus added new=-lines and dc markers), Thus
despite precautions we must be prepared for the possibility that
in the course of translation or formatting we will run out of
space in the internal buffer, When this happens, the number of
input characters to be handled is cut in half, and <character
processing 1is started over from phase 1. This solution is
admittedly crude, but the alternative is to keep track at all
times of the number of the user's characters which have been
processed, which in some cases (particularly the transformation
of white space) 1is non=trivial 1in the new scheme, it seems
inadvisable to incur this overhead on every call to tty_write in
order to avoid expense in a rare case. The problem will only
arise when attempting to process 768 user characters of which an
unusually Llarge number have to be escaped; considering that the
average output message is around 54 <characters, the overall
expense of doutle processing in such a case is not Likely to be
significant.

MULTICS TECHNICAL BULLETIN MTB - 234 page 9

If space in tty_buf is unusually tignts, then an abnormal
character string which is not Llarge enough to over flow the
internal puffer space might nonetheless require the allocation of
more buffers than are availableo. If tty_write finags that 4§t is
about to allocate the last buffer, it will take the same action
as if it were about to overflow one of its internal puffers, 1i.
esr divide the numoer of input characters in half and start over,
This <circumstance 1is <considered even Lless probable than the
overflowing of an internal buffer; if it happens often it s
probably an indication that tty_buf 3s too small.

we couldes of courses reduce the frequency of overflow events
still further by decreasing the percentage of the theoretical
maximum number of characters that will actually be processed at
once’s however, this would 1increase the probability that the
user's characters could not be handled in a single call, thereby
requiring users to go blocked for output more often andg
increasing the numbter of calls to tty_write. The figures used 1in
this MTi3 are a preliminary estimate based on what seems
reasonables they can easily be adjusted if metering shows either
a high frequency of double processing or an excessive (i.e,,
greatly increased) number of calls to tty_write.

RATA_SIRUCTURES

This section describes the tables to be used by tty_write
for translation and formatting. Packed pointers to these tables
will pe kept in the control plock (ctl) allocated for each Line
when it dials wups the default tables are in tty_ctl on a
per-terminal-type pasis as at presents, and pointers to these
tables are copied from tty_ctl into the ctl block the first time
tty_write is called for any one dialup.

In a future modifications, control operations will be
provided to allow a user to substitute his/her own version of one
or more of these tables. Macros (1n mexp) may also be provided to
facilitate the construction of such taoles. This capability.
however, introduces problems as long as the Answering Service
does not use the secure (ring 1) message faciltity rather than
calling ncs_S$tty_write directly., Wwrite calls from the Initializer
for a terminal wusing wuser-supplied translation tables would
reference nointers in the wuser's address space (not the
Initializer's), wanich at oest would result 1in garbage being
printed on the user's terminal. (A possible alternative to using
the message facility 1is to have the Answering Service call a
special entry which uses the default tables for the terminal type
whether the user has supplied tables or not: the output might be
garbled, but at least the taoles would pe accessible to the

MULT1CS TECHNICAL BULLETIN 18 - 234 page 10

Initializer.,)

pefault_Table
Th2 header of tty_ctl contains an array, indexed by terminal
typer of relative offsets of default tables. The default table .
contains relative pointers to the conversion tables to be used by
cdefault for the 'givea terminal type. The format of the default
table is as follows: ‘
acl 1 device_defaults aligned based.,
2 flags unal.,
3 shifter bit (1) unal.,
3 upper_case_only bit (1) unal.
3 pad bit (7)) wunal.,
2 delay_char char (1) unal.,
2 upper_case char (1) unal.
2 lower_case char (1) unale.
2 tct_offset fixed bin (18).,
¢ mvt_offset fixed bin (18).,
2 special_offset fixed bin (18).,
2 delay_offset (4) fixed bin (18);
shifter is "1"b if the terminal requires case
shift characters.
upper_case_only is "1"b if the terminal handles only
: capital letters.
/
celay_char is the ASCI1 form of the character used
for carriage movement delays.
upper_case is the uppercase shift character.
lower_case is the Lowercase shift character.,
tect_offset is the relative offset (in tty_ctl) of
the default table us ed by
tty_util_%find_char for identifying
"special” characters.
nvt_offset is the relative offset of the table used

by tty_util_3mvt for translations, or O
if translation is not required for the
particular terminal type,

MULTICS TECHNICAL BULLETIN MTB - 234 : page 11

special_offset is the relative offset of the default
version of the special_chars table
described below.

delay_offset 1s an array of aoffsets of the
: delay_tables (described below) to be
used for this terminal type at 1130, 150,

300, and 1200 bps respectively.

Spegial_Characters_Iaple

The special characters table is used by the formatting phase
of tty_write. It has tne following format:

dcl 1 speciral_chars aliyned based.
2 cmt (6) aliyned,
3 count fixed bin (8) unal.,.
3 chars (3) char (1) unal.,
2 printer_on aligned.,
3 count fixed bin (&) unal.,
3 chars (3) char (1) unal.
2 printer_off aligned,
3 count fixed pin (&) unal.,
3 chars (3) char (1) wunal.,
2 red_ribbon_shift aligned,
3 count fixed pin (&) unal,
3 ¢cnars (3) char (1) unal.,
2 vlack_ribpon_shift aligned.,
3 count fixed bin (8) unal.,
3 chars (3) char (1) wunal.
2 end_of_page aligned.,
3 count fixed bin (3) unal,
3 chars (3) char (1) unal.
2 escape_length fixed bin,
2 not_edited_escapes (10 refer (escape_Llength)).,
3 count fixed bin (3) unal.,
3 chars (3) char (1) unal.,
2 edited_escapes (10 reter (escape_Llengthl).,
3 count fixed bin (3) unal.,
3 chars (3) char (1) unal;

LN L

Note: In each of the level 2 substructures in this structure
ageclarations, counts, which has a value 0 <= count <= 3, indicates
the numper of <c¢naracters in the seguence-r the first count
elements of the chars array is the sequence itself., If count 1is
zercs, there is no sequence for the character in guestion.

MULTICS TECHNICAL BULLETIN MTB - 234 page 12

cmt describes the character sequences to be
used for the six carriage movement
characters., in this order: new=-line,
carriage returns, backspaces, horizontal
tabs vertical tabs, form-feed. If count
is zero, the carriage movement function
in guestion is not available on the
terminal. In this casesr the following
action is taken:

new-Line <invalid>

carriage retyrn substitute appropriate
number of backspaces

backspace substitute carriage
return and appropriate
number of blanks and/or
horizontal tabs

horizontal tab substitute appropriate
number of blanks

vertical tab., ignore character
form-feed

The counts for <carriage reurn and
backspace may not both be zero.

printer_on is the character seguence to be used to
implement t he "orinter_on" control
operation.

orinter_off is the character sequence to be usead to
implement the "printer_off" control
operation.

red_ribbon_snift is the character sequence to be
substituted for a red ribbon-shift
character.

tlack_ribbon_shift is the character seguence to be
substituted for a black ribbon-shift
character.

end_of_page is the character sequenc2 to be printea
to indicate that a page of output 1is
full.,

escape_Llengtn is the number of output escape sequences

in each of the two escape arrays.

MULTICS TECHNICAL BULLETIN MTB - 234 page 13

not_edited_escapes 1is an array of escape seguences to be

substituted for particular characters if
the terminal is in "“edited" mode. This
array 1s indexed according to the
incdicator returned by
tty_util_S$find_char.

edited_escapes is an array of escape sequences to be

Pelay _Iable

used 1in "edited”" mode. It 1s5-indexed in
the same fashion as not_edited_escapes.

The delay table provides the number of delays to be used in
conjunction with
following format:

del 1

vert_nt

harz_nl

const_tab

var_tab

carriage movement characters. It has the

delay based aligyned.,

NN NN NN

vert_nl fixed bin.,
horz_nl fixed bins,
const_tab fixed bin,
var_tab fixed bine
backspace fixed bine
vt_ff fixed bins

is the number of aelay characters to be
output for all 'new-lines to allow for
the line-feed.

is a factor used to determine the number
cf delays to be added for the <carriage
return portion of a new-line, depending
on column position. Tne formula for
calculating the numoder of delay
characters to bpe outgut following a
new—-Lline is:

ndelays = vert_nl + (horz_nl*column)/512

is the constant portion of the number of
delays associated with ‘any horizontal
taop character,

is a factor useu to determine the number
of aagditional delays associated with a
horizontal tab depending on the number

MULTICS

TECHNICAL BULLETIN MTB8 - 234 page 14

of columns traversed. The formula for
calculating tne number of delays to be
output following a horizontal tab is:

ndelays = const_tab + (var_tab*n_columns) /512

tackspace is the number of delays to be output

vt_

followiny a Gbtackspace character. If it
is negatives it is the complement of the
number of delays to be output with the
first backspace of a series only (or a
single backspace). This 1s for terminals
such as the TermiNet 300 which need
delays to allow for hammer recovery in
case of overstrikess, but do not require
delays for the carriage motion
associated with the backspace i1tself.

fr is the number of delays to be output
following & wvertical tab or form-feed.

MULTICS TECHNICAL BULLETIN MTB - 234 page 15

MQOULE_DESCRIPTION QF tty_util_

The entries in this module are wused for translation and
formatting o7f typewriter input and output. ALl of them run in
the caller's stack frame, and take as an argument a pointer to an
argument structure provided by the caller.

Entry: tty_util_$find_char

This entry wuses a4 tct (test character and translate)
instruction to search a given string for "interesting”" characters
as detftitned by a translation table supplied by the caller.

Usage
declare tty_util_3find_char entry (ptr);
call tty_util_$find_char (argptr)ﬁ
where argptr is a pointer to the structure described
pelow. (Input)
dcl 1 tct_arg_structure based aligneds
2 stringp ptr,
2 stringl fixed bins
2 tally fixed bin,
2 tablep ptre.
2 indicator fixed bin,
2 workspace (3) fixed bins
stringp is a pointer to the string to be testeds
if indicator (see below) is 3 or 7, it
is wupdated to point to the first
"interesting” character. in the string-
otherwise, 1t is updated to point to the
character following the first
"interesting” character. (Input/Output)
stringl : is the Llengyth 1in <c¢haracters of the

striny tc wve tested. If stringl 1is
greater than 2000, only the first 2004

MULTICS TECHNICAL BULLETIN MTB - 234 page 16

tally

tablep

ingicator

characters are tested. stringl s
decremented by the same number of
characters as stringp is advanced. If
the entire string 1is searched and

indicator is U, stringl 1is set to 0.
(Input/Output)

is the number of "uninteresting"
characters passed over by the test.
(Qutput)

1S a pointer to an aligned packed array
of 128 fixed bin (38) values to be used
as a translation table. The elements
correspond to ASCII characters in the
normal collating sequences the value of

each element is zero if the
corresponding character is
uninterestings, or else the value of the
indicator to oe returned if the

corresponding character 1s encountered,
(Input)

is the result of the search. It may have
the following values:

0 -- no special characters
1 == new-line
2 =-- carriage return

3 == "white space.,' i. e.r horizontal
tab., two or more consecutive
blankss or a combination of one or
more blanks and a tab or backspace
character, stringp is set to point
to the first "white space"
character.

4 -- backspace

5 -- vertical tab

6 == form-feed

7 -- character reguiring octal escape
8 == red ribbon shift

9 -- black ribbon shift

MULTICS TECHNICAL BULLETIN MTs - 234 page 17

other =- a character requiring a speciat
escape sequence, The 1indicator
value 1is the index into the
escape tabtlte of the sSeqguence to
be useds, plus 16.

workspace is to be used by tty_util_ for temporary
storage if necessary.

Eptry: tty_util_3$mvt

This entry is used to translate a cnaracter string using an
mvt (move with translation) instruction.)

usayge
declare tty_util_3smvt entry (ptr);
call tty_util_3mvt (argptr);
where argptr . 1s a pointer ‘to the mvt_arg_structure

described below. (Input)

del 1 mvt_arg_structure based aligned,

2 stringp ptre
2 stringl fixed Dins
2 pad fixed bin,
2 tablep ptre
2 targetp ptro.
2 workspace (2) fixed vins
stringp is a pointer to the character string to
be transltated. (Input)
stringl is the Llength in <characters of the
string pointed to oy stringp. (Input)
tablep - is a pointer to an aligned character
string of length 128 to be used as a
transltation table. (Input)
tarjetp is a pointer to the place where the

translated string is to be placed:; 1t
must point to a character string of
length stringl or greater. (Input)

MULTICS TECHNICAL BULLETIN MTs - 234 page 18

Entry

character with one of

(scan

Wwhere

workspace

s tty_util_3scm

Tnis entry

Wwith mask)

is

is as above.

used to search a character string for a
its two high-order bits on, using an scm
instruction,

declare tty_util_%scm entry (ptr);

celtl tty_util_%$scm (argptr),

argptr

decl 1
strinygp
stringl
tally

search_mask

points to the scm_arg_structure
descrived below. (Input)

scm_arg_structure based aligned,

[ASIRAS I AN) U RN) S I p V)

stringp ptre

stringl tixed bin,
tally fixed bings

search_mask bit (2) aligned.,

found_flag bit (1) aligned.,

workspace (4) fixed bin?

is a pointer to the string to be
scannede. If the scan succeedss, it 1s
updated to point to the character in
question. (Input/Output)

is the length of the string pointed to
by stringp. It is decremented by as many
characters as stringp 1is advanced.
(Input/Qutput)

is the number of characters passed over
during the scan (i, e., the number of
characters to the left of the <character
found, or the length of the string if no
character is found). (Qutput)

is "10"b if the 40U0(¥) bit is to be
searched for, or "01"b if the 200(8) bit
is to be searched for. (Input)

MULTICS TECHNICAL BULLETIN MTB - 234 page 19

found_flag is set to "1"b if a character with the
bit specified by search_mask on s
found; otherwise it 1is set to "0"b.
{(Cutput)

workspace is as above.

