
Multics Techn~cal Bulletin MTB-250

TO: MTB Distribution

FROM: Richard Bratt

DATE: 10/28/75

SUBJECT: Prelinking

Introduction

This MTB describes the current design and
implementation of a segment prelinker for Multics. It is assumed
that the reader is familar with the MTB written by Steve ~ebber
in which the initial design for a Multics prelinker was
described, MTB-169. The design presented in this MTB, which
represents an evolution of Steve's earlier design, attempts to
capture the performance improvements inherent in prelinking while
avoiding some of the problems implicit in the original design.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Multics Technical Bulletin MTB-250

Background

Multics owes much of its elegance and flexibility to
the policy of delaying bindings until the last possible instant.
The Multics dynamic linking mechanism provides an excellent
example of the beauty of delayed binding. In principle, the
Multics dynamic linker allows each user to replace any
(nonhardcore) system module he wishes with his own private
version of that module. This ability to easily alter the
environment perceived by programs even allows users to replace
hcs by a user ring transfer vector, giving the user the ability
to manipulate the hardcore interface seen by a program! An
additional beauty of resolving all links dynamically is that a
process will only bring into its address space those segments
which it needs. Unfortunately, elegance and flexibility are not
without cost.

Dynamic resolution of all links would imply that each
process which used the PL/I compiler would have to pay the cost
of resolving inter-module links within the compiler.
Additionally, severe naming problems would arise from the global
scope of the reference name space used by the Multics dynamic
linker. The user of a Multics system which supported only dynamic
linking would have to be very careful not to name one of his
programs in conflict with the name of a module of the compiler
unless his intent was to replace that compiler module. As a
result, the normal user would likely view the flexibility of
being able to supply his own private code generator as an
expensive annoyance at best. The repetitive task of snapping
inter-module links within the PL/I compiler is but one example of
the negative performance effects of total reliance upon dynamic
linking. Since each module is contained in a segment, and modules
in a well structured system are small, we must expect extensive
page breakage and ASTE contention.

Multics uses a static binder to link together major
subsystems both to reduce the cost which would result from
resolving all inter-module links dynamically and to limit the
system's impact upon the reference name space of the linker. The
static binding of modules contributes to improved system
performance in several obvious ways. First, links snapped
statically need not be resolved dynamically by every process.
Secorid, page breakage is reduced. Third, fewer segments need be
known to a given process. Fourth, a process' reference name
space is smaller. Less obvious benificial performance effects
include the reduction of the system's global name space (symbolic
name to object mapping).

-page 2-

Multics Technical Bulletin MTB-250

Static binding, while it has many advantages, is far
from a panacea. Assuming object map machinery like that present
in Multics, static binding can have negative performance effects.
Imagine that each major language translator and editor were bound
in different 256K segments. Since very few 256K ASTEs exist (on
the order of 10 at MIT), we would expect severe AST thrashing in
the pool of 256K ASTEs. Static binding may also force an
increase in the amount of primary memory required to support the
system's object map. Static binding can also increase the working
set of a Multics process by causing related, but unused,
information to be brought into a process' address space. This
effect is most apparent in the combined lirikage segments 6f a
process.

Performance issues aside, static binding does reduce
system elegance and flexibility in that reverting a statically
snapped link requires both knowledge that the link was snapped,
and the creation of a private bound segment with only one
component replaced. The need to replace an entire bound segment
to change a single component of that bound segment places an
additional penalty upon the user replacing system code since he
is forced to unshare the pure code of the other procedures in the
bound segment. (1) The effect is also felt by other users due to
the increase in the system's working set.

Basic Design

In MTB-169, Steve proposed an extension to the static
binder. His goal was to create the capability to resolve all
links in the system libraries once per bootload. Since in excess
of 90% of all linkage faults are between system modules, this
capability might allow us to increase system performance by
nearly six percent, the fraction of system resources spent in
dynamic linking.

Hardware restrictions that prevent the binder from
creating multi-segment object segments (not to mention the strain
that would be placed upon the system's object map machinery)
force the prelinker to assign segment numbers at prelink time.
As a result, theprelinker must overcome both the disadvantages
inherent in static binding of name to object as well as the
disadvantages inherent in the premature binding of segment

(1) It should be noted that the inability to unsnap links
resolved by the binder is only an artifact of the current Multics
binder. System flexibility could be enhanced (at the expense of
performance) by modifying the binder to generate links which can
be unsnapped.

-page 3-

Multics Technical Bulletin MTB-250

numbers to object. (1)

The essential functional capabilities of a prelinker,
culled from the numerous enhancements included in the original
proposal, are summarized below. A prelinker must be given a
specification of which modules to prelink and a specification of
how to resolve name conflicts within the prelinked set. The
linkage of these specified segments must be combined into
combined linkage segments and a linkage offset table must be
built by the prelinker to aid the prelinked process in locating
its linkage. This requires that segments to be referenced in the
prelinked process be asslgned segment numbers by the prelinker.
Finally the prelinker must scan these combined linkage segments
and, using a set of search rules provided, attempt to snap every
link encountered. (2)

To create a prelinked process the system must
establish, ~n a virgin process, the correspondence between
segment numbers and objects generated by the prelinker in a
virgin process. At ring initialization time, the system must then
copy the combined linkage segments and the linkage offset table
from the templates generated by the prelinker if the given ring
was prelinked. The prelinked process is then runnable. ~hen a
prelinked process gains consciousness it looks as if it had been
running for some time, had snapped many links, and then had
reinitialized its stacks and reference name table.

At this point we will explore the properties of the
prelinker outlined above. It should be obvious that the
prelinker cannot, in general, combine linkage containing a first
reference trap. Similarly, it cannot snap trap-before-link links.
Two less obvious classes of links unsnappable by the prelinker
also exist. The prelinker cannot snap links to copy-an-write
segments since the copy-an-write mechanism is ill prepared to
handle multi-ring objects. (3) The current Multics design

(1) One of the advantages prelinking has over the current Multics
binder is that links it snaps may be unsnapped.

(2) Naturally the prelinker must snap links relative to the
segment numbers it assigned for use in the prelinked process.

(3) Copy-on-write is a total loss for a segment used by more than
one ring since it assumes the ability of one ring to unbind a
segment number from an object without regard to the validity of
that segment number to object binding in other (possibly lower
numbered) rings. Fortunately for Multics, the address space
manager is not so naive as to allow one ring to unbind a segment
number which is being used by a lower numbered ring. As a result,
the copy-on-write mechanism is not guaranteed to work on
m 111 t. i _ r i nO' c::! (:l O'm (:l n t c::! I
~ -.. ""...-.. ... ~ 0 '"' 0 .Ll.l '-' .L J. v

-page 4-

"ultics Technical Bulletin MTB-250

assumption that the linkage of a procedure has been combined
before the procedure is invoked also prevents the prelinker from
snapping links into the text of a segment whose linkage is
uncombined. (1)

A further complication arises when we consider the ring
of execution of the prelinker. It would be a clear mistake to
allow the prelinker to run in ring zero. However, if the
prelinker runs in some outer ring, then it cannot search the
definitions of lower ring gates. (2) Adopting a suggestion by
steve ~ebber, the prelinker approaches the problem of searching
inner ring definitions by making gates actors which, when called
at location zero with a name, search their own definitions and
return the offset corresponding to that name. (3) One very
attractive feature of this design is that the hardware-validated
ability to call the gate validates the caller's right to search
the definitions.

MTB-169 contains one serious oversight which should be
corrected at this point. The combined linkage segments (combined
static segments, stacks, etc.) produced by the prelinker must be
per~ring, not 1, 7, 7 as MTB-169 states. A ring must not be
allowed to modify another ring's linkage! ~ith this exception and
the addition of "gate actors" mentioned earlier, the prelinker
described above corresponds to the core of the prelinker
described in MTB-169. ~e wjlJ now consider each prelinker
enhancement proposed in MTB-169 as we complete the description of
the current prelinker design.

Frills

The original prelinker design allowed reference names
to be added to a segment in the pldt. This practice adds
considerable obscurity and descriptive complexity to the system.

(1) This requires that the prelinker prelink rings in order of
increasing ring number.

(2) Needless to say the prelinker must not be allowed to prelink
a lower ring than the ring in which it is exequting.

(3) For now just hardcore gates will be so constructed. hhen the
user ring linker comes along the mechanism will be extended to
include all gates.

(4) Anyone familar with hardcore should attempt to find the
source for the procedure terminate. It cannot be found by the
name terminate! It must be known by the seeker that the hardcore
header, generate_mst's analogue of the prelinker's pldt, adds the
name terminate to the segment makeknown. The information does not
exist in the Multics naming hierarchy.

-page 5-

Multics Technical Bulletin MTB-250

(4) The claimed advantage of saving directory space appears to
be outweighed by the decentralization of the segment name space,
the difficulty of describing the search rules used by the
prelinker, and the fact that with identical search rules the
prelinker and the dynamic linker can resolve a link differently.
(1) As a result, the "refname:" pldt statement described in
MTB-169 was not implemented.

The next feature of MTB-169 with which I wish to deal
is the creation of a user reference name table (URNT) and a
system reference name table (SRNT) by the prelinker. The physical
fragmentation of a process' reference name table complicates
reference name management and is aesthetically unpleasing.
However, despite this drawback, it seemed possible that a
significant performance gain lay hidden somewhere within the idea
of a system reference name table. This hypothesis was
experimentally tested. It flopped. The system reference name
table effected only a factor of four data compression over the
prelinked directories and, since these directories had to be
touched often for other reasons, the SRNT increased the system
working set substantially. As a result, its paging behavior
'actually degraded system performance. The SRNT is dead, long live
the SRNT. (2)

The next feature retained in the current prelinker, is
the calculation of access and the creation of a KST at prelink
time. If a segment in the prelinked process' address space has a
single access control list term of 11*.*.*", then access is preset
in a template KST and DSEG and the date-time-branch-modified is
set in the template KST to allow validation of the preset access
at AST connection time. At process creation time the template KST
and DSEG generated by the prelinker are copied into the prelinked
process' initial KST and DSEG and KST initialization is bypassed.

(1) Unfortunately, allowing a subset of a directory to be
prelinked also complicates the description of the prelinker since
it allows the prelinker and the dynamic linker to resolve links
differently given the same search rules. This could be avoided by
making the prelinker refuse to snap a link if it finds the target
of the link has not been specified in the prelinked set but
resides in the directory currently being searched. In the initial
release of the prelinker search rules will apply to the subset of
the directories involved as defined in the pldt~ If this
inelegancy results in too much confusion the strategy outlined
above may be substutited in a future release.

(2) It remains an open question whether the SRNT is a viable
concept on a system with enough memory to absorb the increase in
system working set without causing excessive degradation in the
system's mean headway between page fault. I suspect that the
SRNT would best serve Multics by remaining buried.

-page 6-

Multics Technical Bulletin MTB-250

The KST and DSEG of a process are ring zero segments which cannot
securely be created by the prelinker running in an outer ring.
As a result, a new gate will be added tohardcore which, given a
specification of (object, segment number) pairs, creates a ring
zero KST and DSEG for the prelinked process. Similarly, a new
gate will be added to hardcore which allows a process to destroy
a template address space if the process has modify permission on
the containing directory.

The last feature proposed in MTB-169 which I wish to
address deals with the prelinker "post pass" in which random
stack header pOinters, iocb pointers, and so forth would be
filled in. It seems inadvisable to let the prelinker learn more
about and imitate more of Multics initialization then is already
the case. As a result, the initial release of the prelinker will
not have any such post pass. This feature-may be included in a
future release after more careful study.

Administrative Control

The creation of prelinked processes is controlled by
the -subsystem (-ss) login argument which, in conjunction with
the principal's PDT entry, allows the pathname of a directory
containing a prelinked subsystem to be specified. If the target
subsyste~ does not exist, is found to be inconsistent, or was not
regenerated within this bootload then no process is created. (1)
Otherwise, the system establishes the template address space
located in the specified directory in the new process and forces
the process out of the warmth and comfort of ring zero into the
cold hard reality of outer ring existence.

Outstanding Problems

The need to prelink subsystems every bootload presents
a severe administrative problem. If we allow users to prelink
private subsystems then the first time a user wishes to login to
his prelinked subsystem within a bootload he must know to first
login a standard process, prelink his private" subsystem and then
logout and log back in to his prelinked subsystem. Thereafter he
need only login to his subsystem. But how can a user know
whether he must prelink?

(1) Numerous reasons exist for the restriction that a subsystem
must be prelinked within the bootload in which it is used. For
example. A different hardcore system might be booted with a
higher hardcore segment count. This would invalidate a subsystem
prelinked in an earlier bootload. The recreation of
>system_library_1 at bootload time also invalidates a template
address space built in a previous incarnation of a Multics since
the unique identifier of >system_library_1 changes.

-page 7-

~ultics Technical Bulletin MTB-250

In addition to this administrative burden on the user,
allowing a user to prelink his own private subsystem may well
degrade overall system performance by increasing system working
set. If, however, prelinked suasystems are shared among users
then paging improvements due to the sharing of combined linkage
segments across processes may actually decrease the system's
working set, increasing system performance. Prelinking thus
seems to represent yet another instance of the age old "problem
of the commons". It is to the advantage of any given user to run
a prelinked subsystem tailored to his particular needs. However,
if all users persue this course of action system performance will
probably suffer.

For "the good of all" it would be advantageous to have
relatively few prelinked subsystems shared by many users.
However, in a scenario in which many users share a prelinked
subsystem, the problem a given user faces in deciding when a
prelinked subsystem must be prelinked is severe. Rather than
attack this problem, I propose that initially only a small number
of system supplied prelinked subsystems (maybe only one) be
available for use. The responsibility for reprelinking these
subsystems each bootload can then be shouldered by the system.

A site providing prelinked subsystems must decide
between two initialization schemes. It may prelink the subsystems
it supports through calls to the prelinker embedded in its
answering service startup exec com or it may spawn a process,
Prelinker.SysDaemon, to prelink these sUbsystems. The former
scheme has the disadvantage of effectively increasing bootload
time. (1) The latter scheme has the disadvantage of introducing
an indeterministic interval (hopefully a small one) between the
time the system comes up and the time when users of prelinked
subsystems may successfully login.

One final problem should be mentioned. Prelinked
processes have a "chicken and egg" problem. This problem derives
from two facts. First, prelinked processes use the copy-on-write
mechanism to delay copying the template linkage segments created
by the prelinker until they actually write into them. This,
theoretically, will increase sharing when the use of separate
static becomes widespread. (2) Second, the copy-on-write

(1) The increase in bootload time due to the time to prelink
several subsystems may be substantial. In my experimental run
prelinking >s11 and >sss in ring four took about one half of a
minute of virtual cpu time.

(2) It is not an absolute certainty that the presumed sharing
will amount to a significant savings when weighed against the
extensive working set of a Multic system (remember, only eligible
processes can effectively compete for primary memory!) and the

-page d-

Multics Technical Bulletin MTB-250

mechanism currently executes in the ring of the "no write
permission" fault. As a result the copy-on-write procedure and
the transitive closure of the modules it calls must be prepared
to operate while their linkage (and static) is being
copy-on-written or, worse still, before their linkage can be
combined! (1) This requirement does not obtain in the current
system. Therefore, until a more suitable solution is agreed
upon, a combined linkage region must be allocated in the initial
stack of a prelinked ring (accomplished with a "linkage:
stack,n;" statement). This linkage region, which is
copy-on-written by the ring zero copy-on-write handler at
makestack time, must either have the entire copy-on-write
m-echanism prelinked into it (prelinking all of >s11 is more than
sufficient) or have room at the end of the stack- linkage region
into which the linkage of the copy-on-write mechanism can be
combined.

Th~ee more permanent solutions to the prelinked process
bootstraping problem under crinsideration follow. One, sharing of
combined linkage sections by prelinked processes could be
abandoned. This has the obvious disadvantage if sharing of
linkage is found to be viable as well as the disadvantage of
making copies of linkage segments which might never be
referenced. Two, the copy-on-write mechanism could be made a
system fault handler, executing in ring zero where its linkage is
combined by the hardcore prelinker. This has the disadvantage of
removing the copy-on-write mechanism from user control. Three,
the copy-on-write mechanism could be made robust enough to copy
its own linkage and it could be required that the copy-on-write
mechanism be prelinked.

Although I feel the design presented - in this MTB is
cleaner than the initial design, I still have some misgivings.
(2) Our inability to predict performance of proposed system
changes, has forced us to expend massive amounts of man power
(person power?) to evaluate the merit of prelinking by performing
a test implementation and measuring it.

potential increase in paging due to the non-locality of static
and linkage cause by separate static. Separate static tends to
increase a process' instantaneous working set but tends to reduce
its overall working set. Until we accrue experience with separate
static the relative importance of these two effects is not likely
to be well understood.

(1) This would occur if the copy-on-write mechanism had not been
prelinked and the linkage section into which its linkage was to
be combined was an uncopied copy-on-write segment.

(2) A better approach to the problem may be the ability to
suspend processes, decomitting their resources, and resume them
at a later time.

-page 9-

Multics Technical Bulletin MTB-250

Performance

To test the efficacy of prelinking an experiment was
performed to compare virtual cpu time and paging rate of
prelinked processes verses standard processes running a standard
metering script (script <3 wi th five users). The prelinked set
used for this experiment contained all of >system_library_1 and
all of >system_library_standard prelinked in ring four. Ring one
was not prelinked. (1) The experiment indicated a performance
enhancement of about four percent in virtual cpu time and two
percent in paging when comparing prelinked processes with
standard processes. (2)

(1) An earlier experiment had shown, as expected, that prelinking
all system libraries degraded performance significantly due to
the predictable increase in the prelinked process' working set.
For this reason, only the most heavily used of the libraries were
prelinked.

(2) This performance improvement may be slightly less on service
since it is believed that the metering scripts place undue
emphasis upon dynamic linking.

-page 10-

Mul tics 'I"_ ~hnical Bulletin MTB-250

Appendix I

Description of the Prelinker

The description given below is taken from the prelinker
itself. The prelinker takes a single argument which is an
absolute directory pathname. It locates the ascii segment "pldt"
(prelinker driving table) in this directory, parses it, and uses
the output of the parse to control its operation. As output the
prelinker produces a listing segment containing information about
its operation. It also produces a template KST, a template DSEG,
and a collection of template stacks and shared and combined
linkage segments in the specified directory~ These segments
contain the freeze-dried essence of an anonymous process. To
reconstitute such a prelinked process all process creation must
do is:

* ma~e a new pdir for the process
* set up a PDS for the new process
* copy the ,KST genera ted by the prelinker into the pdir
* initialize the RNT which is normally allocated after the KST
* copy the DSEG generated by the prelinker
* breathe life into the process

At ring creation time the system must:

* determine if the target ring is prelinked: if not, normal ring
creation is performed, otherwise

* initiate the appropriate stack created by the prelinker (it is
copy_on_write)

* perform all ring creation functions except:
lot initialization
isot initialization
linkage region' ini tializa tion
set lotp, isotp, sct_ptr, stack_endp, old_Iotp in stack header

~hen the new process wakes up it will have many segments already
known and many links already snapped. It will, however, have no
memory of how these links were snapped i.e. it will have a virgin
reference name table.

The operation of the prelinker is controlled by the
contents of the pldt as specified below:

SYNTAX:

<pldt> ::= <header> <body> <end stmt>
<header> ::= <max segno stmt> <search rule stmt> <search rule

stmt> <max segno stmt>
<body> ::= <ring group> [<ring group>]
<ring group> ::= <ring stmt> <ring body> <end stmt>
<max segno stmt> ::= Max_segno: <integer>;

-page 11-

Multics Technical Bulletin MTB-250

<search rule stmt> ::= Search_rules: <rules>;
<rules> ::= <pathname>, <rules> : referencing_dir [, <pathname>]
<ring stmt> ::= ring: <ring> [, <ring>];
<ring> ::= <integer>
<end stmt> ::= end;
<ring body> ::= <ring body stmt> [, <ring body stmt>]
<ring body stmt> ::= <linkage stmt> I <object directive>
<object directive> ::= directory: <pathname>, -all; I directory:

<pathname>; <segment stmt> [<segment stmt>]
<segment stmt> ::= segment: <name>;
<linkage stmt> ::= linkage: <class>, <size>;
<class> ::= stack I shared I combined
<size> ::= <integer>

In addition to the syntax rules given above, each ring statement
must be followed by exactly one instance of each class of linkage
statement before the first directory statement is encountered.

PLDT EXAMPLE:

Max_segno:
Search_rules:

ring:
directory:
directory:

segment:
end;
ring:
directory:
directory:
directory:

end;
end;

segment:

SEMANTICS:

512;
referencing_dir,
>system_Iibrary_1,
>system_Iibrary_standard,
>system_library_unbundled;
1 ;
>system_library_1, -all;
>system_Iibrary_standard;
bound_mseg_;

4,5;
>system_Iibrary_1, -all;
>system_Iibrary_standard, -all;
>system_library_unbundled;
bound_fortran_;

* The Max_segno statement specifies the size of the lot and isot
in the prelinked process.

* The Search_rules statement specifies the search rules to be
used during prelinking.

* The ring statement identifies a group of rings to be prelinked.
* The initial linkage statements in a ring group identify the

size of the initial linkage region for the given class. Only
the size of the stack linkage may be zero in which case no
combined linkage region is allocated in the stack. Linkage of
class "shared" is allocated in sl_x.yy and linkage of class
"combined" is allocated in the stack linkage region (if one
exists) and in cl_x.yy~ ~hen a linkage region of a given class

-page 12-

Multics Technical Bulletin MTB-250

is exhausted a new linkage region of the same type is allocated
(except in the case of stack linkage in which case a new
combined linkage region ,cl_x.OO, is allocated).

* A directory statement with the -all option specifies that all
segments in the named directory (and segments linked to from
the directory) be prelinked in the rings specified by the
containing ring group.

~ A segment statement explicitly names a segment (or link) within
the previously named directory which is to be prelinked.

* Subsequent linkage statements within a ring group redefine the
size of linkage regions of the specified class and force a new
linkage region of the specified class to be allocated. N.B.:
Any subsequent linkage statements of class "stack" force
subsequent linkage out of the stack and into cl_x.OO.

OPERATION:

parse the pldt
process rings 1 to 7 in order
for each ring:

for each segment to be prelinked:
initiate segment
remember its names as reference names
combine linkage of segment unless:

not object
not in execute bracket
copy switch set
trap 'at first reference

for each linkage region combined:
snap all links unless:

target not in prelinked set
trap before link
definition not found
definition into uncombined region

call hard core to construct a template address space
(exception: separate static is not initially combined. If the
prelinker attempts to snap a link into uncombined static whose
linkage is combined, then the prelinker combines the static and
snaps the link)

RANDOM FACTS AND ASSERTIONS:

* To simplify initialization of prelinked processes, the stacks
and linkage segments produced by the prelinker will be
copy_on_write segments known in the prelinked process. Only
the template KST and DSEG must be explicitly copied by process
creation.

* All segments known to the prelinked process which had a single
acl term of * ~ * at prelink time have access preset in the
DSEG and KST. This does not constitute a violation of security
since the dtbm stored in the KST when access was checked by the
prelinker will be used to validate the saved access before the

-page 13-

Multics Technical Bulletin MTB-250

SD~ in question is connected.
* Isot slots which are brothers of lot slots set by the prelinker

are either set or marked to cause an isot fault when loaded by
a load packed pointer instruction and have the offset of the
virgin static in the lower 1b bits.

* The lot and isot created by the prelinker reside in the stack.

-page 14-

Multics Technical Bulletin MTB-250

Appendix II

Description of the Template Address Space Manager

The description of the template address space manager,
like the description of the prelinker given above, is extracted
from the appropriate source modules. The reader is asked to bear
this fact in mind while reviewing this section.
template_address_space provides functions for creating and
deleting a template address space. A template address space is
stored in a directory and is defined by two ring zero segments
named "template_kst" and "template_dsegil.

---> call template_address_space$create (dirname,
access_calculated, code)

create makes the segment "kst_seg" in the given directory known.
It assumes that this segment has the format of a kst. create
makes the following demands of its environment and the given
segment:

* kst.lowseg = active_all_rings_data$stack_base_segno
* kst.highseg < active_all_rings_data$max_segno
* kst.highest_used_segno > kst.lowseg+7
* kst.time_of_bootload = sys_info$time_of_bootload
* kst.highest_used_segno is consistent with bitcount
* caller has read access to kst_seg
* each kst entry from lowseg to highest_used_segno contains:

it a valid uid or a uid of "O"b
* baseno (kste.entryp) is valid w.r.t. this kst
* usage counts

* the caller's address space contains every object in the kst to
be built
* no segment named "template_dseg" or "template_kst" exists in
the given directory

create makes two ring zero segments named "template_kst" and
"template_dseg" with r * * * access. create then uses the
information in kst_seg and its callers' address space to
transform kst_seg into a secure, valid address space template. If
an object in the new address space has a single acl term of *.*.*
then access is precalculated in the template address space. If
any inconsistencies are found in kst_seg or if any of the
assertions above are found to be violated then "template_kst" and
"template_dseg" are deleted and an error is returned. If the
address space template is successfully built then kst.template is
set to help template_address_space$delete validate its right to
delete this template address space and the count of segments
which had access precalculated is returned.

-page 15-

Multics Technical Bulletin MTB-250

---> call template_address_space$delete (dirname,code)

delete is called to delete the template address space
(template_kst, template_dseg) stored in a given directory. delete
requires that the given directory contain two 'segments named
"template_kst" and "template_dseg". These segments must have ring
brackets of 0, 0, 0 and the caller must have modify permission to
the containing directory. delete validates that the kst is
marked as a template kst. Unfortunately, since we don't have
property lists, delete cannot be absolutely certain that it is
deleting a (template_kst, template_dseg) pair created by
template_address_space$create. ~e assume, somewhat nervously,
that the checks made by delete are sufficiently safe to prevent
users from destroying ring zero segments not created by
template_address_space$create.

-page 16-

Multics Technical Bulletin MTB-250

Appendix III

Enhancements to the Prelinker

At this time several possible future enhancements to
the prelinker outlined in this MTB have been identified. These
enhancements deal exclusively with the pldt accepted by the
prelinker. One possible enhancement would allow the use of star
names in "segment:" statements. The other enhancement currently
under consideration is the addition of an riexclude:" statement to
the pldt which would allow certain segments identified by
"segment:" statements to be exculuded form the prelinked set.

-page 17-

