MULTICS TECHNICAL BULLETIN =~ 251 _ page 1

To: Distribution
From:s Robert S. Coren
Date: 017227176

Subject: Canonicalization of Terminal lnput

INIRQDUCTION

In theory, terminal input to Multics 'is converted by the
ring~zero typewriter DIM to "canonical form™, 1, e.r the physical
appearance of a line uniquely defines the form in which it will
be stored. In addition, well-defined meanings are attached to
input sStreams containing erase, kill, and escape characters,

In actual fact, the current typewriter DIM does not meet the
goals described in the preceding paragraph. The three basic types
of canonicalization (column assignments, erase/kills, and escape)
are each handled more or less correctly, but the current design
does not Llend itself to <correct and consistent processing of
combinations of canonicalization types. The trouble is that the
three types are handled more or less simultaneously. Thus the
final input resulting from strings such as "\027", “\0D16&7",
"“A\000", "XD25", etc.,, 1S not predictable wunder the current
implementation.,

A redesigned, more efficient version of tty_read is planned
for Multics release 4.0/ in the <course of the new designy
canonicalization will be cleaned up and made consistent, The
details of this new design will be discussed in a future MIB; the
purpose of the present document s toc set forth a complete
description of the rules of <canonicalization that the new
tty_read will implement. It i1s proposed that the rules described
here be adopted as a standard for all situations in Multics where
canonicalization is required.

CANONICALIZAIION RULES

The three types of <canonicalization named above must be
performed separately in a defined orderr, to ensure consistency
and predictability. In particular, the canonicalization process

L L ——— - — - - -

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project,

MULTICS TECHNICAL BULLETIN - 251 page 2
is conceptually divided into the following steps:

1. 1f the terminal is in “can" mode » perform
column-assignment canonicalization on the typed input.

2. 1f the terminal is in "erkl" mode, perform erasel/kill
canonicalization on the result of step 1.

3, 1f the terminal 1is 1in "esc” mode, perform escape
canonicalization on the result of step 2.

0f course, the actual implementation does not necessarily have to
perform the three steps in sequence, provided that the result is
the same as would have been achieved by doing so.

The three types of canonicalization are discussed in more
detail below. 1f two or more of the rules listed below are
applicable to a given input strings, they are applied in the order
in which they are presented here.

COLUAN ASSIGNMENT

This phase is <concerned with determining which printing
graphicss, if any, appear in each physical column position., This
is determined according to the following rules.

Rules_for_the Interpcetation_of loput_Characters
e The leftmost position of the carriage is considered to be
column 1,

2. fach printing graphic or space typed increases the column
position by 1,

3. Each backspace typed decreases the column position by 1
unless the column position is 1,

4, A carriage return sets the column position to 1.

5. A horizontal tab increases the <column position to the
next tab stops tab stops are defined to be at columns 11,

- N ————— - - - e W R . A A N D A W A A S W . AR G - W -

Multics Project internal wbrking documentation. Not to'be
reproduced or distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN - 251 page 3

21, 31, etc.

6. A newline, form feed, or vertical tab sets the <column
position to 1 and advances the carriage vertically? thus
no character typed after such a character can share a
column position with a character typed before it.

Rules_for_the Formation_of_the Canonigcal_Siring

7. Characters on each Lline are sorted so that their
associated column positions are monotone increasing.

8. NO carriage return characters may appear in the canonical
string.

9. A horizontal tab is preserved as typed unless a printing
graphic appears in one of the columns skipped by the tab,
in which <case the tab is replaced by an appropriate
number of spaces. ‘ :

10. Backspaces appear in the canonical string only when two
or more printing graphics share a column position.

11, When two or more different printing graphics share a
"column position, the <characters are sorted as follows:
graphic with lowest numeric ASCII code, backspace,
graphic with next lowest numeric ASCl] code, etc.

12. 1f the contents of a column position consist of two or
more instances of the same printing graphic, that column
is.reduced to a single instance of the graphic.

13. A line-ending character (newline, form feeds, or vertical
tab) immediately follows the last printing graphic in the
rightmost column position on the line.

ERASE AND KILL CHARACTERS

The placement of erase/kill canonicalization after
column-assignment canonicalization and before escape
canonicalization 1is strategic in that it causes erase/kill
processing to work by colump mesitiopn rather than by charactec.
This eliminates ambiguity with respect to erase characters
combined with escape sequences. (See the examples at the end of
this document,)

MULTICS TECHNICAL BULLETIN - 251 page 4

The rules for erase and kill canonicalization are given
below.

14, An erase character alone in a column position results in
the deletion of itself and of the contents of the
preceding column position.

15. An erase <character alone in a column position and
preceded by more than one blank column results in the
deletion of gll immediately preceding blank <columns, as
well as of the erase character,

16. An erase character sharing a column position with one or
more printing graphics results in the deletion of the
contents of that column position.

17. A kill character result's in the deletion of its own
column position and all column positions to.its left,
unless it shares a column position with an erase
characters, in which <case rule 16 applies (the kill
character is erased).

18. 1If the terminal is 1in "esc” moder an erase or kill
character alone in a column immediately preceded by an
escape character alone in a column is not processed as an
erase or kill character,

Note that for rule 18 to applys, the erase or kitl character must
actually have been typed in the column immediately following the
escape character, The reason for this is that it facilitates the
erasing of escape sequencess, €.9., \0DVHHHEY.

ESCAPE SEQUENCES

The processing of escape sequences is performed according to
the rules given below. -

19. An escape sequence consists of an escape character alone
in its c¢olumn position followed by one or more printing
graphics each of which is alone in its column position.
An escape sequence is replaced by a single character in
the canonical string.

20. An escape sequence consisting of two successive escape
characters is replaced by an escape character.

MULTICS

EX

[»-3
=

are

21.

23,

24,

25.

BLES

In

TECHNICAL BULLETIN - 251 page 5

An escape sequence consisting of an escape character
followed by an erase (or kill) character is replaced by
an erase {or kill) character.

An escape sequence consisting of an escape character
followed by one, two, or three octal digits is replaced
by the character whose ASCIl value is represented by the
sequence of octal digits.

An escape character followed by a newline character
results in the deletion of both <characters from the
canonical string,

Other escape sequences may be défined on a
per-terminal-type basis, where such a sequence consists
of an escape character and one character following.

. { :
if the character following an escape character does not
result in an escape sequence as defined by rules 20-24,
the escape and following characters are stored as they

appear on the line.

the examples belows the following conventions are used:

<NL> “represents a newline
" <CR> represents a carriage return

<BS> represents a backspace

<HT> represents a horizontal tab

<SP> represents a space

{nnn}) represents a éharacter whose ASCI] "wvalue s

nnn (octal)

\ is the escape character
H is the erase character
a is the kill character

t

The examples in the first group illustrate how various typed
sequences are canonicalized 1in terms of column position;, these
followed by examples of erases kill, and escape

MULTICS TECHNICAL BULLETIN - 251 page o

canonicalization, In the second groupes lLines are shown as they
appear physicallyr, with no consideration given to the precise
sequence of keystrokes that might have produced them,

COLUMN CANONICALIZATION EXAMPLES

Example_1

lyped: Nothing special about this line,<NL>

Appearance: Nothing special about this line.

Result: Nothing special about this line.<NL>
Example_¢
1yoed: Extraneous white s<SP><BS>pace is ignored.<CR><SP><NL>

Appearance: Extraneous white space 1S ignored.

Resul t: Extraneous white space is ignored.<NL>
Example 3
Typed: Two ways (2<BS>_) to overstrike,<CR>___<NL>

Appearance: Jyg ways (2) to overstrike.

Result: 1<BS>__<BS>w_<BS>0 ways (2<BS>_) to overstrike,<NL>
Example_ 4

Typed: Tab + backspace 1s<HT><BS>reduced to spaces.<NL>
Appearance: Tab + backspace is reduced to spaces,

Result: Tab + backspace 1s<SP><SP><SP><SP>reduced to spaces.<NL>

MULTICS TECHNICAL BULLETIN - 251

(See rule 9.)
ERASE-KILL AND ESCAPE EXAMPLES

Example_ 5

Appearance: abzfcde

Result: abcde
Example_ 6

Appearance: ab #cde
Result: abcde
Example ¢

Appearance: NotadNever oBn Sunday.

Resul t: Never on Sunday.

Example &

Appearance: Nox#Hy it's right.

Resul t: Now it's right,

Example 9

Appearance: Nox#w it's right.
Result: . Noxw it's right.

(Erase character i1s overstruck; see Rule 16.)

page 7

MULTICS TECHNICAL BULLETIN = 251 page 38

Example 10

Appearances: dcl rrs char (1) static init(*\0i7&46%);

Result: del rrs char (1) static init("{016)");

Example_ 11

Appearance: \023
Result: {002>3

(Overstruck 3 1s not part of escape sequence,)

Example_12

Appearance: \112
Result: M2

(Overstruck \ is not an escape character,)

Example_ 13

Appearance: a\#d#b
Result: a\b

(First # 1s not an erase character by rule 18, second ¥ erases
itself and preceding # by rule 14.)

Example_l4 (similar to txample 13)

Appearance: a\ad#b

Result: a\b

MULTICS TECHNICAL BULLETIN = 251 page 9

Example_12

Appearance: aXab
Result: b

(The \ is erased by the overstruck #.)

Example 106

Appearance: a\\#b
Result: a\#b
(Erase canonicalization does not recognize the # by rule 18/

escape canonicalization recognizes \\ by rule 20, and attaches no
special meaning to the #.)

Example 17

Appearance: a\\##b
Result: a\b
(8y rule 18, the first # is not an erase character; by rule 14,

the second # erases itself and the preceding #; thep rute 20
reduces \\ to \.)

Example_ 18

Appearance: a\\d#sb
Result: a\b

(The first # is not an erase; the next two are, erasing the
second \ and the first #.)

MULTICS TECHNICAL BULLETIN = 251 page 10

Example_19

Appearance: a\\#HH#kD
Result: ‘ab
(The first # is ndt an erases, and must be erased before the two \

characters. Examples 16-19 illustrate the difficulty of erasing a
double \; the clearest method is probably to overstrike (aX¥b).)

Example_20 (on 2741-like terminal)

Appearance: at<#b
Resul t: a\b

{(Only the < is eraseds; ¢t i1s translated to \.)_

