
•

•

(- _
I .

,

MULTICS CONDENSED GUIDE

J

1
j
~
r
l
'

JUNE 1969
l
t

•
CAMBRIDGE INFORMATION SYSTEMS LABORATORY

' !
!
'

I MULTICS CONDENSED GUIDE

by

J. L. Bash, J. E. Hart, and M. L. Goudy

Revision 2

June 1969

tit CAMBRIDGE INFORMATION SYSTEMS LABORATORY

I

•

HOW TO USE THIS BOOK

The Multics Condensed Guide is intended as a
quick reference book for a programmer at the
console. The guide covers commands available
in Limited Initial Multics (LIM).

Where possible within a given section, material
is arranged alphabetically and there is only
one topic on a page (a given command or request).
To locate a command, simply turn to the appro­
priate section and look it up alphabetically.

The MCG is looseleaf; changes and additions
will be made to it as appropriate. In addi­
tion, the programmer may divide the book into
sections keeping only those that he needs for
his console work •

Rev 2 06019

MCG TABLE (F CO\JTENTS

How to Use This Book

SYSTEM CONVENTIONS

Dialing In, Logging In, and Logging Out
System Responses
Standard Console Activities

I I INPUT STREAM

Universal Character Conventions
37KSR Teletypes
1050 and 2741 Consoles

I I I CO\I1MANDS

Command Conventions

Argument Formats for Commands
Symbols Used in Commands

addname expand
adjust ext ract_a rch i ve
archive fi lei o
bcpl files
bind flush

branch fortran
change_wd i r fs_chname
chasepath fs readacl -
contents iocall
convert_object link

copy list
ctss_aarchv listacl
delacl login
del name logout
dprint merge_edit

dpunch movebranch
echo mspeek
edm new_proc
epl nothing
eplbsa

l 1 Rev 2 06019

print
print_dbrs
p r i nt_link__info
probe
qdump

qed
read?
remove
remove_dir
rename

run com
setacl
start
status
tape_i n

tape_out
time
unlink
who

I

•

MCG TABLE OF CONTENTS

v MEffiE EDIT CONTROL SEGMENT LINES

bcpl error no tape
core fetch pure
deck insert symbol
entry libe text+ link
epl load tmgl

I eplbsa maketl

VI EDM REQUESTS

- backup n next
b bottom p print
c change q quit
d delete r retype
f find s save
1 insert t top
k kill v verbose
l locate

VI I QED REQUESTS

absolute line l i st
a append m move
b buffer p print
c change q quit
-" current line r read
d delete k sort
e enter x status
v exclude s substitute
g global y transform
1 insert w write

VIII PROBE REQUESTS

I
argl ist segdump
dump __ p rocess seginfo
info set
initiate stack
output state
quit terminate

111 Rev. 2 06019

I

I

SYSTEM CONVENTIONS

Dialing In

Logging !n

Logging Out

Standard System Responses

Console Activities

Working Directory

Writing Source Programs

Compilation and Assembly

Execution

Debugging

Access Control

File Transfer CTSS/Multics

Console Interrupts

I -1 Rev 2 06019

SYSTEM CONVENTIONS

DIALING IN

No standard digit for dialing into the Multics system
has yet been assigned. When it is, the user wi 11
follow the procedure:

Dial appropriate digit

Listen for high-pitched tone

Push DATA button on 2741 and 1050.
(Automatic on TTY 37.)

Watch for message from Multics system to be
printed out

LOGGING IN

Once Multics has responded to dialing in, the user
issues a login command giving his personal name and
project id as in:

login Smith Multics

The system asks for a user password.
in his password, for example:

corncob

The user- types

Multics verifies the password and responds with
R(eady) message. The user may now issue co~manss to
Multics.

LOGGING OUT

When a user is ready to terminate a console sessi~~,
he Issues a logout command, i.e.,

logout

I

Multics responds with a W(ait), then issues tl-]"' I
following message:

personal name project id logged out

as 1 n:

Smith Multics logged out

1-2 Rev 2 06019

SYSTEM CONVENTIONS

STANDARD SYSTEM RESPONSES

When the user dials into Multics, stand­
ard system response is:

MULTICS in operation on date at time

for example:

•
ULTICS in operation on Wed 8 Nov 1968 at 09:23:18.8)666 ESf

Multics may then follow with one or more

I

timely messages to users. Multic:s terminates
response with a R(eady)message giving timing
information. For example:

r 0 .1 0. 0 0

where:

The first group of digits g1ve the amount of
elapsed real time.

The second group of digits give the elapsed
CPU time (used in timing commands).

The third group of digits give the number of
times a command waited for a page from a
storage device.

<:>

In dialing in, as shown in the example, only
the first group of digits are significant.

When the user issues a command to Multics the
usual system response is a W(ait) while Multics
takes appropriate action. When action is com­
plete, Multics then issues a R(eady), for example:

w 929:19.4
r 7.6 6. 2 40

The number following a wait gives the time of
day to the tenth of a second.

1-3 Rev 2 06019

SYSTEM CONVENTIONS

CONSOLE ACTIVITIES

When a user logs into Multics, a working direc­
tory is set up for him. The directory has the
form:

)user_dir_dir>personal_name.project_id
Once the working directory has been set up, the
user can add entry names of segments to his I
directory using the branch command, or estab-
lish an entry by writing a segment 1n one of
the editors, edm or qed.

Source programs are written in on~ of the Multics
languages by entering either the edm or qed
editor (edm or qed command)und either giving a
new entry name by which the program is to be
called or using an existing entry name for it.
The source program segment must be named with
a second component that is the name of the
compiler or assembler to be used, e.g.,

edm joe.epl

qed sourceprog.eplbsa

edm test. fortran

Once in an editing system, the user writes his
source program in the appropriate language.

The source language program can be compiled
or assembled by issuing the appropriate
language command (~, eplbsa, bcpl, tmgl,
fortran), e. g.,

epl joe

eplbsa sourceprog
fort ran test

After assembly, a program may be executed as
a command by typing its name and arguments
(provided all arguments are character
strings), e.g.,

JOe joedata

1-4 Rev 2 06019

I

I

I

SYSTEM CONVENTIONS

CONSOLE ACTIVITIES

If the text segment fails to execute, the
probe command and appropriate probe requests
can be used to help debug the program.

Access control commands (setacl, delacl and
listacl) allow the user to give other users
access to contents of his working directory
for reading, writjng, executing,_and appending
to one or more of his segments.

Means have been provided in Multics to
transfer segments back and forth to the older
GECOS operating system and to transfer
files on the 7094 CTSS system to the Multics
system and vice versa. (See tape in and
tape out commands and the merge edit com­
~and with merge_edit control lines.)

1-5 Rev 2 06019

SYSTEM CONVENTIONS

CONSOLE INTERRUPTS (QUIT)

To stop a process or to return to command level,
the user pushes the ATTENTION button once on
the IBM 2741 and IBM 1050 or the INTERRUPT button
once on the TTY 37.

All prior work is saved, so that the user may I
either enter a new system or reenter the system
he was in when he issued the quit.

After pushing the appropriate button, the system
prints out

quit

and then

r(eady) and the time.

Example:

The user may be in EDM and wish to quit; the
response may appear as follows:

quit
r 1:01.1 15.1 44

After a quit, the user may wish to issue either
a start command or a new_proc command. (The start
and new_proc commands are appropriate QQly immediately
after a quit.)

The start command allows the user to resume at the
point he quit and in the system he was in when he quit,
EDM in the example.

The new_proc command leaves the user in his previous
working directory but creates a new process for the I
user. The old process is available for debugging.

1-6 Rev 2 06019

I

I

INPUT STREAM

Character Escape Conventions

Multics Universal Escape Conventions

Erase and Kill

Octal Codes

Stylistic Convention

J7KSR Teletypes

IBM 1050 and 2741 Consoles

11-1 Rev 2 06019

INPUT STREAM

CHARACTER ESCAPE CONVENTIONS

In Multics, all characters to and from external
devices are translated to ASCI l by a table driven
cod~ conversion. Universal character escape
conventions are provided for each type of console
or card device attached to the system. However, I
each device may be used with stylized characters
that represent some internal ASCI I characters or
with escape conventions uniaue to the device.
The following pages present the Multics universal
escape conventions, the stylizations, and the
escape conventions used with each device.

I 1-2 Rev 2 06019

I

I

I

INPUT STREAM

MULTICS UNIVERSAL ESCAPE CONVENTIONS

A. ERASE AND KILL CHARACTERS

The standard erase and kill characters are:

Character

@

B. OCTAL CODES

Mean in~

erase the previous character

delete the current line

To represent octal codes, type a "'\' (left slant)
and up to three octal digits. Example:

\777

C. STYLISTIC CONVENTION

One stylistic convention holds at all consoles.
The solid vertical bar (J) and the broken verti­
cal bar (:) are considered alternatives of the
graphic for ASCII code value 174.

I 1-.3 Rev 2 06019

INPUT STREAM

37KSR TELETYPES

There are no further escape conventions
required for the use of the TTY37, since
it uses the revised ASCII character set.

IBM 1050 AND 2741 CONSOLES

Each type ball used would require a different
set of escape conventions. The ball pre­
sently implemented is the 963 type ball.

The non-ASCI I characters on the 963 type
ball are considered stylized versions of
ASCI I characters:

p (cent sign) for ' (left slant)
(apostrophe) for

,
(accent acute) I .., (negation) for " (circum flex)

In addition, the
available:

following escapes are

t' for ' (accent grave)
t< for [(left square bracket)
p> for][(right square bracket)
t(for (left brace)
p) for } (right brace)
pt for

""""' (over li ne/ti Ide)

11-4 Rev 2 06019

I

I

I

I

COMMANDS

Argument Formats for Commands

Symbols Used in Commands

Commands

add name
adjust
archive
bcpl
bind

branch
change_wd i r
chasepath
contents
convert_object

copy
ctss_aarchv
delacl
del name
dprint

dpunch
echo
edm
epl
eplbsa

expand
ext ract_arch i ve
fileio
files
flush

fortran
fs_chname
fs_readacl
iocall

I I 1-1 Rev 2 06019

link
1 i st
1 i stacl
login
logout

merge_edit
move branch
mspeek
new_proc
nothing

print
pr i nt_dbrs
print_l ink_info
probe
qdump7

qed
read?
remove
remove..._dir
rename

run com
setacl
start
status
tape_in

tape_out
time
unlink
who

COMMAND CONVENTIONS
ARGUMENT FOR~ATS FOR COMMANDS

acname

I

represents a unique entry name (branch or link)
1n the user's working directory, e.g.,

my_seg

is a general term for an argument that may
represent one of the following:

(1) An entry name (branch or link) in the
user's working directory or in another
directory. If the entry name is in another
directory, ~must include enough of the
pathname to the entry so that it can be
found, e.g.,

my_seg (implicit path to working
directory entry)

>joes_dir>zap.epl (explicit path to an
entry in another directory)

(2) A directory, indicated by a terminating>;
~must include enough of the pathname so
that the directory can be found, e.g.,

>freds_d i r>

where freds_dir is a unique directory in the
file system.

is an access control name representing the
name of a user or set of users. It differs
fro~ an entry name only in that it must have
3 components, personal_name, project_id, and
instance_tag; for example:

Andrews.Multics.* (Tag is usually given
as.~~)

I I 1-2 Rev 2 06019

•

I

COMMAND CONVENTIONS

SYMBOLS USED IN COMMANDS

Used to match any one component of a name
(pathname, entry name, access control name)
found in a list of names, for example,

11 st my_di r>my_entry>'~ .my_seg

might cause the listing the following
names from the directory given as my_entry:

Branches

version1.my_seg
version2.my_seg
versionJ.my_seg
newvers.my_seg
last_try.my_seg

** Used in a terminating position to match
any number of components of an argument, 1.e.,

1 i st my _d i r)alpha. >H~

causes listing pathnames from my_dir.
These might be:

Branches

alpha
alpha. link
alpha. bet a. ep 1

Links

alpha. rev >joe_dir>beta

I 11-.3 Rev 2 06019

I

I

COMMAND CONVENTIONS

Separates components of entry names.
may be without special significance,

my_seg.a or my_seg.b

Components
e. g.'

However, many components have special meanings.
When writing a source program in EDM or QED, the
second component of the name indicates the com­
piler or assember to be used to translate the
source program, e.g.,

edm my_seg.bcpl

When the command to compile the source program
is given the command is:

bcpl my_seg
Compilation and assembly that follow the bcpl
command create the following segments:

my_seg (text segment)
my_seg.link (linkage segment)
my_seg.symbol (symbol table)

With certain options in effect, the same command
could also create:

my_seg.list (ascii listing)
my_seg.error (error segment)

When my_seg is executed, the command is simply
the text segment name followed by appropriate
string arguments.
The user can combine text, linkage, and symbol
segments into a single object segment, e.g.,

my_seg.object

Compilation, assembly, and execution of a seg­
ment can be done with merge_edit and the GECOS
system. A segment containing merge_edit instruc­
tions is set up using EDM or QED. The first com­
ponent of the entry name can optionally be that
of the text segment; the second component is
gecos, e.g., edrn rny_seg.gecos

I I 1-4 Rev 2 06019

COMMAND CONVENTIONS
SYMBOLS USED IN COMMANDS

= Used only in the second argument of a command when
similar components appear in the arguments.
=means duplicate the corresponding component of the
first argument, e.g.,

~--
rename my_seg.epl =.pl

Used only in the second argument of a command.
==means duplicate all components following as taken
from the first argument, e.g.,

rename my_seg.epl.link your_seg.==

> Used in describing a pathname as follows:

>a an initial >designates an absolute pathname,
i.e., one fixed with respect to the root
directory. (The> is the abbreviated name of
the root directory.)

a> a terminal > indicates the entry immediately
preceding is a directory.

a>b infix > is used to show the path down to the
required entry. The terminating entry may be
itself a directory but as used here is treated
as a terminating entry.

Note that if the path, a>b, does not begin
with>, then a is presumed to be in the current
working directory.

< Used in a pathname to describe motion up the
directory hierarchy. >a>b>c<d means to follow the
file system hierarchy down to c, then return to the
directory containing c and progress down to d. I The effective result is >a>b>d. This is especially
useful in the case:

<a>b

which indicates entry b in directory a in the same
directory that contains the current working directory.

I I 1-5 Rev 2 06019

I

I

COMMAND CONVENTIONS

SYMBOLS USED IN COMMANDS

()

[J

Parentheses delimit a set of iteration
elements. Each element in the set is
inserted in turn into the enclosing
command and the command is evaluated.
See the following paragraph on brackets
for an example.

Used as command delimiters. The en­
closed character string is evaluated
as a command and its value inserted in
the command line; for example:

print ([files *.epl])

The files command is evaluated and the
values returned inserted in the command
line. When files is evaluated, the print
command might read:

print (a.epl b.epl c.epl)

Each of the three segments will then be
printed in turn by the print command
(because of the parentheses permitting
iteration.)

When a command in brackets is evaluated,
the value is reexamined for further
delimiters

I[] When a single vertical bar precedes a
command in brackets, the vatue of the
command is inserted into the command line
but the command is not reexamined for
further delimiters.

111-6 Rev 2 06019

I

I

COMMAND CONVENTIONS

SYMBOLS USED IN COMMANDS

I I[] When double vertical bars precede a
command in brackets, the command is
evaluated but the value is not ln­
serted into the command line. (The
double vertical bar convention is
the equivalent of an interjected
command in the previous command
language.)

space Command elements must be delimited

' ,

11 11

NL

by spaces. Defined delimiters need
not be separated from enclosed ele­
ments by spaces, e.g., [x] = [x].
Absence of a space between a delimiter
and the rest of an element outside the
delimiter indicates concatenation, e.g.,
>a>b>(c d e) indicates three pathnames:

>a>b>c, >a>b>d, and >a>b>e.

Left and right accents denote a literal
string.

Double quotation marks also denote a
literal string. However, a literal
string enclosed in double quotation marks
cannot be nested in another literal string
also enclosed in double quotation marks.

The end of a command is delimited by an
ASCI I new line character. On the TTY37
NL is indicated by pressing the
LINE SPACE key; on the 2741 NL is indi­
cated by pressing the RETURN key.

A command delimiter, permitting commands
to be stacked before execution. The
commands are executed when an NL is
encountered.

I 11-7 Rev 2 06019

ADffiAME
Format:

Purpose:

• Notes:

Example:

I

COMMANDS
Reference: BX.8.09

addname QSih entry

To add an alternate entry name, entry to
the existing entry name specified by

~·
Execute and write attributes must be on
in the directory containing~·

Equals convention permitted in entry.

entry must be unique ~n the directory.

addname)sys_lib>Smith.Multics.epl Jones.==

where the name, Jones.Multics.epl is
added to the entry, Smith.Multics.epl
in the directory, sys_lib.

I I 1-8 Rev 2 06019

ADJUST

Format:

I
Purpose:

I
Example:

COMMANDS

Reference: BX.99.08

adjust ~ath

adjust$test ~ath
adjust$block ~ath
adjust$block_test ~ath
adjust$test_block ~ath

To correct the bit count for ~ath, a segment
moved from CTSS to Multics.
(When a segment is moved, the Multics
boatload or tape_daemon accepts the ETX that
marks the end of CTSS file or any trailing
ascij NUL characters used in padding as part
of the initial bit count. The adjust command
corrects this.)
Meanings of the formats are:

adjust ~ath causes computation of bit
count to and truncation of the segment
at the last significant word. (Word
containing characters other than NUL or
ETX).

adjust$test ~ath causes only printing of
diagnostics that would apply if adjust
were invoked for a bit count.

adjust$block ~ath uses the current length
in 1024-word blocks to calculate the
segment's initial position.

adjust$block test ~ath 1
adjust$test_block ~ath cause on Y
printing of diagnostics that would apply
if adjust$block were invoked.

adjust >sys_lib)ctsfil

where segment, ctsfil, IS truncated at the
last word containing a significant character.
A bit count is provided.

I I 1-9 Rev 2 06019

ARCHIVE

Format:
Purp:)se:

I

Notes:

I

COr~MAI\JDS

Reference: BX.9.04

archive key path entry1 ••• entryn
To create, replace, delete, print headers of,

-move, or combine segments of archive segment
path, where the segments are given by entry1 •••
entryn. The name of an archive segment will
have .archive appended if not already present.

key is one of the following:
d delete entry1 ••• entryn from path
r replace old entry1 to entryn with entry1 •••

entryn. lf an entry does not exist, it is
added to the end of path. An r key can be
used to create an archive segment path, if
none exists.

rd remove entry1 ••. entryn from current working
directory and place them in the archive
segment given by path.

t print headers of entry1 ••• entryn in path. If
no entries are given, all headers in path
are printed.

x extract entry1 ••• entryn from path and copy
the entries into the directory of path.
path is unchanged.

Error messages are printed for:
key other than d, r rd, t, or x
gath not an archive file
path does not exist (with d or x)

entry cannot be found or cannot be moved (e.g.,
entry already exists on an x request)

Secondary name .object on a segment means that
text, link, and symbol segments are to be
treated.

Examples: archive ~ my a b cc

creates segment my.archive with components a, b,
and cc.
archive d my alpha.object

deletes alpha, alpha.link, and alpha.symbol
from my.archive.

I I 1-10 Rev 2 06019

COMMANDS

Reference: BX.7.06

Format: bcpl path options

Purpose:To compile the source file, path,
using BCPL.

Options:old compiler accepts old

I (CTSS) BCPL syntax.

listty list the source segment
on-line rather than in a

I

special list segment.

errtty produce source code error
comments on-line rather
than in the path.error
segment.

pname produce a cross-referenced
list of occurrences of each
identifier in the program
as part of the source seg­
ment.

nobsa BCPL does not call EPLBSA
assembler when compilation
is done. Text and link
segments are not produced.
Primary output is a com­
piled segment called
path.eplbsa in the working
directory.

savebsa the compiled segment,
P.ath!eplbsa, is left in the
working directory and can
be assembled at a later time.
Used when EPLBSA is called
after compilation (no nobsa option).

Example:bcpl >system_library_1>shortprog errtty nobsa

111-11 Rev 206019

Format:

Purpose:

I

Note:

Example:

I

COMMANDS

Reference: BX.99.13

bind Rath

To bind together the object
segments contained in the
archive segment specified by
Rath. Two entries are created
in the user's working directory
by the command:

~ath - a bound segment
composed of all the
segments from path.archive.

P-ath.map -map of the bound segment.

The components of the archive segment
must all be in object format and
must have linkage and symbol sections.

Assume alpha.archive is an archive
file in the current working
directory. Then

bind alpha

creates alpha and alpha.map,
where alpha is the bound
segment.

I I 1-12 Rev. 2 06019

I

I

BRANCH

Format:

Purpose:

Notes:

Example:

COMMANDS

Reference BX.8.06

branch path

To create an entry name in
some directory. The entry name
can be specified as either a
directory name (terminated
by >) or an non-directory
name (no terminating>). In
either case the entry is
designated as a branch.

Append mode is necessary in
the directory to which path
is to be added.

See LINK command for creation
of links.

branch >user dir_dir)dirl>dir2>

where dir2 is the directory entry
added to the directory
path given as

>user_dir_dir>dirl

I I 1-13 Rev 2 06019

I

I

COMMANDS

CHANGE_WD I R Reference: BX.8.14A

Format: change_wdir path

Purpose: To change the name of the user's
working directory to the
pathname given by path.

Examples: change_wdir >user_dir_dir>Stone.Multics

change_wdir <Martin.Multics

111-14 Rev 2 06019

I

I

COMMANDS

CHASEPATH Reference: BX.8.13

Format: chasepath ~

Purpose: To retrieve the full and final pathname
of the entry, path.

Notes:

Examples:

Read mode required in path.

chasepath fred

If fred is an entry in a directory
branch of the working directory,
)user_dir_dir)user, the example
returns the character string:

)user_dir_dir)user)fred

If fred is a link to

)user dir dir>other_user)fritz

which is a link to

)user dir dir>third_user>derf

then chasepath returns the character
string value:

)user_dir_dir>third_user)derf

To obtain the value at the terminal
grve the command

echo [chasepath fred]

I I 1-15 Rev 2 06019

I

CONTENTS

Format:

Purpose:

Notes:

contents path
c path

COMMANDS

Reference: MCB-275

To return as a character string the
entire contents of the segment given
by path.

The command makes possible the execu­
tion of a set of commands that have been
typed into a segment, or the selection
from a segment of a list of arguments
to a command, etc.

If a segment is to be used as a set of
commands, then each command in the seg­
ment must be separated from the next by
a ; (semicolon).

There are two methods of delimiting the
commands which are to be executed. The
first character and last character in
the segment path can be [and] respec­
tively, in which case typing:

contents path

is sufficient. In the second rnethod,
the user may type:

[contents path]

The segment P-ath need not begin and end
with square brackets if the second method
is used.

Example: Assume the following contents of seg­
ment x:

a b c d

Then the command:

remove ([contents x])(() .(link symbol))

removes segments:
a a.link
b b.link
c c.link
d d.link

II 1-16 Rev

a. symbol
b.symbol
c.symbol
d.symbol

2 06019

•

I

COMMANDS

CONVERT OBJECT Reference: MCB-275

Format:

Purpose:

Notes:

Example:

convert_object path

To convert path, path. link, and
,p,ath.symbol to a single "object"
segment •

If a text segment e~ists, an object
segment is created whether or not
link and symbol segments are present.
Either symbol only, or link and sym­
bol may be missing. The command
comments about missing segments.

convert_object alpha

If alpha was compiled in epl with
alpha, alpha.link, and alpha.symbol
being created at that time, then the
command will create a single segment,
alpha.object.

I I 1-17 Rev 2 06019

COPY

Format:

Purpose:

•
Notes:

Example:

I

coMMANDS

Reference: BX.8.11

copy pathl path2

To copy the branch entry, given by
path1 into the branch entry named
in ~th2, thus creating the new
branch. The entry pointed to by
path2 must not exist before issuing
the command.

Read mode is required for pathl;
write and append modes required
forthe directory containing path2.

The equals convention may be
u~ed.

copy)old_dir>fred.link george.=

Branch, fred.link, in the direc­
tory,)old_dir, is copied into
the working directory as
george. link.

111-1 8 Rev 2 06019

•

•

COVlMANDS

CTSS AARCHV Reference: MCB-275

Format: ctss_aarchv ~segname1.segname2

Purpose: To extract all segments from a CTSS
ascii archive file and place them in
the current working directory •

segname1 and segname2 are the first
and second components of the CTSS file
name. If Qath is not given, the
CTSS archive file containing the
segment is presumed to be in the
working directory.

Notes: ctss_aarchv finds the real names of
the segments if the archive file is an
epl or eplbsa file and renames the
extracted segments to their real names,
or if the real names are not found,
they are renamed to their CTSS name.

To use the command for non-epl/eplbsa
file, rename segname2 to epl or eplbsa.
The resulting segments will have the
following name format:

ctss_name1.epl 9r
ctss name1.eplbsa

Example: ctss_aarchv alpha.eplbsa

I I 1-19 Rev 2 06019

I

I

DELACL

Format:

Purpose:

COMMANDS

Reference: BX.8.02

delacl path acname1 ••• acname

To delete the access control names
acname1 ••• acnamen, from the ACL of the
entry defined by path or from the CACL of
dir if path is terminated by dir>.
path may be a path name, entry name or set
of entry names defined by the~~ convention.
acname1 ••• acnamen each have the form:

personal_name.project_name.tag

where tag is the instance tag of the
process-group in which user is currently
working and is usually indicated by~~ for
any instance tag. An acname might be:
Brown. Mu 1 tics.~~

Notes: Omission of an acname argument causes an error
comment.
If an acname does not appear in the appropri­
ate ACL, delacl prints a comment and p~ocesses
the next acname.
See setacl command for required access needed
to delete access control names.

Example: delacl g_bcpl Doe.Multics.* Smith.Multics.~~

where g_bcpl is an entry in the user's
directory. Access control names Doe.Multics.~~
and Smith.Multics.~~ will be removed from the
ACL of g_bcp 1.

delacl d i r _bcpl> Brown .Mu 1 tics.*

dir_bcpl is b directory within the user's
working directory. Access control name
Brown.Multics.* is removed from the CACL
of d i r _bcpl.

Restriction: Because delacl has not yet been imple-
mented as described above, use the following
format for deleting access control names from
the CACL of a directory, some dir.
change_wdir >~~me~
delacl "" acnames

II 1-20 Rev

DEL NAME
Format:

Purpose:

I Example:

I

COMMANDS

Reference: BX.8.10

delname path

To delete
by path.
path must
entry.

an entry name specified
The entry specified by

not be the only name on the

delname my_seg.list

where my_seg.list is an entry name
in the user's working directory.

I I 1-21 Rev 2 06019

DPRINT

Format:

Purpose:

1 Notes:

Example:

I

COMMANDS

Reference: BX.5.03

dprint r.ath1 gath2 ••• r.athn

To queue segments given by r.ath1
to ~athn for delayed printing by the
output driver daemon.

The segments are copied onto the
printer in the order given.
Segments to be copied should contain
Multics standard characters. If a
segment is missing or has a zero
length, the segment is skipped.

dprint alpha beta >joes_dir>gamma

Segments alpha and beta from the
current working directory and
segment gamma from joes_dir
directory are queued for printing
by the output driver daemon.

I II- 22 Rev 2 06019

DPUNCH

Format:

Purpose:

I
Notes:

Example:

I

COMMANDS

Reference: BX.5.03

dpunch P.ath1 F,Jath2 ••• f?.athn

To queue segments given by f?.ath1
to r.athn for delayed punching by the
output driver daemon.

The segments are punched in the order
given. Segments to be punched
should contain a binary card image
in every 27 words, i.e., the 960 bits
per card should reside in the first
26~2/3 words of each 27 words.
If a segment is missing or has zero
length, the segment is skipped.

dpunch alpha beta >joes_dir>gamma

Segments alpha and beta from the
current working directory and segment
gamma from joes_dir directory are
queued for punching by the output
driver daemon.

111-23 Rev 2 06019

I

ECHO

Format:

Purpose:

Examples:

COMMANDS

Reference: BX.20.01

echo string

A system test command.
Echo types out "echo:" and a
simple character string argument
or a literal string argument or
the character string value of a
command argument passed to echo.

echo abc
echo: abc

echo a b
echo: a

echo "a b c"
echo: a b c

echo [wdir]
echo: >user_dir dir>Shih.Multics

I I I - 24 Rev 1 0 131 9

Format:

Purpose:

I
Notes:

Example:

I

edm ~ath

COMMANDS

Reference: BX.9
(Draft at present)

To invoke the EDM editor to create or
edit an ASCI I segment, where:

~ath is the optional pathname of a
segment to be created or the requit-ed
pathname of an existing segment to be
edited. If only the entry name is
given, the segment is assumed to be in
the current working directory.

If ~ath represents an existing segment,
the EDM editor begins in edit mode;
if~ represents a segment to be
created (or if the argument is null),
the EDM editor begins in input mode.
See the section on EDM requests for
further information on input/edit modes
and how to use EDM.

If the segment represented by ~ath is a
procedure for compilation or assembly,
the name must include the name of the
compiler or assembler to be used.

edm testproc.epl

The segment is in the current working
directory (or will be created there).
It will be an epl procedure invoked for
compilation by:

epl testproc

I I 1-25 Rev 2 06019

I

I

EPL

Format:

Purpose:

Notes:

Example:

COMMANDS

Reference: BX.7.08

epl entry

To invoke the epl_daemon for EPL
compilation of the source segment,
entry, in the current working directory.

When the epl_daemon is invoked, the
r(eady) message printed at the terminal
does not indicate that compilation is
complete. To determine the results of
compilation as well as to check as to
whether compilation is completed, the
command

print epl_daemon.error

will cause printing of results of
campi la t ion. A campi la t ion-done
message will be added at a later date.

epl datanal

where datanal.epl IS the entry name of
an EPL source program in the working
directory.

111-26 Rev 2 06019

EPLBSA

Format:

Purpose:

• Notes:

Example:

I

COMMANDS

Reference: BX.7.03

elpbsa entry

To invoke the epl_daemon for EPLBSA
assembly of the source segment, ~'
in the current working directory •

When the epl_daemon is invoked, the
r(eady) message printed at the terminal
does not indicate that assembly is
complete. To determine results of
assembly as well as to check as to
whether assembly is completed, the
command

print epl_daemon.error

will cause printing of results of
assembly. (An assembly-done message
will be added at a later date.)

eplbsa my_sort

where my_sort.eplbsa 1s the entry name
of an EPLBSA source program in the
working directory.

I II- 27 Rev 2 06019

•

I

COMMANDS

EXPAND Reference: BX.7.05

Format: expand path mode BY. 21 •01

Purpose: To insert into the segment,
path, additional segments speci­
fied in the text of segment path.
path is scanned for statements
of the form:

% include pathname

where pathname is a segment
to be inserted.

Optional argument mode gives the
access mode of the newly expanded
path. (TREWA or any subset of
the Irap, Bead, sxecute, ~rite
and Append modes.)

Example: expand my_epl RW

where segment, my_epl, in the
user's working directory con­
tains the following:

my_epl: proc;
statement!;
%include >user_dir_dir>joe_epl;
statement2;
% include)user_dir_dir>make_epl;
end my_epl;

The command causes segments, joe_epl
and make_epl to be included as part
of the newly expanded segment named
my_epl.expanded.

I I l-28 Rev 2 06019

•

I

C0\.1MANDS

EXTRACT ARCHIVE Reference: BX.99.12

Format: extract_archive ~seename1.seename2

Purpose: To extract all segments from a CTSS
regular archive file, and place them
in the current working directory •

Notes:

Example:

seename1 and seename2 are the first
and second components of the CTSS file
name. If path is not given, the
CTSS archive file containing the file
is presumed to be in the working
directory.

extract_archive finds the real names
of the segments if the archive file
is an epl or eplbsa file and renames
the extracted segments to their real
names, or if the real names are not
found, they are renamed to their CTSS
name.

To use the command for non-epl/eplbsa
file, rename seename2 to epl or eplbsa.
The resulting segments will have the
following name format:

ctss name1.epl or
ctss name1.eplbsa

extract_archive alpha.epl

lll-29 Rev. 2 06019

FILEIO

Format:

Purpose:

Notes:

Example:

I

COMMANDS

Reference: BX.5.02

fi leio oath

To indicate that the user's next
input lines are to be taken from
the segment entry, specified by path,
not from the console.

The format of input lines in path
must be the same as if they were to
be typed at the console.

When input from path is exhausted,
the next input line is taken from the
console.

fileio >my_library)sub_loop

input will be taken from sub_loop in
the directory, my_library, until the
end of the segment.

I I 1-30 Rev 2 06019

FILES

Format:

Purpose:

•
Example:

I

COMMANDS

Reference: BX.8.01

files path

To obtain a list of path names
of entries within path. The
command differs from the list
command in that the list 1s re­
turned as a character string and
path names rather than entry
names alone are returned.

print ([files *.epl])

The files command is "nested" 1n
the print command. When the
files command is evaluated, the
print command might be:

print (a.epl b.epl c.epl)

causing the three files to be
printed.

111-31 Rev 2 06019

•

I

FLUSH
Format:

Purpose:

COMMANDS

Reference: BX.20.03

flush

To cause all pages currently
in core to be paged out. A
system test command; after
flushing the system, worst
case timings can be obtained
for command execution.

I I 1- 32 Rev 2 06019

•

I

FORTRAN

Format:

Purpose:

Example:

COV1MANDS

Reference: BX.?.02

fortran path

To compile and assemble the source
program segment specified by path using
the FORTRAN compiler .

fortran alpha

where alpha.fortran is a source
program to be compiled and assembled.

111-33 Rev 2 06019

•

I

COMMANDS

FS CHNAME Reference: BX.8.16

Format: fs_chname Rath ~ oldename newename

Purpose: To cause one of the names of entry in
the directory given by Rath to be
replaced, deleted or added. This
command interprets none of the special
command symbols (e.g., *,>)and thus
allows manipulation of strangely-named
segments.

Notes: When both the old entry name, oldename,
and the new entry name, newename,
appear in the command, newename
replaces oldename.

If oldename is the null string, "",
then newename is added to the list of
names for the entry.

If newename is the null string, '"',
then oldename is deleted from the list
of names for the entry.

Rath must be a complete pathname
relative to the root.

Example: fs_chname >user_dic_di-r>my_dir alpha foo ""

One of the names of entry alpha in
directory, my_dir, was foo. This
entry name is deleted by the command.

I I 1-34 Rev 2 06019

•

•

CCl'v1MANDS

FS_READACL Reference: BX.8.17

Format: fs_readacl path entry

Purpose: To cause the access control list of
entry to be printed. path gives the
absolute (relative to the root)

Notes:

pathname of the directory containing
entry. The command interprets
none of the special command symbols
(e.g., *,>)and thus allows manipulation
of strangely-named segments.

If entry is given as a null string,
i.e., "",the common access control list
(CACL) of the directory given by, path
will be printed.

Examples: fs_readacl)user_dir_dir>my_dir alpha

causes the ACL of segment alpha in
directory, my_dir, to be printed.

fs_readacl)user_dir_dir>my_dir '"'

causes the CACL of directory, my_dir,
to be printed •

I I I -3 5 Rev • 2 06019

I

COMMANDS
IOCALL Reference: BX.5.01, BF.1.01
Format: iocall outercall ioname arguments

Purpose: To issue 1/0 outer calls from command level.
outercall is one of the 1/0 outer calls.
ioname is a name used to route calls in 1/0.

arguments are other arguments of the given
outercall. (Shown in table below. Hyphens show
optional arguments. See BF.l.Ol for argument
information.

Outer call I oname Arguments

attach
detach
read
write
seek
tell

ioname
ioname
10name
ioname
ioname
1oname

type -mode- ioname2
-mode- ioname2

setsize ioname

worksegment -offset- -nelem­
worksegment -offset- -nelem­
ptrname1 -ptrname2- -offset­
ptrname1 -ptrname2-
elementsize

getsize ioname
Notes: Calls to iocall should not be programmed into

procedures; use a call to outercall.
Default input and output (called user _i/o) 1 s
to a console. Either input (user_input) or
output (user_output) can be diverted using
iocall.

Examples: iocall attach zz file made_up_name

creates empty segment zz for subsequent at­
tachment.

iocall attach user_output syn zz
attaches output to segment zz. A w(ait) mes­
sage follows the call but no r(eady) message
is given until output is reattached to console.

iocall attach user_output syn user_i/o

reattaches output to the console. r(eady) mes­
sage follows.

iocall detach zz
User detaches zz after reattaching output.

I I 1-36 Rev 2 06019

--- ----------

Ll NK

Format:

Purpose:

•
Examples:

•

COMMANDS

Reference: BX.8.04

link path1 path2

To create a link to the entry
specified by path1 from the entry
specified by path2.

path1 must include the directory
as well as entry to enable the
1 ink to be made.

path2 may be absent. In that case
a link is created in the user's
working directory having the same
entry name as that given in path1

link)library>isaac

makes a link entry "isaac" 1n the
working directory.

link)user_dir_dir>isaac >mydir>=

makes link entry "isaac" in "mydir".

link ([files >user _dir _dir>joe)1Hf])

creates for each entry in the
directory)user_dir_dir>joe a link
entry of the same name in the
working directory .

I II- 37 Rev 2 06019

Format:

Purpose:

•

Notes:

Example:

•

COMMANDS

Reference: BX.8.01

list path ioname option

To print out a list of entry names or a
subset of the entry names in the direc­
tory given by path •

ioname is an optional name of an at­
tached stream to which output is direc­
ted. Default is user_output. When
ioname is given, diagnostics are given
on both ioname_output and user_output.

If option is not present, both branches
and links will be printed. The possible
options are:

b - print branches only
1 -print links only

If an option is present in the command
and no ioname is to be attached, a null
string, "", must be given for ioname.

*and ** conventions may be used.

list system_library>alpha.**

produces a list of branches and links
that might be:
Branches

alpha
alpha. link
alpha. symbol

Links

alpha.new >system_library_J_beta

I I l-38 Rev 2 06019

I

I

Ll STACL

Format:

Purpose:

Notes:

COMMANDS

Reference: BX.8.03

listacl path acname1 .•• acnamen

To print access control information on the
entry name specified by path and users
specified by acnames. If path terminates
in>, information is printed from the
directory's CACL; otherwise information 1s
printed from the ACL of the entry name.
acname has the form:

personal_name.project_id.tag
as in: Brown.Multics.qv

listacl '"' acnames prints the CACL of
the working directory relating to acnames.

listacl path ~H~ prints access control in­
formation on all users of path.
If path specifies a directory or a branch in
a directory, the user must have the read
attribute on in the directory or branch. If
path specifies a lin~, the user inust have the
read attribute on in the entry to which the
link eventually points and must also have the
execute attribute on in the directory con­
taining the link and all intermediate direc­
tories linking to the ultimate entry.

Example: listacl >my_dir> Smith.Multics.*

prints the CACL of my_dir for
acname, Smith.Multics.*

Restriction:Because listacl has not yet been imple­
mented as described above, use the
following format to list ACL information
from the CACL of a directory:

change_wdir)some dir

listacl "" acname1 ••• acnamen

I I 1- 39 Rev 2 06019

LOGIN

Format:

Purpose:

•
Example:

I

COMMANDS

Reference: BX.3.01
not yet published

login username pro,j ed,) d

To gain access to Multics at
command level after dialing into
the system •

username is the name of a user
acceptable to Multics.

project id is the identification
of the group with which the user
is associated, Multics.

login Smith Multics

I II- 40 Rev 2 06019

LOGOUT

Format:

Purpose:

• Example:

•

COMMANDS

Reference: BX.3.04

logout

To end communication with the
Multics system, thus termin­
ating a console session.

logout

w 930:15.7

Smith Multics logged out

The system responds to a logout
with a W(ait) followed by the
time of day to the tenth of a
~econd. The system then indi­
cates the logout is complete;
the user's connection to the
computer is broken and he must
dial up and login in order to
restore communication •

Ill- 41 Rev 2 06019

----------------- -

MERGE EDIT

Format:

Purpose:

•

Notes:

I

Example:

COMMANDS

Reference: BE. 18,00
BE,l8.01

merge_edit g_path runname username options

To create an IMCV tape on Multics that can
be run under GECOS, performing assemblies,
etc., and producing a tape by which results
can be returned to Multi cs, (See tape_i n
for returning results.)

g_path specifies the entry name of a
merge_edit control segment used to select
text for the IMCV, (See merge-edit con­
trol lines section.) The second component
of the g_path entry name, if given, must
be .gecos.

runname is a 1 to 6 character primary com­
ponent of the job name assigned the two
tape_daemon control segments merge_edit
creates in the wdir as intermediate output,
i.e., a runname, jobx, creates two tape_
daemon segments: jobx.control and
jobx,control.binary.

username 1s a 1 to 12 character user name.

o~tions Two can be specified:

no tape ;~~ do not signal tape_daemonl~/

mh ·} ;~~ Run tape at Murray Hill or MAC*/
mac

To notify tape_daemon to execute control
segments produced by a previous merge_edit
the command is:

merge_edit runname (tape)

where runname is that used in the previous
command and (tape) is a literal

merge_edi t comp2.gecos job2 Bennett mac

I I 1-42 Rev 2 06019

I

COVlMANDS

MOVEBRANCH Reference: BX.8.12

Format: movebranch Rath1 Rath2

Purpose:

Notes:

To move a non-directory branch from
one directory to another, deleting
the original branch given by the entry
name, Rath1, (and the associated ACL)
and establishing the new branch with
the same entry name or a new entry
name, given by ~ (with the
associated ACL).

Read and write modes are required in
the branch to be moved. Write and
execute modes are required in the
directory of the branch to be moved.
Write and append modes are required in
the directory of the entry to be
created.

If~ already exists, no move IS done.

A directory with inferior segments may
not be moved.

The = convention may be used.

Examples: movebranch)old_dir)fred.link joe.=

The branch "fred.link" in directory
")old_dir" is moved to the working
directory and given the name "joe.link".
The entry "fred.link" in "old_dir" no
longer exists.

movebranch joe.link)old_dir>==

The branch "joe.link" in the working
directory, is moved to the directory
"old_dir".

I I 1-43 Rev 2 06019

•

I

C~MANDS

MSPEEK Reference: BX.99.05

Format: mspeek gs1h offset1 offsei2

Purpose: To write onto the output stream,
user_output, the octal representation
of a selected part of a segment, given
by ~· offse±1 and offset2 are
character strings representing the
starting and ending octal locations for
the dump.

Example: mspeek my_seg 27 77

I I 1-44 Rev 2 06019

NEW PROC

Format:

Purpose:

• Notes:

Example:

I

COMMANDS

new_proc

Creates a new process and leaves the
user in the working directory he was
in when he logged in. The old pro­
cess is available for ~ebugging but
not for further processing.

At present, new_proc causes the
system to hang up the user.
When he redials he will be in the
new process.

Assuming a quit has been made:

new_proc

creates a new process, leaving
the user in his previous working
directory.

I I I- 45 Rev 2 06019

NOTHING

Format:

Purpose:

•

I

COMMANDS

Reference BX.20.04

nothing

To provide a return g1v1ng
minimal return time, thus
aiding the interpretation of
time needed to execute other
commands.

lll-46 Rev 2 06019

PRINT

Format:

Purpose:

•

I
Notes:

Examples:

COMMANDS

Reference BX.9.02

print path lineno endlineno

To cause an ASCI I text segment of
entry name path, starting with the
segment line specified by lineno
and ending with the segment line
specified by endlineno to be writ­
ten in the user's output stream
11 user_output 11 ,

where:

path is the entry or path name of
the segment to be printed,

lineno is an optional argument
specifying the line number of the
first line to be printed. If null, i.e,
)mitted or replaced with 1111 (2 double
quotes with no space) or'' (balanced
left and right accents with no space
between them), in which case, the
entire segment is printed, with a
short identifying header. Must be
used when endlineno is used,
(Lineno may be a null string as
above, or 0 or 1, or may be left off
entirely if endlineno is also omitted.)

endlineno is an optional line number
of the last line to be printed; may be
om i Hed or rep laced with 1111 (2 double
quotes with no space) or"(left and
right accents with no space between
them), in which case the segment is
printed from lineno to its end.
Assumes that new line characters are
appropriately embedded in the text.

print my_seg2 7 9

print my_seg3
I I 1-47 Rev 2 06019

-------- ----

•

I

COMMANDS

PRINT DBRS Reference BX.99.03

Format: print_dbrs

Purpose:

Notes:

To print out the values of
the ring 0, 1, and 32 DBR
settings of a single process,
so that dumps of the process
may be easily taken.

Currently this command is called
automatically at process
initialization.

111-48 Rev 2 06019

I

COMMANDS

PRINT_LINK_INFO Reference: BX.9.05,BX.9.05A

Format:
Purpose:

Example:

print_link_info Rath file
To print linkage block information for entry
E§J.b.. Information includes:

1) text segment length.
2) <segment> I [sym bo 1] names for each 1 ink pair.
~list of entry point and segment definition

names, giving ASCI I representation, octal
value and symbol class.

~link pair list giving:
a. address relative to linkage segment base
b. <segment>l[symbol] to which a link

points or self-reference.
c. call pointer and argument p8inter of

trap word if it exists.

Presence of the optional literal file as a
second argument causes the contents to be
placed in a segment, path.prlnk

print_link_info ps

Segment >user dir dir>Garrnan.Multics ps
Text segment l~ngth (in octal)
Linkage block number 1
Entry points and segdef names
rs 32 entry point
ps 24 entry point
symbol_table 0
rel text 30 symbol
rel-1 ink 56 syrnbol
rel=symbol 64 symbol
Link pairs
10
12
14
16
20
22
40

<arg_count> I [arg_,count] J

<cv_string>l[cxcj
<write> I [write]
<read..> I [read]
<command_arg>l[return]
~-tex·t I 0 7
<1 i b_> I L 1 i b_]

I I 1-49 Rev 2 06019

PROBE -----
Format:

Purpose:

•
Notes:

Example:

I

COMMANDS

Reference: BX.lO.OOA

probe

To allow the user to enter the
debugging system and issue a
series of requests for debugging
information. The command can be
issued at an interruption of a
command or at normal termination
of a command. Probe requests
produce information on one or
more segments of the process.

See section on probe requests for
information that can be obtained.

If a request issued after a probe
command is not recognizable as a
request, it is treated as a command.

probe

w 924:09.8

System responds to probe command with
a W(ait) followed by a hyphen. User
types in the probe request immediate­
ly following the hyphen. System will
print out the requested information
and then issue another ready-for-re­
quest (hyphen). User terminates probe
with a quit request.

I I I-50 Rev 2 06019

QDUMP7

Format:

Purpose:

• Notes:

Example:

I

COMMANDS

Reference: BX.99.11

qdump7 P.ath1 r2ath2 ••• P.athn

To cause the segments given by
~~th1 to pathn to be converted
to 7-punch format and queued for de­
layed punching by the output driver
daemon •

If~ segment is missing or has a
current length of zero, the segment
is skipped.

qdump7 >user_dir_dir>Jay.Multics)comp

causes segment, camp, from the
directory given in the path to be
queued for punching in 7-punch
format.

Ill- 51 Rev 2 06019

•

I

COMMANDS

For mat:

Purpose:

Notes:

Reference: BX.9.06

qed input_file output_file
To create or to edit a text file using the
QED editor.

input file is the input stream to QED and
may be an entry name in the working direc­
tory, a pathname to an entry in another
directory, or can represent console input.

output file is the output stream from QED
and may be an entry name in the working
directory, a pathname to an entry in
another directory, or can be output to the
console.
lf end-of-file is reached on an input file,
input switches to the console.

See,section on QED requests for editing
requests that can be used once QED is en­
tered.

Examples: qed

Input and output are from and to the console.

qed my_file.bcpl

Input is taken from my_file.bcpl in the user's
wdir and output is to the console.

qed >joes_dir)epl3 my_file.epl

Input is taken from epl3 in another user's
working directory and output is b my_file.epl
in the wdir.

qed - my_eplbsa3.eplbsa

Input is taken from the console and output
is to my_eplbsa3.eplbsa in the wdir.

I II- 52 Rev 2 06019

READ?

Format:

Purpose:

i .Notes:

Example:

I

COMMANDS

Reference: BX.99.09

read?

read? rename

To read ?-punch card decks from a
directly attached card reader into
a segment with any valid pathname.

The pathname of the segment is
given on the header card of the
deck.

If the literal, rename, is given as
an argument to read?, the user is
requested to give the new pathname
from the console. If a pathname
given on the header card is not
found, the user is requested to give
a new pathname from the console.

3ee reference MSPM section for
formatting of the input deck.

read?

If it is not possible to attach the
card reader, read? issues a comment
at the console. Otherwise, read?
attaches a card reader on channel
"rdrb38" and begins accepting
card input.

I I 1- 52 Rev 2 06019

COMMANDS

REMOVE Reference: BX.8.07

Format: remove Rath

Purpose: To remove a branch from the file system,
where Rath terminates in the entry name
of a branch. 4lt Notes: Write mode is necessary in the branch
to be deleted and its directory.

I

Remove refuses to remove a directory
subtree (remove dir must be used) or
an entry pointed to by a link.

Examples: remove seg1

The branch seg1 IS removed.

I I 1-53 Rev 2 06019

•

I

COMMANDS
REMOVE_DIR

Format: remove_dir ~

Purpose: To remove the directory specified by
~ath and all segments inferior to it.

Notes: Write mode is necessary for every
branch to be removed and for the
directory containing each branch.

Example: remove_dir my_dir1

The directory my_dir1 in the working
directory and all segments inferior
to it are removed.

I I 1-54 Rev 2 06019

•

I

RENAME

Format:

Purpose:

Notes:

COMMANDS

Reference: BX.8.08

rename path entry

To change the entry name specified
by path to the name specified by
entry.

Write attribute must be on in user's
working directory. Read attribute
must also be on if the * convention
is used. Both* and= conventions
may be used in rename.

Examples: rename >user_dir_dir>fred george

where the result is renamed
>user_dir_dir>george

rename ([files ~~.epl]) =.pl1

all two-component names with second
component "epl" in the working direc­
tory are changed to have a second
component "p 11 ".

Ill- 55 Rev 2 06019

•

I

RUN COM
Format:

COMMANDS

runcom path~ ..• aren

Purpose: To permit the user's next input lines
to be taken from the ascii text seg­
ment, specified by path, rather than
from the console. ~ .•• aren are
optional arguments to be inserted into
the text of path.

Notes: Each argument is inserted into the text
of path as indicated by the include (&)
sign, followed by a decimal number,
where:

&1 is the first argument,
&2 is the second argument, etc.

Example: rc1ncom >my_l ib)sub_loop fred george

Assume the contents of sub_loop are:

rename >my_l ib>&1 (.,-2

Then the input ~rom sub_loop is:

rename >my_lib)fred george

causing entry name george to replace
entry name fred in the directory
my_lib.

I I 1-56 Rev 2 06019

SETACL

Format:

Purpose:

Notes:

COMMANDS

Reference: BX.8.02

setacl mth mode acname1 ••• acnamen

To modify access to the entry name specified
by path for users specified Dy acname1 to
acnamen. The new mode is given by :node and
may be any combination of letters rewa (Read,
Execute, Write Append). acname has the form:

personal_name.project_id.tag w~ere:

personal_na;ne is a user name, e.g., Smith,
project_id is Multics, and
tag is an instance tage identifying the
process-group in which the user is working.
* (any instance tag) can be used.
setacl path '"' acname1 ..• acnamen
causes listed acnames to have no access to
path.

seta:: 1 ,g_a th ill.Q..de
assumes acname is the personal_name of the
invoking user and that tag is *
If path specifies a directory or branch in a
directory, the user must have read, write and
execute attributes on in the directory. If
the user attempts to modify an ACL, given a
link to it, the user must have, besides the
access above, the execute attribute on in the
directory containing the link and all inter­
mediate directories leading to the branch.

Example: setacl my_dir)alpha re Smith.MulticsJ
gives read and execute access to alpha in
my_dir to Smith.

I Restriction: Because setacl has not yet been imple­
mented as described above, use the following
format to set access in the CACL of directory
some_dir:

change_wdir >some dir

setacl 1111 mode acname1 ••• acname:~

I I 1-57 Rev. 2 06019

•

I

START

Format:

Purpose:

Example:

COMMANDS

start

To resume processing 1n the same
process after a quit and at the
point at which the quit was issued.

User is in QED building an EPL
program.

User hits ATTENTION button on 2741
once.

quit
r 1:11.2 25.3 53 ;~~system response~~;

start ;~~user is now in QED at the
point at which he issued the
quit and can resume building
the EPL program.~~;

I I 1-58 Rev 2 06019

STATUS

Format:

Purpose:

• Examples:

I

COMMANDS

Reference: BX.8.01

status Qath

To print detailed file status
information on the branch or link
specified by Qath •

status comp.err

branch:>user_dir_dir_>Doe.Multics>comp.err

unique id: BBDHqjggWWFZMh
date used: 09/07/68 1424.4 EST Sat
date modified: 09/07/68 1351.2 EST Sat
branch modified: 09/07/68 1351.2 EST Sat
mode: read
bit length: 24192
current blocks: 1
maximum blocks: 23
ring brackets: 32 32 32

status lkx

link: >user_dir_dir>South.Multics>lkx

links to: >system_library>new_link

date link used: 09/07/68 1426.4 EST Sat

date link modified: 09/07/68 1426.4
EST Sat

I I 1-59 Rev 2 06019

•

I

TAPE IN

Format:

Purpose:

Cav1MANDS

Reference: BX.99.02

tape_in reel_no segment list

To input into the user's working
directory the segments, given in
segment, 1 i st, which are taken from the
CTSS 7-punch format tape whose reel
number is given by reel no.

segment list is a list of CTSS segment
name pairs, written in small letters,
or the list may be designated as all.
If all is given, all segments on the
specified tape are input.

Notes: If the segments to be input were placed
on the CTSS 7-punch tape using the
tape_out command, differences in the
Multics and CTSS naming conventions
may have affected the names of the
segments. See tape_out command.

Examples: tape_in 144 all

tape_in 201 epla text epla link eplb text

I I 1-60 Rev 2 06019

TAPE OUT

Format:

Purpose:

•

Notes:

Example:

•

COrJlMANDS
Reference: BX.99.01

tape_out reel no path list

To write a tape containing segments from the
Multics file system hierarchy onto a tape in
CTSS disk editor (7-punch) format, where:
reel_no is a tape identifier (name or number
of the tape to be written). scr is used to
designate any scratch tape.
path list is a list of entry names of seg­
ments to be wr i Hen onto the tape. If the
literal all is used in place of path list,
all segments in the working directory are
written.

If reel no is given without a path_list, a
check is made to see if the control file
with that identifier exists. If so, the ex­
isting control file is used to write a tape.
By CTSS/G!::COS convention, all segment names
have two components, each of which is 6
characters or less. A single-co~ponent
narne taken frorn Multics will be given a sec­
ond co~ponent, TEXT. A Multics name having
more than 6 characters in a given compo~ent
is truncated to 6 characters, which are the
first three and last three of the original
name.
tape_out 25 alpha.epl beta epsilon

epsilon. link

The command produces on tape 25 four seg­
ments taken from the user's working di­
rectory and having the names:

ALPHA EPL
BETA TEXT
EPSLO(.J TEXT
EPSLON LINK

I I 1-61 Rev 2 06019

I

COMMANDS

TIME Reference: BX.20.02

Format : time

Purpose: To print out five times a repre­
sentation of current time in octal,
followed by that time converted
into ascii representation.

Example: time

Output: 000000074423461650075004

30 Jun 1500.47 EDT Sun 1968
15:00:29.019652

I I 1- 62 Rev 2 06019

•

I

COMMANDS

UNLINK Reference: BX.8.05

Format: unlink path

Purpose: To delete the link entry specl­
fi ed by oath.

Notes: Write attribute must be on for
the directory containing the
1 ink.

Examples: unlink fred link

where fred link is a link entry
deleted from the user's working
directory.

unlink ([files*~~])

all links in the working directory
are deleted and error messages are
printed for non-link entries.

I I 1-63 Rev 2 06019

•

I

Format:

Purpose:

CO'v1MANDS

Reference: MCB-275

who username1 ••• usernamen

To determine what users are logged
into Multics.

If usernames are given as arguments,
Multics will indicate whether or not
those users are logged in.

Examples: who

a list of all current users will be
printed out.

who Meer Shih Spier

an indication of whether one or more
of the listed users is logged in will
be printed out.

I I 1-64 Rev 2 06019

•

I

MERGE_EDIT CONTROL LINES

bcp 1

core

deck

entry

epl

ep lbsa

error

fetch

insert

libe

load

maketl

not ape

pure

symbo 1

text+ link

tmgl

IV-1 Rev 2 06019

Merge_edit Control Segment Lines

BCPL

Format:

Purpose:

Default:

Example of
line:

bcpl dir)sourcese~ment

be dir>sourcese~ment

To identify a bcpl sourcese~ment
for compilation by BCPL,

If dir is null, sourcese~ment
is assumed to reside in the
user 1 s working directory.

control segment containing bcpl control

bcpl q_O

load q_O

fetch q_O ~~

Merge-edit command to place bcpl program q-0 on
I MCV tape:

merge-edit q_O ex l shore mac

IV-2 Rev 2 06019

•

I

CORE

Format:

Purpose:

Note:

Example:

I

Merge edit Control Segment Lines

core

To obtain on-line dump of segments
having either the data option or
wpermt option.

See pure control line for dumping
of all segments.

bcp 1 q-0

load q-0 wpermt

core

fetch q-0 *

IV-3 Rev 2 06019

DECK

Format:

Purpose:

Default:

Example:

Commands:

Merge_edit Control Segment Lines

deck se~namel ••• se~namen

To obtain punched decks of
object code resulting from
BCPL, EPL, EPLBSA, or TMGL activities or
maketl and text+li~k inclusions
conducted on se~namel to
se~namen.

If one of the se£namei is*
all object code generated
from source segments in a
given run will be punched.

bcp 1 q-0

bcp 1 ><vJ)

load q-0

load x .. .D

fetch q-0 * X 0 *
deck q-0

merge_edit q-0 exl stone mac notape

merge_edit n-0 ex2 stone mac

IV-4 Rev 2 06019

•

I

I

Merge_edit Control Segment Lines

ENTRY

Format:

Purpose:

Default:

Notes:

Example:

entry se~mentname entryname

To specify an entry point for
the start of execution of the pseudo­
process. Segmentname is the name of
an external segment and entryname
is the entry point within
se~mentname.

If entryname is null, entryname
is presumed to be the same as
segmentname.

segmentname entryname in merge_edit
control line is equivalent to
segmentname$entryname in EPL and
to <segmen tname> 1 [en t ryname] in
EPLBSA.

epl syzygy

entry syzygy sunspot

load syzygy

fetch syzygy ~~

IV-5 Rev 2 06019

Merge_edit Control Lines

EPL

Format:

Purpose:

Defau 1 t:

Example:

epl directory)sourcesegment

e directory>sourcese~ment

epl sourceseement

e sourcesegment

To identify a sourcese~ment to
be compiled by EPL.

If directory is null,
sourceseement is assumed to
reside in the user's working
directory.

ep 1 syzygy

load syzygy

fetch syzygy ><

IV-6 Rev 2 06019

•

I

•

-·

Merge_edit Control Segment Lines

EPLBSA

Format: eplbsa directory>sourcese~ment

eb directory)sourcese~ment

eplbsa sourceseement

eb sourcese~ment

Purpose: To identify a sourcese~ment to
be assembled using EPLBSA.

Default: If directory is null,
sourcesegment is assumed to be
in the user's working directory.

Example:

eplbsa quirk

load quirk

fetch ~f ~f

IV-7 Rev 2 06019

---------- ---

ERROR

Format:

Purpose:

Note:

Example:

Merge_edit Control Segment Lines

error

To cause the error segment to
be printed on the on-line output.

An error segment is automatically
returned to the user if a fetch
control line is in effect.

ep lbsa quirk

load quirk

deck *
error

I V-8 Rev 2 06019

•

•

•

I

Merge_edit Control Segment Lines

FETCH

Format:

Purpose:

Note:

Examples:

fetch seg1 desct ••• segn descn

Fetches (returns) object (assembled)
segments, placing entries for them
in the user's working directory •

segi is the first component of a
source segment name (CTSS name1)
to be put in the working directory.
If segi is~~, all segments produced
by compiler and assembler activities
are fetched.

desci is any character string or*·
If*, text, link, symbol, and list
segments are fetched. If desci is
any other string, no list segment
is returned.

If desci of the last segment is
blank, text, link, and symbol
segments are returned.

EXAMPLE! EXAMPLE2

epl syzygy ep 1 syzygy

ep lbsa quirk eplbsa quirk

load syzygy load syzygy
load quirk load quirk
fetch syzygy m quirk * fetch *

In example1, working directory entries
are made for syzygy and quirk withtext,
link and symbol segments returned for
each. A list segment is also returned
for quirk.

In example2, working directory entries
are made and text, link, and symbol
segments returned for syzygy and quirk.

I V-9 Rev 2 06019

INSERT

For mat:

Merge edit Control Segment Lines

insert dir>name_gecos

Purpose: To insert a previously created
merge_edit control segment,
name_gecos, in the current
control segment.

When an insert line is encountered,
control lines are read from
name gecos. When the final
name_gecos line is read, control
lines are again read from the
current control segment.

Notes: If dir> is null, name_gecos is
assumed to be in the working
directory. Nesting of insert
lines is permitted to a depth
of 9.

Example: Control segment syzygy_gecos contains:

epl syzygy
load syzygy
fetch syzygy

This sequence of control lines:

bcpl q_O
load q_O
insert syzygy_gecos
fetch q_O

•

produces the following sequence of 1 merge_edit control lines:

bcp 1 q_O
load q_O
ep 1 syzygy
load syzygy
fetch syzygy
fetch q_O

IV-10 Rev 2 06019

•

I

Merge edit Control Segment Lines

LIBE
Format: libe se~name options

li se~name options

Purpose:To load a segment directly from a library
file.

Options: Option Mean in~ Bits

Notes:

fO D i reded fault 0 00
f1 Directed fault 1 10

f7 Directed fault 7 70
data Data segment 01
slvprc Slave procedure 02
exonly Execute only 03
masprc Master procedure 04
slvacc Slave access 20
wpermt Write permit 40
Segment descriptor bits are taken as the in­
clusive OR of option bits. A descriptor con­
taining fault 2 is created for a segment
given slvacc. Options slvacc and wpermt are
used only with other options, as Jn:
Control Line Bits

libe prog1 slvacc, slvprc, wpermt 62

Initial default option values are slvacc,
slvprc. If a control line is encountered
having other options, previous option values
are cleared. The new values become default
values for subsequent lines until changed.

Segments called off library automatically,
not requiring libe control lines:
escape free_page_pool f2catc
get_put grow init
length library_dictionary linker
messag newpag newseg
relpag search segman
segpr_ tracerdatabase trunct

Example:eplbsa quirk
load quirk
li bin_oct
fetch * *

IV-11 Rev 2 06019

Meree edit Control Se~ment Lines

LOAD

Format: load sourcese~ment options

ld sourcese~ment options

Purpose: To cause theloading and execution
of segments produced by BCPL,
TMGL, EPL or EPLBSA activity.

Default: An asterisk (*) for source­
se~ment causes all text, link,
and symbol segments produced BCPL,
TMGL and EPL compilations and
EPLBSA assemblies in the same run to
be loaded.

If options are null, options
specified by the last load,
libe, text+link, or maketl
control line remain in effect.
If no options were previously
specified, default options are
slvprc slvacc.

Options: Options are g1ven under libe
control 1 ine.

Example: epl syzgy

eplbsa quirk

load ~~

fetch * 7~

IV-12 Rev 2 06019

•

I

•

I

Merge_edit Control Segment Lines

MAKETL

Format:

Purpose:

Default:

Note:

Options:

Example:

maketl dir>entryname:se~ame options

mk dir>entryname:se~name options

To cause a previously assembled
text segment, entryname, in direc­
tory, dir, to be loaded as segment
se~name, for execution. A dummy
linkage segment is also loaded.

If dir is null, the user's working
directory is presumed.

If se~name is null, the text segment
is loaded as entryname.

If options are null, options speci­
fied by the last load, 1 i be,
text+link, or maketl control line
remain in effect. If no options
were previously specified, the
default options are slvprc slvacc.

If dir>entryname is~~, a dummy
text segment is loaded.

Control line, text+link, loads a
text segment with its agtual linkage
segment.

Options are given under libe control
line.

maket 1 spasm

IV-13 Rev 2 06019

NOT APE

Format:

Purpose:

Notes:

Example:

Merge_edit Control Segment Lines

not ape

To suppress the creation of a return
tape by GECOS,overriding a fetch control
line.

This control line differs from the
notape argument in the merge-edit
command. The argument prohibits
Multics from making an IMCV for input
to GECOS: the control line causes GECOS
to suppress creation of a return tape.

ep 1 syzygy

load syzygy

deck *
not ape

I V-14 Rev 2 06019

•

I

•

I

Merge_edit Control Segment Lines

PURE

Format: pure

Purpose: To obtain on-line dump of
all segments if a core control line
is also included.

See core control line for
on-line dump of data and
write-permit segments only.

Examples: epl syzygy

load syzygy

pure

core

IV-15 Rev2 06019

Merge_edit Control Segment Lines

SYMBOL

Format: symbol

Purpose: To cause the symbol segment
of all segment groups named in
text+link control lines to be
loaded. If this line is absent,
only text and link segments will be •
loaded.

Note: See text+link control line.

Example: tl spasm

symbol

I
IV-16 Rev 2 06019

•

I

Merge edit Control Segment Lines

TEXT+L INK

Format: text+link dir>entryname:seename options

tl dir)entryname:se~name options

tl dir)entryname options

Purpose: To cause a previously assembled
text segment, entryname, in directory,
dir, to be loaded as segment,
se~name, for execution. The
associated linkage segment is also
loaded.

Default: If dir is null, the user's working
directory is presumed.

If se~name is null, the text segment
1s loaded as entryname.

If options are null, options specified
by the last load, libe, text~link,
or maketl line remain in effect,
If no options were previously
specified, default options are
slvprc slvacc,

If d i r)entryname is ~~, a dummy text
segment is loaded.

Options: Options are given under libe control
line.

Note: Control line, maketl, loads a text
segment and a dummy linkage segment.

Example: tl spasm

IV-17 Rev 2 06019

Merge edit Control Segment Lines

TMGL

Format:

Purpose:

Default:

Example:

tmgl dir>sourceseement

To identify a sourceseement
for compilation by TMGL.

If dir is null, sourceseement
is assumed to be in the user's
working directory.

tmgl scan

load scan

fetch scan *

IV-18 Rev 2 06o19

•

I

•

•

EDM Requests

BACKUP:

Format:

Purpose:

Spacing:

Default:

Example:

Before:

->
Request:

After:

->

-n

Move pointer back up the seg­
ment the number of lines
specified by the integer n.

A.h lank is opt i anal between
the request and the integer
argument.

If n is null, the pointer
is moved up one line.

a: procedure;
X = y;

-2
a:

q = r;
s = t;
end a;

procedure;
X = y;
q = r;
s = t;
end a;

V-3 Rev 2 06019

BOTTOM:

Format:

Purpose:

Pointer:

Example:

Before:

Request:

After:

EDM Requests

b

b

Move pointer to end of segment
and switch to EDM input mode •

Set after last line in file.

a: procedure;
X = y;

-> q = r.
' s = t· ' end a;

b

a: proc~dure;
X = y;
q = r;
s = t;

-> end a;

V-4 Rev 2 06019

•

•

•

I

CHANGE:

Format:

Purpose:

EDM Reguests

c

cn/strin~1/string2/

Replace strine1 by strine2 in the
number of lines indicated by integer D•
EDM responds to each change by printing
the line with the changed text in red
if the user is in VERBOSE mode.

Delimiters: Any character not appearing in strine1
or strin~2 can delimit the strings
(/is shown in the format). Delimiter
following strine2 is optional. A
space before n and between n and the
strin~1 delimiter is·optional.

Default: If integer is absent, only string1
of the current line is changed.

If string1 is absent, strine2
is inserted at beginning of line.

Pointer: Set to last line changed.

Example:

Before: -> a: procedure;
X - Y•
q == r.
s = t;
end a;

Request: c2/./;

Response: x == y;
q = r;

After: a: procedure;
X = y;
q = r;
s - t;
end a;

V-5 Rev ~ 06019

EDM Requests

DELETE d

Format: d .!J.

Purpose:

Spacing:

Default:

Pointer:

Example:

Before:
->

Request:

After:
->

Causes the number of lines
given by the integer .!J. to
be deleted. Deletion begins
at the current line.

A space is optional between d and
the integer.

If .!J. is null, the current line
is deleted.

Set to first line following the
lines deleted.

a: procedure;
X = y;
q = r•

' s = t;
end a;

d 2

a: procedure:
s = t;
end a;

V-6 Rev 2 06019

•

•

•

I

Format:

Purpose:

EDM Requests

f str in~

Search segment for line beginning with
strin~. Search starts at line followrng
the current line and continues around the
entire segment until strin~ is found or
until return to current line. The current
line is not searched.
If line is not found, an error message, N~
is printed in red. If the line is found
and user IS In VERBOSE mode, the line is
printed.

Spacing: A single blank following f is not signi­
ficant; all other leading and embedded
blanks are used in searching.

Default: If strin~ is null, EDM searches for the
string requested by the last for 1
request.

Pointer: Set to line found or remains at current
line if the line is not found.

Example: ~ (first character position)
Before: a: procedure;

-> X = y;
s = t;
end a·

'
Request: f t (note blanks for character

posit ions)
Response: NO
Request: f s
Response: s = t; (VERBOSE mode)
After: a: procedure;

X = y;
-> s = t;

end a·
'

V-7 Rev 2 06019

INSERT:

Format:

Purpose:

Spacing:

Defau 1 t:

Pointer:

Note:

Example:

Before:

EDM Requests

newline

Insert newline after the cur­
rent 1 i ne.

First blank following i is not
significant. All other leading
and embedded blanks become
part of the text of the new
1 i ne.

If newline is null, blank line
is inserted.

Set to the inserted line.

Immediately after a t (TOP)
request, an i request causes
the newline to be inserted
at the beginning of the segment.

~ (first character position)

a: procedure;
X =: y;
q = r;

-> s = t;
Request: end a;

After: a: procedure;
X =: y;
q = r;
s = t;

-> end a;

V-8 Rev 2 06019

•

•

ED~ REQUESTS

KILL: k

Format: k

Purpose: To inhibit EDM from printing
out responses following an f, 1'
or c request. The EDM system

I • default is VERBOSE mode.

Pointer: Unchanged.

Note: See v (VERBOSE) request,

Example:

Request: v
c /y/z

Response: y = z;

Request: k
c /z/y

No response

I

V-9 Rev 2 06019

LOCATE:

Format:

Purpose:

Spacing:

Default:

Pointer:

Example:
Before:

Request:

After:

EDM Reguests

1

1 strin~

Search segment for line containing
strine. Search starts at line fol­
lowing current line and continues
around entire segment until strine •
is found or until return to current
line. If the line is not found, an

->

->

error message NO is printed out in
red. If line is found and user is
in VERBOSE mode, the line is printed.
Single blank following 1 is
not significant. All other
leading and embedded blanks
are used in searching.

If strin~ is null, EDM
searches for the string re-
quested by the last 1 or f
request.

Set to line found or remains
at current line if line not
found.

a: procedure;
X = y;
q = r.

' s = t· ' end a;

1 X =
a: procedure;

X = y;
q = r •

' s = t 0

' end a;

V-10 Rev 2 06019

•

NEXT:
Format:

Purpose:

• Spacing:

Defau 1 t:

Example:

Before:

Request:

After:

•

EDM Requests

n

n .0.

Move pointer down the segment
the number of lines speci­
fied by the integer ~·

->

->

Blank optional between n
and the integer.

If integer .0. is null, the
pointer is moved down one
1 i ne.

a: procedure;
X = y;
q = r.

' s = t· ,
end a;

n

a: procedure;
X = y;
q = r.

' s = t;
end a;

V-11 Rev 2 06019

PRINT:

Format:

Purpose:

Spacing:

Defau 1 t:

Pointer:

Example:

Before:

Request:

Response:

After:

EDM Requests

->

->

p

P.O.
The number of lines specified
by the integer .0. will be
printed out beginning with
the current line.

A blank is optional between
p and the integer.

If .0. is null, the current
1 i n e i s p r i n ted •

Set to last line printed.

a: procedure;
X = y;
q = r • ' s = t· ' end a;

p 3

q = r;
s = t;
end a;

a: procedure;
X = y;
q = r;
s = t· ' end a;

V-12 Rev 2 06019

•

•

QUIT:

Format:

Purpose:

Note:

Example:

Oldfi le;

Request:

Response:

Request:

Newfile:

EDM Requests

q

q

Terminate EDM editing without
saving the edited copy of the
segment.

To save segment, see s (SAVE)
request. -

a: procedure;
X = y;
q = r;
s = t;
end a;

c /;/ (y,r);/
p

a: procedure (y,r);

q

a: procedure;
X = y;
q = r;
s = t;
end a;

V-13 Rev 2 06019

Original
(unedited)
file is
retained.

RETYPE:

Format:

Purpose:

Spacing:

Default:

Pointer:

Example:

Before:

Request:

After:

EDM Reguests

r

r newline

Replace current line with
newline.

One blank between r and
newline is not significant.
All other leading and embed­
ded blanks become part of
the text of the new line.

If newline is null, a blank
line replaces the current line.

Unchanged.

a: procedure;
-) X = y;

q = r;
s = t;
end a;

r del (r,t) float bin (27);

a: procedure;
->del (r,t) float bin (27);

q = r;
s = t;
end a;

V-14 Rev 2 06019

•

•

SAVE:

Format:

Purpose:

I
Spac.ing:

Default:

Note:

Example:

Oldfile:

I Requests:

Newf i le:

EDM REQUESTS

s

s path

To terminate EDM editing and
save the edited copy. path can
give the directory and the entry
name within the directory under
which the segment is to be saved.
If only the entry name for the
saved copy is given, the working
directory is assumed.

A blank between s and path IS

not significant.

If path is null and if the origi­
nal name of the segment is not null,
the edited segment is saved under
the original name; the original seg­
ment is deleted. If path is null
and no previous segment exists, an
error message is printed and EDM
looks for another request.

To terminate editing without
saving the edited copy, see q
(QUIT) request.

a: procedure;
X = y;
q = r;
s = t;
end a;

c/; I (y, r) ; I
s
a: procedure

X = y;
q = r·

' s = t.
' end a•
'

V-15 Rev 2 06019

Edited
file IS
retained.

EDM Requests

TOP: t

Format: t

Purpose:

Pointer:

Note:

Example:

Beforee

Request:

After:

->

->

Moves pointer to first line
of segment.

At first line of text.

An i (INSERT) request immed­
iately following a t request
causes insertion of a text
line at the beginning of segment.
See INSERT.

a: procedure;
X = y;
q = r;
s = t;
end a;

t

a: procedure;
X = y;
q = r;
s = t;
end a;

IJ-16 Rev 2 06019

•

•

I

•

EDM RFQUESTS

VERBOSE: v

Format: v

Purpose:

Pointer:

Note:

Example:

Before:

Requests:

Response:

After:

Causes EDM to print out
responses following an f, 1,
or c request. The default
EDM mode is VERBOSE.

Unchanged.
Seek (KILL) for inhibiting
VERBOSE mode.

a: procedure;
X = y;

-> q = r;
ss= t;
end a;

v
c/ss=/s =/
s ::;:. t;

a: procedure;
X = y;

-> q = r;
s =- t;
end a;

V-17 Rev 2 06019

Q.ED REQUESTS
REQ.UEST MEANING REQ.UEST
absolute line address

append a

buffer b

change c

I current line address =

I
delete d

enter e

exclude v

global g

insert

list 1

move m

print p

quit q

read r

sort k

status X

substitute s

transform y

write w

I

Vl-1 Rev 2 06019

QED REQUESTS

QED EDITOR

The qed editor performs operations on text in a
working space called a buffer. A buffer contains
zero to any number of lines of text, and there may
be any number of buffers. Each buffer is identified
by a name. There is one current buffer; all other
buffers are auxiliary buffers.

BUFFER NAMES

The buffer name can be any length but only the
last five characters are significant. Generally,
buffers are named with a one to five character
name enclosed in parentheses. If the name is
one character long, and not a carriage return
or apostrophe, the parentheses can be omitted
(e.g., buffer names X and (X) are identical.)

TEXT ADDRESSING

QED accepts commands and text as a stream of
characters from the console. Text within the
current buffer is specified by (1) line addresses
or (2) strings (regular-expressions) in the text
1 ine.

Lines in the current buffer may be addressed in
the following ways:
1. by current line number

A decimal number not beginning with 11 011 or an
octal number beginning with 11 011 is interpreted
as a current (relative) line number. The first
line is numbered 1, the second 2, the tenth line

I

10 or 012, etc. This number may change during 1 editing. Example:

3.,6 p
means print lines 3 to 6, inclusive.

V 1-2 Rev 2 06019

I

I

QED REQUESTS

TEXT ADDRESSING (CONT.)

2. by absolute line number
The character 1 (apostrophe immediately
followed by a decimal number (or octal
number beginning with "0") is interpreted
as an absolute line number. This number is
assigned to each line in the current buffer
when the text is initially read into the
buffer from a segment. These line numbers
never change except after read requests
(which cause a new set of absolute line
numbers to be assigned to text in the
buffer). New lines created during editing
haNe undefined absolute line numbers.

3.

The character "'" not followed by a digit
causes a search for the first undefined
absolute line after the current line.
(The search is cyclic from the line after
the current line to the current line.)
If there is no line with the given
absolute line number an error message is
printed on the console (see "Diagnostics").
Example:

I 53 p

means print the text on the line designated
by absolute line number 53.

by the value of the current line (".")
The character "·"· (period) in a QED address
means the value of the current line. This
value is changed by most edit requests.
Example:

• p

means print the current 1 ine. In the
examples provided for each request an
arrow (<-) indicates the position of " "
(the value of the current line).

V 1-3 Rev 2 06019

QED REQUESTS

TEXT ADDRESSING (CONT.)

4. by the sr;>ecial cbaractE?r "$"
The value of$ in an address is the last line
of text in the buffer. This value may change
during editing. Example:

1 ,$ p

means print all lines from line 1 to the last
1 i ne.

5. by contE?xt
The string,/regular expression/, causes a
search by QED to match rf?eular f?XQrf?ssion In
the text. The search begins at the line
after the current line and cycles to the
current line. If the search is successful,
the first occurrence of rf?~ular E?xpression
(in the direction searched bas been located.
Example:

/x=2y/ p

causes the first line of text containing
"x=2y" to be printed and causes "·" (current
line pointer) to be set at that line.

6. by additivE? combinations of methods 1. to 5.
An address followed by + or - followed by
another address (normally relative line
number or regular expression) can be used to
address a 1 ine.

40+4 p

/xyz/-5

print line 44
print a line five lines before the
line containing the regular
expression, xyz.

Vl-4 Rev 2 06019

I

•

I

I

QED REQUESTS

REGULAR EXPRESSIONS

Conventions used in writing re~ular expressions in
QED can best be shown by examples. These are:

/a/ matches letter "a" anywhere on a 1 ine.
/abed/ matches string "abed" anywhere on a line.
/ab*c/ matches strings "ac", "abc", "abbe", "abbbc",
/abcldef/ matches string "abc" or string "def".
/(ilo)nto/ matches strings "into" and "onto".

In addition, the characters'"",".", and"$" have
special meaning. The character " " matches the
zeroeth character on a line. The character"$"
matches the character after the last character on a
line. The character"·" matches any character on a
line. For example:

/.*/matches an entire line regardless of length.
/...,beginjend$/ matches a line beginning with "begin"

or ending with "end".
/in.*to/ matches a line containing "in" and "to" in

that order.
/,beg.*end$/ matches a line starting with 11 beg" and

ending with "end".
~$/matches a blank line.
/$'/ JS an illegal combination matching nothing.

TEXT INPUT

A number of QED requests are followed by literal text
input. This text must be preceded by a space or a
carriage return. The text consists of any string of
characters terminated by 'f. The 'f is not part of
the text but delimits end of text; 'f is used at the
beginning of the next line following the last charac­
ter in the body of the text.
ESCAPE CHARACTERS

Standa~d Multics escapes are used. See INPUT STREAM
section.

Vl-5 Rev 2 06019

QED REQUESTS

DIAGNOSTICS

01 Regular Expression search failed.
02 Unrecognized request or address.
03 Regular Expression syntax error.
04 Address syntax error.
05 Address wrap around.
06 Address out of buffer.
07 Abs line search failed.
08 File system error.
09 Request syntax error.
16 Unknown Regular Expression type.
17 Out of memory.
18 Overflow on store.
19 Passed EOF on store.
20 Free of block 0.

(Diagnostics 16 to 20 are fatal.)

Vl-6 Rev 2 06019

I

•

I

I

QED REQUESTS

ABSOLUTE LINE NUMBER

Format: adri:

/regular_expression/:

Purpose: Prints absolute line number of
the line addressed.

"·" value: set to the addressed line.

Note: If the absolute line number 1s
undefined, a "?" is typed.

Example:

Buffer Contents

X = y;
if y<10
GO TO PROCA;

Requests:

/<10/d
/PROC/:

Results:

'53

Absolute line number

I 51
'52
'53

Even though line 52 is deleted the
absolute address is the same as it
was when the line was created, i.e.,
absolute lines are not changed by
editing.

V 1-7 Rev 2 06019

QED REQUESTS

APPEND a

Format:

Purpose:

adra or
text
\f

/reeular expression/a
text
\f

To append text after the line
addressed.

II II . value: Pointer set to last line appended.
If no lines were appended, 11 • 11 1s
set to the line addressed.

Default: a is the same as .a
Example:

Before:

a: procedure; Line 1
X = y; Line 2
end a•

'
Line 3 <-

Request:

2a or /y/a
q = r·

' q = r.
' \f \f

After:

a: procedure Line 1
X = y; Line 2
q = r.

' Line 3 <-
end a; Line 4

Vl-8 Rev 2 06019

I

•

I

QED REQUESTS

BUFFER b

Format: bx

where~ IS the name of a buffer.

Purpose: To make the current buffer an
auxiliary buffer, and to make
~ the current buffer. If buffer
~does not exist it IS created.

Initially, buffer 0 IS the
current buffer.

"·"value: Line pointer unchanged In each
buffer.

Example:

Before:

Buffer 2 is the current buffer.
"·" is at line 2 in buffer 2.

Buffer 3 was previously the
current buffer; at that time,
"·"was at line 3 in buffer J,

Request:

bJ

After:

Buffer 2 is an auxiliary buffer,
and buffer 3 is the current
buffer. "·" in buffer J is
at line J,

If the request b2 is issued later,
buffer 2 will be the current
buffer, and"·" will be at line 2
In buffer 2.

V 1-9 Rev 2 06019

CHANGE

Format:

Purpose:

QED REQUESTS

c

adr1,adr2c
text
\f

To delete the lines specified by adr1
through adr2 and to substitute (input)
other text for the deleted lines.
(The line number specified by adr1 must
not exceed adr2.)

"·"value: Line pointer is set to the last 1 ine of
the text. If no 1 i nes of text are subst i­
tuted (input), "·" is set to the line
before the first line deleted.

Default: adr1c is the same as adr1,adr1c
c is the same as .c

Note:

Example:

adr2 must be greater than or equal to adr1
(i.e., the addressed lines cannot cross
zero cycl icly.)

Before:
a:

Request:

2,3c
s = t;
u = v;
w = z;
\f

After:

procedure;
X = y;
q = r.

' end a;

or /x/,/q/c
s = t;
u = v;
w = z;
\f

Line 1
Line 2
Line 3
Line 4

a: procedure Line 1
Line 2
Line 3
Line 4 <­
Line 5

s = t;
u = v;
w = z;
end a;

V 1-10 Rev 2 06019

<-

I

I

I

I

QED REQUESTS

CURRENT LINE NUMBER =

Format: /regular expression/=

Purpose: Prints current value of a line.

"·"value: Set to the addressed line.

Default: = is the same as $=
Example:

BUFFER CONTENTS

A:procedure;

declare x fixed bin(17);

a=b;

y=x;

x=x+1;

end A;

CURRENT LINE NUMBER

0001

0002

0003

0004

0005

0006 <-
The current line Is line 6 and the request:

=

causes:

0006

to be printed at the console, and the value
of "·" remains at 0006.

Similarly, the request:

/y=x/=

causes:

004 to be printed at the console and the
value of "·" is set to 0004.

Vl-11 Rev 2 06019

DELETE

Format:

Purpose:

"·" value:

Default:

Note:

Example:

QED REQUESTS

d

adr1,adr2d

To delete the lines
adr1 through adr2.
number specified by
not exceed adr2.)

specified by
(The 1 ine
adr1 must

Line pointer is set to the line
after the last line deleted.

adr1d is the same as adr1,adr1d

d is the same as .d

adr2 must be greater than or equal
to adr1. (i.e., the addressed 1 i nes
cannot cross zero.)

Before:

a: procedure;
X =
q =
s =
end

Request:

3,4d
After:

y;
r;
t;
a;

or

a: procedure;
X = y;
end a;

Line 1
Line 2
Line 3
Line 4
Line 5 <-

/q/,/s/d

Line 1
Line 2
Line 3 <-

Vl-12 Rev 2 06019

I

•

I

I

QED REQUESTS

ENTER e

Format: e/regular expression/name/

Purpose: To tag a regular expression
with a specified name. If the
same name is used in several
ENTER requests, the most recent
request takes precedence.

Examples:

In sequence A; the SUBSTITUTE request
replaces regular expression, henry with the
string, aldrich. In sequence B, the
SUBSTITUTE request replaces regular expres­
sion whose tag is henry, i.e., alpha, with
the string, aldrich. < > symbols indicate
that the string enclosed is a tag.

Sequence A

Buffer Contents:

alpha = henry;

Request Sequence:

e/alpha/henry/
s/henry/aldrich/

Buffer Contents:

alpha= aldrich;

Sequence B

Buffer Contents:

alpha = henry;

Request Sequence:

e/alpha/henry/
s/<henry>/aldrich/

Current Line:

aldrich = henry;

Vl-13 Rev 2 06019

EXCLUDE
Format:

Purpose:

QED REQUESTS
v

adr1,adr2vreguest reguest parameters

To execute reguest on all lines not con­
taining re~ular expression.
The following are the only legal construc­
tions for the exclude request:
adr1,adr2va text/regexp/ append I
adr1,adr2vc text/regexp/ change
adr1,adr2vd /re ex delete
adr1,adr2vi text re~exp/ insert
adr1,adr2vm bufnam/re~exp/ move
adr1,adr2vp /re~exp/ . print
adr1 ,adr2vs /reeexp/str i n~/re~exp/ substitute
adr1,adr2vy /strin~/strin~/ transform
adr1,adr2v: /re~exp/ absolute line
adr1,adr2v= /re~exp/ current line

"·"value: Pointer is set accor:ding to the request.

Default: vreguest request parameters 1s the same as

1,$vreguest reguest parameters

Note: Because of the nature of the exclude re­
quest, the request parameter, re~exp,
is required for the move request.

Example: Before:
a b c d
e f g h
d e f h

Request: 1,$vp/d/

Result: e f g h

Vl-14 Rev 2 06019

I

I

I

QED REQUESTS

SLOBAL g
Format:

Purpose:

"·"value:

Default:

Note:

Purpose:

adr1,adr2greguest reguest parameters

To execute a given reguest on all lines
addressed.
The following are the only legal construc­
tions for the global request.

adr1,adr2ga text/reeexp/
adr1,adr2gc jext/re ex
adr1,adr2gd re ex
adr1,adr2gi text re ex
adr1,adr2gm bufnam re ex
adr1,adr2gp
adr1,adr2gs
adr1,adr2gy
adr1,adr2g:
adr1,adr2g=

append
change
delete
insert

Pointer is set according to the reguest.

greguest reguest parameters IS the same as

1,$greguest reguest parameters

Because of the nature of the global request,
the request parameter, reeexp, is required
for the move request.

Before:
a b c d
e f g h
d e f h

Request: 1,$gp/d/

Result: abc d
d e f h

Vl-15 Rev 2 06019

INSERT

Format:

Purpose:

QED REQUESTS

adr1
\f

QED accepts text which is inserted
before adr1 in the current buffer.

"·"value: Line pointer is set to adr1.

Default: i iW
\f

Example:

is identical to:

.i text
\f

Before:

BUFFER CONTENTS

a: procedure;
X = y;

RELATIVE ADDRESS

1

end a; <-
Request:

3i
a = b;
if x = b then y =a;

\f

After:

2
3

BUFFER CONTENTS

a: procedure;
X = y;

RELATIVE ADDRESS

1

a = b;
if x = b then y =a;
end a; <-

Vl-16 Rev 2 06019

2
3
4
5

I

I

I

I

LIST

Format:

Purpose:

QED REQUESTS

1

1 ~ seenam

To read and print the Multics
segment specified by seenam.

Only one ~ is currently recognized;
this is:

<sp> ascii

therefore, the ~ parameter 1s
IS left null.

"·" value: 1s unchanged

Note: A space must appear after 1.
Example:

The seg~ent, joe.ascii, is a Multics
segment in the working direcJory of
the user.

Request: 1 joe.ascii

The contents of joe.ascii are
then printed out on the console.

Result of request:

test: proc; }
X= 1;
y = x+l;
end test;

Vl-17 Rev 2 06019

contents
of . . . JOe.ascii

MOVE

Format:

Purpose:

II II . value:

Default:

Example:

QED REQUESTS

m

adr1,adr2m~

To replace all the contents of buffer~
with lines from the current buffer from
adr1 to adr2. adr1 must be less than
adr2. adr1 through adr2 are deleted from
the current buffer. The MOVE request
causes buffer x to become the current I
buffer. If buffer ~ is already the cur-
rent buffer, all contents of~ except lines
specified in MOVE are deleted.

Line pointer is set to the line after the
last line moved in the current buffer and
set to th~ last line moved in buffer~·

adr1m~ is the same as adr1,adr1m~

mx is the same as .m~

Before:

CURRENT BUFFER L

a: proc;
b = c;

e: proc;
f = g;
end e;
end a;

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

Request: 3,5mK
After:

BUFFER L

a: proc; Line 1
b = c•

' Line 2
end a; Line 3

BUFFER K

c: proc; Line 1
j = k; Line 2
end c; Line 3

CURRENT BUFFER K

e: proc; Line 1
f = g; Line 2
end e·

'
Line 3

Vl-18 Rev 2 06019

•

I

I

PRINT

QED REQUESTS

p

For mat:

Purpose:

adr1, adr2p

To print the lines specified by adr1
through adr2. (The buffer is un­
changed.)

"·" value: The line pointer is set to the last
line printed.

Default: adr1p is the same as adr1,adr1p

Example:

p is the same as .p
adr1 followed by a carriage return 1s
the same as adr1p
@ Hitting the carriage return
pr1nts the current line.
/reeular expression/~ prints the
first line in the buffer (after the
current line) which contains the
regular expression.

Contents of Current Buffer:

a: procedure;
X : y;
q = r;
s = t;
end a;

Request: 2,4p

Result:

Line 1
Line 2
Line 3
Line 4
Line 5

or /x/,/s/p

The following is printed:

X : y;
q = r;
s = t;

Vl-19 Rev 2 06o19

Q!.ill
Format:

Purpose:

Note:

q

q

QED REQUESTS

To return to Multics command level;
or to return from QED to the process
which called QED.

The q request does not determine
whether or not the buffer is saved.
To save a buffer, the contents
must be written into a Multics seg­
ment using either thew (WRITE)
request or the optional argument
in the QED command, output_file.

Vl-20 Rev 2 06019

I

I

I

I

QED REQUESTS

READ r

Format:

Purpose:

adr1r ~ seenam

To read the Multics segment whose name
is specified by seenam and to append the
segment after the line addressed. A
space must appear between r and ~·
Only one~ is currently recognized.
This is:

<sp> ascii
Therefore, the ~ parameter rray be null.

"·" value: Line pointer is set to the last
line read.

Default: r ~ seznam is the same as
$r ~ segnam

Example: Before:

a: procedure; Line 1
X = y; Line 2
end a; Line J

Request:

2r joe.asci i

where joe.a:sci i IS

b: procedure;
c = d;
end b;

After:

a: procedure; Line 1
X = y; Line 2

b: procedure; Line J
c = d; Line 4
end b; Line 5
end a; Line 6

Vl-21 Rev 2 06019

<-

<-

SORT

Format:

QED REQUESTS

k

adr1,adr2k

Purpose: To sort the lines specified
by adr1 through adr2 in ascending
ASCI I collating sequence. adr1
must be less than adr2.

"·" value: Line pointer is carried with the
sorting; it may change value but

Default:

Example:

it points to the same line of text.

adr1k is the same as adr1,adr1k

k is the same as 1,$k

Current Buffer Before:

alpha beta gamma <­
abcde
bcdef
bdcef
zxywx
zabcd
12345

Request: k

Current Buffer After:

12345
abcde
alpha beta gamma <­
bcdef
bdcef
zabcd
zxywx

V 1-22 Rev 2 06019

I

I

STATUS

Format:

Purpose:

I

"·" value:

Example:

I

QED REQUESTS

X

X

To cause the following information
to be listed:

Name of current buffer.
Value of"·" (current line).
Length of current buffer.
Name and length of all non-zero­
length auxiliary buffers.
Names of all named regular
expressions (see the Enter
Request).

Line pointer is not changed.

In a QED run buffers 0,2, and
1 were mentioned in that order
in BUFFER (b) requests. Regular
expressions alpha and aldrich were
given names. The current buffer
is 1.

Request: x

Result:
11 111 0018 0020
11 211 0001
11 0 11 0006
alpha
aldrich

V 1-23 Rev 2 06019

QED REQUESTS

SUBSTITUTE s

Format: adr1,adr2s/re~ular expression/strin~/

Purpose: To replace all occurrences of an
expression (re~ular expression) in
the addressed lines with a new
expression (strin~).

"·" value: Line pointer is set to the last line
substituted, or left unchanged if
SUBSTITUTE finds no matching lines.

Default:

Example:

Before:

adr1s/re~ular expression/strin~/
is the same as

adr1,adr1s/regular expression/string/

s/re~ular exeression/strin~/
is the same as

.s/re~ular expression/strin~/

a: procedure;
X : y;

Line 1
Line 2
Line 3 x = z;

end a; Line 4 <- "
Request:

2,3s/x/t/ or /y/,/z/s/x/t/

After:

a: procedure;
t = y;
t = z; <­
end a;

Vl-24 Rev 2 06019

I

•

I

I

QED REQUESTS

TRANSFORM y

Format: adr1,adr2y/string1/string2/

Purpose:

"·" value:
Default:

Example:

To replace occurrences of characters in
strin~1 with the corresponding character
of strin~2. strin~1 and strin~2 must be
of the same length; no character may
appear twice in strin~1.

Set to the last line transformed.

adr1y/string1/string2/

is the same as

adr1,adr1y/string1/strine2/

y/strin~1/strin~2/

is the same as

.y/strin~1/strin~2/

Current Buffer Before:

AAAAAAA
Aardvaark
ABA
ABAFT
ABB
ABBACY

Request:

1 , $y /ABC/ abc/

Current Buffer After:

aaaaaaa
aardvaark
aba
abaFT
abb
abbacY <-
Vl-25 Rev 2 06019

WRITE

Format:

Purpose:

QED REQUESTS

w

adr1,adr2w ~ seenam

To write the addressed lines into
the segment <segnam>.

Only one ~ is recognized. I
This is:

<sp> ascii,

therefore, the ~ parameter may
be null.

A space must appear between w
and ~ (or seenam).

"·" value: Line pointer 1s unchanged.

Default: w ~ segnam

Example:

is the same as

1,$w ~ seenam

Request: 2,3w sam.ascii

Result:

The second and third
lines of the current
buffer are written into
the segment sam.ascii
in the user's working
directory.

Vl-26 Rev 2 06019

•

•

I

PROBE REQUESTS

arglist
dump_process
info
initiate
output
quit
segdump
seginfo
set
stack
state
terminate

Probe requests perform the following functions:

1. Direct output from probe to a standard stream
(console), or direct output to a user specified
segment.

2. Dump machine conditions and register contents.

3. Dump all or part of a segment.

4. Dump khe contents of an entire process directory.

5. Print size, access,and date of creation
information for one segment or a group of
segments.

6. Print a stack trace for a process.

7. Print argument list for a stack frame.

8. Make a segment known or unknown to the system.

9. Print a summary of available probe requests.

10. Make an octal patch to a segment.

VI 1-1 Rev 2 06019

ARQ_ I ST

Format:

Purpose:

Example1:

Example2:

I

PROBE REQUESTS

arglist stack frame

To print an argument list for the
specified stack frame.

stack is the name or number of the stack
segment

frame is the name of the "owning procedure"
or starting offset of a stack frame.

If stack is not given, the current stack
is assumed; the argument list for the last
occurrence of frame in the current stack
is printed.

arglist 4760

Might cause the following to be printed
for frame 4760 in the current stack:

arg_1

arg_2

arg_3

fixed, bin
26
varying character string
"no_comment_necessary"
bit string
1260

arglist stack_OO gim

The example presumes operation in a
ring other than ring 0. Therefore,
the ring 0 stack is given, followed by
the requested frame.

VI 1-2 Rev 2 06019

•

I

PROBE REQUESTS

DUMP PROCESS

Format: dump_process process_id

Purpose: To obtain an octal dump of each segment
in the process whose unique identifier
is given by process_id. The unique
process_id may be given in octal or as
a character string. If no argument is
given, an octal dump of the current
user process will result.

Note: Normally, output will be directed by
the use of the output request to a
segment for later printing.

Example: - dump_process

VI 1-3 Rev. 2 06019

I

PROBE REQUESTS

Format: info

Purpose:

'ample:

To provide a complete list of probe
requests with pertinent parameters
and options and provide an abbrevi­
ated explanation of the request's use.

- info

See BX.10.00A for complete descriptions.
The following requests are available:

arglist
info
initiate xxx
output p -xxx­
segdump xxx
segments -xxx- -xxx-

segstatus xxx

stack -xxx- -yyy-

terminate

quit

-list of stack frames
-obtain this listing
- make a segment known to process
-direct to a specific medium

part of a segment in octal
-print information about a

group of segments
- print information about

one segment
-print a stack trace of segment

starting with frame yyy
- make a segment unknown to

process
- return to command level

Note: The current info printout shown above is not
complete and will probably change shortly.

I

V 11-4 Rev 2 06019

INITIATE

Format:

Purpose:

• Example:

Request:

Response:

I

PROBE REQUESTS

initiate Qath reference

To make the segment given by ~ath
known to the process being debugged by
the reference name given by reference.
If reference is not given>the entry name
of the segment will be used.

initiate bin_oct

Segment bin_oct initiated. Number 41

VI 1-5 Rev 2 06019

•

•

OUTPUT

Format:

Purpose:

PROBE REQUESTS

output console

output segment Qath

output console -directs output from
probe request to
the console.

output segment gsih-directs output to a
segment whose path­
name is Qath.

Note: By default, output of probe requests IS

printed on the console. The output
console request need only be issued
after a previous output segment Qath.

Example: probe

w 924:09.4

- output segment text_prog

Output directed to segment
Number 227

(request)

text_prog.
(response)

- state (The output of probe request,
state, is to text_prog in
the user's working directory.)

- output console (Subsequent probe
request to redirect output to
the console.)

VI 1-6 Rev. 2 06019

•

I

PROBE REQUESTS

QUIT

Format: quit
Purpose: To stop processing probe requests

and return to Multics command level.

Example:

- quit
r 5:04.0 19.2 40

VII- 7 Rev 2 06019

•

I

PROBE REQUESTS

SEGDJMP

Format: segdump ~lower~

Purpose: To produce an octal dump of the segment
~from the lower bound specified by
lower to the upper bound specified by
u~~er. seg is the segment name or an
octal number which designates a segment
in the KST.

Note:

Example:

If the parameter u~~er is not specified,
the segment is dumped from lower to the
current length of the segment.

If ~either parameter is specified, the
enttre segment is dumped.

If the segment is not known to the
process, the comment: segment not yet
initiated is printed.

- segdump 203 1700 1777
Segment multics 000203

001700 0001143 52000 60 600 5 567 57100
6005563 50100 60 000226352000

001710 600560252100 010000431007
600556757100 400062710120

001720 0002223 52000 600562252100
010000431007 6000243 57100

001730 400064710120 6005563 50100
6000243 571 00 600560252100

001740 0002423 52000 07 6005567 57100
6005563 50100 20 00023 23 52000

OU'I750 600560252100 010000431007
600556757100 400070710120

001760 00023 23 52000 6 600562252100
010000431007 6 6000243 571 00

001770 400070716120 0002643 52000
600562252100 6005563 50100

v 11-8 Rev 2 06019

I

SEGINFO
Format:
Purpose:

PROBE REQUESTS

seginfo ~ se~2 all long
To print a list of segment names and num­
bers known to the process from segment se~1
through segment see2.
~and seg2 are either segment names or
numbers known to the process being debugged.
If se~2 is blank, a list of all segments
from see1 are printed. If both see1 and see2
are blank, names of all segments known to
the process are printed. Source of informa­
tion for the list is the KST.
all is an optional literal causing all the
reference names for each listed segment to
be printed. (A reference name is a name in
the KST by which a segment is known to a
process).

long is an optional literal causing the fol­
lowing information to be printed for each
listed segment: current length, access modes
and date created.

If a request is: seginfo

a list of all segments known to the process
being debugged is printed.

Any combination of parameters to the seginfo
request is permissible, except use of see2
without a preceding see1.

Example: seginfo 200 test_proc long
Results:

200 root>sys_root>sys lib>cv_string.link
1 rewa 12731/68 1900.0 EST rv10N

201 root>sys_root>sys_lib)get_count
8 re 12/31/68 1900.0 EST MON

202 root>sys_root>sys_lib>sys_info.link
1 re 12/31/68 1900.0 EST MON

VI 1-9 Rev 2 06019

•

I

PROBE REQUESTS

Format: set seellocation value1 value2 ••••

Purpose: To place values beginning with value1
in the segment given by ~' beginning
at the location given by location.
value1 is placed in location, value2
in location+1, etc. At least one value
must be present. The request allows
octal patching of segments for which
the user has write permission.

Notes: seg may be a symbolic name or segment
number.

Example: set 20311700 000224251000 600525210000

where the values given replace the
current values in locations 001700
and 001701 of the segment numbered 203.
Probe prints out the values before and
after the change.

VI 1-10 Rev. 2 06019

•

I

PROBE REQUESTS

STACK
Format: stack seg frame f args

Purpose:

Example:

To trace the sequence of calls in stack seg­
ment~ starting at location frame. see may
be a segment number or name. If frame is g i­
ven in octal, it is interpreted as a frame
number. If frame is given as a segment name,
the stack is examinea for a frame belonging to
the segment. Tracing starts at that frame.

Defa·Jlt tracing is from end to beginning of
the stack through ring-crossing frames. Op­
tional literal f causes tracing to proceed
from beginning to end, terminating when a
ring-crossing frame is encountered.

If neither seg nor frame are given, the cur­
rent stack is assumed. se~ must be given if
frame is given. If frame is not given, trac­
ing proceeds from either the beginning or end
of stack as appropriate.

Optional literal args causes a lis~ of allargu­
ments passed to each stack frame to be printed.
For each frame, the name and number of the
segment using the frame, starting location in
the stack segment, and frame size are printed.

stack
stack trace of segment stack_01. Number 000171.

Number Name Start Size

0226 probe\ 1314 003540 0170
0226 probel223 003410 0130
0225 shell_char 14242 002150 1240
0225 shell_char 11075 001610 0340
0225 s ignall464 001J,40 0250
0011 fim 156 001160 0160
0203 multics \1747 000310 0650
0206 bit_to\2147 000220 0070
0203 mult icsl3153 000050 0150
0000 NOCALLIO 000010 0040

V I I -11 Rev. 2 06019

I

PROBE REQUESTS

Formats:

Reguest Meanjng of Beguest

state arith Print contents of A, Q, and
exponent registers.

state bases Print contents of 8 base
registers.

state cunit Print control unit cohtents
and ring number.

state index Print contents of 8 index
registers.

state location Print the fault location and
the computed address.

state timer Print contents of timer
;·egister.

state Print all of the above.

Purpose: To print the available status informa­
tion for the process being debugged.

Example: -state

~= 000004000000 Q: 000000000000
Exponent: 000000000000
Timer: 430351270000
Fault at 20311746

Indicator: 10

Effective address 201 j162
Index registers: 3 0 0 0 171 0 410 66
Base registers:
ap: 001066100000
bp: 000242300000
lp: 000072500000
sp: 000310700000
Control unit:

ab:
bb:
1 b:
sb:

000171040000
000203 040000
000201040000
000171060000

000201022001 000162000200 000203200700 001746001000
000162710120 000232352000
Ring: 001

VI 1-12 Rev. 2 06019

TERMINATE

Format:

Purpose:

• Example:

I

PROBE REQUESTS

terminate Qath

To make the segment given by ~
unknown to the process by removing it
from the KST •

terminate bi n_oct

VI 1-13 Rev 2 06019

•
GENERALf'j ELECTRIC

