]

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

The Multiplexed Information and
Computing Service:

Programmers' Manual

PART 111
SUBSYSTEM WRITERS' GUIDE TO MULTICS

Revision 1

Date: 5/31/73

All rights reserved
This material may not be duplicated

© Copyright 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page ii

PREFACE

PREFACE TO THE MULTICS SUBSYSTEM WRITERS' GUIDE
January 10, 1973

This volume of the MPM has as 1its purpose to provide
constructors of sophisticated Multics subsystems the extra
information needed for their undertaking. The Multics program
modules documented here represent a layer of penetration into the
system beyond that which is intended for the casual user. As a
result, there are several caveats in order:

1) The interfaces described here are not generally as neatly
organized or consistently thought out as is the standard
user interface represented by the MPM Reference Guide
because they are in an earlier stage of development.

2) Most of the interfaces provided in this manual would be used
only if there 1is some reason to bypass the usual standard
system way of doing things. As a result, in using an SWG
interface, one risks giving up some features of Multics.
Although there is no claim that all the features of Multics
are essential, there is a consistency of style and
interpretation at the standard interface which the ultimate
subsystem user may be accustomed to. The subsystem writer
should be <cautious about unintentionally introducing
different styles and interpretations when bypassing a
standard function.

3) A1l of the facilities described in the SWS are subject to
changes and improvements in their interface specifications.
Further, at the level of penetration represented by the SWG
interfaces, it is difficult to avoid large disruptions when
interfaces are changed. Thus, the subsystem writer s
strongly cautioned against unnecessarily utilizing the SWG
interfaces.

L) The initial release of the manual consists in part of simple
reproduction of sections formerly found in the Subsystem
Writers' Supplement to the MPM. Many of these sections
should be expanded and reformatted, especially where they
consist of nothing but a calling sequence and notes. Thus,

Page iii

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page iv

for example, many sections do not include adequate warnings
about the implications of using the module being described.

5) The information about the Multics environment necessary to
intelligently use the SWG interfaces is frequently not
available in any form. This unfortunate situation should be
slowly remedied through accumulated updates to the SWG.

Thus it should be clear that the subsystem writer utilizes
the SWG interfaces at his own risk; and with knowledge of the
pitfalls involved. On the other hand, one of the primary
objectives of Multics is to allow subsystems of almost any
arbitrary specification to be constructed. To that end, the SWG
interfaces are intended to be helpful.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

FOREWORD

PLAN OF THE MULTICS PROGRAMMERS' MANUAL

January 10, 1973

The Multics Programmers' Manual (MPM) is the primary
reference manual for user and subsystem programming on the

Multics system. It is divided into three major parts:
Part l: Introduction to Multics
Part 11: Reference Guide to Multics
Part 1l1l: Subsystem Writers' Guide to Multics
Part | is an introduction to the properties, concepts, and
usage of the Multics system, |Its four chapters are designed for

reading continuity rather than for reference or completeness.
Chapter 1 provides a broad overview. Chapter 2 goes into the
concepts underlying Multics. Chapter 3 is a tutorial guide to
the mechanics of using the system, with illustrative examples of
terminal sessions. Chapter 4 provides a series of examples of
programming in the Multics environment.

Part Il is a self-contained comprehensive reference guide to
the use of the Multics system for most users. In contrast to
Part I, the Reference Guide is intended to document every detail
and to permit rapid location of desired information, rather than
to facilitate cover-to-cover reading.

Part Il is organized into ten sections, of which the first
eight systematically document the overall mechanics, conventions,
and usage of the system. The last two sections of the Reference
Guide are alphabetically organized 1lists of standard Multics
commands and subroutines, respectively, giving details of the
calling sequence and the usage of each.

Page v

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page vi

Several cross-reference facilities help locate information
in the Reference Guide:

. The table of contents, at the front of the manual,
provides the name of each section and subsection and an
alphabetically ordered list of command and subroutine
names.

. A comprehensive index (of Part 1l only) lists items by
subject.

. Reference Guide sections.l.f and 2.1 provide 1lists of
commands and subroutines, respectively, by functional

category.
Part 11l is a reference guide for subsystem writers. It is
of interest to compiler writers and writers of sophisticated
subsystems. |t documents user-accessible modules which allow a

user to bypass standard Multics facilities. The interfaces thus
documented are a level deeper into the system than those required
by the casual user,.

Examples of specialized subsystems for which construction
would require reference to Part Il are:

1) a subsystem which precisely imitates the command environment
of some system other than Multics (e.g., an imitation of the
Dartmouth Time-Sharing System);

2) a subsystem which is intended to enforce restrictions on the

services available to a set of users (e.g., an APL-only
subsystem for use in an academic class); '

3) a subsystem which is protecting some kind of information in
a way not easily expressible with ordinary access control
lists (e.g., a proprietary linear programming system, or an
administrative data base system which permits access only to
program-defined aggregated information such as averages and
correlations).

Each of the three parts of the MPM has its own table of contents
and is updated separately, by adding and replacing individual
sections. Each section is separately dated, both on the section
itself, and in the appropriate table of contents. The title page
and table of contents are replaced as part of each update, so one
can quickly determine if his manual is properly up-to-date. The
Multics on-line "message of the day" or local installation
hulletins should provide notice of availability of new updates.
In addition, the Multics command '"help mpm'" provides on-line
information about known errors and the latest MPM update level.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Page vii

In addition to this manual, users who will write programs
for Multics will need a manual giving specific details of the
language they will use; such manuals are currently available for
PL/!, FORTRAN, and BASIC. A separate, specialized supplement to
the MPM is also provided for users of graphic displays. The
bibliography at the end of Part |, Chapter 1, describes these and
other references in more detail.

Multics provides the ability for a local installation to
develop an installation-maintained or author-maintained library
of commands and subroutines which are tailored to 1local needs.
The installation may also document these facilities in the same
format as used in the MPM; the user can then interfile these
locally provided write-ups in the command and subroutine sections
of his MPM.

Finally, access to Multics requires authorization. The
prospective user must negotiate with the administration of his
local installation for permission to use the system. The
installation may find it useful to provide the new user with a
documentation. kit describing available documents, telephone
numbers, operational schedules, consulting services, and other
local conventions.

Page vii

C) Copyright, 1973, Massachusetts Institute of Technology '
and Honeywell Information Systems Inc. (END)

CONTENTS

May 31, 1973

PREFACE iii

FOREWORD: Plan of the Multics Programmers' Manual
PART 111: SUBSYSTEM WRITERS' GUIDE

Section 11 The Multics Standard Object Segment

12/13/72 11.1 Object Segment: Introduction and Overview
12/01/72 11.2 The Structure of the Text Section
01/05/73 11.3 The Structure of the Definition Section
12/28/72 11.4 The Structure of the Linkage Section
12/19/72 11.5 The Structure of the Symbol Section
12/01/72 11.6 The Structure of the Object Map

12/14/72 11.7 Conventions on Generated Code

05/29/73 11.8 The Structure of Bound Segments

Section 12 Standard Data Formats and Code Sequences

12/14/72 12.1 Standard Stack and Linkage Area Formats
12/13/72 12.2 Subroutine Calling Sequences

Section 13 The Subsystem Programming Environment

12/26/72 13.4 Intraprocess Access Control (Rings)
11/27/72 13.6 Hardware and Simulated Fault Assignments

Section 14 Miscellaneous Reference Information

04/30/73 14.3 List of Command Control Arguments

Section 15 Commands and Active Functions (1/10/73)

06/05/72 error_table_compiler
05/01/73 make_commands
03/30/73 set_max_length
05/29/73 set_ring_brackets
03/29/72 user

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Contents

Page x

Section 16

01/31/73
01/31/73
02/01/73
06/30/72
01/09/73
06/30/72
01/08/71
04/30/73
0L/30/73
01/31/73
02/07/73
01/31/73
06/29/72
06/29/72
02/27/173
02/27/73
02/28/73
02/27/173
03/15/73
03/16/73
03/01/73
03/16/73
04/30/73
02/27/73
03/16/73
06/14/71
12/15/71
02/27/73
02/27/73
03/19/73
03/19/73
03/01/73
03/01/73
05/10/71
03/01/73
03/30/73
03/30/73
03/01/73
03/16/73
03/15/73
02/07/73
09/09/71
05/25/73
06/30/72
04/30/73
09/07/72

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

SUBSYSTEM WRITERS' GUIDE

Subroutines (1/10/73)

alloc_

area_

area_assign_
condition_interpreter_
convert_status_code_

cu_

d1_handler_

dprint_

find_command_

freen_

get_at_entry_

get_ring_
get_system_free_area_
get_to_cl_
hes_$add_dir_inacl_entries
hcs_$add_inacl_entries
hcs_$delete_dir_inacl_entries
hcs_$delete_inacl_entries
hcs_$get_author
hcs_$get_bc_author
hes_$get_dir_ring_brackets
hcs_$get_max_length
hcs_$get_process_usage
hcs_$get_ring_brackets
hecs_$get_safety_sw
hcs_sget_search_rules
hes_S$initiate_search_rules
hes_$1ist_dir_inacl
hcs_$1ist_inacl
hes_$quota_get
hcs_zquota_move
hes_S$replace_dir_inacl
hecs_$replace_inacl
hes_$reset_working_set
hcs_$set_dir_ring_brackets
hecs_$set_max_length
hcs_$set_max_length_seg
hcs_$set_ring_brackets
hes_$set_safety_sw
hcs_$set_safety_sw_seg
hcs_$wakeup

ioa_

ipc_

listen_
1ss_login_responder_

ms f_manager_

continued on next page

SUBSYSTEM WRITERS' GUIDE Contents

Page xi
5/31/73

Section 16 Subroutines (continued)

04/30/73 nd_handler_
01/27/72 set_lock_
02/25/72 standard_default_handler_
04/30/73 start_governor_
stop_governor_: see start_governor_
06/22/72 system_info_
05/18/73 transform_command_
09/06/72 tssi_ ‘
05/18/71 unwinder_
04/05/73 user_info_

Reference Guide and Subsystem Writers' Guide Index (5/31/73)

(© Copyright, 1973, Massachusetts

Institute of Technology
and Honeywell Informati

tion Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE 11.1

Standard Object Segment
12/13/72

STANDARD QBJECT SEGMENT: |INTRODUCTICN AND QVERVIEW

A Multics object segment is a segment which contains named
items which are externally accessible via the dynamic linking
mechanism. (See the MPM Subsystem Writers' Guide section,
Dynamic Linking.) The most common examples of object segments are
procedure segments and data segments. (The segment error_table_
is an example of the latter).

The following documents describe the format of the standard
Multics object segment. The format requirements relate primarily
to the external interfaces of an object segment, giving the
translator great freedom in the area of code and data generation.
The format contains certain redundancies and some rather odd data
structures. This is due to the necessity for maintaining upwards
compatibility with earlier object segment formats. The dynamic
linking mechanism and the standard object segment manipulation
tools assume that all object segments are standard object
segments. '

The information in an object segment falls into several
categories (not all of which necessarily appear in a given object
segment):

1) Text pure (nonselfmodifying) machine
instructions and/or pure data.

2) Definitions symbolic information with the aid of
which certain variables which are
internal to the object segment are
made known to the external world and

accessible to the dynamic linking
mechanism (the linker).

3) Links symbolic representation of names whose
addresses are unknown at compile time,
and can only be evaluated (i.e.,
resolved into machine addresses by the
linker) at execution time,.

4) Symbol Tree internal representation of symbolic

source language variables, their
attributes and addresses; needed for

the execution of interpretive code

such as PL/! data-direc;ed
input/output as well as for debugging
purposes.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.1 ’ MULTICS SUBSYSTEM WRITERS' GUIDE

Introduction and Overview
Standard Object Segment
Page 2

5) Historical Information information describing the
circumstances under which the object
segment was created, such as the name
and version of the translator,
creation time, identification of input
source, identification of wuser who
initiated the object segment creation,
etc.

6) Relocation Information information which identifies all
instances of internal relative address
references to enable their relocation.

7) Ciagnostic Aids information which allows standard
system tools to extract useful
information out of an object segment.

‘The information items 1listed above are not stored,
intermixed, within a monolithic object segment. Rather, the
object segment is divided into five sections named text,

, linkage, symbol and break map. The object segment is

a concatenation of these five sections in the following order:
text
definition
linkage
symbo1l
break map (if present)

The object segment also contains an gbject map which
contains the offsets and lengths of each of the sections. The
object map may be located immediately before or immediately after
any of the five sections. Translators normally place it
immediately after the symbol section. The 1last word of the
segment must contain a left-justified 18-bit relative pointer to
the object map. The assignment of any item to one of the five
sections is decided as follows:

1) Text Section contains only the pure parts of the
object segment; that is, instructions
and read-only data. It may also
contain relative pointers into the
definition, linkage and symbol
sections.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.1

2) Definition Section

3) Linkage Section

4) Break Map Section

5) Symbol Section

C) Copyright, 1973, Massachusett?

and Honeywel

Introduction and Overview
Standard Object Segment
Page 3

12/13/72

contains only nonexecutable read-only
symbolic information which is intended
for the purposes of dynamic linking
and symbolic debugging. It is assumed
that the definition section will be
infrequently referenced (as opposed to
the constantly referenced text
section); this section is therefore
not recommended as a repository for
read-only constants which are
referenced during the execution of the
text section. The definition section
may sometimes (as in the case of an
object segment generated by the
binder) be structured into definition
blocks, which are threaded together.

contairs the impure (i.e., modified
during the program's execution)
nonexecutable parts of the object
segment and consists of two types of
data:

a) links which are modified at run
time by the Multics linker to contain
the machine address of external names;

b) data items which are to be
allocated on a per-process basis.
This includes the internal static
storage of PL/| procedures.

contains information which allows the
debugger to locate break points in the
object segment. This - section s
generated by the debugger rather than
the translator and will not exist
unless the segment currently contains
break points. Its internal format is

of interest only to the debugger and
is not described in the MPM.

so named because it was initially
designed to store the language
processor's symbol tree, is the
repository of all generated items of
information which do not belong in the

Institute of Technology
Information Systems Inc.

11.1 MULTICS SUBSYSTEM WRITERS' GUIDE

Introduction and Overview
Standard Object Segment
Page &4

first four sections. The symbol
section may typically be further
structured into variable length symbol
blocks, stored contiguously and
threaded to form a list. The symbol
section may contain pure information
only.

The text, definition and symbol sections are shared by all
processes which reference an object segment. When an object
segment is first referenced in a process, a copy of the linkage
section is made. That is, the linkage section is @& per-process
data base. The original linkage section serves only as a copying
template. See the MPM Subsystem Writers' Guide sections, Dynamic
Linking, and Standard Stack and Linkage Area Formats. Normally,
a segment with a nonempty break map section is in the process of
being debugged and is not used by more than one process.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Ilnc. (END)=*

MULTICS SUBSYSTEM WRITERS' GUIDE 11.2

Standard Object Segment
12/1/772

IHE STRUCTURE OF THE TEXT SECTION

The text section is basically unstructured, containing the
machine language representation of some symbolic 1language
algorithm and/or pure data items. Its length must be an even
number of words. '

Two items which may appear within the text section have
standard formats; namely the entry sequence and the gate segment
entry point transfer vector.

Ihe Entry Segquence

There must be a standard entry sequence for every externally
accessible procedure entry point in an object segment. It has
the following format.

declare 1 entry_sequence aligned,
2 def_relp bit(18) unaligned,
2 pad bit(18) unaligned,
2 code_sequence(n) bit(36) aligned;

1) def_relp is a pointer (relative to the base of the
definition section) to the definition (see
below) of this entrypoint. Thus, given a
pointer to an entrypoint, it is possible to
reconstruct its symbolic name for purposes
such as diagnostics or debugging.

2) pad is reserved for future use and must be "0"b.
3) code_sequence is _any. sequence_ of machine instructions
satisfying Multics standard callnng

conventions. See the MPM Subsystem Writers'
Guide section, Subroutine Calling Sequences.

Note that the value (i.e., offset within the text section) of the
entry point corresponds to the address of the code_sequence item.
(The value is stored in the formal definition of the entry point.
See the MPM Subsystem Writers' Guide section, The Structure of
the Definition Section.) Thus, if entry_offset is the value of
the entry point entl then the def_relp item pointing to the
definition for entl is located at word (entry_offset - 1).

The Gate Segment Entry Point Iransfer Vector

For reasons of protection, control must not be passgd to a
gate procedure at other than its defined entry points. To
enforce this restriction, the first n words of a gate segment

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Text Section

Standard Object Segment
Page 2

with n entry points must be an entry point transfer vector. That
is, the kth word. (0 k <n-1) must be a transfer instruction to
the kth entry point (i.e. a transfer to the code_sequence item of
a standard entry sequence as described above). In this case, the
value of the kth entry point is the offset of the kth transfer
instruction (i.e. word k of the segment) rather than the offset
of the code_sequence item of the kth entry point.

To ensure that only these entries may be used, the hardware
enforced call limiter of the gate segment must be set so that the
segment may be entered only at the first n locations.

ute of Technology

(© Copyright, 1973, Massachusetts Institute
1 Information Systems Inc. (END)

and Honeywel

MULTICS SUBSYSTEM WRITERS' GUIDE 11.3

Standard Object Segment
1/5/73

THE STRUCTURE OF THE DEFINITION SECTION

The definition section of an object segment contains pure
information to be wused by the dynamic linking mechanism. |Its
length must be an even number of words. It must start at an even
offset in the object segment.

The definition section consists of a header pointing to a
linked 1list of items describing the externally accessible named
items of the object segment, followed by an wunstructured area
containing information describing the externally accessible named
items of other object segments referenced by this object segment.
The 1linked 1list is known as the definition list. The items on
the 1list are known as definitions. The wunstructured area
contains expression words, type pairs, trap pairs, trap procedure
information, and the symbolic names associated with external

references.

A definition specifies the name of an externally accessible
named item and its location in the object segment. The
definition list consists of one or more definition blocks each of
which consists of one or more class-3 definitions followed by
zero or more non-class-3 definitions. Normally, unbound object
segments contain one definition block whereas bound segments
contain one definition block for every externally accessible
component object segment.

The information in the unstructured area of the definition
section is wused in conjunction with information in the linkage
section to resolve at run-time the external references made by
the object segment. This information may, in fact, be viewed as

part of the linkage section. It is stored in the definition
section to allow it to be shared among all the users of the

segment.

See figure 1 for a diagram of the structure of the
definition section. For more information concerning the
interpretation of the information in the definition section see
the MPM Subsystem Writers' Guide section, Dynamic Linking.

For historical reasons, character strings in the definition
section are stored in ALM "acc' format, which may be defined by
the following PL/!| declaration:

declare 1 acc aligned,
2 length_of_string fixed bin(8) unaligned,
2 string char(length_of_string) unaligned;

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.53 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Definition Section
Standard Object Segment
Page 2

The first nine bits of the string contain the length of the
string. Such a structure will be referred to as an acc string.

Descriptions of the formats of the various items in the
definition section follow.

The Definition Section Header

The definition section header resides at the base of the
definition section and contains a pointer (relative to the base
of the definition section) to the beginning of the definition
list.

declare 1 def_header aligned,
2 def_list_relp bit(18) unaligned,
2 unused bit(36) unaligned;
2 flags unaligned,
3 new_format bit(1l) unaligned initial ("1"b),
3 ignore bit(1l) unaligned initial ("1"b),
3 unused bit(16) unaligned;

1) def_list_relp is a relative pointer to the first definition
in the definition list.

2) unused is reserved for future use and must be "0"b.

3) flags contains 18 binary indicators -to provide

information about this definition section:

new_format if equal to "1"b, the definition section has

the format described in this document as
distinct from an older format.

ignore if equal to "1"b, and new_format is also
equal to '"1"h, then the Multics linker
recognizes this structure as a definition
section header and ignores it.

unused is reserved fOr future use and must be "0"b.
The format of a non-class-3 definition is as follows:
declare 1 definition aligned,

2 forward_thread bit(18) unaligned,

2 backward_thread bit(18) unaligned,
2 value bit(18) unaligned,

© Copyright, 1973, Massachusetts Institute of Technologzy
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.3

Structure Of The Definition Section
Standard Object Segment

Page 3

1/5/73

2 flags unaligned,

WWWWWW

cl

NN

1) forward_thread

2) backward_thread

3) value

L) flags

new_format

ignore

entrypoint

C) Copyright, 1973,

new_format bit(1l) unaligned,
ignore bit(l) unaligned,
entrypoint bit(1l) unaligned,
retain bit(l) unaligned,
descr_sw bit(1l) unaligned,
unused bit(10) unaligned,
ass bit(3) unaligned,

symbol_relp bit(18) unaligned,

segname_relp bit(18) unaligned,
n_.
descriptor (n_args) bit(18) unaligned;

args bit(1l8) unaligned,

is a thread (relative to the base of the
definition section) to the next definition.
The thread terminates when it points to a
word which 1is zero. This thread provides a
single sequential list of all the definitions
within the definition section.

is a thread (relative to. the base of the
definition section) to the preceding
definition. The thread terminates when it
points to a word which is zero. This thread
provides a single sequential list of all the
defintions within the definition section.

is the offset, within the section designated
by the class variable (see 5 below), of this
symbolic definition.

contains 15 binary indicators to provide
additional information about this defintion:

if equal to "1"b, the definition has the
format described in this document, as
distinct from an older definition format.

if equal to "1'"b, the definition does not
represent an external symbol and must
therefore be ignored by the Multics linker.

if equal to "1'"b, this is the definition of
an entrypoint (i.e., a variable referenced
through a transfer of control instruction).

Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

11.3

MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Definition Section

Standard Object
Page b

retain

descr_sw

unused

5) class

2

3

6) symbol_relp

7) segname_relp

8) n_args

9) descriptor

Segment

if equal to "1"b, the definition must not be
deleted from the object segment.

if equal to "1"b, the definition includes an
array of argument descriptors (i.e., items
n_args and descriptor (n_args) below contain
valid information).

is reserved for future use and must be "0"b.

this field contains a code which indicates
which section of the object segment the value
is relative to, as follows:

text section

linkage section

symbol section

this symbol is a segment name

is a pointer (relative to the base of the
definition section) to an aligned acc string
representing the definition's symbolic name.

is a pointer (relative to the base of the
definition section) to the first class-3
definition of this definition block.

is the number of arguments expected by this
external entrypoint. This item is valid only
if descr_sw = "1'"h,

is an array of pointers (relative to the base
of the text section) which point to the
descriptors of the corresponding entrypoint
arguments. This item 1is valid only if
descr_sw = "1"b.

In the case of a class-3 definition, the above structure is

interpreted as

declare 1

follows:

segname aligned,

2 forward_thread bit(18) unaligned,

2 backward_thread bit(18) unaligned,
2 segname_thread bit(18) unaligned,

2 flags bit(15) unaligned,

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.3

Structure Of The Definition Section
Standard Object Segment

Page 5

1/5/73

2 class bit(3) unaligned,
2 symbol_relp bit(18) unaligned,
2 first_relp bit(18) unaligned;

1) forward_thread is as above.
2) backward_thread is as above.

3) segname_thread is a thread (relative to the base of the
definition section) to the next <class-3
defintion. The thread terminates when it
points to a word which is all zero. This
thread provides a single sequential 1list of
all class-3 definitions in the object

segment.

L) flags . is as above.

5) class is as above.

6) symbol_relp is as above.

7) first_relp is a pointer (relative to the base of the
definition section) to the first non-class-3
definition of the definition block. If the

block contains no non-class=-3 definitions it
points to the first class-3 definition of the
next block. |If there is no next block, it
points to a word of zeros.

The end of a definition block is determined by one of the
following conditions (whichever comes first): .

a) forward_thread points to an all zero word;

b) the current entry's class is not 3, and forward_thread points
to a class-3 definition;

c) the current definition is class-3, and both forward_thread and
first_relp point to the same class-3 definition.

Figure 1 illustrates the threading of definition entries.

The rest of this document deals with items in the
unstructured portion of the definition section.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.3 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Definition Section
Standard Object Segment
Page 6

The Expression Word

The expression word is the item pointed to by the expression
pointer of an unsnapped link (see the MPM Subsystem Writers'
Guide section, The Structure of the Linkage Section), and has the
following structure:

declare 1 exp_word aligned,
2 type_pair_relp bit(18) unaligned,
2 expression bit(18) unaligned;

1) type_pair_relp is a pointer (relative to the base of the
definition section) to the link's type-pair.

2) expression is a sighed fixed bin(17) value to be added
to the value (i.e., offset within a segment)
of the resolved 1link.

Ihe Type Pair

The type pair is a structure which defines the external
symbol pointed to by a link.

declare 1 type_pair aligned,
2 type bit(18) unaligned,
2 trap_relp bit(18) unaligned,
2 segname_relp bit(18) unaligned,
2 offsetname_relp bit(18) unaligned;

1) type assumes a value from 1 to 6:
1 this is a self-referencing 1link (i.e., the
segment in which the external symbol s

located is the very object segment containing
this definition) of the form

myself|O+expression, modifier

2 unused; it was earlier used to define a now
obsolete ITB-type link.

3 this is a 1link referencing a specified
reference name but no symbolic offset name,
of the form

refname|O+expression,modifier

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.3

2) trap_reip

3) segname_relp

C) Copyright, 1973,

Structure Of The Definition Section
Standard Object Segment

Page 7

1/5/753

this is a link referencing both a symbolic
reference name and a symbolic offset name, of
the form

refname$offsetname+expression,modifier

this a self-referencing link having a
symbolic offset name, of the form

myself$offsetname+expression,modifier

same as type 4 except that the external item
will be created if it not found. (See the
MPM Subsystem Writers' Guide section, Dynamic
Linking.)

if nonzero then this is a pointer (relative
to the base of the definition section) to
either a trap pair (if type ~=6) or to an
initialization structure (if type = 6).

is a code or a pointer depending on the value
of type. For types 1 and 5, this item is a
code which may assume one of the following
values, designating the sections of the
self-referencing object segment:

self-reference to the object's text section;
such a reference is represented symbolically
as "xtext".

self-reference to the object's linkage
section; such a reference is represented
symbolically as "=*1link".

self-reference to the object's symbo 1
section; such reference is represented
symbolically as '"*symbol'.

For types 3, 4 and 6, this item is a pointer
(relative to the base of the definition
section) to an aligned acc string containing
the reference name portion of an external

reference. (See the MPM Reference Guide
section, Constructing and Interpreting
Names) .

Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.3 ' MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Definition Section
Standard Object Segment
Page 8

4) offsetname_relp has a meaning depending on the value of type.
For types 1 and 3, this value is ignored and
must be zero. For types 4, 5 and 6, this
item is a pointer (relative to the base of
the definition section) to an aligned acc
string of an external reference. (See the
MPM Reference Guide section, Constructing and
Interpreting Names, for a discussion of
offset names).

The Trap Pair

The trap pair is a structure which specifies a trap
procedure to be called before the link associated with the trap
pair is resolved by the dynamic linking mechanism., It consists
of relative pointers to two links. (Links are defined in the MPM
Subsystem Writers' Guide section, The Structure of the Linkage
Section.) The first link defines the entry point in the trap
procedure to be called. The second 1link defines a block of
information of interest to the trap procedure. It will be passed
as one of the arguments of the trap procedure. For more detailed
information on trap procedures see the MPM Subsystem Writers'
Guide section, Dynamic Linking. The trap pair is structured as
follows:

declare 1 trap_pair aligned,
2 entry_relp bit(18) unaligned,
2 info_relp bit(18) unaligned;

1) entry_relp is a pointer (relative to the base of the linkage
section) to a link defining the entry point of the
trap procedure.

2) info_relp is a pointer (relative to the base of the linkage
section) to a link defining information of
interest to the trap procedure.

() Copyright, 1973, Massachusetts Institute of Technology
and He "1 Information Systems Inc. (END)*

MULTICS SUBSYSTEM WRITERS' GUIDE 11.3

Structure Of The Definition Section
Standard Object Segment

Page 9
1/5/73
dgﬁrlist_relp . Header
i
forward backward ° < Block 1
segname_thread | class = 3
string ptr defblock ptr
Y QU R e L E T PR Ty P
forward backward J 7 fBlock 2
segname_thread class = 3
string ptr defblock ptr
forward backward s Y, N
segname_ thread class = 3
string ptr defblock_ptr > N
)
m—r) N — forward backward N
value class £ 3 /
string_ptr segname_ptr /f
. A
‘ > forward backward T 4Block 3
segname_thread class = 3
string ptr defblock _ptr
T > forward backward o —
value class # 3
string ptr segname_ptr e >
—R forward backward N
value class # 3
string ptr segname_ptr o
Y) > all zero word |

Figure 1: Sample Definition List

@ Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END) *

MULTICS SUBSYSTEM WRITERS' GUIDE 11.4

Standard Object Segment
12/28/72

IHE STRUCTURE OF THE LINKAGE SECTION

The linkage section is substructured into four distinct
components, which are a) a fixed-length header which always
resides at the base of the linkage section, b) a variable length
area used for internal storage, c) a variable length structure of
links, and d) an array of first-reference traps. These four
components are located within the linkage section in the
following sequence:

header

internal storage
links

traps

The length of the linkage section must be an even number of
words; in addition, the link structure must begin at an even
location (offset) within the linkage section.

Ihe Linkage Section Header
The header of the linkage section has the following format:

declare 1 linkage_header aligned,

A pad bit(36),
def_section_relp bit(18) unaligned,
first_reference_relp bit(18) unaligned,
obsolete_ptr ptr,
original_linkage_ptr ptr,
links_relp bit(18) unaligned,
linkage_section_length bit(18) unaligned,
object_seg bit(1l8) unaligned,
obsolete_length bit(18) unaligned;

NN NNRNNNDNN

Important: When an object segment is first referenced in a
process its linkage section is copied into a per-process data
base. At this time certain items in the header are initialized.
Items not explicitly described as being initialized by the linker
are set by the program which generates the object segment. In
addition, the first two words of the header (containing the items
pad, def_section_relp, and first_reference_relp) are overwritten
with a pointer to the beginning of the object segment's
definition section. For more information see the MPM Subsystem
Writer's Guide sections, Dynamic Linking, and Standard Stack and
Linkage Area Formats.

1) pad is reserved for future use and must be
zero.

nstitute of Technology

C) Copyright, 1973, Massachusetts Ins
1 Information Systems Inc.

and Honeywel

11.4 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Linkage Section
Standard Object Segment
Page 2

2) def_section_relp is a pointer (relative to the base of
the object segment) to the base of the
definition section.

3) first_reference_relp is a pointer (relative to the base of
the 1linkage section) to the array of
first-reference traps. As explained
below, these traps are activated by
the linker when the first reference to
this object segment is made within a
given process. If the value of this
item is "0"b then there are no
first-reference traps.

4) obsolete_ptr for historical reasons, linkage
sections are sometimes threaded
together to form a linkage list. This
variable is a pointer to the next
linkage section on the thread. This
variable is described for
completeness; it is not intended for
general use.

5) original_linkage_ptr is a pointer to the original 1linkage
section within the object segment. It
is used by the 1link unsnapping
mechanism. It is initialized by the

linker.

6) links_relp is a pointer (relative to the base of
the linkage section) to the first l1ink
(the base of the link structure).

7) linkage_section_length 1is the length in words of the 1linkage

section.

8) object_seg is the segment number of the object
segment. It is initialized by the
linker.

9) obsolete_length when several linkage sections are

combined into a 1list, this item (in
the first linkage section in the list)
contains the 1length of the entire
list. See the above discussion under
obsolete_ptr.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.4

Structure of the Linkage Section
Standard Object Segment

Page 3

12/28/72

The Internal Storage Area

The internal storage area is an array of words used by
compilers to allocate internal static variables and has no
predetermined structure.

The Links

This is an array of links, each defining an external name
referenced by this object segment whose effective address is
unknown at compile time and can be resolved only at the moment of
execution. Figure 1 illustrates the structure of a link.

A link must reside on an even location in memory, and must
therefore be located at an even offset from the base of the
linkage section. The format of a link is:

declare 1 link aligned,

2 header_relp bit(18) unaligned,

2 ignorel bit(12) unaligned,

2 tag bit(6) unaligned,

2 expression_relp bit(18) unaligned,
2 ignore2 bit(12) unaligned,

2 modifier bit(6) unaligned;

1) header_relp is a pointer (relative to the link itself) to
the head of the linkage section. It s, in
other words, the negative value of the link
pair's offset within the linkage section.

2) ignorel is reserved for future use and must be "0"b.

3) tag is a constant (46)8 which represents a

hardware fault tag 2 and distinctly
identifies an unsnapped 1link. The snapped
link (ITS pair) has a distinct (43)8 tag.
See the MPM Subsystem Writers' Guide section,
Hardware and Simulated Fault Assignments.

L) expression_relp 1is a pointer (relative to the base of the
definition section) to the expression
structure defining this link.

5) ignore2 is reserved for future use and must be "0"b.

6) modifier is a hardware address modifier.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.4 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Linkage Section
Standard Object Segment
Page 4

The First-Reference Traps

It is sometimes necessary to perform certain types of
initialization of an object segment when it is first referenced
for execution (i.e., linked to) in a given process == for
example, to store some per-process information in the segment
before it is used. The first-reference trap mechanism provides
this facility. For example, the status code assignment mechanism

.uses this facility. See the MPM Reference Guide section,
Handling of Unusual Occurrences.

A first-reference trap consists of two relative pointers.
The first points to a link defining the first reference procedure
entry point to be invoked. The second points to a link defining
a block of information to be passed as an argument to the
first-reference procedure. Normally an object segment will have
at most one first-reference trap. Bound segments may have up to
one per component object segment. For more details -on
first-reference traps, see the MPM Subsystem Writer's Guide
section, Dynamic Linking.

declare 1 fr_traps aligned,
2 decl_vers fixed bin initial(l),
2 n_traps fixed bin,
2 array(n_traps) aligned,
3 call_relp bit(18) unaligned,
3 info_relp bit(18) unaligned;

1) decl_vers is the version number of the structure.

2) n_traps specifies the number of trap pointers in this
structure.

3) call_relp is a pointer (relative to the base of the
linkage section) to a 1link defining a
procedure to be invoked by the linker upon
first reference to this object within a given
process.

L) info_relp if not equal to "0"b, this 1is a pointer
(relative to the base of the linkage section)
to a link specifying a block of information
to be passed as an argument to the first
reference procedure.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.4

Structure of the Linkage Section
Standard Object Segment

Page 5

12/28/72

Initialization Structure for Type 6 Links

This structure specifies how a 1link target should be
initialized if it is grown because of a type 6 link. It has the
following format:

declare 1 initialization_info aligned,
2 n_words fixed bin,
2 code fixed bin,
2 info (n_words) bit(36) aligned;

1) n_words is the number of words to increase the size of the
segment for the new variable.

2) code , indicates what type of initialization is to be
performed. It can have one of the following
values:

0 no initialization is to be performed.
3 copy the info array into the newly grown variable.
L initialize the variable as an area.

3) info is the image to be copied into the new variable.

It exists only if code is 3.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.4

MULTICS SUBSYSTEM WRITERS' GUIDE

Structure Of The Linkage Section

Standard Object Segment
Page 6

r—>to info link

—> to call link Link
(46)8 Linkage
expression_relp Section
Expression Word

Definition

type_pair_relp J expression Section

Type Pair
Type = 6
type trap_relp -
- Type # 6

» segname relp

offsetname_relp

segname acc string

entryname acc str ing

Trap Pair

call_relp

info_relp

Figure 1: The Structure of a Link

C) Copyright, 1973, Massachusetts

and

Init Structure/

nwords

action code

image

V”_“_/

Institute of Technology

Honeywell Information Systems Inc. (END)=*

MULTICS SUBSYSTEM WRITERS' GUIDE 11.5

Standard Object Segment
12/19/72

THE STRUCTURE OF THE SYMBOL SECTION

The symbol section consists of one or more symbol blocks
threaded together to form a single list. A symbol block has two
main functions: 1) to document the circumstances under which the
object was created, and 2) to serve as a repository for
information which does not belong in any of the other three
sections (relocation information, compiler's symbol tree, etc.).
The symbol section must contain at least one symbol block,
describing the «creation circumstances of the object segment. A
symbol section may contain more than a single symbol block, for
example, in the case of a bound segment where in addition to the
symbol block describing the segment's creation by the binder,
there is also a symbol block for each of the component object
segments.

A symbol block consists of a fixed 1length header and a
variable 1length area pointed to by the header. The contents of
this area depend on the symbol block. For example, a compiler's
symbol block may contain a symbol tree, and the binder's symbol
block contains the bind map. See the appropriate MPM Subsystem
Writer's Guide section for the contents of a symbol block for a
PL/!, FORTRAN or ALM object segment.

The Symbol Block Header

A1l symbol blocks have a standard fixed format header. Not
all items in the header have meaning for all symbol blocks. The
description of a particular symbol block lists which items have
meaning for that symbol block. The header has the following
format:

declare 1 symbol_block_header aligned,

decl_vers fixed bin initial(l),
identifier char(8) aligned,
gen_version_number fixed bin,
gen_creation_time fixed bin(71),
object_creation_time fixed bin(71),
generator char(8) aligned,
gen_version_name_relp bit(18) unaligned,
gen_version_name_length bit(18) unaligned,
userid_relp bit(18) unaligned,
userid_length bit(18) unaligned,
comment_relp bit(18) unaligned,
comment_length bit(18) unaligned,
text_boundary bit(18) unaligned,
stat_boundary bit(18) unaligned,
source_map_relp bit(18) unaligned,
area_relp bit(18) unaligned,

NN RNNRNRNNNNNNNRONDNN

c> Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.5

MULTICS SUBSYSTEM WRITERS' GUIDE

Structure of the Symbol Section
Standard Object Segment

Page 2

1) decl_vers

2) identifier

3) gen_version_number

NN RNNNNNNDNNNON

section_relp bit(18) unaligned,
block_ size bit(18) unaligned,
next_ block_thread bit(18) unaligned

text_ relocatuon relp bit(18) unaligned,

def_relocation_relp bit(18) unaligned,

link_relocation_relp bit(18) unaligned,

symbol_relocation_relp bit(18) unaligned,

default_truncate bit(18) unaligned,
optional_truncate bit(18) unaligned;

is the version number
structure.

of the

is a symbolic name identifying the

type of symbol block.

is a code designating the version of

the generator which created this
object segment. A generator's
version number is normally changed

when the generator or its
significantly modified.

L) gen_creation_time is a calendar clock

specifying the date/time
this generator was created.

5) object_creation_time is a calendar clock

6) generator

7) gen_version_relp

specifying the date/time

output is

reading
at which

reading
at which

this symbol block was generated.

is the name of the processor which

generated this symbol block.

is a pointer (relative to the base of
the symbol block) to an

aligned

string describing the generator's

version. For example,

"pL/1 Compiler Version
of Wednesday, July 28,

The integer part of the

7.3
1971"

version

number imbedded in the string must be

identical with the number
gen_version_number; the

stored in
optional

fraction as displayed above (7.3) is

added in the increments

of (.1)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.5

8) gen_version_name_length

9) userid_relp

10) userid_length

11) comment_relp

12) comment_length

13) text_boundary

14) stat_boundary

Structure of the Symbol Section
Standard Object Segment

Page 3

12/19/72

whenever (for reasons such as fixed
bugs or minor improvements) a
generator is installed which does not
differ in any significant way from
other generators of the version. It
is mandatory that the generator name
be updated whenever a new generator
is installed for public use.

is the length of the above string.

is a pointer (relative to the base of
the symbol block) to an aligned
string containing the access 1D
(i.e., the value returned by the
subroutine get_group_id_) of the user
on whose behalf this symbol block was
created.

is the length of the above string.

is a pointer (relative to the base of
the symbol block) to an aligned
string containing generator dependent
symbolic information. For example, a
compiler might store diagnostic
messages concerning non-fatal errors
encountered while generating the
object segment. A value of "0"b
indicates no comment.

is the length of the above string.

is a number indicating what boundary.
the text section must begin on. For
example, a value of 32 would indicate
that the text section must begin on a
0 mod 32 word boundary. This value
must be a multiple of 2. It is used
by the binder to determine where to
locate the text section of this
object segment.

is the same as text_boundary except
that it applies to the internal
static area of the linkage section of
this object segment.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.5

MULTICS SUBSYSTEM WRITERS' GUIDE

Structure of the Symbol Section

Standard Object Segment
Page L

15) source_map_relp

16) area_relp

17) section_relp

18) block_size

19) next_block_thread

20) text_relocation_relp

21) def_relocation_relp
22) link_relocation_relp
23) symbol_relocation_relp

24) default_truncate

©) Copyright, 1973, Massachusetts

is a pointer (relative to the base of
the symbol block) to the source map.
(see The Source Map below).

is a pointer (relative to the base of
the symbol block) to the variable
length area of the symbol block. The
contents of this area depend on the
symbol block.

is a pointer (relative to base of the
symbol block) to the base of the
symbol section; that is, the negative
of the offset of the symbol block 1in
the symbol section.

is the size of the symbol block
(including the header) in words.

is a thread (relative to the base of
the symbol section) to the next
symbol block. This item is "0"b for
the last block.

is a pointer (relative to the base of
the symbol block) to text section
relocation information = (see The

Relocation Information below).

is a pointer (relative to the base of

the symbol block) to definition
section relocation information.

is a pointer (relative to the base of

the symbol block) to linkage section
relocation information.

is a pointer (relative to the base of
the symbol block) to symbol section
relocation information.

is an offset (relative to the base of

the symbol block) starting from which
the binder systematically truncates
control information (such as
relocation bits) from the symbol
section, while still maintaining such
information as the symbol tree.

titute of Technology

Ins
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.5

25) optional_truncate

The Source Map

Structure of the Symbol Section
Standard Object Segment

Page 5

12/19/72

is an offset (relative to this base
of the symbol block) starting from
which the binder may optionally
truncate nonessential parts of the
symbol tree in order to achieve
maximum reduction in the size of a
bound object segment.

The source map is a structure which uniquely identifies the
source segments used to generate the object segment. It has the

following format:

declare 1 source_map aligned,
: 2 decl_vers fixed bin initial(1l),

2 size fixed bin,

2 map (size) aligned,
3 pathname_relp bit(18) unaligned,
3 pathname_length bit(18) unaligned,
3 uid bit(36) aligned,
3 dtm fixed bin(71);

1) decl_vers

2) size

3) pathname_relp

L) pathname_length

5) uid

6) dtm

is the version number of the
structure.

is the number of entries in the map
array; that is, the number of source
segments used to generate this object
segment. :

is a pointer (relative to the base of
the symbol block) to an aligned
string containing the full absolute.
pathname of this source segment.

is the length of the above string.

is the unique identifier of this
source segment at the time the object
segment was generated.

is the date-time modified of this
source segment at the time the object
Tegment was created.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.5 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure of the Symbol Section
Standard Object Segment
Page 6

The Relocation Information

The relocation information designates all instances of
relative addressing within a given section of the object segment,
so as ‘to enable the relocation of such a section (as in the case
of binding). A variable 1length prefix coding scheme is used,
where there is a logical relocation item for each halfword of a
given section. I f the halfword is an absolute value
(nonrelocatable), that item is a single bit whose value is zero.
Otherwise, the item is a string of either 5 or 15 bits whose
first bit is set to "1"b. The relocation information s
concatenated to form a single string which may only be accessed
sequentially; if the next bit is a zero, it is a single-bit
absolute relocation item, otherwise it is either a 5- or a 15-bit
item depending upon the relocation codes as defined below.

There are four distinct blocks of relocation information,
one for each of the four object segment sections: text,
definition, 1linkage and symbol; these relocation blocks are
known as rel_text, rel_def, rel_link and rel_symbol,
correspondingly.

The relocation blocks reside within the symbol block of the
generator which produced the object segment. The correspondence
between the packed relocation items and the halfwords in a given
section is made by matching the sequence of items with a sequence
of halfwords, from left to right and from word to word by
increasing value of address.

The relocation block pointed to from the symbol block header
(e.g., rel_text) is structured as follows.

declare 1 relinfo aligned,
2 decl_vers fixed bin initial(2),
2 n_bits fixed bin,
2 relbits bit(n_bits) aligned;

1) decl_vers is the version number of the
structure.

2) n_bits is the length (in bits) of the string
of relocation bits.

3) relbits is the string of relocation bits.

Following is a tabulation of the possible codes and their
corresponding relocation types, followed by a description of each
relocation type. .

() Copyright, 1973, Massachusetts :

titute of Technology
and Honeywell

ns
nformation Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.5

Structure of the Symbol Section
Standard Ohject Segment

Page 7
12/19/72
"0'"b - Absolute
"10000"b - Text
"10001"b - Negative Text
"10010'"b - Link 18
"10011"b - Negative Link 18
"10100"b - Link 15
"10101"b - Definition
"10110"b - Symbo1l
"10111'"b - Negative Symbol
"11000'"b - Internal Storage 18
“11001"b - Internal Storage 15
"11010"b - Self Relative
"11011"b - Unused
"11100"b - Unused
"11101"b - Unused
“11110"b - Expanded Absolute
11111 - Escape
1) Absolute Do not relocate.
2) Text Use text section relocation counter.
3) Negative Text Use text section relocation counter.
The reason for having distinct
relocation codes for negative
quantities is that special coding
might have to be used 1in order to
convert the 18-bit field in question
into its correct fixed binary form.
4) Link 18 Use linkage section relocation
‘ ' counter on the entire 18-bit
halfword. This, as well as the
Negative Link 18 and the Link 15
relocation codes apply only to the
array of links in the linkage section
(i.e., by definition, usage of these
relocation codes implies external
reference through a 1link).
5) Negative Link 18 Same as Link 18 above.
6) Link 15 Use linkage section relocation

counter on the low order 15 bits of
the halfword. This relocation code
may only be used in conjunction with

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.5

MULTICS SUBSYSTEM WRITERS' GUIDE

Structure of the Symbol Section

Standard Object Segment
Page 8

7) Definition

8) Symbol

9) Negative Symbol

10) Internal Storage 18

11) Internal Storage 15

12) Self Relative

13) Expanded Absolute

14) Escape

C) Copyright, 1973, Massachusetts |
Honeywell |

and

an instruction featuring a
base/offset address field.

Indicates that the halfword contains
an address which is relative to the
base of the definition section.

Use symbol section relocation
counter.

Same as Symbol above.

Use internal storage relocation
counter on the entire 18-bi t
halfword.

Use internal storage relocation
counter on the low order 15 bits of
the halfword.

Indicates that the halfword contains
a relocatable address which is
referenced using a location counter
modifier; the instruction is
selfrelocating.

It has been established that a major
part of an object program has the
absolute relocation code; for
efficiency reasons, the expanded
absolute code allows the definition
of a block of absolutely relocated
halfwords. The five bits of
relocation code are immediately
followed by a fixed 1length 10-bit
field which is a count of the number
of contiguous halfwords all having an
absolute relocation. Obviously,
usage of the expanded absolute code
can be economically justified only if
the number of contiguous absolute
halfwords exceeds 15.

Reserved for possible future use.

nstitute of Technology
nformation Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE 11.6

Standard Object Segment
12/1/72

JHE STRUCTURE OF THE OBJECT MAP

The object map contains information which allows the various
sections of an object segment to be located. The map itself may
be located immediately before or immediately after any one of the
five sections. Translators normally place it immediately after
the symbol section. The last word of the segment must contain a
left-justified 18-bit pointer (relative to the base of the object
?egment) to the object map. The object map has the following

ormat:

declare 1 object_map aligned,

2 decl_vers fixed bin init(1),
identifier char(8) aligned,
text_relp bit(18) unaligned,
text_length bit(18) unaligned,
def_relp bit(18) unaligned,
def_length bit(18) unaligned,
link_relp bit(18) unaligned,
link_length bit(18) unaligned,
symb_relp bit(18) unaligned,
symb_length bit(18) unaligned,
bmap_relp bit(18) unaligned,
bmap_length bit(18) unaligned,
format aligned,
bound bit(1l) unaligned,
relocatable bit(1l) unaligned,
procedure bit(1l) unaligned,
standard bit(1l) unaligned,
unused bit(l4) unaligned;

NRNNNNNRNPNNNRNNNRNNDN

WWWWW

1) decl_vers is the version number of the structure.

2) identifier is the constant "obj_map".

3) text_relp is a pointer (relative to the base of the
object segment) to the base of the text
section.

4) text_length is the length (in words) of the text section.

5) def_relp is a pointer (relative to the base gf. ;he
object segment) to the base of the definition

section.

6) def_length is the length (in words) of the definition
section.

titute of Technology

C) Copyright, 1973, Massachusetts Ins
1 Information Systems Inc.

and Honeywel

11.6

MULTICS SUBSYSTEM WRITERS' GUIDE

Structure of The Object Map
Standard Object Segment

Page 2

7) link_relp

8) link_length

9) symb_relp

10) symb_length

11) bmap_relp

12) bmap_length
13) bound

14) relocatable

15) procedure
16) standard

17) unused

C) Copyright, 1973,

is a pointer (relative to the base of the
object segment) to the base of the linkage
section.

is the 1length (in words) of the linkage
section.

is a pointer (relative to the base of the
object segment) to the base of the symbol
section.

is the length (in words) of the symbol
section.

is a pointer (relative to the base of the
object segment) to the base of the break map
section.

is the length (in words) of the break map
section.

is "1"b if the object segment is a bound
segment.

is "1'"b if the object segment is relocatable;
that is, if it contains relocation
information. This information (if present)
must be stored in the segments' first symbol
block. See the MPM Subsystem Writers' Guide
section, The Structure of the Symbol Section.

is "1'"b if this 1is an executable object
segment.

is "1"b if the object segment is in standard
format.

is reserved for future use and must be "0'"b.

Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE 11.7

Standard Object Segment
12/14/72

CONVENTIONS ON GENERATED CODE

This document describes those parts of the generated code
which must conform to a systemwide standard. For a description
of the various relocation codes see the MPM Subsystem Writers'
Guide section, The Structure of the Symbol Section.

Ihe Iext Section

Those parts of the text section which must conform to a
systemwide standard are the entry sequence and text relocation
codes.

Ihe Entry Seguence

The entry sequence must fulfil two requirements: 1) that at
the location preceding the entrypoint (i.e., entrypoint-1) there
is a left adjusted 18-bit relative pointer to the definition of
that entrypoint (within the definition section); and 2) that the
entry sequence executed within that entrypoint store an ITS
pointer to that entrypoint at spl22 so that by inspecting the
procedure's current stack frame one may determine the address of
the entrypoint at which it was invoked, and then reconstruct that
entry's symbolic name through use of its definition pointer.

Jext Relocation Codes

The following 1list defines the only relocation codes which
may be generated in conjunction with the text section, and then
only within the scope of the restrictions specified.

Absolute no restriction.
Text no restriction.
Negative Text no restriction.
Link 18 may only be direct (i.e., unindexed)

reference to a link.

Link 15 may only appear within the address field
of a (base/offset) type instruction (bit

29="1"b). The instruction must not
contain a "10"b tm modifier, and may be
_indexed (i.e., specify an index register)
only if it has a "11"b tm modifier. Also,
the following instruction codes may not
have this relocation code:

C) Copyright, 1973, Massachusetts Institute of Technology
and Horeywell Information Systems Inc.

11.7 MULTICS SUBSYSTEM WRITERS' GUIDE

Conventions On Generated Code
Standard Object Segment

Page 2
STBA (551)8
STBQ (552)8
STCA (751)8
STCQ (752)8

Definition no restriction.

Symbol no restriction, ~

Internal Storage 18 no restriction.

Internal Storage 15 may only apply to the left half of a word.
If the word is an instruction, it must not
contain a "10"b tm modifier.

Self Relative no restriction.

Expanded Absolute no restriction.

The peculiar restrictions imposed upon the Link 15 and
Internal Storage 15 relocation codes stem from the fact that
these relocation codes apply to base/offset type address fields
encountered in the address portion of machine instructions; the
effective value of such an address is computed by the hardware at
execute time. To that end, certain hardware restrictions are
imposed on such instructions. When the Multics binder processes
these instructions, it often resolves them into simple-address
format and has to further modify information in the opcode (right
hand) portion of the instruction word. Therefore, these

relocation codes must only be specified in a context which is
comprehensible to the Honeywell 6180 control unit.

The Definition Secti

Definition relocation codes and implicit definitions are the
parts of the definition section which must conform to a
systemwide standard.

Definition Relocation Codes

Absolute no restfiction.

Text no restriction. .
Link 18 no restriction.
Definition no restriction.

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULT1CS SUBSYSTEM WRITERS' GUIDE 11.7

Conventions On Generated Code
Standard Object Segment

Page 3

12/14/72
Symbol no restriction.
Internal Storage 18 no restriction.
Self Relative no restriction.
Expanded Absolute no restriction.

Implicit Definitions

A1l generated object segments must feature the following
implicit definition,

"symbol_table'" defining the base of the symbol block generated by

the current language processor, relative to the
base of the symbol section.

Ihe Linkage Section

Those parts of the linkage section which must conform to a
systemwide standard are described below.

Ihe Internal Storage

The internal storage is a repository for items of the

internal static storage class. It may contain data items only;
it may not contain any executable code.
Ihe Links

The 1link area may only contain a set of links. The 1inks
must be considered as distinct unrelated items, and no structure
(e.g., array) of 1links may be assumed. They must be accessed
explicitly and individually through an unindexed internal
reference featuring the Link 18 or the Link 15 relocation codes.

Linkage Relocation Codes

Only the 1linkage section header and the links may have
relocation codes associated with them (the internal storarge 2area
has associated with it a single Expanded Absolute relocation

item).

Absolute no restriction; mandatory for the internal
storage area.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.7 MULTICS SUBSYSTEM WRITERS' GUIDE

Conventions On Generated Code
Standard Object Segment

Page 4

Text no restriction,
Link 18 no restriction.
Negative Link 18 no restriction.
Definition no restriction.
.lnternal Storage 18 no restriction.
Expanded Absolute no restriction.

The Symbol Section

The symbol section may contain information related to some
other section (such as a symbol tree defining addresses of
symbolic items), and therefore may have relocation codes
associated with it. They are:

Absolute no restriction.
Text no restriction,
Link 18 no restriction.
Definition no restriction,
Symbol no restriction.
Negative Symbol no restriction,
Internal Storage 18 no restriction,
Self Relative no restriction.
Expanded Absolute no restriction,

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE 11.8

Standard Object Segment
5/29/73

STRUCTURE OF BOUND SEGMENTS

A bound segment is derived from several object segments which
have been combined in order to have all the internal intersegment
references automatically prelinked and to reduce the combined
size by minimizing page breakage. The component segments are not
merely concatenated, however; the binder breaks them apart and
creates an object segment with single text, definition, linkage
and symbol sections as illustrated in Figure 1. As will be
explained below, the definition section and 1link array are
completely reconstructed while the text, internal static and
symbol sections are simply the corresponding concatenations of
the component segments' text, internal static and symbol
sections, with relocation adjustments. (See the MPM Subsystem
Writers' Guide section, the Structure of the Symbol Section.) In
addi:ion, a symbol block for the binder is included in the symbol
section.

relin

The most important differences between bound and unbound
groups of segments are the ways they reference external items and
the ways they can be referenced. Most references by one
component to another component in the same bound segment are
prelinked; 1.e. the 1link references are converted to direct
text-to-text transfers and the associated 1inks are not
regenerated. The remaining external links are coalesced so that
for the whole bound segment there is only one 1link for each
different target. Prelinking enables some component segments to
lose their identity in cases where the bound segment itself s
the main logical entity, having been coded as separate segments
for ease of coding and debugging. Definitions for external
entries which are no longer necessary, i.e., which have became
completely internal, may be omitted from the bound segment (see
the MPM write-up for the bind command).

Definition Section

The definition section of a bound segment is generally more
elaborate than that of an unbound object segment because it
reflects both the combination and deletion of definitions. There
is a definition block for each component that has any externally
referenceable items left. It contains the retained definitions
and the segment names associated with the component. This
organization allows definitions for multiple entries with the
same name to be distinguished. The first definition block is for
the binder and contains a definition for bind_map, which is
discussed below.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.8

Structure of Bound

MULTICS SUBSYSTEM WRITERS' GUIDE

Segments

Standard Object Segment

Page 2

text section

"definition section

_text for component 1

ext for component 2

e——

| linkage header

text for component n

int, static for component 1

int. static for component 2

linkage section ¢

symbol section

int., static for component n

l1inks

fir
S [ock for nder

[symbo lock for component 1

symbol'block for component n

object map

Figure 1:

© Copyright, 1973,

The Structure of a Bound Segment.

Massachusetts =n t

and Honeywell

stitute of Technology
nformation Systems

MULTICS SUBSYSTEM WRITERS' GUIDE 11.8

Structure of Bound Segments
Standard Object Segment
Page 3

5/29/173

The Binder's Symbol Block

The binder's symbol block has a standard header if all of
the components are standard object segments. The symbol block
can be located via the bind_map definition. Most of the items in
the header are adequately explained in the MPM Subsystem Writers'
Guide section, The Structure of the Symbol Section; however, some
have special meaning for bound segments. The format of a
standard symbol block header s repeated below for reference,
followed by the explanations specific to the binder's symbol
block.

declare 1 symbol_block_header aligned,

decl_vers fixed bin initial(1),
identifier char(8) aligned,
gen_version_number fixed bin,
gen_creation_time fixed bin(71),
object_creation_time fixed bin(71),
generator char(8) aligned,
gen_version_name_relp bit(18) unaligned,
gen_version_name_length bit(18) unaligned,
userid_relp bit(18) unaligned,
userid_length bit(18) unaligned,
comment_relp bit(18) unaligned,
comment_length bit(18) unaligned,
text_boundary bit(18) unaligned,
stat_boundary bit(18) unaligned,
source_map_relp bit(18) unaligned,
area_relp bit(18) unaligned,

S i i

section relp bl1§38 natingacd
next_block_thread bit(18) unaligned,
text_relocation_relp bit(18) unaligned,
def_relocation_relp bit(18) unaligned,
link_relocation_relp bit(18) unaligned,
symbol_relocation_relp bit(18) unaligned,
default_truncate bit(18) unaligned,
optional_truncate bit(18) unaligned;

NNNNNNNNNNNNNNNNNNNN NN

2) identifier is the string "bind_map".
6) generator is the string "binder".
11) comment_relp is currently always "0"b.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

11.8 MULTICS SUBSYSTEM WRITERS' GUIDE

Structure of Bound Segments
Standard Object Segment
Page 4

16) area_relp is a pointer (relative to the base of the
symbol block) to the beginning of the bind
map. (See below for a description of the
bind map.) .

Bound segments currently are not relocatable, so none of the
relocation relative pointers or truncation offsets have any
meaning.

The Bind Map

The bind map 1is part of the symbol block produced by the
binder and describes the relocation values assigned to the
various sections of the bound component object segments. It
consists of a variable length structure followed by an area in
which variable 1length symbolic information is stored. The bind
map structure has the following format:

declare 1 bindmap based aligned,

2 decl_vers fixed bin initial(1l),

2 n_components fixed bin

2 component(n_pomponentss aligned,
name_relp bit(18) unaligned,
name_length bit(18) unaligned,
generator_name char(8) aligned,
text_relp bit(18) unaligned,
text_length bit(18) unaligned,
static_relp bit(18) unaligned,
static_length bit(18) unaligned,
symbol_relp bit(18) unaligned,

symbol_length bit(18) unaligned,
defblock_relp bit(18) unaligned,
number_of_blocks bit(18) unaligned;

WWWWUWUWWWWWW

1) decl_vers is a constant designating the format of
this structure; whenever the structure is
modified, so is this constant, allowing
system tools to easily differentiate
between several incompatiable versions of
a single structure.

2) n_components is the number of component object segments
bound within this bound segment.

3) component is a variable-length array featuring one
entry per bound component object segment.

C) Copyright, 1973, Massachusetts lnititut of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 11.8

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

name_relp

name_length

generator_name

text_relp

text_length

static_relp

static_length

symbol_relp

symbol_length

defblock_relp

number_of_blocks

© Copyright, 1973,

Structure of Bound Segments
Standard Object Segment
Page 5

5/29/73

is a pointer (relative to the base of the
bindmap structure) to the symbolic name of
the bound component. This is the name
under which the component object was
identified within the archive file used as
the binder's input (i.e., the name
corresponding to the object's objectname
entry in the bindfile).

is the length (in characters) of the
component's name.

is the name of the translator which
created this component object segment.

is a pointer (relative to the base of the

bound segment) to the component's text
section.

is the length (in words) of the
component's text section.

is a pointer (relative to the base of the
1inkage section) to the component's
internal static.

is the length of the component's internal
static.

is a pointer (relative to the base of the
symg?l section) to the component's symbol
section.

is the length of the component's symbol
section.

if non-zero, this is a pointer (relative
to the base of the definition section) to
the component's definition block (first
class 3 segname definition of that
component's definition block).

is the number of symbol blocks in the
component's symbol section.

Massachusetts Institute of Technology
and Honeywell Information Systems Iinc. (END)*

MULTICS SUBSYSTEM WRITERS' GUICE ' 12.1

Standard Data Formats and Code Sequences
12/14/72

STANDARD STACK AND LINKAGE AREA FORMATS

Because of the complexity of the Multics hardware, the
linkage mechanism and the stack manipulations, a series of
Multics execution environment standards has been adopted. All
standard (supported) translators (including assemblers) must
abide by these standards. All supervisor, standard service and
development procedures will follow these standards, and further,
they will assume that other procedures do so as well.

The Multics Stack

The normal mode of execution in a standard Multics process
makes use of a stack segment. There is at least one stack
segment for each ring. The stack for a given ring has the entry
name stack_R, where R is the ring number, and is located in the
process directory. Each stack contains a header followed by as
many stack frames as are required by the executing procedures. A
stack header consists of pointers to special code and data which
are initialized when the stack is created. Some of the pointers
in the stack header are variable and change as the process
executes. These pointers are in the stack header to insure that
the pointers can always be retrieved without supervisor
intervention (for efficiency). The actual format of the stack
header is described below.

The stack frames (which begin at a location specified in the
stack header) are variable 1in length and contain both control
information and data for dynamically active procedures. In
general, a stack frame is allocated by the procedure to which it
belongs when that procedure is invoked. The stack frames are
threaded to each other with forward and backward pointers making
it an easy task to trace the stack, for whatever reason, in
either direction, The stack discipline described below is
critical to normal Multics operation and any deviations from the
stated discipline may result in unexpected behavior.

The Stack Header

The stack header contains pointers to (per-ring) information
about the process. There also exist pointers to operator
segments and code sequences which can be used to invoke the
standard call, push, pop, and return functions. (See below.)
Figure 1 gives the format of the stack header, The various

pointers and variables mentioned there are described below. A
PL/| declaration of the stack header follows.

C) Copyright, 1973, Massachusetts Instithte of Technology
and Honeywell Information Systems Inc.

GUIDE

MULTICS SUBSYSTEM WRITERS'

12.1

Standard Stack and Linkage Area Formats

Standard Data Formats and Code Sequences

Page 2

jewJo4 43peay yoels 1 94n3 |4

8h+
PaA43SaYy pPaA43sSaYy pPaAiasay PaA43SaY
he+
433uUjod| °43d 403euaad 433ujod 433U)0d
403edadp Aajuj udniay 3jJdoyspoljedadp uaniayl dJo3zeuadg ysnyg
¢+
433jujod 493ujod 433U j0d 433ujod
4ojeaadQ | |e) s403e40dQ |/7d Oju| Sssad%04y Leud)
. i+
493U |0y 433 ujod 493U} 0d 433U} o4
307 pu3j 3oeis uj)3ag oej LLn
I+
2 +
0 +

oeisy

Inc.

Institute of Technology
Systems

Information

Massachusetts
and Honeywell

C) Copyright, 1973,

MULTICS SUBSYSTEM WRITERS' GUIDE 12,1

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences
Page 3

12/14/72

declare 1 stack_header based (sb) aligned,
padl (16) fixed bin,
null_ptr ptr,
stack_begin_ptr ptr,
stack_end_ptr ptr,
lot_ptr ptr,

signal_ptr ptr,
process_info_ptr ptr,
pll_operators_ptr ptr,
call_op_ptr ptr,
push_op_ptr ptr,
return_op_ptr ptr,
short_return_op_ptr ptr,
entry_op_ptr ptr,

pad2 (8) fixed bin;

PR

1) Null Pointer. This field contains a null pointer value, In
some circumstances the stack header can be treated as a stack
frame. When this is done this null pointer field would occupy
the same location as the previous stack frame pointer of the
stack frame. (See below.) The null pointer is wused to
indicate that there is no stack frame prior to the stack
header.

2) Stack Begin Pointer. The stack begin pointer is a pointer to
the first stack frame on the stack. The first stack frame
does not necessarily begin at the end of the stack header.
Other information, for example the linkage offset table, may
be located between the stack header and the first stack
frame.

3) Stack End Pointer. The stack end pointer is a pointer to the
first unused word after the last stack frame. |t points to
the location where the next stack frame will be placed on
this stack (if one is needed). Note that is is required that
a stack frame be a multiple of 16 words and hence both of the
above pointers point to zero (mod 16) word boundaries.

4) Lot Pointer. This is a pointer to the linkage offset table
(lot) for the current ring. The lot is a table containing
(packed) pointers to the linkage sections known in the ring
in which the 1lot exists. The linkage offset table and
combined linkage segment are described below.

5) Signal Pointer. This is a pointer to the signalling
procedure to be invoked when a condition is raised in the
current ring.

© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

12.1 MULTICS SUBSYSTEM WRITERS' GUIDE

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences
Page 4

6) Process Info Pointer. This i
may be invoked to return spec
the process.

S a pointer to a procedure which
ifi

fic variables of interest about

7) PL/1I Operators Pointer. This is a pointer into
pl1_operators_. It is used by PL/I and FORTRAN object code
to locate the appropriate operator segment. The pointer is
in the base of the stack to avoid a 1linkage fault to
P11l _operators_ from every PL/| or FCRTRAN procedure segment
invoked in the process.

8) Call Operator Pointer. This is a pointer to the Multics
standard call operator used by ALM procedures. It is used to
invoke another procedure in the standard way.

S) Push Operator Pointer. This is a pointer to the Multics
standard push operator which is used by ALM programs when
allocating a new stack frame. A1l push's performed on a
Multics stack should use either this operator or an
equivalent one, or unexpected behavior may result. (The push
operation was formerly called save.)

10) Return Operator Pointer. This is a pointer to the Multics
standard return operator used by ALM procedures. it assumes
that a push has been performed by the invoking ALM procedure
and will pop the stack prior to returning control to the
caller of the ALM procedure.

11) Short Return Operator Pointer. This 1is a pointer to the
Multics standard short return operator used by ALM

procedures. It is invoked by a_ procedure which has not
performed a push to return control to its caller.

12) Entry Operator Pointer. This is a pointer to the Multics
standard entry operator. This entry operator currently does
little more than find a pointer to the linkage section.

The previous five operators are invoked by the object code
generated by the ALM assembler. Other translators which hope to
use the standard call/push/return strategy should also use these
operators. For a detailed description of what the operators do
and how to invoked them see the MPM Subsystem MWriters' Cuide
section, Subroutine Calling Sequences.

The PL/1 and FORTRAN compilers do not use these operators.
Instead they use slightly different operators which perform
equivalent and compatible functions. All supported translators,
nowever, depend on the effects generated by these operators.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

~/

MULTICS SUBSYSTEM WRITERS' GUIDE 12.1

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences
Page 5

12/14/72

Unspecified areas of the stack header should not be used as
they are reserved for future expansion.

The Stack Erame

This section describes the format of a standard Multics
stack frame. The format should be strictly adhered to in that
several critical procedures of the Multics system depend on it.
A bad stack segment or stack frame can easily lead to process
termination, looping, and other undesirable effects.

In the discussion which follows the concept of owning a
stack frame refers to the procedure that created the stack frame
(with a push operation). Some programs (generally ALM programs)
never perform a push and hence do not own any stack frame. I f
such a procedure 1is executing it can neither call another
procedure nor use stack temporaries. A1l stack information
refers to the program which called any such program.

Figure 2 below illustrates the detailed structure of a stack
frame. The following descriptions are based on that diagram and
on the following PL/| declaration,

declare 1 stack_frame based (sp) aligned,
padl (16) fixed bin,
prev_stack_frame_ptr ptr,
next_stack_frame_ptr ptr,
return_ptr ptr,

entry_ptr ptr,

operator_link_ptr ptr,
argument_ptr ptr,

reserved (2) fixed bin,
on_unit_rel_ptrs (2) bit(18) unaligned,
operator_return_offset bit (18),
pad2 (8) fixed bin;

NN

1) Previous Stack Frame Pointer, The previous stack frame
pointer is a pointer to the base of the stack frame of the
procedure which called the procedure owning the current stack
frame. This pointer may or may not point to a stack frame in
the same stack segment.

2) Next Stack Frame Pointer. The next stack frame pointer points
to the base of the next stack frame. For the last stack frame
on a stack the pointer points to the next available area in
the stack where a procedure can lay down a stack frame; i.e.,
it has the same value as the stack end pointer in the stack

© Copyright, 1973, Massachusetts Institute of Technology
' and Honeywell Information Systems Inc.

GUIDL

MULTICS SUBSYSTEM WRITERS'

12.1
Standard Data Formats and Code Sequences

Standard Stack and Linkage Area Formats
Page 6

JewJlo4 dwed4 }oelg :z d4nJi4

s3djJeaodwa)

Oh+

93eJ4035 4931539y

e+

POAJ3SaY juawn3ay 403 edad

49jujodpajujoq aldequyn
L:N+

493uUj0d 493ujod| 493ujod Bweu4
Aa3u uJanlay 340315 3IXON

43jujod Bwe.q
%0B1S SNO|AdUY

9T +

93eJ4031G5 4931S)33y pue 3seg

0 + (dBwedjiTyoeysy

Inc.

Institute of Technology
Systems

and Honeywell Information

C) Copyright, 1973,'Massachusetts

MULTICS SUBSYSTEM WRITERS' GUIDE 12.1

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences
Page 7

12/14/72

base. The previous stack frame pointers and the next stack
frame pointers for the stack frames on a stack form threads
through all active frames on the stack. These two threads are
used by debugging tools to search and trace the stack.

3) Return Pointer. This is a pointer to the location to be
transferred to in order to return to the procedure owning the
given frame. This pointer is undefined if the procedure has
never made a «call out, and points to the return location
associated with the last call out if the given procedure has
been returned to and is currently executing. (Note: For
Version | PL/| programs, this pointer points into a special

. return location in pll_operators, the Version | operator
segment, See below.)

4) Entry Pointer. This is a pointer to the procedure entry point
which was called and which owns the stack frame. The pointer
points to a standard entry point. See the MPM Subsystem
Writers' Guide section, The Structure of the Text Section.

5) Operator Linkage Pointer. For PL/I and FORTRAN procedures,
this 1is a pointer into the operator segment being used by the
procedure owning the given stack frame. For machine language
programs, this pointer points to the linkage section for the
procedure.

6) Argument Pointer. This is a pointer to the argument 1list
passed to the procedure owning the given stack frame.

7) On Unit Relative Pointers. This word contains two relative
pointers to on unit information contained within the stack
frame. This on unit information is valid if and only if bit
29 of the second word of the previous stack frame pointer is a
1. (Note that this bit was automatically set to 0 when a push
was performed by the procedure owning the stack frame.) The
left half of the word is a pointer (relative to the stack
frame base) to a list of enabled conditions. The right half.
of the word is a pointer (relative to the stack frame base) to
a list of special entries which are enabled for the current
stack frame. These latter entries include default handlers
and cleanup procedure information if any were specified by the
procedure owning the stack frame,

8) Operator Return Offset. This word contains a return location
for certain pll_operators_ functions. |If the left half of the
word is nonzero it 1is a relative pointer to the return
location in the compiled program (return from pll_operators_).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Infcrmation Systems Inc.

12.1 MULTICS SUBSYSTEM WRITERS' GUIDE

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences
Page 8

If the word is zero, a dedicated register (known by
pll_operators_) contains the return location.

Eurther Notes On Stack Frames

There are two major areas of a stack frame which are not
explicitly defined above. The first area consists of the first
16 words of the stack frame and the second area consists of words
32 through 39 of a stack frame. These areas have a well defined
purpose for ALM programs and are used internally by the PL/! and
FORTRAN programs. The contents of these areas is not, however,
always defined or meaningful. The procedure owning the stack
frame can use these areas as it sees fit.

For ALM programs the areas are used by the call operator as
invoked by the call pseudoop. The pointer registers are stored
in the first (16-word) block and the arithmetic registers are
stored in the second (8-word) block.

For PL/1 and FORTRAN programs it is difficult to clearly
state the use of these areas. Version | PL/| programs, for
example, store the arithmetic registers at an offset of 8 within
the stack frame and use the rest of these areas for internal
control information. Version Il PL/I programs do not normally
store the arithmetic registers anywhere in the stack frame.

Linkage Offset Table

A pointer exists (as described above) in each stack header
pointing to the linkage offset table (lot) for the current ring.

The lot, in turn, contains packed pointers to linkage sections of
segments known " in the current ring, A packed pointer to the

linkage section for a particular object segment (with segment
number N) is found at the N-th entry (numbered from zero) in the
lot. Each entry is one word in length with the first 18 bits
containing the segment number and the second 18 bits containing
the offset of the linkage section. A linkage offset table has
the following format:

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 12.1

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences

Page S
12/14/72
{lot> +0 segno offset
+1 segno offset
+2 Segno offset
+n-1 segno T offset
+n segno offset

The length of the lot, n, can be specified by the user.
Combined Linkage Area

In general, the linkage sections for all object segments in
a given ring of a process are copied into an area known as the
;g_glngg 1inkagg area. This area may be located in the stack of
the given ring and/or a sequence of one or more segments in the
process directory with the names combined_linkage_R.nn where R is
the given ring and nn is a sequence number ranging from 00 to 99.
Such a segment is called a combined linkage segment. Space for
the combined linkage area is initially allocated either in the
segment combined_linkage_R.00 or in the stack. (The choice of
which space is used 1is under the control of the project
administrator.) In either case, if this space is used up a new
segment combined_linkage_R.0l1 is created. In general, when a
combined 1linkage segment is filled up a new one is created with
the next higher sequence number.

Each combined linkage segment (and the space in the stack if

it is used) consists of a header followed by contiguous blocks,
one block for each 1linkage section. |In addition, the linkage
offset table may be located in the combined linkage area.

The format of the header is as follows:

0 free-ptr
1

2 size

3 tag

L reserved

.

7 {reserved |

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

12.1 MULTICS SUBSYSTEM WRITERS' GUIDE

Standard Stack and Linkage Area Formats
Standard Data Formats and Code Sequences
Page 10

It is described by the following pll declaration:

declare 1 combined_linkage_header aligned,
free_ptr ptr,

size fixed bin,

tag fixed bin,

pad(4) fixed bin;

NN

pointer to the first free word in the combined

1) free_ptr a
nkage segment or area of stack.

is
1i

2) size is the maximum size of the combined 1linkage segment
or area of stack.

3) tag is the sequence number of this combined 1linkage
segment,

4) pad is reserved for future use and must not be used by
the user.

The linkage offset table entry (see above) of a given object
segment usually points to the block in the combined linkage area
which contains the linkage section for that segment. Sometimes a
separate segment is created for the linkage section of an object
segment. In this case the 1ot entry points to this segment.

For the format of the linkage section see the MPM Subsystem
Writers' Guide section, The Structure of the Linkage Section.

Warning
The entry pointer (the fourth item of a stack frame - in

words 22 and 23) will not be implemented until Multics is
operating on the Honeywell 6180 hardware.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)#*

MULTICS SUBSYSTENM WRITERS' GUIDE 12.2

Standard Data Formats and Code Sequences
12/13/72

SUBROUTINE CALLING SEQUENCES

This section describes the Multics standard call and return
conventions. For information about the format of stack segments
and stack frames see the MPM Subsystem Writers' Guide section,
Standard Stack and Linkage Area Formats.

There are seven basic functions which must be performed at
one time or another in the general case of one procedure calling
another and then being returned to. These are:

1) calling a procedure -- i.e., transferring control to the
procedure and passing an argument list pointer to the
called procedure,

2) generating a linkage pointer for the called procedure,
3) creating a stack frame for the called procedure,

L) saving certain standard items in the stack frame of the
called procedure,

5) releasing the stack frame of the called procedure just
prior to returning,

6) reestablishing the execution environment of the calling
procedure, and

7) returning control to the calling procedure.

Note that preparation of the argument list, although
necessary, is not included above because the operators described
below need know nothing about the format of an argument list.
The argument list format is described below, under The Argument

List.

Operators to perform the above functions have been provided
in the standard operator segments pll_operators (for PL/I Version
| programs) and pll_operators_ (for PL/I Version II, FORTRAN, and
ALM procedures). These operators are invoked when appropriate by
the object code generated by these translators.

This document describes the operators used by ALM
procedures. The operators used by PL/! and FORTRAN procedures
are basically the same but differ at a detailed level due to:)
slight changes in the execution environment when PL/! and FORTRAN
programs are running; and 2) simplification and combination of
operators made possible by PL/1's knowledge of the execution
environment. The PL/! and FORTRAN operators will not be

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

12.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences
Page 2

described here other than to define a mi nimum execution
environment which must be established when returning to a PL/I or
FORTRAN program.,

The following description is, in general, in Honeywell 6180
hardware terms. The same conventions apply on the 645 system
wi th the additional restriction that the normal execution
environment assumes the 8 base registers are paired to each other
in the normal manner (i.e., even bases are internal, and the
pairings are 0-1, 2-3, 4-5, 6-7).

To perform the seven functions mentioned above for ALM
procedures, five operators have been provided upon which ALM
object code calls.

These operators are:

1) call performs function 1) above,

2) entry performs function 2) and part of function &)
above,

3) push performs function 3) and part (the rest) of

function 4) above,
L) return performs functions 5), 6), and 7) above,

5) short_return performs functions 6) and 7) above.

Call Operator

The call operator transfers to the called procedure passing
(in pointer register 0) a pointer to the argument 1list to be
passed to the called procedure. This operator is invoked in two
ways from ALM procedures. The first, as a result of the call
pseudo-op, invokes the <call operator after saving the machine
registers in the calling program's stack frame. Upon return to
the calling program, these saved values are restored into the
hardware registers by the calling procedure. The second way that
ALM procedures can invoke the call operator is as a result of the
short_call pseudo-op. This is used rather than the call
pseudo-op where the calling procedure does not need all of the
machine registers saved and restored across the «call. The ALM
procedure can selectively save whatever registers are needed.

Note that neither the call nor the short_call pseudo-ops
(nor the PL/! and FORTRAN equivalents) require or expect the
machine registers to be restored by the called procedure. In

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 12.2

Subroutine Calling Sequences

Standard Data Formats and Code Sequences
Page 3

12/13/72

fact only the pointer registers 0 (operator segment pointer), 6
(stack frame pointer), and 7 (stack base pointer) are ever
guaranteed to be restored across a call. It is up.to the calling
procedure to save and restore any other machine registers which
are needed.

Entry Operator

The entry operator used by ALM programs performs two
functions. It generates a pointer to the linkage section of the
called procedure (which it leaves in pointer register 4) and it
stores a pointer to the entry in what will be the stack frame of
the called procedure (if the procedure ever creates a stack frame

for itself). At the time the entry operator is invoked a new
stack frame has not yet been established. Indeed, the called
procedure may never create one. However, it is «certainly

possible to know where the stack frame will go if and when it s
created and this knowledge is used to store the entry pointer.

The entry operator is invoked by an ALM procedure when a
procedure transfers to a label in another procedure when has been
declared as an entry via the entry pseudo-op. The transfer is
actually made to an entry structure which consists of the
following (ALM) code: .

vfd 18/entry_definition,18/0
entry: tspbp sblentry_op, *

. The operator returns to the instruction after the tspbp
instruction which may or may not be another transfer instruction.

The word before the tspbp instruction contains a pointer
(relative to the base of the definition section) to a definition
for the entry. The definition will yield the entry name and
(eventually) the number and type of arguments expected by the
entry. Note that a link to the entry will, when snapped, point
to the tspbp instruction. It is therefore an easy matter to find
information about the entry siven a pointer to the entry.

Note that some ALM programs may not require 2 linkage
pointer. Such programs can declare the label to be transferred
to with a segdef pseudo-op. This will cause the appropriate
definition and linkage information to be generated so that other
procedures can find the entry point. vihen called, the transfer
will be straight to the code at the label and the normal entry
structure will not be generated or used. No linkage pointer will
be found nor will an entry pointer be saved. This technique is

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

12.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences
Page 4

recommended only where speed of execution is of utmost importance
since it avoids calculation of useful (debugging) information.

Push Operator

The push operator used by ALM procedures is invoked as a
result of the push (formerly save) pseudo-op which 1is wused to
create a stack frame for the called procedure. In addition to
creating a stack frame, several pointers are saved in the new
stack frame. These are:

1) argument pointer

2) linkage pointer

3) previous stack frame pointer
&) néxt stack frame pointer

If the called procedure were defined as an entry (rather than
segdef) the entry pointer would already have been saved in the
new stack frame.

The push pseudo-op must be invoked if the called procedure
makes further calls itself or uses temporary storage. Note that
due to their manner of execution, PL/! and FORTRAN procedures
combine the entry and push operators into a single operator.

The push operator (and the return operators to be mentioned
next) are managers of the stack frames and the stack segment in

general. The push operator establishes the forward and backward
stack frame threads and updates the stack end pointer ?n the

stack header appropriately. The return operators use these
threads and also update the stack end pointer as needed. Any
program which wishes to duplicate these functions must do so in a
way which is compatible with this document and the MPM Subsystem
Writers' Guide section, Standard Stack and Linkage Area Formats.

Return Operator

The return operator is invoked by ALM procedures which have
specified the return pseudo-op. The return operator pops - the
stack, reestablishes the minimum execution environment and
returns control to the calling procedure. Note that the only
registers restored are pointer registers 06, 6 and 7 as mentioned
above and none of the arithmetic registers.

‘ C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 12.2

Subroutine Calling Sequences

Standard Data Formats and Code Sequences
Page 5

12/13/72

Short Return Operator

The short_return operator is invoked by ALM procedures which
have specified the short_return pseudo-op. The short return
operator differs from the return operator in that the stack frame
is not popped. This return is used by ALM procedures which did
not perform a push.

Code Seauences

The following code sequences are the ones that will be
generated by the assembler for the specified pseudo-op. Note
that the code generated by ALM is the same for all versions of
the assembler and that only the code invoked (i.e., in the
operator segment) changes as we progress to the final
call/push/return strategy.

There are three sets of expanded code corresponding to the
following three versions of the operators:

1) the operators installed on the 645 prior to changing over
to the new call/push/return strategy,

2) the operators installed on the 645 after changing over to
the new call/push/return strategy,

3) the operators that will be used on the Honeywell
6180 hardware.

The code in the left hand columns is what will be generated
by the indicated pseudo-op. This code will be found in the

actual object code. The code in the right hand columns is the
code in the operator segment that will be invoked by the
corresponding pseudo-op.

lnterim Honeywell 645 Call/Push/Return Code Sequences

call:

stb spl0

sreg spl32

eapap arglist
eapbp entrypoint
tsblp sblcall_op, *

(© Copyright, 1973, Massachusetts Institute of Technolory
and Honeywell Information Systems Inc.

12.2

MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences

Page 6

1db
lreg

short_call:

eapbp
tsblp

eaplp

return:

tra

short_return:

tra

entry:

tsbbp

tra

stplp
sti
eaplp
tra
spl0
spl32

entrypoint
sblcall_op,*

splreturn_ptr
splreturn_ptr+l
spllip_ptr, *
bpl0

(as above)

spllp_ptr,*

sblreturn_op, *

1db
lreg
rtcd

sbishort_return_op, *

1db

lreg
rted

sblentry_op, *

earbp
eaplp
stpbp
lda
1da
eablb
eablp
tra

executable_code

splprev_sp, *
spl8
splreturn_ptr

spl0

spl8
splreturn_ptr

bpl-1
splnext_sp, *
Iplentry_ptr
lplentry_ptr
sb|lot_ptr,*au
0,au

0,al

bpll

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE

push:

eax7
tsbbp

12.2

Subroutine Calling Sequences

Standard Date Formats and Code Sequences

stack_frame_size
sb|push_op, *

stbpb
eapbp
stpsp
stpap
stplp
eapsp
eapbp
stpbp
eapbp
stb

tra

splnext_sp, *
splnext_sp, *
bplprev_sp
bplarg_ptr
bpllip_ptr
bp|0

spl0,7
splnext_sp
spl0,*

spl0

bpl0

Einal Honeywell 645 Call/Push/Return Code Sequences

call:

stb
sreg
eapap
eapbp
tsblp

1db
lreg

short_call:

eapbp
tsblp

eaplp

spl0

spl32
arglist
entrypoint
sblcall_op, *

stplp
eaplp
tra
sp|0
spl32

entrypoint
sblcall_op, *

splreturn_ptr

spllip_ptr,*
bp|0

(as above)

splip_ptr,*

Page 7

12/13/72

(© Copyright, 1973, Massachusetts Institute of Technology

and Honeywell

Information Systems

Inc.

12.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences

Page 8
return:
tra sblreturn_op, *
stpsp sblstack_end_ptr
eapsp splprev_sp, *
eapap splop_ptr,*
rtcd splreturn_ptr

short_return:

tra sblshort_return_op, *
eapap splop_ptr,*
rtcd splreturn_ptr

entry:

tsbbp sblentry_op, *
eapbp bpl-1
eaplp sblstack_end_ptr,*
stpbp 1plentry_ptr
1da 1plentry_ptr
1da sbllot_ptr,*au
eablb 0,au
eablp 0,al
tra bpll

tra executable_code

push:

eax7 stack_frame_size

tsbbp sblpush_op, *
stpbp sblstack_end_ptr,*
eapbp sb|lstack_end_ptr,*
stpsp bplprev_sp
stpap bplarg_ptr
stplp bplip_ptr
eapsp bpl0
eapbp spl0,7
stpbp sblstack_end_ptr
stpbp splnext_sp
tra spl0, *

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS'

GU I DE

12.2

Subroutine Calling Sequences
Standard Data Formats and Code Sequences

Honeywell 6180 Call/Push/Return Code Seguences
call:
spri sp|0
sreg spl32
eppap arglist
eppbp entrypoint
tsplp sblcall_op,*
sprilp splreturn_ptr
epplp spllip_ptr,*
callsp bpl0
1pri spl0
Ireg spl32

short_call:

eppbp
tsplp

epplp
return:

tra

short_return:

tra

© Copyright, 1973,

entrypoint
sblcall_op, *

(as above)

spllp_ptr,*

sblreturn_op, *

sprisp
eppsp
epbpsb
eppap
rtcd

Page 9

12/13/72

sblstack_end_ptr

splprev_sp,*
spl0
splop_ptr,*
splreturn_ptr

sblshort_return_op, *

epbpsb

eppap
rtcd

Massachusetts |
and Honeywell |

ns
nf

spl0

splop_ptr, *
splreturn_ptr

titute of Technology

ormation Systems

Inc.

12.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences

Page 10
entry:
tspbp sblentry_op,*
eppbp bpl-1
epplp sblstack_end_ptr,*
spribp Iplentry_ptr
epaq bpl0
lprplp sbllot_ptr, *au
tra bpll
tra executable_code
push:
eax? stack_frame_size
tspbp sb|push_op, *
spribp sblstack_end_ptr,*
eppbp sb|stack_end_ptr,*
sprisp bplprev_sp
spriap bplarg_ptr
sprilp bpllip_ptr
eppsp bpl0
eppbp spl0,7
spribp sblstack_end_ptr
spribp splnext_sp
tra spl0,*
Conventions

The following conventions are used in the standard
environment and should be followed by any translators or code
written by users.

1) The only registers that will be restored across a call are the
pointer registers

0 (ap) operator segment pointer
6 (sp) stack frame pointer
7 (sb) stack base pointer.

The operator segment pointer will be restored correctly only
if it 1is saved at some time prior to the <call (e.g., at
entry time).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 12.2

Subroutine Calling Sequences

Standard Data Formats and Code Sequences
Page 11

12/13/72

2) The code generated by the ALM assembler assumes that pointer
register 4 (1p) always points to the linkage section for the
executing procedure.

3) While operating on the 645 the bases are paired in the normal
manner (i.e., even bases are internal, and the pairings are
0-1' 2-3' l‘-s, 6"7).

Ihe Argument List

When a standard call is performed, the argument pointer
(pointer register 0) is set to point at the argument list to be
used by the called procedure. The argument list is a sequence of
pointers and control information about the arguments. The
argument header contains a count of the number of arguments, a
count of the number of descriptors and a code specifying whether
the argument 1list contains an extra stack frame pointer. The
format of the argument list is shown below. In this diagram, n

is the number of arguments passed to the called procedure. The
following descriptions refer to items appearing in the diagram
below.

arg_count is in the left half of word 0, and is two times the
number of arguments passed.

code is in the right half of word 0, and is 4 for normal
intersegment calls and 10 (octal) for <calling
sequences that contain an extra stack frame pointer.
This pointer occupies the two words following the

last argument pointer. It is present for calls to
PL/| internal procedures and for calls made through

PL/! entry variables.

desc_count is in the left half of word 1 and is two times the
number of descriptors passed. If this number is
non-zero it must be two times the number of
arguments passed; i.e., if any descriptors are

passed, all must be passed.

The argument list must begin on an even word boundary. The
pointers in the argument list need not be ITS pointers; however,
they must be pointers which the hardware can indirect through,
Packed (unaligned) pointers cannot be used. The format of an
argument list follows:

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

12.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences
Page 12

arg_count Icode

desc_count k

Pointer to argument 1

Pointer to argument 2

A\

\
A\

\\

Pointer to argument n

Optional pointer to parent's stack frame

Pointer to descriptor 1

Pointer to descriptor 2

P) o
z -
I Pointer to descriptor n

The i'th argument pointer points to the i'th argument
directly. The i'th descriptor pointer points to the descriptor
associated with the i'th argument. The format for a descriptor
is as follows: :

declare 1 descriptor,
2 flag bit(l))
2 type bit(6),
2 packed bit(1),

2 number_dims bit(4),
2 size bit(24);

1) flag always has the value "1'"b and is used to tell this
. descriptor format from an earlier format.

2) type is the data type according to the following
encoding:

Real Fixed Binary Short

Real Fixed Binary Long

Real Floating Binary Short
Real Floating Binary Long
Complex Fixed Binary Short
Complex Fixed Binary Long
Complex Floating Binary Short
Complex Floating Binary Long
Real Fixed Cecimal

WO NOWMEWN M-

C) Copyright, 1973, Massachusetts Institute of Technolorgy
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 12.2

Subroutine Calling Sequences

Standard Cata Formats and Code Sequences
Page 13

12/13/72

10 Real Floating Decimal

11 Complex Fixed Decimal

12 Complex Floating Decimal
13 Pointer

14 Offset

15 Label

16 Entry

17 Structure

18 Area

19 Bit-string

20 Varying Bit-string

21 Character-string

22 Varying Character-string
23 File

3) packed has the value "1"b if the data item is packed.
' (Shown as '"p" in the diagram of a descriptor
below.)

4) number_dims holds the number of dimensions in an array.
(Shown as '"m" in the diagram of a descriptor
below.) The array bounds and multipliers follow
the base descriptors as follows:

ltypelp|m] size basic descriptor

ower bound descriptive information
upper bound for the m=th (rightmost)
multiplier dimension

lower bound descriptive information
upper bound for the first (leftmost)
multipiler dimension

If the data is packed the multipliers give the
element separation in bits, otherwise they give
the element separation in words.

5) size holds the size (in bits, characters or words) of
string or area data, the number of structure

elements for structure data, or the scale and
precision (as two 12-bit fields) for arithmetic

data. For arithmetic data the scale is recorded

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

12.2 MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Calling Sequences
Standard Data Formats and Code Sequences
Page 14

in the leftmost 12 bits and the precision is
recorded in the rightmost 12 bits. The scale is a
2's complement, signed value.

The descriptor of a structure is immediately followed by
descriptors of each of its members. For example, (assuming that
each element of C or D occupies one word) the following
declaration produces the descriptor shown.

declare 1 S,

2 A,
2 B (5),
3 C,
3 D;
basic descriptor of S
basic descriptor of A
basic descriptor of B
1 lower bound of B
5 upper bound of B
2 element separation of E
basic descriptor of C
1 lower bound of C
5 upper bound of C
2 element separation of C
basic descriptor of C
1 lower bound of D
5 upper bound of D
2 element separation of D

Note that members of dimensioned structures are arrays and their
descriptor contains copies of the bounds of the containing
structure.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Informatior Systems Inc. (END)=*

MULTICS SUBSYSTEM WRITERS' GUIDE 13.4

Subsystem Programming Environment
12/26/72

INTRAPROCESS ACCESS CONTROL (RINGS)

Control of access between processes is described in the MPM
Reference Guide section, Access Control. However, the ability
to grant distinct access rights on segments only to different
processes is not sufficient control in Multics. For example,
those procedures and data segments which control the performance
of critical system functions (e.g., process switching, paging,
access control, etc.) within a process must be protected from
tampering by user programs. This type of intraprocess access
control is achieved by the Multics ring mechanism. Actually, the
ring mechanism is a generalization of the simple supervisor/user
protection scheme required by the example above. The ring
mechanism permits users to write subsystems which are protected
from other users in much the same way the supervisor is protected
from wusers. For example, consider a user who wished to have a
segment contain a list of his employees and their salaries. He
wants to permit other users to have access to the list of
employees and he will allow some other users to know the average
salary of his employees, but he does not want anyone else to have
access to the specific salary of each employee. In other words
he wishes other users to have access to the data in the segment
but only in a controlled manner and he wants to be able to
specify the control. The read, write, and execute access modes
of segments do not provide this capability; however, the ring
mechanism does. In effect, rings permit arbitrarily refined and
controlled access to objects by allowing any user to define
arbitrary objects and write procedures which operate on these
objects, and encapsulate these procedure and objects in a closed
controlled environment which can be entered at specific entry
points.

One of the important properties of the ring mechanism is
that it is invisible to users of segments that are protected by
it. Only those programmers actually writing subsystems that need
ring protection need be familiar with the use and operation of
rings. A1l other users need no further information about access
control in the storage system and need not read the remainder of

this section.

Conceptually, the Multics ring mechanism is quite

‘straightforward. Picture a series of concent[ic circles. Let
all the segments in a process reside somewhere in the picture,

such that each segment is between the boundaries of some pair of

circles, or in the innermost circle. Now label the areas
contained by the circles, starting with the innermost, from RO to
R7. (The "R" stands for "ring", for reasons which are probably

obvious.) The primary rule is that segments in the same ring
have free access to one another, subject to any limi tations

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

13.4 MULT!ICS SUBSYSTEM WRITERS' GUIDE

Intraprocess Access Control
Subsystem Programming Environment
Page 2

prescribed by their access modes. Access between rings s
limited according to rules given below. The first point to
notice, however, is that once we have established the ring model,
we provide for walling off ordinary user segments from those
segments which belong to the supervisor by assigning the segments
to different rings.

The primary rule of access between rings is that segments in
lower-numbered rings have, in general, unlimited access to
segments in higher-numbered rings, subject, of course, tO mode
restriction on particular segments; whereas segments in
higher-numbered rings have no direct access to segments in
lower-numbered rings. Access refers to both the ability to
execute a segment and the ability to read or write it. Thus,
from the outside of the ring structure looking in toward the

central supervisor in ring 0, the ring boundaries are walls.
Recall that within a ring (which is to say, between walls) life
goes on unimpeded by the protection mechanism. It is when a wall

must be crossed that the protection mechanism comes into play.

Those segments which comprise the central supervisor are in
ring 0. Ring 1 contains system routines, largely administrative
in nature, which are not so sensitive as the central supervisor
and which cause less disastrous results in case of failure.
Rings 3 through 7 are potentially available for use by users.
Most user processess start running in ring L. A built-in
advantage of this structure is that users may avail themselves of
"spheres of protection" just as the supervisor does.

In a process, the ring which contains the currently

executing segment is called the current ring of exgcution and is
part of the state of the process. Control must, o course, be

able to pass from ring to ring. By virtue of the ring
structure's basic definitions, passing control outward is legal.
That is, segments in outer rings are accessible to those in inner
rings. However, by virtue of those same definitions we have yet
to see a way in which an inward call could be legal. That is,
segments in inner rings are in general inaccessible to those in
outer rings. The means of legitimizing inward calls is to cause
one or more entry points of a given procedure segment to be
treated as gates in the protection wall. A gate, then, is an
entry point to an inner ring procedure segment which may be
called by an outer ring segment.

Segment Ring Brackets

The description given so far indicates that each segment in
the system must be a member of a single ring and if the segment

C) Copyright, 1973, Massachusetts Institute of Technolory
and Horeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 13.4

Intraprocess Access Control
Subsystem Programming Environment
Page 3

12/26/72

is executable, it executes in that ring. It is, however, very
often convenient to allow a segment to reside in (be a member of)
several rings so that it may execute in any of these rings with
the access appropriate to that ring. This is accomplished by
giving each segment an execute bracket that delimits the rings in
which the segment may be executed if it has execute access mode
without having to change tke ring of execution of the process.
The execute bracket 1is specified by means of two ring numbers,
for example, 3, 5. The execute bracket includes all rings
between and including the two ring numbers; in the example the
execute bracket contains rinegs 3, 4, and 5. If the process is
executing in a ring contained in the execute bracket of a segment
and control is transferred to the segment then no change of ring
of execution results. |If the process 1is executing in a ring
whose number is less than the lowest ring number in the execute
bracket, then when the segment is transferred to, the ring of
execution will be changed to the 1lowest ring in the execute
bracket. In the example, if the process is executing in ring 1
and the segment is transferred to, then the ring of execution
will become 3. |If the process is executing in a ring whose
number is greater than the highest ring number in the execute
bracket, then the ring of execution will become the highest ring
in the execute bracket (5 in the example) when the segment is
transferred to, assuming the segment contains a gate. In this
latter case of gates it is also useful to specify those rings in
which the segment 1is accessible through a gate. This gate
bracket is specified by appending a third ring bracket number
after the two already used for defining the execute bracket,
e.g€., 3, 5, 6. The gate bracket <includes those rings whose
number is greater than the second ring bracket number and less
than or equal to the third bracket number (in the example only
ring 6). An attempt to execute a segment from a ring greater
than the gate bracket is not allowed. The execute bracket is

still specified by the first two ring bracket numbers as before.

Since, in order to contain a gate, a segment must have a
non-empty gate bracket, it is convenient to choose a non-empty
gate bracket for a segment as the definition of a gate segment;
e.g., an executable segment with ring bracket numbers 4, 5, 7 is

a gate segment because its gate bracket contains rings 6 and_ 7
whereas an executable segment with ring bracket numbers &4, 5, §

is not a gate segment because its gate bracket is empty. In ‘tbe
current implementation, gate segments must also have a §pecuf|c
format. See the MPM Subsystem Writers' Guide section on

translate_gate for a description of how to generate gate
segments. The above use of ring bracket numbers dictates that
they be increasing; i.e., the first ring bracket number must be

() Copyright, 1973, Massachusetts Institute of Technology
_ and Honeywell Information Systems |nc.

13.4 : MULTICS SUBSYSTEM WRITERS' GUIDE

Intraprocess Access Control
Subsystem Programming Environment
Page U4

less than or equal to the second ring bracket number which, in
turn, must be 1less than or equal to the third ring bracket

number.

The ring bracket numbers also have meaning with respect to
the read and write access modes. The rings less than or equal to
the first of the ring bracket numbers are termed the write
bracket. A process must be executing in a ring within the write
bracket of a segment and have write mode on that segment in order
to write the segment. |If a process is running in a ring higher
than the write bracket then it may not write into the segment
even though the process has write mode on the segment. The rings
less than or equal to the second ring bracket number are called
the read bracket. Processes must be running in the read bracket
of a segment and have read mode to the segment in order to. read
it. The table below summarizes the refinements of access which
are controlled by the ring brackets of a segment and the
process's ring of execution, assuming the process has read, write
and execute access modes specified on the ACL of the segment.
Remember that ring brackets do not grant access to a segment by a
process. Access to a segment by a process is granted only by the
Access Control List of a segment. Ring brackets only serve to
refine, within the process, the access modes granted by the
Access Control List.

Ripg of Execution Potential Access Rights
Ring of execution less than first read, write, execute
ring bracket number (with ring change)

Ring of execution equal to first read, write, execute

ring bracket number

Ring of executioh greater than read, execute
first ring bracket number and

less than or equal to second ring

bracket number

Ring of execution greater than execute (if a gate only,
second ring bracket number and less with ring change)

than or equal to third ring bracket

number

Ring of execution greater than third no access

ring bracket number

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Informatior Systems Inc.

MULTICS SUBSYSTEM WRITERS' CUIDE 13.4

Intraprocess Access Control
Subsystem Programming Environment
Page 5

12/26/72

Validation Level

Inner ring procedures are very often called by outer ring
procedures in order to perform some service on behalf of the
outer ring. It is, therefore, necessary that the inner ring
procedure know the number of the outer ring on whose behalf it is
performing the service in order that it may validate that the
ogter ring has the right to request the service. This requesting
ring information 1is kept by each process and is known as the
validation level. |If an outer ring procedure wishes to request a
service from an inner it simply sets the validation level to its
current ring of execution (the validation level may not be set
lower than the ring of execution) and calls the inner ring
procedure. If a procedure is calling an inner ring procedure to
do work on behalf of an outer ring procedure then it should not
change the validation level, but instead leave it at the level of
the outer ring procedure. Note that users who write programs
which are executed only in a single ring, which 1is wusually the
outermost ring in which the process runs, need not be concerned
about the validation level since it will be set to that ring by
default.

Directory Ring Brackets

Directory ring brackets are, in most ways, similar to
segment ring brackets. There is, however, one impor tant
difference. Since directories are accessed by calling supervisor
primitives rather than by direct hardware reference, the
directory ring brackets are evaluated with respect to the
validation level instead of the ring of execution. There are two
ring bracket numbers associated with each directory. The first
ring bracket number defines the modify/append bracket. All rings
less than or equal to the first directory ring bracket number are
within the modify/append bracket. |In order for a process to
modify a directory or add entries to a directory, the validation
level of the process must be within the modify/append bracket and
the process must have modify or append access modes. The rings
less than or equal to the second directory ring bracket number
form the status bracket. In order to get the attributes of
segments or directories within a directory, the validation level
must be within the status bracket. The first ring bracket rumber
must be less than or equal to the second ring bracket number.
For example, if the ring brackets of a directory are 4, 6 then if
the validation level is 3, the process may get status of, modify,
or append to the directory (assuming, of course, that it has the
status, modify, and append modes). |If the validation level is 6,
it may only get status of the directory. If the validation level

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

13.4 MULTICS SUBSYSTEM WRITERS' GUIDE

Intraprocess Access Control
Subsystem Programming Environment
Pare 6

, it may not access the attributes of the entries in the

s 7
irectory at all.

i
d

The ring brackets of segments or directories may be modified
by using the set_ring_brackets or set_dir_ring_brackets commands
or the hcs_$set_ring_brackets or hes_$set_dir_ring_brackets
subroutines. (See the MPM Subsystem Writers' Guide write-ups for
these commands and subroutines.

In order to maintain the integrity of the ring mechanism, it
is necessary that the ring brackets of a segment or directory
control a process's ability to modi fy the attributes
(particularly the ACL and ring brackets) of a segment as well as
its ability to write the data of the segment. As stated
previously, in order to modify the attributes of a segment or
directory within a directory the process must have modify access
to the latter directory and the validation level must be within
the modify/append bracket of the directory. This is refined by
the further qualification that the validation level be within the
write bracket of a segment whose attributes are being modified or
be within the modify bracket of a directory whose attributes are
being modified. Also, a process may not set bracket numbers to
values 1less than the validation level. Finally, to prevent one
protected subsystem from tampering with another protected
subsystem in the same ring, an ACL entry containing a project
identifier other than the project of the executing process may
not be added to the ACL of a gate segment. These restrictions
insure that there are no means by which a process executing in a

ring outside the wrjte bracket may diregtly write a segment or do
so nnd%rectly by f%rst mogi$yingythe r?ngybrackets orgAEL of the

segment to give the process write access and then write it. This
assures the integrity of the ring mechanism.

Since the final type of directory entry, the 1link, has no
access control of its own, it is simply necessary to be able to
modify its attributes. To do this the process must simply have
modify mode on the directory containing the 1link and the
validation level must be within the modify bracket of the
directory.

Default Values

When a segment or directory is created and the values for
the ring bracket numbers are not explicitly defined they will be
set to a default value equal to the validation level. Since most
users write programs that operate in a single ring at a single

* Some are not yet documented as of January 10, 1973.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 13.4

Intraprocess Access Control
Subsystem Programming Environment
Page 7

12/26/72

v§1idation level, this choice of default ring brackets makes the
ring mechanism invisible to them, i.e., they will always be
within the read, write, execute, status, and modify brackets.

As explained in the MPM Reference Guide section, Access
Control, when a new segment or directory is appended to a
directory, the default value for the access control list s
determined by the initial ACLs. In each directory there is a set
of initial ACLs for newly created segments and a set of initial
ACLs for newly created directories. The reason why a set of
initial ACLs rather than simply a single initial ACL is necessary
is now explained. The set contains one initial ACL for each
ring. When a segment or directory is created the initial ACL
corresponding to the validation level is the one used. Since the
initial ACL for a given ring can be modified only by procedures
in rings equal to or 1less than the given ring, a procedure
creating a new segment or directory can be sure that the initial
ACL to be used could not have been modified by a ring less
privileged than the ring on whose behalf the segment or directory
is being created.

References

Discussion of the implementation of protection rings may be
found in:

1) Organick, E.l., The Multics System: An Examination of Ifs
, Chapter U4, Access Control and Protection, M.I.T.
Press, Cambridge, Mass., 1972,

2) Schroeder, M.D., and Saltzer, J.H., "A Hardware Architecture
for Implementing Protection Rings'", ACM Third Symposium on

Operating System Principles (October 18-20, 1971), Palo Alto,
California.
3) The Multics Virtual Memory, AG95, Rev. 0, File No. 1J12,

Honeywell Information Systems, Inc., 1972
(a collection of 3 technical papers -

. "The Multics Virtual Memory', TIS Report R69LSD3, Copyright
1970 by General Electric Co., U.S.A.

. "Access Control to the Multics Virtual Memory", TIS Report
R69LSDL4, Copyright 1970 by General Electric Co, U.S.A.

. "series 6000 Features for the Multics Virtual Memory").

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE 13.06

Multics Programming Environment
11/727/72

HARDWARE AND SIMULATED FAULT ASSIGNMENTS

Faults in Multics are initially handled by Hardcore Ring
procedures. Many are then signalled as conditions. For the
default handling of these conditions see the MPM Reference Guide
section, List of System Conditions and Default Handlers.

Hardware Faults

Most hardware faults occurring in Multics are reserved for
special interpretation by the system. Two are reserved for
users. The following list of Multics hardware faults describes
the interpretation given to each fault, or notes that it s
reserved by the system for future assignment. The list is
ordered by the conditions which are signalled as a result of the
faults. Note that in some cases the description of the fault is
not exhaustive, but rather documents the most likely situations.
If the user encounters a situation which appears not to be
covered here, he should consult the H645 processor manual.

accessviolation (Access Violation Subcondition of the Illegal
Procedure Fault)
The user attempted to access a segment in a manner not
permitted by the user's access mode to that segment.

derail (Derail Fault) :
The DRL machine instruction was encountered. This fault is
reserved for users.

execute_data (Execute Data Subcondition of the Illegal
Procedure Fault)
The user attempted to execute data. The fault 1is wused to
intercept attempted outward wall crossings.

fault_tag_1, fault_tag_3 (Fault Tag 1, Fault Tag 3)
A fault tag 1 or fault tag 3 tally appeared in the address
modifier field of an indirect word. Fault tag 1 s
equivalent to fault tag on the H635. It is wused by the
BASIC system, but is otherwise reserved for users; fault tag
3 is reserved for future assignment.

gate_error (Directed Fault 2)
A directed fault 2 code appeared in a Segment Descriptor
Word (Sbw). The Multics system interprets it as an
attempted inward wall crossing and signals the gate_error
condition in the event of an error, as noted in the MPM
Reference Guide section, List of System Conditions. and
Default Handlers.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

13.6 ' MULTICS SUBSYSTEM WRITERS' GUIDE

Hardware and Simulated Fault Assignments
Multics Programming Environment
Page 2

illegal_descriptor (l1legal Descriptor Fault)
An illegal Segment Descriptor Word (SDW) or Page Table Word
(PTW) was referenced.

illegal_memory_command (l1legal Memory Command Fault)
A memory controller received an inappropriate request (e.g..,
a read clock command on a memory controller not containing a
clock); or a processor issued a connect to a masked channel.

illegal_opcode (ll1legal Opcode Subcondition of the lllegal
Procedure Fault)
The user attempted to execute an illegal operation code.

illegal_procedure (l1legal Procedure Fault) .
The user attempted a programming violation which could
affect other users on the system. See accessviolation,
execute_data, illegal_opcode, and out_bounds_err.

linkage_error (Fault Tag 2)
A fault tag 2 tally appeared in the address modifier field
of an indirect word. Multics interprets this as a linkage
fault and signals linkage error if the intersegment 1link
reference cannot be successfully resolved.

mmel, mme2, mme3, mmel (Master Mode Entry 1 Fault, Master
Mode Entry 2 Fault, Master Mode Entry 3 Fault, Master
Mode Entry 4 Fault)
A MME1l (2, 3, 4) machine instruction was encountered. MME1
on the H6L5 is equivalent to MME on the H635. The MMEL
instruction is used within the Dartmouth system, MME2 s
used by the debug command, and MME3 and MMEL are reserved
for future assigment.

op_not_complete (Operation Not Complete Fault)
A machine operation was not completed in the required time;
or H6L5 programming rules were violated; or an ITS or ITB
modifier appeared in an odd location; or a processor
addressed a system controller not attached to it.

out_bounds_err (Out of Bounds Subcondition of the lllegal

Procedure Fault)

The user attempted to reference a nonexistent location,
either by a segment offset beyond the end of the segment
specified or by a segment number not known to the process.
If the segment number 1is -1 (in 2's complement form), a
simfault_nnnnnn will be signalled instead. (See Sinulated
Faults below.)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 13.06

Hardware and Simulated Fault Assignments
Handling Unusual Occurrences

Page 3

11/27/72

ovrflo (Overflow Fault)
An arithmetic operation exceeded the precision of the
variables involved.

page_fault_error (Directed Fault 1)
A directed fault 1 code appeared in a Page Table wWord (PTW).
The Multics system interprets it as an indication that a
page is not in memory, and signals the page_fault_error
condition if a referenced page cannot be brought into
memory.

parity (Parity Fault)
A memory location was referenced which has incorrect parity.

record_quota_overflow (Directed Fault 1)
A directed fault 1 code appeared in a Page Table Word (see
page_fault_error above) for a page which did not yet exist
either in memory or on secondary storage. |If an attempt to
create the page would cause the user's quota of secondary
storage records to “be exceeded, then the
record_quota_overflow condition is signalled.

seg_fault_error (Directed Fault 0)

A directed fault 0 code appeared in a Segment Descriptor
Word (SDW). The Multics system uses this as an indication
that a segment is either not active or needs to have its
access recomputed. The seg_fault_error condition is
signalled if the segment does not exist, the user has
incorrect access to the segment, or the segment number used
is invalid.

undefined_acc (Directed Fault &)
A directed fault 4 code appeared in a Segment Descriptor
Word (SDW). The Multics system uses this as an indication
that a segment has an illegal access combination.

zerodivide (Divide Check Fault)
The user attempted to divide by zero.

635_compatibility (635 Compatibility Fault)
The user attempted to execute an H635 instruction which does
not exist on the HOu45,

635/645_compatibility (635/645 Compatibility Fault)
The user attempted to execute an instruction which s
privileged in both H635 and H64L5 repertoires.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

13.6 MULTICS SUBSYSTEM WRITERS' GUIDE

Hardware and Simulated Fault Assignments
Multics Programming Environment

Page U
Simulated Faults

By convention the segment number -1 (in 2's complement form)
is reserved for software simulated faults. The segment number is
a dummy; i.e., no Multics segment will ever have it. Any attempt
to reference that segment number will result in the out of bounds
subcondition of the illegal procedure fault. When this fault
occurs, the fault interceptor will signal (in the ring where the
fault occurred) the simfault_nnnnnn condition, where nnnnnn is
the offset portion of the segment address that caused the fault.
This convention provides an additional 256K faults, the first
128K of which are reserved for system use. The remaining 128K
faults are available for user programs.

One of the software simulated faults reserved for system use
is currently assigned. An offset of 1 (simfault_000001) is
defined as the null pointer value for the PL/I pointer data type.
Thus the null pointer has the value (in 2's complement form) of
-1]1. It is useful to note here that an inadvertent reference by
a user to a null pointer may not produce an address with an
offset of 1. In many cases the null pointer will be modified by
an incremental offset. Thus, a null pointer modified by an
offset of 22 (octal) would produce the condition simfault_000023,
Users who receive a message on their terminal indicating that a
simfault occurred should check for inadvertent use of a null
pointer. :

Process Termination Fault

By -.convention the segment number -2 (in 2's complement form)
is reserved for the process termination fault. Any reference to
that segment number will cause the referencing process to be
terminated. The offset portion of the segment address may be
used to indicate the reason for the termination. Of the 256K
possible offsets, the last 128K are reserved for interpretation
by the system. The first 128K are availahble for user programs.
Any offset currently recognized by the system will be interpreted
in a message printed on the user's terminal after the process is
terminated.

© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE 14,3

Miscellaneous Topics
4/30/73

LIST OF COMMAND CONTROL ARGUMENTS

Many Multics commands have control character strings as one
or more of their arguments. These character strings have the
hyphen (-) as their first letter. They are typically optional,
with some default action to be taken if a particular control
argument is not present. For example, the command line

copy old_seg new_seg

attempts to perform the specified segment copy and prints full
comments when an error occurs, whereas

copy old_seg new_seg -brief

attempts to perform the same segment copy but does not comment on
certain types of errors.

A list of the control arguments currently used on Multics
follows. A command writer should consult this 1list before
inventing a control character string, to see if any of these will
serve his purpose. If not, he should notify the editor of the
MPM that this section requires updating. The abbreviation for
each control argument Is shown when one exists; otherwise,
"none'" appears in the right-hand column.

Control Argument Abbreviation
=-7punch -7p
-absentee -as
-account -ac
-acl none
-admin -am
-all -a
-arguments -ag
-author -at
-ball =-b1
-bottom_up -bu
-branch -br
-brief -bf
-call -cl
-character -ch
-check -ck
-compile none
-console_input -ci
-copy -Ccp
-date -dt
-date_time_modified -dtm
-date_time_used -dtu

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

14.3 MULTICS SUBSYSTEM WRITERS' GUIDE

Command Control Arguments
Miscellaneous Topics

Page 2

-debug -db
-delete -dl
-depth -dh
-device -dv
-directory -dr
-entry -et
-every -ev
-file_input -fi
-first -ft
-force none
-from -fm
-halt -ht
-header -he
-hold none
-home_dir -hd
-hyphenate -hph
-indent -in
-last -1t
-length -In
-library -1b
-limit -1i
-1ink -1k
-list -1s
-long -lg
-map none
-mcc none
-mode -md
-multisegment_file -msf
-name -nm
-no_pagination -npgn
-no_preempt -np
-no_print_off -npf
-no_restore =nr
-no_start_up -ns
-no_update -nud
-number -nb
-optimize -ot
-output_file -of
-queue -q
-page -pg
-parameter -pm
-pass none
-pathname -pn
-print_off -pf
-process_overseer -po
-project -pJj
-raw -none
-reset -rs

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE 14.3

Command Control Arguments
Miscellaneous Topics

Page 3
4/30/73

-restart -rt

-reverse -rv

-ring_brackets -rb

-segment -sm

-severityi -svj

-source -sc

-stop -sp

-subscriptrange -subrg

-symbols -sb

-table -tb

-time -tm

-times none

-to none

-total -tt

-type -tp

-wait- -wt

-working_directory -wd

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE | 15

1/10/73

COMMANDS AND ACTIVE EUNCTIONS

This section contains, in alphabetic order, descriptions of
the Multics commands and active functions primarily useful to
subsystem writers. The following conventions are used in command
descriptions:

1) In command usage, optional arguments are shown surrounded
with hyphens. For example,

locate namel -name2-

would indicate that the locate command has a mandatory first
argument and an optional second argument.

2) In command usage, the ellipsis form

al ... an

is used‘to indicate a variable number of arguments all having
the same form as al and an.

Note that commands may be distinguished from subroutines by
name; in general, subroutines have segment names which end with
a trailing underscore.

C) Copyright, 1973, Massachusett? :

titute of Technology
and Honeywel

ns
nformation Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE error_table_compiler

Command
Development System
6/5/72

Narme: error_table_compiler, etc

This command compiles a table of status codes and associated
nessages from symbolic ASCIl source. The output is in a format
suitable for the ALM assembler to produce a standard status code
table.

Usage
error_table_compiler error_table

1) error_table specifies a source segment in the format noted
below. A suffix of .et is added to complete the
source segment name. The output segment is named
error_table.alm, This segment must then be
assembled by the ALM assembler prior to using it.

lotes

Each status code 1is defined by a statement in the source
segment which specifies the entry name, short message, and long
rmessage associated with a status code. Each statement is
terminated by a semicolon, and a colon is used to delimit the
entry name. The short message must be less than nine characters
and is terminated by a comma. The long message must be less then
101 characters and is terminated by the semicolon ending the
statement. Any number of entry names may be given to a status
code. These entry names must be 30 characters or less in length.

The syntax of a statement is:
(name):[<name>: ...] <short message>, <long message>;

An error table source segment is composed of a series of
statements of the above format, terminated by an end statement.
The format of the end statement is

end;

There is a special statement which should pot be used except
when compiling the hardcore systen error table. This statement
causes a special nondynamic initialization of status codes in
that segment, optimizing the system error table slightly. This
statement may appear anywhere in the sources before the end
statement. The format of this statement is:

system;

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

error_table_compiler MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

See also the MPM Reference Guide section List of System
Status Codes and Meanings.

Example

Note the comment syntax, which is similar to PL/l, 1in the
following example:
/* This is a sample error table corpiler source segment. */
too_few_arguments: toofew, There were too few arguments.;

could_not_access_data: noprivlg,The user is not sufficiently
privileged to access required data;

fatal: disaster: disaster,There was a disastrous error in the
data base;

end;

Each status code in the table produced by
error_table_compiler should be referenced as a fixed bin(35)
quantity, known externally:

declare user_errors$disaster fixed bin(35) external,
code fixed bin(35);

call data_base_manager (info, code);
if code = user_errors$disaster /* this is bad */
then call kill_subsystem;

Copyright, 1972, Massachusetts Institute of Technology
All rights reserved, (END) *

MULTICS SUBSYSTEM WRITERS' GUIDE make_commands

Command
5/1/73

Name: make_commands, mc

This command creates a segment in a specific format from an
ASCIl input segment. This segment is referenced by the Limited
Service System when it is limiting the commands and percentage of
CPU time of a user.

The input segment consists of a series of statements. Each
statement is composed of two parts. The first part is the name
of the command to be transformed; 1i.e., the command that is to
be typed by the user in a limited system, |f there is more than
one name for the command, they should all be enclosed in
parentheses and separated from each other by one or more blanks.
The name field is terminated by a colon preceded by any number of
blanks.

The second part of each statement is the path name (which
may be a relative path name) of the command to be executed when
the user types one of the names in the first part. It is
followed by any number of blanks and terminated by a semicolon.
If the path name Is omitted (semicolon still required), it is
assumed to be the same as the last name in the name field.

The first and second parts of each statement may be
separated from each other by any number of blanks or tabs. New
lines are ignored and are allowed anywhere. Comments enclosed in
"/«" and "+/" are allowed and are treated as blanks.

If the first two statements have as their first part the
names "ratio" and "interval", respectively, the second parts of
the two statements are assumed to be decimal integers to be

assigned to_ the ratio and interval_length variables of
1ss_command_list_. Otherwise, the two variables are set to zero.

Usage

make_commands path_name

1) path_name is the path name of an ASCIlI input segment which has
the name path_name.ct. The output segment will be
named path_name and will be placed 1in the working
directory.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems lInc.

make_commands MULTICS SUBSYSTEM WRITERS' GUIDE

Example of an lnput Sezment
/* set the ratio and interval */
ratio: 60;
interval: 120;
/* define commands #/
(list 1s): >abc>speclal$list;
logout: :
edit: bsys;

start:

e

hold:

Se

(pr print)

8o

© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE set_max_length

Command
3/30/73

Name: set_max_length, sml

This command allows the max length of a nondirectory segment
to be specified. The max length is the length beyond which the
segment will not grow. Currently, max length is accurate to the
system page size (1024 decimal words).

Usaze
‘set_max_length path length -control_argl- ... -control_argn-

1) path is the path name of the segment whose max
length is to be set. |If the argument path is
a link, the max length of the segment linked
to zill be set. The star convention may be
used.

2) length : is the new max length expressed in words. |If
this 1length 1is not a multiple of the system
page size, it will be converted to the next
higher multiple of the system page size. The
default radix is decimal.

3) control_argl may be chosen from the following list of
control arguments and may appear In any
position:

-decimal, =-dc The max length is expressed in decimal words.
-octal, -oc The max length is expressed in octal words.
-brief, =-bf suppresses a warning message that the length

argument has been converted to the next
multiple of the system page size.

Notes

If the new max length is less than the current length of the
segment, the user will be asked If the segment should be
truncated to the max length. |If the truncation takes place, the
bit count of the segment will be set also.

Currently, If the user has append (a) permission with

respect to the segment, the enforcement of the max length may not
be done properly.

The user must have modify access on the directory containing
the segment in order to change its max length.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

set_max_length MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Examples
set_max_length mailbox -oc 10000

will set the max length of the segment mailbox in the working
directory to 4 pages.

set_max_length *.archive 16000

will set the max length of all two-component segments with a
second component of archive in the working directory to 16 pages.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE set_ring_brackets

Command
5/29/73

Name: set_ring_brackets, srb

This command allows a user to modify the ring brackets of a
specified nondirectory segment. Since there is only one set of
ring brackets per segment, ring brackets of all users appearing
on the access control list (ACL) of the specified segment will be
modified. The star convention may be used in the entry name of
the specified segment.

Usage
set_ring_brackets path -rbl- -rb2- -rb3-

1) path is the relative path name of the segment whose ring
brackets are to be modified.

2) rbl is the number to be used as the first ring bracket of
the segment. See Notes below.

3) rb2 is the number to be used as the second ring bracket of
the segment. See Notes below.

4) rb3 is the number to be used as the third ring bracket of
the segment. See Notes below.

Notes

If rb3 is omitted, the third ring bracket will be set to
rb2. If rb2 and rb3 are omitted, the ring brackets will be set
to rbl. If rbl, rb2, and rb3 are omitted, they will be set to
the user's current validation level. The ring brackets must be

in the allowable range 0 through 7 and must have the ordering rbl
£ rb2 £ rb3. :

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE user

Active Function
Development System
3/29/72

Name: user

This active function returns various user parameters. The
following parameters are described in the MPM write-up of the
user active function: name, project, login_data, login_time,
anonymous, secondary, absentee, term_id, term_type, cpu_secs,
log_time, preemption_time, brief_bit, and protected.

Usage
[user arg]

arg may have one of the following values:

1) account is the user account |D.
2) weight is the user weight times 10.
3) login_word is the user log in word. It may be

either login or enter.

4) process_overseer is the path name of the user's process
overseer procedure.

5) device_channel is the hardware channel associated with
the user terminal, e.g., '"ttyl92".

6) n_processes is the number of processes created for
the user since log in time. It is 1
plus the number of new_proc commands.

7) group is the user's load control group.

8) abs_queue if the user is an absentee user, this
tells which queue he is running in;
otherwise it is "interactive".

9) attributes are the user's attributes, determined at

log in time by user control. They are
separated by commas and end with a
semicolon. The legal attributes are:

administrator
anonymous

brief

dialok
guaranteed_login
multip

C) Copyright, 1972, Massachusetts Instithte of Technology
All rights reserved.

user MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

no_eo
no_primary
no_secondary
nobump
nolist
nostartup
preempting
vhomedir
vinitproc

() Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved. (END) *

MULTICS SUBSYSTEM WRITERS' GUIDE 16

1/10/73

SUBROUTINES

This section contains, in alphabetic order, descriptions of
the Multics subroutines primarily useful to subsystem writers.

The following conventions are used in subroutine
descriptions:

1) An entry declaration, suitable for verbatim copying into a
calling program, 1is provided. Using such a declaration is
recommended practice, since it helps reduce errors.

2) Calling sequences are normally given for the PL/Il language.
Users of other languages should translate the sequences
accordingly.

3) Following the description of each argument, the notation
(Input) or (Output) indicates that the argument is passed to
or comes from the subroutine, respectively.

Note that subroutines can be distinguished from commands by
name; generally, subroutines have names which end with a
trailing underscore.

Some subroutine write-ups indicate that the status code
argument should be declared fixed binary or fixed binary (179,
which is an older standard. Although any of the three
declarations will generally work correctly, fixed binary (35)
should be used.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE alloc_

Subroutine Call
1/31/73

Name: alloc_

The alloc_ subroutine is called by user programs for dynamic
storage management. It allocates a contiguous block of words of
a specified size in a specified area and returns a pointer to
that block.

Usage

declare alloc_ entry (fixed bin(26), ptr, ptr);
call alloc_ (size, area_ptr, return_ptr);

1) size is the amount of storage to be allocated, in
words. (lnput)

2) area_ptr . is a pointer to the base of the area in which the
storage is to be allocated. (Input)

3) return_ptr is a pointer to the first data word in the

allocated block. This first data word will be on
an even word boundary. The pointer will be null

on return if there is no more room in the area.
(Output)

Notes

The amount of storage actually allocated will be 2#*n where
n is large enough to contain size words plus 2 overhead words for
block information. .If no blocks of the optimum size exist in the
area, alloc_ will break up larger blocks until one of the optimum
size Is obtained.

If alloc_ 1is unable to return a pointer to a block of the
size desired, it will signal the area condition. On a return
from the area condition handler, the allocation will be retried.
Thus any area condition handler established by the wuser should
free storage in the area to allow alloc_ to perform the
allocation. Otherwise an infinite loop will result since alloc_
will continue to signal the area condition and retry the
allocation.

Programs using the PL/Il area attribute and the PL/! allocate

and free statements should not explicitly call this subroutine
since PL/| performs all the necessary manipulations.

CD Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

alloc_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Entry: alloc_$storage_

This entry is identical to alloc_ except that the storage
condition rather than the area condition is signalled if the
allocation cannot be made.

Usage
declare alloc_$storage_ (fixed bin(26), ptr, ptr);

call alloc_$storage_ (size, area_ptr, return_ptr);

Arguments are as above.

Note

The PL/! compiler will generate a call to alloc_$storage_
when the allocate statement is used with no area specified.

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE area_

Subroutine Call
1/31/73

Name: area_

This subroutine initializes a PL/! area at the location
specified and of the length specified.

Usage
declare area_ entry (fixed bin(26), ptr);
call area_ (length, area_ptr);

1) length is the 1length in words of the area to be
allocated. This length must include space for at
least 24 words of overhead storage at the base of
the area. The wusable storage block must be
exactly 2**n words, where n is 2 or greater. Thus
the length argument must be at least 2#**n + 24,
and its minumum value is 28 (2**2 + 24), (lnput)

2) area_ptr is a pointer to the base of the area, and must
have an offset of 0 (mod 2). (lInput)

Notes

If the 1length argument is less than 28, the area condition
is signalled by area_.

Programs using the PL/! area attribute and the PL/! allocate
and free statements should not explicitly call this subroutine
since PL/| performs all the necessary manipulations.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

~

MULTICS SUBSYSTEM WRITERS' GUIDE area_assign_

Subroutine Call
2/1/73

Name: area_assign_

This subroutine copies all of the contents of one area into
another area, except the word which contains the size of the
area. For the assignment of the contents of one area to another

area to be successful, the receiving area must be large enough to
contain all of the allocations in the sending area.

Usage
declare area_assign_ entry (ptr, ptr);
call area_assign_ (to_ptr, from_ptr);
1) to_ptr is a pointer to the receiving area. (Input)

2) from_ptr is a pointer to the sending area. (Input)

Notes

If area_assign_ is unable to complete the assignment because
the sizes of the areas are incompatible (e.g., the sending area
has too much allocated in it for the receiving area to hold), it
signals the area condition.

Programs using the PL/I| area attribute and the PL/! allocate
and free statements should not explicitly call this subroutine
since PL/l performs all the necessary manipulations.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE condition_interpreter_

Subroutine Call
Development 3System
6/30/72

llame: condition_interpreter_

condition_interpreter_ can be used by subsystem condition
handlers to obtain a formatted error message (the same message
printed by default_error_handler_) for all conditions except
quit, alrm, cput and special PL/| or FORTRAN conditions. (See
the write-up for default_error_handler_ in the 3SW3.) Some
conditions do not have messages and others cause special actions
to be taken (such as ovrflo). These are described in Hotes
below.

Usaze

declare condition_interpreter_ entry (ptr, ptr, fixed bin,
fixed bin, ptr, char(*), ptr, ptr);

call condition_interpreter_ (areap, mptr, ming, mode,
meptr, cond_name, wcptr, infop);

1) areap is a pointer to the area in which the message is
to be allocated, if the message is to be returned.
For safety, the area size should be at 1least 250
words. If the message is to be printed, the
pointer is null. (lInput)

2) mptr points to the allocated message if areap is not
null; otherwise it is not set. (Qutput)

3) ming is the length of the allocated message if areap is
not null. If areap is null, the length is not

set. Certain conditions (see Hotes below) have no
messages; in these cases, ming =0. (Output)

4) mode is the desired mode of the message to be printed
or returned. It is 0 for the current mode, 1 for
the normal mode, 2 for the brief mode, and 3 for
the long mode. (lInput)

Argunents five through eight are defined and explained in
the MPI! Reference Guide section on The Multics Condi tion
lHechanism. These are the first four arguments passed to
condition handlers by the tlultics signalling mechanism.

() Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

condition_interpreter_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Hotes

The following conditions cause a return with no message:

command_error
comnand_question

The ovrflo condition is remapped into

fi xedoverflow

T or

overflow
or
underf lowu

and the appropriate new condition is signalled. If the handler
for the signalled condition returns, this procedure then returns
with no message.

The following conditions, associated with the PL/1 1/0 or
math packages, are not recognized by condition_interpreter_:

area
conversion

endfile
endpage

error

key

namne

record

size

storage
stringrange
stringsize
subscriptrange
transmit
undefinedfile

WARNING: This interface is likely to change.

() Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE convert_status_code_

Subroutine Call
1/9/73

lame: convert_status_code_
This entry point returns the short and long status messages

from the data base error_table_ corresponding to a given system
status code.

Usage

declare convert_status_code_ entry (fixed bin(35),
char(8) aligned, char(100) aligned);

call convert_status_code_ (code, shortinfo, longinfo);

1) code is a status code as returned by system
subroutines. (lnput)

2) shortinfo is a short status message corresponding to code.

(Output)

3) longinfo is a long status message corresponding to code;
the message is padded on the right with blanks.
(Output)

Notes

If code does not correspond to a legitimate status code,
shortinfo will be "XXXXXXXX", and longinfo will be '"Code ddd not
found in error_table_", where ddd is the decimal representation
of code. If code has a negative value, shortinfo will be
"iostatus", and longinfo will be "10 Status 000000000000", where
000000000000 is the 12-digit unsigned octal representation of the
status code.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE cu_

Subroutine Call
Development System
6/30/72

Name: cu_

The procedure cu_contains a number of useful command utility
programs, most of which are documented in the MPM. The functions
provided are not directly available in the P1/! language.

Entryv: cu_$ready_proc

The ready_proc entry is used to call the process' current
ready procedure. It takes an optional argument, which it passes
to the ready procedure. The ready procedure is automatically
invoked by the 1listener after each command line is processed.
The ready procedure of the standard command environment prints
the ready message.

Usage

declare cu_$ready_proc entry;
call cu_$ready_proc();
or

declare cu_$ready_proc entry (1 aligned, 2 bit(1l) unaligngd,
2 bit(35) unaligned);

declare 1 mode aligned,
2 ready_sw bit(1) unaligned,
2 pad bit(35) unaligned;

1) mode.ready_sw is the ready switch. If it is "1"b, the ready
procedure should print a ready message.
Otherwise it should not. {!nput)

2) mode.pad is reserved for future use and must be zero.
(I nput)

Note

If no argument is given, a static one is passed to the ready
procedure. The default value of the static ready switch is "1"b.
The value of the static ready switch may be obtained using
cu_sget_ready_mode and changed wusing cu_$set_ready_mode (see
below). The listener invokes cu_$ready_proc without an argument.
The ready_off command turns off the static ready switch, the
ready_on command turns it on, and the ready command calls
cu_sready_proc with an argument whose ready_sw component is "1"b.
Thus if a user-written ready procedure honors the ready switch,

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

cu_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

its printing of the ready message can be controlled by the
standard ready, ready_on and ready_off commands.

Entrv: cu_$get_ready_proc

This entry returns a pointer to the process' current ready
procedure,

Usage

declare cu_$get_ready_proc entry (ptr);
call cu_$get_ready_proc (ready_ptr);

1) ready_ptr is a pointer to the current ready procedure. | f
it is null, then the standard system ready
procedure Is being used. (Output)

Entryv: cu_$set_ready_proc

This entry allows the user to change his process' ready
procedure.

Usage

declare cu_$set_ready_proc entry (ptr);

call cu_$set_ready_proc (ready_ptr);

1) ready_ptr is a pointer to the procedure entry point which Is
to become the process' new ready procedure. |If
ready_ptr = null, the standard system ready
procedure will become the process' ready
procedure. (lInput)

Entry: cu_$get_ready_mode
This entry returns the value of the static ready mode.
Usage
declare cu_$get_ready_mode entry (1 aligned, 2 bit(l)
unaligned, 2 bit(35) unaligned);
declare 1 mode aligned,
2 ready_sw bit(1l) unaligned,
2 pad bit(35) unaligned;

call cu_$get_ready_mode (mode):;

© Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS SUBSYSTEM WRITERS' GUIDE cu

Page 3
6/30/72

1) mode.ready_sw 1is the current value of the static ready
switch. (Output)

2) mode.pad is reserved for future use. (Output)

Entry: cu_$set_ready_mode

The entry allows the user to change the value of the static
ready mode.

Usaze

declare cu_$set_ready_mode (1 aligned, 2 bhit(1) unaligned,
2 bit(35) unaligned);

declare 1 mode aligned,

2 ready_sw bit(1l) unaligned,
2 pad bit(35) unaligned;

call cu_$set_ready_mode (mode);

1) mode.ready_sw is the new value of the static ready switch.
(Input) .

2) mode.pad is reserved for future use and must be zero.
(I nput)

C) Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE d1_handler_

Internal Interface

Admiristrative/User Ring
01/08/71

Name: dl1_handler_

This procedure s used to resolve '"moderr' file system
errors for commands which attempt to delete segments. The user

is asked whether he wants to delete a given file; If he does,
d1_handler_ attempts to give him REWA access to the segment.

The segment is not deleted; this is left up to the caller.

Entry: dl_handler_

Usage
declare dl_handler_ entry (char(*), char(168) aligned,
char(32) aligned, fixed bin);
call di_handler_ (id, dname, ename, code)
1) id is the name of the calling procedure. (Input)
2) dname is the pathname of the directory containing the
segment whose mode is to be changed. (Input)
3) ename is the entry name of the segment whose mode is to be
changed. (lnput)
4) code is an error code:
=0 if the user wished to delete the file and the
mode was changed;
=1 if the user did not want to delete the file;
=error_table_$moderr
if the user wished to delete the file and the
mode could not be changed. (OQutput)
MESSAGE:

id: ename is protected - do you want to delete it?

(Leading blanks in response are ignored. Any response other than
"yes'" is interpreted as "no".)

d1_handler_ MULTICS SUBSYSTEM WKITERS' GUIDE

Page 2

Entry: dl_handler_$noquestion

This entry 1Is the same as above except that no question is
asked. That Is, without asking, it attempts to change the mode

of the glven segment.

Usage

declare d1_handler_$noquestion entry (char(*), char(168)
aligned, char(32) alircned, fixed bin);

call dl_handler_$noquestion (id, dname, ename, code);
1) id is ignored. (lInput)

2-4) are the same as above.

Entry: dl_handler_$dblstar

This entry should be called when a command, which performs
some sort of manipulation on segments, receives as the entry name
portion of a pathname argument a name containing stars (e.gz.,
"delete >udd>**", "unlink =**", or ‘'deletedir <ep>*,11ist").
Mormally, this entry will be called with the entry name as "=,
The user is asked if he really wants to do what he has typed and
returns a code .indicating his response. NMote: the library
routine check_star_ returns an error code of 1 1If a name
containing stars (except for "**'") has been found and an error .
code of 2 if "+*" has been found.

Usage '
declarec dl_handler_$dblstar entry (char(x), char(168)
alligned, char(32) aligned, fixed bin);
call dl_handler_$dbhlstar (id, dname, ename, code);
1) id is the name of the calling procedure. (lnput)
2) dname is the pathname of the directory for which the entry
name applies. (lnput) '
3) ename is the entry name containing stars. (lInput)
4) code =0 If the user wants to do what he typed;

=] otherwise. (Output)

MULTICS SUBSYSTEM WRITERS' GUIDE d1_handler_

Pare 3
c1/08/71

MESSAGE:
Do you want to 'id ename' in dname?
(e.g., "Do you want to 'unlink **x' in >udd>m>cp?")
Epntry: dl_handler_$dirdelete
This entry is similiar to $dblstar except that it is called
when a command attempts to delete a directory. The user is asked

whether he wants to delete a directory. The absolute pathname Iis
used in asking this question.

Usage

declare dl_handler_$dirdelete entry (char(x*), char(168)
aligned, char(32) aligned, fixed bin);

call di_handler_sdirdelete (id, dname, ename, code);

1) id is the name of the calling procedure. (Input)

2) dname is the pathname of the directory containing the
directory to be deleted. (lInput)

3) ename is the entry name of the directory to be deleted.
(Input)

L) code =0 if the user wants to delete the directory;

=1 otherwise. (Output)

MESSAQGE:

Do you want to delete the directory dname>ename?

(FND)

MULTICS SUBSYSTEM WRITERS' GUIDE dprint_

Subroutine Call
4/30/73

Name: dprint_

This is the subroutine interface for the dprint and dpunch
commands (see the command write-ups in the MPM Reference Guide).
It causes a request to print or punch a segment to be added to
the specified dprint queue.

Usage

declare dprint_ entry (char(+), char(*), ptr,
fixed bin(35));

call dprint_ (dirname, ename, argp, code);

1) dirname is the path name of the directory containing the
segment to be printed or punched. (lnput)

2) ename . is the entry name of the segment to be printed or
punched. It may be the name of a 1link or a
multi-segment file. (lnput)

3) argp is a pointer to the argument structure described in
Notes below. |If no argument structure is supplied,
argp should be null, (Input)

4) code is a standard system status code. (Output)

Notes

The dprint_ subroutine uses the structure described below to
determine the details of the request. If no structure is

supplied, default values will be used.

declare 1 dprint_arg based aligned,
version fixed bin,
copies fixed bin,

delete fixed bin,

queue fixed bin,

pt_pch fixed bin,

notify fixed bin,
heading char(6k),
output_module fixed bin,
dest char(12),

NNNNNNDDNDNNDNDNN

/* 1imit of version 1 structure */

2 carriage_control fixed bin,
2 pghdr char(120),
2 forms char(8),

C) Copyright, 1973, Massachusetts :

titute of Technology
and Honeywell i

ns
nformation Systems Inc.

dprint_

Page 2

MULTICS SUBSYSTEM WRITERS' GUIDE

2 Imargin fixed bin,
2 line_1th fixed bin,
2 pad(3) fixed bin;

1) version
2) copies

3) delete

4) queue
5) pt_pch

6) notify

7) heading

8) output_module

9) dest

is the version number of the structure. It
should be set to 1.

is the number of copies requested. (The
default is 1.)

is 1 if the segment is to be deleted after
printing or punching; otherwise it is zero.
(The default is zero.)

is the priority queue in which the request will
be placed. (The default is 3.)

is 1 for a print request or 2 for a punch
request. (The default is 1,)

is 1l if the requestor is to be notified when
the request has been completed; otherwise it
is zero. This option is not (implemented at
present. (The default is zero)

is the string to be used as a heading on the
front page of the output, If it is a null
string the requestor's name will be used. (The
default is the null string.)

indicates the Device Interface Module (DIM) to
e used in executing the request. 1 indicates

b

ﬁrinting, 2 indicates 7- unchinf, 3 indicates
ultics Card Code (MCC) punch ng, 4L indicates
"raw" punching. (The default is 1.)

is the string to be used to indicate where the
output should be delivered. |If it is null, the
requestor's project ID will be used. (The
default is the null string.)

The remaining items of the structure are not used in the

present version.

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE find_command_

Subroutine Call
4/30/73

Name: find_command_

The find_command_ procedure attempts to generate a pointer
to the procedure entry point corresponding to a specified command
name. The command name is a character string specifying the name
of a command as it might appear in a Multics command line (i.e.,
it may contain >, <, and $ characters).

Usage

declare find_command_ entry (ptr, fixed bin, ptr,
fixed bin(35));

call find_command_ (cptr, cl, eptr, code);

1) cptr is a pointer to the unaligned character string which
contains the specified command name. (lnput)

2) cl is the number of characters in the command name.
(Input)

3) eptr is a pointer to the procedure entry point corresponding
to the command name. (Output)

4) code is a status code. |If code is zero, find_command_ was
successful, otherwise an error condition has occurred.
If an error condition is indicated, the caller may
assumed that find_command_ has already printed an
appropriate diagnostic on the stream 'user_output".
(Output)

Entry: find_command_$clear

An associative memory is maintained by which find_command_
remembers procedure entry pointers for the 16 most recently
referenced command names. Whenever a procedure is removed from
the address space of the process, this associative memory should

be reset via a call to find_command_$clear. This call clears the
entire associative memory.

Usage
declare find_command_$clear entry;
call find_command_$clear;

There are no arguments.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE freen_

Subroutine Call
1/31/73

Name: freen_

The freen_ subroutine returns a previously allocated block
of storage in an allocation area to a list of free blocks of this

size. It will attempt to combine blocks of the same size to
produce one larger block.
Usage

declare freen_ entry (ptr);
call freen_ (block_pointer);

1) block_pointer is a pointer to the base of the block to be
returned to free storage. (Input)

Notes

The block_pointer argument must have been originally
returned to the user by alloc_ or alloc_$storage. (See the MPM
Subsystem Writers' Guide section for alloc_.) If an improper
pointer (l.e., one not pointing to the base of a block of
previously allocated storage) is passed to freen_, unpredictable
results may occur.

Programs using the PL/! area attribute and the PL/I| allocate
and free statements should not explicitly call this subroutine
since PL/| performs all the necessary manipulations.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE get_at_entry_

Subroutine Call
2/7/73

Name: get_at_entry_

This subroutine returns the interface module type and the
device id associated with a specified stream name. For a
description of the attach table which maintains such information,
set the MPM Reference Guide section, Use of the Input and Output
System.

Usage

declare get_at_entry_ entry

(char(*), char(*), char(*),
char(*), fixed bin(35))

’
call get_at_entry_ (ioname, type, id, mode, code);

1) ioname is the stream name about which information is
desired. (Ilnput)

2) type is the type of attachment; 1i.e., the name of the
associated interface module. (Output)

3) id is the identifier of the device or stream name to
which the attachment has been made. (Output)

4) mode is not used at this time, and returns a null string
("). (Output)

5) code is a standard status code. (Output)

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

