MULTICS SUBSYSTEM WRITERS' GUIDE get_ring_

Subroutine Call
1/31/73

Name: get_ring_
This subroutine returns to the caller the number of the
protection ring in which he is executing. For a discussion of

rings see the MPM Subsystem Writers Guide section, Interprocess
Access Control (Rings).

Usage
declare get_ring_ entry returns (fixed bin(6));
ring_no = get_ring_();

1) ring_no is the number of the ring in which the caller s
executing. (Output)

C) Copyright, 1973, Massachusetts lInstitute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE get_system_free_area_

Internal Interface

Administrative/User Ring
6/29/72

Name: get_system_free_area_

This procedure returns a pointer to the system free area for
the ring in which it was called. (namely system_free_k where k is
the ring in which it was called). Allocations by system programs

should be performed in this area.

Usage
declare get_system_free_area_ entry returns (ptr);

area_ptr = get_system_free_area_ ();

1) area_ptr 1is a pointer to the system free area. (Output)

(© Copyright, 1972, Massachusetts Institute of Technology

All rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE get_to_cl_

Subroutine Call
Development System
6/29/72

Name: get_to_cl_

This procedure is <called to re-establish the standard
environment after a quit or unclaimed signal. It is the default
procedure called by cu_$cl. (See the MPM write-up for cu_.)

Eptry: get_to_cl_$unclaimed_signal

This entry is called by the standard system default handler
when a quit or unclaimed signal occurs. It throws away any
read-ahead data on the stream 'user input". It saves the
attachments of the 1/0 streams "user_input", "user_output'", and
"error_output" and restores them to their standard attachment,
namely '"user_i/o". It saves the mode of "user_i/o" and restores
it to the default mode. It reestablishes the standard default
condition handler. It then calls listen_$release_stack. |If
control returns, this means a start command has been typed, so
the entry restores the attachments of "user_input", "user_output"
and "error_output" and the mode of "user_i/o" to what they were
at the time of the quit (unless the argument passed to
listen_$release_stack indicates that it should not), issues a
start order call, and returns to its caller.

This entry should be called only via cu_$cl.
Usage
declare get_to_cl_$unclaimed_signal entry;
call get_to_cl_$unclaimed_signal;

There are no arguments.

Copyright, 1972 ‘assachusetts Instifute of Technology
-C> Al? right§ rese?véd. £ (END)

'

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$add_dir_inacl_entries

Subroutine Call
2/27/73

Name: hcs_$add_dir_inacl_entries

This subroutine, given a list of Initial Access Control
List (lInitial AClL) entries, will add the given Initial ACL
entries, or change their directory modes if a corresponding
entry already exists, to the Initial ACL for new directories
within the specified directory.

Usage

declare hcs_s$add_dir_inacl_entries entry (char(x), char(x),
ptr, fixed bin, fixed bin, fixed bin(35));

call hcs_$add_dir_inacl_entries (dirname, ename, acl_ptr,
acl_count, ring, code);

1) dirname is the path name of the directory superior to
: the one in question. (lnput)

2) ename is the entry name of the directory in
question. (lnput)

3) acl_ptr points to a user-filled dir_acl structure.
See Notes below. (lInput)

4) acl_count contains the number of entries in the dir_acl
structure. See Notes below. (lInput)

5) ring is the ring number of the Initial ACL.
(Input)

6) code is a standard status code. (Output)

Notes

The following structure is used:

declare 1 dir_ac! (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 dir_modes bit(36),
2 status_code fixed bin(35);

1) access_name is the access name (in the form
person.project.tag) which identifies the
processes to which this Iinitial ACL entry
applies.

2) dir_modes contains the directory modes for this access
name. The first three bits correspond to the

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hes_$add_dir_inacl_entries MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2
modes status, modify, and append. The
remaining bits must be zero.

3) status_code is a standard status code for this Initial

ACL entry only.

I f code is returned as error_table_$argerr then the
offending Initial ACL entries in the dir_acl structure will have

status_code set to an appropriate error and no processing will
have been performed.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hes_$add_inacl_entries

Subroutine Call
2/27/73

Name: hes_$add_inacl_entries

This subroutine, given a list of Initial Access Control List
(Initial ACL) entries, will add the given Initial ACL entries, or
change their modes if a corresponding entry already exists, to
the Initial ACL for new segments within the specified directory.

Usaze

declare hcs_$add_inacl_entries entry (char(*), char(*),
ptr, fixed bin, fixed bin, fixed bin(35));

call hcs_$add_inacl_entries (dirname, ename, acl_ptr,
acl_count, ring, code);

1) dirname is the superior directory portion of the path
name of the directory in question. (lInput)

2) ename is the entry name portion of the path name of the
directory in question. (lInput)

3) acl_ptr points to a user-filled segment_acl structure.
See Notes below. (Input)

L) acl_count contains the number of Initial ACL entries in the
segment_acl structure. See Notes below. (Input)

5) ring is the ring number of the Initial ACL. (Input)

6) code is a standard status code. (Output)

Notes

The following structure is used:

dcl 1 segment_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 modes bit(36),
2 zero_pad bit(36),
2 status_code fixed bin(35);

1) access_name is the access name (in the form
person.project.tag) which identifies the
processes to which this Initial ACL entry
applies. :

2) modes contain the modes for this access name. The

first three bits correspond to the modes read,
execute, and write. The remaining bits must be

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hes_s$add_inacl_entries

Page 2

zero.

MULTICS SUBSYSTEM WRITERS' GUIDE

3) zero_pad must contain zero. (This field is for use with

extended access.)

4) status_code is a standard status code for this Initial ACL

entry only.

If code is returned as error_tablesargerr then the offending
Initial ACL entries in segment_acl will have status_code set to
an appropriate error and no processing will have been performed.

C) Copyright, 1973, Massachusetts
and Honeywell

Institute of Technology
Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$delete_dir_inacl_entries

Subroutine Call
2/28/73

Name: hcs_$delete_dir_inacl_entries
This subroutine is used to delete specified entries from an

Initial Access Control List (Initial ACL) for new directories
within the specified directory. The delete_acl structure used by

this subroutine is described in the MPM write-up for
hcs_$delete_inacl_entries.
Usage

declare hcs_s$delete_dir_inacl_entries entry (char(%),
char(*), ptr, fixed bin, fixed bin, fixed bin(35));

call hes_sdelete_dir_inacl_entries (dirname, ename, acl_ptr,
acl_count, ring, code);

1) dirname is the path name of the directory superior to the
one in question. (lInput)

2) ename is the entry name of the directory in question.
(Input)

- 3) acl_ptr points to a user-filled delete_acl structure.
(Input)

k) acl_count is the number of Initial ACL entries in the
delete_acl structure. (Input)

5) ring is the ring number of the Initial ACL. (lInput)
6) code is a standard status code. (Output)
Note
The status code is interpreted as described in

hcs_s$delete_inacl_entries.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$delete_inacl_entries

Subroutine Call
2/27/73

Name: hcs_$delete_inacl_entries

This subroutine is called to delete specified entries from
an Initial Access Control List (Initial ACL) for new segments
within the specified directory.

Usage

declare hcs_$delete_inacl_entries entry (char(#), char(+),
ptr, fixed bin, fixed bin, fixed bin(35));
call hes_$delete_inacl_entries (dirname, ename, acl_ptr,
acl_count, ring, code):;

1) dirname is the superior directory portion of the path name
of the directory in question. (lInput)

2) ename ' is the entry name portion of the path name of the
directory in question. (lInput)

3) acl_ptr points to a user-filled delete_acl structure. See
Notes below. (Input)

4) acl_count contains the number of ACL entries in the
delete_acl structure. See Notes below. (Input)

5) ring is the ring number of the Initial ACL. (lInput)
6) code is a standard status code. (Output)
Notes

The following structure is used:

declare 1 delete_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 status_code fixed bin(35);

1) access_name is the access name (in the form of
person.project.tag) which identifies the Initial
ACL entry to be deleted.

2) status_code is a standard status code for this Initial ACL
entry only.

1 f code is returned as error_table_$argerr then the
offending Initial ACL entries in the delete_acl structure will
have status_code set to an appropriate error and no processing
will have been performed.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hes_$delete_inacl_entries MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

If an access name cannot be matched to one existing on the
Initial ACL then the status code of that Initial ACL entry is
set to error_table_suser_not_found, processing continues to the
end of the delete_acl structure and code is returned as zero.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_author

Subroutine Call
3/15/73

Name: hcs_$get_author

This subroutine returns the author of a segment or a link.

Usage

declare hcs_$get_author entry (char(*), char(*), fixed
bin(1), char(*), fixed bin(35));

call hes_sget_author (dirname, entry, chase, author, code);

1) dirname is the path name of the directory containing entry.
The path name can have a maximum length of 168

characters. (lnput)

2) entry is the name of the entry. It can have a maximum
length of 32 characters. (lInput)

3) chase if entry refers to a 1link, this flag indicates
whether to return the author of the link or the
author of the segment to which the link points:

0 = return link author;
1 = return segment author. (lInput)

4) author is the author of the segment or link in the form of

Doe.Student.a with a max i mum length of 32
characters. (Output)

5) code is a standard storage system status code. (QOutput)

Note

The user must have status permission on the parent
directory.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_bc_author

Subroutine Call
3/16/73

Name: hcs_$get_bc_author
This subroutine returns the bit count author of a segment or

directory. The bit count author is the name of the user who last
set the bit count of the segment or directory.

Usage

declare hcs_$get_bc_author entry (char(*), char(*),
char(+), fixed bin(35));

call hcs_$get_bc_author (dirname, ename, bc_author, code);

1) dirname is the directory name of the segment whose bit
count author is wanted. (lnput)

2) ename is the entry name of the segment whose bit count
- author is wanted. (lnput)

3) bc_author is the bit count author of the segment in the form
of Doe.Student.a. (Output)

4) code is a standard storage system status code.
(Output)

Note

The user must have status permission on the directory
containing the segment.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

EEL T

MULTICS SUBSYSTEM WRITERS' GUIDE

Name: hcs_$get_dir_ring_brackets
This subroutine, given the

directory and the name of the

directory's ring brackets.

Usage

hes_$get_dir_ring_brackets

Subroutine Call
3/1/73

of
will

the superior
return that

path name
directory,

declare hcs_$get_dir_ring_brackets entry (char(x), char(¢),

(2) fixed bin(3),

fixed bin(35));

call hes_$get_dir_ring_brackets (dirname, ename, drb, code);

1) dirname is the path name of the superior directory.
(Input)

2) ename is the entry name of the directory 1in question.
(Input)

3) drb is a 2-element array to contain the directory's
ring brackets. (Output)

4) code is a standard status code. (Output)

Notes

The user must have status permission to dirname in order to

list the directory's ring brackets.

Ring brackets are discussed in the

MPM Subsystem MWriters'

Guide section, Intraprocess Access Control (Rings).

Massachusetts

C) Copyright, 1973,
and Honeywell

Institute of Technology
Information Systems

Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_max_length

Subroutine Call
3/16/73
Name: hcs_$get_max_length

This subroutine returns the max length of a segment given a
directory name and entry name. The max length is the length
beyond which the segment may not grow.

Usage

declare hecs_$get_max_length entry (char(*), char(*),
fixed bin(18), fixed bin(35)); SN

call hes_$get_max_length (dirname, ename, max_length, code);

1) dirname is the directory name of the segment whose max
length is wanted. (Input)

2) ename is the entry name of the segment whose max length
: is wanted. (Input)

3) max_length is the max 1length of the segment in words.
' (Output)

k) code is a standard storage system status code.
(Output)

Note

The user must have status permission on the directory
containing the segment.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_process_usage

Subroutine Call
4/30/73

Name: hcs_$get_process_usage

This subroutine returns information about a process's usage

of Multics since it was created. It provides data about
processor and memory usage.
Usage

declare hcs_$get_process_usage entry (ptr, fixed bin(35));
call hcs_$get_process_usage (info_pointer, code);

1) info_pointer is a pointer to the structure in which
process information is returned (see
Notes below). (lInput)

2) code is a standard status code. (Output)

Notes
The format of the structure based on info_pointer is:

declare 1 process_usage,

number_wanted fixed bin,
cpu_time_used fixed bin(71),
memory_usage fixed bin(71),
number_of_page_faults fixed bin(35),
amount_of_prepaging fixed bin(35),
process_virtual_time fixed bin(71);

NN

1) number_wanted is set by the <calling program to

sEecify the number of other entries_in
the structure to be filled in. The
entry itself (the numbers wanted) is

not included in this count. The value
5 would cause five entries listed

below to be filled in. A smaller
number, n, will cause the first n
entries to be filled in. (lnput)

2) cpu_time_used is set to the amount of processor time
(in microseconds) used by the calling
process. (Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hcs_$get_process_usage

Page 2

3) memory_usage

4) number_of_page_faults

5) amount_of_prepaging

6) process_virtual_time

(© Copyright, 1973, Massachusetts
and Honeywell

MULTICS SUBSYSTEM WRITERS' GUIDE

is a measure of the primary (core)
memory used by this process. The
units of memory usage are
page-seconds, normalized to account
for the size of primary memory
actually in use. (Output)

is set to the number of demand page
faults this process has taken.
(Output)

is the number of pages prepaged for
this process. (Output)

is the amount of processor time (in
microseconds) used exclusive of page
fault and system interrupt processing
time. (Output)

Institute of Technology
Iinformation Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_ring_brackets

Subroutine Call
2/27/73
Name: hcs_$get_ring_brackets

This subroutine, given the directory name and entry name of
a nondirectory segment will return that segment's ring brackets.

Usage

declare hcs_$get_ring_brackets entry (char(*), char(*),
(3) fixed bin(3), fixed bin(35));

call hecs_$get_ring_brackets (dirname, ename, rb, code);

1) dirname is the directory portion of the path name of the
segment in question. (lnput)

2) ename is the entry name of the segment 1in question.
(Input)

3)rb " is a 3-element array to contain the segment ring
brackets. (Output)

k) code is a standard status code. (Output)

Notes

The uéer must have status permission to dirname in order to
list a segment's ring brackets.

Ring brackets are discussed in the MPM Subsystem Writers'
Guide section, Intraprocess Access Control (Rings).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_safety_sw

Subroutine Call
3/16/73

Name: hcs_$get_safety_sw

This subroutine returns the safety switch of a directdry or
a segment, given a directory name and an entry name.

Usage

declare hcs_$get_safety_sw entry (char(*), char(*), bit(1l),
fixed bin(35));

call hes_$get_safety_sw entry (dirname, ename, safety_sw,
code);

1) dirname is the directory name of the segment whose safety
switch is wanted. (lnput)

2) ename is the entry name of the segment whose safety
: switch is wanted. (lnput)

3) safety_sw is the value of the segment's safety switch.

= "0'"b if the segment may be deleted.
= "1"b if the segment may not be deleted. (Output)

4) code is a standard storage system status code.
(Output)

Note

The user must have status permission with respect to the
directory containing the segment.

() Copyright, 1973, Massachusetts Institute .of Technology
and Honeywell Information Systems Inc. (END)

-)

&

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$get_search_rules

Subroutine Call
Development System
06/14/71
Name: hcs_$get_search_rules

This entry returns the search rules currently in use in the
caller's process.

Usage
declare hcs_$get_search_rules entry (ptr);
call hcs_$get_search_rules (search_rules_ptr);

1) search_rules_ptr is a pointer to a wuser supplied search
rules structure. (lnput)

Notes
The search rule structure is declared as follows:
declare 1 search_rules,
2 number fixed bin,
2 names (21) char(168) aligned;
1) number is the number of search rules.

-~

2) names are the names of the search rules.

(END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$initiate_search_rules

Subroutine Call
Development System
12/715/71

Hame: hcs_$initiate_search_rules

This 1is a supervisor entry which is mainly used by the
set_search_rules and set_search_dirs commands. It also provides
the user with a means of specifying the search rules which he
wishes to use in his process. (For more information on search
rules, see the appropriate MPM Reference Guide Section.)

Usage
declare hcs_$initiate_search_rules entry (ptr, fixed bin);
call hcs_ginitiate_search_rules (search_rule_pointer,

code);
1) search_rule_pointer is a pointer to a structure containing
' the new search rules. (Input)
2) code is a standard return status code.
(Output)
lotes

The structure pointed to by search_rule_pointer is declared
as follows:

declare 1 sr aligned,

2 num fixed bin,
2 names (21) char(168) aligned;

1) num is the number of entries. The current
maximum is 21 but the user need only
disclose the maximum that he will use.

2) names are the names of the search rules. They
may be absolute pathnames or key words.

Search rules may be either absolute pathnames of directories
or key words. The allowed search rules are:

pathname the absolute pathname of a directory to
be searched;

(key words)

initiated_segments search for the already initiated
segment;

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

hcs_$initiate_search_rules

MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

referencing_dir

working_dir
process_dir
home_dir
default

system_libraries

set_search_directories

The key word

word or pathname as
immediately.

it

the parent directory of the

making the reference;

search
module
search the working directory;
search the process directory;
search the login or home directory;
return to the default search rules;

system libraries
in the search rules;

insert the default
at this point

insert the following directories
after working_dir in the default
search rules and make the result the
current search rules.

"default" cannot be used with any other code
returns

the default rules and exits

The search rules can be changed when the procedure is called

vwith different rules or the

process is terminated.

Errors returned from this routine are:

error_table_$bad_string (not a pathname or code word)

error_table_$notadir

error_table_$too_many_sr

Additional file system errors may be returned from other routines
which are called from hcs_$initiate_search_rules.

© Copyright, 1972,
A1l rights reserved.

Massachusetts

Institute of Technology
(END)

MULTICS SUBSYSTEM WRITERS' GUIDE hes_$1ist_dir_inacl

Subroutine Call
2/27/73

Name: hes_$1ist_dir_inacl

This subroutine is used to either list the entire Initial
Access Control List (Initial ACL) for new directories within the
specified directory, or to return the access modes for specified

entries. The dir_acl structure described in
hcs_$add_dir_inacl_entries is used by this subroutine.
Usage

declare hes_$list_dir_inacl entry (char(*), char(*), ptr,
ptr, ptr, fixed bin, fixed bin, fixed bin(35));

call hes_$list_dir_inacl (dirname, ename, area_ptr,
area_ret_ptr, acl_ptr, acl_count, ring, code);

1) dirname Vis the path name of the directory superior to
: the one in question. (lnput)

2) ename is the entry name of the directory in question.
(Input)
3) area_ptr points to an area into which the list of Initial

ACL entries is to be allocated. (Input)

4L) area_ret_ptr points to the start of the 1list of the Initial
ACL entries. (Output)

5) acl_ptr if area_ptr is null then acl_ptr is assumed to
point to an Initial ACL structure, dir_acl, into
which mode information is to be placed for the
access names specified in that same structure.
(Input)

6) acl_count is either the number of entries in the Initial
ACL structure identified by acli_ptr (Input); or
if area_ptr 1is not null, then it is set to the
number of entries in the dir_acl structure that
has been allocated. (Output)

7) ring is the ring number of the Initial ACL. (Input)

8) code is a standard status code. (Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hes_$1ist_dir_inacl MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Note

If acl_ptr is used to obtain modes for specified access
names (rather than obtaining modes for all access names on the
Initial ACL), then each Initial ACL entry will either have a zero
status_code and will contain the directory's mode or will have

status_code set to error_table_$user_not_found and will contain a
zero mode.

CD Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hes_$1ist_inacl

Subroutine Call
2/27/73

Name: hcs_$1ist_inacl

This subroutine is used to either list the entire Initial
Access Control List (lInitial ACL) for new segments within the
specified directory, or to return the access modes from specified
entries. The segment_acl structure used by this subroutine is
described in the MPM write-up for hes_$add_inacl_entries.

Usage

declare hes_$1ist_inacl entry(char(*), char(+), ptr, ptr,
ptr, fixed bin, fixed bin, fixed bin(35));

call hcs_$1list_inacl (dirname, ename, area_ptr, area_ret_ptr,
acl_ptr, acl_count, ring, code)

1) dirname is the superior directory portion of the path
name of the directory in question. (lnput)

2) ename is the entry name portion of the path name of
the directory in question. (Input)

3) area_ptr points to an area into which the list of
Initial ACL entries 1is to be allocated.
(Input)

4) area_ret_ptr points to the start of the allocated list of

Initial ACL entries. (Output)

5) acl_ptr if area_ptr is null then acl_ptr is assumed

to point to an Initial ACL structure,
segment_acl, into which mode information s
to be “placed for the access names specified

in that same structure. (lnput)

6) acl_count is the number of entries in the Initial ACL
structure identified by acl_ptr (Input); or
is set to the number of entries in the
segment_acl structure allocated in the area
pointed to by area_ptr, if area_ptr is not
null. (Output)

7) ring is the ring number of the Initial ACL.
(Input)
8) code is a standard status code. (Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hes_$1ist_inacl MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Note

If acl_ptr is used to obtain modes for specified access
names (rather than obtaining modes for all access names on the
Initial ACL), then each Initial ACL entry will either have a zero
status_code and will contain the segment's mode or will have
status_code set to error_table_$user_not_found and will contain a
zero mode.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$quota_get

Subroutine Call
3/19/73

Name: hcs_$quota_get

This subroutine returns the record quota and accounting
information for a directory.

Usaze

declare hcs_$quota_get entry (char(*), fixed bin(18),

fixed bin(35), bit(36) aligned, fixed bin, fixed
bin(l), fixed bin, fixed bin(35));

call hecs_$quota_get (dirname, quota, trp, tup, infqgcnt,

1) dirname

2) quota

3) trp

4) tup

5) infqcent

6) taccsw

7) used

8) code

taccsw, used, code);

is the path name of the directory for which quota
information is desired. (lnput)

is the record quota in the directory. (Output)

is the time-record product charged to the
directory. This number is in units of
record-seconds. (Output)

is the time that the ¢trp was last updated In
storage system time format (the high-order 36 bits
of the 52-bit time returned by clock_). (Output)

is the number of immediately inferior directories
(i.e., directories in this directory) which
contain terminal accounts. (Output)

is the terminal account switch. |If the switch s
on, the records are charged against the quota in
this directory. If the switch is off, the records

are charged against the quota in the first
superior directory with a terminal account.’
(OQutput)

is the number of records used by segments in this
directory and by non-terminal inferior

directories. (Output)

is a standard storage system status code.
(Output)

(© Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc.

hcs_$quota_get MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Notes

The user must have status permission on the directory.

If the account is currently active, this call will cause the
account information in the directory header to be updated from
the Active Segment Table (AST) entry before this information s
returned to the caller. |If the directory contains a non-terminal
account, the quota, trp, and tup variables are all zero. The
variable used, however, Is kept up-to-date and represents the
number of pages of segments in this directory and inferior
non-terminal directories. |f a quota were to be placed 1In this
directory, it should be greater than this used value.

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULT!ICS SUBSYSTEM WRITERS' GUIDE hcs_$quota_move

Subroutine Call
3/19/73

Name: hcs_$quota_move
This subroutine is callable by any user and moves all or

part of a quota between two directories, one of which is
immediately inferior to the other.

Usage

declare hcs_$quota_move entry (char(*), char(x),
fixed bin(18), fixed bin(35));

call hcs_$quota_move (dirname, entry, quota_change, code);

1) dirname is the path name of the parent directory.
(Input)

2) entry is the entry name of the inferior directory.
(Input)

3) quota_change is the number of 1024-word pages of secondary

storage quota to be subtracted from the
parent directory and added to the Iinferior
directory. (lnput)

4) code is a standard storage system status code.
(Qutput)

Notes
The entry specified by entry must be a directory.

The user must have modify permission in both directories.

After the quota change, the remaining quota in each
directory must be greater than the number of pages used in that
directory.

The argument quota_change may be either a positive or
negative number. If it is positive, the quota will be moved from
dirname to entry. If it is negative, the move will be from entry

to dirname. |If the change results in zero quota left on entry,
that directory 1Iis assumed to no longer contain a terminal quota
and all of Its used pages are reflected up to the used pages on
dirname. There - is a restriction on quotas such that all quotas

in the chain from the root to (but not including) the terminal
directory must be nonzero. This restriction means that
hcs_$quota_move cannot leave behind a quota of =zero (in the

superior directory.

C) Copyright, 1973, Massachusetts Institute of Teciinoiogy
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$replace_dir_inacl

Subroutine Call
3/1/73

Name: hcs_$replace_dir_inacl

This subroutine replaces an entire Initial Access Control
List (lnitial ACL) for new directories within a specified
directory with a user-provided Initial ACL, and can optionally
add an entry for *.SysDaemon.* with mode sma to the new Initial
ACL. The dir_acl structure described in
hes_$add_dir_inacl_entries is used by this subroutine.

Usage

declare hcs_sreplace_dir_inacl entry (char(x), char(*), ptr,
fixed bin, bit(1l) aligned, fixed bin,
fixed bin(35));

call hcs_sreplace_dir_inacl (dirname, ename, acl_ptr,
acl_count, no_sysdaemon_sw, ring, code);

1) dirname is the path name of the directory superior to
the one in question. (Input)

2) ename is the entry name of the directory in
question. (Input)

3) acl_ptr '~ points to a user-supplied dir_acl structure
that is to replace the current Initial ACL.
(Input)

4) acl_count is the number of entries in the dir_acl

structure. (lnput)

5) no_sysdaemon_sw -if "0"b, then a +.SysDaemon.* sma.entry will
v T be put on the Initial ACL after the existing
Initial ACL has been deleted and before the
user-supplied dir_acl entries are added; if
"1"p, then only the user-supplied dir_acl

will replace the existing Initial ACL.

(Input)

6) ring is the ring number of the Initial ACL.
(lnput)

7) code is a standard status code. (Output)

C) Copyright, 1973, Massachusetts Institute of Technclogy
and Honeywell Information Systems Inc.

hcs_$replace_dir_inacl MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Note

If acl_count is zero then the existing Initial ACL will be
deleted and only the action indicated by no_sysdaemon_sw will be
performed (if any). In the case when acl_count is greater than
zero, processing of the dir_acl entries is performed top to
bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

(© Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$replace_inacl

Subroutine Call
3/1/73

Name: hcs_$replace_inacl

This subroutine replaces an entire Initial Access Control
List (Initial ACL) for new segments within a specified directory
with a user-provided Initial ACL, and can optionally add an entry
for *.SysDaemon.* with mode rw to the new Initial ACL. The
segment_acl structure described in hes_$add_inacl_entries is used
by this subroutine.

Usage

declare hcs $replace inacl entry (char(*), char(*), ptr,
fixed bin, bit(1l), fixed bin, fixed bin(35));

call hes_sreplace_inacl (dirname, ename, acl_ptr, acl_count,
no_sysdaemon_sw, ring, code);

1) dirname' is the superior directory portion of the path
name of the directory in question. (lnput)

2) ename is the entry name portion of the path name of
the directory in question. (lnput)

3) acl_ptr points to the user supplied segment_acl
structure that is to replace the current
initial ACL. (lnput)

4) acl_count is the number of entries in the segment_acl
structure. (Input)

5) no_sysdaemon_sw if "0"b, then a *.SysDaemon.* rw entry will
be put on the Initial ACL after the existing
Inltlal ACL has been deleted and before the

user-supplied segment_acl entries are added;
If "1"b, then only the user-supplied
segment_acl will replace the existing Initial
ACL. (lInput)

6) ring is the ring number of the Initial ACL.
(Input)
7) code is a standard status code. (Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

hes_s$replace_inacl MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Note

If acl_count Is zero then the existing Initial ACL will be
deleted and only the action indicated by no_sysdaemon_sw will be
performed (if any). In the case when acl_count is greater than
zero, processing of the segment_acl entries is performed top to
bottom, allowing later entries to overwrite previous ones if the
access_name parts are identical.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

GUIDE hcs_Sreset_working_set

MULTICS SUBSYSTEM WRITERS'

Subroutine Call

Development System
05/10/71

hcs_Sreset_working_set

liame :
This entry is called to turn off the used bits of all pages
list for the <current process. This is
list and starting the

in the page-trace
truncating the pre-page

equivalent to

gathering of pre-page statistics with the next page fault.
Usage
declare hcs_S$reset_working_set entry;
call hcs_$reset_working_set;

There are no arguments.

(END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$set_dir_ring_brackets

Subroutine Call
3/1/73

Name: hcs_$set_dir_ring_brackets
This subroutine, given the path name of the superior

directory and the name of the directory, will set that
directory's ring brackets.

Usage

declare hcs_$set_dir_ring_brackets entry (char*), char(s),
(2) fixed bin(3), fixed bin(35));

call hcs_$set_dir_ring_brackets (dirname, ename, drb, code);

1) dirname is the path name of the superior directory.
(Input)

2) ename is the entry name of the directory in question.

, (Input)

3) drb is a 2-element array specifying the ring brackets
of the directory. (lInput)

4) code is a standard status code. (Output)

Notes

The wuser must have modify permission in the superior
directory and the validation level must be less than or equal to
both the present value of the first ring bracket and the new
value of the first ring bracket that the user wishes set.

Ring brackets and validation levels are discussed in the MPM
Subsystem Writers' Guide section, Intraprocess Access Control
(Rings).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$set_max_length

Subroutine Call
3/30/73

Name: hcs_$set_max_length

This subroutine sets the max length of a segment, given a
directory name and an entry name. The max length is the length
beyond which the segment may not grow.

Usage

declare hecs_$set_max_length entry (char(*), char(*),
fixed bin(18), fixed bin(35));

call hes_$set_max_length (dirname, ename, max_length, code);

1) dirname is the directory name of the segment whose max
length is to be changed. (Input)

2) ename is the entry name of the segment whose max length
- is to be changed. (Ilnput)

3) max_length 1is the new value in words for the max 1length of
the segment. (Input)

4) code is a standard storage system status code. (See
Notes below.) (Output)

Notes
A directory may not have Its max length changed.

Modify permission with respect to the directory containing
the segment is required.

Eventually, the max length of a segment will be accurate to
units of 16 words, and if max_length is not a multiple of 16
words, it will be set to the next multiple of 16 words. However,
currently the max length of a segment should be set in units of
1024 words, due to hardware restrictions.

If an attempt 1is made to set the max length of a segment
greater than the system maximum, sys_info$max_seg_size, code will
be set to error_table_$argerr.

If an attempt is made to set the max 1length of a segment

greater than its current length, code will be set to
error_table_$invalid_max_length.

The subroutine hcs_$set_max_length_seg may be used when the
pointer to the segment is given, rather than a path name.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$set_max_length_seg

Subroutine Call
3/30/73

Name: hcs_$set_max_length_seg

This subroutine sets the max length of a segment, given the
pointer to the segment. The max length is the length beyond
which the segment may not grow.

Usage

declare hcs_$set_max_length_seg entry (ptr, fixed bin(18),
fixed bin(35));

call hcs_$set_max_length_seg (segptr, max_length, code);

1) segptr is the pointer to the segment whose max
length is to be changed. (lnput)

2) max_length is the new value in words for the max length
: of the segment. (Input)

3) code is a standard storage system status code.
(see Notes below.) (Output)

Notes

A directory may not have its max length changed.

Modify permission with respect to the directory containing
the segment is required.

Eventually, the max length of a segment will be accurate to
units of 16 words, and if max_length is not a multiple of 16
words, it will be set to the next multiple of 16 words. However,
currently the max length of a segment should be set in units of
1024 words, due to hardware restrictions.

If an attempt is made to set the max length of a segment to
greater than the system maximum, sys_info$max_seg_size, code will
be set to error_table_$argerr.

If an attempt is made to set the max length of a segment to
less than its current length, code will be set to
error_table_$invalid_max_length.

The subroutine hcs_$set_max_length may be used when a path
name of the segment is given, rather than the pointer.

C) Copyright, 1973, Massachusetts Institute of Technology _
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE ‘ hcs_$set_ring_brackets

Subroutine Call
3/1/73
Name: hcs_$set_ring_brackets

This subroutine, given the directory name and entry name of
a nondirectory segment, sets that segment's ring brackets.

Usage

declare hcs_$set_ring_brackets entry (char(*), char(x),
(3) fixed bin(3), fixed bin(35));

call hcs_$set_ring_brackets (dirname, ename, rb, code);

1) dirname is the directory portion of the path name of the
segment in question. (lnput)

2) ename is the entry name of the segment 1in question.

_(Input)

3)rb is a 3-element array specifying the ring brackets
of the segment. (Input)

4) code is a standard status code. (Output)

Notes

The user must have modify permission to the directory and
the validation level must be less than or equal to both the
present value of the first ring bracket and the new value for the
first ring bracket that the user wishes set.

Ring brackets and validation levels are discussed in the MPM
Subsystem Writers' Guide section, Intraprocess Access Control
(Rings).

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hes_$set_safety_sw

Subroutine Call
3/16/73

Name: hcs_$set_safety_sw

This subroutine allows the safety switch associated with a
segment to be changed. The segment is designated by a directory
name and an entry name. See the MPM Reference Guide section,

Segment, Directory and Link Attributes, for a description of the
safety switch.

Usage

declare hcs_$set_safety_sw entry (char(*), char(*),
bit(l), fixed bin(35));

call hcs_$set_safety_sw (directory, entry, safety_sw, code);
1) directory is the name of the directory containing the
segment whose safety switch is to be changed.

(Input)

2) entry is the entry name of the segment whose safety
switch is to be changed.. (Input)

3) safety_sw is the new value of the safety switch:

= "0"b if the segment may be deleted.
= "1"p |{f the segment may not be deleted. (Input)

4) code is a standard storage system status code.
(Output)

Note

hcs_$set_safety_sw_seg performs the same function when the
pointer to the segment is provided rather than a pathname.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_$set_safety_sw_seg

Subroutine Call
3/15/73

Name: hcs_$set_safety_sw_seg
This subroutine sets the safety switch of a segment, given

the pointer to the segment. The safety switch of a segment is a
protection against deletion.

Usage
declare hcs_sset_safety_sw_seg (ptr, bit(1), fixed bin(35));
call hcs_$set_safety_sw_seg (segptr, safety_sw, code);

1) segptr is the pointer to the segment whose safety switch
is to be changed. (lInput)

2) safety_sw is the new value of the safety switch:

= "0y if the segment may be deleted.
= “"1"b if the segment may not be deleted. (Input)

3) code is a standard storage system status code.
(Output)

Notes

The user must have modify permission with respect to the
directory containing the segment whose safety switch Iis to be
changed.

The subroutine hcs_$set_safety_sw performs the same function
when provided with a path name of the segment rather than the
pointer. :

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE hcs_s$wakeup

) Subroutine Call
2/7/173

Name: hcs_$wakeup
This entry sends an interprocess communication wakeup signal
to a specified process over a specified event channel. If that

process had previously called ipc_$block, it would be wakened.
See the MPM write-up for ipc_.

Usasge

declare hcs_$wakeup entry (bit(36), fixed bin(71),
fixed bin(71), fixed bin(35));

call hcs_$wakeup (process_id, channel_id, message, code);

1) process_id :s the)process identifier of the target process.
Input

2) channel_id is the identifier of the event channel over which
the wakeup is to be sent. (lnput)

3) message is the event message to be (interpreted by the
target process. (lnput)

4) code is a status code. It may be elther
error_table_$invalid_channel or one of four other
values:

0 no error;

1 signalling was correctly done but the target
process was in the stopped state;

2 an input argument was incorrect so signalling was
aborted;

3 the target process was not found, (e.g.,

process_id was incorrect or the target process has
been destroyed), so signalling was aborted.
(Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE joa_

Subroutine Call
Development System
9/9/71

Hame: ioa_

This procedure is used to format character strings, fixed
binary numbers, floating numbers, and pointers into complete
character string form. The type of formatting to be performed is
specified by the use of a control string. The single entry point
described here has been designed to provide a more general
interface to ioa_ than has previously been available.

A description of the other entry points listed below and of
control strings can be found in the MPM.

ioa_
ioa_$ioa_stream
ioa_$ioa_stream_nnl
ioa_$nnl

—foa_$rs
ioa_$rsnnl
ioa_$rsnp
ioa_$rsnpnnl

Entryv: ioa_s$general_rs

This entry point 1is used to provide ioa_ with a control
string and format arguments taken from a previously created
argument list to which a pointer has been obtained.

Usage

declare ioa_$general_rs entry (ptr, fixed bin, fixed bin,
char(*), fixed bin, bit(1l) aligned, bit(1l) aligned);

call ioa_$general_rs (arglist_ptr, cs_argno, ff_argno,
retstring, len, padsw, nlsw);

1) arglist_ptr is a pointer to the argument list from which
the control string and format arguments are
to be taken. (lInput)

2) cs_argno is the argument number of the control string
in the argument list pointed to by
arglist_ptr. (lInput)

3) ff_argno is the argument number of the first format
argument in the argument list pointed to by
arglist_ptr. (lnput)

© Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

ioa_

Page 2

4) retstring

5) len

6) padsw

7) nlsw

MULTICS SUBSYSTEM WRITERS' GUIDE

contains the formatted string. It should be
large enough to allow for expansion.
(Output)

specifies the number of significant
characters in retstring. (Output)

if zero, the formatted string is not padded;
if one, it is padded with blanks on the
right. (Output)

if zero, a "new line" is not appended; if
one, a "mnew line'" is appended to the
formatted string. (Output)

c> Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE ipc_

Subroutine Call
5/25/73

Name: ipc_

The Multics system supports a facility providing for
communication between processes. For a thorough understanding
(on a conceptual level) of interprocess communication, chapter 7
of E.l., Organick's book on Multics is recommended.* The basic
purpose of the interprocess communication facility is to provide
control communication (by means.of stop and go signals) between
processes. A very primitive communication path s provided
through which messages may be sent and waited for.

The subroutine ipc_ is the user's interface to the Multics
interprocess communication facility. Briefly, that facility
works as follows. A process may establish event channels (which
may be thought of as numbered slots in the facility's tables) in
the current protection ring (for a discussion of rings see MPM
Subsystem Writer's Guide section, Intraprocess Access Control
(Rings)) and may go blocked waiting for an event on one or more
channels. An event channel may be either an event-wait channel
or an event-call channel. An event-wait channel is used to
receive events that are merely marked as having occurred, and to
wake up the process if it is blocked waiting for an event on that
channel. An event-call channel is one on which the occurrence of
an event causes a specified procedure to be called if (or when)
the process is blocked waiting for an event on that channel.
Naturally the specific event channel must be made known to the
process which expected to notice the event. For an event to be
noticed by an explicitly cooperating process, the event channel
ID value is typically placed in a known location of a shared
segment. For an event to be noticed by a system module, a
subroutine call is typically made to the appropriate system

module. A process may go blocked waiting for an event to occur,
or may explicitly check to see if it has occurred. If an event
occurs before the target process goes blocked, when it does go
blocked it is immediately awakened.

The user may operate on an event channel only if his ring of
execution is the same as his ring when the event channel was
created.

The subroutine hcs_$wakeup (used to wake up a blocked
process for a specified event) is described in an MPM Subsystem
Writers' Guide subroutine write-up.

*wE.l. Organick, Ihe Multics System: An Examination of 1its
Structure. Cambridge, Mass., M.Il.T. Press, 1972.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

ipc_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Entry: ipc_$create_ev_chn

This entry creates an event-wait channel in the current
ring. :

Usage
declare ipc_s$create_ev_chn entry (fixed bin(71),
fixed bin(35));

call ipc_$create_ev_chn (channel_id, code);

1) channel_id is the identifier of the event channel.
(Output)
2) code is a sténdard status code; see Status Code

Valyes below. (Output)
Entry: ipc_$delete_ev_chn

This entry destroys an event channel previously created by
the process.

Usage

declare ipc_$delete_ev_chn entry (fixed bin(71),
fixed bin(35));

call ipc_$delete_ev_chn (channel_id, code);
1) channel_id is as above. (Ilnput)
2) code is as above. (Output)
Entry: ipc_$decl_ev_call_chn

This entry changes an event-wait channel into an event-call
channel.

Usage

declare ipc_$decl_ev_call_chn entry (fixed bin(71), ptr,
ptr, fixed bin, fixed bin(35));

call ipc_$decl_ev_call_chn (channel_id, procedure_ptr,
data_ptr, priority, code);

1) channel_id is as above. (Input)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE ipc_

2) procedure_ptr

3) data_ptr

L) priority

5) code

Page 3
5/25/73

is a pointer to a procedure entry point to be
invoked when an event occurs on the specified
channel. (lInput)

is a pointer to data to be passed to and
interpreted by that procedure entry point.
(Input)

is a number indicating the priority of this
event-call channel as compared to other
event-call channels declared by this process
for this ring. If, upon interrogating all
the appropriate event-call channels, more
than one is found to have received an event,
the lowest-numbered priority will be honored
first, and so on. (lnput)

is as above. (Output)

Entry: ipc_$decl_ev_wait_chn

This entry changes an event-call channel into an event-wait

channel.

Usage

declare ipc_$decl_ev_wait_chn entry (fixed bin(71),
fixed bin(35));

call ipc_sdecli_ev_wait_chn (channel_id, code);

1) channel_id
2) code

is as above. (Input)

is as above. (Output)

Entry: ipc_$drain_chn

This entry resets an event channel so that any pending
events (i.e., events which have been received for that channel)

are removed.

Usage

declare ipc_s$drain_chn entry (fixed bin(71), fixed bin(35));

call ipc_s$drain_chn (channel_id, code);

1) channel_id

C) Copyright, 1973,

is as above. (lnput)

Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

ipc MULTICS SUBSYSTEM WRITERS' GUIDE

Page &4

2) code is as above. (Output)

Entry: ipc_$cutoff

This entry inhibits the reading of events on a specified
event channel. Any pending events are not affected. More may
be received, but will not cause the process to wake up.

Usage
declare ipc_$cutoff entry (fixed bin(71), fixed bin(35));

call ipc_$cutoff (channel_id, code);
1) channel_id is as above. (lInput)

2) code is as above. (Output)

Entry: Ipc_$reconnect

This entry enables the reading of events on a specified
event channel for which reading had previously been inhibited

(using 1ipc_$cutoff), A1l pending signals, whether received
before or during the time reading was inhibited, are henceforth

available for reading.

Usage
declare ipc_$reconnect entry (fixed bin(71), fixed bin(35));

call ipc_$reconnect (channel_id, code);

1) channel_id is as above. (Input)

2) code is as above. (Output)

Epntry: ipc_$set_wait_prior

This entry causes event-wait channels to be given priority
over event-call channels when several channels are being
interrogated; e.g., upon return from being blocked waiting on any
of a list of channels. Only event channels in the current ring
are affected.

Usage
declare ipc_$set_wait_prior entry (fixed bin(35));

call ipc_$set_wait_prior (code);

C) Copyright, 1973, Massachusetts In titut? of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE ipc

Page 5

1) code is as above. (Output)

Entry: ipc_$set_call_prior

This entry causes event-call channels to be given priority
over event-wait channels when several channels are being
interrogated; e.g., upon return from being blocked waiting on any
of a list of channels. Only event channels in the current ring
are affected.

Usage
declare ipc_$set_call_prior entry (fixed bin(35));
call ipc_$set_call_prior (code);

1) code is as above. (Output)

Entry: ipc_$mask_ev_calls

This entry causes ipc_$block (see below) to completely
ignore event-call channels occurring in the user's ring at the
time of this call.

Usage
declare ipc_$mask_ev_calls entry (fixed bin(35));
call ipc_s$mask_ev_calls (code);

1) code is as above. (Output)

Entry: ipc_$unmask_ev_calls

This entry reverses the effect of the entry
ipc_$mask_ev_calls.

Usage
declare ipc_$unmask_ev_calls entry (fixed bin(35));
call ipc_s$unmask_ev_calls (code);

1) code is as above. (Output)

Entry: 1ipc_$block

This entry blocks the user's process until one or more of a
specified 1ist of events has occurred.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

ipc

Page 6

Usage

MULTICS SUBSYSTEM WRITERS' GUIDE

declare ipc_$block entry (ptr, ptr, fixed bin(35));

call ipc_$block (walt_list_ptr, info_ptr, code);

1) wait_list_ptr

2) info_ptr

C) Copyright, 1973,

is a pointer to the base of a structure which
specifies the channels on which events are
being awaited. The structure is:

declare 1 wait_list based,
2 nchan fixed bin,
2 channel_id (nchan) fixed bin(71);

It is a count of the number of channels
(nchan) and an array of the identifiers for
those channels. (lInput)

is a pointer to the base of a structure into
which ipc_$block may put information about
the event which caused it to return (i.e.,
which wakened the process). The structure
has the declaration:

declare 1 event_info,

channel_id fixed bin(71),
message fixed bin(71),

sender bit(36),

origin,

3 dev_signal bit(18) unaligned
3 ring bit(18) unaligned,

2 channel_index fixed bin;

NN

1) channel_id is as above.

2) message is an event message as
specified to hcs_$wakeup.

3) sender is the process ID of the

sending process

4) dev_signal if "1"b, this event occurred
as the result of an 1/0
interrupt.

S) ring is the sender's validation
level.

6) channel_index is the index of channel_id
in the wait_list structure

Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE ipc

Page 7
5/25/73

above. (lnput)

3) code is as above. (Output)

Entry: ipc_$read_ev_chn

This entry reads the information about an event on a
specified channel if the event has occurred.

Usage

declare ipc_S$read_ev_chn entry (fixed bin(71), fixed bin,
ptr, fixed bin(35));

call ipc_$read_ev_chn (channel_id, ev_occurred, info_ptr,

code);

1) channel_id is as above. (lnput)

2) ev_occurred if equal to 0, no event occurred on the
specified channel; if equal to 1, an event
occurred on the channel. (Output)

3) info_ptr is as above. (lnput)

k) code is as above. (Output)

Status Code Values

A1l of the entries described above return a value from 0 to
5 for the status code argument. The values mean the following:

0 no error.

1 ring violation; e.g., the event channel
resides in a ring which is not accessible

from the caller's ring.

2 the table which contains the event channels
for a given ring was not found.

3 the specified event channel was not found.

b a logical error in using ipc_ was

encountered; e.g., waiting on an event
event-call channel.

5 a bad argument was passed to ipg_; e.g., a
zero-value event channel identifier.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

ipc_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 8

Invoking an Event-Call Procedure

‘ When a process is wakened on an event-call channel, control
is immediately passed to the procedure specified by the entry
ipc_$decl_ev_call_chn. The procedure is called with one
argument, a pointer to the following structure:

declare 1 event_info based,

channel_id fixed bin(71),
message fixed bin(71),

sender bit(36),

origin,

3 dev_signal bit(18) unaligned,
3 ring bit(18) unaligned,

2 data_ptr ptr;

NN

The first items of the structure are. the same as 1in the
information returned to ipc_$block. The last item, data_ptr, is
the second argument to ipc_$decl_ev_call_chn and points to
further data to be used by the called procedure.

Copyright, 1973, Massachusetts Institute of Technolo
CD : * and Honeywell In?ormat on Systems |§¥. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE listen_

Subroutine Call
Development System
6/30/72

Name: listen_

The listen_ procedure (referred to as the listener) 1is the
base procedure for the basic command processing loop. In
general, the listener reads command 1lines from '"user_inout",
calls the command processor to process each command line, and
types a ready message after each command line is processed. It
is called after a quit or unclaimed signal. |If the first command
line after a quit or unclaimed signal does not contain a start or
hold command, the listener will automatically unwind the stack
and reestablish the previous instance of Itself after one command
line is processed successfully. -

Entryv: listen_
This call is usually issued early in the 1life of a newly

created user process and establishes the base 1level of the
listener and the standard command processing loop.

Usage
declare listen_ entry (char(*) varying);
call listen_ (initial_command_line);

1) initial_command_line 1is a command line to he executed before

the first read call on "user_input". |If
it is of zero length, it is ignored.
(I nput)

Entry: listen_$release_stack

This entry is called after a quit or unclaimed signal has

been processed. It sets a switch which causes the stack to be
released if a hold request is not included in the next command
line read. | f a start request is typed, then

listen_$release_stack returns control to its caller.
Usage
declare listen_$release_stack entry (bit(1l) aligned);

call listen_$release_stack (restore_attachments);

C) Copyright, 1972, lassachusetts Institute of Technology
A1l rights reserved.

listen_

Page 2

1) restore_attachments

©

MULTICS SUBSYSTEM WKITERS' GUILE

is a flag which tells the caller of
listen_$release_stack whether or not it
should restore the standard 1/0
attachments and the mode of user_i/o to
what they were at the time of the fault
or quit that caused
listen_$release_stack to be invoked.
"1"b means restore, "0'"b means don't
restore. (Output)

Copyright, 1972, Massachusetts Institute of Technology

All

rights reserved.

(END)

1ss_login_responder_

MULTICS SUBSYSTEM WRITERS' GUIDE

Subroutine Call
4L/30/73

Name: 1ss_login_responder_

This is the login responder for the Limited Service System.
It looks for the segment 1ss_command_list_ in

>system_library_standard, sets up handlers for conditions, starts
the time governor if the ratio in the table is greater than zero,

and limits which commands the user may use.

Usagze

declare lss_login_responder_ entry;
call 1ss_login_responder_;
There are no arguments.

Entry: 1imited_command_system_

This login responder is identical to the one above, except

looks for the segment 1ss_command_list_ in the user's project

t
irectory before looking in >system_library_standard.

i
d
Usage
declare limited_command_system_ entry;

call limited_command_system_;

There are no arguments.

Hote

The make_commands command can be used to create the segment,
1ss_command_list_. . '

Institute of Technology

() Copyright, 1973, Massachusetts
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE msf_manager_

Subroutine Call
11/20/72

Name: msf_manager_

The purpose of the msf_manager_ subroutine is to provide an
easy to use and consistent method for handling files that may
require more than one segment for storage. Examples of files
that may be too large to be stored in one segment, hereafter
refered to as multi-segment files (MSFs), are listings, data used
as 1/0 streams, and APL workspaces. msf_manager_ should make MSFs
almost as easy to use as single segment files (SSFs) in many
applications.

MSFs are composed of one or more components, each the size
of a segment, identified by unsigned integers. Any word in an
SSF can be specified by a path name and a word number. Any word
in an MSF can be specified by a path name, component number, and
word number within the component. msf_manager_ provides the
means for manipulating an MSF: creating components, accessing
them, deleting them, truncating the MSF, and controlling access.

In this implementation, an MSF with only the component 0 is
stored as an SSF. |If components other than zero are present,
they are stored as segments with name corresponding to the ASCI|
representation of their component numbers in a directory with the
path name of the MSF.

In order to keep information between calls, msf_manager_
stores information about files in file control blocks (FCBs).
The user is returned a pointer to a file control block by the
open entry, and this pointer 1is then passed to the other
msf_manager_ entries. The file is closed, and the FCB freed, by
the close entry.

Entrv: msf_manager_$open

The open entry creates an FCB. It returns a pointer to it
in the fcbp argument. The file need not exist to have an FCB
created for it.

Usage

declare msf_manager_$open entry (char(*), char(*), ptr,
fixed bin(35));

call msf_manager_$open (dname, ename, fcbp, code);

1) dname is the path name of the directory containing the
MSF. (lnput)

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

msf_manager_ : MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

2) ename is the entry name of the MSF. (lnput)

3) fcbp is a pointer to the FCB. (Output)

L) code is a storage system status code. It may have the

same values as that returned by hcs_$status_minf,
with the addition of error_table_$dirseg, which is
returned when an attempt 1is made to open a
directory.

Epnptry: msf_manager_$get_ptr

The get_ptr entry returns a pointer to the specified
component in the file. |f the component does not exist, it can
be created. |If the file is an SSF, and a component greater than
0 is requested, this entry will change the SSF to an MSF. This
change will not affect a previously returned pointer to
component 0.

Usage

declare msf_manager_$get_ptr entry (ptr, fixed bin, bit(1),
ptr, fixed bin(24), fixed bin(35));

call msf_manager_$get_ptr (fcbp, component, createsw, segp,
bc, code);

1) fcbp is a pointer to the FCB. (lnput)

Z) component is the number of the component desired.' (lnput)

3) createsw is "1 if a non-existing component should be
created. (iInput)

L) segp ' is a pointer to the specified component in the
file, or null (if there is an error). (OQutput)

5) bc is the bit count of the component. (Output)

6) code is a storage system status code, which may have
the same values as that returned by hcs_$make_seg.
(Output)

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS SUBSYSTEM WRITERS' GUIDE msf_manager_

Page 3
9/7/72

Entrv: msf_manager_$adjust

The adjust entry sets the bit count of, truncates, and
terminates the components of an MSF. It is given a maximum
component number and a bit count within that component. The bit
counts of all components with numbers 1less than the given
component are set to sys_info$max_seg_size*36. All components
with numbers greater than the given component are deleted. Al
components which have been initiated are terminated. This entry
uses a three bit switch to control its actions.

Usage

declare msf_manager_$adjust entry (ptr, fixed bin,
fixed bin(24), bit(3), fixed bin(35));

call msf_manager_$adjust (fcbp, component, bc, switch,

che);
1) fcbp is a pointer to the FCB. (lInput)
2) component is the component number, as above. (Input)
3) bc is the bit count to be placed on the specified

component. (lnput)

4) switch is the 3-bit control switch., |If the first bit is
"0"b, the setting of bit counts is suppressed. |If
the second bit is "0"b the truncation of the given
component to length "“bc" is suppressed. If the
third bit is "0"b, the components will not be
terminated. (lnput)

5) code is a storage system status code. (Output)

Entrv: msf_manager_$close

This entry frees the FCB. It will terminate all components
which the FCB indicates are initiated.

Usage
declare msf_manager_$close entry (ptr);
call msf_manager_$close (fcbp);

1) fcbp is the pointer to the FCB. (lnput)

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

msf_manager MULTICS SUBSYSTEM WRITERS' GUIDE

Page b

Entry: msf_manager_$1list_acl
This entry returns the Access Control List (ACL) of the ISF.

Usage

declare msf_manager_$list_acl entry (ptr, ptr, fixed bin,
ptr, fixed bin(35));

call msf_manager_$1list_acl (fcbp, aclp, acl_count, areap,

code);

1) fcbp is the pointer to the FCB. (lnput)

2) aclp is the pointer to the ACL. See the MPM write-up
for hcs_$acl_list. (Output)

3) acl_count is the number of enfries in the ACL. (Output)

4) areap is a pointer to an area in which to put the ACL.
(Output)

5) code is a storage system status code, which may have
the same values as that returned by hcs_$acl_list.
(Output)

Entrv: msf_manager_$replace_acl
This entry replaces the ACL of an MSF.

Usage

declare msf_manager_$replate_acl entry (ptr, ptr, fixed bin,
fixed bin(35));

call msf_manager_$replace_acl (fcbp, aclp, acl_count, code);

1) fcbp is the pointer to the FCB. (lInput)

2) aclp is the pointer to the hew ACL. See the MPM
write-up for hsc_$acl_replace. (Input)

3) acl_count is the number of entries in the ACL. (lInput)

L) code is a storage system status code. (Output)

Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE nd_handler_

Subroutine Call
4/30/73

Name: nd_handler_

This procedure is provided to attempt to resolve the
error_table_$namedup error which may be encountered by such
commands as copy (when performing the command would result in two
entries in a directory having the same name). Given a directory
and an entry name, it will first attempt to remove the name. No
question is asked first since it is easy to add the name back.
If it is successful, both the name which was removed and an
alternate name on the segment are printed to inform the user of

the name removed. If the entry must be deleted in order to
removed the name (i.e., there is only one name on the entry), it
will first ask permission. If the user says '"yes", it will

attempt to delete the entry, setting the access control 1list
(ACL) if necessary. This routine will not delete a directory
since in the context of a command such as copy, a directory would
normally not be involved.

Usage

declare nd_handler_ entry (char(*), char(*), char(»),
fixed bin(35));

call nd_handler_ (caller, pname, ename, code);

1) caller is the name of the calling procedure and will
precede all messages from nd_handler_. (lInput)

2) pname is the path name of the directory containing the
segment which caused the name duplication error.
(Input) '

3) ename is the entry name of the segment causing the name

duplication error. (lInput)
4) code is a error code:

=0 if the name is removed;
=] if the name is still there. (Output)

Notes

Assuming that nd_handler_ was called by the copy command to
remove the name foo, the following messages might appear on the
terminal under the circumstances specified.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

nd_handler_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

1) The name is not the only one on the entry and can be removed:

copy: Name duplication. 0l1d name foo removed from
pname>zilch

where zilch was an alternate name on foo.
2) The entry must be deleted to removed the name:

copy: Name duplication. Do you want to delete the old
segment foo?

copy: Name duplication. Do you want to unlink the old link
foo?

In these casés, nd_handler_ expects an answer of 'yes" or

"no'", Any other response is not acceptable (and the user is

asked to respond with "yes" or '"no").

copy: Name duplication. Directory foo not deleted.

Note that a directory is not deleted.
3) The entry cannot be removed even by setting the ACL:

copy: Name duplication. Unable to remove old entry foo.
Entry: nd_handler_$del

This entry is the same as above except that the attempt to
remove the name is skipped. It can be called whenever deletion

is known to be necessary, as in certain commands after an attempt
has already been made to remove the name.

Usage

declare nd_handler_s$del entry (char(*), char(+*), char(*),
fixed bin(35);

call nd_handler_$del (caller, pname, ename, code);

Arguments are as above.

titute of Technology

C) Copyright, 1973, Massachusetts Ins
Information Systems Inc. (END)

and Honeywell

MULTICS SUBSYSTEM WRITERS' GUIDE set_lock_

Subroutine Call
Development System
1/27/72

Hame: set_lock_

This procedure is a tool provided to enable processes to
execute critical sections of a program with the assurance that no
other processes will be executing the same or other associated
critical sections of code simultaneously. This is a means by
which processes can be prevented from interfering with one
another when referencing shared data.

The mutual exclusion of processes is obtained by the use of
a caller-supplied 1lock word. This word should be declared as
bit(36) aligned and should be initially set to "0"b (i.e., a word
containing zero) indicating the unlocked state. When the program
is. about to enter a critical section of code, it calls the entry
set_lock_$lock. This entry places the unique lock identifier for
the process in the lock word if no other process currently has
its 1lock identifier in the 1lock word. |If the lock word does
already contain the lock identifier of some other process, then
the entry set_lock_$lock waits for that process to unlock the
lock word. Since only one process at a time can have its lock
identifier in the lock word, that process is assured (subject to
the conditions stated below) that it is the only process
currently executing the critical section of code. I f many
critical sections share the same lock word, then only one process
may be executing in any of them at a given time. Once the
critical section has been completed, the program calls
set_lock_$unlock to reset the lock to "0'b.

As stated earlier, this procedure is only a tool for solving
the problem of mutual process exclusion and its use is successful
only if all those processes executing critical sections of code
obey the necessary conventions. These conventions include:

1) The set_lock_ procedure is the only procedure that
modifies the lock word with the exception of the
procedure that initializes the lock word to "0"b before
any call to set_lock_ is made.

2) A1l processes issue calls to the entry set_lock_$lock
which result in the .lock identifier appearing in the lock
word before entering a critical section of code.

3) A1l processes issue a call to the entry set_lock_$unlock
which results in the lock word being set to zero after
completing execution of a critical section of code.

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

set_lock_ MULTICS SUBSYSTEN WRITERS' GUIDE

Page 2

Entry: set_lock_$lock

This entry will attempt to place the lock identifier of the
calling process in the given 1lock word. If the lock word
contains "0"b, then the 1lock word will be set to the lock
identifier of the calling process. |If the lock word contains a
valid lock identifier of another existing process, then set_lock_
will wait for this other process to unlock the lock word. |If the
other process does not unlock the lock word in a given period of
time, set_lock_ will return with an indication of its lack of

" success. |If the 1lock word contains a 1lock identifier not
corresponding to an existing process, the 1lock word will be
overwritten with the calling process' 1lock identifier and an
indication that an overwriting has taken place will be returned;
the call is still successful, however. Note though, that having
to relock an invalid lock implies either a coding error in the
use of locks or that a process having a lock set was unexpectedly
terminated. In either case, the data being modified may be in an
inconsistent state. |If the lock word already contains the lock
identifier of the calling process, then set_lock_ will not modify
the lock word, but will return an indication of the occurrence of
this situation. Note that this latter case may or may not
indicate a programming error, depending on the programmer's
conventions.

Usage

declare set_lock_$lock entry (bit(36) aligned, fixed bin,
fixed bin); ’

call set_lock_$lock (lock_word, wait_time, status);
1) lock_word is the lock word to be locked. (lInput)

2) wait_time indicates the 1length of real time, in
seconds, which set_lock_ should wait for a
validly 1locked 1lock word to be unlocked
before returning unsuccessfully. A value of
-1 indicates no time limit. (lInput)

5) status - 0 indicates that the lock word was
successfully locked because the lock word was
previously unlocked;

error_table_$invalid_lock_reset indicates
that the 1lock word was successfully locked,
but the lock word previously contained an
invalid lock identifier that was overwritten;

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS SUBSYSTEM WRITERS' GUIDE set_lock_

Page 3
1/27/772

error_table_$locked_by_this_process indicates
that the lock word already contained the lock
identifier of the calling process and was not
modified;

error_table_$lock_wait_time_exceeded
indicates that the 1lock word contained a
valid lock identifier of another process and
could not be locked in the given time limit.
(Output)

Entry: set_lock_$unlock
This entry attempts to reset a given lock word to "0"b and

will be successful if the lock word contained the lock identifier
of the calling process.

Usage
declare set_lock_$unlock entry (bit(36) aligned, fixed bin);
call set_lock_sunlock (lock_word, code);

1) lock_word is the lock word to be reset. (lInput)

2) code 0 indicates successful unlocking;

error_table_$lock_not_locked indicates that
the lock was not locked;

error_table_$locked_by_other_process
indicates that the 1lock was not locked by
this process and therefore was not unlocked.
(Output)

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE standard_default_handler_

Subroutine Call
Development System
2/25/72

Hame: standard_default_handler_

This procedure 1is the default condition handler for the
Multics standard user environment. It handles all conditions for
which no other handler was established in the given invocation of
the user environment. The procedure simply dispatches the
signalled conditions to other procedures which handle the
specific conditions. '

Usage

This entry is meant to be established as a default condition

handler and is therefore only directly invoked by the condition
rnechanism. It may be established as a default handler by calling
default_handler_$set as followss —— -

declare'standard_default_handler_ entry;
declare default_handler_$set entry (entry);

call default_handler_$set (standard_default_handler_);

See the MPM Reference Guide section, The Multics Condition
Mechanism, for a description of default handlers.

Entry: standard_default_handler_$ignore_pi

This entry is the same as the standard_default_handler_
entry except that program_interrupt conditions are ignored, i.e.,
the handler returns and tells the condition mechanism to find
another handler for program_interrupt. This entry is established
as the default handler by invocations of the user environment
other than the first invocation in order that the user may return
to programs active in previous invocations of the user
environment.

Usage

This entry may be established as a default handler by
calling default_handler_$set as follows:

declare standard_default_handler_S$ignore_pi entry;
declare default_handler_$set entry (entry);

call default_handler_$set
(standard_default_handler_$ignore_pi);

c> Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE start_governor_

Subroutine Call
4/30/73

Name: start_governor_

This procedure uses timer_manager_ (described in an MPM
Reference Guide subroutine write-up) to help limit the user to no
more than interval_length/ratio CPU seconds per interval_length
seconds of real time (where both interval_length and ratio are
supplied by the caller). When called, it sets up a timer if the
ratio is positive and then returns. It then receives calls from
timer_manager_ periodically to check CPU usage, and blocks the
process for a short amount of time, if necessary, to stay within
the ratio.

Usage
declare. start_governor_ entry (fixed bin, fixed bin);
call start_governor_ (ratio, interval_length);

1) ratio See the above description for the meaning of
ratio. (lInput)

2) interval_length See the above description for the meaning of
interval_length. (lInput)

Entry: stop_governor_

This entry stops the limiting of CPU usage.
Usage

declare stop_governor_ entry;

call stop_governor_;

There are no arguments.

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE system_info_

Subroutine Call
Development System
6/22/72

Name: system_info_

This procedure allows the user to obtain information
concerning system parameters,

Entry: system_info_$installation_id

This entry returns the 32 character installation ID typed in
the header of who and at dial up time.

Usage
declare system_info_$installation_id entry (char(*));
call system_info_$installation_id (id);

1) id ~ is the installation ID. (Output)

Entryv: system_info_$sysid

This entry returns the 8 character system |ID typed in the
header of who and at dial up time.

Usage
declare system_info_$sysid entry (char(*));
call system_info_$sysid (sys);

1) sys is the system |ID which identifies the current
version of the system, (Output)

Entry: system_info_$titles

This entry returns several character strings which more
formally identify the installation.

Usage

declare system_info_$titles entry (char(*), char(*),
char(*), char(*));

call system_info_$titles (c, d, cc, dd);

1) c is the company or institution name (a maximum of
64 characters). (Qutput)

() Co?yrjght, 1972, Massachusetts Institute of Technology
All rights reserved.

system_info_ "~ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

2) d is the department or division name (a maximum of
64 characters). (Output)

3) cc is the company name, double spaced (a maximum of
120 characters). (Output)

W}\dd is the department name, double spaced (a maximum

of 120 characters). (Output)
EDILii system_info_$users

This entry returns the current and maximum number of load
units and users.

Usage

declare system_info_$users entry (fixed bin, fixed bin,
fixed bin, fixed bin);

call system_info_$users (mn, nn, mu, nu);

1) mn is the maximum number of users. (Output)

2) nn is the current number of users. (Output)

3) mu is the maximum number of load wunits (times 10).
(Output)

L) nu is the current number of load units (times 10).
(Output)

Epntry: system_info_$timeup

This entry returns the time at which the system was last
started up.

Usage
declare system_info_$timeup entry (fixed bin(71));
call system_info_$timeup (tu);
1) tu is the time the system came up. (Output)
Entry: system_info_$next_shutdown
This entry returns the time of the next scheduled shutdown,

and the reason for the shutdown, and the time the system will
return, if this data is available. :

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS SUBSYSTEM WRITERS' GUIDE system_info_

Page 3
6/22/72

Usage

declare system_info_$next_shutdown entry (fixed bin(71),
char(*), fixed bin(71));

call system_info_$next_shutdown (td, rsn, tn);

1) td is the time of the next scheduled shutdown. | f
none is scheduled, this is zero. (Output)

2) rsn is the reason for the next shutdown (a maximum of
32 characters). |If it is not known, it is blank.
(Output)

3) tn | is the time the system will return, if known;

otherwise it is zero. (Output)
Entry: system_info_$prices

This entry returns the per shift prices for interactive use.

Usage

declare system_info_$prices entry (0:7) float bin,
(0:7) float bin, (0:7) float bin, (0:7) float bin,
float bin, float bin);

call system_info_¢$prices (cpu, log, prc, cor, dsk, reg);

1) cpu is the CPU hour rate per shift. (Output)

2) log is the connect hour rate per shift. (Output)

3) prc is the process hour rate per shift., (Output)

4) cor is the page-second rate per shift. (Output)

5) dsk is the page-second rate for secondary storage.
(Output)

6) reg is the registration fee per user per month.
(OQutput)

Entry: system_info_$device_prices

This entry returns the per shift prices for system device
usage.

ight, 1972, Massachusetts Institute of Technology
ights reserved.

©

Copyr
All r

system_info_ A MULTICS SUBSYSTEM WRITERS' GUIDE

Page 4

Usage

declare system_info_$device_prices entry (fixed bin, ptr);
call system_info_s$device_prices (ndev, devp);
1) ndev is the number of devices with prices. (Output)

2) devp points to an array where device prices will be
stored. (lInput)

Note
In the above entry, the user must provide the following
array for device prices in his storage:
declare 1 dvt (16) based (devp) aligned,
2 device_id char(8),
2 device_price (0:7) float bin;

1) dvt is the user structure. Only the first ndev of
the 16 will be filled in.

2) device_id is the name of the device.
3) device_price is the per hour price by shifts for the device.

Entry: system_info_$shift_table

This entry returns a table which tells when each shift
begins and ends.

Usage
declare system_info_$shift_table entry ((336) fixed bin);

call system_info_$shift_table (st);

1) st is a table with one entry for each half hour,
beginning with 0000 Monday. The table gives the
shift number for that half hour period. Shifts
may be from 0 to 7., (Output)

Entry: system_info_$abs_prices

This entry returns the prices for CPU and real time for each
absentee queue.

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved. :

e

MULTICS SUBSYSTEM WRITERS' GUIDE system_info_

Page 5
6/22/72
Usazge
declare system_info_$abs_prices entry ((4) float bin,
(4) float bin);
call system_info_$abs_prices (cpurate, realrate);
1) cpurate is the price per CPU hour for absentee queues 1-4,
(OQutput)
2) realrate is the price per real-time hour for absentee

queues 1-4. (Output)

Entry: system_info_$io_prices

This entry returns the prices for record transmission
(printing or punching) for each 1/0 daemon queue.
Usage . .

declare system_info_$io_prices entry ((4) float bin);
call system_info_$io_prices (rp);

1) rp is the price per 1000 records (a record is 700 bits)
for each 1/0 daemon queue. (Output)

Note

A1l entry points which take more than one argument will
count their arguments and not attempt to return more values than
there are arguments. Certain arguments, such as the price
arrays, must be dimensioned as shown.

g??yright, 1972, Massachusetts Institute of Technology

rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE transform_command_

Subroutine Call
5/18/73

Name: transform_command_

This is a subroutine called by the command processor when
running under the Limited Service System, It is used to restrict
a user to a specified set of commands. It transforms the
commands typed by the user into other commands as specified by a
table which may be created by the make_commands command
(described in the MPM Subsystem Writers' Guide).

Usage

declare transform_command_ entry (ptr, fixed bin, ptr,
fixed bin(35));

call transform_command_ (name_ptr, name_len, table_ptr,
code);

1) name_ptr is a pointer to the name of the command to be
transformed. (I1nput) The transformed name of the
command 1Is also returned through this pointer.
(Output)

'2) name_len is the length (in characters) of the command to be
transformed. (Input) The length of the transformed
__command is also returned in this variable. (Output)

3) table_ptr is a pointer to the table in the format produced by
the make_commands command. (Input)

4) code is zero if there are no errors; or is
error_table_$noentry, (if the command is not in the
table. (Output)

Notes

transform_command_ prints out an error message if the
command given to it cannot be found in the table. The values of
name_ptr and name_len remain unchanged.

() Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS*® GUIDE) tssi_

Subroutine Call
9/6/72

Name: tssi_

The procedure tssi_ (translator storage system _interface)
simplifies the use-ot the storage system by language translators.
The '"get'" .entries prepare a segment for use as output from the
translator: creating it if neccessary, truncating it, and setting
the Access Control List (ACL) to "rwa" for the current user. The
“finish" entries set the bitcounts of segments, terminate them,
and. put the proper ACL on them. The '"cleanup" entries are used
by cleanup procedures in the translator. There are entries for
both single segments and multi-segment files: the single segment
entries have '"segment'" in the entry name, and the multi_segment
file entries have "file" in the entry name.

Entry: tssi_$get_segment
This entry returns a pointer to a specified segment. The
ACL on the segment will be "rwa" for the current user. |If an ACL

had. to be replaced to do this, aclinfop Is returned pointing to
information to be used in resetting the ACL.

Usage

declare tssi_$get_segment entry (char(*), char(*), ptr, ptr,
fixed bin(35));

call tssi_s$get_segment (dname, sname, segp, aclinfop, code);

1) dname is the directory in which the segment resides.
(Input)

2) sname is the name of the segment. (Input)

3) segp is the pointer to the segment, or is null [If an

error was encountered. (Output)

4) aclinfop is the pointer to ACL information (if any) needed
by the finish entries. (Output)

5) code is alstorage system status code. (Output)
Entry: tssi_s$get_flle

This entry 1is the multli-segment file (MSF) version of the
get_segment entry. It will return a pointer to the specified
file. Additional components, If necessary, may be accessed using
msf_manager_s$get_ptr (see the MPM write-up for msf_manager_),
with the original segment to be considered as component O.

C) Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved.

tssi_ | MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

Usage

declare tssi_$get_file entry (char(*), char(#*), ptr, ptr,
ptr, fixed bin(35));

call tssi_s$get_file (dname, sname, segp, aclinfop, fcbp,

code);
1) dname as above.
-2) sname as above.
3) segp is the pointer to component 0 of the file.
(Output)
L) aclinfop as above.
5) fcbp is the pointer to the file control block (FCB)

needed by msf_manager_. (Output)
6) code as above.
Entrv: tssi_$finish_segment
The finish segment entry sets the bitcount on the segment
after the translator is finished with it. It also terminates the
segment. The ACL 1is reset to the way it was before the

get_segment entry was called. |If none existed then, the mode is
set to "mode'" for the current user. :

Usage

declare tssi_$finish_segment entry (ptr, fixed bin(24),
bit(36) aligned, ptr, fixed bin(35));

call tssi_$finish_segment (segp, bc, mode, aclinfo, code);

1) segp is the pointer to the segment. (lnput)
2) bc is the bit count of the segment. (lnput)
3) mode is the access mode to be put on the segment, e.g.,

"1100"b for "re", or "1011"b for "rwa'". (Input)

4) aclinfop is the pointer to the saved ACL information
returned by the get_segment entry. (lnput)

5) code as above.

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

MULTICS SUBSYSTEM WRITERS' GUIDE tssi_

Page 3
9/6/72

Entry: tssi_$finish_file

This entry 1is the same as the finish_segment entry, except
that it works on MSF's, and closes the file, freeing the FCB.

Usage

declare tssi_¢$finish_file entry (ptr, fixed bin, fixed
bin(24), bit(36) aligned, ptr, fixed bin(35));

call tssi_$finish_file (fcbp, component, bc, mode, aclinfop,

code);

1} fcbp is the pointer to the FCB returned by the get_file
entry. (lnput)

2) component is the highest numbered component in the file.
(Input)

3) bc is the bitcount of the highest numbered component.
(Input)

4) mode as above.

5) aclinfop as above.

6) code as above.

Entry: tssi_$clean_up_segment

Programs which use tssi_ must establish a cleanup procedure
which calls this entry. (For a discussion of cleanup procedures
see the MPM Reference Guide section Nonlocal Transfers and
Cleanup Procedures.) If more than one call s made to
tssi_$get_segment, the cleanup procedure must make the
appropriate call to tssi_$clean_up_segment for each aclinfop.

The purpose of this call is to free the storage that the
get_segment entry allocated to save the old ACLs of the segments
being translated. It is to be used in case the translation is
aborted (e.g., by a quit).

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

tssi_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page &

Usage

declare tssi_$clean_up_segment entry (ptr);
call tssi_sclean_up_segment (aclinfop);
1) aclinfop as above.

Entry: tssi_$clean_up_file

This entry is the cleanup entry for MSF's. In addition to
freeing ACL's, it closes the file, freeing the FCB.

Usage

declare tssi_$clean_up_file entry (ptr, ptr);
call tssi_g$clean_up_file (fcbp, aclinfop);
1) fcbp as above.

2) aclinfop as above.

C) Copyright, 1972, Massachusetts Institute of Technology
A1l rights reserved. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE unwinder_

Subroutine Call
Development System
05/18/71

Name: unwinder_

The procedure unwinder_ is wused to perform a "non-local
goto" on the Multics stack. It is not intended to be called by
direct programming (i.e., an explicit "call" statement in a
program) but, rather, by the generated code of a translator. For
example, it is automatically invoked by a PL/I '"goto" statement
involving a non-local 1label variable. The ordinary user or
subsystem writer should have no use for it.

When invoked, unwinder_ traces the Multics stack backwards
until it finds the stack frame associated with its label variable
argument or until the stack is exhausted. |In each stack frame it
passes, it invokes the handler (if any) for the condition
"cleanup'. When it finds the desired stack frame, it passes
control to the procedure associated with that frame at the
location indicated by the 1abel variable argument. If the
desired stack frame cannot be found or if other obscure error
conditions arise (e.g., the stack is not threaded correctly),
unwinder_ signals the condition "unwinder_error".

Usage
declare unwinder_ entry (1abel);
call unwinder_ (tag);
1) tag is a non-local label variable. (lInput)

Note

The current implementation of unwinder_ does not cross
protection rings.

(END)

MULTICS SUBSYSTEM WRITERS' GUIDE user_info_

Subroutine Call
L/5/73

Name: wuser_info_

This procedure allows the user to obtain information
concerning his login session. The following entries are
documented in the MPM Reference Guide:

user_info_
user_info_$whoami
user_info_$login_data
user_info_$usage_data
user_info_$homedir
user_info_$responder
user_info_$tty_data
user_info_$logout_data
user_info_$absin
user_info_$absout
user_info_$1limits

Entry: user_info_$absentee_queue
This entry returns the user's current absentee queue.
Usage
declare user_info_$absentee_queue entry (fixed bin);
call user_info_$absentee_queue (q);
1) g isl, 2, or 3 if the user is running on absentee

queue 1, 2, or 3, respectively, |If the user is
not an absentee user, the value is -1. (Output)

Entry: user_!nfo_sload_ptl_infd

This entry returns various load control parameters.

Usage

declare user_info_$load_ctl_info entry (char(+), fixed bin,
fixed bin(71), fixed bin);

call user_info_$load_ctl_info (group, status, protected,

weight);
1) group is the name of the wuser's 1load control group.
(Output)
2) status if the user is a primary user;

= 0
= 1 if the user is a secondary user. (Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

user_info_ MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

3) protected for primary users, this 1is the time when they
become preemptable by others in their group.
(Output)

4) weight is ten times the user's weight. (Output)
Entry: user_info_$attributes

This entry returns the user's permission attributes, as
defined by user control.

Usage
declare user_info_s$attributes entry (char(300) varying);
call user_info_$attributes (attstring);

1) attstring is a character string which 1lists the user's
attributes. The attributes are separated by
commas and end with a semicolon. The 1legal
attributes are:

administrator
anonymous
brief

dialok
guaranteed_login
multip

no_eo
no_primary
no_secondary
nobump

nolist

nostartup

preempting

vhomedir

vinitproc (Output)
Entry: user_info_$outer_module

This entry returns the name of the user's terminal outer
module at process creation.

Usage

declare user_info_$outer_module entry (char(*));
call user_info_$outer_module (mod);

1) mod is the outer module name. (Output)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc. (END)

MULTICS SUBSYSTEM WRITERS' GUIDE Index

5/31/173
INDEX

This Index covers Parts Il and 1IIl of the Multics
Programmers' Manual, namely the Reference Guide and the Subsystem
Writers' Gulde.

The Index 1is organized around the numerically ordered
Reference Guide and Subsystem Writers' Guide sections and the
alphabetically ordered commands and subroutine write-ups, rather
than by page number. Thus, for example, the entry for command
level might read:

command level
1.4
cu_
get_to_cl1_ (SWG)
l1isten_ (SWG)

The first Item under command level refers to the Reference Gulde
section 1.4, the second to the write-up for the cu_ subroutine,
and the last two to the write-ups (in the SWG) for the get_to_cl_
and listen_ subroutines. They are referenced in the order that
they appear in this manual. Note that command names can normally
be distinguished from subroutines by the trailing underscore in
the segment name of subroutlnes.

Some entries are of the form:

1/0 (bulk)
see bulk 1/0

For simplicity of usage, these entries always refer to other
places in the Index, never to normal Reference Guide or Subsystem

Writers' Gulde documents.

Some entries are followed by Information within parentheses.
This information serves to explain the entry by giving a more
complete name or the name of the command under which the actual -
entry can be found. For example: '

e (enter)
listnames (list)

C) Copyright, 1973, Massachusetts Institute of Technology
and Honeywell Information Systems Inc.

Index MULTICS SUBSYSTEM WRITERS' GUIDE

Page 2

1)

2)

3)

4)

In addition to this Index, other indexes to information are:

MPM Table of Contents

- lists names of commands and subroutines with write-up | ssue
dates

- 1ists commands and subroutines documented under other
write-ups; e.g., console_output: see file_ output

Reference Guide Section 1.1: The Multics Command Repertoire
- 1ists commands by function

Reference Gulide Section 2.1: The Multlics Subroutine
Repertoire
- lists subroutines by function

Reference Guide Section 8.3: Obsolete Procedures

C) Copyright, 1973, Massachusetts Institute of Technology

and Honeywell Information Systems Inc.

MULTICS SUBSYSTEM WRITERS' GUIDE

! conventlion
see unique strings

* convention
see star convention

7-punch cards
see seven-punch cards

expand_path_
see directories

= convention
see equal conventlion

expand_path_
see directories
see root directory

abbreviations
1.6
abbrev
see alternate names
see command processing

ABEND
see error handling

absentee queue
user (SWG)
user_info_ (SWG)

absentee usage
1.7
alm_abs

cancel_abs_request
enter_abs_request
exec_com
fortran_abs
how_many_users
l1ist_abs_requests

pll_abs
runof f_abs

who

absin
see absentee usage

| ndex

Page 3
5/31/73

absolute path names
expand_path_
see path names
see storage system

access control
see protection

access control 1list
3.3
3.4
deleteacl
deletecac! (deleteacl)
listacl
listcacl (listacl)
setacl
setcacl (setacl)
hes_$add_acl_entries
hcs_$add_dir_acl_entries
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$1ist_acl
hes_$1ist_dir_acl
hcs_$replace_acl
hecs_$replace_dir_acl
see protection

account 1ID
user (SWG)

accounting
resource_usage
user (Active Function)
cpu_time_and_paging_
user_info_
see metering
hcs_$get_process_usage (SWG
hecs_$quota_get (SWG) '

ACL
see access control list

active functions

1.4
1.7

active_fnc_err_

address reuse
hcs_S$initiate
(continued)

Index

Page 4

address reuse
(continued)
hcs_$initiate_count
hcs_$terminate_file
hcs_$termi nate_name
hcs_$termi nate_noname
hcs_$terminate_seg

address space
3.2
bind

get_pathname (Active Function)

new_proc
terminate

where

hcs_$delentry_seg
hcs_$fs_get_ref_name
hcs_$fs_get_seg_ptr
hcs_$initiate
hcs_$initiate_count
hcs_$make_ptr
hcs_$make_seg
hcs_$termlinate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg

see dlirectory entry names

aggregate data

alarms
timer_manager_
see clocks

algol
7.2

aliases
see directory entry names

alm
alm_abs

alternate names
see directory entry names

anonymous users
1.2
(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

anonymous users
(continued)
enter
user (Active Function)
user_info_

answering questions
answer

archive segments
5.5

archiving
archive
archive_sort
reorder_archive

ARDS display
see graphics
see terminals

areas
area_
alloc_ (SWG)
area_ (SWG)

area_assign_ (SWG)
freen_ (SWG)
get_system_free_area_ (SWG)

argument count
5.4

cu_

argument descriptors
5.4
decode_descriptor_

argument l1ist pointer
S.h
cu_

argument lists
debug
trace_stack

cu_
decode_descriptor_

12.2 (SWG)

MULTICS SUBSYSTEM WRITERS' GUIDE

arithmetic operations
divide (Active Function)
minus (Active Function)
mod (Active Function)
plus (Active Function)
times (Active Function)

array data
5.4

ASCI |
5.1
5.2

asking questions
answer
query (Active Function)
response (Active Function)
command_query_
dl_handler_ (SWG)
nd_handler_ (SWG)

assembly languages
8.5
alm

attach table
b, 2
print_attach_table
los_
see 1/0 attachments
get_at_entry_ (SWG)

attachments
see |/0 attachments

attention
see process Interruption

author
3.3
status
hcs_$star_
hes_$status_
hcs_$get_author (SWG)

automatic logout
see logglng out

I ndex

Page 5
5/31/73

automatic variables
see stack segments

background jobs
see absentee usage

base conversion
see conversion

BASIC
7.2
basic
basic_run
basic_system
print_dartmouth_library
set_dartmouth_library
vSbasic

batch processing
see absentee usage

binding
archive
bind
print_bind_map
make_object_map_
see linking

bit count author
hcs_$get_bc_author (SWG)

bit counts
3.3
adjust_blit_count
set_bit_count
status
adjust_bit_count_
decode_object_
hes_$initiate_count
hes_$set_bc
hecs_$set_bc_seg
hcs_$star_
hecs_$status_
hcs_$get_bc_author (SWG)

bit-string data
5.“

I ndex

Page 6
blocks

see Interprocess communication

see storage management
hcs_$wakeup (SWG)
ipc_ (SWG)

bound segments
11.8 (SWG)

brackets
see command language
. see protection

branches
see directories
see segments

break
see process Iinterruption

breakpoints
debug
11.6 (SWG)

brief modes
change_error_mode
ready_off

broadcasting
broadcast_

bulk 1/0
4.1
h.4
5.3
console_output
dprint
dpunch
file_output
nstd_
dprint_ (SWG)

CACL
see access control list

call operator
12.2 (SWG)

MULTICS SUBSYSTEM WRITERS' GUIDE

calling sequences
12.2 (SWG)

cancelling
cancel_abs_request
see deleting

canonicalization
1.3
tw_

card formats
b.4

cards
see |/0
see punched cards

catalogs
see directories
see directory entry names

changing names
see directory entry names

changing working directory
see working directory

character codes
1.3
5.1
5.2

character formats
5.1

character string operations
index (Active Functlon)
length (Active Function)
substr (Active Function)

character string output

ioa_

ifos_
write_list_
loa_ (SWG)

character string segments
5.5

MULTICS SUBSYSTEM WRITERS' GUIDE

character-string data
5.4

charges
see prices

checking changes
check_info_segs

checksum
8.4

cleanup tools
6.2‘
6.3
adjust_bi t_count
compare_ascli
display_component_name
endfile
fs_chname
new_proc
release
set_bit_count
terminate
truncate
adjust_bit_count_
compare_ascl i_
establish_cleanup_proc_
hcs_$set_bc
hcs_$set_bc_seg ,
hcs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg
hcs_$truncate_file
hcs_$truncate_seg
revert_cleanup_proc_
term_

clocks
clock_
convert_date_to_binary_
date_time_

decode_clock_value_
timer_manager_

closing files
endfile
see bit counts
see termination

I ndex

Page 7
5/31/73

code conversion
see converslion

coding standards

2.5
collating sequence
5.1
5.2
sort_file

combined linkage area
12.1 (SWG)

combined l1inkage segment
3.1

combining segments
archive
bind

command environment
Section 1
1.4

command language
1.4
1.7
abbrev
get_com_line
set_com_line
see command processing
14.3 (SWG)

command level
1.4
cu_
get_to_cl_ (SWG)
1isten_ (SWG)

command names
1.5
abbrev
see directory entry names
see searching

command processing
1.3
abbrev
(continued)

Index MULTICS SUBSYSTEM WRITERS' GUIDE

Page 8
command processing conditions
(continued) (continued)
enter_abs_request 6.5
exec_com change_error_mode
get_com_line program_interrupt
set_com_line reprint_error
walk_subtree active_fnc_err_
active_fnc_err_ ' com_err_
cu_ condition_
hcs_$star_ default_handler_
see active functions reversion_
see searching signal_
see cleanup tools
see process interruption
command utility procedures see unwinding
cu_ condition_interpreter_ (SWG)
standard_default_handler_ (SW()
commands
1.1 console line length
i-g see terminal line length
Section 9 console output
see command processing see 1/0

see interactive 1/0
common access control list
see access control list consoles
see terminals
comparing character strings

equal (Active Function) control arguments

greater (Active Function) 14.3 (SWG)

less (Active Function)

compare_ascli_ congrgl characters
comparing segments 5.1

compare_ascli foa_

see character codes

compilers foa_ (SWG)

see languages
conventions

comglﬁx data 11.7 (SWG)
converslion
condition names com_err_
1.5 convert_binary_integer_
convert_date_to_binary_
conditions cv_bin_
6.1 cv_dec_
6.2 cv_float_
6.3 cv_oct_

(contlinued) (contlnued)

MULTICS SUBSYSTEM WRITERS' GUIDE

conversion
(continued)

date_time_
decode_clock_value_
read_list_
write_list_
see formatted 1/0
see |/0

coordination
set_lock_ (SWG)

copy switch

— 33
hcs_$initiate
hcs_$initiate_count

copying
copy
copy_acl_
copy_names_
copy_seg_

cost saving features
alm_abs
fortran_abs
pll_abs
see absentee usage
see archiving
see limited service systems

CPU usage
ready
see metering
see time

crawling out
see error handling

creating directories
createdir
hcs_sappend_branchx

creating links
1ink

hcs_$append_1ink

creating processes
enter_abs_request
(continued)

| ndex

Page 9
5/31/73

creating processes
(continued)
login
logout
new_proc
see logging in

creating segments
basic_system
copy
create
edm
qedx
hcs_$append_branch
hcs_$append_branchx
hecs_$make_seg

creator
see author

current length
3.3
see length of segments

daemon
dprint
dpunch
see bulk 1/0
dprint_ (SWG)

daemon_dir_dir
3.1

Dartmouth facilities
7.2
basic
basic_run
basic_system
print_dartmouth_library
set_dartmouth_library
vSbasic

data control word
4.2

data conversion
see conversion

Index

Page 10

data representation

[- IRV BV B g
e o o o

date conversion
see conversion

dates
3.3
date (Active Function)
date (Active Functlion)
date_time (Active Function)
date_time (Active Function)
day (Active Function)
day (Active Function)
day_name (Active Function)
day_name (Active Function)
long_date (Active Function)
month (Active Function)
month_name (Active Function)
year (Active Function)
clock_
convert_date_to_binary_
date_time_
decode_clock_value_

DCW
see data control word

debugging tools
change_error_mode
compare_ascli
debug \
display_component_name
dump_segment
hold
reprint_error
trace_stack
compare_asci l_
stu_

decimal integers
convert_binary_Iinteger_
see conversion

default error handling
6.5
(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

default error handling

(contlinued)

change_error_mode

reprint_error

active_fnc_err_

see process Interruption

condition_interpreter_ (SWG)

condition_interpreter_ (SWG)

default status messages
com_err_

default working directory
change_defaul t_wdir
change_wdir
print_default_wdir
get_default_wdir_

deferred execution
see absentee usage

definition sections
11.3 (SWG)

deleting
delete
delete_dir
deleteforce
terminate
unlink
delete_
hcs_$del_dir_tree
hecs_$delentry_file
hcs_$delentry_seg
term_
see address reuse
see cancelling
see canonicallzation
see termination
di_handler_ (SWG)
nd_handler_ (SWG)

delimi ters
4,2

descriptors
5.4

decode_descriptor_

.

MULTICS SUBSYSTEM.WRITERS' GUIDE

desk calculators
calc
decam

device interface modules
see 1/0 system interface

devices
system_info_ (SWG)

dialing up
1.2

DIM
see 1/0 system interface

directories
3.1
list
listnames (list)
listotals (list)
walk_subtree
see creating directories
see default working directory
see deleting
see directory entry names
see home directory
see libraries
see process directories
see protection
see root directory
see storage quotas
see storage system
see working directory

directory access modes
delete_facli_dir
1ist_facl_dir
set_tlacl_dir
hes_$add_dir_acl_entries
hes_s$delete_dir_acl_entries
hes_$1ist_dir_acl
hcs_$replace_dir_acl

hcs_$add_dir_inacl_entries (SWG)
hcs_sdelete_dir_inacl_entries (SWG)

directory entry names

hcs_$1ist_dir_inacl (SWG)
hes_$1ist_inacl (SWG)

hcs_sreplace_dir_inacl (SWG)
hcs_$replace_inacl (SWG)

| ndex

Page 11
5/31/73

directory attributes

3.3

delete_iacl_dir
delete_iacl_seg

list

listnames (1ist)

listotals (list)
list_iacl_dir

list_iacl_seg

set_iacl_dir

set_flacl_seg

status

hcs_$add_acl_entries
hecs_$add_dir_acl_entries
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hes_$11st_acl
hes_$1ist_dir_acl
hcs_$replace_acl
hcs_$replace_dir_acl
hcs_$star_

hecs_$status_

see protection
hcs_$add_dir_inacl_entries (SWG)
hcs_s$add_inacl_entries (SWG)

hcs_sdelete_dir_inacl_entries (SWG)

hcs_sdelete_inacl_entries (SWG)
hcs_s$get_dir_ring_brackets (SWG)
hes_$1ist_dir_inacl (SWG)
hes_$11st_inacl (SWG)
hcs_$replace_dir_inacl (SWG)
hcs_$replace_inacl (SWG)
hecs_$set_dir_ring_brackets (SWG)

directory creation

see creating directories

directory deletion

see deleting

directory entries

see directories
see links
see segments

addname
deletename)
entry (Active Function)

(continued)

I ndex MULTICS SUBSYSTEM WRITERS' GUIDE

Page 12
directory entry names discarding output
(continued) discard_output_
fs_chname
list disconnected processes

listnames (1ist)
listotals (list)

names

rename

status

strip_entry (Active Function)
suffix (Active Function)
where

equal_

hecs_$chname_flile
hcs_$chname_seg

hcs_$ fs_get_path_name
hcs_$star_

hcs_$status_

see path names

see unique names

directory hierarchy
Section 3

copy

link

move

status

unlink
walk_subtree
copy_acl_
copy_names_

see storage system

directory names

see default working dlrectory
see directory entry names

see home directory

see process directories

see working directory

directory renaming
see directory entry names

directory restructuring
move
hcs_$fs_move_flile
hcs_$ fs_move_seg

see absentee usage

disconnections
see logging out

display terminals
u.s
see graphlics
see terminals

diverting output
console_output
file_output
jiocall
di scard_output_
see |/0 streams

dope
see descriptors

dumping segments
dump_segment

dynamic linking
3.2
term_ :
see address reuse
see linkage sections

see linklnf
see searching

see termination

e (enter)
see logging In

EBCDIC
5.2

editing

basic_system
edm

qedx

efficiency
see metering

MULTICS SUBSYSTEM WRITERS' GUIDE

element size
.2

emergency logout
see logging out

end of file
see bit counts

enter
see logging In

enterp
see logging In
entries
see directories
see links

see segments

entry names .
see directory entry names
see entry polnt names

entry operator
12.2 (SWG)

entry point data

entry point names
print_link_info
hcs_$make_ptr
see linking

entry points
5.4

see Interprocedure communication

see linking

entry sequence gates
11.2 (SWG)

entry sequences
11.7 (SWG)

EOF
see end of file

I ndex

Page 13
5/31/173

ep (enterp)

see logging In

EPL (obsolete)

see PL/! language

eplbsa (obsolete)

see alm

equal convention

equal_

equals convention

1.5

erase characters

1.3

erasing

1.3
see canonicalization
see deleting

error codes

see status codes

error handling

Section 6

6.1

6.2

change_error_mode
reprint_error
active_fnc_err_

com_err_

command_query_

condition_
default_handler_
establish_cleanup_proc_
reversion_
revert_cleanup_proc_
signal_

see debugging tools

see help
convert_status_code_ (SWG)
condition_interpreter_ (SWG)

standard_default_handler_ (SWG)

error messages

see status messages

Index

Page 1u4

error recovery
6.3
hold
program_Iinterrupt
release

establish_cleanup_proc_
see cleanup tools

see debugging tools
see process interruption

error tables
‘ see status tables

error_output
see |/0 streams

error_table_
see status codes

escape conventions
1.3
5.2

event channels
hcs_$wakeup (SWG)
ipc_ (SWG)

exec_com
see actlve functions

existence checking
exists (Active Function)

expanded command 1ine
see command processing

expression evaluators
calc
see desk calculators

expression words
11.3 (SWG)

external data
5.4

external symbols
print_link_info
make_object_map_

(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

externa

1 symbols

(continued)

see
see

faults
6.1
6.5

see
13.6

interprocedure communication
linking

conditions

(SWG)

file 1/0
file_

file ma

rk

see bit counts
see magnetic tapes

file system

u'2

see storage system

files
5.3

file_

see

1/0

see segments

first-reference traps

11.4

(SWG)

fixed point data

5.4

floating point data

5.4

formats
S.S

formatted 1/0

h.1
4.3
foa_

see conversion

joa_

(SWG)

formatted Input
read_list_

MULTICS SUBSYSTEM WRITERS' GUIDE

formatted output
runoff
runoff_abs
ioa_
write_list_
ioa_ (SWG)

formatting character strings
format_line (Active Function)
string (Active Function)

FORTRAN
7.2
endfile
fortran
fortran_abs

free storage
see storage management
see storage management

functions
see active functlions
see procedures

gate segments
13.4 (SWG)

gates
see protection
13.4 (SWG)

generating calls
cu_
hcs_$make_ptr
see pointer generation
find_command_ (SWG)

generating polnters
see pointer generation

graphic characters
see character codes

graphic terminals

see display terminals
see terminals

| ndex
Page 15
5/31/73
graphics
4.1
4.5
plot_

see display terminals

handling of unusual occurrences
Seftion 6
6.

hardware registers
debug

help
help
peruse_text

hierarchy
see directorlies

hierarchy searching
see searching

hold
see error recovery
see process interruption

home directory
home_dir (Active Function)
set_search_rules
user (Active Function)

user_info_
see default working directory

1/0
Section &4
iocall
print
foa_
los_

tape_
see conversion

see formatted 1/0
ioa_ (SWG)

/0 (bulk)
see bulk 1/0

I ndex

Page 16

1/0 attachments
h.2

print_attach_table
get_at_entry_ (SWG)

1/0 calls
4.3
ios_

1/0 cleanup
endflile
see cleanup tools

1/0 commands
console_output
dprint
dpunch
file_output
focall
i omode
line_length

1/0 daemon
see daemon

1/0 errors
see 1/0 status

1/0 facilities
u.l

1/0 modes
bh,2
iocall

iomode
los_

1/0 status
h.2
fos_

1/0 streams
4.2
jocall
i omode
ios_
syn
see stream names

MULTICS SUBSYSTEM WRITERS' GUIDE

1/0 switch
4.2
L.6
ios_
syn

1/0 system flowchart
b,2

1/0 system Interface
bh.2
b.3
4.6
focall
lomode
line_length
print_attach_table
broadcast_
file_
fos_
syn
tw_
see |0SIM
get_at_entry_ (SWG)

IBM 1050
see terminals

IBM 2741
see terminals

include files
2.2
3.2
pll

information
check_info_segs
help
make_peruse_text
peruse_text
who
see metering
see status
system_info_ (SWG)

initial access control 1list
delete_iacl_dir
delete_iacl_seg
(continued)

MULTICS

initial

SUBSYSTEM WRITERS' GUIDE

access control list

(continued)
list_facl_dir
list_iacl_seg

set_
set_

iacl_dir
facl_seg

see protection
hcs_$add_inacl_entries (SWG)

hcs_$add_dir_inacl_entries (SWG)

| ndex

Page 17
5/31/73

interaction tools
answer
program_interrupt
command_query_
see debugging tools
see interactive 1|/0

interactive 1/0
ioa_

hcs_$delete_dir_inacl_entries(SWG) read_list_
hcs_$delete_inacl_entries (SWG)
hcs_$list_dir_inacl (SWG)
hcs_$1list_inacl (SWG)
hecs_$replace_dir_inacl (SWG)

hcs_$replace_inacl

initlral
3.3

initial
see

initial

(SWG)

access control lists

ACL
initial access control list

ized segments

set_search_rules
see Known Segment Table

initiation

init

fate

where

hcs_$initiate
hcs_$Initiate_count
hecs_$make_ptr
hcs_$make_seg

see dynamic linking

see linking
input

ios_

read_list_

see 1/0

input conversion _
see formatted 1/0

installation parameters

syst

integer
conv

em_info_ (SWG)

representation
ert_binary_integer_

write_list_
foa_ (SWG)

intermediate interface modules
see |1/0 system Interface

internal storage
11.4 (SWG)

interprocedure communication
see linking
hecs_$wakeup (SWG)
ipc_ (SWG)

interprocess communication
hcs_$wakeup (SWG)

Ipc_ (SWG)
interrupts

6.5

8.5

program_interrupt
see process interruption

Intersegment linking
print_link_info
make_object_map_
see dynamic linking
see linking

interuser communication
mail
hcs_$wakeup (SWG)
i pc_ (SWG)

10SIM
nstd_

tape
see 1/0 system interface

see synonyms

| ndex

Page 18

10SIM example
4.6

i teration

index_set (Active Function)

Job Control Language
see command processing

jobs
see absentee usage
see processes

keypunches
1.3

ki1l characters
1.3

killing
see cancelling

Known Segment Table (KST)
3.1

KST
see Known Segment Table

1 (login)
see logging In

label data
S. b

languages
702
alm
basic
bind
calc
debug
decam
edm
exec_com
fortran
1isp
pll

qedx
(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

languages
(continued)
runof f
runof f_abs
vSbasic

length of arguments
cu_

length of segment
truncate

length of segments
adjust_blt_count
1ist
listnames (1ist)
listotals (1list)
set_bit_count
status
adjust_bit_count_
decode_object_
hes_sinitlate_count
hcs_$set_bc
hcs_$star_
hcs_$status_
hes_s$truncate_file
hcs_$truncate_seg
see bit counts

libraries
3.1
3.2
print_dartmouth_library
print_search_rules
set_dartmouth_library
set_search_dirs
set_search_rules
hes_$get_search_rules (SWG)

hcs_$initiate_search_rules (SWG)

limited service systems
7.1
7.2
make_commands (SWG) ,
1ss_login_responder_ (SWG)
transform_command_ (SWG)

lin§ gttrlbutes
‘(cont!nued)

-

MULTICS SUBSYSTEM WRITERS' GUIDE

1ink attributes
(continued)

list
listnames (list)
listotals (list)
status
hcs_$star_
hcs_$status_

link creation
see creating links

1ink deletion
see deleting

1ink names
see directory entry names

link renaming
see directory entry names

l1ink resolution
hcs_$status_

linkage offset table
12.1 (SWG)

Linkage Offset Table (LOT)
see dynamic linking
see linking

linkage sections
print_link_info
make_object_map_
see linking
11.4 (SWG)
12.1 (SWG)

linking
3.2
bind
link
print_search_rules
set_search_dirs
set_search_rules
terminate
unlink
delete_
hcs_$make_ptr

(continued)

| ndex

Page 19
5/31/73

linking
(continued)
see binding :
see creating links
see dynamic linking
hcs_$get_search_rules (SWG)
hcs_$initlate_search_rules (SWG)

1inks
see linking
11.4 (SWG)

LISP
7.2
lisp

listener
1.3
cu_
l1isten_ (SWG)

listing
list
listnames (list)
listotals (1list)
print
see 1/0
see storage system

load control group
user (SWG)

load control parameters
user_info_ (SWG)

loading
see binding
see linking

locking
set_lock_ (SWG)

logging In
1.2
enter

login

logging out
£.2¢

logout

Index

Page 20

logical operations
and (Active Function)
not (Active Function)
or (Active Function)

login
see logging in

login directory
see default working directory
see logging in

login responder
user (Active Function)
user_info_

login time

user (Active Function)
user_info_

login word
user (Active Function)
user_info_

logon
see logging In

logout
logout
see logging out

LOT
see Linkage Offset Table

machine conditions
debug
trace_stack

machine languages
8.5
alm
debug

macros
1.7
abbrev
exec_com
qedx
see active functions
see command processing

MULTICS SUBSYSTEM WRITERS' GUIDE

magnetic tapes
503
8.4
nstd_
tape_

mall
see interuser communication

mail box checking
mail

main program
see procedures
see programming environment

known
initiation

making
see

unknown
termination

making
see

maps
print_bind_map
make_object_map_
11.6 (SWG)

maximum length
3.3

maximum line length
line_length

maximum segment length
set_max_length (SWG)
hcs_$get_max_length (SWG)
hcs_$set_max_length (SWG)

hcs_$set_max_length_seg (SWG)

mcc
see punched cards

mcc cards
u.h

message of the day
print_motd

MULTICS SUBSYSTEM WRITERS' GUIDE I ndex

Page 21
5/31/73
messages Multics card code
see |1/0 L. b4
see status messages 5.2
condition_interpreter_ (SWG) see punched cards
metering multiple device 1/0
page_trace see broadcasting
print_linkage_usage
resource_usage multiple names
cpu_time_and_paging_ see directory entry names
hcs_$status_
timer_manager_ name copying
total_cpu_time_ copy_names_
hcs_$get_process_usage (SWG) see directory entry names
hcs_$reset_working_set (SWG)
name duplications
Ml X nd_handler_ (SWG)
7.2
name space
modesu see address space
3.
bh.2 names
see protection 1.5
see status see address space
see directory entry names
modi fying segments see path names
debug
naming
moni toring see directory entry names
see metering
naming conventions
moving names 1.5 '
move_names_ 8.1
see directory entry names see directory entry names
moving quotas nonlocal gotos
see storage quotas 6.3
moving segments number conversion
move see conversion
hes_$ fs_move_file
hcs_$ fs_move_seg object maps
11.6 (SWG)
multi-segment files
3.5 object segments
see |1 /0 5.5
ms f_manager_ (SWG) bind

print_bind_map
decode_object_
(continued)

Index

Page 22

object segments
(continued)
make_object_map_
see linkage sections
11.1 (SWG)
11.2 (SWG)
11.3 (SWG)
11.4 (SWG)
11.5 (SWG)
11.6 (SWG)
11.7 (SWG)
11.8 (SWG)

obsolete procedures
8.3

octal dumping of segments
debug
dump_segment

octal integers
alm

debug
decam

convert_binary_integer_

cv_oct_
see conversion

offline
see bulk 1/0

offset data
5.4

of fset names
1.5

opening files
see initiation

output
b.b
dprint
dpunch
file_output
print
discard_output_
ios_
write_list_

(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

output
(continued)
see 1/0

dprint_ (SWG)

output conversion
see formatted |/0

output l1ine length
see terminal line length

see interprocess communication

packing
see archiving
see binding

page faults
page_trace
hcs_$reset_working_set (SWG)

pages used

see metering
see records used

paging
see storage system

parameters
see argument llsts

parentheses
see command language

parity
8.5

parsing
parse_flle_

passwords
see logging in

path names
1.5
3.1
directory (Active Function)
get_pathname (Active Function)
(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

path names

(continued)
home_dir (Active Function)
initiate
list
listnames (list)
listotals (1list)
list_ref_names
path (Active.Function)
pd (Active Function)
print_default_wdir
print_wdir
strip (Active Function)
wd (Active Function)
where
equal_
expand_path_
get_pdir_
get_wdir_
hcs_$fs_get_path_name
.hcs_S$initiate
hes_$initiate_count
hcs_$make_seg
hcs_$star_
hcs_$status_
hcs_$truncate_file
see linking

permit list
see protection

PL/1 language
pll
pll_abs

pointer conversion
hcs_$fs_get_path_name
hcs_$fs_get_ref_name

pointer data
5.4

pointer generation

cu_
hcs_$fs_get_seg_ptr
hcs_$initiate
ncs_$initiate_count
hcs_$make_ptr
hcs_$make_seg
find_command_ (SWG)

| ndex

Page 23
5/31/73

preemption
user (SWG)
user_info_ (SWG)

prepaging
hcs_$reset_working_set (SWG)

prices
system_info_ (SWG)

printer
see bulk 1/0

printing
4.1
L. b4
dprint
dump_segment
print
dprint_ (SWG)

procdef
see command processing

procedures
2.1

process creation
see creating processes

process data segment
3.1 "

process directories
3.1
pd (Active Function)
set_search_rules
get_pdir_
hcs_$make_seg

process groups
get_group_id_

process ldentiflers
get_process_id_

process information
user (Active Functlion)
user_info_
(continued)

Index MULTICS SUBSYSTEM WRITERS' GUIDE
Page 24 -
process information programming environment
(continued) Section 2
see metering
user (SWG) programming languages
user_info_ (SWG) see languages
Process Initialization Table (PIT) programming standards
3.1 2.5
process interruption programming style
6.2 2.5
hold
program_interrupt project names
release 1.1
start user (Active Function)
default_handler_ who
timer_manager_ user_info_
see conditlions
standard_defaul t_handler_ (SWG) protection
3.4
process overseer delete_iacl_dir
user (SWG) delete_iacl_seg
deleteacl
process termination deletecacl (deleteacl)
logout 1ist_lacl_dir '
new_proc list_iacl_seg -/

see logging out

process termination fault
13.6 (SWG)

process_dir_dlir
3.1

processes
new_proc
see absentee usage
see logging in
see logging out

processes created
user (SWG)

program interruption
see process interruption

program_interrupt
see process Interruption

listacl

listcacl (listacl)

set_iacl_dir

set_iacl_seg

setacl

setcacl (setacl)

copy_acl_

hcs_$add_acl_entries

hcs_$add_dir_acl_entries

hcs_$delete_acl_entries

hcs_$delete_dir_acl_entries

hcs_$fs_get_mode

hes_$11st_acl

hcs_$1ist_dir_acl

hcs_$replace_acl

hcs_$replace_dir_acl

see access control list

13.4 (SWG)

set_ring_brackets (SWG)

get_ring_ (SWG)

hcs_$add_dir_inacl_entries (SWG)

hcs_$add_inacl_entries (SWG)

hcs_sdelete_dir_inacl_entries (Swi3
(continued)

~

MULTICS SUBSYSTEM WRITERS' GUIDE

protection
(continued)

hcs_$delete_inacl_entries (SWG)
hcs_$get_dir_ring_brackets (SWG)
hcs_$get_ring_brackets (SWG)
hes_$1ist_dir_inacl (SWG)
hcs_$1ist_inacl (SWG)
hcs_$replace_dir_inacl (SWG)
hcs_$replace_inacl (SWG)
hcs_$set_ring_brackets (SWG)
hcs_$set_dir_ring_brackets (SWG)

pseudo-device
h.2

punched cards

h.l

L. 4

5.2

dpunch

see bulk /0
push operator

12.2 (SWG)
quits

see process interruption

quitting
see process Interruption

quotas
resource_usage
see storage quotas

quoted strings
see command language

radix conversion

decam
see conversion

random number generators
random_

raw
see punched cards

I ndex
Page 25
5/31/73
read-ahead
4,2

ios_

reading cards
b.1
see bulk 1/0
see punched cards

ready messages
1.2
ready
ready_of f
ready_on

cu_

ready mode
cu_ (SWG)

ready procedures
cu_ (SWG)

real data
5.4

record quotas
see storage quotas

redirecting output
console_output
file_output
see |/0 streams
see output

reference names
1.5

get_pathname (Active Function)

inftiate
list_ref_names
where
expand_path_
hecs_$fs_get_ref_name
hcs_$fs_get_seg_ptr
hcs_$initiate
hes_$initiate_count
hcs_$make_ptr
hecs_$make_seg
hcs_$terminate_file
hcs_$termi nate_name
(continued)

Index

Page 26

reference names
(continued)
hcs_$terminate_noname
hcs_$terminate_seg

term_

referencing_dir
set_search_rules.

rel_link
see binding

'rel_symbol
see binding

rel_text
see binding

relative path names
expand_path_
see path names

relative segments
see termination

release
see error recovery
see process interruption

relocation codes
11.5 (SWG)
11.7 (SWG)

remote devices
see terminals

removing segments
see deleting
see termination

renaming

see directory entry names

resgr;ed characters

see command language

reserved names

6.5
8.1

MULTICS SUBSYSTEM WRITERS' GUIDE

reserved segment numbers
hes_$initiate
hcs_$terminate_file
hcs_s$terminate_seg

resource limits
resource_usage
see accounting
see metering
see storage quotas

resource usage
resource_usage

restarting
start

return operator
12.2 (SWG)

ring brackets
see protection
13.4 (SWG)
set_ring_brackets (SWG)

hcs_$get_dir_ring_brackets (SWG)

hcs_$get_ring_brackets (SWG)
hcs_$set_
hcs_$set_ring_brackets (SWG)

rings
see protection
13.4 (SWG)

set_ring_brackets (SWG)
get_ring_ (SWG)

dir_ring_brackets (SWG)

hcs_$get_dir_ring_brackets (SWG)
hcs_$get_ring_brackets (SWG)
hcs_$set_dir_ring_brackets (SWG)

hcs_$set_ring_brackets (SWG)

root directory
3.1

runtime
see programming environment

runtime storage management
see storage management

MULTICS SUBSYSTEM WRITERS' GUIDE

safety switch
3.3
safety_sw_off
safety_sw_on
hcs_$get_safety_sw (SWG)
hcs_$set_safety_sw (SWG)
hcs_¢$set_safety_sw_seg (SWG)

schedules
system_info_ (SWG)

scratch segments
see temporary segments

SDB
see Stream Data Block

search rules
3.2
change_default_wdir
change_wdir
print_default_wdir
print_wdir
set_search_dirs
set_search_rules
where
change_wdir_
get_wdir_
hcs_$make_ptr
see default working directory
see working directory
hcs_$get_search_rules (SWG)
hes_$initiate_search_rules (SWG)

searching
hes_$fs_get_path_name
hcs_$make_ptr
see dynamic linking
see search rules
hcs_$get_search_rules (SWG)
hcs_$initiate_search_rules (SWG)

secondary storage device
3.3

segment access modes
delete_iacl_seg
list_facl_seg
set_lacl_seg
(continued)

Index

Page 27
5/31/73

segment access modes

(continued)
hes_$add_acl_entries
hcs_$delete_acl_entries
hes_$1ist_acl
hcs_$replace_acl
hcs_s$add_inacl_entries (SWG)

hcs_$delete_inacl_entries (SWG)

segment addressing

see pointer generation

segment attributes

3.3

deleteac!

list

listnames (list)

listotals (list)

listacl

safety_sw_off

safety_sw_on

setacl

status

hcs_$set_bc

hcs_$set_bc_seg

hes_$star_

hecs_$status_

see length of segments

see protection
set_max_length (SWG)
set_ring_brackets (SWG)
hes_$get_author (SWG)
hes_$get_bc_author (SWG)
hes_$get_max_length (SWG)
hcs_$get_ring_brackets (SWG)
hes_$get_safety_sw (SWG)
hes_$set_max_length (SWG)
hcs_$set_max_length_seg (SWG)
hcs_$set_ring_brackets (SWG)
hcs_$set_safety_sw (SWG)
hes_¢$set_safety_sw_seg (SWG)

segment copying

see copying

segment creation

see creating segments

Index

Page 28

segment deletion
see deleting

segment formats
5.5

segment formatting
indent
make_peruse_text

segment initlation
see initiation

segment length
see length of segments

segment name operations
pd (Actlive Function)

segment names.
1.5

8.1
see directory entry names

segment numbers
list_ref_names

segment packing
see archiving
see binding

segment referencing
see initiation
see linking
see pointer generation

segment renaming
see directory entry names

segment termination
see termination

segment truncation
see truncation

segments
see creating segments
see deletling
(continued)

MULTICS SUBSYSTEM WRITERS' GUIDE

segments
(continued)

see
see
see
see
see
see
see

directory entry names
initiatlion

length of segments
protection

storage system
temporary segments
termination

semaphores

see

set_

interprocess communication

lock_ (SWG)

setting bit counts

see

bit counts

seven-punch cards

bL.b

dpunch

see
shifts

punched cards

system_info_ (SWG)

short return.operator
12.2 (SWG)

shriek
see

names
unique strings

shutdown time
system_info_ (SWG)

signals

see conditions

simulated faults
13.6 (SWG)

simulation
random_

sleeping
timer_manager_

snapping 1inks

see

dynamic linking

N

MULTICS SUBSYSTEM.WRITERS' GUIDE

sorting
archive_sort
reorder_archive
sort_file

source maps
11.5 (SWG)

space saving
see archiving
see binding

special active function
user (Active Function)

speiigl characters

see character codes

special sessions
see logging In

special subsystems
Section 7

specifiers
see descriptors

spooling
see bulk 1/0

stack frame pointer
cu_

stack frames
debug
trace_stack
12.1 (SWG)

stack header
12.1 (SWG)

stack management
listen_ (SWG)

stack referencing
debug

trace_stack
cu_

Index

Page 29
5/31/73

stack segment
3.1
12.1 (SWG)

stacks
see stack frames
see stack segments

Standard Data Formats and Codes
Section 5

standard tape formats
see magnetic tapes

standards
2.5
11.7 (SWG)

star convention
1.5
fs_chname
equal_
hes_$star_

start
see error recovery
see process interruption

start up
1.2
exec_com
see logging in

start_up.ec
see start up

static linking
see binding
see linkage sections
see linking

static storage

new_proc .
see storage management

status
check_info_segs

help
how_many_users

(continued)

Index

Page 30

status

(continued)
list
listnames (list)
listotals (1list)
list_abs_requests
peruse_text
status
who
hcs_$star_
hcs_$status_
see |/0 status
hcs_$get_author (SWG)
hcs_$get_bc_author (SWG)

hecs_s$get_dir_ring_brackets (SWG)

hcs_$get_max_length (SWG)

hcs_s$get_ring_brackets (SWG)

hcs_$get_safety_sw (SWG)

status codes
4,2
6.1
6.4
com_err_
unpack_system_code_
see 1/0 system Interface
error_table_compiler (SWG)
convert_status_code_ (SWG)

status formats
4.2

status message
find_command_ (SWG)

status messages
6.4
reprint_error
active_fnc_err_
com_err_
command_query_
convert_status_code_ (SWG)

condition_interpreter_ (SWG)

status tables
6.4
error_table_compiler (SWG)
convert_status_code_ (SWG)

MULTICS SUBSYSTEM WRITERS' GUIDE

storage allocation
see storage management

storage hierarchy
see directories
see storage system

storage management
area_
see address reuse
see archiving
see deleting
see directories
see 1/0
see length of segments
see segments
see storage quotas
alloc_ (SWG)
area_ (SWG)
area_assign_ (SWG)
freen_ (SWG; (SHG)
et_syste ree_area_
%ssT_y SWET
storage quotas
getquota
movequota
hcs_$quota_get (SWG)

storage system
Section 3
4.2
see directory hierarchy

storage system 1/0
4.3
console_output
file_output

storage_quotas
hcs_$quota_move (SWG)

Stream Data Block (SDB)

4.6
see 1/0 system interface

stream names

1.5
8.1

-

MULTICS SUBSYSTEM WRITERS' GUIDE

streams
see | /0 streams

structure data
5.4

subroutines
2.1
Section 10
see procedures

subsystems
Section 7
7.2

see languages

suffixes
8.1
strip (Active Function)
strip_entry (Active Function)
suffix (Active Function)

symbol blocks
11.5 (SWG)

symbol sections
11.5 (SWG)

symbol tables
stu_

symbolic debugging
debug
stu_
see debugging tools

synchronization
u.z
ios_

see Interprocess communication

synonyms
syn
see directory entry names
see 1/0 system interface

syntax analyslis
parse_file_

I ndex

Page 31
5/31/73

system libraries
3.1
see libraries
see search rules

system load
how_many_users
who
system_info_ (SWG)

system parameters
system_info_ (SWG)

system status
help
how_many_users
list_abs_requests
page_trace
peruse_text
print_motd
who
hcs_sreset_working_set (SWG)

system_control_dir
3.1

system_library_auth_maint
3.1

system_library_standard
3.1

tapes
see magnetic tapes

teletype model 33,35,37,38
see terminals

temporary files
see temporary segments

temporary segments
hcs_$make_seg
unique_chars_
see process directories
see storage management
see unique names

Index

Page 32

temporary storage
see process directories
see storage management
see temporary segments

terminal -1ine length
line_length

terminals

103

4.1
console_output
1ine_length
set_com_line
user (Active Function)
read_list_

tw_
user_info_
write_list_
see 1/0

* terminating processes
see process termination

termination
logout
new_proc
terminate
hecs_$terminate_file
hcs_$terminate_name
hcs_$terminate_noname
hcs_$terminate_seg
term_ A
see cancelling
see process termination

text editing
see editing

text formatting
runoff

runoff_abs

text scanning
compare_ascii
compare_ascii_
parse_fille_

MULTICS SUBSYSTEM WRITERS' GUIDE

text sections
11.2 (SWG)

text sorting
see sorting

time
date_time (Active Function)
date_time (Active Function)
hour (Active Function)
minute (Active Function)
time (Active Function)
clock_
convert_date_to_binary_
date_time_
decode_clock_value_
timer_manager_
see metering

transfer vector
4.6

transfer vectors
11.2 (SWG)

translators
see languages

trap pairs
11.3 (SWG)

traps
see faults

traps on first reference
11.4 (SWG)

truncation
truncate
hcs_$truncate_file
hcs_$truncate_seg

type conversion
see conversion

typing conventions
1.3
abbrev
see canonicalization

MULTICS 'SUBSYSTEM 'WRITERS' GUIDE

udd
see user_dir_dir

unique ldentifiers
3.3

unique names
hcs_$make_seg

unique strings
unique (Active Function)
unique_bits_
unique_chars_

unlinking
unlink
delete_
see deleting
see termination

unsnapping
terminate_refname (terminate)
terminate_segno (terminate)
terminate_single_refname
(terminate)

term_
see termination

unsnapping 1inks
see termination

unwinding
6.3
listen_ (SWG)
unwinder_ (SWG)

usage data
user (Active Functlion)
user_info_
see metering

usage limits
start_governor_ (SWG)

usage measures
see metering

useless output
program_interrupt
discard_output_

I ndex
Page 33
5/31/73
user attributes
user (SWG)
user_info_ (SWG)
user names
1.1
3.4
user (Active Function)
who
user_info_

user parameters
user (Actlive Function)
user (SWG)
user_info_ (SWG)

user weight
user (Active Function)
user_info_

user_dir_dir
3.1

user_i/o
see | /0 streams
see terminals

user_Iinput
see 1/0 streams

user_output
see |1 /0 streams

users
how_many_users
who

v

validation level

cu_
see protection
13.4 (SWG)

variable length argument 1ist
cu_

see Interprocess communication

I ndex

Page 34

varying string data
5.4

Vil-punch cards
see seven-punch cards

virtual memory
see directory hlerarchy
see storage system

walting

: timer_manager_
hcs_$wakeup (SWG)
ipc_ (SWG)

wakeups
timer_manager_
hcs_$wakeup (SWG)
ipc_ (SWG)

wdir
see working directory

workling directory
change_wdir
print_search_rules
print_wdir
set_search_rules
walk_subtree
wd (Active Function)
change_wdir_
expand_path_
get_wdir_
see default working directory

working set
page_trace
hcs_$reset_working _set (SWG)

workspace

u.z
ios_

write-behind
4.2
fos_

writing to multiple |/0 streams
see broadcasting

'y

MULTICS SUBSYSTEM WRITERS' GUIDE

(END)

L

