Honeywell

MULTICS

USERS’ GUIDE

SOFTWARE

Honeywe" USERS' GUIDE

MULTICS

SUBJECT:

Basic Introduction to Multics, Intended as a Guide for New Users.

SPECIAL INSTRUCTIONS:
For a more complete descrlptlon on using the Multics System, refer to

Myultics Programmers'

Introduction (Order Number AG90)

Reference Guide (Order Number AG91)

Commands and Active Functions (Order Number AG92)
Subroutines (Order Number AG93)

Subsystem Writers' Guide (Order Number AK92)

SOFTWARE SUPPORTED:

Multics Software Release 1.0
DATE:
November 1973

ORDER NUMBER:
AL40O, Rev. 0

the

PREFACE

The purpose of this manual is to provide programmers and other users with a
basic introduction to Multics use, a practice workbook that guides the new user
through his first sessions at the terminal. The facilities described have been
chosen either because they are immediately useful to the new wuser or because
they are representative of the system as a whole.

The information presented here is a subset of that contained in the primary

Multics reference document, the Multics Programmers' Mapual (MPM). The MPM
should be used as a reference to Mulitics once the user has become familiar with
this introductory guide.

Throughout this manual, references are frequently made to the MPM. For
convenience, these references will be as follows:

Document Referred Jo In Text As

Myultics Programmers' Manual--Introduction MPM Introduction
(Order Number AG90)

Multics Programmers' Manual--Reference Guide MPM Reference Guide
(Order Number AG91)

Multics Programmers' Manual--Commands and MPM Commands
Active Functions (Order Number AG92)

Multics Programmers' Manual--Subroutines MPM Subroutines
(Order Number AG93)

Multics Programmers' Manual--Subsystem MPM Subsystem Writers' Guide
Writers' Guide (Order Number AK92)

C) 1973, Honeywell Information Systems Inc. File No.: 1L13

AL4O

4

Section

Section

Section

Section

Section

Section

Vi

CONTENTS

Introduction.......... C ettt et

How to Access the Multics System......

Log-In Procedure......vvevuvuvenn.

Log-0ut Procedure.....vveeeeeeenss

Multics Environment..vvevveeeeennnen.
Storage SYySteM..uuveiieeervensnnes

Naming Conventions...... Cer e

Working Directory Concept........
Working Directory....vououvuu..

Initial Working Directory.....

CommanNds. s v v it ittt inesnnneennss
System CommandsS...vvevuvenenneess .

User-Written Commands......oo0vvun.

Stopping During Command Execution
Command Conventions......vevve...

Sample Command Execution.......... e
Correcting Typing Errors....eee...
print_wdir Command. ...vouvvvninennn

change_wdir Command............ e

Tist Command. . vvvivenennennsonnan
print Command.vvvvvvernan RN
help Command...... e e e

MUultics EditOor.ue e ennenenns
ReqUEStS . vttt vttt nernnnns
GuidelineS.veeieerie v onnnns

Backup (=) Request.........
Print Current Line Number (
Comment Mode (,) Request.....

Request DescriptionS...vevereresoas

Mode Change (.) Request..... ..

Bottom (b) Request...........

Change (c) Request......v.evvenn
Delete (d) Request............

Find (f) Request...vvvivenss.
Insert (i) Request...........
Kill (k) Request.......... e

Locate (1) Request........v...
Next (n) Request......ocvvuvuen
Print (p) Request.......... e e N

Quit (g) Request.......ov... .

Retype (r) Request..... e
Substitute (s) Request........
Top (t) Request....vvueunnn e

Verbose (v) Request..........
Write (w) Request.....cvevuun.

..
iii

.
e e o o .
-

.

.
e o o o o
-

LR
.

¢ s 0 0 00

.
e o o e o o
.

e e ® o o o e

Request.......

e o o o e
.
.

e o o o o

.
.
.

e o o o o
.

-
.
e o o o & o

viviuviuviutuor o PR o
(L R R T R Y T N Y T Y A SO N T T
WNWNDONR R NN

HEROWOVWEEW IO UTUNEE & WWN

(N2 N N N N N N N NN N N N N N Ne W W Ko We Ney Koo
oo o

ALLO

CONTENTS (cont)

Section VII Programming On Multics..eeevececenocnns
Writing a Source Program.......
Compiling a Source Program.....
Executing a Program.........
Debugging a Program.....

Sample ProgramM...eeeseesesosssssssssassssaaassssosssssns

e 06 00 s s s s e s 000

R IR I RN B R S RN I

R R R R RN R)

€6 06 060 0 0060 0 0000 e s
.

e s 060 e 0 e s s e s s s e e e o 0 00 0

7
7
ceeeees 1
7
7
7

Section Vil ACCESS CONEIrOl . e eeeeeerossssssssnssssssasosssssasansssnsoss
Access Control List.cieesecescesosccnnnoacs ceeienas e

Access Modes....

Setting ACCESS.vivrevevossnnens e ssssessessessensrasnes
LiSting ACCESS..eveeisossesssssssttsossassasssssasssnnsscs -
Deleting ACCESS..iieseesosssssssscncsssscnssscnsas e -

Section IX Online Communication With Other Users...cceecoctsecsccseccns 9-1
mail Command....veeeeessesssssesasscsnsosnsnsoncsss .o 9-1
Message Facility.ioeeereveeosatooseansnnnsnocssnnsons .. 9-2
WhO COMMANd. ¢ co voeeseesssssasssssossssssssassssss R
SUMMATY 4 e e e enoeoesosvososasasossssassssssassssnsassasans 9-4
0

Section X Interactive and Absentee US3ge...vervssreecnnsosoronsesnnasas 1
Multics Features for Advanced Users.......
Abbreviation Processor...ccecececcsccs
Active Functions......

Section XI

Administrative Features......cecv.. et esereeeataeeseses 11-2
Archive Segment....cceseeeeecscsossanns e re s eeenaeeaas 11-2

e o o o
-
.
.

Bound Segment.... 11-3
exec_com Command......ceeevennnnnessas
Input/Output SyStem..ceeeesevsossasnnss
Linking Segments....
gedXx Editor..eeeeeeienresscesesososansacssosnsosons
Resource Measuring...oieeeeeessosssoenssssnnasossns e
Ring Structure......cvveeeevooscns Ceeeete e ce e e e

s e 000 e 00 s s e 0 000 00000
.

ceee 11-4
cees 11-4
eees 11-5
11-5
11-6

R O R R R R R) ..

e o o o o
.
. e
.
.
.
.
.

Running Off Manuscript Format..

11-7

Setting Search Criteria....... BRSNS .: : ..::..::.. 11-7
walk_subtree Command....... ces e Cheteeec e Ceeaen .. 11-8
Appendix A GloSS@ry.eiseeeeeossens e eeec e seessssesssasesassases A-1

Appendix B

Appendix C Reference to Commands by Function.....

Storage System and Command Conventions............ C e e

INdeX.veoooooosonsens ceteea e e ceee e cee e C et i-1
I LLUSTRATION
Figure 3-1. Hierarchical Storage System......coceceen Ceeee e Ceean . 3-2

ALLO

“

(14

SECTION |

INTRODUCTION

Multics (Multiplexed Information and Computing Service) 1is a general
purpose computer system developed at the Massachusetts Institute of Technology
in cooperation with Honeywell Information Systems Inc. and other organizations.
The Multics System multiplexes a central computer among the jobs of many users,
each of whom accesses Multics from a terminal., With Multics, the user has
facilities that allow him to edit, compile, debug, and run programs in one
continuous, interactive session, Each Multics user can structure information,
manipulate it, and simultaneously share it with other users.

This manual helps the new user become familiar with the Multics System.
Basic Multics concepts, such as the storage system and access control, are
described briefly. However, this manual offers a limited discussion of Multics
concepts. Instead, it focuses on those facilities that any user needs daily,
regardless of the nature of his terminal work.

Thus, the first topic in this document is the procedure by which the new
user enters and exits the system plus a brief explanation of some terminal and
Multics conventions (Section Il). Next, the user is introduced to the Multics

environment (Section I11), that is, the storage system, naming conventions, and
appropriate terminology. Once the user is familiar with the environment, the
Multics commands are described (Section V). The Multics System supports

user-defined commands as well as system commands. Both types of commands and
various command conventions are included in the commands description. As a
special aid for the new user, certain frequently called system commands are also
described (Section V).

To get his data on the system, modify the data, and save it, the user can
call one of the Multics editors. One Multics context editor, edm, is very easy
to use and gives the beginner the ability to manipulate his data through many
simple requests (Section VI).

Of particular interest to the programmer is the description of programming
in the Multics environment. While this manual does not teach programming, it
does describe the ease with which programming can be accomplished on Multics
(Section VII). The programmer can write his source program, edit it, compile
it, debug and run the object program--a portion at a time if he chooses--and do
it all online.

After describing the programming environment, the manual presents a brief
discussion of the Multics access control concepts (Section VIII), On Multics,
each user controls the access that other users have to programs and data he
creates. Different access modes may be assigned to different users of the same
program. The user who creates the program can set, change, and delete access
rights just by invoking simple system commands. (Examples of these commands are
also given in Section VIII.)

1-1 ALLO

Another important, useful feature of Multics 1Is online communicatton
(Section IX). Through various commands, users can communicate with one another
instantaneously, send mail, or evan check to see who else 1is online at the
moment.

The absentee use of Multics 1is briefly described in Section X. This
facility Is similar to batch processing oh conventional systems.

The final section of this manual (Section X!|) serves two purposes: it
suggests further information to pursue for the novice, and it puts this manual
in perspective with respect to the Multics System. The reader should understand
that the material presented in this document represents only a fraction of the
Multics System capabilities. However, this material should provide the new user
with a challenge for two or three brief terminal sessions, after which
Section XI and Appendices B and C will help to suggest further information to
explore.

The new wuser will find Appendix A particularly helpful. [t is a glossary
of basic Multics terminology.

1-2 ALLO

0]

SECTION 11

HOW TO ACCESS THE MULTICS SYSTEM

Before a user can gain access to Multics, he must be registered on the
system by the site system administrator and allowed access to a particular
project by that project's administrator. The system administrator assigns each
user a wunlque two-part identificatlion, consisting of a person identification

(called a personid) and a project identification (called a projectid). The
personid 1Is generally a variation of the user's surname; the projectid is an
arbitrary name for a project that is registered on the system. In addition, the

system administrator assigns a speclal password for each user. For example, If
Tom Smith were a new user, the system administrator could assign TSmith as his
personid and ProjA as his projectid.

Notice that the personid (TSmith) contains capital letters. The Multics
System distinguishes between uppercase and lowercase characters; if the exact
capitalization is not used, the entry is misspelled and therefore not recognized
by the system.

LOG-IN PROCEDURE

After the user has dialed the appropriate telephone number and a connection
has been established between Multics and the user's terminal, Multics prints a
message giving the number of the current system, the location of the system, the
actual number of wusers logged in, and the number of users the system is
currently accepting.

Multics XX-x: PCO, Phoenix, Az.
Load = 26.0 out of 100.0 units: users = 26

At this point, the user issues the login command and his personlid,
separated by a blank.

! login TSmith
Password:

NOTE: Throughout this manual, the exclamation mark (!) is printed
at the beginning of every line typed by the user. This is
done only to distinguish user entries from system-generated
printouts; the user should not actually begin his entries
with an exclamation mark.

Also, a "carriage return" (moving the typing mechanism to
the first column of the next line) is implied at the end of
every user-typed line. See the glossary under 'carriage
return" to avoid confusion.

2-1 ALLO

Multics then requests the user's password. Depending on the user's
terminal, the printing of the password is elther suppressed or hidden In a
string of cover-up characters typed by the system. |t is essential that the
user keep his password secret to prevent unauthorized use of his programs and
data and his account. |If the user feels that his password has been compromised,
he should notify his project administrator and immediately change his password.
If the user ever forgets his password, he must notify the system administrator
and request a new password. (Once a password is registered on the system, it Is
encoded and cannot be decoded by anyone, including the system administrator.)

If the user makes an error during the log-in procedure, the system informs
him of It and asks him to try agalin.

Login Incorrect

Please try again or type "help'" for iInstructions.
! login TSmith

Password:

(The help command referred to in the system-generated printout is described 1in
Section V.)

Each Multics installation sets its own limit on how many attempts a user
may make to log in before the system automatically disconnects the line to the
terminal.

Login Incorrect
hangup

Project administrators may interpose another authentication procedure after
the user types his password. The format of this procedure is determined by the
individual project administrator.

After the user has successfully typed his password, the system responds
with information regarding the user's last login.

TSmith ProjA logged in 07/03/73 0937.5 mst Tue from terminal "234"
Last login 07/02/73 1359.8 mst Mon from terminal "234"

The 1log-in statistics can be used to detect unauthorized use of the user's
name and password on previous logins, since the user knows when he was last

logged in. In addition, the log-in statistics inform the user of unsuccessful
attempts to gain access to the system through his password. (Typing errors made
by the user also count as unsuccessful attempts; see Section V for how to

correct typing errors.)
! login TSmith
Password:
Your password has been given incorrectly 2 times since last correct use.

TSmith ProjA logged in 07/03/73 0937.5 mst Tue from terminal "234"
Last login 07/02/73 1359.8 mst Mon from terminal '"234"

2-2 ALLO

[td

These statistics are followed by the "message of the day.“ This message Is
a convenient way to tell all system users important news, including Information
on new commands and latest documentation.

The system will not be shut down on July 4.

Revision 1 of the Multics Programmers' Manual--Introduction 1is now
avallable--Order No. AG90.

The 1last 1line of system-generated printout in the log-in sequence Is the
ready message. This message Is printed to indicate that Multics is at command
level and ready to receive the next command. The ready message consists of the
letter "r" followed by the time of day and three numbers that reflect system
resource usage.

r 0937 1.314 1.332 30

These usage numbers identify virtual CPU time, which is the actual CPU time
consumed by the user since the last ready message minus some supervisor
execution time; memory units, which is an approximation of the amount of memory
he has wused since his last ready message; and the actual number of pages of
information brought into main memory from secondary storage since the last ready
message. For more information about the ready message, refer to the MPM
Commands.

The complete log-in sequence for Tom Smith, assuming no one has attempted
to use his password since his last login, would be:

! login TSmith
Password:

TSmith ProjA logged in 07/03/73 0937.5 mst Tue from terminal '"234"

Last login 07/02/73 1359.8 mst Mon from terminal "234"

The system will not be shut down on July 4.

Revision 1 of the Multics Programmers' Manual--lntroduction 1is now
available--0Order No. AG90.

r 0937 1.314 1.332 30

Under certain circumstances, the user may be denied access to the system
even though he has correctly logged in. For example, the system administrator
may not vyet have registered the user, the user may have exceeded the resource
limits set for him by the project administrator, or the system may temporarily
be full. In any case, if the user cannot get on the system, he receives a
message from Multics telling him the reason he cannot log in and what steps, if
any, he should take.

2-3 ALLO

LOG-QUT PROCEDURE

When the user has completed his work,

he breaks the connection between his
terminal and the Multics System by

issuing the 1logout command. The system
responds by printing the identification of the user, the date and time of the
logout, and the total CPU time and memory units used.

| logout

logout TSmith ProjA logged out 07/03/73 1249.4 mst Tue

CPU usage 17 sec, memory usage 103.1 units.
hangup

Some projects have a log-in time limit after which a user
automatic logout. In such cases, Multics
before a session is automatically terminated. Unless the user is automatically

logged out by the system, he should always log out before leaving the terminal,
to avoid wasting computer time and preventing others from logging in.

Is subject to an
prints a warning several minutes

2-4 ALLO

-

“

SECTION 111

MULTICS ENVIRONMENT

One major component of the Multics environment, the virtual memory, allows
the user to forget about physical storage of information; he does not need to be
concerned with, or even aware of, where his information is within the system or
on what device it resides. However, the new user does need to have a basic
grasp of another major component of the Multics environment, the storage system,
before he can begin to understand the system environment.

STORAGE SYSTEM

One good way to visualize the storage system 1is to consider it a
"tree-structured" hierarchy of directory segments. The basic unit of
information within the storage system 1is the segment; it may contain a
collection of program instructions or data, or it may be empty (a null segment).
Some segments serve as catalogs of other segments beneath them 1in the tree
structure, listing the attributes of the subordinate segments; these cataloging
segments are called directory segments. A1l the other segments are called
nondirectory segments. However, by convention directory segments are called
simply "directories"; nondirectory segments, simply '"segments."

At the beginning of the tree is the root directory; all other directories
and segments emanate from the root directory. For example, Figure 3-1 shows
user Tom Smith and his project, ProjA, in relation to the root. (Directories
are represented by rectangles and segments by circles.) Notice the two
directories immediately under the root (library and udd). The library directory
is a catalog of all the system commands. The udd (user_directory_directory) is
a catalog of project directories. It contains one directory entry for each
project . on the system. Likewise, each project directory normally lists one
directory for each user on that project.

NAMING CONVENT | ONS

The actual name of any segment or directory reflects its position in the
hierarchy in relation to the root directory. This name, called the pathname,
shows the ''path" from the root directory to the specific segment or directory.
Each name between the root and the specific segment or directory indicates
another level in the directory hierarchy. To refer to a particular segment or
directory, the user must list these names in the proper order (i.e., beginning
with the root and coming down) and must include a greater-than symbol between
each name. The greater-than symbol (>) is used in lMultics to denote hierarchy
levels.

3-1 ALLO

root

udd

library

ProjA ProjB
TSmith
myd beta
Figure 3-1. Hierarchical Storage System

3-2

ALLO

The pathname for segment x in Tom Smith's myd directory is:
>udd>ProjA>TSmi th>myd> x

By convention, the word "root'" is omitted since it would be the first entry
in every pathname. The pathname in the above example is called an absolute
pathname because it identifies the "absolute" or complete path between the root
and the specific segment. For the user's convenience, Multics also accepts a
shortened version of the pathname, called the relative pathname, that identifies
the specific segment in relation to the current working directory.

The working directory is simply the directory in which the user is
currently working; it identifies his current location within the storage system
(see also the following paragraph on directory concepts). Because the system
keeps track of a user's working directory, the user needs to identify only the
names between his working directory and the specific segment. Any name the user
types that does not begin with the greater-than symbol is considered relative to
his working directory., Thus, the relative pathname for segment x when TSmith is

.

the working directory is:
myd> x

and the relative pathname for segment x when myd is the working directory is
simply:

Each individual name in the pathname is called an entryname. An entryname
is a wuser-assigned identifier, from one to 32 characters long, chosen from the
full Asciil character set (excluding the greater-than and less-than symbols).
The wuser should avoid the use of a space as part of an entryname; it is
permitted but cumbersome because the command language uses spaces to delimit
command names and arguments. Also, use of other special symbols such as the
asterisk (*) and equals (=) characters is not recommended; these symbols have
special meanings in many Multics standard commands. (Refer to Appendix B for
information on these special meanings.)

Entrynames must be unique within any one directory. For example, Tom Smith
can use '"test'" as an entryname in directory TSmith and also in directory myd;
furthermore, he could also use '"test" as an entryname in a directory named
"test." However, he cannot use "test'" as the name for two different segments in
the same directory. Also, it is permissible--and very convenient--to assign
more than. one entryname to any segment or directory. For example, the entryname
"test" would be easier to type than "partl.test.new_compiler" any time Tom Smith
wanted to work with that particular segment.

lAmerican Standard Code for Information Interchange

3-3 ALLO

WORKING DIRECTORY CONCEPT

Each user on Multics functions as though he performs his work from a
particular location within the Multics storage system--his working directory.

Working Di

The working directory is just that--the directory in which the wuser s
currently doing his work. The main purpose of the working directory is
convenience; the user does not have to take the time to type in absolute
pathnames because the system assumes that any name he types that does not begin
with the greater-than symbol Is relative to the current working directory.
Thus, the user can type the shorter relative pathname, and the system, knowing
the current working directory, supplies the rest of the pathname.

The user can change his working directory simply by invoking a standard
Multics command (see Section V). Then he can enter pathnames relative to the
new working directory, and the system again supplies the rest of the pathname.

Initi Worki D t

Whenever a user logs in, he logs into a particular directory within the
storage system; that is, the system sets his working directory for him. This
initial working directory is known as the home directory. The system
"remembers' the pathname of each user's home directory and automatically assigns
the user to that directory when he logs in. Generally, the home directory is:

>udd>projectid>personid

For example, Tom Smith's home directory would be:

>udd>ProjA>TSmi th

Although the user can change his working directory, he cannot change his
home directory. No matter what the identity of his working directory when he
logs out, his working directory when he logs in is always his home directory.

3-4 ALLO

SECTION 1V

COMMANDS

A command Is a procedure that is called from the terminal by typing the
name of the command (or 1Its abbreviation) followed by character string
arguments. These arguments specify names of data segments containing
information to be acted upon by the command or special kinds of information
needed to execute the command. For example, the command

print alpha

|
causes Multics to locate segment alpha within the user's working directory and
print it on the terminal.

SYSTEM COMMANDS

System commands are kept 1In directories called system libraries and are
supplied with the Multics System. The typical user does not have permission to
rewrite these commands, but he does have full permission to use them. System
commands are well engineered and tested and are supplied with self-explanatory
error messages. If the user makes a typing error or types a command that does
not exist, an explanatory message is typed on the terminal. For example, if the
user wants to invoke the command, print alpha, and instead types

! primt alpha

the system responds with an error message and a ready message (returns to
command level)

Segment primt not found.
r 0937 J1ulh 2,402 55

USER-WRITTEN COMMANDS

User-written commands are cataloged in directories of the user's choice.
These commands may have the same names as system commands; they are
distinguished from system commands by their location.

Multics searches in various locations (user directories, system libraries,
etc.) in a particular order to find the requested command. The user can alter
that order by wusing a system command to change the search rules (see
Section X!1). By redefining the search rules, the user can determine whether a

4-1 ALLO

user-written command or the system command 1Is to be used where both have
identical names. For example, when a user types a command at his terminal, like
print alpha, the system first interrogates the user's own directory to see If
the '"print" program exlists. If so, that version is executed. |f not, the
system searches the system- and user-supplied directories (according to the
rules specified by the user) for the "print'" program. |f the "print" program is
still not found, the system types an error message and returns to command level.

STOPPING DURIN MMAND utl

If the wuser wants to halt program execution at any time, he can do so by
issuing a quit signal. The user invokes the quit signal by pressing the proper
key on his terminal (e.g., ATTN, BRK, INTRPT, INTERRUPT). As soon as the system
receives this signal, Multics stops executing his program and types a ready
message.

For example, when the user issues the print command, he may not need to see
the entire segment. So as soon as the system prints the information he needs,
he issues a quit signal. The quit signal causes Multics to stop printing the
segment and issue a ready message. The system is now at command level, ready to
accept the next command.

If the user wishes to continue the work interrupted by the quit signal, he
can issue either the start or the program_interrupt command. The start command
resumes execution of the original program from the point of interruption. The
program_interrupt command resumes execution of the original program from a
known, predetermined reentry point. |If the user does not want to continue the
interrupted work, he should issue the release command before he issues any other
commands. The release command releases the work interrupted (and held) by the
quit signal. For more information on these commands and their relation to the
quit signal, see the MPM Commands.

COMMAND CONVENTIONS

The general format of Multics commands is:

command argumentl argument2 ... argumentn

Most Multics commands have various arguments that allow the user to modify
command execution to suit his needs. However, the new user does not have to
know any argument except the pathname for many Multics commands. By using the
simplified command line format, command pathname, the new user can effectively
use the Multics System.

For the wuser's convenience, a brief description of storage system and
command conventions is given in Appendix B. Also, for a description of the
command language environment, refer to the MPM Reference Guide.

L-2 ALLO

SECTION V

SAMPLE COMMAND EXECUTION

This section first shows the procedure for correcting typing errors and
then 1Illustrates the use of certain, frequently called Multics commands. Since
edm, access control, and the online communication commands are fully described
elsewhere (Sections VI, VIIIl, and IX respectively), they are not included here.

RRECT TYPI ERRORS

There are two special symbols for correcting typing errors, the character
delete and the line delete. These symbols may vary, depending on the type of
terminal; but generally the number sign (#) is the character-delete symbol, and
the commercial at sign (@) is the line-delete symbol.

The character-delete symbol "erases" one previously typed character, space,

or tab when typed directly after the error. The 1line-delete symbol '"erases"
every character previously typed on the 1line, including spaces and tabs.
Examples of both symbols are given in the login command lines below. Each 1line

is interpreted by Multics as--login TSmith.

! login TSM#mith
! logen T####in TSmith
! logen TSmit@login TSmith

! kigum T@loge#in TSmith

PRINT WORKING DIRECTORY (print_wdir) COMMAND

The print working directory command (invoked by typing print_wdir or pwd)
requests that the system print the name of the working directory. Multics
responds by typing the absolute pathname of the user's working directory.

! pwd
>udd>ProjA>TSmi th
r 0938 1.347 2.315 41

5-1 ALLO

CHANGE WORKING DIRECTORY (change_wdir) COMMAND

The change working directory command (lnvoked by typing change_wdir or cwd)
redefines the working directory. To <change his working directory, the user
types the cwd command followed by the pathname of the directory he wishes to
redefine as his working directory. The following command changes the working
directory to JDoe.

| cwd >udd>ProjB>JDoe
r 0938 .972 1,731 25

To revert to the initial working directory, the user types the cwd command
without an argument.

! cwd
r 0939 1.024 1.378 35

The cwd command allows the user to manipulate his own position within the
storage system hierarchy with respect to the segments he wishes to use.
However, the wuser must remember that it will not help to change working
directories if he does not have access permission to use segments cataloged in
that directory.

LIST (1ist) COMMAND

The 1list command (invoked by typing list or 1s) prints out a list of all
the segments in a directory. |If the user issues the 1list command with no
arguments, the working directory 1is assumed. The command prints information
about the number of segments and records in the directory, access attributes,
and number of records for each segment. Segments most recently created are at’
the top of the list.

I 1s

Segments = 21, Records = Uu6.

rw 7 index
rew 2 alpha
re 1 beta

rw 4L gamma

r 0939 1.866 2.084 41

5-2 ALLO

P r COMMAND

The print command (invoked by typing print or pr) prints the contents of an
ASCl| segment. The segment name may be either an absolute or relative pathname.

| pr sectionV
sectionV 07/03/73 0940.2 mst Tue

This section first shows the procedure for correcting typing
errors and then
illustrates the use of certain, frequently called
Multics commands. Since edm, access control, and the
online communication commands are fully described elsewhere

r 9040 1.245 1.921 53

HELP (help) COMMAND

The help command (invoked by typing help) prints information about
commands, the current system, etc. When the help command is invoked, it prints
out the specified information segment a portion at a time, identifying the
number of 1lines that follow and giving the user the option to continue. For
example, if the user wants information about the arguments and options available
with the 1list command, he types:

! help 1s
(6 lines follow)
11/17/71

The "1ist" command lists the contents of a directory.
To list segment names only, use "listnames'" ("1n").
To list directory totals only, use "listotals" ("1t").

Rest of segment has 14 lines. More help?

At this point, the user types either "yes" or "no" depending on whether or
not he wants more information about the command.

To print the names of available text segments in the help information
segments, type:

! help help

5-3 ALLO

SECTION VI

MULTICS EDITOR

The edm command, which is a simple Multics context editor, 1is used for

creating and editing ASCII segments. To invoke edm, the user types:

edm pathname

where pathname identifies the segment to be either edited or created.

The edm editor operates in one of two principal modes: edit or input. |If
pathname identifies a segment that is already in existence, edm begins in edit
mode. If pathname identifies a segment that does not exist, or if pathname is

not given, edm begins in input mode. The user can change from one mode to the
other by issuing the mode change character: a period (followed by a "carrlage
return'") when this is the only character on a line. For verification, edm
announces its mode by responding "Edit." or "Input." when the mode is entered.

The edm requests assume that the segment consists of a series of lines and
has a conceptual pointer to indicate the current line. (The "top" and '"bottom"
lines of the segment are also meaningful.) Some requests explicitly or
implicitly cause the pointer to be moved; other requests manipulate the 1line
currently pointed to. Most requests are indicated by a single character,
generally the first letter of the name of the request; for these requests only
the single character is accepted by edm to initiate the corresponding action.

REQUESTS

Various edm requests and their Indicators are listed below. Detailed
descriptions of these requests are given later in this section. This list does
not include all of the edm requests; it identifies only those requests that the
new user will need as he begins using Multics. For a complete 1listing and
description of all the edm requests, see the MPM Commands.

- backup
= print current line number

’ comment mode

6-1 ALLO

. mode change

b bottom

c change

d delete

f find

i insert

k kill

1 locate

n next

p print

q quit

r retype

s substitute

t top

v verbose

w write
GUIDELINES

The following list offers helpful suggestions about the use of edm for the

new user.

1.

It is useful to remember that the editor makes all changes on a copy

of the segment, not on the original. Only when the user issues a w
(write) request does the editor overwrite the original segment with
the edited version. |If the user types q (quit) without a preceding w

(write), the editor warns him that editing will be 1lost and the
original segment will be unchanged, and gives him the option of
aborting the request.

The user should not issue a quit signal (press ATTN, BRK, INTERRUPT,
etc.) while in the editor unless he is prepared to lose all of the
work he has done since the last w (write) request. However, if a quit
signal is issued, the user may return to edm request level without
losing his work by issuing the program_interrupt command.

If the user has a lot of typing or editing to do, it is wisest to
occasionally issue the w request to ensure that all the work up to
that time is permanently recorded. Then, if some problem should occur
(with the system, the telephone line, or the terminal), the user loses
only the work done since the last w request.

6-2 ALLO

L. The user should be sure that he has switched from input mode to edit
mode before typing editing requests, including the w and q requests.
If he forgets, the editing requests are stored in the segment, instead
of being acted upon. The user then has to locate and delete them.

5. As the user becomes more familiar with the use of edm, he may conclude
that it provides verification responses more often than necessary,
thus slowing him down. He may use the Kk request to "kill" the

verification response. However, once the user feels confident enough
to use the k request, he is probably ready to begin using the more
sophisticated editor, gedx. The gedx editor provides the user with a
repertoire of more concise and powerful requests, permitting more
rapid work.

E DESCRIPTIONS

The following -edm requests are the ones that the new user will find most
useful as he begins working on Multics. Examples are included to help the new
user see the practical use of the requests.

The backup request moves the pointer backward (toward the top of the
segment) the number of lines specified by the user and prints the line to show
the location of the pointer. For example, if the pointer is currently at the
bottom line of the following:

get list (nl, n2);

sum = nl + n2;

put skip;

put list ("The sum is:", sum);

and the user wants the pointer at the line beginning with the word "“sum," he
types:

1 =2
sum = nl + n2;

I f the user does not specify a number of lines with the backup request, the
pointer is moved up one line. (Typing a space between the backup request and
the integer is optional.)

6-3 ALLO

The print current line number request tells the user the number of the line
the pointer is currently pointing to (all the lines In a segment are Implicitly
numbered by the system--1, 2, 3,..., n).

Whenever the user wants to check the Implicit l1ine number of the current
line, he Issues this request and edm responds with a 1ine number.

| b
143

c t M R

When the user invokes the comment mode request, edm starts printing at the
current line and continues printing all the lines in the segment in comment mode
until it reaches the end of the segment or until the user types the mode change
character (a period) as the only entry on a line.

To print the lines in comment mode means that edm prints the line without
the carriage return, switches to input mode, and waits for the user's comment
entry for that line. When the user gives his comment line and a carriage
return, edm repeats the process with the next line.

If the user has no comment for a particular line, he types only a carriage
return and edm prints the next line in comment mode. When the user wants to
leave comment mode and return to edit mode, he types-=-as his comment--the mode
change character (a period).

Programmers will find that the comment mode request gives them a fast and
easy way to put comments in their programs.

Mode Change (.,) Request

The mode change request allows the user to go from input mode to edit mode
or vice versa simply by typing a period as the only entry on a line. This
request is also the means by which the user leaves the comment mode request and
returns to edit mode.

For example, when a wuser finishes typing information into a segment, he
must leave input mode and go to edit mode In order to 1issue the write (w)
request and save the information.

! last line of segment

Edit.
Il w

E-4 AL4O

The bottom request moves the pointer to the end of the segment (actually
‘'sets the pointer after the last line in the segment) and switches to input mode.
This request is particularly helpful when the user has a lot of information to
type in input mode; if he sees some mistakes in data previously typed, he can
switch to edit mode, correct the error, then 1issue the bottom request and
continue typing his information.

I red
| oramge
! vellow
| green
|
Edit.
1 =2
oramge
! ¢/m/n/
orange
! b
Input.
! blue

C e Requ

The change request allows the user to <change every occurrence of a
particular character string with a new character string in the number of 1lines
he indicates. |If the user is in verbose mode (in which edm prints responses to
certain requests), edm responds by printing each changed line. |If the original
character string 1Is not found in the lines the user asked edm to search, edm
responds:

edm: Substitution failed.
For example, if the pointer is at the top line of the following:

get list (nl, n2);

sum = nl + n2;

put skip;

put list ("The sum is:", sum);

and the user wants to search the next three lines and change the word to

"total," he types:

sum

! cbW/sum/total/
total = nl + n2;
put list ("The total is:", total);

6-5 ALLO

The four 1lines searched by the editor are the current line plus the next
three. (The search always begins at the current line.) |f the user does not
specify the number of 1lines he wants searched, edm only searches the current
line. |If the user does not specify an original string, the new string Is
inserted at the beginning of the specified line(s).

Notice in the example that a slash (/) was used to delimit the strings.
The user may designate as the delimiter any character that does not appear In
either the original or the new string.

NOTE: For compatibility with the gedx editor, the substitute (s) request
may be used in place of the change (c) request to accomplish the
same results.

Delet Reques

This request deletes the number of lines specified by the user. Deletion
begins at the current line and continues according to the user's request. For
example, to delete the current line plus the next five lines, the user types:

! dé

If the user issues the delete request without specifying a number, only the
current line is deleted. (That is, the user may type elither d or d1 to delete
the current line.)

After a deletion, the pointer is set to an imaginary line following the
last deleted line but preceding the next nondeleted line. Thus, a change to
input mode would take effect before the next nondeleted line.

Find (f) Request

The find request searches the segment for a line beginning with the
character string designated by the user. The search begins at the 1lne
following the <current 1line and continues, wrapping around the segment from
bottom to top, until the string is found or until the pointer returns to the
current 1line; however, the current line itself is not searched. |If the string
is not found, edm responds with the following error message:

edm: Search failed.

If the string is found and the user is in verbose mode, edm responds by
printing the first line it finds that begins with the specified string.

' fIf
If the string is found and the user

6-6 ALLO

When the user types the string, he must be careful with the spacing. A
single space following the find request is not significant; however, further
leading and embedded spaces are considered part of the specified string and are
used in the search.

In the find request, the pointer is elther set to the 1ine found 1in the
search or remalns at the current line if the search falls. Also, if the user
issues the find request without specifying a character string, edm searches for
the string requested by the last find or locate (1) request.

The insert request allows the user to place a new line of information after
the current line.

If the user invokes the Insert request without specifying any new text, a
blank line is inserted after the current line. |If the user types text after the
insert request, he must be careful with the spacing. One space following the

insert request 1Iis not significant, but all other leading and embedded spaces
become part of the text of the new line.

For example, if the pointer is at the top line of the following

sum = nl + n2;
put list ("The sum is:", sum);

and the user issued the following insert request
! i put skip;
the result would be:

sum = nl + n2;
put skip;
put list ("The sum is:",sum);

If the user wants to insert a new line at the beginning of the segment, he
first issues a top (t) request and then an insert request.

6-7 ALLO

The kill request suppresses the edm responses following the change (c),
find (f), locate (1), next (n), or substitute (s) requests. To restore
responses to these requests, the user Issues the verbose (v) request,

It is recommended that the new user not use the kill request until he is
throughly familiar with edm. The responses given in verbose mode are helpful;
they offer an immediate check for the user by allowing him to see the results of
his request.

The locate request searches the segment for a 1line containing a
user-specified string. The locate and find (f) requests are used in a similar
manner and follow the same conventions. (Refer to the find request description

for details.) With the find request, edm searches for a line beginning with a
specified string; with the locate request, edm searches for a line
containing--anywhere--the specified string.

N n) Request

The next request moves the pointer toward the bottom of the segment the
number of 1lines specified by the user. |f the user invokes the next request
without specifying a number, the pointer is moved down one line. When the user
does specify the number of lines he wants the pointer to move, the pointer is
set to the specified line. For example, if the user types:

! nb

the pointer is set to the fourth line after the current line. The edm editor
responds, when in verbose mode, by typing the user-specified line.

Print Request

The print request prints the number of 1lines specified by the user,
beginning with the current line, and sets the pointer to the last printed 1line.
If the user does not specify a number of lines, only the current line is
printed.

6-8 ALLO

If the user wants to see the current line and the next three 1lines, he
types:

! pb
current line
first line after current line
second
third

In edm, every segment has two imaginary null lines, one before the first
text line and one after the last text line. When the user prints the entire
segment, these lines are identified as "No line" and "EOF" respectively.

The quit request is invoked by the user when he wants to exit from edm and
return to command level.

For the user's convenience and protection, edm prints a warning message if
the user does not Issue a write (w) request to save his latest editing changes
before he issues the quit request. The message reminds the user that his
changes will be lost and asks if he still wishes to quit,.

q
edm: Changes to text since last "w" request will be lost if you quit;
do you wish to quit?

If the user answers by typing no, he is still in edit mode and can then
issue a write request to save his work. |If he instead answers by typing yes, he
exits from edm and returns to command level.

The retype request replaces the current line with a different line typed by
the user.

One space between the retype request and the beginning of the new line is
not significant; any other leading and embedded spaces become part of the new
line. To replace the current line with a blank line, the user types the retype
request and a carriage return.

Substitute (s) Request

The substitute request is identical to the change (c) request.

6-9 ALLO

Top (t) Reguest

The top request moves the pointer to an imaginary null line immediately
above the first text line in the segment. (See the print request description
concerning imaginary null lines in edm.)

An insert (

i) request immediately following a top request allows the user
to put a new text 1i

ne above the 'original" first text line of the segment.

Ver (Re

The verbose request causes edm to print responses to the change (c), find
(f), locate (1), next (n), or substitute (s) requests.

Actually, the user does not need to issue the verbose request to cause edm
to print the responses; when he invokes edm, the verbose request is in effect.
The only time the user needs to (issue the verbose request is to cancel a
previously issued kill (k) request.

The write request saves the most recent copy of a segment in a pathname
specified by the user. (The pathname can be either absolute or relative.)

If the user does not specify a pathname, the segment is saved under the
name used in the invocation of edm. When saving an edited segment without
specifying a pathname, the original segment 1is overwritten (the previous
contents are discarded) and the edited segment is saved under the original name.

If the user does not specify a pathname and he did not use a pathname when
he invoked edm, an error message is printed and edm waits for another request.
If this happens, the user should reissue the write request, specifying a
pathname.

6-10 ALLO

SECTION VI

PROGRAMMING ON MULTICS

This manual Is not intended to offer instruction in programming; Instead it
describes programming within the Multics environment. The basic steps are stil]
the same: write, compile, execute, and debug.

However, on Multics the user can do all four steps online in one terminal
session. He has source Jlanguage debugging capabilities that allow him to
execute and test only certain portions of a program if he wishes. The Multics
virtual memory and storage system eliminate the file input/output normally
required to manage the transfer of information to and from secondary storage;
physical movement of data from primary memory ('"core") to secondary storage and
back is wholly automatic and of no concern to the programmer. In addition,
dynamic 1linking and the organization of the storage system eliminate the need
for extensive software management, since the latest copy of every program s
immediately accessible by name from the terminal or from a program. This
dynamic linking capability eliminates the need for a complicated job control
language for retrieving, prelinking, and executing programs and for defining and
locating input/output files.

WRITI SQUR ROGRAM

To write a source program, the user invokes an editor that allows him to
input--and then edit--his work. On Multics, the user can write hils source
program in a variety of languages such as PL/Il, FORTRAN, or BASIC, or even a
language he himself has devised.

The following example shows a PL/! source program entered on the system
with the edm editor.

Terminal Interaction Explanation
! edm prog.pll User types the edm command and the name of
the segment.
Segment not found. edm searches the working directory for
Input. prog.pll. It is not found so edm creates it

and ‘'switches to input mode. (If prog.pll
already existed, the user would be put in
edit mode.)

! dcl a fixed bin(17), User input. The second 1line is missing a
! b char(x, right parenthesis.
c external entry;

7-1 ALLO

| User changes to edit mode.

Edit.

! 1 char User issues locate request to find char.
b char(x, edm prints line containing char.
V' e/, User Issues change request to enter the
missing parenthesis.
b char(»*), edm prints out changed line.
' n User issues request to print next line.
c external entry; edm prints next line.
I w User writes prog.pll into his working
directory to save it for later use.
! q User quits edm.
MPILI A SOURCE SEGMENT

The basic (bs), fortran (ft), and pll commands compile source segments
written in the respective languages. Source segment names must include the name
of the language as the last component, separated by a period.

The mandatory last component for source programs written in PL/I is pll
(e.g., alpha.pll or alpha.beta.gamma.pll). Although pll must be used as the
last component in the source program name, it need not be used in the pll
command, which compiles the source program. The last component is understood as
being implied by each of the language processors.

For example, to compile the PL/! source program, prog.pll, the user invokes
the p1l command by typing:
pll prog -table
or
pll prog.pll -table
The optional argument added here, -table, is one of the many options

accepted by the pll command. The table option produces a symbol table that s
valuable for use with the Multics debugging facility.

7-2 ALLO

“~)

EXECUTING A PROGRAM

To run an object segment, the user simply types its name (either relative
or absolute pathname). To run the compiled version of source program prog.pll,
the user types:

prog
So far as Multics is concerned, each program may be a command.

Programs may reference Multics subroutines that allow programs to accept
online data. The user simply supplies the necessary data at the terminal as the
running program requests it by typing in the required number of arguments or
responses. Or, the wuser may input arguments as he types the name of the
program, the way he does for a command. Multics also provides subroutines to
print results of program execution on the terminal.

DEBUGGING A PROGRAM

Multics permits users to run a part of a program, temporarily halt its
running, debug that portion of the program needing changes, and resume running
the program.

Most Multics compilers have the ability to print a list of errors when they
compile a source segment. For example, the list might indicate incorrect syntax
in the source segment. This list of errors may be graded by severity; the user
may judge whether he wishes to continue compilation or halt it by issuing a quit
signal. Severe errors automatically cause compilation to cease. The compiler
prints an error message; and the system returns to command level and prints a
ready message.

The debug (db) command accesses a facility that allows users to look at
and/or modify data or code online. The user may set "breakpoints" within the
program, run the program, and cause the program to halt at the breakpoints. The
user may then test the program using various debug requests, and use a text
editor to modify the source program. This debugging facility allows symbolic
references, permitting the user to depart from machine-oriented debugging
techniques.

For more information on the debug command, refer to the MPM Commands.
Also, the MPM Introduction provides an extensive example on the use of the debug
command under "Programming in the Multics Environment."

7-3 ALLO

SAMPLE PROGRAM

This paragraph shows the terminal interaction as a user logs in and writes,
compiles, and executes a short program. The program, named add, is written in
PL/l wusing edm. The add program accepts two integers (online) and prints the
sum of the two integers on the terminal.

| login TSmith
Password:

TSmith ProjA logged in 07/03/73 0937.5 mst Tue from terminal '"234"

Last login 07/02/73 1359.8 mst Mon from terminal "234"

The system will not be shut down on July &,

Revision 1 of the Multics Programmers' Manual--Introduction 1is now
available--Order No. AG90.

r 0937 1.314 1.332 30

! edm add.pll

Segment not found.

Input.

add: proc ;

dc! (nl,n2,sum) fixed bin(1l7);

dcl (sysin, sysprint) file;

put list ("This program prints the sum of two user-supplied integers.");
put list ("Enter two integers separated by a comma.");
put skip;

get list (nl,n2);

sum = nl + n2;

put skip;

put list ("The sum is:", sum);

put skip;

end;

Edit.
! w add.pll

q
r 0944 4,875 7.621 62

After typing in the source program, going to edit mode to write it, and
quitting edm, the user is ready to compile his program. Notice that the program
name (add.pll) includes the language name as the last component. The language
name also identifies the proper command to invoke for the compilation. Thus to
compile the add.pll program, the user types:

! pll add
PL/!, Version 2
r 0945 1.635 28.516 383

Once the program is compiled, the user, and any other users to whom he
gives proper access, can execute the program by typing:

! add
This program prints the sum of two user-supplied integers.
Enter two integers separated by a comma.

! 86425,999

The sum is: 87424
r 0946 .191 1.436 57

7-4 ALLO

hal

SECTION VII1I

ACCESS CONTROL

) On the Multics System, the user is able to share as much or as 1little of
his work with as many other users as he desires. The checking done by the
hardware on each memory reference ensures that the access privileges described
by the wuser for each of his segments are enforced. This kind of privacy and
security gives Multics users great flexibility in the kinds of data they may put
on the system. For example, if Tom Smith were the head of a personnel
department, he could put the names and addresses, salaries, education, etc. of
all the company's employees online. He could then set different access rights
on each of the segments. For example, he could assign read and write access to
only himself on the segment containing salary information. He would not allow
anyone else In the department to have any access to the salary segment. On the
segment containing the names and addresses of all personnel, he «could assign
read and write access to himself and his assistant and only read access to the
rest of his department. Multics allows the user to give different access rights
to different users of the same segment.

ACCESS CONTROL LIST

The access rights for each segment are described in an access control 1ist
(ACL). Each segment has its own ACL; it contains the identification of users
permitted (or specifically denied) access to the segment plus a description of
the type of access allowed.

The wuser identification in the ACL consists of a three-component name:
personid, projectid, and an instance tag, separated by periods. (The system
assigns the instance tag when the user logs in.) Whenever anyone tries to
access a segment on the Multics System, his three-component name must match one
of the entries on the ACL of that particular segment; if not, he has no access
to that segment.

ACCESS MODES

The type of access allowed is defined by access modes: four modes for
segments and four modes for directories.

Access modes for segments are:

read (r) data in the segment can be read

write (w) data in the segment can be modified (written)

execute (e) an executing process can transfer to, and execute
instructions in, this segment

null (n) access to the segment is denied

8-1 ALLO

Access modes for directories are:

status (s) the attributes of segments, directories, and 1links
contalned in the directory can be obtalned

modify (m) the attributes of existing segments, directories, and links
contained in the directory can be changed or deleted

append (a) new segments, directories, and links can be created In the
directory

null (n) access to the directory is denied

The user generally assigns combinations of access modes to his segments and
directories. Useful access mode assignments for segments and directories are:

Segments Directorlies
r S

re sm

rw sa

rew sma

null null

The user specifies one of the above access mode assignments for the persons
and/or projects he wishes; he uses one command in specifying access to his
directories and/or segments. Once specified, the access is not '"frozen"; the
user may change It at will just by 1issuing the command again, specifying
different modes, persons, or projects.

SETTING ACCESS

The command the user invokes to set the ACL, setacl, either adds an entry
to the ACL or modifles an existing entry. The setacl command, which may be
abbreviated sa, has the general format:

sa pathname accessmode(s) useridentification

For example, Tom Smith has text in segment xsolve of his myd directory that
Jane Doe wants to use. To give her access so she can read the segment, he types
(if myd is his current working directory):

! sa xsolve r JDoe.*.x*

If he instead decides that his segment should not be available to Jane and
wants to make sure she cannot read it, he types:

! sa xsolve null JDoe.*.*

8-2 ALLO

The asterisk following Jane's personid (JDoe) in the above command lines
tells the system that the requested access applies to Jane no matter what
project she may be on, no matter what instance tag may be associated with her
work. For example, the ACL entry Tom gave, JDoe.*.*, matches:

JDoe.ProjB.*
JDoe.ProjA.*
JDoe.ANYTHING. *

When the user wants to denote any personid, he types an asterisk for the
first component; any projectid, an asterisk for the second component; and any
instance tag, an asterisk for the third component. (It is best to wuse an
asterisk for the third component since the user generally does not know the
instance tag.) Thus, a user identification of *.*.* specifies any Multics user.

LISTING CESS

To check the ACL of a segment, the user invokes the command that lists the
ACL, listacl. The listacl command, which may be abbreviated la, has the general
format:

la pathname

As explained earlier, the system assumes that any pathname that does not
begin with the greater-than symbol is relative to the working directory. Thus,
if Tom Smith wants to list the ACL of xsolve, he types:

| la xsolve
rw TSmith.ProjA.*
r JDoe.* . *
rw *,SysDaemon. *
r * ProjA.*

The third entry in the example, *.SysDaemon.*, identifies various system
processes that control such things as printing and making copies of segments or
"backup'" tapes. The system normally places appropriate ACL entries on every
segment the user creates so the system processes will have the necessary access
to perform the various backup, metering, and input/output functions.

If Tom 1is interested in checking the access he has given only Jane on
xsolve, he types:

! 1la xsolve JDoe
r JDoe.* . *

or to check the access rights of only ProjA, he types:

! la xsolve .ProjA
rw TSmith.ProjA.*
r * ., ProjA.*

8-3 ALLO

Notice that when specifying the user ldentifications, periods must be used
to show '"missing'" components to the left of a specified component; however, it
Is not necessary to include periods for "missing" components on the right.

D T CCESS

A third access control command, deleteacl, allows the user to delete ACL
entries. This command, which may be abbreviated da, has the same general format
and rules as the listacl command.

For example, if Tom Smith has changed segment beta, he might want to also
change its ACL. Flirst, he lists the ACL entries to see who currently has access

to beta:

! la beta
rw TSmith.ProjA.*
re Gray.Merlin.*
rw Butler.Merlin.=*
rw Jones . *, *
re JDoe.* ., *
rw *, SysDaemon. *
r *, kK

Tom decides that he no longer wants user Johes, anyone on the Merlin
project, or the entlre user community (represented by *.*.,*) to have access to
beta. Therefore, he invokes the deleteacl command in the following manner:

! da beta Jones *.*.,* .Merlin

If Tom now again invokes listacl, he will see that the requested change has
already taken place.

! la beta
rw TSmith.ProjA.*
re JDoe.* . *
rw *,SysDaemon. *
On Multics, changes in access rights occur instantaneously. If both Tom

and Jane are online at the same time and she tries to access one of his segments
and finds that she does not have the proper access, she can send him a message
(see Section IX concerning online communication), asking him to give her proper

access to the segment. He can then issue the appropriate arguments to the
setacl command, and she immediately has access to the segment. Access rights
are revoked just as rapidly. |If Jane has access to a segment of Tom's, and he

changes the access while she is using the segment, the system prints out a
message telling her that she has incorrect access to the segment and returns her
to command level.

8-4 ALL40

i)

SECTION 1X

ONLINE COMMUNICATION WITH OTHER USERS

The Multics System offers several commands that enable users to communicate
with one another online. Such commands are extremely useful; for example, a
user may require immediate access to another user's data, or a user may need to
request an Increase In his quota from his project administrator.

malil COMMAND

The mail command (abbreviated ml1) Is used to send mail to another user or
print mail sent by another user. The mail is stored in the user's home
directory in a segment with the entryname, mailbox. Thus, this segment has the
absolute pathname:

>udd>projectid>personid>mailbox

In order to receive mail, the user must create the mailbox segment and set
the access control list (ACL) to rw for all users.

! create mailbox
r 1145 1.327 1.944 57
! setacl mailbox rw *,* *
r 1145 1.856 2.361 61
To read his mail, the user types:

! mail

The system first tells the user how many messages are in his mailbox and
the total number of 1lines in the mailbox. Then the system prints all of the
messages and asks the user if he wants to delete these messages. If the user
answers yes, the messages are deleted; if he answers no, they are saved.

To send mail, the user types the mail command with the proper arguments.

mail message personid projectid

9-1 ALLO

The message argument may be elther the pathname of a segment or an asterisk
(*). Generally, the user types an asterisk for the message argument. The
system responds by printing "Input." The user then types his message, ending it
by a 1line contalning only a period (.). For example, if Tom Smith wants to send
Jane Doe mail, he types:

! mail * JDoe ProjB
Input
Dear Jane,
Thank you for the draft copies of
the new manual. | promise to return
them next week.

Tom

r 1004 .741 3,386 99

If the information the user wishes to send is contained in a segment, he
types the pathname of the segment for the message argument. The content of the
segment is then placed in the receliving user's mailbox.

When the system sends the malil, it supplies a header identifying the sender
and the date and time he sent the message. It then copies the mail with the
header into the proper mailbox segment--in this case, >udd>ProjB>JDoe>mailbox.
Thus, when Jane checks her mailbox, by issuing the mail command, Tom's message
would appear on her terminal as:

! mail
1 message, 8 lines.
From TSmith.ProjA 07/09/73 1004.6

Dear Jane,
Thank you for the draft copies of
the new manual. | promise to return
them next week.

Tom

mail: Delete?

MESSAGE FACILITY

The message facility permits online communication between users on
different terminals. The system puts messages from other wusers in a segment
called the message segment and prints them out at the option of the user, i.e.,
either immediately or on command. Even if the user who 1is to receive the
message is not logged in or is deferring messages, messages can still be sent.
If this happens, the user who is sending the message is notified that the
message cannot be received online at this time, and the message is stored in the
receiving user's message segment.

If the user wants the ability to receive messages, he must invoke the
accept_messages command (or its abbreviation, am). This command causes the
system to create the message segment, if one does not already exist, having the
absolute pathname:

>udd>projectid>personid>personid.con_msgs

9-2 ALLO

If Tom Smith wants to use the message facility, he types:

! accept_messages

p >udd>ProjA>TSmith>TSmith.con_msgs has been created.

Once the accept_messages command is invoked, the user
receives--instantaneously--any messages sent to him during that terminal
sesslion. |If a message is sent after he logs out, it is saved in the message
segment. In order to receive the messages saved in the message segment, the

user must issue the print_messages command (or its abbreviation, pm).

! print_messages

(To avoid the necessity of Issuing the accept_messages and print_messages
commands at the beginning of each terminal session, refer to the discussion of
the start_up.ec segment under the '"exec_com command" description in Section XI.)

When the user wants to send a message, he must invoke the send_message
command (or its abbreviation, sm) with the proper arguments.

send_message personid projectid message

If Tom Smith wants to send a message to Jane Doe, he types:

! send_message JDoe ProjB Gave you access to xsolve--you can use it now.

If the message argument is missing, the system types the word "Input" and
the user then types his message. Each line of his message is sent as soon as
the user types the carrlage return. To indicate that the message is complete,
the sending user types a period (.) on a separate line.

Whenever a message is sent, the sending user is identified by his personid
and his projectid. Tom's message would appear on Jane's terminal as:

from TSmith.ProjA: Gave you access to xsolve--you can use it now.

who COMMAND

Although the who command is not an online communication command in the same
sense as mail, accept_messages, print_messages, and send_message, it is still an
important communications tool. By invoking this command, the user learns the
number, identification, and status of all users currently on the system. (1t is
possible for a user to prevent his name from being listed; to do this, the user
should first see his project administrator.) Often, the user issues the who
command to see if a partlicular user is online before he issues the send_message
command.

The who command first prints out a header line, listing the system name,
the total number of users, the current system load, and the maximum load. After
this header, the command lists the name and project of each user.

9-3 ALLO

To invoke the who command, the user types:

who

Multics XX-x, load 12.0/90.0; 12 users
Absentee users 0/3

10.SysDaemon
Backup.SysDaemon
Metering.SysDaemon
Dumper.SysDaemon
JDoe.ProjB
Rolf.Alpha

RSmi th.North
TSmith.ProjA
Green.Beta
Richards.ABC
Camp.Gamma
Warren.XYZ

r 2350 .668 1.036 74

The list of users in the above example is sorted according to log-in time.
The user <can specify certain options when he calls the who command and change
the sort key, suppress the header, list only those users of a particular
project, and various other things. For information about the control arguments
and other arguments that can be used with the who command, refer to the MPM
Commands.

MMAR

This section shows the new user enough information about five communication
commands to enable him to use them. However, he should realize that the mail,
accept_messages, print_messages, send_message, and who commands offer a variety
of options to make online communication even more meaningful to any one
particular user; that is, each user can choose those options that are most
suitable to the type of online work he does.

For example, a user who is printing out a final draft of a document would
certainly not want to receive a message from another user in the middle of his
printout. Therefore, he may wish to defer messages while he is printing the
draft; he still "receives" the messages, but they are saved in his message
segment (with the absolute pathname >udd>projectid>personid>personid.con_msgs)
until he asks for them.

To learn more about the various control arguments and options available
with these communication commands, refer to the MPM Commands.

9-4 ' ALLO

SECTION X

INTERACTIVE AND ABSENTEE USAGE

Although this manual deals exclusively with the interactive usage of
Multics, the new user should be aware that there is another type of Multics
usage--absentee.

Absentee usage (similar to batch processing in other systems) gives users
the ability to execute large production runs without waiting at the terminal
while the run is in progress. The user merely creates an absentee job and
submits it for execution.

Absentee jobs are placed in a queue and run as background to the normal
interactive work of the system. Because absentee jobs are usually deferred
until the interactive 1load 1is 1light, the charges for absentee usage are
substantially lower than the charges for interactive usage.

To create an absentee job, the user creates an absentee input segment that
contains those commands he wants executed. The Jjob control language for
absentee usage is identical to the command Jlanguage for interactive usage.
Basically, an absentee job is merely a "planned" interactive terminal session;
that is, the user anticipates any responses or commands he must give and puts
all of this data into his absentee input segment.

For more information about absentee usage and a complete description of how
to request an absentee job, see the enter_abs_request command in the MPM
Commands.

10

1 ALLO

SECTION XI

MULTICS FEATURES FOR ADVANCED USERS

Once the user becomes familiar with most of the basics, as described in
earlier sectlons, he begins to take '"shortcuts" by learning certain system
features that he finds extremely useful in his particular type of work at the
terminal. The purpose of this section is to enumerate and briefly describe
several such features. These descriptions also identify appropriate reference
materials so that interested users <can easily add these features to their
Multics repertoire. The fact that these features are part of the Multics System
does not mean that they all need to be learned by any one user; each user
learns the features he feels will be most helpful to him.

BBREVIATION PROCESSOR

The abbreviatlion processor is a special command processor that is invoked

for each command line after the user invokes the abbrev command. The user
defines his own abbreviations for frequently used command 1lines or other

strings. Then, after invoking the abbrev command, the abbreviation processor
checks each command 1line for abbreviations; any abbreviations the user has
defined are expanded by the abbreviation processor and then passed on to the
Multics command processor.

Use of the abbrev command (refer to the MPM Commands) greatly simplifies
the user's terminal.work. For a special use of the abbrev command, see the
exec_com command description in this section.

ACTIVE FUNCTIONS

An active function is a program that is invoked as part of a command line;
the character-string result of the active function replaces its invocation in
the command line. |In other words, the active function part of the command line
is executed immediately, the result placed in the command line, and this command
line is passed on to the command processor for execution.

The active functions fall into seven operational groupings: Jlogical,
arithmetic, <character string, segment name, date and time, question asking, and
user parameter. Refer to the MPM Reference Guide (under '"The Multics Command
Language Environment'") for a complete description.

By using active functions, the user is able to make many standard Multics
commands conditional commands. For example, the user may want to set the length
of his command line to x only if he is working on a particular type of terminal;
or he may want to enter a certain absentee request only if today's date equals a
particular number.

11

1
—

ALLO

ADMINISTRATIVE FEATURES

Multics administration defines three 1levels of responsibllity: system,
project, and user. A system administrator allocates system resources among the
projects; a project administrator allocates these resources among the users on
his project; users can manage thelr own data through storage management and
access controls.

A1l of the administrative operations can be performed while the system is
running; desired actions take place immediately. Multics administratlve
operations cover the following areas:

Resource distribution

Accounting and billing operations
Usage control

Environment shaping

Access control and security

If Tom Smith is the project administrator for ProjA, he can determine the
dollar 1imit that a particular ProjA user may incur in a single month. |If this
limit Is exceeded, the user is automatically logged out; he cannot log in again
until either the next month begins or until the 1imit is changed.

As project administrator, Tom can also determine several other items,
including whether a user can preempt others, specify his home directory, or have
primary or standby status. In fact, the project administrator can so control
each user's environment that he can deny a user access to the full Multics
System and Instead provide the user with access to only those commands that he
(as the project administrator) specifles. Such a user is said to have access to
a limited service system.

For more information on the Multics administrative features, refer to the

System Administrator's Manual (Order No. AK50) and the Proiect Administrator's
Manual (Order No. AKS51).

ARCHIVE SEGMENT

An archive segment is a single segment consisting of the contents of many
different segments packed together. Once in an archive, the individual segments
are called components of the archive segment. This packing, performed by
invoking the archive command, reduces the user's storage load.

By 1invoking the archive command with different arguments, the user can
manipulate the archive segment In a variety of ways. For example, he not only
creates his archive; he also can get a table of contents that names each
component in the archive, extract one or more components from the archive,
update and replace one or more components, and delete individual components.
For more information about the archive command and its use, refer to the MPM
Commands.

11-2 ALLO

~

BOUND SEG T

A bound segment Is a single executable procedure segment ("object segment")
made up of one or more separately compiled, executable procedure segments.
Again, as with an archive segment, the user reduces his storage load by

combining several segments. However, a bound segment -also automatically
prelinks all the Internal Intersegment references thereby reducing execution
time.

The user creates a bound segment by invoking the bind command. The bind
command also allows the user to update, list, and map the bound segment as well
as manipulate the manner in which the various segments in the bound segment are
to be called.

Those programs that the user calls frequently and that are interrelated
(I.e., reference one another) should be bound to improve program efficiency. By
putting such programs In a bound segment, the user saves money through decreased
compute time and storage space and, at the same time, decreases his execution
time.

For more information about the bind command, refer to the MPM Commands.
Also, the MPM Subsystem Writers' Guide provides more information on the
structure of bound segments.

exec_com COMMAND

The exec_com command permits the user to execute a series of commands
specified in a segment. This segment must contain only command 1lines and
control lines; also, it must have the letters ec as the last component of its
name (e.g., test.ec or alpha_l.beta.ec). The exec_com command also allows the
user to substitute special strings in the segment by giving certain arguments
when he invokes the command.

The command lines In the segment can use any Multics command. The control

lines are defined 1in the exec_com command description (refer to the MPM
Commands) .

Multics permits users to create a special exec_com segment that contains
commands to be executed when the user logs in, before his process attempts to
read from his terminal. In other words, he does not even need to invoke the
exec_com command for this segment; it is automatically invoked for him as part
of his log-in procedure. This segment must be named start_up.ec and must reside
in the user's initial working directory. Some commands that a wuser typically
includes in his start_up.ec are:

abbrev so he doesn't need to remember to invoke it during each
terminal session in order to use his abbreviations

accept_messages so he can create the message segment and then receive
online messages from other users

print_messages so he can receive messages saved in the message segment

11-3 ALLO

mail so the system automatically prints the mail that has been
sent to him slnce his last terminal session

print_motd so the system keeps a record of the message of the day and
prints only those portions that differ from the last
message the user saw

Also, a user generally writes his start_up.ec so that certain lines of the
segment are executed when he logs in as an interactive user and other lines are
executed when he 1is logged in as an absentee user. For example, the
accept_messages, print_messages, mail, and print_motd commands would not be used
in a start_up.ec for an absentee user. :

INPUT/QUTPUT SYSTEM

The Multics System contains a device-independent input/output system
interface that programs can use. This interface allows interchangeable reading
and writing via tapes, terminals, cards, printers, and storage system segments.

This generalized input/output means that segments and input/output devices
are Interchangeable since both are referenced by symbolic name. A user can
place a series of commands in a segment, attach the segment to an input stream,
and the system will process the user computation indicated by the commands as if
input were from the terminal. An interface command that assigns Iinput/output

streams (the ioc command) 1is available to all wusers. Output also can be
directed to a segment by issuing the file_output command. Moreover, the user
can switch from input device to input segment and from output device to output
segment in the same way that he can switch from device to device. |In addition,

iMultics provides system commands for user output that automatically queue the
specified segments for printing (the dprint command) or punching (the dpunch
command) .

The Multics input/output system was designed for flexibility. |In fact,
users can write their own input/output routines, which can be '"plugged in" to
this system.

For information about the wvarious input/output commands, see the MPM
Commands. A detailed description of the Multics input/output system is given in
the MPM Reference Guide.

LINKING SEGMENTS

Multics allows a user to create a link to a segment anywhere in the storage
system as long as he has the proper access to the directory in which the link is
to be placed. The user invokes the 1link command to create a link (refer to the
MPM Commands).

By creating a link, the user is able to reference another segment as though
it were in the directory containing the 1ink. In short, he has the use of this
particular segment without actually having to make a copy of it. This 1linking
feature allows users to share information easily and inexpensively.

11 ALLO

]
=4

gedx EDITOR

The gqedx context editor can be used to create and edit ASCI| segments in a
manner similar to the edm edltor (described in Section VI). However, gedx is a
more powerful editor than edm. It honors global editing requests and supports a
virtually unlimited number of buffers. In addition, the macro capabilities of
qedx make it almost a programming language in itself.

At any one time, one of the gqedx buffers is designated as the current
buffer and all others are auxlliary buffers. The user can move information from
one buffer to another, designate any buffer as the current buffer, and check the
status of all the buffers, The user can place a frequently used editing
sequence in one buffer and then through a special escape sequence invoke the
contents of this buffer whenever necessary.

The wuser can place elaborate editor request sequences (called macros) into
auxiliary buffers and then use the editor as a pseudoprogramming language. In a
sense the macro is a subroutine, and the escape sequence is a call statement.
The qedx editor also allows the user to invoke a gedx macro from command level.
To do this, the user merely places his macro in a segment that has the letters
gedx as the last component of Its name (e.g., alpha.qgedx or alpha_l.beta.qedx).
He can then invoke the macro by issuing the qedx command followed by the
appropriate segment name. For example, to invoke the alpha_l.beta.qedx macro,
the user types:

| qedx alpha_l.beta

A complete description of the gedx editor, including its buffer and macro
capabilites, is given in the MPM Commands.

RESQURCE MEASURING

Through various commands, each Multics user can check his secondary storage
quota usage; get information (including size, names, and access modes) about his
segments, directories, multisegment files, and links; and print a month-to-date
report of his resource consumption.

There are two commands directly related to secondary storage quotas. The
getquota command allows the user to get information about the amount of
secondary storage he may use. The movequota command moves all or part of a

quota between two directories, one of which must be immediately inferior to the
other.

Three commands print information about segments, directories, multisegment
files, and 1links. The list command (briefly described In Section V) lists the
names, access modes, time last used or modified, and the lengths of either all
the entries in a directory or just selected entries. The count and total number
of records occupied by either specific segments, directories, multisegment

files, or links are printed by the listotals command. The 1listnames command
prints a list of names of all the segments, directories, multisegment files, or
links.

11-5 ALLO

The user can issue the resource_usage command to print a month-to-date
usage report for his own resources. He <cannot issue thls command to get
information about any resource usage except his own. Through this command, the
user can check his dollar charges according to shift and queue and also type of
usage (interactlve, absentee, or Input/output daemon).

A1l of these commands are fully described in the MPM Commands.

Rl RUCTUR

As a further refinement of access control (see Section VIIIl), the system
uses a special capability called the ring structure. This additional degree of
protection, implemented by special hardware, is unique to Multics. Most users
need not be concerned about the rings in which they will be working. Advanced
users who require the use of ring protection for special data bases should see
their project and system administrators.

Many system segments on Multics execute as part of a process, making calls
and returns unknown to the user. These system segments must be protected from
unauthorized modification by user segments. This protection is achieved by
grouping segments into rings. Multics operation is controlled 1In such a way
that procedure segments execute in a number of mutually exclusive subsets.
These subsets may be considered concentric rings of privilege, representing
different levels of memory access rights. The innermost or hardcore ring Is
made up of those segments essential to all users. This innermost ring,
designated as ring 0, represents the highest level of privilege. The outermost
ring, designated as ring 7, has the lowest level of privilege.

A procedure segment in an outer ring can call or pass data to, but cannot
modify, a procedure segment in an inner ring. Normally, a procedure segment in
an outer ring cannot access data in an inner ring. Within user-imposed
limitations, an inner-ring segment can modify a segment in an outer ring. Every
attempted access of one segment by another is checked for proper user access and
for the ring of the referencing procedure segment to prevent invalid
modification. The Multics ring-handling mechanism is enforced at the hardware
level.

The ring structure capability permits the ready construction of protected
data bases. In such a base, privileged users could be given the ability to read
detailed information while nonprivileged users could receive only summarizations
of the information. For example, a management information system could be
developed that would allow management to designate which data and procedures
could be accessible to different levels of personnel.

For more information about the ring structure, refer to the MPM Subsystem
Writers' Guide under "lIntraprocess Access Control (Rings)."

11-6 ALLO

RUNNING OFF MANUSCRIPT FORMAT

The runoff command 1Is used to type out text segments in manuscript form.
Control arguments for the runoff command allow the user to completely regulate
the processing of his text. For example, he can convert the output to be
suitable to a particular kind of type ball or device, start or end the printing
at a particular page, have source line numbers printed in the left margin, have
the system walt for a carriage return before beginning and after each page of
output, or direct the output to a special segment so he can print the material
on a high-speed printer using the dprint command.

Runoff input segments must contain runoff control lines as well as text
lines. There are over 50 types of control lines. They allow users to do such
things as:

Specify up to 20 headers and 20 footers per page

Set the line length and page length

Have either roman or arabic page numbers

Skip a specified number of lines for an illustration

Center lines

Format equations

Control the size and number of margins

Set the spacing (single, double, or multiple)

Justify the margins

Translate a speciflied character to be printed as a different specified
character in the output

This last feature is especially useful when the user wants a single blank

between two character strings; the translate control line prevents runoff from
splitting the strings between two lines or inserting padding spaces between the
two strings. For complete information on all the control lines and the other

capabilities of the runoff command, see the MPM Commands.

This document was prepared using the runoff command.

T SEARCH CRITERIA

Whenever the user issues a command or references a program, the system must
search through directories to find the specified command or program. The search
is regulated; that is, certain specified search rules are followed by the
system.

The default search rules (those automatically used by the system) may be
changed and/or supplemented by the user. The set_search_rules command allows
the user to change the default search rules, and the set_search_dirs command
allows the user to insert search directories after the working directory in the
default search rules. To check the current search rules, the user can invoke
the print_search_rules command.

11-7 ALLO

Adding another directory to be searched after the working directory is a
convenient way for an entlire project to share a group of special programs
peculiar to the project's work. After a user on the project adds this special
directory to his search rules, he can execute any of the programs in that
directory as easily as he executes system commands. This addition to the search
rules means that each user on the project saves himself the time and cost of
either copying each one of the programs or linking to each one.

The user can determine whether a system command or a user-written command
with the same name is to be used by setting his search rules (refer to
Section V).

A1l three of the commands governing the search rules are documented in the
MPM Commands.

walk_subtree COMMAND

The walk_subtree command is used to execute a specified command line in a
specifled directory and in all directories inferior to the specified directory.
Through various options, the user can state the first and last levels at which
the command line should be executed, or he can have the command line executed in
the lowest level directory first.

The walk_subtree command 1Is an especially convenient way to list certain
segments in a group of directories (for example, to list all of a user's runoff
segments in all of his directories). Refer to the MPM Commands for a complete
description of this command.

11

]
oo

ALLO

APPENDIX A

GLOSSARY

access attributes

Access attributes identify the kinds of access which may be set for a
segment or dlirectory. The access attributes for segments are read (r),
write (w), execute (e), and null (n). Those for directories are status
(s), modify (m), append (a), and null (n). Access attributes are also
known as access modes. See Section VIII for more information.

ACL
An access control list (ACL) describes the access attributes associated
with a particular segment. The ACL is a list of user identifications and
respective access attributes. It is kept in the directory that catalogs
the segment.
"carriage return'"
Y A "carriage return" means that the typing mechanism moves to the first
' column of the next line. On Multics, this action is the result of the
ASCIl 1line-feed character. The terminal type determines which key(s) the
user presses to perform the equivalent action (e.g., RETURN, LINE SPACE, or
NL).
directory
A directory is a segment that contains information about other segments
such as access attributes, number of records, names, and bit count.

directory (home)

The home directory (or the initial working directory) is the one under
which the user logs in. Usually this directory is named:

>udd>projectid>personid

. directory (working)

The working directory is the one under which the user is doing his work.
Often the working directory is also the home directory. (This is always
true at log-in time.) The user may redefine his working directory by use
of the change_wdir command.

A-1 ALLO

entryname

An entryname is the name by which a segment is cataloged in a directory.
The entryname is not restricted to one component; it may contain two or
more components, separated by periods.

1ink
A link is a name in a directory that points to a segment. A link enables a
user to access a segment without using the normal search rules; i.e., given
proper access permission, he may specify the segment by entryname (as
though it were cataloged in the working directory) without actually having
to make a copy of the segment. This is one of the ways in which Multics
facilitates sharing.

page (also known as record)
A page is a unit of storage In Multics. A page contains 1024 36-bit words
(4096 characters).

pathname
A pathname is the concatenation of a segment's entryname with all or some
superior directories leading back to the storage system root.

pathname (absolute)
An absolute pathname is a concatenation of a segment's entryname with all
superior directories leading back to the storage system root.

pathname (relative)
A relative pathname ls a pathname that uniquely names a segment relative to
the working directory; it may be the entryname portion of an absolute
pathname (i.e., simply the entryname).

personid
A personid is an Identification code under which a particular user is
registered on the system. It is usually some form of the user's name and
contains both uppercase and lowercase characters. |t may not contain blank
characters.

projectid
A projectid is an identification code under which a particular project |is
registered on the system.

quit signal
A quit signal is the means by which users may interrupt lultics from
processing a program or command lines. The quit signal is 1invoked by

pressing the ATTN, INTERRUPT, BRK, or QUIT key on the terminal; Multics
responds with a ready message.

A-2 ALLO

segment
A segment is the basic unit of information witain the Multics storage

system. Each segment has access attrlibutes and a name and may contain
data, programs, or be null.

A-3 ALLO

N

APPENDIX B

STORAGE SYSTEM AND COMMAND CONVENTIONS

A number of conventions have been established for command names, command
lines, arguments, and segment names. These conventions apply to most commands.
However, some commands do not accept some conventions. Deviations are noted in
the individual command descriptions in the MPM Commands.

MMAND NAM ONVENT I ONS

Command names never contain blanks. Commands that incorporate two or more
words use an underscore (_) to separate words. Commands never have trailing
underscores. (However, the majority of Multics subroutines do.) Most commands
have an abbreviated name; the user may invoke the command by typing either the
abbreviation or the full nrame. (This abbreviated name is independent of the
abbreviation facility described in Section X1.)

MMAND LINE CONVE ONS

A command line consists cf at least one command name and is terminated by
producing an ASCI| line-feed character. (Depending on the terminal, the proper
key to use could be LINE SPACE, RETURN, or NL for new 1line.) The ASCII
line-feed character is a signal to Multics to begin action on the typed command.
Two or more commands (with or without arguments) separated by semicolons may be
typed on a single line.

Commands do not always require arguments. When they do, arguments are
separated from the command name (and from each other) by one or more spaces. An
argument may contain blanks if it is enclosed in quotes (e.g., "Tom Smith").

If a command requires a specific number of arguments, failure to provide
the proper number may result in incomplete or incorrect action. In such cases,
an error message is printed followed by a ready message. For many commands, the
order in which arguments are typed is significant.

Control arguments start with a hyphen (-) in order to differentiate between
other arguments and to avoid ambiguity. A control argument specifies some
modification to the type of action performed. In most cases the order of these
arguments is unimportant.

B-1 ALLO

Use of the Absolute Pathname

Most commands require an argument in the form of a pathname to specify the
segment on which the command will act. The name that uniquely identifies a
segment among all other segments in Multics is called an absolute pathname.
The absolute pathname is used as an argument in commands when a relative
pathname is awkward to use; e.g., the specified segment is not located "near"
the user's working directory.

Use of the Relative Pathname

Relative pathnames are often used instead of absolute pathnames because
they are shorter and thus more convenient to type. They are relative to the
user's working directory rather than to the storage system root. Relative
pathnames do not begin with the greater-than symbol, although some kinds of
relative pathnames can contain the greater-than symbol.

Often it is easier to redefine the working directory than to type absolute
pathnames as arguments. Most users redefine their working directories (using
the change_wdir command) in order to be able to use relative pathnames. They
need to be sure that they have access to segments in these directories, however.

ENTRYNAME

The simplest form of relative pathname is called an entryname. For
example,

is a relative pathname for >udd>ProjA>TSmith>a if the working directory s
>udd>ProjA>TSmith.

Each segment and directory may have more than one entryname. Usually, the
user assigns a short entryname for typing convenience. For example, the
entryname shown above, a, <could be the short name for an entryname like
algorithm_alpha_test.pll.

LONGER RELATIVE PATHNAMES

A longer relative pathname might be

alpha>beta

where alpha is cataloged in the user's working directory, and beta is cataloged
in directory alpha.

B-2 ALLO

NAMING CONVENTIONS FOR MULTIPLE COMPONENT ENTRYNAMES

An entryname, the name by which a segment is cataloged in a directory, may
not contain greater-than or less-than symbols or other special symbols such as

asterisk or equals characters. Also, entrynames containing blanks should be
avoided since the command language uses blanks to delimit command names and
arguments. Many entrynames have several components, separated by periods. By

convention, entrynames for source programs in Multics have as the last component
the name of the language in which they are written.

Less-than symbols may take the place of directory names in a relative
pathname. Each less-than symbol, 1like each greater-than symbol, denotes a
hierarchy level; however, each 1less-than symbol indicates one level (one
directory) back up the hierarchy, starting at the working directory and going up
toward the root.

For example, in Figure B-1, 1if the working directory is TSmith, the
absolute pathname for segment "a'" would be:

>udd>ProjA>Rolf>a
A much briefer name, using the less-than symbol is:
<{Rolf>a

where "<" represents the ProjA directory (one level back up the hierarchy from
the TSmith directory), and the Rolf directory '"catalogs" segment a.

The asterisk or star convention Is used by standard Multics commands to
reference groups of segments. |f an asterisk is used for one component of an
entryname, the command matches any name in that particular component position.
For example,

*,.pll
matches any two-component entryname whose second component is pll. And,
*, %, red

matches any three-component entryname whose third component is red.

B-3 ALLO

root

udd

library

ProjA

TSmith

Rolf

myd

Figure B-1.

OB

Sample Hierarchy

ALLO

A double asterisk may be used to match any number of components (including
zero) on the right. For example, If the user wants a list of all the segments
in his working directory with "blue" as the first component, he types:

| list blue.x*x

then, no matter how many other components exist in the entryname, the command
considers them a '"match":

blue
blue.red
blue.x.y
blue.x.y.z.n

The double asterisk may also be used to designate all entries in the
specified directory. For example, to give read permission to Jane Doe for every
segment in his current working directory, the user types:

| setacl ** r JDoe

Not all commands implement the star convention. The wuser should consult
the MPM Commands under the proper command before using the star convention.

The equals (=) symbol is used by standard Multics commands in the second of
a pair of arguments to indicate equivalency with the same position component in
the first argument. For example, if the user types:

! addname alpha.pll beta.=

the command interprets the second argument as beta.pll. Thus, the segment may
now be referenced as either alpha.pll or beta.pll.

The double -equals (== sometimes appears as the second member of an
argument pair. The double equals indicates equivalency with the same position
component plus any other following components in the first argument. For
example, if the user types:

! addname alpha.sort.pll beta.==

the command interprets the second argument as beta.sort.pll. The segment may
now be referenced as either alpha.sort.pll or beta.sort.pll.

Not all commands implement the equals convention. The user should consult
the MPM Commands under the proper command before using the equals convention.

B-5 ALLO

APPENDIX C

REFERENCE TO COMMANDS BY FUNCTION

The Multics command repertcire is divided according to functions in the
following pages. The 18 groups are:

Access to the System

Storage System, Creation and Editing of Segments
Storage System, Segment Manipulation

Storage System, Directory Manipulation

Storage System, Access Control

Storage System, Formatted Output Facilities
Storage System, Address Space Control

Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation

Debugging and Performance Monitoring Facilities
Input/Output System Control

Command Typing and Control

Communication Among Users

Communication with the System

Accounting

Control of Absentee Computations

GCOS Environment

Miscellaneous Tools

Detailed descriptions of these commands, arranged alphabetically rather
than functionally, are given in the MPM Commands or the MPM Subsystem Writers'
Guide. In addition, many of the commands have online descriptions, which the
user may obtain by invoking the help command as described in Section V.

ACCESS TO THE SYSTEM
enter connects an anonymous user to the system (used at
dialup only)
login connects registered user to the system (used at
dialup only)
logout disconnects user from the system
T GE SYSTEM 10 D _EDITI F MENT
adjust_bit_count sets bit count of a segment to last nonzero
character
convert_characters performs character-by-character conversion on
entire segment
create creates an empty segment
edm allows inexpensive, easy editing of ASCI| segments

c-1 ALLO

indent

make_peruse_text

gedx

sort_file

archive

archive_sort

compare

EG

compare_ascii
compare_object

copy

create

file_output

move

reorder_archive

set_bit__count

truncate

TORAGE SYSTEM, DIR

addname

adjust_bit_count

createdir
delete

delete_dir
deleteforce

deletename

fs_chname
link
list
listnames
listotals
move

names

rename

}

indents a PL/| source segment to make it more

readable
formats segment to use with peruse_text command
allows sophisticated editing, including macro

capabilities (a minor interpreter)
sorts ASCI| segments alphabetically, line by line

packs segments together to save physical storage

sorts the contents of an archive segment
alphabetically, by component name
compares segments word by word, reporting

differences

compares ASCIl| segments, reporting differences

compares object segments, reporting differences

copies a segment or multisegment file and its
storage system attributes

creates an empty segment

directs terminal output to a segment

moves segment or multisegment file and its storage
system attributes to another directory

rearranges order of an archive segment according
to the contents of a control segment

sets the bit count of a segment to a specified
value

truncates a segment to a specified length

RY MANIP ION

adds a name to a segment, directory, 1link, or
multisegment file

sets bit count of a segment to last nonzero
character

creates a directory

deletes a segment or multisegment file and
questions if it is protected

destroys a directory and its contents

deletes a segment or multisegment file without
question

removes a name from a segment, directory, 1link, or
multisegment file

renames a segment, directory, 1ink, or
multisegment file, bypassing naming conventions

creates a storage system link to another segment,
directory, link, or multisegment file

prints directory contents

moves segment or multisegment file and its storage
system attributes to another directory

moves or copies names from one storage system
entry to another

renames a segment, directory, 1ink, or
multisegment file

Cc-2 ALLO

safety_sw_off
safety_sw_on
set_bit_count
set_max_length

set_ring_brackets

turns safety switch off for a segment, directory,
or multisegment file

turns safety switch on for a segment, directory,
or multisegment file

sets the bit count of a segment to a specified
value

sets the maximum Jlength of a segment to a
specifled value

sets the ring brackets of a segment to specified

values
status prints all the attributes of an entry in a
directory
truncate truncates a segment to a specified length
unlink removes a storage system link
STORAGE SYSTEM, ACCESS CONTROL

delete_iacli_dir
delete_iacl_seg
deleteacl
list_iacl_dir
list_iacl_seg
listacl
set_iacl_dir

set_iacl_seg
setacl

STOR SYSTEM, FORMATTED

dprint
dpunch

dump_segment
mail

memo

print
print_motd
runoff

runoff_abs

TORAGE SYSTEM, ADDRESS SPACE

change_default_wdir
change_wdir
initiate
list_ref_names

print_search_rules

removes an initial ACL for new directories

removes an initial ACL for new segments

removes an ACL entry

prints an inital ACL for new directories

prints an initial ACL for new segments

prints an ACL entry

adds (or changes) an initial ACL for new
directories

adds (or changes) an initial ACL for new segments

adds (or changes) an ACL entry

UTPUT FACILITIES

queues a segment or multisegment file for printing
on the high-speed printer

queues a segment or multisegment file for card
punching

prints segment contents in octal, ASC!I, or BCD

prints or sends mail

allows users to set reminders for later printout

prints an ASCI| segment

prints the system message of the day

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

ONTR

sets the default working directory

changes the working directory

adds a segment to the address space of a process

prints all names by which a segment is known to a
process

prints names of directories searched for segments
referenced dynamically

C-3 AL4O

print_default_wdir
print_wdir
set_search_dirs
set_search_rules
terminate

where

IR S 0

alm

alm_abs

apl

basic
fortran
fortran_abs
pll

pll_abs
gedx

SEGMENT MANI|PU

bind

compare_object
display_component_name
print_bind_map
print_link_info

l D RFORM

change_error_mode
debug

dump_segment
error_table_compiler

how_many_users
page_trace
print_linkage_usage
profile

progress
ready

ready_off
ready_on
reprint_error
trace
trace_stack
where

prints name of default working directory
prints name of current working directory
allows users to modify search rules

removes a segment from process address space
prints absolute pathname of a segment

RS SSEMB INTERP S

translates assembly language programs
invokes the ALM assembler in an absentee job
invokes the APL interpreter
compiles BASIC programs
compiles FORTRAN programs
invokes the FORTRAN compiler
compiles PL/| programs
invokes the PL/I| compiler

in an absentee job

in an absentee job

allows sophisticated editing, 1including macro
capabilities (a minor interpreter)
packs two or more object segments into a single

segment
compares object segments, reporting differences
prints name and offset of a bound component
prints Information about a bound segment
prints list of entries and outbound 1links of an
object sgment

MONITORI FACILITIES

adjusts length and contents of status messages

permits symbolic source language debugging

prints segment contents in octal, ASCII, or BCD

compiles a table of status codes and assoclated
messages

prints the number of logged-in users

prints list of pages recently demanded

prints map of all current linkage

prints information about execution of
statements within program

prints information about the progress of a command
as it is being executed

prints the ready message: a summary of
paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

repints an earlier status message

traces subroutine calls

prints stack history

prints absolute pathname of a segment

individual

CPU time,

C-U4 ALLO

INPUT/OUTPUT SYSTEM CONTROL

cancel_daemon_request
close_file
console_output

dprint

dpunch

file_output

ioc
list_daemon_requests
print_attach_table

COMMAND TYPING AND CONTROL

abbrev

answer
do
exec_com

get_com_line
new_proc
program_interrupt

progress
release

set_com_line
start

walk_subtree

ICATION AMONG USERS

accept_messages

defer_messages
immediate_messages
long_message_format
mail

print_messages
short_message_format
send_message
send_message_acknowledg
send_message_silent
unlock_messages

cancels a previously submitted daemon request

closes open PL/!l and FORTRAN files

restores terminal output to the terminal

queues a segment or multisegment file for printing
on the high-speed line printer

queues a segment or multisegment file for card
punching

directs terminal output to a segment

allows direct calls to input/output system entries

prints list of daemon requests currently queued

prints list of current input/output system stream
attachments

allows user-specified abbreviations for command
lines or parts of command lines

answers questions normally asked of the user

expands a command line with argument substitution

allows a segment to be treated as a 1list of
executable commands

prints the maximum length of the command line

creates a new process with a fresh address space

signals a condition following a quit or an
unexpected signal

prints information about the progress of a command
as it is being executed

discards process history retained by a quit or an
unexpected signal interruption

sets the maximum length of the command line

reenters process at point of a quit or an
unexpected signal interruption

executes a command in all directories below a
specified directory

initializes the process to accept messages
immediately

inhibits the normal printing of received messages

restores immediate printing of messages

causes messages to be printed in verbose format

prints or sends mail

prints any pending messages

causes messages to be printed in brief format

%}sends message to specified user

unlocks a locked message segment

C-5 ALLO

COMMUNICATION WITH THE SYSTEM

check_info_segs checks information (and other) segments for
changes :

help prints special information segments

peruse_text prints special Iinformation segments 1Iin outline
format

print_motd prints the system message of the day

who prints 1list of users and absentee jobs currently
logged in

ACCOUNTING

getquota prints secondary storage quota and usage

movequota moves secondary storage quota to another directory

resource_usage prints resource consumption for the month

oF SENT MPUTATIONS

alm_abs invokes the ALM assembler in an absentee job

cancel_abs_request cancels a previously submitted absentee job
request

enter_abs_request adds a request to the absentee job queue

fortran_abs invokes the FORTRAN compiler in an absentee job

list_abs_requests prints list of absentee job requests currently
queued ‘

p1l_abs invokes the PL/! compiler in an absentee job

runoff_abs invokes the runoff command in an absentee job

who prints list of users and absentee jobs currently
logged In

) VIRONMENT

gcos invokes GCOS environment simulator to run one GCOS
job

gcos_sysprint converts GCOS BCD sysout print file to ASCII file
suitable for use with the dprint command

gcos_syspunch converts GCOS BCD sysout punch file to file
suitable for use with the dpunch command

gcos_utility copies card image files, translating from GCOS

format to ASCI| or vice-versa

MISCELLANEOUS TOOLS
archive packs segments together to save physical storage
archive_sort sorts the contents of an archive segment

alphabetically by component name

calc performs specified calculations
code enciphers segment, given a coding key
decode deciphers segment, given proper coding key
reorder_archive rearranges order of an archive segment according

to the contents of a control segment

C-6 ALLO

INDEX

e
line delete symbol (@)

#
character delete symbol (#)

!
exclamation mark (!)

*
asterisk (*) in user identification
asterisk (*) use in mail command
Star or Asterisk (*) Convention

* %
double asterisk (**) use

..*
all users (*.*,¥*)
any Multics user (*.*.¥)
entire user community (*.*.%)
Backup (-) edm Request
Mode Change (.) edm Request
period (.) as component separator
period (.) as component separator
period (.) as component separator
period (.) as mode change character
period (.) use in mail command
period (.) use in send_message command
Equals (=) Convention
Print Current Line Number (=) edm Request
double equals (==) use

abbrev
abbrev command

ABBREVIATION

ABBREVIATION PROCESSOR

[Col Voo v BES I .3 o))
]
WNHWN S

AL40

ABSENTEE
INTERACTIVE AND ABSENTEE USAGE

ABSOLUTE
absolute pathname
pathname (absolute)
Use of Absolute Pathname

accept_messages
accept_messages (am) command

ACCESS
ACCESS CONTROL
ACCESS MODES
access attributes
access control list (ACL)
access mode assignments
append (a) access
DELETING ACCESS
execute (e) access
HOW TO ACCESS THE MULTICS SYSTEM
LISTING ACCESS
modify (m) access
null (n) access
null (n) access
read (r) access
status (s) access
write (w) access

ACL
ACL
access control list (ACL)

ACTIVE
ACTIVE FUNCTIONS

ADMINISTRATIVE
ADMINISTRATIVE FEATURES

ADMINISTRATOR
project administrator
project administrator
project administrator
system administrator
system administrator
system administrator

am
accept messages (am) command

ANY MULTICS USER
any Multics user (*,*, %)

APPEND
append (a) access

archive
ARCHIVE SEGMENT
archive command

ARGUMENT
ARGUMENT CONVENTIONS
hyphen use in control argument
quotes use in command argument
command arguments
control arguments

mcna:mcna:mroa>m<na>m:fa:m
1 () [
FNHFNMNHENWHRBNDNPRE

[}

AL40

ASTERISK
asterisk (*) in user identification
asterisk (*) use in mail command
double asterisk (**) use
Star or Asterisk (*) Convention

ATTN
ATTN, BRK, INTRPT, INTERRUPT

b
Bottom (b) edm Request

BACKUP
Backup (-) edm Request

bind
bind command

BOTTOM
Bottom (b) edm Request

BOUND
BOUND SEGMENT

BRK
ATTN, BRK, INTRPT, INTERRUPT

BUFFER
buffer capabilities

c
Change (c) edm Request

CAPITALIZATION
capitalization

CARRIAGE
"carriage return"
"carriage return"

change_wdir
change_wdir (cwd) command

CHARACTER
character delete symbol (#)
period (.) as mode change character
lowercase characters
uppercase characters

COMMAND
abbrev command
accept messages (am) command
archive command
asterisk (*) use in mail command
bind command
COMMAND CONVENTIONS
COMIMAND LINE CONVENTIONS
COMMAND NAME CONVENTIONS
change wdir (cwd) command
command arguments
command level
command level
debug (db) command

I I

qlu;swtnnﬂ?.hpaopau>p
WWNHENHERFEFDDWNODNDN

ALA40

COMMAND (cont)

deleteacl (da) command 8-4
dprint command 11-4
dpunch command 11-4
edm command 6-1
exec_com command 11-3
file_output command 11-4
general command format 4-2
getquota command 11-5
help command 5-3
ioc command 11-4
link command 11-4
list (ls) command 5=-2
list command 11-5
listacl (la) command 8-3
listnames command 11-5
listotals command 11-5
login command 2-1
logout command 2-4
mail (ml) command 9-1
movequota command 11-5
period (.) use in mail command 9-2
period (.) use in send_message command 9-3
print (pr) command 5-3
print messages command 9-3
print_search_rules command 11-7
print wdir (pwd) command 5-1
gedx command 11-5
quotes use in command argument B-1
release command 4-2
resource_usage command 11-6
runoff command 11-7
SAMPLE COMMAND EXECUTION 5-1
STOPPING DURING COMMAND EXECUTION 4-2
STORAGE SYSTEM AND COMMAND CONVENTIONS B-1
semicolon use in command line B-1
send message command 9-3
set_search_dirs command 11-7
set_search_rules command 11-7
setacl (sa) command 8-2
start command 4-2
underscore use in command name B-1
walk subtree command 11-8
who command 9-3
COMMANDS 4-1
REFERENCE TO COMMANDS BY FUNCTION c-1
SYSTEM COMMANDS 4-1
USER-WRITTEN COMMANDS 4-1
COMMENT
Comment Mode (,) edm Request 6-4
COMMUNICATION
ONLINE COMMUNICATION WITH OTHER USERS 9-1
COMPILE
write, compile, execute, and debug 7-1

COMPONENT SEPARATOR
period (.) as component separator 7=-2
period (.) as component separator 8-1
period (.) as component separator B-3

CONTEXT
Multics context editor 11-5
Multics context editor 6-1

i-4 AL40

CONTROL
ACCESS CONTROL
access control list (ACL)
control arguments
hyphen use in control argument

CREATING
creating and editing segments
creating and editing segments

CURRENT
current line

Print Current Line Number (=) edm Request

cwd
change_wdir (cwd) command

d
Delete (d) edm Request

da
deleteacl (da) command

db
debug (db) command

debug
debug (db) command
write, compile, execute, and debug

DEFAULT
default search rules

DELETE
character delete symbol (#)
Delete (d) edm Request
line delete symbol (@)

deleteacl
deleteacl (da) command

DIRECTORY
directory
directory
directory (home)
directory (working)
home directory
Initial Working Directory
initial working directory
library directory
root directory
user_directory_ directory (udd)
WORKING DIRECTORY CONCEPT
working directory

dprint
dprint command

dpunch
dpunch command

6-6

8-4

WWwwwwunwwdypw
]
W HFHFENDBBHFEFPRFR

[
[
1 1
-8

'—l
'—l
|
'S

AL40

e
execute (e) access 8-1

EDIT
edit mode 6-1
creating and editing segments 6-1
creating and editing segments 11-5

EDITOR
MULTICS EDITOR 6-1
Multics context editor 11-5
Multics context editor 6-1
gedx EDITOR 11-5

edm
edm command 6-1

edm Request
Backup (-) edm Request
Bottom (b) edm Request
Change (c) edm Request
Comment Mode (,) edm Request
Delete (d) edm Request
Find (f) edm Request
Insert (i) edm Request
Kill (k) edm Request
Locate (1) edm Request
Mode Change (.) edm Request
Next (n) edm Request
Print (p) edm Request
Print Current Line Number (=) edm Request
Quit (g) edm Request
g (quit) edm request
Retype (r) edm Request
Substitute (s) edm Request
Top (t) edm Request
Verbose (v) edm Request
Write (w) edm Request
w (write) edm request

(o o)W WA W e W e e W e \ W e We W W e Mo WerWe W e e We We M e,
1
NHEFHEFEFWOWWOUNMNOURMOEODONOAOSEULUIW

ENTRYNAME

ENTRYNAME B-2

entryname A-2

entryname 3-3

NAMING CONVENTIONS FOR MULTIPLE COMPONENT ENTRYNAMES B-3
EQUALS

double equals (==) use B-5

Equals (=) Convention B-5
ERRORS

CORRECTING TYPING ERRORS 5-1
EXCLAMATION

exclamation mark (!) 2-1
exec_com

exec_com command 11-3
EXECUTE

execute (e) access 8-1

write, compile, execute, and debug 7-1

i-6 AL40

Find (f) edm Request

FEATURES
ADMINISTRATIVE FEATURES
MULTICS FEATURES FOR ADVANCED USERS

file output
file_output command

FIND
Find (f) edm Request

FORMATTING
manuscript formatting

FUNCTIONS
ACTIVE FUNCTIONS

getquota
getquota command

GLOSSARY
GLOSSARY

GREATER-THAN
greater-than symbol

help
help command
help information segments

HOME
directory (home)
home directory

HYPHEN
hyphen use in control argument

Insert (i) edm Request

INFORMATION
help information segments

INITIAL
Initial Working Directory
initial working directory

INPUT
input mode
runoff input segment

INPUT/OUTPUT
INPUT/OUTPUT SYSTEM

INSERT
Insert (i) edm Request

INSTANCE TAG
instance tag

11-4

8-1

ALA40

INTERACTIVE
INTERACTIVE AND ABSENTEE USAGE

INTERRUPT
ATTN, BRK, INTRPT, INTERRUPT

INTRPT

ATTN, BRK, INTRPT, INTERRUPT
ioc

ioc command

k

Kill (k) edm Request
KILL

Kill (k) edm Request
1

Locate (1) edm Request
la

listacl (la) command
LESS-THAN

less-than symbol
LIBRARY

library directory
LINE

COMMAND LINE CONVENTIONS

current line

line delete symbol (@)

Print Current Line Number (=) edm Request

semicolon use in command line
link

link

link command

LINKING SEGMENTS
list

access control list (ACL)

list (ls) command

list command
listacl

listacl (la) command
listnames

listnames command
listotals

listotals command
LOCATE

Locate (1) edm Request
LOG-IN

LOG-IN PROCEDURE

log-in statistics
LOG-0UuT

LOG-0UT PROCEDURE

10-1

4-2

4-2

11-4

11

5

11

5

AL40

login
login command

logout
logout command

LOWERCASE
lowercase characters

1ls
list (1ls) command

m
modify (m) access
MACRO
macro capabilities
mail
asterisk (*) use in mail command
mail (ml) command
period (.) use in mail command
MAILBOX
mailbox segment
MESSAGE

MESSAGE FACILITY
message segment
ready message (r)

MESSAGE OF THE DAY
message of the day

ml
mail (ml) command

MODE
access mode assignments
Comment Mode (,) edm Request
edit mode
input mode
Mode Change (.) edm Request
period (.) as mode change character
ACCESS MODES

MODIFY
modify (m) access

movequota
movequota command

Next (n) edm Request
null (n) access
null (n) access

NAME
COMMAND NAME CONVENTIONS
underscore use in command name

NEXT
Next (n) edm Request

2-4

2-1

(V]
]
[}

0 O\ O\ O\ OY O @
R
HBR & &N

AL40

NULL
null (n) access
null (n) access

ONLINE
ONLINE COMMUNICATION WITH OTHER USERS

Print (p) edm Request

PAGE
page (record)

PASSWORD
password
password encoded

PATHNAME
absolute pathname
pathname
pathname
pathname (absolute)
pathname (relative)
relative pathname
Use of Absolute Pathname
Use of Relative Pathname
PATHNAMES

PERIOD
period (.) as component separator
period (.) as component separator
period (.) as component separator
period (.) as mode change character
period (.) use in mail command

period (.) use in send _message command

PERSONID
personid
personid
personid

POINTER
pointer

pr
print (pr) command

print
Print (p) edm Request
Print Current Line Number (=) edm Request
print (pr) command

print messages
-
print messages command

print search rules
-~ —
print_search_rules command

print wdir
print_wdir (pwd) command

PROCESSOR
ABBREVIATION PROCESSOR

i-10

[\S I V]
[}
N

u1u1w«r%sy:uu9w
NN WNNDNHFW

COUNnwWwN©
]
WKW

3‘?’m
INJar

11-7

5-1

AL40

PROGRAM
DEBUGGING A PROGRAM
EXECUTING A PROGRAM
SAMPLE PROGRAM
WRITING A SOURCE PROGRAM

program_interrupt
program_interrupt command

PROGRAMMING
PROGRAMMING ON MULTICS

PROJECT
project administrator
project administrator
project administrator

PROJECTID
projectid
projectid
projectid

PSEUDOPROGRAMMING
pseudoprogramming language

pwd
print_wdir (pwd) command

Quit (gq) edm Request
g (quit) edm request

gedx
gedx command
gedx EDITOR

QUIT
Quit (g) edm Request
g (quit) edm request
quit signal
quit signal

QUOTES
guotes use in command argument

r
Retype (r) edm Request
read (r) access
ready message (r)

READ
read (r) access

READY
ready message (r)

RECORD
page (record)

AL40

RELATIVE
pathname (relative)
relative pathname
Use of Relative Pathname

release
release command

RESOURCE
RESOURCE MEASURING

resource_usage
resource_usage command

RETURN
"carriage return"
"carriage return”

RETYPE
Retype (r) edm Request

RING
RING STRUCTURE

ROOT
root directory

RULES
default search rules
search rules
search rules
search rules

runoff
runoff command
runoff input segment

Substitute (s) edm Request
status (s) access

sa
setacl (sa) command

SEARCH
default search rules
SETTING SEARCH CRITERIA
search rules
search rules
search rules

SEGMENT
ARCHIVE SEGMENT
BOUND SEGMENT
COMPILING A SOURCE SEGMENT
mailbox segment
message segment
runoff input segment
segment
segment
start up.ec segment
creatIng and editing segments
creating and editing segments
help information segments
LINKING SEGMENTS

A=2

4-2

11-5

11-6

3-1

11-7
11-7
11-8

11-7
11-7

@ o
1
N WO

11-7
11-7
11-7
11-8

o

HLnO\HF4$'$I4u>w~Jh‘H
BWHUTWWHESNNEFENDWN

= =
[L

[

AL40

SEMICOLON
semicolon use in command line

send_message
send _message command
period (.) use in send_message command

set search dirs
set search dirs command

set search rules
set search rules command

setacl
setacl (sa) command

SOURCE
COMPILING A SOURCE SEGMENT
WRITING A SOURCE PROGRAM

STAR
Star or Asterisk (*) Convention

start
start command

start_up.ec
start _up.ec segment

STATUS
status (s) access

STORAGE
STORAGE SYSTEM
STORAGE SYSTEM AND COMMAND CONVENTIONS

SUBSTITUTE
Substitute (s) edm Request

SYMBOL
character delete symbol (#)
greater-than symbol
less-than symbol
line delete symbol (@)
SPECIAL SYMBOLS

SYSTEM
HOW TO ACCESS THE MULTICS SYSTEM
INPUT/OUTPUT SYSTEM
STORAGE SYSTEM
STORAGE SYSTEM AND COMMAND CONVENTIONS
SYSTEM COMMANDS
system administrator
system administrator
system administrator

t

Top (t) edm Request
TOP

Top (t) edm Request
TYPING

CORRECTING TYPING ERRORS

i-13

-
]

(=

NS WHEN
|
NHN S

AL40

udd
user_directory directory (udd)

UNDERSCORE
underscore use in command name

UPPERCASE
uppercase characters

USER
entire user community (*.*.*)
user_directory_directory (udd)
asterisk (*) in user identification
USER-WRITTEN COMMANDS
all users (*.,* . *)
MULTICS FEATURES FOR ADVANCED USERS

ONLINE COMMUNICATION WITH OTHER USERS

v
Verbose (v) edm Request

VERBOSE
Verbose (v) edm Request

Write (w) edm Request
w (write) edm request
write (w) access

walk_subtree
walk subtree command

who
who command

WORKING
directory (working)
Initial Working Directory
initial working directory
WORKING DIRECTORY CONCEPT
working directory

WRITE
Write (w) edm Request
w (write) edm request
write (w) access
write, compile, execute, and debug

N
]
[

O OB oW
tr e
WS

(3]

»

6-10

6-10

(oo B W<,
i
N

-

AL40

Honeywell

Honeywell Information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

ACCONS D ANRIE Deivvtnd tmm 11O A

Al AN e,

