PR P

Honeywell SYSTEM TOOLS
PROGRAM LOGIC MANUAL

SERIES €0 (LEVEL 68) MULTICS

SOFTWARE

RESTRICTED DISTRIBUTION

r

H on eywel I SYSTEM TOOLS

PROGRAM LOGIC MANUAL

SERIES 60 (LEVEL 68) MULTICS

RESTRICTED DISTRIBUTION

SUBJECT:

Descriptions of Internal Interfaces for Use by Multics System Programmers,

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Manual (PLM) describes certain internal modules
constituting the Multics System. It is intended as a reference for only
those who are thorouehly familiar with the implementation details of the
Multics operating system; interfaces described herein should not be used by
application proerammers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external interfaces
are described in the Multics Programmers’ Manual, Commands and Active
Functions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers ' Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLM 1s one of a set, which when complete, will supersede the System

Programmers’ Supplement to the Multics Programmers’ Manual
(Order No. AK96).

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED OR
ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

rebruary 1975

ORDER NUMBER:

AN51, Rev. 0

PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by

Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or

subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a 1list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Programmers’ Supplement to the Multics Programmers’ Manual (Order
No. AK96) and to others on request. To get on the mailing 1list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office

Honeywell Information Systems Inc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

(:) 1975, Honeywell Information Systems Inc. File No.: 2L13

AN51

CONTENTS

Page
Section I L0T0) 111 11215 o Lo 1= 1-1

add_copyright.ttt it iiinnnnn. 1-2
= T S 4 o Y o 1-3
backup_dump......cviiitiiinniirennrennnns 1-6
backup_load......ciii ittt ennenenns 1-7
check_mst, ckm......... i, 1-10
command_usage_count............. to be supplied
comp_dir info.....iiiiiiiiii ittt 1-15
COPY_MSE, DM, it ittt it ettt ettt tnnnnnsenn 1-18
copyright_archive.......c.iiii i, 1-19
cross_reference, cref........ ..., 1-21
date_deleter..... .ottt innnennns 1-24
edit_mst_header, emh............., 1-25
L2 071 ¢ o L 1-27
gen_sst_card, g5C. ...ttt .. 1-28
gen_ted_card, gtc. ..ttt it i e 1-29
generate mst, gm.......iiiiiiii i 1-30
get_device_status, gds.......c i 1-31
get_library_segment, gls.....viviiineeenn 1-32
grab_tape_drive, gtd...... ... 1-38
3 O 1-39
include_cross_reference, icref........... 1-41
list_assigned_devices, lad............... 1-42
list_dir_info......ciiuiiiiiiiiiiiinnnnnn. 1-43
list_sub_tree, 1st.......ciiiiiiiiiinn.n. 1-44
listing_tape_print, 1tp....c.vuiinnennn. 1-45
IIEXD ¢ o o v o s o oo o s ot nosnotaononsoesesansanesas 1-52
nothing, nt....... it 1-59
DAUS .t ittt ettt eeeonnneeeenennnnens 1-60
print_configuration_deck, ped............ 1-61
print_error_message, pPeM.......eouveuunn.. 1-62
print_gen_info, pgi.....c.iiiiiiiiiin. 1-64
print_sample_refs, psrf.......ccuiiiuvninvn.. 1-65
print_text_boundary, ptb................. 1-67
print_translator_search_rules, ptsr...... 1-68
rebuild_dir.. ...ttt ittt 1-69
repeat_line, rpl....iuiiiitiitieennenneenns 1-70
PESElCODY SW . i ittt it ittt ettt e e e 1-71
sample_refs, srf. ...ttt it enns 1-72
save_dir_info.......iiiiiiiiiiii it 1-T74
send_admin_command, sac.......c.icviiuuennn 1-75
set_proc_required, sSprg......c..ceceeiee.n 1-76
set_text_boundary, stb......... .. 1-77

iii AN51

CONTENTS

Page
set_timax, sStm......iiiiiniiiiiiiinnnnnnn 1-78
set_translator_rules, stsr.........ccoc... 1-79
LR v e X o o4 1-80
setquota, SO....iiiii ittt e 1-81
L7 = o 1-82
10> e TN = o o3 £ 1-119
L0 =T o T = . 1-120
test_archive.. ...ttt it iiinnnnnes 1-121
test_tape. . ittt ittt it ittt i 1-122
unassign_device.. ... it iit ittt i 1-124
2= T D L 1-125

Section II Subroutines ...ttt i i i i e e, 2-1

= 0 o) ol = 2-2
=1 2-5
bk_arg reader_i.iiiiiiiiii it eenan 2-12
canonicalizer ... iiit ittt 2-18
COMMANd_PrOCESSOl_ vttt eennenennnnennnnnas 2-20
copyright_notice_iiitiiiiiininnnnnn 2-23
create_ips_mask_ ...ttt it i 2-25
CU vt tsnstontonosononseenneennsnnsnnnns 2-26
datebin_ .ttt i it i i e i e e 2-30
decode_definition_c.viu... vee.. 2=38
find_include_file_ iiinnniinnnnnnnns 2-44
get_bound_seg_info_iiiiiiinnnnnnn . 2=50
get_initial_ring eitiiniiiiii i 2-51
get_lock _1d_ vttt e i 2-52
get_primary Name_ ...t irinernnnenannens 2-53
get_seg pEtr_ ... i i i e 2-54
get_temp_seg ...ttt it i i e 2-58
4= o 2-61
hes_$get_page_trace ..vvv i it i inennennn 2-64
o 3 to be supplied
1ink _UNSNaD v iii ittt innnnennnennennses 2-66
list _dir_Info_ tiiitii ittt nnnnnnenennens 2-67
parse_file ..ttt ittt it i e et 2-69
print_gen_info_ ..., ittt 2-75
ring0_get ..ttt i it et e 2-79
ring_zero_peekiiiiennnnnen to be supplied
Set_10CK vttt ittt e e e e 2-80
Sort _items _ ..t it i i e e e 2-82
sort_items_indirect_ i, 2=-87
SWweep_disK_ tiiiiii ittt i i i e i 2-96
system_Info_ ..ttt it i e e e e 2-98

iv AN51

CONTENTS

Page
LECO_BEL MaAcCrO _ vttt ettt ettt ieeeeanennns 2-100
translator _Info ...ttt ittt it it 2-101
virtual cpu_time_ i i 2-103
Whotab ittt ittt e e ettt e 2-104

\'s ANS51

SECTION I

COMMANDS

This Program Logic Manual (PLM) is not structured in the
same manner as most others in this series. The System Tools PLi1
consists only of a number of command and subroutine descriptions
with no design motivation, implementation description, or data
structure description except what is needed to describe the use
of the command or subroutine as a tool. If design and
implementation documentation is desired for a particular command,
it should be available in the Command Implementation PLM, Order
No. AN67, in this series. The Index PLM, Order No. AN50, may be
of use in trying to find out which command or subroutine may Dbe
wanted and in which PLM a detailed description can be found.

This section, conmand descriptions, is arranged
alphabetically. For programs that consist of a set of several
related commands, the set may be documented within one command
description. Also, the set is arranged according to the order in
which the commands are used rather than alphabetically.

1-1 AN51

add_copyright add_copyright

Name: add_copyright
The add_copyright command adds a copyright notice to a
source program. If the program already contains a copyright

notice no change is made to the segment. Different notices are
used for each different language type suffix.

Usage
add_copyright path
where path is the name of the source program to be modified.

Consult the description of the copyright_notice_ subroutine
for details of the operation of this command.

122 AN51

‘Name: as_who

The as_who command is a privileged version of the who
command used by the answering service. It extracts information
directly from the answer_table rather than from whotab.
Entry: as_who$as who_init

This entry must be invoked prior to the other entries if an

answer_table other than the standard one (found in
>system_control_1) is to be used.

Usage
as_who$as_who_init path

where path is a pathname of a nonstandard answer_table.

Entry: as_who$how_many_users

This entry prints the number of users, the time of system
initialization, and the time of the last shutdown (or crash).

Usage

as_who$how_many_users

Entry: as_who$hmu

This entry prints the number of users currently logged in.

Usage

as_whos$hnu
Entry: as_who

This entry 1lists the selected wusers and prints other
information specified in the -long control argument below.

1-3 ANS1

as_who as_who

Usage

as_who -control_args- User_ids

where:
1. control_args are selected from the following:

-long, -1lg specifies that the long form of output
including 1login time, tty ID, etc., are
printed.

-name, -nm specifies that the users are sorted by
name.

-project, pJj specifies that the users are sorted by
project.

2. User_ids are of the form
Person_id.Project_id.tag.
Note

If an argument is not one of the above, it is assumed to be
a User_id in one of the following formats:

Person_id.Project_id 1lists all users logged in with the
specified name and project.

Person_id lists all wusers 1logged in with the
specified name.

.Project_id lists all wusers logged in with the
specified project.

The default sort is by login time.

If no arguments are specified, name and project for each
user are returned. Anonymous users’ true login names are shown,
preceded by an asterisk (¥).

Specification of -long returns time of login, tty ID, device
channel, weight, Person_id and Project_id for each user, as well
as flags indicating special variables.

A flag of N indicates that the user has the nolist bit and
will not be listed on an ordinary who.

A flag of + identifies a user with the nobump attribute.

1-4 AN51

as_who as_who

A flag of > indicates that a user whose grace period has not
yet run out 1is subject to Dbumping by other members of the
project.

A flag of X indicates that a user has been bumped but has
not yet logged out.

1-5 AN51

backup_dump backup_dump

Name: backup_dump

The backup_dump module can be called as a command or as a
subroutine. It sets up the requested control arguments and dumps
the appropriate directories and segments.

Usage
backup_dump -control_args-

where control_args represents the current arguments, selected
from the 1list shown in the description of the bk_arg reader_
subroutine in this document.

Notes

If a pathname is not given (see below), dumping begins with
the current working directory. Unless flags have been set by
previous calls in the process, the defaults are: -all, -err_offl,
-map, -nodebug, -nohold, -1tape, -sweep, and -tape.

Option settings, except for the pathname, are retained (in
static storage) from one invocation to the next unless overridden
by a supplied argument. Errors are handled by the condition
handler in the following manner. If the error can be ignored,
idump_signal writes the condition name and the erroneous pathname
offline, terminates the current segment, and proceeds to the
next entry. If the error cannot be ignored, the condition name
is written online and the listener is called. At this point,
commands can be typed at the terminal in an attempt to correct
the problem.

1-6 AN51

backup_load backup_load

Name: backup_load

The backup_load command prompts the user for the names of
tapes that are to be 1loaded. This command is the primary
procedure of the reloader for the backup system. It can be
called directly, but 1is usually invoked by the operational
interface procedure reload.

Usage
backup_load -control_args- pathname
where control_args can be one or more of the following:

-debug enables unprivileged operation for debugging and
unprivileged users.

-first loads the first copy only of the branch
encountered on the tape (applicable to retrievals
only).

-last loads all copies encountered on the tape so that
the 1last one remains after the tape has been
loaded.

-map enables map writing.

-nodebug enables normal operation.

-nomap disables map writing.

-noquota does not reload quotas.

-quota enables reloading of quotas on directories.

-notrim disables pruning of excess entries.

-trim enables pruning of excess entries in a directory.

If a control argument without a hyphen is encountered, it is
taken to be the pathname of a retrieval control segment and the
load 1is therein controlled. If no pathname is given, everything
on the tape is reloaded.

1-7 AN51

backup_load backup_load

Notes

For compatibility with previous systems, backup_load 1is
temporarily accepting control arguments without hyphens. For as
long as hyphens remain optional, the first unrecognized argument
is taken to be the name of the retrieval control file.

Format of the Retrieval Control File

The retrieval 1is controlled by an ASCII segment containing
one line for each entity to be reloaded. A line can contain a
single pathname or two pathnames separated by an equal sign. The
left-hand-side specifies the object sought and the
right-hand-side, if present, specifies the new name under which
that entity 1is to be reloaded. The sought pathname must begin
with a > and end with either an entryname or the characters >%#%,
If an entryname 1is specified, a single entity by that name is
retrieved. If >*% is specified, the entire directory hierarchy,
beginning at the point indicated in the pathname, is retrieved.

If a new name is specified on the right, it can be either a
pathname or an entryname. Components of pathnames are replaced
one for one; that is, a subtree can only be moved to a new point
at the same 1level in the hierarchy. If an entryname is given,
the single object found is loaded with its former pathname and
the new entryname.

If two pathnames are specified, both are checked against the
current hierarchy and a new pathname consisting only of the
primary entryname is created. This new pathname, as well as the
original, 1is then used in searching the hierarchy. For example,
>udd>m is translated into >user_dir_dir>Multics and both versions
are sought.

A retrieval control file can contain a maximum of 50 1lines.

When the retrieval 1is complete, backup_load attempts to delete
satisfied requests from the retrieval control file.

Examples

A retrieval control file containing the line:
>udd>Multics>*#
causes the tape to be searched for directories and segments whose

first two pathname components are >user_dir_dir>Multics. These
items are reloaded as found.

1-8 AN51

backup_load

A retrieval control file
>ldd>a>b>c

causes the tape to
>library_dir_dir>a>b>c. This

A retrieval control file

>1dd>a>b=c
causes the tape to be
>library_dir_dir>a>b. This
>ldd>a>c.

A retrieval control file

>1dd>x>y>*¥=>1dd>z>y

containing the line:

be searched for
item is reloaded as

containing the line:

searched for
item 1is reloaded

containing the line:

backup_load

the segment
found.

the segment
under the name

causes the tape to be searched for directories and segments whose
first three pathname components are >library dir_dir>x>y. These
items are reloaded in the subtree >1dd>z>y.

1-9

AN51

check_mst . check_mst

~Name: check_mst, ckm

The check_mst command is used to read one or more tapes that
define a Multics System Tape (MST) and provides information about
improper combinations of attributes and missing procedures. This
command also provides information about the segment numbers
assigned for supervisor and initialization segments, their names,
attributes, and the number of references.

Usage

check _mst args

where args can be either keywords or numbers whose interpretation
depends on the most recently specified keyword.

The possible keywords are:

col Succeeding numeric arguments define the
collections after which a cross-reference check is
desired.

tape Succeeding numeric arguments identify the reel

numbers of the tapes to be read.

debug This keyword sets a switch that preserves the
tables constructed during checking and should not
normally be used. '

Notes

When invoked, check_mst assumes that the keyword col has
already been specified. In addition, if no values for a
particular keyword are encountered, the values used in the 1last
invocation 1in the same process are reused. When invoked for the
first time in a process, the default settings are equivalent to:

check_mst col 2 tape 9999

The debug keyword must be specified for each invocation in
which it is to be active.

Keywords can be specified in any order and can be
respecified as often as desired.

1-10 AN51

r

check mst check_mst

For normal wuse in checking out a new Multics system, the
usage is:

check_mst 3 tape NNN
where NNN is the reel number desired.
Provision is made for up to five collections to be loaded

and checked for cross-references. Currently, though, Multics
uses only three collections. E

Diagnostics and Results

Output produced is directed through the I/0 switch to the
segment NNN.ckrout where NNN is the reel ID of the first tape
specified.

When the tape reel has been mounted by the operator, an
asterisk (*¥) 1is printed on the user’s terminal. After each
collection is read, the number of words to be 1loaded into
segments directly from the tape is printed. When the tape is
dismounted, the total number of words read from the tape 1is
printed, including both segment contents and loading information.

If the grand total 1line does not immediately follow a
collection total line, the ckrout segment should be examined
immediately to discover the cause. Certain diagnostics relating
to improper format or sequencing should be printed within the
first 20 to 50 lines.

The following messages can be written into the ckrout
segment while processing a tape.

1. "Loading collection No.i": The system is starting to read
the 1i-th collection from user tapes, extracting names and
linkage information.

2. "Collection-mark K": A collection mark with a value of K
was read from the user tape, completing the loading phase
for the collection. A simulated collection mark of 0 is
generated if not enough tapes were specified.

Following the '"collection-mark" message, the running count
of segments processed in the various categories and the number of
words used for each category are 1listed. The previous two
messages are the only ones that normally occur; however, various
other diagnostics can appear in various other cases listed below.

3. "Illegal control word xxx after seg j": The format of the

tape was incorrect, such that the 12-octal-digit string xxx
was not legal in the context in which it was encountered; an

1-11 AN51

check_mst check_mst

error in generating the tape or an unnoticed tape error may
have been responsible. If this condition occurs, no more
information is read from the tape. (This diagnostic also
occurs, without the "Illegal Control Word" message, if the
"Collection Mark 0" mentioned above was generated.)

"Possible tape format error or incorrect switch setting":
The physical tape can not be successfully read by the
Multics tape reader package; or, the number of collections
to be checked as specified in the argument list to the
command do not exist on the tape.

"Name <z> alsc on seg No.j": Duplicated names appear on the
tape. This occurs normally only in collection 3 for two
segments that are different in ring 0 and outside it.

"Seg i: message": Certain checks are made for wunusual
combinations of attributes in the description of the
segment, and message describes the conflict.

"Bad text-link sequence after z": The next segment after a
text segment was not the 1linkage segment it should have
been; or, a linkage segment was found not preceded by its
text segment. The same actions occur as for (3) above.

Cross-Reference Output

For each group of collections for which a cross-reference

listing was requested, the following output appears in the ckrout
segment.

1

For each collection, in sequence:
Collection No.i, collection mark k
(values of i and k are as before).

For each segment for which one or more diagnostics appear:
its segment number, and all its names.

Diagnostic messages

a. First character is < -- the link could not be satisfied,
for the reason given.

b. "message name" -~ advisory diagnostic pertaining to

possible mismatching attributes between the referencing
and referenced segments.

1-12 AN51

)

check_mst

check_mst

Segment Summary Listing

For each

information appears:

segment on the tape(s) read, the following

1. Segment No. the system assigned segment number (in
octal).

2. Segment name the primary name of the segment as specified
on the tape (secondary names appear indented
on successive lines).

3. Refs-Count the number of times the name was encountered
as external reference by some other segments.

g, Ace the access to the segment as specified on the
tape (REWP).

5. Switches (miscellaneous attributes)

Segment Status

W

Wired down.

G The segment 1is paged.
P The segment is a per-process segment.
D The segment is the descriptor segment.
T The segment is a temporary segment.
L The segment has an associated linkage segment.
C The segment’s linkage section will be combined.
K The segment s linkage section will be wired.
N The segment is not referred to by linkage
reference, and is not itself a linkage section.

A The segment is encacheable.

6. Ring brackets

7. Length (a multiple of 16 words)

8. Pathname

1-13 AN51

check_mst check_mst

.Notes

Between collections, the new collection number (i), is
printed out. Segments 1listed for collection 0 are those
bootstrap1 manufactures before loading real segments.

If unexpected status is received during reading of the tape,
a message is printed on the user’s terminal and the debug command
is called. If maintenance personnel are available, they should
be contacted for further information; otherwise type .q<NL> to

exit from the debug command SO that cleanup operations can be
performed.

1-14 AN51

comp_dir_info comp_dir_info

Name: comp_dir_info

The comp_dir_info command compares two directory information
segments created by save_dir_info and reports on the differences.

Usage
comp_dir_info segl seg2 -control_arg-

where:

1. segi is the pathname of the old directory
information segment. If the suffix dir_info is
not supplied, it is assumed.

2. seg? is the pathname of the new directory
information segment. If the suffix dir_info is
not supplied, it is assumed.

3. control arg is an optional control argument. It can be one
of the following:

-verbose, compares and prints maximum information.
-vb

-long, -1g compares almost all items and prints all
information.

-brief, -bf compares and prints minimum information.

If no control argument is specified, an intermediate amount
of information is compared and printed.

OQutput from comp_dir_info is written on the user_output I/0
switch.

Unless -brief was specified, a heading identifying the
directories being compared and the times the information was
saved is printed.

Output is in three sections:

modified entries

deleted entries
added entries

1-15 . AN51

comp_dir_info comp_dir_info

For deletions and additions, a heading of the form:

deleted: seg XXX

is printed, followed by a listing of the attributes of the
deleted or added entry, in the format:

item_name: value
Consult the description of the subroutine list_dir_iﬁfo_ in this
document for information concerning what items are listed for a
given verbosity.
For segments that have been modified, a heading of the form:
modified: dir yyy
is printed, followed by lines of the form:
item_name changed from valuel to value2
and:

item_name added: value

(The second format is used to report the addition or deletion of
names, ACL entries, etc.)

When 1looking for a match between the old and new dir_info
segments, comp_dir_info looks first for a match on unique ID. If
no match is found, it looks for any entry with a name matching
the primary name of the old entry.

If a match is found, comp_dir_info checks a set of items
that depend on the verbosity requested, to determine whether to
report the entry as modified.

The names item 1is always checked. Other checking 1is
dependent upon the control argument. The following table lists
the items and the verbosity 1level at which they are first
checked.

Segments:
-bf names

deletion of ACL
truncation

1-16 AN51

comp_dir_info comp_dir_info

-1lg safety switch
author
bit count author
ACL
date branch modified
records used
max length

-vb date modified
bit count

Links:

-bf names
link target

-lg date link modified
Directories:

-bf names
deletion of ACL

quota
bit count

-1lg safety switch
author
bit count author
ACL
initial seg ACL
initial dir ACL

-vb date branch modified
date modified

The following items are never compared:

date dumped
date used

If comp_dir_info completes a pass without finding any
modifications, deletions, or additions; it prints "Identical."
Invoking the command with a higher verbosity level may detect
some changes.

1-17 AN51

S

copy_mst copy_mst

Name: copy_mst, cpm
The copy_mst command is used to create copies of Multics

System Tapes, or to coalesce multiple tape reels into one output
reel.

Usage
copy_mst

All arguments are requested interactively from the user’'s
terminal.

Summary statistics are printed on the user s terminal for
each collection copied, as well as for the end of all
tapes/collections requested.

1-18 AN51

copyright archive copyright_archive

Name: copyright_archive

The copyright_archive command adds a copyright notice to
each component of an archive of source commands. If a program
already contains a copyright notice no change is made to it.
Different notices are used for each different language type
suffix. If adding the copyright notices would cause the archive

to overflow, an error message is typed and no modifications are
made to the archive.

Usage
copyright_archive path ~control_args- -nl- -n2-...

where:

1. path is the pathname of the archive to be
modified.

2. ni are component names to be modified. If no ni
are given, the entire archive is processed.

3. control_args are selected from the following:

-check no modification is made to the archive. The
archive overflow is tested for, and if -long
is specified, comments are printed describing
what would be done if archive were modified.

-long, -1lg messages are printed describing what is done
to the archive.

-suffix Z the copyright messages are named type.Z where
type is pl1, alm, etc. If this argument is
not specified, the default suffix is
copyright.

Operation

The copyright_archive command makes two passes over the
archive: the first checks to see what change in length would be
made to the archive, and the second makes the changes.

The copyright messages are inserted at the beginning of each
component unless the component begins with the string %; -- in
this case the notice is inserted right after the percent and
semicolon characters.

1-19 AN51

copyright_archive copyright_archive

The copyright messages are assumed to reside in >1dd>include
unless the command:

copyright_archiveg$test dirname

has been executed. Both the directory name and suffix are
effective for all subsequent invocations until reset.

If a language type has no corresponding copyright notice
segment, an error message 1is printed and no change is made to
that component. The dates in the archive header are left
undisturbed by this command.

If a segment named type.Z_delete is found in the notice
directory (where Z is usually copyright and type is the language
suffix), each component selected is checked to see if the notice
in the delete segment is present, and if so, the o0ld notice is
deleted before the new notice is added.

1-20 AN51

cross_reference cross_reference

Name: cross_reference, cref

The cross-reference command is used to create a
cross-reference table composed of program names and names of
programs that call them, as determined by a driving list.

Usage
cross_reference arg
where arg 1is either a segment name, the name of an object

archive, or specifies a driving list named arg.crl.

Notes

The output is directed to a segment (in the same directory
as the driving file or segment) named arg.cr. All programs
called by any module specified in the driving list appear in the
left hand column with their primary name first and their
entrynames following. To the right of the entrynames appears the
names of the modules specified in the driving l%st that call
them. A star to the 1left of a called program’'s entryname
indicates that it is an entry in a program not included in the
scope of the driving list. Entries included in the scope of the
list not <called by any other such entry is listed in the lgft
hand column. Since it is possible for a component in an archive
to refer to another component by a synonym stored in the
bindfile, it is probable that any such component is reported. as
calling something not included in the scope of the driving list.

If the argument to cross_reference is a segment or arch?ve
name rather than a driving file, the output file contains a }1st
of all calls made by the segment, or in the case of an archive,
all calls made by all of the components.

Format of a Driving File

The driving file consists of three parts. The first pa?t
consists of absolute pathnames of directories to be searched in
finding the desired object segments and archives. Up to and
including nine pathnames, separated by blanks, tabs, or new
lines, are accepted. If 1less than nine are speciflgd, the
directory containing the driving file is also included in the
search 1list. This first part is optional, and, if omi@tgd,
causes the search rules to default to the directory containing
the driving file.

1-21 AN51

cross_reference cross_reference

The second part of the driving file consists of a 1list of
aliases in the following format:

segment_name alias1 alias? alias3..f

If it is desired that a segment be known by its own name as well
as its aliases, the segment name must be included in the 1list of
aliases. This section is optional, and can be omitted entirely.

The third part is a list of the segments, both stand-alone
and archive, that are to be cross-referenced. Only one segment
name is allowed per line.

Example

In >udd>Project_id>Person_id, there resides three segments;
loose, bound_p_.archive, and test.crl. The segment
bound_p_.archive contains p1, p2, and bound_p_.bind. An entry in
loose, called loosent, is to be made synonymous with loose.

loose calls p2, alloc_, and loose.
p1 calls p2, pl$recur, and loosent
p2 calls loose, p2, and pl

test.crl contains the following driving file:

>udd>Project_id>Person_id
loose loose loosent

loose

bound_p_.archive

Executing the command '"cref test" produces the output
segment test.cr:

alloc_

¥alloc_ loosent loose
loose

loosent p1

loose p2 loosent loose
loosent

loosent pl

loose p2 loosent loose

\ 1-22 ANS5 1

cross_reference

p1

recur pl

p1 p2
p2

p2 p2 pl loosent loose

1-23

cross_reference

AN51

date_deleter date_deleter

Name: date_deleter
The date_deleter command is used to perform a delete-by-date

in a directory by removing all segments and multisegment files
older than a specified number of days.

Usage

date_deleter dir_path n_days
where:

1. dir_path is the pathname of the directory in which the
deletions are to occur.

2. n_days is the number of days that must have elapsed since a
segment was last modified in order for it to qualify
for deletion.

Example

date_deleter >1dd>old 7

This deletes all files in >1dd>old last modified more than
one week ago.

1-24 AN51

edit_mst_header edit_mst_header

Name: edit_mst_header, emh

The edit_mst_header command takes an MST header file and
produces a new MST header file. The nature of the editing is
specified in a third edit_header file.

Editing is performed by header entry. A header entry is a
fini or collection header statement or a series of statements
describing a single segment on the MST. An example of the latter
is a series of statements beginning with a name statement and
ending with an end statement. 1In the edit_header file, header
entries can be preceded by a control line. Following is a 1list
of recognized control lines and their effect:

1. skip_to: -- the o0ld header file is scanned starting at the
current position until a header entry is found whose first
line matches the first line of the header entry immediately
following this control 1line in the edit_header file. The
current position in the o0ld header file is set to the
beginning of the matching header entry. If no match is
found, a message is printed on the terminal and the command
returns.

2. skip_thru: -- same as skip_to:, only the current position
in the o0ld header file is placed at the beginning of the
header entry immediately following +the matching header
entry.

3. copy_to: -- the 0ld header file is copied starting at the
current position to the new header file until a header entry
in the o0ld header file whose first 1line matches the first
line of the header entry following the control line in the
edit_header file 1is found. The current position is set to
the beginning of the matching header entry and the matching
header entry is not copied. If no match is found, an error
message 1is printed on the terminal and the command returns.

. copy_thru: -- same as copy_to:, except the current position
is set to the header entry in the old header file following
the matching header entry and the matching header entry is
copied.

5 copy_to, replace: -- same as copy_thru:, except the header
entry following the control line in the edit_header file is
copied into the new header file instead of the matching
header entry in the old header file.

If no control 1line precedes a header entry 1in the

edit_header file, then this header entry is simply copied into
the new header file.

1-25 AN51

edit_mst_header edit_mst_header

All comparisons are based on the first line of the header

"~ entry, the

first line being those characters occurring before a

comma (,) or a semicolon (;). All blanks, tabs, newlines, and
all characters occurring between /* and #/ are ignored.

Example

name: abe, cde, fgh;
end
matches:

name: /¥ comment */ abec, fgh, g;

end;

because the first line in both cases is:
name :abc
however,

name: abec;
end;

does not match:

object: abc;
end;

Usage

emh edit old new

where:

1. edit identifies the edit header file whose
edit.edit_header.

2. old identifies the old header file whose
old.header. 0ld can also be ~hard for the current
hardcore header file or -soft for
softcore header file.

3. new identifies the new header file whose

pathname

pathname

current

pathname

new.header If new is omitted, the new header file is
assumed to have the entryname of edit.header in the
user s working directory. If the new header

does not exist, it is created.

segment

expand expand

Name: expand

The expand command substitutes appropriate files for %
include statements in ASCII files that are in either PL/I or
Assembler syntax. PL/I syntax is assumed unless the name of the
file to be expanded ends in the suffix alm.

Usage

expand paths

where paths are the relative pathnames of files to be expanded.

Notes

Expand checks for some PL/I or ALM syntax errors, but only
when necessary.

Expand does not query the user under any circumstances.

If the name of the file to be expanded is of the form
id.lang, then the name of the expanded file is id.ex.la n g. An
include statement such as: % include a; looks for a file called
a.incl.lang, first in the working directory and then in
>library_dir_dir>include. If lang is alm, then Assembler syntax
is assumed, otherwise PL/I syntax is assumed.

Since processing of include files is exactly the same as
processing of the original source file (include files may contain
% 1include statements), it is not enough to specify the line
number on which an error occurred. The filename and recursion
level must also be specified. If more than one consecutive error
occurs 1in the same file at the same recursion level, then a line
is typed specifying the filename and recursion level followed by
at least one line for each error that occurred.

If there is infinite Recursion of include files, the message
"Recursion of 1include files starting with a.incl.pl?l1 is two
levels deep." is returned. This means that a.incl.pll1 contains
an 1include statement such as: % include b; where b.incl.pl1
contains the statement: % include aj.

1-27 AN51

gen_sst_card gen_sst_card

~Name: gen_sst_card, gsc

The gen_sst_card command is used to calculate the sizes of
the Active Segment Table (AST) pools and to print what the System
Segment Table (SST) card should look like.

Usage

gen_sst_card n1 n2 n3 n4 -sst_size- -number_of_memories-
-pd_records-

where:

1. n1-nl are the number of AST entries to be
assigned to the corresponding AST list.
(The lists correspond to sizes of Uk,
16k, 64k, and 256k segments.)

2. sst_size is used to specify the number of 1024
word blocks to be wused in the SST
segment. The size of the first pool (4k
segments) is then calculated to use all
of SST not wused by the other lists or
the SST header.

3. number_of_ memories specifies the number of 128K system
controllers handled by the header of the
SST. This control argument can only be
used with the sst_size control. argument.
The default value is three memories.

4. pd_records is the number of records on the paging
device. This control argument can only
be specified if all other arguments are
also specified.

1-28 AN51

gen_tcd_card

gen_tcd_card

Name: gen_ted_card, gte

The

gen_tecd_card command is wused to print the ted

configuration card that is needed to handle the specified input

sizes.

Usage

gen_ted_card no_apts no_itts no_dsts

where:

1. no_apts

2. no_itts

3. no_dsts

is the number of Active Process Table (APT)
entries needed.

is the number of Interprocess Transmission Table
(ITT) entries needed.

is the number of Device Signal Table (DST) entries
needed.

1-29 AN51

generate_mst generate_mst

Name: generate_mst, gm

The generate_mst command 1is wused to generate a Multics
System Tape (MST). This command uses an ASCII segment known as a
header for a driving file in creating the tape.

Usage

generate_mst hdr_name tape_no -search_list-
where:

1. hdr_name is the relative pathname of the full generate
header from which it is desired to create an
MST (without the suffix header).

2. tape_no is the identification number of the tape to
be generated.

3. search_list is an optional control argument indicating
that the wuser wishes to specify the search
rules for the segments to be placed on the
tape. It is specified as -dr or -directory.
If used, the user must have 1in his working
directory an ASCII list of relative pathnames
of directories to be searched in the order in
which the search 1is desired. This 1list
should have the name hdr_name.search where
hdr_name is the same as argument 1.

Notes
Default search rules:
1. Search the current working directory.

2. If the segment 1is not found search the directory
>ldd>hard>object.

3. If the segment is not found in 1. or 2., it is missing.

1-30 AN51

get_device_status get_device_ status

Name: get_device_status, gds

The get_device status command prints the current assignment

of the specified device. If the calling process has hphes_
privileges, the command prints the process_group_id of the
pbrocess to which the device 1is assigned. Otherwise, it just

reports the device as being assigned to another process.
Usage
get_device_status ionames

where ionames are the names of I/0 devices about which
information is desired.

1-31 AN5 1

get_library_segment get_library_segment

Name: get_library_segment, gls

The get_library_segment command can be used to find source
segments in the Multics system libraries and to copy the segments
found 1into the user’s current working directory. The user can
specify which system libraries are to be searched, and the order
in which they are to be searched. There are also provisions for
searching user libraries that may or may not be organized like
the Multics system libraries. (See "Operation" below.)

Usage

get_library_segment seg_names -control_args-
where:

1. seg_names are the names of the segments to be found,
including any language suffix.

2. control_args can be chosen from the following list of control
arguments.

NOTE: All of the control arguments specified in
the command are effective for each
seg_name specified.

-sys lname specifies that get_library_segment should search
in the library named 1lname for the segments.
For the Multics System Libraries, lname can be
one of the names shown below:

lname directory path(s) searched
hardcore, hard, h >ldd>hardcore>source
online_system, >ldd>standard>source
online, >ldd>tools>source

0s >1dd>auth_maint>source

>ldd>network>source
>ldd>languages>source

standahd, sSss >ldd>standard>source
tools, t >ldd>tools>source
auth_maint, am >ldd>auth_maint>source
languages, lang >ldd>languages>source
network, net >ldd>network>source

1-32 AN51

r

get_library_segment get_library_segment

standard.object, sss.o >ldd>standard>object
tools.object, t.o >ldd>tools>object
auth_maint.object, am.o >ldd>auth_maint>object

languages.object, lang.o >ldd>languages>object

network.object, net.o >ldd>network>object
info_files, info >documentation>im1_iﬁfo_segment
>documentation>info
pt_files, pt >documentation>pt_files
include, incl >ldd>include
-long, -1lg specifies that the pathname of the

segment from which each source segment
is copied is to be printed.

-rename new_name specifies that the immediately-preceding
seg _name 1is copied into the user’s
current working directory, and then its
name is changed to new_name.

-control control_dir, specifies that get_library_segment looks

-ct control_dir in the directory specified by
control_dir to find its control
segments. The control_dir argument may
be -working directory or -wd, in which
case get_library_segment 1looks in the
current working directory for its
control segments. (See "Operation"
below.) If this control argument is not
specified, get_library_segment looks in
the directory >1dd to find its control
segments.

Notes

Ir the -SyS control argument is not given, then
get_library_segment searches the following default group of
directories, in the order listed:

>ldd>hardcore>source
>ldd>standard>source
>ldd>tools>source
>ldd>auth_maint>source
>ldd>network>source
>ldd>languages>source

1-33 AN51

get_library_segment get_library_segment

Several -sys control arguments can be specified in the same
command invocation. If so, all of the directories referenced by
the lnames in these arguments are searched. The order in which
the directories are searched is determined by the order in which
the lnames appear in the command, and the order in which the
directories referenced by each lname appear in the lname control
segment.

If the -control argument is given in the get_library_segment
command, then one or more -sys arguments, specifying the names of
the user libraries to be searched, must also be given.

Control arguments and segment names can be interspersed
throughout the command invocation.

Examples

get_library_segment foo.pl1 -sys tools -sys sss random.alm

copies foo.pl1 and random.alm from >ldd>tools>source or
>ldd>sss>source if they exist in one of these standard
directories.

get_library_segment -sys lang foo.pl1 -sys os -sys hard

copies foo.pl1 from one of the following directories. The
directories are searched in the order listed below:

>ldd>languages>source
>ldd>standard>source
>ldd>tools>source
>ldd>auth_maint>source
>ldd>network>source
>ldd>hardcore>source

get_library_segment gorp.pl1l -rename glop.pl1
searches the default group gf directories for segment gorp.pl1,
copies it into the wuser’s working directory with the name
gorp.pl1, and then renames it to glop.pli.

get_library_segment fortran_blast_ bound_parse_.bind -sys lang.o

copies the object segment fortran_blast_ and the bind segment,
bound_parse_.bind, from the directory >ldd>languages>object.

1-34 AN51

get_library_segment get_library_segment

Operation

;f no -control argument is specified, then
get_library_segment searches for segments in one or more of the
Multics System Libraries. From each library name given in a -sys
argument, get_library_segment constructs a pathname of the form
>ldd>1lname.control. It uses this as the pathname of a control
segment. This control segment tells get_library_segment which
directories are to be searched, and how to search them.

Each control segment contains one or more 1lines of the
form:

directory_path: search_procedure;
where:

1. directory_path is the absolute pathname of a directory to be
searched.

2. search_procedure is the name of the procedure that searches
the directory to find seg_name.
search procedure can have the form:

segment_name
or:
segment_nameg$entry_name

For each directory_path specified in the control segment,
get_library_segment initiates the search_procedure, and calls it
to search the directory. The calling sequence for
search_procedure is:

declare search_procedure (char(¥*), char(*), char(¥),
fixed bin(35));

call search_procedure (directory_path, seg_names,
containing_seg, code);

where:

1. directory_path is the absolute pathname of the directory to
be searched. (Input)

2. seg_names are the names of the segment to be found,
including any language suffix. (Input)

1-35 AN51

get_library_segment get_library_segment

3. containing_seg is the name of the segment in directory_pa?h
- in which seg _name was found. Usually, this

name is the same as seg_name, or it 1is the

name of an archive that contains seg_name.

(Output)
4. code is either a standard storage system status
code, or 0, or 1., If it is 0, then seg_name

was found in directory_path>containing_ seg.
If it 1is 1, then seg_name was not found.
(Output)

Notes

If the code returned by search_procedure is 0, and if the
final eight nonblank characters of containing_seg are the suffix
archive, then get_library_segment issues the command:

archive x directory_path>containing_seg seg_name

to copy the segment into the current working directory. If the
-rename argument was specified for seg_name, the segment in the
working directory is then renamed.

If the code returned by search_procedure is 0, and 1if the
final eight nonblank characters of containing seg are not the
suffix archive, then get_library_segment calls copy_seg_ to copy
directory_path>seg_name into the current directory, renaming the
segment as it is copied if a -rename argument was specified.

If a code of 1 is returned by the search_procedure, then
get_library_segment continues the search with the next
directory_path in the current control segment. If the current
control segment contains no more directory_paths, then the search
continues with the first directory_path in the next control
segment specified by the user. If the segment has not been found
after all control segments have been exhausted, then
get_library_segment prints an error message, and begins searching
for next seg_name.

If search_procedure returns a code that is neither 0 nor 1,
get_library_segment prints the error message which corresponds to
the code, and continues the search as if a code of 1 were
returned.

The procedures get_archive_file_$srchgls and
get_primary_name are used to find segments in the Multics system
libraries.

1-36 AN51

get_library_segment get_library_segment

If no -sys argument is specified in the command, then
get_library_segment uses a built-in control list to search the
default group of directories listed above.

User Libraries

If the -control argument is specified, get_library_segment
can be used to extract segments from a user 1library. This
control argument causes get_library_segment to construct a
control segment pathname of the form: control_dir>lname.control.
Therefore, the -control argument allows the user to search his
own library structure, using his own search_procedure or one of
the Multics System Library search procedures listed above.

For example, user Person_id.Project_id can use
get_library_segment to extract a copy of source program alpha.pl!
from his library archive with the command:

gls -ct >udd>Project_id>Person_id -sys source alpha.pl]
if >udd>Project_id>Person_id>source.control contains the line:

>udd>Project_id>Person_id>library: get_primary_name_;
and if alpha.pl1 is a component of

>udd>Project_id>Person_id>library>source.archive, which has, as
one of its names, alpha.pl?.

grab_tape_drive grab_tape_drive

Name: grab_tape_drive, gtd

The grab_tape_drive command allows the wuser to request a
number of nine and/or seven track tape drives and have a given
command executed when the tape drives are simultaneously
available. The grab_tape_drive command checks the tape drive
command configuration every 10 seconds and when there are
sufficient drives available, the given command is executed.

Usage

grab_tape_drive -control_args- command_line

where:

1. control_args may be taken from the following list:

-t9 n ' finds n free 9 track tape drives before
executing the command 1line. The default if
-t9 n and -t7 n are both omitted is one 9
track drive.

-t7 n finds n free T track tape drives before
executing the command line.

-info, in lists the tape drive configuration
and returns without further processing.

-long, -1lg 1lists +the tape drive configuration every
minute.

2. command_line is the (optional) command line to be executed
when the specified number of tape drives are
free.

Notes

It is possible for a tape drive to be attached by another
process after grab_tape_drive finds the drive free and before the
caller’s program is executed and attaches the drive. If the
command to be executed calls com_err_ with the system code "no
device available", grab_tape._drive continues to check the tape
drive configuration and retry the command. Such a retry is
attempted five times.

This command requires access to certain privileged gates
into the supervisor.

1-38 AN51

if if

Name: if

The if command provides conditional execution of a command
line if some specified condition is met.

Usage

if key keyargs -then c1 -else c?2

where:

1. key selects the type of test performed. See also
the legal key section.

2. keyargs are arguments depending on the choice of key.

3. -then is a literal control argument.

4, e1 is a command line executed if the key test
succeeds.

5. -else is a literal control argument.

6. c2 is a command line executed if the test fails.

The -then <¢1 portion and the key must be supplied; all the
other parts can be omitted. If the -else c2 portion is omitted,
and the test fails, no action is taken. If the -else c2 portion

is supplied, it must come after the -then <¢1 portion. Command
lines to be executed are passed to the user’s current command
processor procedure via a call to cu_s$cp. All keys <can Dbe

preceded by the string -not to reverse the sense of the test. If
either the c¢1 or the ¢2 argument is omitted, no action is taken.

Legal Key

Key Succeeds

arg x if x is an argument (i.e., if -then 1is not
the second argument.)

noarg Xx if no argument x (useful in exec_coms, where
an unsupplied parameter 1like &5 yields no
argument.)

is path if there is a branch named by path. A
directory will do, but a link to nowhere will
fail.

1-39 ANS5 1

if
isnt path
isdir path
islink path
isfile path

isnzf path

day xxx

argeq XXX yyy

ask query

Example

if

if there is no branch pointed to by path.
if there is a directory branch named path.
if there is a link named path.

if there is a segment branch named path.

if there is a segment pointed to by path
(links ok) that is a segment with a nonzero
bit count.

if the current date is xxx. xxx can be a day
of the week expressed as three letters, 1like
Mon, or a day of the month, expressed as two
digits, like 04.

if arguments xxx and yyy are equal. If both
are omitted, then they are equal. If yyy is
not supplied, then the test fails. Otherwise
the test is by PL/I string comparison, so
trailing blanks are not significant.

the user is asked a question consisting of
the string query. If he answers yes, then
the test succeeds. If query is omitted, the
string answer is used. The question is asked
by a call to command_query_.

The following exec_com checks for errors before calling the

change_wdir command:

&command_line off

if noarg &1 -then "ioa_ ERROR1; pi"

if -not isdir &1 -then "ioa_ ERROR2; pi"
if argeq wd &1 -then -else "cwd &1"

&quit

Notice, the arguments to the command processor contain blanks
and, therefore, are in quotes.

1=-U40 AN51

include_cross_reference include_cross_reference

Name: 1include_cross_reference, icref

The include_cross_reference command is a library tool that
performs an include file cross-reference. This command uses an
ASCII driving file containing the absolute pathnames of the
directories to be searched. All archive files in the given
directories are inspected for source procedures. FEach source
procedure in turn is inspected for its include file usage.

The output from this command is an ASCII segment that 1lists
all include files alphabetically; below each include file name is
printed a list of those source procedures that use it.

Usage

include_cross_reference search_list

where search_list is the pathname of the ASCII driving file. Any
name can be specified. The output from include_cross_reference
is an ASCII segment called search_list.icr, where search_list 1is
the entryname.

Notes

The command does not check the include file libraries
themselves. Therefore, the presence of include files 1listed 1is
not verified. Also, include files included in include files are
not found.

1241 ANS 1

1ist_assigned_devices list_assigned_devides

~Name: 1ist_assigned_devices, lad

The 1list_assigned_devices command prints the device name of
all devices assigned to the calling process as reflected by the
assignment table in ring O. 1t does not use the per-process
attach table and can be useful if that table has been rendered
incorrect.

Usage

list_assigned_devices

1-42 | AN51

list_dir_info list_dir_info

Name: 1list_dir_info

This command lists the contents of a directory information
segment created by save_dir_info.
Usage
list_dir_info segpath -control _arg-
where:
1. segpath is the pathname of the directory information
segment. If segpath does not end in the suffix
dir_info, it is assumed.

2. control_arg is an optional control argument. It can be:

-long, -1g produces a long form of output. All items are
listed.

-brief, -bf produces a short form of output.

Notes L Y

If neither -long nor -brief is selected, an intermediate
verbosity is used.

The output of this command is written on the user_output I/0
switch.

For each entry, a series of lines of the form:
item_name: value
is written. Entries are separated by a blank line.
See the description of the subroutine 1list_dir_info_ for

information on the items printed printed for each verbosity
level.

1-43 AN51

list_sub_tree list_sub_tree

~Name: 1list_sub_tree, 1lst

The list_sub_tree command lists the segments in a specified
subtree of the hierarchy. The complete subtree is listed unless
the -depth control argument is specified.

Usage

list_sub_tree -control_args-
where control_args can be chosen from the following list:

-all, -a specifies that all the names of a
segment will be printed. The default is
to print only the primary names.

-depth, -dh specifies the depth 1in the hierarchy
that 1s to be scanned. The depth is
relative to the base of the specified
subtree. This control argument requires
a decimal integer specifying the depth
immediately following it in the command
line.

pathname If an argument 1is specified that 1is
neither of the above, it is assumed to
be the relative pathname of the subtree
to search. The 1last such pathname
specified is the only one listed. If no
pathname is given, +then the working
directory is assumed.

Notes

For each 1level 1in the hierarchy that is listed, the names
are indented three more spaces making it possible to see exactly
which segments exist at which depth in the hierarchy.

For each segment printed, two numbers are printed out. The
first number is the number of records used by the segment and the
second number is the device ID of the secondary storage device on
which the segment resides.

1-4Y AN51

A

listing_tape_print listing_tape_print

Name: 1listing_tape_print, ltp

The listing_tape_print command is the driving module for the
listing tape system. It has as entries the various commands that
govern the functions of the listing tape system.

A listing tape is a single logical entity containing files
in a sorted order. The files consist of single segments or
multisegment files. The files are sorted according to the ASCII
collating sequence by name, area name and system number in that
order. A listing tape can exist physically as one reel or
several reels of tape taken in a specific order. It can also
exist as a segment or a multisegment file in the hierarchy.

At the beginning of a listing tape is a dictionary or 1list
of all the files on the tape in sorted order. The list consists
of the name of the file together with other information such as
area name, system number, unique identifier, date the file was
last modified and last dumped, and the size of the file in words.

When a listing tape is to be created from the contents of a
directory, the names are first sorted and a dictionary is
constructed. This dictionary is then used to place the files on
the 1listing tape 1in the sorted order. Similarly, when merging
tapes and/or directories, a dictionary is read or created for

each input source. A merged output dictionary is created and the
output listing tape is constructed wusing this resulting
dictionary.

Entry: 1listing tape_print, 1tp

This command causes some or all of the files on a 1listing
tape to be printed.

Usage
listing_tape_print -control_args-
where control_args are one or more of the following:

-ipn reel_namenm indicates the names of the reels of an
input 1listing tape. At least one input
listing tape must be specified although
more than one can be specified by
repeating the -ipn reel_name sequence.
Drive type 7 or 9 track is indicated by
making n either 7 or 9. If n 1is not
given, 9 is assumed. reel_namem is the
name of the mth reel of a listing tape.
The reels must be specified in their

1-45 AN51

listing_ tape_print listing_tape_print

proper order since a listing tape 1is a
single 1logical entity and the files it
contains are in sorted order. Also, for
the same reason, all reels must be
specified if any are to be used.

-device device_name, is the name of the device to be attached

-dv device_name for output. If the -pd argument is not
used, then the device name is assumed to
be a printer device name such as prta or
prtb. If the -pd argument is present
with a Device Interface Module (DIM)
name other than that for the printer,
then a device name appropriate to that
DIM should be used. Thus, if the DIM
name is tape_, then an appropriate tape
name should be given, i.e.,
listing_tape_23 or m1692.

-printer_dim dim_name, indicates that the following argument is
-pd dim_name the name of a DIM such as tape_ or
file_. The printer DIM (prtdim_) is the
default, but this control argument

allows for the user’s own DIM or output
onto a tape or 1into a segment or
multisegment file.

-file_input file_name, indicates that file_name is the pathname
-fi file_name of a control file.

-area_name aname, indicates that aname is an area name
-an aname of the area to be considered.

-first file_name, indicates that file_name is the name
-ft file_name of the first file on the listing tape to

be printed.

-Ccopy n, indicates that n 1is the number of
-Ccp n copies to Dbe printed of each file

output. The maximum is 2.

Notes

The 1listing_tape_print command first checks for an input
print file. If there is no input print file and if an area name
is given, it prints all files with that area name. If there is
neither an input print file nor an area name, then all files on
the tape are printed. In any of the above cases, if there is a
-first file name, then all files prior to the given file name are
skipped, remembering that the tape is sorted, before any printing
begins.

1-46 AN51

listing tape_ print listing_tape_print

Entry: listing tape_dictionary, 1ltd
This command causes the dictionary of the files on the
listing tape to Dbe copied from the listing tape into a file in

the user’s working directory. The name of the file is
name_of_ first_reel.dict.

Usage

listing_tape_dictionary -ip reel_name/

where:

1. -ip indicates that the names of the reels of an
input 1listing tape follow. At 1least one
input listing tape must be specified although
more then one may be specified by repeating
the -ipn reel_name sequence. Drive type 7
or 9 track is indicated by making n either 7
or 9. If n is not given, 9 is assumed.

2. reel_name! is the name of the first reel of a 1listing
tape. Since only the first reel is used, it

is not necessary to specify the succeeding
reels even though each reel has a dictionary
before any other data. Only the first reel
can be specified separately in this manner.

Entry: 1listing tape_merge, 1ltm
This command causes one or more 1input 1listing tapes and
possibly the contents of one or more dictionaries to be merged.

An output listing tape is generated as the result of this merge
operation.

Usage
listing_tape_merge -control_args-

where control_args can be one or more of the following:

-outputn output_reel_ namem, 1is a control argument
-opn output_reel namem indicating the names of the
output reels. One output listing
tape must be specified, i.e., at

least one reel. Drive type 7 or
9 track is given by making n
either 7 or 9. If n 1is not
given, 9 is assumed.

1-47 AN51

listing_tape_print

-inputn reel_namen,
-ipn reel_namem

~-directoryi dir_name,
-dri dir_name

-area_name aname,

-an aname

-system_number snumber,
-sn snumber

listing_tape_priht

output_reel_namem is the name of
the mth output reel. All reels
must be specified and in their
proper order. Enough reels must
be specified to hold all of the
output generated or the current
command is aborted with an error.
If the first four characters of
the reel name are "file" then the
output 1is placed in 'a segment or
multisegment file with the given
reel name.

indicates the names of the reels
of an 1input 1listing tape. At
least one input listing tape must
be specified although more than
one can be specified by repeating
the -ipn reel_name sequence.
Drive type 7 or 9 track is
indicated by making n either 7 or
9. If n is not given, 9 is

assumed. reel_namem is the name
of the mth reel of a listing
tape. The reels must be

specified in their proper order
since a listing tape is a single
logical entity and the files it
contains are 1in sorted order.
Also, for +the same reason all
reels must be specified if any
are to be used.

indicates that the ith
directory pathname follows. A
directory must be specified. Up
to ten directories, 0 through 9,
are allowed.

indicates that aname is the
area name to be associated with
the segments in the ith

directory. An area name is any
string of up to 16 characters.
If no area name is given for the
ith directory a default area name
of '"hardcore" is associated with
that directory.

indicates that snumber is the
system number to Dbe associated
with the segments 1in the 1ith

1-48 AN51

listing tape print listing _tape_print

directory. A system number has
four fields and is a maximum of
16 characters. The four fields
are:

1. a numeric field of 1 to 8

digits

2. a single character nonnumeric
field

3. a second numeric field of 1 to
8 digits

4, any ASCII characters the first
being nonnumeric

In sorting, the second field is
ignored. If no system number 1is
given for the ith directory, then
the segment name of the directory
is wused as the system number.
Thus, for directory
>1dd>listings>18-36, the default
system number is 18-36.

-file_input file_name, indicates that file_name is the
-fi file_name pathname of a segment containing
a list of segments and their
associated area names. For the

ltm command this list 1s used to
delete segments. Using the input
file in another way, all files
with dates earlier than a begin

date are deleted. (See "Notes"
below.)
-link yes_no, indicates that yes_no, which is
-1k yes_no either yes or no, tells this

command whether or not to process
links in the directories given
above.

Notes

For the 1ltm command, at least one input listing tape and one
output listing tape are required.

The file input segment has the following format for
deletion. Each 1line has one or two arguments. Each argument
begins with a minus sign (-) and is terminated by a blank or a
newline character. The first argument is always present, and is
the name of the segment to be operated upon. The second
argument, if present, is an area name. If no area name is given,

1-49 AN51

listing_tape_print listing_tape_print

then the 1last area name given is the default area name. The
initial default area name is blank.

The file input segment format for use as a begin date has a
plus sign (+) as the first character followed by a date and time
expressed as mm/dd/yy tttt.

Entry: 1listing_tape_create, 1ltc
The 1ltc command exists for historical and aesthetic reasons.

It differs from the 1ltm command only in that no input 1listing
tape need be specified.

Examples

To create a listing tape from a single directory, type:
lte -dr0 >1dd>listings>17-36 -an0 hardcore -sn0 17-36 -op tapel
or:
lte -dr0 >1dd>listings>17-36 -op tape1l
To create a listing tape from several directories, type:

lte -dr0 >1dd>listings>17-3b -dr1 >1dd>listings>17-3c
-dr2 >1dd>listings>14-43x -an2 soft -op tapel tape2

To output into the file file_foo, type:

lte -dr0 >1dd>listings>18-36 -op file_foo

To merge several tapes and directories, type:

ltm -ip tapel tape2 -ip xtape13 xtapelld xtapei15

-dr0 >1dd>listings>18-0a -dr1 >ldd>listings>new_dims
~an1 dims -sn1 31-4c -op otapel otape5 otapeb otape7
To delete from a listing tape, type:

ltm -ip tape33 tape3l tape35 -fi delete_list -op tapel tape2
tapes3

To get a dictionary, type:
ltd -ip xtape13

where xtape13 is the first reel of a listing tape.

1-50 ANS51

r

r‘

listing tape_print listing tape_print

To print all, type:

ltp -ip xtapel13 xtapeill xtapel5 -dv prta

To output all into a file zilch, type:

ltp -ip xtape72 file_ -dv zilch

To print by area name, type:

ltp -ip tape27 tape28 -dv prta -an hardcore
To print according to an input file, type:
ltp -ip tapeld3 -fi print_list -dv prtb

An example of an input 1list for printing or deleting is:

-acc.list -hardcore
-ab.list

-zero.list -command
-foo.list

-aaagh.list -active

In this example, ab.list has the default area name hardcore,
while foo.list has the default area name command.

1-51 AN51

mexp mexp

Name: mexp

The mexp command 1is a fairly simple text manipulative
program to be wused 1in conjunction with the ALM assembler. The
program takes mexp source segments, expands any macros found
therein, and generates as output an expanded text segment
suitable as input to the ALM assembler.

The mexp command is purely text manipulative and does not
have the capability for doing any expand time decision making
other than comparison of character strings. Conditional expansion
of code is possible with the use of the pseudo-operations 1ine,
ife, and ifarg. In addition, the ability to generate unique
symbols within macros is provided. A limited form of iteration is
also provided that allows for repetitive expansion of macro
components.

Usage

mexp name args

where:

1. name is the input text segment name. The mexp
command searches for name.mexp (unless name
ends in the suffix mexp) and generates as
output name.alm.

2. args can be any character strings that can be

: embedded 1in expanded macros with the use of
the &An control expansion (see below).

Notes

The format of a mexp source program is quite similar to an
ALM source program. The main difference is that macro definitions
and macro expansion statements are interspersed with the normal
ALM statements. To define a macro the pseudo-operation ¯o is
used. The format of this is as follows:

¯o macro_name
: macro-body
;end
If the string ¯o 1is found in the context of an ALM

opcode or pseudo-operation, it is interpreted as the start of a
macro definition.

1-52 AN51

mexp mexp

The name of the macro is the next "word" on the line. The
body of the macro is all of the text up to but not including the
next &end found in the source text. The body of the macro can
include any text that, when expanded by the rules specified
below, yields valid ALM source code.

Macros are used by specifying the name as if it were an
opcode or pseudo-operation and specifying the arguments,
separated by commas, in the variable field. A comment field can
follow the parameter list separated from it by a quote (") or
white space.

The following control sequences direct the macro expander to
act in a special way:

1. &0, &1, &2, ... the character & followed immediately by any
decimal integer (< 100) is replaced, upon
expansion, with the corresponding argument
passed to the macro (see "Examples" below).

2. &u is expanded to be a unique character string
of the form ...00000, ...00001, etc. that is
different from any other such strings
expanded with &u control.

3. &p is expanded to be the same string as the
previous &u expansion.

4., &n is expanded to be the same string as the next
&u expansion.

5. &U is expanded to be a unique character string
of the form .._00000, .._00001; however,
multiple occurrences of &U within the same
macro yields the same string.

6. &(n indicates the beginning of an iteration
sequence. The text following the &(n and up
to but not including the next &) is expanded
at expand time only if there are additional
parameters to the macro iteration argument
that have not been used up (see below).

7. ife (ine) if ife or ine occur in the context of an
opcode or pseudo-operation, it causes
conditional expansion of the text up to the
next ifend found in the text, depending on
the equality (inequality) of the first two
parameters to the pseudo-operation. The
equality comparison is strictly a character
string compare.

1-53 AN51

mexp mexp

8. dup causes the text up to the next dupend found
' in the text to be duplicated n times where n
is the decimal value of the (first) parameter
to the pseudo-operation.

9. &i is expanded to be the particular parameter in
an 1iterated 1list for which the current
iteration expansion is being done (see
below).

10. &x is expanded into the decimal integer
corresponding to the argument position of the
iteration argument for which the current

iteration 1is being done (see "Examples"
below).
11. &An is expanded to be the n+1°st argument to the

mexp command.

12. ifarg if ifarg occurs in the context of an opcode
or pseudo-operation it causes conditional
expansion of the text up to the next ifend
depending on whether or not the first
parameter to the pseudo-operation is one of
the arguments to the mexp command (other than
the source name).

If a parameter is not specified for a particular parameter
position, a zero length string is used for expansion.

The argument &0 expands to be the first 1label on the
statement invoking a macro.

Any parentheses around a parameter are stripped off upon
expansion. Parentheses used in this manner are treated as quoting
characters.

Blanks cannot appear in a macro parameter 1list unless
within a parenthesized parameter.

Iteration

The iteration feature is invoked by passing a parenthesized
list of parameters in the parameter position for +the specified
iteration. The parameter number for an iteration sequence
immediately follows the &(of its definition. (If no parameter
number is specified, 1 is assumed.) Iterated arguments are
scanned in the same manner as macro arguments and hence quoting
can be done with the use of parentheses.

1-5U AN51

A

mexp mexp

If more than one &i occurs within a single iteration bound,
the same parameter is substituted for the &i throughout the
expansion. That is, the parameter number specifying which
parameter is to replace the &i is only changed when the &) to end
the iteration is reached.

External Macros

The pseudo-operation &include can be used to define macros
from an external segment. When this is done, the parameter to
the pseudo-operation is treated as a mexp include file of macro
definitions. The file name.incl.mexp (where name is the
parameter to the pseudo-operation) is searched for, using the
include file search rules. The macros contained in the specified
segment are defined in the same way as though the macro
definitions were in the text directly. (The same rules of
requiring a macro to be defined before it is used apply.)

A macro can be redefined with no ill effect. The latest
definition is the one used.

Recursion

Macros can be used recursively with the following
restrictions:

1. A macro must be defined before it is expanded. It can be
used previously 1in another macro definition as long as
the other macro is not expanded (i.e., the name of the
macro occurs 1in the pseudo-operation position of some
line).

2. A maximum allowed recursion depth of 32 is arbitrarily
imposed.

Continuation

If all of the parameters to be passed to a macro do not fit

on one line, they can be continued on the next 1line. This 1is
indicated by 1leaving a comma (,) as the last character in a
parameter 1list. No opcode or pseudo-operation should be-

specified for subsequent continued lines. It is not possible to
split a single parameter (which means a parameter that is a list)
in this way.

1-55 AN51

mexp mexp

Examples

The following macro definitions show typical expansions.

¯o load
1d&1 &2
&end

might be used as follows:

load x0,temp 1dx0 temp
or:

load a,(spi3,*%) lda spi3,*

The use of parentheses in the second example causes the comma to
be ignored as a parameter delimiter.

¯o test

&U: lda &1
tnz &U
sta &2
&end

might be used as follows:

test a,b .._00000: 1lda a
tnz .._00000
sta b :
test c,d .._00001: 1lda c
tnz .._00001
sta d
The following example shows how iteration is used. The

macro definition:

¯o table
&(1 vfd 18/&i,18/&0
&)

&end

might be used as follows:

el: table (4,6,8,10) vfd 18/4,18/e1
vfd 18/6,18/e1
vfd 18/8,18/e1
vfd 18/10,18/e1

mexp mexp

The following example shows how conditional expansion can be
used. The macro definition:

¯o meter

lda &1

ife &2,0on

aos meterword,al
ifend

&end

might be used as follows:

meter foo,on lda foo
aos meterword,al

The following macro shows how &x might be used. The macro
definition:

¯o callm
&(3 eppbp &i

spribp &2+&x¥%2
&)

eaq 2¥&x-2

11s 36

staq &2

call &1(&2)

&end

might be used as follows:

callm sys,arg,(=1,(=20aError from device
~d),did)
yielding:

eppbp =1

spribp arg+1%2

eppbp =20aError from device “d

spribp arg+2¥%2

eppbp did

spribp arg+3%2

eaq 2¥ U2

1ls 36

staq arg

call sys(arg)

1-57 AN51

mexp

mexp

_ The following example shows how conditional expansion might
be used. The macro definition:

“¯o tab9

&(ife &x, 1
vfd 09/&iifend
ine &x, 1

,09/&iifend

&)
&end

might be used as follows:

yielding:

~ tab9 (61,62,63,64,65,66)

vfd 09/61,09/62,09/63,09/64,09/65,09/66

Notice the position of the ifend and &) sequences.

1-58 AN51

h

nothing - nothing

Name: nothing, nt

The nothing command does nothing more than return, thereby
allowing timing tests to be made at command level.

1-59 ANS51

pause pause

Name: pause

The pause command is an interface to the

timer_manager_$sleep entry allowing the caller to "sleep" for a
given number of seconds. '

Usage
pause -time-

where time is the number of seconds (decimal integer) to sleep.
(If not specified, a time of 10 seconds is used.) .

1-60 AN51

print _configuration_deck print_configuration_deck

Name: print_configuration_deck, pcd

The print_configuration_deck command prints the contents of
the current configuration deck as kept in ring 0. The data 1is
kept up-to-date by the reconfiguration commands and, hence,
reflects the current configuration being used.

Usage
print_configuration_deck -args-

where args specifies the names of the cards to be printed. They
are printed as they are punched. If no arguments are specified,
all cards are printed. If more than one card exists with a
specified name, all such cards are printed. Up to 32 arguments
are processed.

Note

No action is taken for misspelled arguments or valid
arguments for which there are no corresponding configuration
cards.

1-61 AN51

print_error_message print_error_message

Name: print_error_message
' pem

peo

pel

peol

The print_error_message command prints out the standard
Multics (error_table_) interpretation of a specified error code.
The various entries specified below allow the user to specify the
error code 1in either decimal or octal and have the output come
out in either the short or long error_table_ form.

Usage

print_error_message code

where code is the decimal integer to be interpreted. The short
form of the error message is printed.

Entry: pel

This entry 1is the same as print_error_message except that
the long form of the error message is printed.

Usage

pel code

Entry: peo

This entry is the same as print_error_message except that
the input code is assumed to be octal.

Usage

peo code

Entry: peol

This entry is the same as pel except that the input code is
assumed to be octal.

1-62 AN51

print_error_message print_error_message

f‘

Usage

peol code

1-63 AN51

print_gen_info print_gen_ihfo

- Name: print_gen_info, pgi

The print_gen_info command prints out some general
information about an object segment. If the object segment is
bound, it prints out information about the components of the
bound segment. The items printed are name (of segment or
component), date time created (compiled), author, translator
name, and directory in which the object segment exists.

Usage

print_gen_info objseg -componentname-

where objseg 1is the pathname of the object segment of interest
and componentname is an optional control argument that, if given,
causes printing of information about that component only
(appropriate only if objseg is a bound segment).

1-64 AN51

N

-—

print_sample_refs print_sample_refs

Name: print_sample_refs, psrf

The print_sample_refs command interprets the three data
segments produced by the sample_refs command, and produces a
printable output segment which contains the following
information: a detailed trace of segment references; a segment
number to pathname dictionary; and histograms of the Procedure
Segment Register (PSR) and Temporary Segment Register (TSR)
segment reference distributions. (See the description of the
sample_refs command.) '

Usage

print_sample_refs name -brief

where:

1. name specifies the names of the data segments to
be interpreted, as well as the name of the
output segment to be produced. name may be
either an absolute or relative pathname. If
name does not end with the suffix srf, it is
assumed.

The appropriate directory 1is searched for
three segments with entrynames as follows:
(entry portion of) name.srf]
(entry portion of) name.srf?2
(entry portion of) name.srf3
The output segment is placed in the user’s
working directory with the entryname:
(entry portion of) name.list

2. -brief, -bf specifies that the detailed trace of segment
references is not to be generated.

Notes

The print_sample_refs command is able to detect a reused
segment number, The appearance of a parenthesized integer
preceding a segment number indicates reusage.

23416542 >udd>user>bound_alpha_| 6542

(1) 23412104 >udd>user>max35/512
(2) 23416160 >system_library languagesd>assign_ |6160

1-65 AN51

print_sample_refs print_sample_réfs

The

occurrence of the above three lines in the detailed

"trace indicates the following:

1.

a reference was made to location 6542 in bound_alpha_.
The particular component of bound_alpha__ being
referenced could not be determined. bound_alpha_ was
assigned segment number 234,

2. a reference was made to location 512 in max35. max 35
is a component of a bound segment whose name can be
determined from the segment number to pathname
dictionary. The segment bound_alpha_ has been
terminated and, when the segment of which max35 is a
component was initiated, it was assigned segment number
234.

3. a reference was made to location 6160 in assign_. The
segment of which max35 is a component has been
terminated and, when assign_ was 1initiated, it was
assigned segment number 234.

The appearance of a segment number suffix (i.e., 1, 2, etc.)

indicates a component of a bound segment.

The

310 >system_1library_standard>bound_ti_term_
310.1 tssi_
310.2 translator_info_

appearance of the above lines in the segment number to

pathname dictionary indicate that tssi_ was the first component
of bound_ti_term_ to be referenced, and that translator_info_
was the second component of bound_ti_term_ to be referenced.

1-66 AN51

print_text_boundary print_text_boundary

Name: print_text_boundary, ptb

. The print_text_boundary command prints out the decimal value
of the text boundary field of the symbol section of a standard
object segment.

Usage
print_text_boundary names
where names are the relative pathnames of the object segments
whose text boundaries are to be displayed.
Example
print_text_boundary test_ci

test_ci 1024

1-67 AN51

print_translator_search_rules print_translator_searchmrulés

‘Name: print_translator_search_rules, ptsr

The print_translator_search_rules command prints the current
translator search rules in effect for the calling process.

Usage

print_translator_search_rules

1-68 AN51

rebuild_dir rebuild_dir

Name: rebuild_dir

The rebuild_dir command compares a saved directory
information segment created by the save_dir_info command with the
current version of the directory in the storage system. If any

subdirectories are missing, rebuild dir attempts to re-create
them. If any links are missing, rebuild_dir attempts to relink
them. If any segments are missing, rebuild_dir prints a comment.
Usage

rebuild_dir segpath -control_arg-

where:

1. segpath is the pathname of a directory information
segment. If segpath does not have the suffix
dir_info, the suffix is assumed.

2. control_arg is an optional control argument. It can be:

-brief, -bf suppresses the comments "creating directory X" and
"appending link X".

-long, -1lg prints full information about any missing
segments.

See the description of the list_dir_info_ subroutine for an
explanaticn of what is printed for missing segments for a given
verbosity.,

1-69 ANS5 1

repeat_1line repeat _line

Name: repeat_line, rpl

The repeat_line command allows certain 1limited testing of
the performance of a user’s interactive terminal by "echoing" an
arbitrary message typed in by the user. '

Usage
repeat_line -n- -string-

Both arguments are optional; n is the number of times the
message is to be printed, and string is the message to be printed
(command-language quotes can be used to permit embedded blanks in
the message). If string is an asterisk (¥), the previous message
is reused. The first time repeat is used in a process, a canned
message, consisting of "The quick brown fox..." (alternate words
in red- and black-shift), followed by three separate lines, each
containing one HT character plus ASCII graphics in ascending
numeric sequence, 1is used. If n is not specified, or is 0, its
previous value is used; the default first-time value is 10. If
string was not specified the user is requested to type in a new
string (see "New Input" below). Once the message to be printed
has Dbeen determined, it is printed n times. (Notice that in the
case of the "quick brown fox" message, U4n lines are printed.)

New Input

When printing of the message is completed (or no initial
message was specified), the line:

Type line (or q or <NL>):

is printed. Typing only the newline (<KNL>) character causes the
previous message to be printed another n times. The letter q (in
lower case), followed by <NL>, causes repeat_line to return to
its caller. Any other line is interpreted as a new message to be
printed n times.

1-70 AN51

resetcopysw resetcopysw

Name: resetcopysw

The resetcopysw command turns of f the copy switch for the
designated segments.

Usage
resetcopysw paths
where paths are the pathnames of segments whose copy switches are
to be turned off.
Note

The current state of a segment’s copy switch can be
determined by issuing the command:

status path -all

where path is the pathname of the segment. The copy switch 1is
not mentioned if it is off.

1-71 AN5 1

sample_refs sample_refs

Name: sample_refs, srf

The sample_refs command periodically samples the machine
registers 1in order to determine which segments a process is
referencing. Three output segments are produced, that are
interpretable by the print_sample_refs command. (See the
description of the print_sample_refs command.)

Usage
sample_refs -control_args-

where control_args can be chosen from one of the following two
control groups:

1. arguments that initiate sampling are:

-time n specifies the rate in milliseconds at which
-tm n the process is sampled. n must be a positive
integer. The default is n = 1000; i.e., the

process is sampled once every second.

-segment name specifies the names to be given the three

-Sm name output segments. name can be either an
absolute or relative pathname. If name does
not end with the suffix srf, it 1is assumed.
The output segments are named as follows:

(entry portion of) name.srf1
(entry portion of) name.srf2
(entry portion of) name.srf3

The default causes the output segments to be
placed in the user’s working directory, with
entrynames as follows:

mm/dd/yy__hhmm.m_zzz_www.srf1

mm/dd/yy__hhmm.m_zzz_www.srf?2

mm/dd/yy__hhmm.m_zzz_www.srf3
2. the argument that terminates sampling is:

-reset specifies that the process is no longer to be
-rs sampled.

Notes

Only one active 1invocation per process 1is permitted.
Attempting a secondary invocation of sample_refs causes the first
invocation to be terminated, whereupon the new invocation
proceeds normally.

1-72 AN51

sample_refs sample_refs

_ The machine registers can be sampled only when the process

is running in a ring other than ring 0. Were a process to use,
for example, a total of 100 seconds of processor time, and
sample_refs, running at a sample rate of n = 1000, were to record
only 23 samples, it would indicate that 77 seconds of processor
time were spent in ring O.

Under certain conditions, the contents of one of the machine
registers sampled--the Temporary Segment Register (TSR)--can be
invalid. This invalidity is noted, but does not necessarily
indicate that the process is in error.

At the maximum sample rate, 1 millisecond, execution time
can be increased by as much as 50%. Using a 1 second sample
rate, the increase in execution time is negligible.

Accuracy of sample rates less than 1000 milliseconds (sample
rates n < 1000) 1is not guaranteed due to load factors. The
accuracy of such sample rates increases with load.

If the process being sampled should be terminated without an
invocation of sample_refs with the -reset option, interpretable
output segments are still produced; however, both the off-time
and the last recorded sample can be invalid.

1-73 ANS1

save_dir_info save_dir_info

Name: save_dir_info

The save_dir_info command creates a segment containing all
information available from the file system about a directory and
its contents. The command is not recursive; that is, the entire
"subtree inferior to the selected directory is not scanned, just
the immediately inferior branches and links. The saved
information segment can be manipulated by the list_dir_info,
rebuild_dir, and comp_dir_info commands.

Usage

save_dir_info dir_path seg_path

where:
1. dir_path is the pathname of the directory to be scanned.
2. seg_path is the pathname of the directory information

segment to be created. If seg_path is omitted,
the entryname of dir_path is assumed. If seg_path
does not end with the suffix dir_info, it is
assumed.

_— AN5 1

send_admin_command send_admin_command

Name: send_admin_command, sac

The send_admin_command command can be used by authorized
system administrators to request execution of commands by the
initializer process, and to change the admin mode password.

This command can be used to send a command to the

initializer.

Usage

sac commandline

where commandline is the desired command line. It must be 80
characters or less. If it contains embedded blanks, they must be
enclosed in quotes.

Notes

The command line is stored in the segment,
>system_control_dir>communications, and a wake-up is sent to the
initializer. When the wake-up is received, the initializer types

a message, executes the command, and stores the message in log.

To print any unexecuted command in
system_control_dir>communications type:

sac -print

To cancel an unexecuted command in
system_control_dir>communications type:

sac -cancel

To change the operator password for admin mode (also stored
in system_control_dir>communications) type:

sac -chpass
or

sac -cp.

The command requests both the o0ld password and the new
password.

The new password is stored in the segment and an online

message sent to the operator explaining that the password has
been changed.

1-75 AN51

set_proc_required set_proc_required

Name: set_proc_required, sprq

The set_proc_required command 1is primarily used as a
processor T&D aid when it is desired to run a particular (set of)
program(s) on a particular CPU. It instructs the scheduler to
restrict the calling process to run only on the specified
processor. The current configuration can be determined with the
print_configuration_deck command.

Usage

set_proc_required cpu_tag

where cpu_tag is the character string representation of the
processor tag for the CPU to be selected.

Example

set_proc_required a

AN51

1-76

r

set_text_boundary set_text_boundary

.Name: set_text_boundary, stb

The set_text_boundary command is used to fill in the text
boundary field of the symbol section of a standard object
segment. This field’s primary use is by the binder that forces
the component to begin on the specified text boundary.

Usage
set_text_boundary namel bndryl...namen bndryn

where:

1. namei is the relative pathname of the object
segment whose text boundary is to be changed.

2. bndryi is a decimal value for the text, bodndary.
This value must be even.

Example

set_text_boundary test_ci 1024

1-77 AN51

set_timax set_timax

Name: set_timax, stm

The set_timax command is used to set the value of timax for
the user. The user must have access to both the privileged and
the highly privileged gates phes_ and hphes_.
Usage

set_timax n
where n is the number of seconds to which timax is to be set. A

value of less than or equal to zero causes it to use the default
timax from tc_datag$timax.

Examples

set_timax 3.5
sets timax to 3500000 microseconds for the current user’s process
and prints appropriate messages on both the user’s terminal and
operator’s console. :

set_timax O

sets timax to the default timax (currently eight seconds) and
prints messages on the user’s terminal and operator’s console.

1-78 AN51

set_translator_search_rules set_translator_search_rules

Name: set_translator_search_rules, stsr

The set_translator_search_rules command is a command
interface to the find_include_file_ subroutine which allows
manipulation of the search rules used to find include files by
the language translators.

Usage

set_translator_search_rules paths

where paths are pathnames that are to be searched, in the order
given, when searching for an include file. The default search
rules are:

working dir

>user_dir_dir>Project_id>include
>library_dir_dir>include

The command recognizes the following keywords which can be
used instead of pathnames:
-working_ dir
-home_dir

-referencing dir
-default

Example

stsr >udd>m>include >l1dd>bosd>include >ldd>include

1-79 AN51

setcopysw setcopysw

Name: setcopysw

The setcopysw command allows the user to set or reset the
copy switch for designated segments. :
Entry: setcopysw

This entry turns on the copy switeh for the designated
segments.

Usage

setcopysw paths

where paths are the pathnames of segments whose copy switches are
to be turned on.

1-30 ANS1

setquota setquota

Name: setquota, sq

The setquota command requires access to the highly
privileged gate and places an arbitrary secondary storage quota
on a specified directory.

Usage
setquota pathnamel quotal ... pathnamen quotan

where:

1. pathnamei is the name of the directory on which the quota
is to be placed. The active function wd can be
used to specify the working directory.

2. quotai is the quota in 1024 word pages to be placed on
the directory. N :

Examples

setquota > 29902

setquota >udd>Multics>Jones 0

Note

No permission in the directory is required to use this
command. It is not necessary that the new quota be greater than
the current number of pages being used by this directory. This
command causes the directory to have a terminal quota even if it
is set to zero. This command does not cause the inferior counts
of the superior directory to be updated.

1-81 ANS51

teco teco

~Name: teco, TECO

INTRODUCTION

TECO (Text Editor and COrrector) is a character ‘oriented text
editor modeled after the TECO in general wuse on the Digital
Equipment Corp. PDP-10, which was originally written at MIT’ s
Artificial Intelligence project. TECO allows many simple editing
requests, macro definitions, iterations, and conditional
statements. These permit the user to do simple manual editing of
ASCII files or to write complex macros that do automatic editing.
Although this implementation is modeled after the TECO in general
use, many new commands and features have been added that make the
macro facility really powerful and easy to use. Some of the
additions include adding if ... then ... else ... statements,
allowing the contents of Q-registers to be used as quoted
strings, allowing numeric and string arguments to be passed to
macros, and allowing macros that reside in files to Dbe called
directly from TECO.

TECO 1is Dbasically a character oriented editor, whereas
editors like edm and gedx are line oriented editors. In edm and
gedx it is only possible to position the pointer to the beginning
of the line. The pointer is then considered to point at the whole
line. These editors then supply commands (the substitute or
change command) to edit the current 1line. 1In TECO such a
complicated command is unnecessary because the pointer can point
between any two characters in the buffer. The fundamental
character-oriented commands are insert, delete, search, and
moving the pointer. With these commands it is very weasy to do
what would be complicated operations in a line oriented editor.
The concept of a line as an important entity is not unknown in
TECO, however. There are many commands that can be line oriented.
These are the L, T, K, X, and S commands.

TECO reads command lines from the user’s terminal (actually
it reads from the switch user_input) line by line wuntil a 1line
ending with $ is typed. Execution of the complete command string
is started when this last line is read. TECO will type "H" when
it is waiting for a new command string.

1-82 AN51

teco teco

ENTERING TECO

TECO can be called from the Multics command level by the
Multics command:

teco -pathname-

If pathname is specified, TECO automatically reads in the file
by effectively executing the string "EI/pathname/J" upon entry.
If no pathname is specified, the buffer is initialized to empty.
To create a new file, type TECO (without specifying a pathname)
and then use the I request to insert text.

EXITING FROM TECO

To exit from TECO, type the EQ command (followed by $ and a
newline).

TECO DEFINITIONS

TECO uses four storage areas:

1. The buffer is the area where text to be edited 1is
examined and modified. At all times it contains a
(possibly null) character string. There is a pointer into
the buffer, denoting the current position. This pointer
does not point to a character; it points between two
characters. The pointer can assume any value between O
and Z, where Z is the number of characters currently in
the buffer. 0 indicates that the pointer is to the 1left
of the first character, and Z would represent the
position to the right of the 1last character 1in the
buffer. The value of the pointer is represented by ".".

2. Commands to TECO are written as a character string that
is read into the Command String Area. TECO interprets
the characters in the command string as a series of
commands. Upper and 1lower case 1letters can be used
interchangeably in commands.

3. The Q-Registers are locations for storing either numeric
quantities or strings of text for 1later wuse. Each
Q-Register is designated by a single character name.
There are 95 Q-Registers, one for each printing ASCII
character. Each Q-Register can contain a positive or
negative integer or a character string.

4, The Q-Register pushdown 1list is a 1last-in-first-out
(LIFO) 1list that can be used to temporarily store the

1-83 AN51

teco) teco

contents of a Q-Register. It 1is cleared (i.e. the
contents are lost) every time command level is returned
to, i.e. a "H" is typed.

TECO uses numeric expressions for many of its operations.
These can consist of any combination of decimal or octal numbers,
the unary operator hyphen (-), the binary operators +, -, ¥, /, 6 |
(boolean or), & (boolean and), and the special valued commands
and symbols. All operators are of equal precedence and
expressions are evaluated from 1left to right. Note, however,
that parentheses can be used in their normal manner. Spaces are

ignored (except to terminate decimal numbers). If two numeric
quantities are given with no operator between them, the default
operator + 1s used. Note +that a string of digits followed
immediately by a "." 1is interpreted as an octal rather than a
decimal number. Division wusing the "/" operator is integer
division, i.e. the remainder is ignored. The special symbols

allowed in an expression at any point are:
B (Beginning) equivalent to 0
Z equivalent to the number of characters in the buffer

(pointer) equivalent to the number of characters to the
left of +the pointer, 1i.e. the current value of the
pointer.

There is another special symbol related to the symbols above
and this is the H (wHole) symbol. This symbol 1is equivalent to
0,Z. It 1is the only symbol in TECO that has two values. It is
useful for referring to the whole buffer.

Commands that return values can also be used in expressions,
but they cannot appear immediately to the right of an operator.
This 1is Dbecause the command assumes that everything to its left
is part of one of its arguments. If a command appears within
parentheses, it assumes that its arguments are entirely between
the last parenthesis and the command. Therefore a command does
not read parts of an expression outside the parentheses in which
it appears.

The plus and minus binary operators (this does not include
the unary minus) assume a right operand of 1 if none is given.

1-8Y4 AN51

teco teco

EXAMPLES

Assume that the current value of the pointer is 500.

expression value
(1) (7 12)/3 = 6
(2) 9+ = 10
(3) b- = =1
(4) - = =1
(5) 448/2 = 6
(6) 101. = 65
(7) 3110 = 11
(8) 1++++ ++ +++ + = 11
(9) 9#*_2 = -18
(10) 9*_-2 = 18
(11) .10 = 510
(12) 10. = 8

Quoted strings are strings of text delimited by a quoting
character. The quoting character can be any character not
contained in the string except a letter or a digit. The contents
of a Q-register can be used as a quoted string if the letter "q"
followed immediately by the letter specifying the Q-register is
typed 1instead of the first quoting character.

EXAMPLES

) "hello"

) /This is a quoted string/ A

) ,This string is delimited by the comma character and
contains 2 newline characters.

—~ e~
WN -

’

(4) q1

ERROR MESSAGES

TECO types out error messages in one of two modes, long or
short. Short error messages are less than nine characters 1long
while 1long error messages are less than 50 characters long. The
default mode is short. To change the error mode TECO is using,
give the following Multics command:

TECO$TECO_error_mode long

or
TECO$TECO_error_mode short

1-85 ANS51

teco téco

If a short error message, such as "/: 2" cannot be
“understood, the following Multics command types out the long
error message:

TECO_error "/: 2"

The above holds for all error messages except those
informing the user that a file could not be found.

IMPLEMENTATION RESTRICTIONS

The maximum number of characters allowed in a Q-register is
262143. The maximum number of characters allowed in a quoted
string is 262143, as is the maximum number of characters in a
TECO command 1line. Note that these sizes are all one segment
long. When the Multics segment size changes, these restrictions
also change. The maximum number of items in the pushdown list is
20. The maximum depth of macro calls is 20. The maximum depth of
parentheses is 20.

LEARNING TECO

This description of TECO contains three additional parts.
In the second part, commands are described that:

read and write files

examine text within a file

. make deletions and insertions
. search for strings of text

FWN -

Examples of using the commands are given at the end of the
commands part of the description. After reading the second and
third parts, the reader should be able to use most of the common
editing requests.

In the third part of this description, more sophisticated
TECO commands are described, including wuse of Q-registers,
macros, iterations, conditionals. The commands listed in Section
III transform TECO from just another editor to one of the most
powerful general purpose text editors in existence.

The fourth part of the description contains a summary of all

the TECO commands in alphabetical order. This is intended to be
used as a reference section.

1-36 AN51

teco teco

BASIC TECO COMMANDS

The most general form of a TECO command is:
m,nX/string/

where m and n are optional numeric arguments, X is the command to
be executed, and /string/ is a quoted string. In most cases, the
command is Jjust one character, though in some cases, 1t may be
two characters. Not all of the commands take arguments. Those
that do generally have default values for missing arguments.
Only a few commands expect quoted strings. The string must not be
ommitted 1if the command expects one. Some commands also return
values; this is discussed later in "Advanced TECO Commands."

The letters chosen for commands generally have some mnemonic
meanings, which are indicated in the description of each command.
Unfortunately, TECO has a fairly long history, having originally
been developed for editing paper tapes, and so some of the
mnemonic meanings are almost lost now. As many commands as one
wishes can be typed at a time. Execution of the commands does
not start until after the "$" followed by a newline character is
typed. Spaces can be inserted anywhere (except in the middle of
numbers) and newline characters can be inserted anywhere except
between a command and its arguments.

Remember that uppercase and lowercase letters can be used
interchangeably as commands.

Reading a File - EI (External Input)

EI/pathname/ reads in the file specified by pathname,
which 1is assumed to be a standard Multics
pathname. The contents of the file are

inserted in the buffer at the current pointer
position and then the pointer is moved to the
right of the text just inserted.

Writing a File: - EO (External Qutput)

EO/pathname/ writes the contents of the buffer to the file
pecified by pathname. This command takes

arguments similar to the T command; it writes

out that part of the buffer which would be

1-87 ANS51

teco teco

typed by T. i Note, however, that if no
arguments are given, EO assumes B,Z as the
default rather than 1.

NOTE: The pointer is never moved by the EO command.

Typing the Buffer - T (Type)

T equivalent to 1T

nT +n types out the string of characters beginning
at the current pointer position and
terminating after n newline characters have
been encountered. T types out the rest of the
current 1line, and 2T types out the rest of
the current line and the next line. The last
character typed by T 1is a newline unless
there aren’t that many lines in the file.

-n types out starting Jjust after the (n+1)th
newline to the 1left of the pointer and
finishing at the pointer. OT types out the
beginning of the 1line up to the current
pointer. Usually two T commands are given at
once, such as 0TT, which types out the entire
line the pointer 1is in. When OT is useful,
the last character it types out is not a
newline. -T types out the previous line and
the beginning of the current 1line. If the
pointer 1is at the beginning of a line, -T
types out the previous line, the newline at
the end of that line, and nothing more.

m,nT Types out the (m+1)th through the nth
characters of the buffer.

NOTE: The pointer is never moved by the T command.

Moving the Pointer - J (Jump), C (Characters), R (Reverse), and

L (lines)
nd Moves the pointer to the right of the nth
character in the buffer, i.e. sets "." to the
value of n. If n 1is not specified, 0 is

assumed. That is, the pointer is moved to the
left of the first character in the buffer.

1-38 AN51

teco

nC

nR

nL +n

teco

Moves the pointer n characters to the right
of its current position (equivalent to .+ndJ).
If n is ommitted, 1 is assumed.

Like nC except it moves the pointer to the
left (equivalent to -nC). If n is ommitted, 1
is assumed.

Moves the pointer to the right, stopping
after it has passed over ' n newline
characters. If n is ommitted, 1 is assumed.
L moves the pointer to the beginning of the
next line.

Moves the pointer to the left, stopping after
it has passed over n+1 newline characters and
then moving it to the right of the 1last
newline character passed over. OL moves the
pointer to the beginning of the current line,
and -L moves the pointer to the beginning of
the previous 1line.

Deleting Text - D (Delete) and K (Kill)

nD

+n

Deletes n characters. If n is positive, the
characters are deleted to the right of the
pointer. If n is negative the characters are
deleted to the left of the pointer. If n is
omitted, 1 is assumed.

Takes arguments like the T command except it
deletes that text T types. The pointer is
moved to where the deletion took place. If
no arguments are specified, 1K is assumed.

deletes all the characters beginning at the
current pointer position and terminating
after n newline characters have been
encountered. K deletes the rest of the
current line and the newline character at the
end of the line, while 2K deletes the rest of
the current line and the next line.

deletes all the characters starting Jjust
after the (n+1)th newline to the left of the
current pointer and ending at the current
pointer. OK deletes the beginning of the
current line without deleting the newline
character at the end of the previous line. -K
deletes the previous line and the beginning
of the current line. To ensure that only the

1-89 AN51

teco

m,nkK

teco

previous line is deleted, the command
sequence OL-K can be used.

Deletes the (m+1)th through the nth
characters of the buffer.

Inserting Text - I (Insert)

I/text/

nl

Search for Text - S

S/string/

nS/string/

m,nS/string/

Inserts the text of the quoted string at the
current pointer position and moves the
pointer to the right of the inserted text.

Inserts the character whose ASCII.code value
is n. It moves the pointer to the right of
the inserted character.

(Search)
equivalent to 1S/string/

Searches for the nth occurrence of the quoted
string. If n 1is positive, the text is
searched from the current pointer through the
end of the buffer for the nth occurrence of
the string. If found, the pointer is set to
the right of the matching string. Otherwise,
the pointer is not moved and an error message
is printed. If n 1is negative, the text is
searched from the current pointer position to
the beginning of the buffer for the nth
occurrence of the quoted string. The pointer
is set to the left of the matched string. If
the string is not found, the pointer is not
moved and an error message is printed.

Instead of searching the entire buffer for n
occurrences of the quoted string, only m
lines from the current pointer are searched.
If m is positive, the only part of the buffer
that 1is searched is from the current pointer
to just after the mth newline character after
the current pointer. If m is 0 or negative,
the only part of the buffer that is searched
is from the current pointer to just after the
(m+1)th newline before the current pointer.
1,1S/text/ only searches the rest of the
current line. 0,-1S/text/ only searches the
beginning of the current line. If m is less
than or equal to 0, n must be negative. If m
is greater than zero, n must be positive.

1-90 AN51

teco teco

Typing OQut Values - = (Equals)

n= or m,ns= types out the decimal value of all the
arguments separated by spaces and ending with
a newline.

Leaving TECO - EQ (External Quit)

EQ returns to the caller of TECO (e.g. Multics
command level). (Don“t forget to do an EO
command before the EQ, if the editing 1is to
be saved.)

Restarting TECO after a Quit

If quit is used to abort a command string, the
program_interrupt (pi) command can be used to restart the TECO
command. It does not abort the entire command string; only those
commands not yet executed. The current command is aborted if the
effect of doing so is identical to that of not starting the
command in the first place. The TECO command keeps track of what
it is doing, so that if the sequence:

(quit)
program_interrupt (or pi)

is given, it does not abort the current operation if it would
leave TECO in an inconsistent state. In other words, the sequence
only interrupts between TECO commands, not in the middle of a
command.

At times it is desirable to get around this feature. When
doing an EO, for instance, TECO does not allow the wuser to pi
back to TECO command level, once the EO has started until, it has
completed writing the file. To get around this, type:

(quit)
TECO$abort or TECO$ABORT

When TECO$ABORT 1is called, the most recent invocation of
TECO aborts its current operation without checking for
consistency of states. Note that TECO is in a consistent state
whenever it actually accesses a file, and so there should be no
problems encountered if this feature is used to get out of a
runaway E command. Under other circumstances, however, it is wise
for the user to type:

-5t5¢t

1-91 ANS51

teco

teco

.to ensure control is maintained. Except for the case of a runaway

EO command, this feature

normal use.

STAND_ALONE EXAMPLES

Entering Teco

TECO source.pl1

TECO <x>y>z>a.ec

TECO

Reading a File

EI/source.pli/

Writing a File

EO/new_source.pl1/

.,2EOQ/bottom/

2EO0/lines/

Typing Text

2T

0T

OTT

probably totally unnecessary in

enter TECO and read in the file
source.pl1 from the working
directory.

enter TECO and read in the file
specified.

enter the buffer initially empty.

Insert the text contained in
source.pl1 at the current point in
the buffer.

Write the whole buffer out into
new_source.pl1.

Write out the buffer from the
current pointer to the end into the
file "bottom".

Write out two lines starting at the

current pointer position to the
file "lines".

Type out from '"." to the end of the
next line.

Type out the current line from its
beginning to M.,

Type out all of the current 1line.

1-92 AN51

teco

25,100T

Moving the Pointer

J

)

OL

812-388C

Deleting Text

19, 22K
19J 3D
HK
-D

Inserting Text

I/abe
/

teco

Type out the 25+1 (26th) through
the 100th character of the buffer.

Position the pointer at the
beginning of the buffer.

Position the pointer at the end of
the buffer.

Position the pointer at the
beginning of the next line in the
buffer.

Position the pointer at the
beginning of the current line.

Position the pointer at the
beginning of the current line.

Backup the pointer by one character
position.

Move the pointer ahead 812-388
(424) character positions.

Delete the 19+1 (20th) through the
22nd character of the file. Set the
pointer to 19.

Move the pointer to the right of
the 19th character and then delete
the next three characters (20-22).
Delete the whole buffer.

Delete the character just to the
left of the pointer.

Insert the line abc followed by a
newline character at the current
pointer position.

1-93 AN51

teco

I.abec.

651

Typing Values

Q6+53 =

Searching for Text

J S/Hello/
ZJ -S"Hello"

J 3Sm#
"

J 1,1S/Hello
/

teco

Insert the string abce without a
newline character.

Insert the character with ASCII
code 65 (A) at the current pointer
position.

Type out how many characters are in
the buffer.

Type out how many characters are in
the buffer followed by the current
pointer position.

Type just a blank line.

Type out 53 plus the value
contained in Q-register 6.

Position the pointer just ¢to the
right of the first occurrence of
the string Hello in the buffer.

Position the pointer just to the
left of the last occurrence of the
string Hello in the buffer.

Position the pointer just after the
third occurrence of a 1line ending
with an asterisk (¥).

Position the pointer just after the
first line in the buffer if it ends
in Hello. If the first line does
not end in Hello, type out an error

message.

1-94 AN51

r

teco teco

- EXAMPLES OF BASIC EDITING REQUESTS

In the following examples, underlined text 1is produced by
TECO.

TECO abc.pl1 Enter TECO and read in the segment
abc.pl1.

R5LT$ Move to the 6th line and type it
out.

del a fixed bing
KS/a/-DI/b/0LT$ Change the "a" to a "b" and retype
the line.

decl b fixed bing
ES/dcl d/0LKT$ Search for the declaration of d and
delete the 1line that contains it.
Then type out the next line.

del f fixed bing
EKI/decl g char(2);
/$ Delete this line and then insert a
declaration of g.

KHEO/abc.pl1/EQ$ Write the edited text out to the
file and then return from TECO.

1-95 AN51

teco téco

ADVANCED TECO COMMANDS

In "Basic TECO Commands" the general form of a TECO command
was given. Some items were left out, however. The actual format
is:

m,nXq/string1//string2/.../stringn/
The q indicates a Q-register on which the command is to act.

It should also be noted that more than one string can be
given. Although no TECO command currently accepts more than one
quoted string, a macro can be called with multiple string
arguments that can be retrieved inside the macro by the :X
command.

In the "Introduction" we specified that expressions can be
built from numbers, special valued commands, and symbols.
Examples of valued commands are given in this section. Care
should Dbe taken to notice that commands with values appear only
on the left side of the first operator, or within parentheses.
Otherwise, the part of the expression preceding the command is
considered to be an argument to the command.

The effect of many commands can have their function changed
by preceding the command with a colon (:). The colon has no
fixed meaning--it is defined for each command individually. The
following commands given earlier can be used as follows.

:Ig/string/ or n:Iq like the I command except that the specified
string 1is 1inserted into Q-register q. The
former contents of Q-register q are lost.

n:L Equivalent to nLR. Thus TECO moves to the end
of the line rather than the beginning.

:S/string/, like S except that it returns a value.

n:S/string/, The value 1is 0 if the search fails and

or -1 if it succeeds. Even if the search

m,n:S/string/ fails, TECO continues execution.

:T/string/ types the specified string on the user’s
terminal.

1-96 AN51

teco teco

~ Numeric Q-Registers

Q-Registers can be used, as mentioned in "Introduction", to
hold numeric values. These values can be used in expressions
that are arguments to other commands.

SAVING A VALUE - U (Update)

Uq sets Q-register q to a very large positivé
number. '

nUq sets Q-register q to n.

m,nUq sets Q-register q to n and returns m as its
value.

READING Q-REGISTERS - Q (Q-Register)

Qq Return the number stored in Q-register q as
the value. Note that Q is not really a
command--it is a special symbol. (See

"Introduction".) Thus, in the expression 5+Q3
the 5+ 1is not considered an argument to Q;
the result is the sum of Q3 and 5. Note if
Q-register q contains text, the length of the
text in characters is returned.

INCREMENTING Q-REGISTERS - %

%q Add 1 to Q-register q and return the new
number as the value. Q-register g cannot
contain text. Note that %, 1like Q, is a
special symbol, not a command.

Text Q-Registers

Q-Registers can also be used to hold character strings. They
can be used to move text from one place in the buffer to another,
to save command 1lines for execution as macros, or to provide
quoted strings for commands that expect them.

1-97 AN51

teco

teco

'EXTRACTING TEXT TO A Q-REGISTER - X (eXtract)

Xq

nXq

m,nXq

+n

takes arguments 1like the T command, but
copies the text +that T would type into
Q-register q. The former contents of
Q-register q are deleted. The text is not
deleted from the buffer and the current
pointer is not moved.

copies all the text from the current pointer
to just past the nth newline character to the
right of the pointer into Q-register q. X1
copies the rest of the current line including
the newline at the end of the 1line into
Q-register 1. 2Xa copies the text on the rest
of the current line and all of the next line
into Q-register a.

copies all the text from just to the right of
the (n+1)th newline, that is, to the left of
the current pointer, to the current pointer
into Q-register q. 0X/ copies the Dbeginning
of the current 1line into Q-register /. No
ewline characters are put into Q-register /.
~-Xa puts the previous line and the beginning
of the current line into Q-register a.

copies character number (m+1) through
character number n into Q-register q.

INSERTING TEXT DIRECTLY INTO A Q-REGISTER - :I (Insert)

:Iag/string/

This command is identical to the normal "I"
command except that the text is inserted into
Q-register q rather than the buffer. The
former contents of Q-register q are deleted.
The main text buffer is not affected.

is 1like :I except that it puts the character
corresponding to n into the Q-register q.

1-98 AN51

teco teco

'GETTING TEXT FROM A Q-REGISTER - G(Get)

Gq inserts the text contained 1in Q-register ¢
into the buffer to the left of the current
pointer. If the Q-register contains a number,
the decimal representation of the number is
inserted.

Obtaining Quoted Strings from Q-Registers

Whenever TECO expects a quoted string, it is possible to
indicate that the string is in a Q-register. Normally 1letters
and digits are considered illegal quoting characters. If,
however, the letter Q is found where a quoted string is expected,
the next character after the Q is considered a Q-register name.
Whenever a quoted string 1is retrieved by any command, it is
loaded into Q-register ". As an example, SQ", immediately after
another search, searches again for the same string. This notation
is illegal if the specified Q-register contains a number.

The Q-Register Pushdown Stack

There is one Q-register pushdown stack (not one per

Q-register) in which the values of Q-registers can be saved. It
is organized as a pushdown (Last-In, First-Out) list. It is
emptied every time TECO waits for a new command string, i.e., a

"H" is typed.

PUSHING A VALUE ONTO THE STACK - [(opposite of])

[q pushes the current value of Q-register q onto
the top of the stack. The Q-register is not
affected.

POPPING A VALUE FROM THE STACK -] (opposite of [)

la pops the +top value on the stack into
Q-register q. The previous contents of the
Q-register are lost. It is an error to do a]
command if the stack is empty.

1-99 AN51

teco

Loops

TECO has the ability to execute a command string repeatedly,
much as FORTRAN or PL/I provides do-loops.

BEGINNING A LOOP - < and > (opposite of each other)

<

n<

n<...>

is equivalent to n< except that n is set to a
very large number that is for all practical
purposes infinite.

causes TECO to take note of the fact that a
loop 1is Dbeginning. The value of n and the
position of the < in the command string are
saved.

causes execution to return to just after < if
the string has not yet been executed n times.

this causes the string between the angle
brackets to be executed n times.

TERMINATING A LOOP BEFORE n EXECUTIONS - ;

nj

Goto's

if n is less than 0, then nothing is done.
Otherwise execution of the current loop is
aborted and TECO skips to just after the
closing >. If n is not specified, the result
of the most recent S command is used
(terminate 1loop if search failed). The ;
command cannot appear outside of a loop.

TECO provides the ability to transfer control to a different
part of the command string.

GOTO - 0 (gOto)

causes the TECO command to search the current
macro (or, if we are not in a macro, the
command 1line) for the string " string ". If
it 1is found, TECO begins interpreting
commands just after the label found. If not
found, but execution is currently in a macro,
the search 1is repeated 1in the previous
execution level, i.e., the caller of the
macro. This 1s repeated wuntil TECO has
checked all the way down to the command line
typed by the user. Note that although TECO

=100 AN51

teco

Macros

teco

checked all the way down to the command 1line
typed by the wuser. Note that although TECO
can exit a macro wusing an O command, it
cannot use that command to exit a loop. Only
a semicolon (;) can be used to terminate a
loop.

TECO has the ability to execute strings of text (macros)
other than those read from the user’s terminal. The associated
commands are listed below:

EXECUTING A MACRO IN A Q-REGISTER - M (Macro)

Mq

causes the contents of Q-register q to be
executed as a command string. Note that if
the M command is given any numeric arguments,
they are passed to the first command inside
the macro. String arguments can be fetched
by the :X command.

EXECUTING A MACRO IN A FILE - EM (External Macro)

EM/string/

is just like the M command except that the
command string 1is found in a file named
string .TECO. This file 1is 1looked for in
three places: 1) the working directory, 2)
the wuser’s 1login directory, 3) the TECO
library.

OBTAINING A STRING ARGUMENT TO A MACRO

:Xq

causes TECO to suspend execution of the
current macro, return to its caller to fetch
a quoted string into Q-register q, and then
restore the macro that was being executed.
Note that each :X command in a macro fetches
another quoted string. Note that the U
command(s) should be the first command in a
macro 1if one wishes to fetch numeric
arguments in a macro.

1-101 ANS51

teco teco

NOTES

1. Loops cannot cross macro boundaries, i.e. a loop cannot
start in one macro and end in another. This does not,
however, prohibit the M command from being used within
a loop.

2. A macro can modify itself if it 1s in a Q-register.
Note, however, that the current invocation of the macro
is not affected; only future accesses to the
Q-register. If the macro is invoked by the EM command,
the results of modifying the file are hard to predict:
TECO reads the command string directly from the file.

3. When a macro is invoked by the EM command, it should be
noted that the name of the macro is found in the
Q-register named ". Thus several macros can be put in
one segment with the first command in the segment being
0Q". (Don’t forget to put all the appropriate names on
the segment).

4y, If an M or EM command is given as the last command in
one macro, the command is interpreted as a goto rather
than a call. Thus, unlimited M’s can be done in this
manner although there 1is an implementation defined
limit to the depth of calls.

5. When the TECO command is entered, a macro named
start_up is searched for. If it is found, the arguments
to TECO are put onto the pushdown stack and the
start_up macro is executed. If no start_up macro 1is
found, the string EI/filename/J 1is executed, where
filename is the first argument to TECO. At the present
time, there 1is a start_up macro in the TECO library.
When the start_up macro is called, the first thing on
the pushdown 1list is the number of arguments TECO was
called with. The remaining items in the 1ist are the
actual string arguments to TECO going from left to
right on the command line.

CODING CONVENTIONS FOR MACROS

Since there are only a small number of Q-registers (95),
each with a one-character name, there are serious problems in
writing a set of macros that are compatible. A set of macros
become incompatible if one macro uses a Q-register for long-term
storage that any other macro uses at all. There are two ways
this effect can be combatted. First, by establishing certain
coding conventions, and second, by use of a documented macro
library. Probably the most important coding convention is the
specification of which Q-registers can be used inside a macro for

1-102 AN51

teco teco

“temporary storage. Many macro writers now use the ten Q-registers
1,2,3,4,5,6,7,8,9, and 0 for temporary storage. If one macro
calls another macro that destroys the contents of one of these
registers, the calling macro can save the value of the Q-register
in the pushdown list and then restore it after the other macro
has been called.

Fortunately, calling a macro is a very inexpensive operation
in TECO if the macro is in a Q-register. The EM command is much
more expensive, however. This leads to the practice of creating a
macro in a macro library that only 1loads a Q-register with a
useful macro. When the user realizes that he wants the macro, he
gives the EM command that 1loads the macro he wants into a
Q-register, where he can then call it whenever he wishes. It now
becomes necessary to have coding conventions that specify which
registers can be loaded permanently with macros. Since it should
be easy to type the macro names, the lower case alphabetic
letters should be used for this purpose. Sometimes a macro uses a
Q-register for 1long term storage. If the user does not have to
type the name of this Q-register, names that must be escaped on a
2741 are good, otherwise other special characters can be used.
This 1leaves the upper case alphabetic letters entirely to the
user to use to store intermediate results in editing. Also the
special characters -, ,, ., /, space, tab, and newline should be
reserved for the user since these are all lower case letters on
both a 2741 and a Model 37 teletype.

An extremely useful feature of TECO is that the last quoted
string is loaded into Q-register ". To allow this to continue to
be useful, all macros should make sure that Q-register " either
contains the 1last quoted string argument to the macro, if there
are any, or contains what it contained before the macro was
called. Q-register " can be saved on the pushdown list on entry
to a macro and then restored just before leaving the macro. Use
of" the pushdown list is very inexpensive.

RELATIVE COSTS IN TECO

TECO stores the buffer in two pieces. The first piece, all
the characters from the beginning of the buffer +to the current
pointer, 1is stored at the beginning of one buffer segment. The
second piece, all the characters from the current pointer to the
end of the buffer, 1is stored at the end of another buffer
segment. An insert merely adds text to the end of the first
buffer segment and increases the number of legitimate characters
in the first buffer segment. A D or X command merely changes the
number of legitimate characters in one of the buffer segments. In

1-103 AN51

teco teco

~order to move the pointer, a string copy from one buffer segment
to the other must be performed. It does not matter to TECO which
direction the pointer 1is moved, although a reverse search is
somewhat slower than a forward search, since the PL/I index
built-in function can only be used for a forward search.

Any operation that does not move text is less expensive than
an operation that does move text, where the cost of the operation
that does move text is proportional to the amount of text moved.
For the most part, performing input or output is the' major cost
involved 1in editing. This cost can be decreased by using more
sophisticated commands, such as loops or macros, and performing
the same editing operation with fewer interactions. The cost of
I/0 operations is comparable to a medium length search (5,000
characters).

Each text Q-register is presently kept in its own segment.
This means that if a start_up macro loads many Q-registers with
macros, then entering TECO for the first time in a process is
somewhat slow since all these segments must be created. TECO has
its own segment manager (get_temp_seg) that allows it to reuse
segments without calling hardcore to create and delete segments
when the values of Q-registers are changed. Whenever a string is
quoted, or a Q-register 1loaded with text, a new segment 1is
retrieved from get_temp_seg_ and loaded with the value. If the
string that is being loaded into the Q-register is in another
Q-register, the new Q-register is just made to point to the same
copy of the text in the first Q-register. :IAQB is therefore a
very simple operation, as are [(Push) and] (Pop). The feature
of keeping the last quoted string in Q-register " lets the user
take advantage of this scheme.

If the user wants to write a macro that must do some editing
on another file, it is much cheaper if he saves the value of
and Z-. , inserts the text to be edited, edits it, writes it out
or copies it into a Q-register, and then deletes what he was just
editing from the buffer. The net change to the buffer by all
these operations is zero, but the text that the user was editing
was never moved. This method is much cheaper than storing the
entire buffer in one Q-register, the value of the pointer in
another, and then wusing the buffer for the editing within the
macro.

There are four ways to transfer controi in TECO, by the >

command, the ; command, the " or :° command, and the O command.
Of these, the > command is the fastest since TECO already knows
exactly where to transfer it. The ;, ", and :° commands are next,

since they merely search from where they are forward. Although
the > command and the ; command cannot change macro 1levels, the
", and :° commands can. This adds a small expense. The ;, ", and

commands all have to check so that a ; command completely
skips over another nested 1loop and 1looks beyond it for a >.

1-104 AN51

teco teco

Similarly the " transfer skips over nested if statements, as does
the :° command. Usually the matching ~ or > is not far from the
transfer, so this only causes a short search. O is the most
general and most expensive transfer of control in TECO. It must
search the entire macro from the beginning, then the entire macro
that called the present macro, etc., until it finds it or
finishes searching the command line and gives an error. Although
this 1is the most expensive transfer, its cost is proportional to
the distance of the label from the beginning of the macro.

Conditionals

TECO has the ability to conditionally execute strings. The "
command corresponds to the PL/I statement "if ... then do;". The
" command corresponds to the PL/I statement "end;". " and ~ are
matched much like (and) and can be nested. The letter following
the " determines what test is made.

NUMERIC COMPARISONS - "E (Equals), "N (Not equal), "G (Greater

than),"L (Less than)

m,n"E if m=n, then execution continues; otherwise
execution skips to just after the
corresponding °

n"E identical to n,0"E

m,n"N like m,n"E except it tests for m"=z=n

n"N identical to n,0"N

m,n"G like m,n"E except it tests for md>n

n"G identical to n,0"G

m,n"L like m,n"E except it tests for m<n

n"L identical to n,0"L

TESTING FOR A SYMBOL CONSTITUENT - "C (symbol Constituent)

n"C if n is the ASCII code for either a letter, a
digit, or one of the characters ., _, or §;
then execution continues. Otherwise,

execution skips to the corresponding

1-105 AN51

teco teco

TERMINATING A CONDITIONAL DO - ° (matches ")

’,

is ignored when executed in normal execution.
It is used to close a conditional statement.

This command causes a transfer to the next ~,
just as a 1"e does. Since this command looks
like a ", it can serve to close a conditional

statement. This is useful if an if ... then
else ... statement is desired. The if
expression is a " statement, the then

expression 1is terminated by the :° command
and the else expression is terminated by the
" command.

Reading Input from the User’s Terminal - VW (V then Wait for
input)

VW does a V command (presently does nothing on
Multics) and then reads one character from
the user’s terminal. The ASCII value of the
character 1is returned as the value of the
command. Multics escape/kill processing is
not effected because only one character is
read at a time.

:VWq does a V command and then reads one line from
the user’s terminal. The 1line is put into
Q-register q. The newline 1is the 1last

character read in.

Passing a Command to the Command Processor - EC (External
Command)

EC/string/ passes the specified string to the Multics
command processor for execution.

Examining a character in the Buffer - A (Ascii)

nA The ASCII code for the (.+n)th character in
the buffer 1is returned as the value of the
command. n must be specified. (Note that 1
indicates the character just to the right of
the current pointer, 0 indicates the
character just to the left.)

1-106 AN51

teco

teco

Tracing Command Execution - ?

?

??

Translating Numbers

turns tracing on. When tracing is on, each
command executed by TECO is printed on the
user s terminal just before it 1is executed.

turns off tracing.

to ASCII and Vice Versa - \

\

n\

m,n\

Null Command - W

W

new_line

$

EXAMPLES OF MACROS

A Writing Macro

reads the decimal number found to the right
of the current pointer and returns its value
as the value of the command. The pointer is
moved to the right of the number. The number
can be signed and can be preceded by any
number of blanks or tabs. It is an error if
no number is found.

inserts the decimal interpretation of n into
the buffer to the 1left of the current
pointer.

inserts the decimal interpretation of m into
the buffer to the 1left of the current

pointer. The interpretation is padded on the
left to be at least n characters wide.

does nothing. It is most useful for throwing
away unneeded numeric arguments.

has the same effect as W.

has the same effect as W.

This macro writes out the entire buffer into a file whose
name is in Q-register #*¥. The file being edited can be changed
merely by doing :i¥/new_name/.

1-107 ANS51

teco teco

EOQ#* assumes that the name of the file we are
‘ editing 1is 1in Q-register ¥, It writes out
the entire buffer into this file.

A Restart Macro

This macro zeroes out the buffer, changes Q-register * to be
a new file name and reads the file into the buffer.

:x¥ hk eiqg¥*j

tX¥ takes one string argument and loads it into
Q-register ¥,

HK deletes all the text in the current buffer
before editing is restarted.

EIQ¥*J reads the new file into the buffer and put

the pointer at the beginning of the buffer.

A Start Up Macro

This macro only uses the first argument to TECO. It treats
it as a file name, loads it into Q-register ¥ and reads the file
into the buffer. It also loads the writing macro into Q-register
W.

11 :iwleog¥*] ql1"n 1% eiq¥*j

11 pops the top item off the pushdown 1list and
puts it into Q-register 1. This is the number
of arguments TECO was called with.

tiwleoq¥*| loads Q-register w with the writing macro
given in the above example.

q1"n if the contents of Q-register 1 are not zero,
then execute the following statements;
otherwise transfer to the °~ that ends the
macro.

1% pops the first argument to TECO off the
pushdown list and into Q-register ¥,

eig¥*j reads the file into the buffer and moves the
pointer to the beginning of the buffer.

this point is transferred to if there are no
arguments given to TECO.

1-108 . AN51

teco _ teco

A Substitute Macro

This macro takes two string arguments. The first string
argument is searched for, then it 1is deleted and the second
string inserted. :

X1 :x2 sql1 =-ql1d g2

:x1 loads the first string argument into
Q-register 1. .

X2 loads the second string argument into
Q-register 2.

sq1 searches for the first string.

-q1d deletes the first string when it is found.

g2 replaces the string found with the second

string argument.
When the macro returns Q-register, 1 and 2 contain the first

and second strings, respectively. Q-register " contains the
second quoted string.

1-109 AN51

teco

NAME MNEMONIC

a Ascii

b Beginning

c Characters

d Delete

ec External Command

ei External Input

em External Macro

eo External Qutput

teco

A TECO SUMMARY

USE AND EXPLANATION

nA

The value of the command is the ASCII
code for the (.+n)th character in the
buffer.

B
The value of this symbol is always
zero.

nC

Moves the pointer n characters to the
right. If n is omitted, 1 1is
assumed.

D

deletes the one character to the
right of the pointer.

+nD
deletes n characters to the right of
the pointer.

-nD .
deletes n characters to the 1left of
the pointer.

EC/command/
passes the string to the Multics
command processor.

EI/file/
reads the file into the buffer to the
left of the current pointer.

EM/macro_name/

searches for the file
macro_name.teco, first in the working
directory, then the login directory,
then the TECO library. If found, it
executes it as a macro.

EO/file_name/

writes out the entire buffer into the
file specified.

1-110 AN51

NAME MNEMONIC

eq External Quit

g Get Q-register

f. h wHole

i Insert
H
J Jdump
f\ Kk Kill buffer

USE AND EXPLANATION

+nEQ/file_name/
writes out the next n lines.

(0 or-n)EO/file_name/
writes out the last n lines.

m,nEQ0/file_name/
writes out the (m+1)th.through the
nth characters.

EQ
TECO returns to its <caller after
zeroing out all Q-registers.

Gq

inserts the text contained in
Q-register q into the buffer to the
left of the pointer. If Q-register q
contains a number, it is converted to
a character string and inserted.

H

This symbol is equivalent to 0,Z. It
is the only symbol that has two
values.

I/string/
inserts the quoted string to the left
of the pointer.

nl
n is the ASCII code for a letter that
is inserted.

:Iqg/string/
inserts the quoted string into
Q-register q.

n:1q
inserts the single character whose
code is n into register q.

nd

moves the pointer to the right of the
nth character in the buffer. If n is
omitted, 0 is assumed.

K

deletes the rest of the current 1line
from the buffer.

1-111 ANS51

1

m

Lines

Macro

MNEMONIC

USE AND EXPLANATION

+nkK
deletes the next n 1lines from the
buffer.

(0 or-n)K
deletes the last n lines from the
buffer.

m,nkK
deletes the (m+1)th through the nth
characters from the buffer.

L
moves the pointer to the beginning of
the next line.

+nL
moves the pointer to the beginning of
the next nth line.

(0 or-n)L
moves the pointer to the beginning of
the last nth line.

:L
moves the pointer to the end of the
current line.

+n:L
moves the pointer to the end of the
next (n-1)th line.

(0 or-n):L
moves the pointer to the end of the
1st (n+1)th line.

m,nMq/string1/string2/.../stringn/
starts executing the text in
Q-register q as a macro. m and n are
numeric arguments to the first
command in the macro. string1
through stringn are string arguments
to the macro that can be retrieved
with the :X command. EM also takes
all these arguments.

o/label/

transfers control to just after label
in the current macro, its caller,
etec., or the command string.

1-112 ANSA1

r

5

Q-register

Reverse

Search

MNEMONIC

teco

USE AND EXPLANATION

Qq

the value of this command is the
value of Q-register q if it is a
numeric Q-register or the number of
characters 1in Q-register q if it
contains text. This command can also

replace any quoted string if
Q-register q contains . text. The
contents of the Q-register are used
as the quoted string. (See also

sections 3.1.2.2 and 3.1.4.)

R
moves the pointer one character to
the left.

nR
moves the pointer n characters to the
left.

S/string

searches from the current pointer to
the end of the buffer for ‘'string",
if found it moves the pointer to the
right of the string.

+nS/string/
searches for n occurrences of the
string. Moves the pointer to the

right of the nth occurrence.

-nS/string/

searches for n occurrences of
"string" from the current pointer to
the beginning of the file. If found,
it moves the pointer to the 1left of
the nth occurrence.

+m,+nS/string/

only searches from the current
pointer to the beginning of the next
mth line.

(0 or-m),-nS/string/

only searches from the current
pointer to the beginning of the 1last
mth line.

:s
takes arguments in all the ways S

1-113 AN51

t

s

u

VW

Type

Update

MNEMONIC

teco

USE AND EXPLANATION

does, except that if S does not find
the string, it types out an error
message and returns to TECO command
level. :S does not. Instead, :S has
the value -1 if the search succeeds
and 0 if the search fails.

T .
types out the rest of the current
line of the terminal.

+nT

types out the buffer from the current
pointer to the beginning of the next
nth line.

(0 or-n)T

types out the buffer from the
beginning of the last nth line to the
current pointer.

m,nT
types out the (m+1)th through the nth
characters of the buffer.

:T/string/
types out the quoted string on the
terminal.

Uq
sets Q-register q to a very large
positive number.

nUq

sets Q-register g to n.

m,nUq

sets Q-register g to n and returns m
as 1its wvalue. This may be used

inside a macro to get the numeric
arguments to the macro.

VW

when this command is executed, one
character is read from the terminal.
The ASCII code for the character read
is the value of the VW command.

:VWq
reads in an entire 1line from the

1-114 AN51

W

X

4

%

MNEMONIC

Wipe out

eXtract from buffer

Last Letter

Increment

teco

USE _AND EXPLANATION

terminal and puts it into Q-register
qg. The newline is the last character
in the register.

W
this command is wused for throwing
away unwanted numeric arguments.

Xq
loads the rest of the current line
into Q-register q.

+nXq

loads Q-register q with everything
from the current pointer to the
beginning of the next nth line. :

(0 or-n)Xaq

loads Q-register q with everything
from the beginning of the last nth
line to the current pointer.

m,nXq

loads Q-register g with everything
from the (m+1) character to the nth
character.

:Xq

loads Q-register q with the next
string argument to the macro we are
executing 1in.

Z

this symbol’s value is the total
number of characters in the buffer.
ZJ moves the pointer to the right of
the last character in the buffer.

%q

if Q-register q contains a numeric
value, this command increments the
register by1. The value of the
command is the new value of the
Q-register.

$

throws away 1its arguments and does
nothing.

1-115 AN51

NAME MNEMONIC

? What “s happening?

27

\ Number-character

[Push
] Pop

< Begin a loop

> End a loop

Terminate if positive

-e

teco

USE _AND EXPLANATION

newline
throws away its arguments and does
nothing.

?
turns tracing on.

?2°
turns tracing off.

\

the value of +this command is the
decimal number immediately to the
right of the pointer. It moves the
pointer to just after the number.

n\
inserts the decimal representation of
n to the left of the pointer.

m,n\

inserts the decimal representation of
m to the left of the pointer. The
representation 1is padded on the left
to be at least n characters wide.

[q
pushes the contents of Q-register q
onto the pushdown 1list.

lq
pops the top element off the pushdown
list and into Q-register q.

<

this marks the place in the command
string that is transferred to by the
> command. This 1loop can only be
exited by the ; command.

>

transfers control to just after the
last < command executed and
decrements the 1loop count. If we
have looped enough times, this
command does nothing. Nested 1loops

are allowed.

if the last) command was

1-116 AN51

IIC

lle

'll

)ln

o«
.

MNEMONIC

If Symbol Constituent

If Edual

If Greater

If Less than

If Not Equal

Matches "

teco

USE AND EXPLANATION

unsuccessful, transfers to just after
the next > and exits the present
loop; otherwise does nothing.

n;

if n 1is positive, transfers control
to just after the next > command and
exits the present 1loop; otherwise
does nothing.

n"C

if n is the ASCII code for either a
letter, a digit, .,_, or $; does
nothing. Otherwise, transfers to

just after the next

m,n"E
if m=n, then does nothing; otherwise
goes to just after the next ’.

‘n"E

if n=0.

m,n"G
if mdn.

n""G
if n>0.

m,n"L
if m<n.

n"L
if n<o0.

m,n"N
if m“=n.

n"N
if n":O.

marks the location a " command can
transfer to. If executed, as a
command, it does nothing.

marks the location a " command can
transfer to. If executed as a
command, it transfers to Jjust after

1-117 AN51

MNEMONIC
goto
Label
Pointer
Equals

teco
USE AND EXPLANATION
the next °. If statements may be
nested, but " characters in the

command string are only matched with
one °“ character.

o/label/
transfers control to Jjust after
label. o

label-
this entire construct is ignored if
it is executed.

the value of +this command is the
value of the current pointer.

types out a newline.

n=
types out n on the console followed
by a newline.

m,n=

types out m followed by a space,
followed by n, followed by a newline.

1-118 AN51

teco_error teco_error

Name: teco_error

The teco_error subroutine, which is most frequently used as
a command, prints the long form of a teco error message given the
short term.

Usage
declare teco_error entry (char(¥*));
call teco_error (name);

where name is the short form of a teco error message. (Input)

1-119 AN51

teco_ssd teco_ssd

—— B e —

Name: teco_ssd

The teco_ssd command allows the user to specify a directory
for teco to search when trying to find a teco macro to execute.
The directory so specified is searched instead of the user’s
directory. :

Usage
teco_ssd path

where path is the absolute pathname of a directory to be searched
by teco_get_macro_ instead of the user’s home directory.

1-120 AN51

’F-

test_archive test_archive

Name: test_archive, ta

The test_archive command is a library maintenance tool that
checks an archive segment for archive format errors or other

inconsistencies. It is run weekly to check all archive segments
in the online libraries.

Usage
test_archive paths

where paths are the pathnames of the archive segments in question
(without the suffix archive).

1-121 AN51

test_tape test_tape

Name: test_tape

The test_tape command invokes a Device Interface Module
(DIM) whose only function is to write and read a tape to
determine its reliability. It reports all hardware detected
errors (parity, read after write, etc.) and the software detected
incorrect data condition. The test_tape command can also be used
to do compatibility checks between drives (i.e., write a tape on
one, read it on another). .

Usage
test_tape mode pattern count volumeid density
where:

1. mode is the mode of the test. If the character -w 1is
present in the mode string, then the tape is
written. If -r is present, then the tape is read.
Either -wr or -rw are also legal, but note that
the tape is always written first and read second.

2. pattern specifies the word of octal data to be wused to
fill the buffers. It should take the form -ptrn
followed by a space and up to 12 octal digits. If
less than 12 digits are given, the field is padded
on the left with zeros.

3. count indicates the number of writes to be performed in
creating the tape. Each write operation creates
three 272-word physical records.

Notes

If no arguments are specified, the tape is both written and
read, with a data pattern of 525252525252, for the entire length
of the tape.

The test _tape command senses the end of tape mark (EOT) and
stops even if the record count has not been exhausted.

This command has four control arguments that control what

happens when an error is encountered. They are:
print, noprint controls printing of an error when it occurs.
Statistics are kept of all errors. The

default is print.

1-122 AN51

test_tape test_tape

"halt, nohalt tells test_tape to terminate when an error is
encountered. The default is nohalt.

retry, noretry specifies that if the I/0 is in error that it
should be retried. test_tape retries 25
times before giving up. Statistics are kept
of all recoverable errors. The default is

retry.

sleep, nosleep specifies that test_tape should sleep when a
nonrecoverable error is found. This allows
the operator to mark the tape. The program

pauses for two minutes and then continues.
The default is nosleep.

These control arguments can be changed by using the change
entry point of test_tape. The change control argument accepts up
to 99 arguments, each of which can be one of the above or the
string options. The latter causes test_tape to print the control
arguments in effect.

Examples
test_tape$change sleep noprint options
results in the sleep control argument being enabled, the print

control argument being disabled, and a 1ist of the current
control arguments being printed.

The change entry offers another advantage in that the user
can quit out of an executing test and change the current control
arguments. In the example the wuser has decided that he is
getting too much output and wishes to stop the printing. He
presses the QUIT button and types:

test_tape$change noprint; start

The change takes effect immediately.

1-123 AN51

unassign_device unassign_device

‘Name: wunassign_device

The unassign_device command causes the specified I/0 device
to become unassigned wusing the facilities of the Hardcore Ring
I/0 Assignment Manager (IOAM). If the caller has the ability to
call hphes_ entries, this command works for a device attached to
any process; otherwise it works only for devices attached to the
calling process.

This command bypasses the attach table of the relevant
process, thus leaving it in an inconsistent state, with possible
dire consequences for the process if it should use the switch
again. Normally, a user should never need to wuse this. The
io_call command should be used to detach a device from command
level.

Usage

unassign_device ionames

where ionames are the names of I/0 devices to be freed.

1-124 AN51

(‘

value value

Name: value

The value command returns a character string associated with
a named item in a user symbol table segment. This enables
administrative exec_com segments to reference variables.

Command entry points are provided to set entries in the
symbol table and to list the symbol table.
Entry: value

This entry is meant to be called as an active function. ;t
looks wup 1its argument in the segment value_seg in the user’'s

current working directory, and returns the value associated with

the argument. If no wvalue 1is found, the string undefined is
returned.

Usage

[value ident]

Note

This call returns the value associated with ident to the
command processor.

Entry: value$set

This command entry can set entries in value_seg or delete
entries from value_seg.

Usage

value$set ident val
Sets identifier ident to have the value val.
value$set ident

Removes the definition of ident from value_seg.

Note

Both ident and val can be up to 32 characters long.

1-125 AN51

value value

Entry: value$dump
This command entry lists particular values in value_seg or
lists the whole segment.
Usage
value$dump ident
lists the value of ident.
value$dump

lists the contents of value_seg.

Entry: value$set_seg

This command entry causes the value command and active
function to use a value_seg given by pathname.
Usage

value$set_seg path
where path causes the value command to use the segment identified
by path instead of value_seg for the rest of the process or until
another call to value$set_seg.
Note

For this entry only, if the symbol table segment does not

exist, it is created.

Example:

value$set it output_file
value$set namel """John Smith"""

dprint -he [value name1] [value it]

1-126 AN51

SECTION II

SUBROUTINES

This section consists only of subroutine descriptions; no
design motivation, implementation description, or data structure
description is included except what is needed to describe the use
of the subroutine as a tool. If a more detailed description is
desired, check the Index PLM, Order No. AN50, to find out which
PLM contains more material on a specific subroutine.

This section, subroutines, is arranged alphabetically. For
programs that consist of a set of several related subroutines,
the set may be documented within one subroutine description.
Also, the set 1is arranged according to the order in which the
subroutines are used rather than alphabetically.

abbrev__ abbrev

Name: abbrev_

The abbrev_ subroutine provides a means of changing data in
and extracting data from the profile segments used by the abbrev
command. All of the features of the command itself are available

and a simple expand entry is provided for expanding abbreviations
or command lines.

Entry: abbrev_g$abbrev_

This entry is used to expand and execute a command 1line.
The command line passed to abbrev_ can be an abbrev request line
(as in the abbrev command), which is treated as if the abbrev
command 1itself had intercepted the call. This means that the
user can add and delete abbreviations as well as change the other
control modes of abbrev. The abbrev command need not have been
invoked in the process for abbrev_ to be called.

Usage

declare abbrev_g$abbrev_ entry (ptr, fixed bin, fixed bin);

call abbrev_$abbrev_ (ptr, n, code);

where:

1. ptr is a pointer to an aligned character string that is to
be interpreted as a command line. The character string
can be an abbrev request line. (Input)

2. n is the number of characters 1in the above mentioned

string. (Input)

3. code is a standard Multics status code returned from the
procedure command_processor_. (Output)

Note

If the character string passed to abbrev_ is not an abbrev
request line, the string is expanded and the expanded version 1is
passed on to the Multics command processor for execution.

Entry: abbrev_$expanded_line

This entry is given a pointer to a character string and
returns through another pointer an expanded version of the
string. The string can contain abbrev break characters (see the
abbrev command description in the MPM Commands and Active

2-2 AN51

~

abbrev_ abbrev_

‘Functions, Order No. AG92) that are treated exactly as in the
abbrev command.

Usage

declare abbrev_$expanded_line entry (ptr, fixed bin, ptr,
fixed bin, ptr, fixed bin);

call abbrev_g$expanded_line (in_ptr, inl, vout_ptr, voutl,
out_ptr, outl);

where:

1. in_ptr is a pointer to the aligned character string to be
expanded. (Input)
2. inl is the number of characters in the input character

string. (Input)

3. vout_ptr is a pointer to a data area where the output
(expanded) character string can be placed. (Input)

4., voutl is the number of characters that can be placed in
the area to which vout_ptr points. (Input)

5. out_ptr points to the expanded string. (Output)

6. outl is the number of characters in the expanded string.
(Output) A

Notes

If the length of the expanded string exceeds the length of
the area provided (pointed to by vout_ptr), abbrev_g$expanded_line
allocates in system_free_n_ as much storage as 1is necessary to
hold the entire expanded line. It is the user’s responsibility
to free this storage when it is no longer fYYyYr.

The vout_ptr pointer should not point to the same string as
in_ptr since expansion 1is done directly into the area to which
vout_ptr points.

Entry: abbrev_$set_cp_
This entry sets up a different command processor to be
called by abbrev_ after a command line is expanded. Its argument

is an entry. If the first pointer in the entry is null, abbrev_
calls command_processor_.

2-3 ANS51

abbrev_ abbrev_

Usage
declare abbrev_$set_cp_ entry (entry);
call abbrev_g$set_cp_ (cp_entry);

where cp_entry is the entry of the desired command processor.

Examples

The code:

chars = ".a ab1 " || string;

call abbrev_(addr(chars), length(chars), code);

sets up ab1 as an abbreviation for the character string stored in
string.

The code:

chars = '"delete foo; logout';
call abbrev_(addr(chars), length(chars), code);

calls the command processor with the string arrived at by
expanding the command line:

delete foo; logout

That is, if foo 1is an abbreviation for #¥.pl1, the command
processor is given the line:

delete ¥.pl1; logout

to be executed.

The code:

chars = some_string;
cp = addr(chars);
Xcp = addr(xchars);

call abbrev_$expanded_line (cp, length(chars),
xcp, length (xchars), outp, outl);

copiles some_string into chars and leaves the expanded version 1in
xchars wunless the length of the expanded version is greater than
length(chars). In that case the expanded version is in allocated
storage. In either case outp points to the expanded version and
outl is its length.

2=l AN51

ask ask

Name: ask_

The ask_ subroutine provides a flexible terminal ipput
facility for whole lines, strings delimited by blanks, or fixed
point and floating point numbers. Special attention is given to
prompting the terminal user.

Entry: ask_s$ask_
This entry returns the next string of characters delimi@ed
by blanks or tabs from the line typed by the user. If the line

buffer is empty, ask_ formats and types out a prompting message
and reads a line from user_input.

Usage
declare ask_ entry options (variable);

call ask_ (ctl, ans, ioa_args...);

where:

1. ctl is a control string (char(¥*)) in the same format
as that used by ioa_. (Input)

2. ans is the return value (char(*)). (Output)

3. ioa_args are any number of arguments to be converted

according to ctl. (Input)

Entry: ask_$ask_clr

This entry clears the internal line buffer. Because the
buffer is internal static, one program’s input can accidentally
be passed to another unless the second begins with a call to this
entry. If a value typed by the user is incorrect and if the
program wishes to ask for the line to be retyped, ask_s$ask_clr
can also be called.

Usage

declare ask_$ask _clr entry;

call ask_$ask _clr;

There are no arguments.

2-5 AN51

ask_ ask_

‘Entry: ask_$ask_int

This entry works the same as ask_ except that the next item

on the line must be a number. An integer value 1is returned.
Numbers can be fixed point or floating point, positive or
negative. A leading dollar sign or a comma is ignored. If the

value typed is not a number, the program types:
"string" non-numeric. Please retype:

and waits for the user to retype the line.

Usage

declare ask_g$ask_int entry options (variable);

call ask_$ask_int (ctl, int, ioa_args...);
where:
1. ctl is as above. (Input)
2. int is the return value (fixed bin). (Output)
3. ioa_args are as above. (Input)

Entry: ask_$ask_flo

This works 1like ask_$ask_int except that it ‘returns a
floating value.

Usage

declare ask_g$ask_flo entry options (variable);

call ask_$ask_flo (ctl, flo, ioa_args...);

where:

1. ctl is as above. (Input)

2. flo is the return value (float bin). (Output)
3. ioa_args are as above. (Input)

2-6 AN51

ask ask

~Entry: ask_$ask_line
This entry returns the remainder of the line typed by the

user. Leading blanks are removed. If there is nothing left on
the line, the program prompts and reads a new line.

Usage

declare ask_g$ask_line entry options (variable);

call ask_$ask_line (ctl, line, ioa_args...);

where:

1. ctl is as above. (Input)

2. line is the return value (char(#*)). (Output)
3. ioa_args are as above. (Input)

Entry: ask_$ask_c

This entry tests to determine if there is anything 1left on
the 1line. If so, it returns the next symbol, as in ask_, and
sets a flag to nonzero. Otherwise, it sets the flag to zero and
returns.
Usage

declare ask_$ask_c entry (char(*), fixed bin);

call ask_$ask_c (ans, flag);

where:
1. ans is the next symbol, if any. (Output)
2. flag =1 if the symbol is returned;

=0 if there is no symbol. (OQutput)

Entry: ask_$ask_cint

This 1is a conditional entry for integers. If an integer is
available on the line, it is returned and flag is set to 1. Irf
the line is empty, flag is set to 0. If there is a symbol on the

line, but it is not a number, it is left on the line and flag is
set to -1.

2-7 AN51

ask

~Usage

declare ask_$ask_cint entry (fixed bin, fixed bin);

call ask_$ask_cint (int, flag);

where:
1. int is the returned value, if any. (Outpgt)
2. flag =1 if int is returned;

=0 if the line is empty;
==1 if there is no number. (OQutput)
Entry: ask_g$ask cflo

This entry works like ask_$ask_cint but returns a
value if one is available.

Usage

declare ask_g$ask_cflo entry (float bin, fixed bin);

call ask_$ask_cflo (flo, flag);

where:
1. flo is the returned value, if any. (Qutput) -
2. flag =0 if the line is empty;

=1 1if the value is returned;
=-=1 1if it is not a number. (Output)

Entry: ask_g$ask_cline

ask

floating

This entry returns any part of the line that remains. A

flag is set if the rest of the line is empty.

2-8

AN51

ask ask

.Usage

declare ask_$ask_cline entry (char(#*), fixed bin);

call ask_$ask _cline (line, flag);

where:
1. line is the returned line, if any. (Output)
2. flag =1 if the line is returned;

=0 if the line is empty. (Output)

Entry: ask_g$ask_n
This entry scans the 1line and returns the next symbol

without changing the line pointer. A call to ask_ later returns
the same value.

Usage
declare ask_$ask_n entry (char(#*), fixed bin);

call ask_g$ask_n (ans, flag);

where:
1. ans is the returned symbol, if any. (Output)
2. flag =0 if the line is empty;

=1 if the symbol is returned. (Output)

Entry: ask_$ask_nint

This entry scans the line for integers. The second argument
is returned as -1 if there is a symbol on the line but it is not
a number, as 1 if successful, and as 0 if the line is empty.

Usage

declare ask_$ask_nint entry (fixed bin, fixed bin);
call ask_g$ask_nint (int, flag);

Same arguments as in ask_$ask_cint.

2-9 AN51

Entry: ask_¢$ask nflo

This entry scans the line for floating point numbers.

Usage
declare ask_$ask_nflo entry (float bin, fixed bin);
call ask_$ask_nflo (flo, flag);

Same arguments as in ask_$ask_cflo.

Entry: ask_g$ask_nline

This entry initiates a scan of the rest of the line.

Usage

declare ask_$ask_nline entry (char(*), fixed bin);
call ask_$ask _nline (line, flag);

Same arguments as ask_$ask_cline.

Entry: ask_$ask_setline

This entry sets the internal static buffer in ask_ to the
given input line so that the line can be scanned.

Usage

declare ask_g$ask_setline entry (char(¥*));

call ask_$ask_setline (line);
where line is the line to be placed in the ask_ buffer. Trailing
blanks are removed from line. A carriage return is optional at
the end of line. (Input)
Entry: ask_g$ask_prompt

This entry deletes the current contents of the internal line

buffer and prompts for a new line. The line is read in, and the
entry returns.

2-10 AN51

ask ask

Usage

declare ask_$ask_prompt entry options (variable);

call ask_$ask_prompt (ctl, ioa_args...);

where:

1. ctl is a control string (char(¥*)) similar to that
typed by ioca_. (Input)

2. 1ioa_args are any number of arguments to be converted

according to ctl. (Input)

AN51

bk_arg_ reader_ bk_arg reader_

~Name: bk_arg_reader_

The bk_arg reader_ subroutine handles most argument reading
for backup and the reloader. It is called from all of the backup
command programs, start_dump, backup_dump, reload and
backup_load. The main function of bk_arg reader_ is to set flags
and to enter data, such as pathnames, in the backup external
static segment bk_ss_.

Usage

declare bk_arg_reader_ entry (fixed bin, ptr,
fixed bin(35));

call bk_arg_reader_ (iac, ialp, ocode);

where:

1. iac is the index of the first argument to be processed.
(Input)

2. ialp is a pointer to an argument list. (Input)

3. ocode 1is the standard status code (see "Notes"). (Output)

Entry: bk_arg reader_$dump_arg_reader

This entry is called by start_dump, catchup_dump,
complete_dump, and backup_dump to handle input arguments.
Usage

declare bk_arg reader_$dump_arg_reader entry (fixed bin,
ptr, fixed bin(35));

call bk_arg reader_¢$dump_arg_reader (iac, ialp, ocode);

Same arguments as above.
Entry: bk_arg reader_g$reload_arg reader

This entry is called by each of the reload commands (reload,
iload, retrieve, and backup_load) to handle input arguments.

2-12 AN51

A

bk_arg reader_ bk_arg_reader_

Usage

declare bk_arg_reader_$reload_arg_reader entry (fixed bin,
ptr, fixed bin(35));

call bk_arg_reader_$reload_arg_reader (iap, ialp, ocode);

Same arguments as above.

Notes

The bk_arg_reader_ subroutine handles three classes of
arguments: those common to both reloading and dumping, those
related only to reloading, and those related only to dumping. In
addition, there are arguments used only by a particular entry or
by all but one entry. Finally, there are control arguments that
merely direct the handling of an immediately following argument.

Control arguments and a few other arguments should be

preceded by a minus sign (-). Arguments that immediately follow
control arguments cannot be preceded by a minus sign (-=).

Arguments Common to All Backup Commands

-all causes switches to be set indicating that no date
testing is to be done except to ensure that
reloading older copies of directories does not
overwrite newer ones. Default varies with the
particular entry called.

-control indicates that the following argument is a dump
control file name if entry was through the
dump_arg_reader entry or a retrieval control file
name if entry was through the reload_arg_ reader
entry.

-debug disables those hphcs_ calls that set quotas and
transparency switches.

-nodebug enables hphes_ calls to set quotas and the
transparency switches. This is the default.

-err_offl causes error messages to be output into a file
rather than online. The name of the error file is
given on the first error encountered. This is the
default. :

-err_onl causes error messages to be output onto the user’s
console.

2-13 AN51

bk_arg_ reader_

-map

-nomap

-operator

->string

bk_arg_reader_

causes a list of the segments and directories
processed to be output into a file. This is the
default.

inhibits 1listing of +the names of processed
segments and directories "and turns on the tape
switch if entry was through dump_arg_reader (see
-tape).

indicates that the next argument is the operator’s
(or wuser’s) name or initials up to 16 characters
in length.

if the user originally invoked reload$retrieve or
backup_load, then >string must be the pathname of
a retrieval control file. If entry to
bk_arg_reader_ was through the dump_arg_reader
entry then >string must be the pathname of a
segment to be dumped or a directory where dumping
of a subtree is to begin.

-assumes this argument to be a date, where x 1is a

decimal integer; an attempt is made to convert it

to a storage system date using
convert_date_to_binary_. (See date information
shown below under "Otherwise Unrecognized

Arguments".)

Arguments. Recognized by the Dumper

-contin

-nocontin

-dtd

-hold

-nohold

-only-

continues by starting incremental backup after the
catchup pass. This is the default.

ehds the dump after the catchup pass.

causes each segment to be tested and dumped only
if the segment or its branch has been modified
since the last time it ‘was dumped.

causes the current dump tape or tapes to remain
mounted and inhibits rewinding after the current
dump cycle is completed. This 1is set by the
dumper.

causes the dump tape or tapes to be rewound and
unloaded .at the end of the current dump cycle.
This is the default.

indicates . that only the ‘requested segment or

directory and its branch are to be dumped. (See
->string above.)

2-14 AN51

bk_arg reader_

-sweep

-output

-nooutput

-restart

-tape

-notape

-tapes

-1tape

-2tapes

-wakeup

bk_arg_readeh_

indicates that the whole subtree beginning with
the given directory is to be dumped, subject to
the dtd and date criteria if they have been
invoked. (See ->string -dtd and -x... above).
This is the default.

causes dump information to be output onto tape if
the tape switch is on. This is the default.

inhibits writing on tape even if tape' switch is
on. This is wused for a dumper test run or
debugging.

indicates that the next argument is the pathname
of a segment or directory where dumping is to be
restarted. Use of this feature assumes that there
is a dump control file. Its normal wusage 1is 1in
conjunction with catchup_dump or complete_dump
where a failure of some nature has occurred.

allows writing onto a dump output tape. This 1is
the default.

inhibits writing onto a dump output tape. This
also causes a map to be output even if it was
previously inhibited. (See -map above).

indicates that the next argument is the number of
output tape copies to be made. Only 1 or 2 are
allowed and the default is one.

sets the number of tape copies to 1 as an
alternative to the -tapes argument.

sets the number of tape copies to 1 as an
alternative to the -tapes argument.

indicates that the next argument 1is the wake-up
interval between dump cycles given in minutes.

Arguments Recognized by the Reloader

-first

-last

prevents searching a tape for additional copies of
a requested segment or subtree after the first
copy has been retrieved.

indicates that the last copy of a given segment or

subtree on a tape or set of tapes 1is to be
retrieved. This is the default.

2-15 AN51

bk_arg reader_

-quota

-noquota

-reload

-noreload

-gcheck

-noqcheck

-trim

-notrim

bk_arg_reader_

causes quotas to be reset during reload and
suspended during retrieval. This is the default.

inhibits resetting and suspension of quotas.

enables actual reloading of segments into the
hierarchy. This is the default.

inhibits actual reloading of segments into the
hierarchy. This is a debugging tool and when map
is enabled (see -map) it also causes the names and
access control lists (ACLs) that would have been
reloaded to be put into the map.

disables suspension of quota checking.

enables suspension of quota checking. This is the
default.

enables deletion of all entries in a directory
not found 1in the copy of that directory being
reloaded. (Entries deleted since an earlier
version of the directory existed are deleted when
a later version is reloaded.) This is the default
for reload and iload.

inhibits deletion of entries in a directory.
Entries can only be added or modified. This is
the default for retrieve.

Otherwise Unrecognized Arguments

an attempt 1is made to translate otherwise
unrecognized arguments into a storage system date
using convert_date_to_binary_. Dates have special
meaning for various entries and functions:

To the dumper a date means that only segments that
have been modified or whose entries have been
modified since the date given are to be dumped.

To the retriever a date means load the first copy
of a segment or subtree dumped after the date
given. Thus if several copies of a segment exist
on a single dump tape, the user can indicate by
this means which copy is to be retrieved.

2-16 AN51

bk_arg_reader_ bk_arg_reader_

r

The convert_date_to_binary_ subroutine is used to
convert dates; any format of date acceptable to it
is acceptable to bk_arg reader_. -An easy format
to remember is MM/DD/YY tttt.t.

An example is 10/23/73 1405.6.

2-17 AN51

canonicalizer_ canonicalizeb_

Name: canonicalizer_

The canonicalizer_ subroutine canonicalizes an input string
according to standard Multics format. The string is placed into
the caller’ s buffer in canonical form if its 1length is not
greater than that of the buffer. If the canonical string does
not fit into the caller’s buffer, the error code
error_table_$area too_small is returned. The partial string is
not returned.

Usage
declare canonicalizer_ entry (ptr, fixed bin, ptr, fixed bin,
fixed bin, bit(4) aligned, fixed bin);
call canonicalizer= (inptr, inlength, outptr, maxlength,
outlength, flags, code);
where:
1. inptr is a pointer to the string to be
canonicalized. (Input)
2. inlength is the length of the input string. (Input)
3. outptr is a pointer to the buffer in which the
canonicalized string is to be placed.
(Input)
4., maxlength is the character length of the output buffer.
(Input)
5. outlength is the returned string length. (OQOutput)
6. flags is a set of bit flags, each controlling a
canonicalization function. These bits are,

from the left:

Canonicalization control. This bit must be
on for the string to be canonicalized.

Erase/Kill control. If this bit is on, erase
and kill characters in the string are
processed with their erase and kill
functions.

Escape control. If this bit is on, escape

characters in the string are processed with
their escape functions.

2-18 AN51

~

canonicalizer_

canonicalizer_

TTY33 convention indicator. If this bit is
on, special escape conventions for the
TTY33-type character set are processed. The
escape control bit must also be on to allow
processing of escape characters if this mode
is desired. (Input)

7. code is a standard Multics status code. (Output)

Note

This routine does
of the wvalue of the
that case processing
deleting the escape
since their initial

canonicalization. In

not alter the cases of letters, regardless
TTY33 convention indicator. It is assumed
has already taken place, but without
characters responsible for capitalization,
presence is essential to correct
this mode, single escape characters

preceding capital letters are simply deleted.

AN51

command_processor_ command_processor_

Name: command_processor_
The command_processor_ subroutine is +the Multics command
language interpreter. It parses a command line and invokes the

specified command or commands. It should never be called
directly but rather through the subroutine cu_$cp.

Usage

declare command_processor_ entry (ptr, fixed bin(17), fixed
bin(17));

call command_processor_ (inp, inl, code);

where:

1. inp is a pointer to the command line, which must be an
aligned character string. (Input)

2. inl is the length of the command line. (Input)

3. code is a standard Multics status code that equals 0 if

there are no errors in the command 1line; equals
100 if a null line was typed. code is nonzero if
there is an error in the line. (Qutput)

Entry: command_processor_g$return_val

This entry 1is wused by the bracket handling routine,
proc_brackets_, to evaluate a command line inside square
brackets and to return a string that is the concatenation of all
the values returned by all the commands in the command line.
(Each value is separated from the next by a blank.)

Usage
declare command_processor_$return_val entry (ptr, fixed
bin(17), fixed bin(17), char(¥*) varying, char(¥)
varying, fixed bin(17));

call command_processor_$return_val (inp, inl, flag,
ret_string, workspace, code);

2-20 AN51

command_processor_ command_processor_

‘Where:

1. inp is a pointer to the command line. (Input)

2. inl is the length of the command line. (Input)

3. flag equals 0 if brackets are to be treated as
special characters; otherwise equals 1.
(Input)

4. ret_string is the value to be returned. (Output)

5. workspace is for intermediate storage. (Input)

6. code is a standard Multics status code. (OQutput)

Entry: command_processor_g$ignore_brackets

This entry is used by the bracket processing routine
proc_brackets_ to process a command line in which brackets are
not to be treated as special characters.

Usage

declare command_processor_g$ignore_brackets entry (ptr,
fixed bin(17), fixed bin(17));

call command_processor_g$ignore_brackets (inp, inl, code);

where:

1. inp is a pointer to the command line. (Input)
2. inl is the length of the command line. (Input)
3. code is a standard Multics status code. (Output)
Entry: command_processor_$set_line

This entry is used to set the maximum expanded command line
size.

2-21 AN51

command_processor__ command_processor_

Usage
declare command_processor_g¢$set_line entry (fixed bin (17));

call command_processor_g$set_line (newsize);

where newsize is the maximum expanded command line size. (Input)
Entry: command_processor_$get_line

This entry is wused to obtain the value of the maximum
expanded command line size.
Usage
declare command_processor_$get_line entry (fixed bin(17));
call command_processor_$get_line (size);

where size 1s the current maximum expanded command line size.
(Output)

2=-22 AN51

r

copyright_notice_ copyright_notice_

Name: copyright_notice_

The copyright_notice_ subroutine adds (and optionally
deletes) copyright notices to source program segments.

Usage

declare copyright_notice_ entry (char(*) aligned, char(¥)
aligned, fixed bin(35)); :

call copyright_notice_ (dn, en, ec);

where:

1. dn is the directory name in which the segment to be
modified resides. (Input) '

2. en is the entryname of the segment. (Input)

3. ec is a standard Multiecs status code. (Output)

Operation

The copyright_notice_ subroutine extracts the language
suffix from 1its second argument, and searches the notice
directory for segments named suffix.Z and suffix.Z_delete, where
Z 1is the string copyright unless changed by a call to
copyright_notice_¢$set_suffix.

If a delete notice exists and is in the segment, it is
removed. If the segment does not contain a copy of the new
notice it 1is added at the top of the segment, but following any
percent-semicolon at the very beginning.

If no notice segments are found for a 1language type, the
error code error_table_g$typename_not_found is returned.
Entry: copyright_notice_¢$set_suffix

This entry point sets +the name of the copyright notice

segments. The default 1is T.copyright and T.copyright_delete
where T is the language type.

2-23 ANS51

copyright_notice_ copyright_noticé*

Usage
declare copyright_notice_g$set_suffix entry (char(¥));
call copyright_notice_$set_suffix (x)3

where x is the new suffix. (Input)

Entry: copyright_notice_$test

This entry sets the directory searched for copyright notice
segments. The default is >ldd>include.

Usage"

declare copyright_notice_g$test entry (char(¥*));
call copyright_notice_gtest (d);

where d is the directory to be searched for copyright notices.
(Input)

create_ips_mask_ create_ips_mask_

Name: create_ips_mask__

The create_ips_mask_ subroutine returns a bit string that
can be used to mask specified interrupts.

Usage

declare create_ips_mask_ entry (ptr, fixed bin, bit(36)
aligned);

call create_ips_mask (p, lng, mask);

where:

1. p is a pointer to an array of ips names that are char(32)
aligned. (Input)

2. 1lng is the number of elements in the above array. (Input)

3. mask is a mask that masks all of the ips signals named in
the array pointed to by p when passed to the
appropriate ring 0 entry point. (Output)

Notes

If any of the names are not valid ips signal names, the
condition create_ips_mask_err is signalled.

If the first name in the array is -all, then a mask is
returned that masks all interrupts.

2-25 AN51

cu cu
Name: cu_
The cu_ subroutine description discusses only those entry
points in cu_ that are of interest mainly to system programmers.
Entry: cu_$grow_stack_frame
This entry allows its caller to allocate temporary storage
by extending the caller’s current stack frame. :
Usage

declare cu_$grow_stack_frame entry (fixed bin, ptr,
fixed bin);

call cu_g$grow_stack_frame (len, ptr, code);

where:

1. len is the length (in words) by which the caller’s stack
frame 1is to Dbe extended. The standard Multics call,
save, and return discipline requires that stack frames
begin on mod 16 word boundaries. Therefore, if len is
not a mod 16 number, the stack frame is grown by the
next mod 16 quantity greater than len. (Input)

2. ptr is a pointer to the first 1location of 1len words

allocated in the caller’s stack frame. (Output)

3. code is a standard Multics status code. Zero indicates that
the call is successful; nonzero indicates that the call
is in error (e.g., len is too big). (Output)

Entry: cu_¢$shrink_stack_frame

The shrink_stack_frame entry allows its caller to deallocate
temporary storage by reducing the caller’s current stack frame.

2-26 AN51

~

Usage

declare cu_$shrink_stack_frame entry (ptr, fixed bin);

call cu_$shrink_stack_frame (ptr, code);

where:

1. ptr is a pointer to the first word of the storage to be
deallocated. The stack frame from the word indicated
by ptr to the end of the frame 1is deallocated. ptr
must point to a mod 16 word boundary. (Input)

2. code is a standard Multics status code. When code is

nonzero, the call is in error. (Output)

Entry: cu_$caller_ptr
This entry allows a routine to obtain a pointer to its

caller. The pointer returned points to the instruction within
the text section after the instruction that called out.

Usage

declare cu_g$caller_ptr entry (ptr);

call cu_g$caller_ptr (point);
where point is the pointer to the text section of the caller. 1If
null, the invoker of cu_ has no caller. (Output)
Entry: cu_$set_ready_proc

This entry establishes the procedure called by
cu_$ready_proc.

Usage

declare cu_$set_ready_proc entry (entry);
call cu_¢$set_ready_proc (ready_proc_ptr);

where ready_proc_ptr 1is the entry to be wused as a ready
procedure. (Input)

2=-27 AN51

cu cu

Entry: cu_$set_ready_mode
This entry is called to set the internal static ready flags

that are passed to the ready procedure by cu_$ready_proc if it is
called with no arguments.

Usage

declare -cu_$set_ready_mode (1, 2 bit(1) unaligned,
2 bit(35) unaligned);

call cu_$set_ready_mode (flags);
where flags is the structure defined in the description of
cu_$ready_proc. (Input)
Entry: cu_$set_ready_mode

This entry returns the internal static ready flags.

Usage

declare cu_$set_ready_mode (1, 2 bit(1) unaligned,
2 bit(35) unaligned);

call cu_¢$set_ready_mode (flags);

where flags 1is the structure defined in the description of
cu_s$ready_proc. (Output)

Entry: cu$get_ready_proc

This entry returns a pointer to the ready procedure.

Usage
declare cu_s$get_ready_proc entry (ptr);
call cu_$get_ready_proc (ready_proc_ptr);

where ready_proc_ptr is a pointer to the entry of the current
ready procedure. (Output)

2-28 AN51

‘Entry: cu_s$ready_proc

This entry 1is called after each command line is processed.
It calls print_ready_message_¢$print_ready message unless the user
has previously set up his own ready_message procedure via a call
to cu_$set_ready proc. In either case, the argument passed to
the procedure called is the structure flags. If cu_g$ready_proc
is called with no arguments, then an internal set of flags is
passed to the procedure instead. The internal static flags may
be changed via cu_$set_ready_mode and obtained via
cu_$get_ready_mode.

Usage
declare cu_$ready_proc entry options (variable);
call cu_$ready_proc (flags);
call cu_$ready_proc ();
where flags is the following structure. (Input)
declare 1 flags aligned,
2 ready_sw bit(1) unaligned,
2 pad bit(35) unaligned;
If ready_sw = "1"b then the procedure called is to print the

ready message.

Notes

-
s
=

The following cu_ entry points can be found in the
Subroutines, Order No. AG93:

cu_$af_arg ptr cu_¢$get_cl
cu_s$af_arg_ count cu_$get_cp
cu_g$arg_count cu_$level_get
cu_s$arg _list_ptr cu_$level_set
cu_$arg_ptr cu_¢$ptr_call
cu_s$arg_ptr_rel cu_¢$set_cl

cu_scl cu_$set_cp

cu_$ecp cu_¢$stack_frame_ptr
cu_s$gen_call cu_¢$stack_ frame_size

2-29 AN51

datebin_ datebin_

Name: datebin_

The datebin_subroutine has several entry points to convert
clock readings into binary integers (and vice versa) representing
the year, month, day, hour, minute, second, current shift, day of
the week, number of days since January 1, 1901, and the number of
days since January 1 of the year indicated by the clock.

The arguments listed below are common to all entry points.
Clock readings are Multics Greenwich Mean Time (GMT) and all
other arguments represent local time.

1. clock is a calendar clock reading with the number of
microseconds since 0000 GMT January 1, 1901.

2. absda is the numbér of the days the clock reading
represents (with January 1 = 1).

3. mo is the month (1 - 12).

4. da is the day of the month (1 - 31).

5. yr is the year (1901 - 1999).

6. hr is the hour of the Aay (0 - 23).

7. min is the minute of the hour (0 - 59).

8. sec is the second of the minute (0 - 59).

9. wkday is the day of the week (1 = Monday, 7 = >Sunday).

10. s is the shift, as defined in installation_parms.

11. dayr is the day of the year (1 - 366).

12. datofirst is the number of days since January 1, 1901, up

to, but not including January 1 of the year
specified.

13. oldclock is a calendar clock reading in microseconds since
January 1, 1901, 0000 GMT.

If arguments passSed to datebin_ are not in the valid range,

the returned ‘arguments 'are generally O0 (in certain cases, no
checking should be done).

2-30 AN51

\

r

datebin_ datebin

Entry: datebin_

This entry point returns the month, day, year, hour, minute,
sgcond, weekday, shift and number of days since January 1, 1901,
given a calendar clock reading.

Usage
declare datebin_ entry (fixed bin(71), fixed bin,
fixed bin, fixed bin, fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin, fixed bin);

call datebin_ (clock, absda, mo, da, yr, hr, min, sec,

wkday, s);
where:
1. clock is as above. (Input)
2-10. are as above. (Output)

Entry: datebin_¢$shift

This entry point returns the shift given a calendar clock
reading. If clock is invalid, -1 is returned.

Usage
declare datebin_$shift entry (fixed bin(71), fixed bin);

call datebin_$shift (clock, s);

where:
1. clock is as above. (Input)
2. s is as above. (Output)

2-31 AN51

datebin_ datebin_

Entry: datebin_g$time

This entry point returns the hour, minute and second given a
calendar clock reading. If clock is invalid, hr, min, and sec
are -1.

Usage

declare datebin_¢$time entry (fixed bin(71), fixed bin,
fixed bin, fixed bin);

call datebin_$time (clock, hr, min, sec);

where:
1. clock is as above. (Input)

2-4. are as above. (Output)

Entry: datebin_$wkday

This entry point returns the day of the week (Monday :‘1 .
Sunday = 7) given a calendar clock reading. If clock is invalid,
0 is returned. :
Usage

declare datebin_$wkday entry (fixed bin(71), fixed biq);

call datebin_g$wkday (clock, wkday);

where:
1. clock is as above. (Input)
2. wkday is as above. (Output)

Entry: datebin_g$dayr_clk

This entry point returns the day of the year (1 - 366) given
a calendar clock reading. If clock is invalid, -1 is returned.

2-32 AN51

datebin_ datebih

Usage
declare datebin_g$dayr_clk entry (fixed bin(71), fixed bin);

call datebin_g$dayr_clk (clock, dayr);

where:
1. clock is as above. (Input)
2. dayr is as above. (OQutput)

Entry: datebin_s$revert

This entry point returns a calendar clock reading for the
month, day, year, hour, minute and second specified.

Usage
declare datebin_$revert entry (fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin, fixed bin,
fixed bin(71));

call datebin_$revert (mo, da, yr, hr, min, sec, clock);

where:
1-6. are as above. (Input)
7. clock is as above. (Output)

Entry: datebin_$revertabs

This entry point returns a calendar clock reading given the
number of days since January 1, 1901.
Usage

declare datebin_$revertabs entry (fixed bin,
fixed bin(71));

call datebin_$revertabs (absda, clock);

2-33 ANS51

datebin datebin_

- where:
1. absda " is as above. (Input)
2. clock is as above. (Output)

Entry: datebin_g$datofirst

This entry point returns the number of days since January 1,

1901, up to but not including January 1 of the year specified.

Usage
declare datebin_g$datofirst entry (fixed bin, fixed bin);

call datebin_g$datofirst (yr, datofirst);

where:
1. yr is as above. (Input)
2. datofirst is as above. (Output) -

Entry: datebin_g$dayr_mo

This entry point returns the day of the year when given
month, day, and year.

Usage

declare datebin_g$dayr_mo entry (fixed bin, fixed bin,
fixed bin, fixed bin);

call datebin_g$dayr_mo (mo, da, yr, dayr);

where:
1-3. are as above. (Input)
4. dayr is as above. (Output)

Entry: datebin_g$clockathr

This entry returns a clock reading for the next time the

given hour occurs.

2-34 ANS 1

N\

datebin_ datebih_

Usage
declare datebin_$clockathr entry (fixed bin, fixed bin(71));

call datebin_g$clockathr (zz, clock);

where:

1. zz is the desired hour and minute, expressed as hhmm
in decimal (e.g. 1351). (Input) : '

2. clock is as above. (Qutput)

Entry: datebin_¢$last_midnight

This entry point returns a clock reading for the midnight
(local time) preceding the current day.

Usage
declare datebin_$last_midnight entry (fixed bin(71));
call datebin_g$last_midnight (clocgk);

where clock is as above. (Output)

Entry: datebin_¢$this _midnight

This entry point returns a clock reading for midnight (local
time) of the current day.

Usage
declare datebin_$this_midnight entry (fixed bin(71));
call datebin_¢$this_midnight (clock);

where clock is as above. (Output)
Entry: datebin_¢$preceding midnight

This entry point, given a clock reading, returns a clock
reading for midnight (local time) of the preceding day.

2-35 ‘ AN51

datebin_ datebin_
Usage

declare datébin_$preceding_midnight entry (fixed bin(71),
fixed bin(71));

call datebin $preceding_midnight (oldclock, clock);

where:
1. oldclock is as above. (Input)
2. clock is as above. (Output)

Entry: datebin_¢$following_midnight

This éntry point, given a clock reading, returns a clock
reading for midnight (local time) of that day.
Usage

declare datebin_$following midnight entry (fixed bin(T71),
fixed bin(71));

call datebin_g$following midnight (oldclock, clock);

where:
1. oldclock is as above. (Input)
2. clock ' is as above. (Output)

Entry: datebin_g$next_shift_change

This entry, given a clock reading, returns the time of the
next shift change, the current shift, and the new shift.

2-36 AN51

datebin_ datebin_

‘Usage

declare datebin_$next_shift_change entry (fixed bin(71),
fixed bin(71), fixed bin, fixed bin);

call datebin_$next_shift_change (clock, newclock, shift,
newshift);

where:
1. clock is as above. (Input)

2. newclock is the time the shift changes next after clock.
(Output)

3. shift is the current shift at time clock. (Output)

4. newshift is the shift which begins at time newclock. (Ouput)

2-37 AN51

decode_definition_ decode_definition_

‘Name: decode_definition_

The decode_definition_ subroutine, given a pointer to an
object segment definition, returns the decoded information of
that definition in a structured, directly accessible format.

Usage

declare decode_definition_ entry (ptr, ptr) returns
(bit(1) aligned);

eof = decode definition_ (def_pointer, structure_pointer);

where:

1. def_pointer is a pointer to the selected definition.

' . This ‘pointer is extracted from -the
previously returned information. The
initial pointer with which
decode_definition_ can be <called 1is a
pointer to the base of the object segment
(i.e., with ~a zero offset), wunless
decode_definition_g$init has been called,
in which case the initial pointer can be
a pointer to the beginning of the
definition section (as returned by
object_info_). (Input)

2. structure_pointer is a pointer to the provided structure in
which decode_definition_ returns the
desired information. (See "Notes™"
below.) (Input)

3. eof is a binary indicator that is "1"b if the
current invocation of decode_definition_
caused the search to go beyond the end of

the definition 1list. If that 1is the
case, the returned information 1in the
structure is null. (Output)

2-38 AN51

decode_definition_ decode_definition_

Notes

The structure has the following format:

declare 1 structure aligned,

2 next_def ptr,

2 last_def ptr,

2 block_ptr ptr,

2 section char(4) aligned,
2 offset fixed bin,

2 entrypoint fixed bin,

2 symbol char(32) aligned;

where:

1. next_def is a forward pointer to the next
definition in the 1list. It can be used
to make a subsequent call to
decode_definition_.

2. last_def is a backward pointer to the preceding
definition on the list. This pointer may
be null if the definition is of the old
format.

3. block_ptr is a pointer to the head of the
definition block if this is a segn
definition and to the head of a segname
list 1if +this 1is not a segn definition.
This pointer may be null = if the
definition is of the o0ld format.

4, section is a symbolic code defining the type of
definition. It can assume one of the
following values: text, 1link, symb or
segn.

5. offset is the offset of the definition within
the given section. This is set to 0 if
section = segn.

6. entrypoint is nonzero, if this definition is an
entry point. The value of this item is
the entry point’s offset in the text
section.

7. symbol is the character string representation of

the definition.

2-39 AN51

decode_definition_ decode_definition_

Entry: decode_definition_$init
This entry point is wused for initialization apd is
especially useful when the object segment does not begin at

offset 0 (as for an archive component). This entry has no effect
when the decode definition_$full entry is being used.

Usage
declare decode definition_$init entry (ptr, fixed bin(24));

call decode_definition_$init (segp, bitecnt);

~where:

- 1. segp is a pointer to the beginning of an

: : object segment (not necessarily with an
offset of 0). (Input)

2. ‘bitent ‘ is the bit count of the object segment.

- - (Input) :

Entry: decode_definition_¢$full

This entry point, given a pointer to an object segment
definition, returns more complete information about that
definition. The symbolic name returned by this entry can contain
up to 256 characters.

Usage

declare®decode_definition_¢$full entry (ptr, ptr, ptr)
returns (bit(1) aligned);

- eof = decode_definition_$full (def_pointer,
structure_pointer, oi_pointer);

where:

1. def_pointer is a pointer to the selected definition
and is extracted from previously returned
information. The initial pointer with
which decode_definition_$full can be
called 1is a pointer to the base of the
definition section of the object segment.
(Input)

2. structure_pointer is a pointer to the provided structure
into which decode_definition_$full

2-40 AN51

decode_definition_ decode_definition_

3. oi_pointer

4., eof

Notes

returns the desired information. (See
"Notes" below.) (Input)

is a pointer to the structure returned by
any entry point of object_info_. (Input)

same as for the decode_definition_ entry.

The structure has the following format:

declare 1

where:
1-7.

8. symbol_lng

9. new_format

10. ignore

11. entrypoint

12. retain

13. descr_sw

structure aligned,

[ACENCRICR IS I\VE VAR V)

next_def ptr,

last_def ptr,

block_ptr ptr,

section char(4) aligned,
-ffset fixed bin,

entrypoint fixed bin,

symbol char(256) aligned,
symbol_lng fixed bin,

flags,

3 new_format bit(1) unaligned,
3 ignore bit(1) unaligned,

3 entrypoint bit(1) unaligned,
3 retain bit(1) unaligned,

3 descr_sw bit(1) 'unaligned,

3 unused bit(31) unaligned,
n_args fixed bin,

descr_ptr ptr;

are the same as for decode_definition_.

is the relevant length of the symbol
in characters.

indicates that the definition is in the
new format.

is "1"b if the 1linker should ignore this
definition.

is "1"b if this definition is for an entry
point rather than for a segdef.

is "1"b if this definition should be retained.

is "i"p if there are descriptors for
this definition.

2-41 AN51

decode_definition_ decode_definition_

14. unused is paddihg.
15. n_args . indicates the number of arguments expected by
this entry, if descr_sw = "1"b.
16. descr_ptr points to an array of 18-bit pointers to
' the descriptors for the entry, if descr_sw =
ll‘]llb-

Entry: decode_definition_g$decode_cref

This entry point is used by the wutility cross-referencer,
cross_ref, to examine object segments possibly contained in
archive segments, and to return a pointer to the ASCII Character
with Count (ACC) format rather than to the string itself.

Usage

declare decode_definition_g¢$decode_cref entry (ptr, ptr,
bit(1) aligned, ptr); '

call decode_definition_$decode_cref (def_pointer,
structure_pointer, eof, linkbase_ptr);

where:
1-2. are as above. (Input)
3. is as above. (Output)

4. linkbase_ptr 1is a pointer to the base of the linkage section
of the object segment the first time the
procedure is called for a given object segment
(in which case def pointer is assumed to point
to the base of definitions for the segment), and
null thereafter. (Input) "

2-42 AN51

decode_definition_ decode_definition_

Note

The structure to which structure_pointer points is the same
as for the primary entry, except that:

2 symbol char(32) aligned;
is replaced by:
2 symb_ptr ptr;

where symb_ptr is a pointer to the ACC-format representation of
the symbol.

2-43 AN51

. find_include_file_ find _include_file_

‘Name: find_include_file_

The primary entry point of the find_include_file_ subroutine

searches for an include file on behalf of a translator. If the
include file 1is found, additional information about the found
segment is returned in the parameters. In order to allow

nondefault translator search rules, additional entry points are
provided to allow a user to set and get the current search rules
for locating include files.

The current default search rules are:

1. Look in the current working directory.

2. Look in the include directory in the user’s current
project directory. (e.g., For the user
Person_id.Project_id, this would be the directory
>user_dir_dir>Project_id>include).

3. Look in the directory »>library_dir_dir>include.

Entry: find_include_file_$initiate_count

This entry 1is the interface presented to translators. A
translator calls this entry point to invoke a search for a single
segment include file using rules previously specified by the
user.

Usage

declare find_include_file_g$initiate_count entry (char(¥*), ptr,

char(¥*), fixed bin(24), ptr, fixed bin(35));

call find_include_file_$initiate_count (translator,
referencing_ptr, file_name, bit_count, seg_ptr,
error_code) ;

where:

1. translator is the name of the translator that is calling
this procedure (e.g., pl1, alm). (Input)

2. referencing_ptr 1is a pointer into the segment (normally a
pointer to the source line) that caused the
invocation of this instance of this
procedure. (Input)

3. file_name is the complete entryname of the include file

this procedure is to locate (e.g.,
include.incl.pl1). (Input)

2-44 AN51

~

find_include_file_ find_include_filé_

4. bit_count is the bit count as obtained from the storage
system of the found include file. If an
include file is not found, this parameter is
set to 0. (Output)

5. seg_ptr is a pointer to the first character of the
include file, 1if found; if not found, this
parameter is set to the null pointer value.:
(Output)

6. error_code is a standard Multics status code. See
"Status Codes" below. (Output)

Status Code§

Any of the following status codes may be returned by this
entry point:

0 The requested file was found
normally. All output
parameters have been set
normally.

error_table_$zero_length_seg The requested file was found,
but the bit count was zero.
All output parameters have
been set normally.

error_table_g¢$noentry The requested file was not
found in any of the search
directories.

other storage system error codes The requested file was not

found because of some error.

Note

If this procedure finds an include file by a 1link, the
seg_ptr parameter correctly designates the actual location of the
include file; it 1is possible, however, that the name of the
actual include file is not the same as the filename argument
passed to this procedure. It is the responsibility of the
translator to determine if the filename passed to this procedure
is also on the include file actually found.

2-45 AN51

~find_include: file__ find_include_file_

.-Iranslator-Search Rules

When the entry point find_include_file_¢$initiate_count is
invoked to find an include file, a set of search rules is used to
specify where to look for the include file. These search rules
should not be <confused with those of the dynamic 1linking
mechanism of Multics. '

In order to allow the user to manipulate the translator
search rules currently in effect, two entry points' are provided
to set and get the search rules. These entry points utilize the
following structure for communication:-

declare 1 tsr_strct based aligned,

version_number fixed bin(17),

num_valid_rules fixed bin(17),

~num_possible_rules fixed bin(17),

rule (1:1 refer (tsr_strct.num_possible_rules))
char (168) unaligned;

DN

Ai(The based attribute is used here only to allow the refer option
" -to indicate the rationale of the use of num_possible_rules.)

1. version_number allows the structure declaration to
R : ' change in possible later versions while
retaining upward compatibility. (Input)

2. num_valid_rules communicates either the number of valid
rules currently stored 1in the rule
array, or if there was not enough room
in the rule array to store all the
current search rules, how many rules are
currently in effect. (Input/Output)

"3. num_possible_rules denotes the size of the rﬁle array.
(Input)
4, fule is the array of search rules. Each rule

is either a full pathname (indicated by
the presence of an initial >) or a
keyword. (Input/Output)

2-46 AN51

N\

'

find_include_file_ find_include_file_

‘Search Rule Keywords

default places the default search rules at this
position.

home_dir places the user’s home directory at this
position.

referencing_dir when processing this position, the searching

program looks in the same directory as the
one that referenced the sought-after file.

working_dir when processing this position, the searching
program looks in the current working
directory.

Entry: find_include_file_$set_search_rules
This entry is provided to allow the caller to change the
translator search rules currently in effect. The search

directories provided are not checked for existence, but must be
full pathnames or known keywords.

Usage

declare find_include_file_$set_search_rules entry (ptr,
fixed bin (35));

call find_include_file_$set_search_rules (addr (tsr_strct),
error_code) ;

where:

1. addr (tsr_strct) is the address of the communication structure
described above. (Input)

2. error_code is a standard Multics status code. See
"Status Codes" below. (Output)

2-47 AN51

find_include_file_ find_include_file_

~Status Codes

0 The user-specified search
rules were processed normally
and are now in effect.

error_table_g$area_too_small The allocation area wused by
this procedure does not have
room for the new = search
rules. The previous search
rules remain in effect.

error_table_$bad_string One of the specified search
rule keywords could not be
recognized. The previous
search rules remain in
effect.

error_table_$id_already_exists One of the special rules was
- ! : ’ multiply wused. (The special
rules are the working dir and
referencing_dir rules.) The
previous search rules remain
in effect.

error_table_$unimplemented_version The program does . not
recognize the version number
element of the communication

structure. - The previous
search rules remain in
effect.

Note

This procedure shares allocation storage with other system
procedures. Thus, at any given time, the number of search rules
that a wuser may set can range from some large number down to
Zero. :

Entry: find_include_file_g$get_search_rules

This entry is provided to allow the <caller to get the
translator search rules currently in effect.

2-48 AN51

find_include_file__ find_include_filé_

Usage

declare find_include_file_g$get_search_rules entry (ptr,
fixed bin (35));

call find_include_file_$get_search_rules (addr (tsr_strct),
error_code);

where:

1. addr (tsr_strct) is the address of the communication structure
described above. (Input)

2. error_code is a standard Multics status code. See
"Status Codes" below. (Output)

Status Codes

0 Normal processing has
occurred--the rule array has
been filled in and the
num_valid_rules element of
the communication structure
contains the number of rules
that are in effect.

error_table_$too_many_sr The caller did not provide a
sufficiently large rule
array. No rules have been
filled in, but the

num_valid_rules element has
been set to the necessary
size for the rule array, if
the wuser should call this
entry again.

error_table_$unimplemented_version The program does not
recognize the version number
element of the communication
structure. The communication
structure has not been
altered.

Note

This entry point is designed primarily to allow the user to
reset or to modify the current search rules. In particular, the
rule array can not be identical to the rule array used to set the
rules (e.g., the home_dir keyword is not returned, but rather the
actual directory name).

2-49 AN51

get_bound_seg_info_ get_bound;seg_info_

‘Name: get_bound_seg_info_

The get_bound_seg_info_ subroutine is used by several object
display programs concerned with bound segments to obtain
information about a segment as a bound segment as well as general
object information. ‘

Usage

declare get_bound_seg info_ entry (ptr, fixed bin(24),
ptr, ptr, ptr, fixed bin(35));

call get_bound_seg_info_ (objp, bitcount, oip,
bmp, sblkp, code);

where:
1. obJjp is a pointer to the beginning of the segment.
' (Input)
2. bitcount is the segment’s bit count. (Input)
3. oip is a pointer to the object format structure to be
o ‘ filled ' in by object_info_¢$display (see structure
declaration in the description of object_info_).
(Input)
4. bmp is a pointer to the bind map. (Output)
5. sblkp is a pointer to the base of the symbol block
containing the bindmap. (Output)
6. code is a standard Multics status code. (Output)
Note

If objp points to an object segment but no bindmap is found,
two possible codes are returned. One is error_table_$not_bound,
indicating that +the segment 1is not bound. The other is
error_table_$oldobj, indicating that the segment was bound before
the binder produced internal bind maps. If either one of these
is returned, the structure pointed to by oip contains valid
information.

2-50° AN51

get_initial_ring_ get~initia1_ring_

‘Name: get_initial_ring_
The get_initial_ring_ subroutine returns the current value

of the ring number in which the process was initialized.

Usage
declare get_initial_ring_ entry (fixed bin);
call get_initial_ring_ (iring);

where iring is the initial ring for the process. (Output)

2-51 AN5 1

get_lock_id. get_lock_id_

‘Name: get_lock_id_

The get_lock_id_ subroutine returns the 36-bit unique 1lock
ID to be used by a process in setting locks. By using this lock
ID a convention can be established so that a process wishing to

lock a data base and finding it already locked can verify that
the lock is set by an existing process.

Usage
declare get_lock_id_ entry (bit(36) aligned);

call get_lock_id_ (lock_id);

where lock _id is the unique identifier of this process. (Output)

2-52 AN51

~

e -, T —

get_primary_name_ get_primary_namé_

Name: get_primary_name_

The get_primary_name_ subroutine locates a segment in a
given directory, and returns the first, or primary, name of that
segment. For example, if foo.archive is the primary name of an
archive that contains component able.pll, and if able.pl?l is
another name on the archive, then get_primary_name_ returns the
name foo.archive when called with the name able.pl1.

Usage

declare get_primary_name_ entry (char(#*), char(#),
char(¥*), fixed bin(35));

call get_primary_name_ (dir, seg, prime_name, code);

where:
1. dir is the directory to be searched. (Input)
2. seg is the name of the segment to be locatedj in the

search directory. (Input)

3. prime_name is the primary name of the segment, if 1t was
found. (Output)

4, code is a standard Multics status code. (Output)

Note
On return, 1if code = 0, the segment was found, and
prime_name is the primary name of the segment. If code = 1,

then the segment was not found in the directory searched. Any

other value of code is a standard status code returned from a
call to hecs_¢$status_.

2-53 AN51

get_seg ptr_ get_seg_ptf_

‘Name: get_seg_ptr_

The get_seg_ptr_ subroutine consists of entries to initiate
and terminate data segments. It also 1is <capable of creating,
fruncating, and setting the bit count on segments. It is more
useful than the current Multics file primitives because it
expands pathnames, creates segments, and initiates them all in
one call by the user. Similarly, it sets +the bit count,
truncates the segment, and terminates them all in one call.

The primary entry initiates a segment given a relative

pathname and checks access to the segment. If the segment does
not exist, it is created if the user so requests.

Usage

declare get_seg_ptr_ entry (char(*), bit(6) aligned,
fixed bin(24), ptr, fixed bin);

call get_seg ptr_ (pathname, wanted_access, bit_count,
return_ptr, return_code);

where:

1. pathname is a relative pathname to the segment.
(Input)

2. wanted_access is the requested access to the segment. It

can be described by the following overlay
structure:

declare 1 wanted_access_overlay aligned,
pad1 bit(1) unaligned,

read bit(1) unaligned,
execute bit(1) unaligned,
write bit(1) unaligned,
pad2 bit(1) unaligned,
create bit(1) unaligned;

PPN NN

The read, execute, and write bits are
interpreted as standard Multics access control
bits. If the segment exists, then the error
code error_table_$moderr is returned if the
user does not have at 1least the access
requested. Note, however, that return_ptr
contains a valid pointer even if this error
occurs. The create bit is interpreted, if on,
as an indication that the segment should be
created (with the specified access) if it does
not exist.

2-54 AN51

N\

get _seg _ptr_ get_seg_ptr_

3. bit_count is the bit count of the segment. (Output)

4. return_ptr is a pointer to the segment. If the segment
is not initiated, this pointer is returned as
null. (Output) '

5. return_code is a standard Multics status code. The only
condition under which this code is nonzero
when the return_ptr is nonnull is if the error
is error_table_$moderr. (Output) -

Entry: get_seg_prt_$release_seg_ptr_
This entry terminates a segment initiated by one of the
entries to get_seg ptr_. If a bit count is specified, the bit

count of the segment is set and the segment is truncated to the
corresponding length.

Usage

declare release_seg ptr_ entry (ptr, fixed bin(24),
fixed bin);

call release_seg_ptr_ (seg_ptr, bit_count, return_code);

where:

1. seg_ptr is a pointer to the segment to be terminated.
(Input)

2. bit_count is the bit count to be set on the segment. If
this argument is negative, it is assumed that the
bit count should remain the same and no truncation
should take place. (Input)

3. return_code is a standard Multics status code. (Output)

Entry: get_seg_ptr_g$get_seg ptr_arg

This entry is identical to get_seg ptr_ except that it
obtaing the pathname of the segment to be initiated from the
caller’'s argument list. It saves a call to cu_$arg_ptr.

2-55 AN51

get_seg ptr_ get_seg_ptr_

Usage

declare get_seg_ptr_arg_ entry (fixed bin, bit(6)
aligned, fixed bin(24), ptr, fixed bin);

call get_seg_ptr_arg_ (arg_number, wanted_access,
bit_count, return_ptr, return_code);

where:

1. arg_number 1is the number of the caller’s argument to be used.
(Input)

2-5. are as above.

Entry: get_seg_ptr_$get_seg ptr_full path_
This entry is identical to get_seg ptr_ except that the

pathname 1is specified as an absolute pathname in directory/entry
form.

Usage

declare get_seg_ptr_full _path_ entry (char(#*), char(¥),
bit(6) aligned, fixed bin(24), ptr, fixed bin);

call get_seg _ptr_full _path_ (dir_name, entry_name,
wanted_access, bit_count, return_ptr, return_code);

where:

1. dir_name is the absolute pathname of the directory of the
segment. (Input)

2. entry_name is the entryname of the segment. (Input)

3-6. are as above.

Entry: get_seg ptr_$get_seg ptr_search_

This entry is identical to get_seg_ptr_ except that just an
entryname is specified. The directory is determined by Multics
search rules. If the segment is not found and if the c¢ (create)
bit is on, then the segment is created in the process directory.
Note, however, that if the entryname is not known as a reference
name before a call to get_seg ptr_search_, this entry does not
cause it to be made known. This procedure initiates the segment
with a null reference name. This has the net effect that full
search rules are followed each time this routine is called.

2-56 AN51

get_seg_ptr_ get_seg_ptr_

_Usage

declare get_seg_ptr_search_ entry (char(¥*), bit(6) aligned,
fixed bin(24), ptr, fixed bin);

call get_seg ptr_search_ (entry_name, wanted_access,
bit_count, return_ptr, return_code);

where:

1. entry_name is the entryname of the segment to be found.
(Input)

2-5. are as above.

2=57 AN51

get_temp_seg_ get_temp_seg__

Name: get_temp_seg

The get_temp_seg_ subroutine manages temporary segments in
the process directory. For each segment it creates, it maintains
information about the procedure and invocation 1level currently
using the temporary segment. It allows a program that uses
temporary segments to be called recursively or when one
invocation has been suspended.

Usage

declare get_temp_seg_ entry (bit(36) aligned,
bit(5) aligned, ptr, fixed bin(35));

call get_temp_seg_ (id, access, tsptr, code);

where:

1. id is an identifier unique to the current invocation
of the calling procedure. The calling procedure
must previously have called
get_temp_seg_$assign_temp_seg_id_ to get id.
(Input)

2. access is the access desired for the temporary segment.
The bits correspond to the read, execute, and
write attributes respectively. The first and 1last
bits are not used. (Input)

3. tsptr points to the temporary segment. (Output)

4. code is a standard Multics status code. (Output)

Entry: get_temp_seg_$assign_temp_seg_id_
This procedure should be called before the main entry

(above) is first called by a given invocation of a procedure
wishing to use get_temp_seg_ .

2-58 AN51

~

'

get_temp_seg__ ' get_temp_seg_

~Usage

declare get_temp_seg_$assign_temp_seg_id_ entry (char(¥)
aligned, bit (36) aligned, fixed bin (35));

call get_temp_seg $assign_temp_seg_id_ (procname, id, code);

where:

1. procname is the name of the calling procedure. (Input)

2. id is the identifier to be used by the current
invocation of the calling procedure when callin
the other entries. (Output) : :

3. code is a standard Multics status code. (Output)

Entry: get_temp_seg_$release_temp_seg_

This procedure releases a temporary segment that has been
obtained by calling get_temp_seg_.

Usage

declare get_temp_seg_$release_temp_seg - entry (bit(36) aligned,
ptr, fixed bin(35));

call get_temp_seg_$release_temp_seg_ (id, tsptr, code);

where:
1. id is the same as above. (Input)
2. tsptr is the same as above. (Input)

3. code 1is the same as above. (Output)
Entry: get_temp_seg_¢$release_temp_segs_all_

This entry releases all temporary segments currently being
used by the current invocation of the caller.

2-59 AN51

get_temp_seg get;temp_seg_

~N

Usage

declare get_temb_éég_$nelease_temp;segs_all_:ehtry
(bit(36) aligned, fixed bin(35));

call get_temp_seg_$release_temp_segs_al1_ (id, code);
where:
1. id is the same as above. (Inpdt)

2. code is the same as above. (Output)

2-60 ANS1

hash_ hash_

‘Name: hash_

The hash_ subroutine can be used to initialize, insert,
delete, and search for entries in a hash table. This is a fast
alternative to searching for an entry in another unorganized data
table or group of data. When an entry to a data table 1is
created, hash_$in should be called with the identifier of the
entry and the value that is used to locate that entry in the data
table (i.e., array subscript). When it is necessary to access
this entry later, this value is returned by hash_g$search (given
the identifier).

Entry: hash_¢$make

This entry point initializes a hash table pointed to by
tableptr with the number of buckets or entries given by nb.
Usage

declare hash_$make entry (ptr, fixed bin, fixed bin);

call hash_$make (tableptr, nb, code);

where:

1. tableptr is the pointer to the hash table. (Input)

2. nb is the number of buckets in the hash table. There
is a maximum of 6552 buckets. The table created
occupies 10¥nb+8 words. (Input)

3. code is a standard Multics status <code that equals

error_table_¢$invalid_elsize if nb 1is too large.
If code equals 0, there is no error. (Output)
Entry: hash_$in
This entry point inserts an entry in the hash table pointed
to by tableptr. The input arguments name and value are the
identifier and corresponding value that are used to access the
entry, name, in the data table.
Usage

declare hash_$in entry (ptr, char(¥), fixed bin, fixed bin);

call hash_$in (tableptr, name, value, code);

2-61 AN51

hash__ hash__

~where:

1. tableptr is the pointer to the hash table. (Input)

2. name - 1s the identifier of the entry in the data table.
The maximum length is 32 characters. (Input)

3. value - is the locator of the entry in the data table that
corresponds to name. (Input)

4. code is a standard Multics status code that equals
error_table_$segnamedup if the entry already
exists with the same value. If code equals

error_table_¢$namedup, the entry already -exists
with a different value. If code equals 0, there
is no error. (Output)
Entry: hash_g$search
This entry point, given name, returns the corresponding
value (supplied by hash_$in) that locates the entry in the data
table.

Usage

declare hash_$search entry (ptr, char(¥*), fixed bin,
fixed bin);

call "hash_¢$search (tableptr, name, value, code);

where:
1. tableptr is a pointer to the hash table. (Input)
2. name is the identifier of an entry. The maximum length
is 32 characters. (Input)
3. value is the locator of an entry in the data table
o ‘corresponding to name. (Output)
4. code ' is a standard Multics status code that equals

error_table_$noentry if the entry is not in the
hash table. If code equals 0, there is no error.
(Output)

2-62 AN51

hash_ hash_

'Entry: hash_g$out

This entry point deletes an entryname from the hash table.

Usage

declare hash_g$out entry (ptr, char(¥*), fixed bin,
fixed bin);

call hash_$out (tableptr, name, value, code);

where:

1. tableptr is a pointer to the hash table. (Input)

2. name is the identifier of an entry. The maximum length
is 32 characters. (Input)

3. value is the locator associated with name. (Output)

4., code is a status code that equals error_table_$noentry
if name was not in the hash table. If code equals
zero, there is no error. (Output)

Note

If a hash table becomes full or inefficient, it is rehashed
with 400 more buckets (unless the maximum number of buckets has
been reached, in which case the code returned is
error_table_$full_hashtbl).

2-63 ANS51

hes_$get_page_trace hes_$get_page_trace

-Name: hcs_$get_page_trace

The hcs_$get_page_trace subroutine returns information about
recent paging activity.

Usage
declare hcs_$get_page_trace entry (ptr);
call hes_$get_page_trace (datap);

where datap is a pointer to a wuser data space where return
information is stored. (Input)

‘thes
The format of the data structure returned by
hcs_$get_page_trace is described below. The amount of data

returned cannot Dbe known 1in advance other than that there are
less than 1024 words returned.

declare 1 trace aligned based(tp),
next_available bit(18) aligned,
size bit(18) aligned,

time fixed bin(71),

pad1 fixed bin(35),

index bit(17),

pad2 fixed bin(71),

data (512 refer(d1v1de (trace.size,?2, 17 0))),
3 info bit(36) aligned,

3 type bit(6) unaligned,

3 pageno bit(12) unaligned,

3 time_delta bit(18) unaligned;

PN N

where:

1. next_available is a relative pointer (relative to the first
trace entry) to the next entry to be used in
the trace list.

2. size is the number of words in the trace array
and, hence, twice the number of entries in
the array.

3. time is the real time clock reading at the time
the last trace entry was entered in the list.

2-64 ANS51

hes_$get_page_trace hes_$get_page_trace

4. index is a relative pointer ¢to the first trace
entry entered in the last quantum. Thus, all
events traced in the 1last quantum can be
determined by scanning from trace.index to
trace.next_available (minus 1) with the
obvious check for wrap-around.

5. info is information about the particular trace
entry.
6. type specifies what kind of a trace entry it is.

The following types are currently defined:

page fault 0

segment fault begin 2

segment fault end -3

linkage fault begin U4

linkage fault end 5

bound fault begin 6

ound fault end T

signaller event 8

restarted signal 9

reschedule 10

user marker 11

interrupt 12
7. pageno is the page number associated with the fault.
Certain trace entries do not fill in this

field.

8. time_delta is the amount of real time elapsed between

the time this entry was entered and the
previous entry was entered. The time value
is in units of 64 microseconds.

2-65 AN51

link_unsnap_. link_unsnap_

Name: 1link_unsnap_

The link_unsnap_ subroutine restores snapped links pointing
to. a given segment - or its 1linkage section. Such links then
appear as if they ‘had never been snapped (changed into 1ITS
pairs). This 1is accomplished by sequentially indexing through
the Linkage Offset Table (LOT) and for each linkage section
listed there, searching for links to be restored. :

Usage

declare link_unsnap_ entry (ptr, ptr, fixed bin(17),
fixed bin(17));

call link_unsnap_ (log_ptr, linkage_ptr, hcsc, high_seg);

where:

1. lot_ptr is a pointer to the LOT. (Input)

2. linkage_ptr is a pointer to the 1linkage section to be
discarded. (Input)

3. hesec is one less than the segment number of the
first segment that can be unsnapped. (Input)

4. high_seg is the number of LOT slots used in searching

for links to be restored. (Input)

2-66 ANS51

~

list_dir_info_ list_dir_info_

"Name: 1list_dir_info_

The 1list_dir_info_ subroutine 1is used by l@st_dir_%nfo,
rebuild_dir, and comp_dir_info to list the values 1in a single
entry in a directory information segment created by
save_dir_info.

Usage

declare list_dir_info_ entry (ptr, fixed bin, char(1));

call list_dir_info_ (p, mode, prefix);

where:

1. p points to an entry in the dir_info segment. (Input)

2. mode is the verbosity desired. It can be O, 1, or 2.
(Input)

3. prefix is a one-character prefix for every 1line printed.
(Input)

Output from 1list_dir_info_ is written on user_output. It
consists of a series of lines, each of the form:

item_name: value
The prefix character is appended to the beginning of each 1line,

The 1list below gives the output items for each verbosity
level, for segments, directories, and links.

For segments:

0. names
type
date used
date modified

1. date branch modified
records used
bit count
bit count author
max length
safety switch

2. ACL
data dumped
current length
device ID

2-67 AN51

liét_dir_ihfo_

move device. ID
copy switch
ring brackets
unique ID
author

For directories:

0.

names
type

date used
date modified

date branch modified
bit count
records used
quota '

date dumped
current length
device ID

move device ID
copy switch

ring brackets
unique ID

author

bit count author
max length
safety switch

ACL
initial seg ACL
initial dir ACL

For links:

0.

names
type

target

date link modified

date link dumped

2-68

list_dir_info_

ANS51

~

parse_file_ parse_file_

‘Name: parse_file_

The parse_file_ subroutine provides a facility for parsing
an ASCII text into symbols and break characters. It 1is
recommended for occasionally used text scanning applications. In
applications where speed or frequent use are important, in-line
PL/I code is recommended (to do parsing) instead.

A restriction of the subroutine is that the text to be
parsed must be an aligned character string. :

The initialization entry points, parse_file_init_name and
parse_file_init_ptr, both save a pointer to the text to be
scanned and a character count in internal static storage. Thus,
only one text can be parsed at one time.

Entry: parse_file_$parse_file_init_name

This entry initializes the subroutine given a directory and
an entryname. It gets a pointer to the desired segment and saves
it for subsequent calls in internal static.

Usage

declare parse_file_$parse_file_init_name entry (char(¥*),
char(*), ptr, fixed bin);

call parse_file_$parse_file_init_name (dir, entry, p,

code);

where:

1. dir is the directory name portion of the pathname of the
segment to be parsed. (Input)

2. entry is the entryname of the segment to be parsed.
(Input)

3. p is a pointer to the segment. (Output)

4, code is a standard Multics status code. It is zero if the
segment is initiated. If nonzero, the segment cannot
be initiated. It can return any code from

hes_$initiate except error_table_$segknown.

2-69 ANS51

parse_file_ parse_filé_

Entry: parse_file_$parse_file_init_ptr

This entry initializes the parse_file subroutine with a
supplied pointer and character count. It is used in cases where
a pointer to the segment to be parsed is already available.

Usage

declare parse_file_$parse_file_init_ptr entry (ptr,
fixed bin);

call parse_file_$parse_file_init_ptr (p, cc);

where:

1. p is a pointer to a segment or an aligned character
string. (Input) '

2. cc is the character count of the ASCII text: to be

scanned. (Input)

Entry: parse_file $parse_file_set_break
Break characters can be defined by wuse of this entry.

Normally, all nonalphanumeric characters are break characters
(including blank and newline).

Usage
declare parse_file_¢$parse_file_set_break entry (char(#*));
call parse_file_¢$parse_file_set_break (cs);

where ¢s is a control string. Each character found in cs is made
a break character. (Input)

Entry: parse_file_$parse_file_unset_break

This entry renders break characters as normal alphanumeric
characters. It is not possible to wunset blank, newline, or
comment delimiters, however. These are always treated as break
characters.

2-70 AN51

parse_file_ parse_file_

‘Usage

declare parse_file_$parse_file_unset_break entry (char(¥*));
call parse_file_$parse_file_unset_break (cs);

where cs is a control string each character of which will be made

a nonbreaking character. (Input)
Entry: parse_file_

The text file is scanned and the next break character or
symbol is returned. Comments enclosed by /¥ and ¥/, blanks, and
newline characters, however, are skipped over.

Usage

declare parse_file_ entry (fixed bin, fixed bin,
fixed bin(1), fixed bin(1));

call parse_file_ (ci, cc, break, eof);

where:

1. ci is an index to the first character of the symbol or
break character. (The first character of the text is
considered to be character 1.) (Output)

2. cc is the number of characters in the symbol. (Output)
3. break is set to 1 1if the returned item 1is a break
character; otherwise it is 0. (Output)

4., eof is set to 1 if the end of text has been reached;

otherwise it is 0. (Output)

Entry: parse_file_$parse_file_ptr

This entry is identical to parse_file_ except that a pointer
(with bit offset) to the break character or the symbol is
returned instead of a character index.

2=T71 ANS51

parse_file_ parse_file__

Usage

declare parse_file_$parse_file_ptr entry (ptr, fixed bin,
fixed bin(1), fixed bin(1));

call parse_file_¢$parse_file_ptr (p, cc, break, eof);

where:

1. p is a pointer to the symbol or the break character.
(Output)

2-4, are the same as above. (Output.

Entry: parse_file_$parse_file_cur_line

The current 1line of text being scanned is returned to the
caller. This entry is wuseful in printing diagnostic error
messages. .

Usage

declare parse_file_¢$parse_file_cur_line entry
(fixed bin, fixed bin);

call parse_file_g$parse_file_cur_line (ci, cc);
where:

1-2. are the same as in parse_file_ above.

Entry: parse_file_¢$parse_file_line_no
The current line number of text being scanned is returned to

the caller. This entry is useful in printing diagnostic error
messages. '

Usage

declare parse_file_g$parse_file_line_no entry (fixed bin);
call parse_file_g$parse_file_line_no (cl);

where cl is the number of the current line. (Output)

2-72 AN51

~parse_file_ parse_file_

Examples

Suppose the file zilch in the directory dir contains the
following text:

name: foo; /*foo program¥*/
path_name: >bar;

linkage;

end;

finig

The following calls could be made to initialize the parsing
of zilch:

call parse_file_$parse_file_init_name (dir, zilch,
p, code);

call parse_file_¢$parse_file_unset_break (">_");
declare atom char (cc) unaligned based (p);

Subsequent calls to parse_file_ptr would then yield the
following:

atom break . eof
name 0 0
1 0
foo 0 0
; 1 0
path_name 0 0
1 0
>bar 0 0
; 1 0
linkage 0 0
; 1 0

2-73 AN51

parse_file_ parse_filé_

atom break eof
end 0 0
; 1 0
fini 0 0
; 1 0
- - 1

2-T4 AN51

print_gen_info_ print_gen_infb_

‘Name: print_gen_info_
The print_gen_info_ subroutine is used to print out general

information about an object segment. The format of the output is
the same as the print_gen_info command. '

Usage

declare print_gen_info_ entry (ptr, fixed bin(24),
char(¥*), fixed bin(35));

call print_gen_info_ (p, bc, stream, code);

where:

1. p is a pointer to the object segment of interest.
(Input)

2. be is the bit count of the object segment. (Input)

3. stream is the name of the I/0 switch over which the
information is to be output. (Input)

4. code is a standard Multics status code. (Output)

Entry: print_gen_info_g¢$component
This entry prints the information about a particular

component of a bound segment over the I/0 switch specified.

Usage

declare print_gen_info_g$component entry (ptr,
fixed bin(24), char(#*), fixed bin(35), char(¥));

call print_gen_info_g¢$component (p, he, stream, code, name);

where:

1-4. are the same as the print_gen_info_ entry.

5. name is the name of the component within the bound
segment for which information is to be printed.
(Input.

2-T75 AN51

ring0_get_ ring0_get_

. Name: ring0_get__

The ring0_get_ subroutine returns the name and pointer
information about hardcore segments.

Entry: ring0O_get_ $segptr

This entry returns a pointer to a specified ring 0 segment.
Only the name is used to determine the pointer. '
Usage

declare ring0O_get_$segptr entry (char(¥*), char(¥), ptr,
fixed bin);

call ring0_get_g$segptr (dir, entry, segptr, code);

where:

1. dir is ignored. (Input)

2. entry is the name of the ring 0 segment for which a
pointer is desired. (Input)

3. segptr is a pointer to the segment. (Output)

4. code is nonzero if, and only if, the -entry was not
found. (OQutput)

Note

If the entry was not found, segptr is returned null.

Entry: ring0O_get_$name

This entry returns the primary name and directory name of a
ring 0 segment when given a pointer to the segment.
Usage

declare ring0O_get_$name entry (char(#*), char(¥), ptr,
fixed bin);

call ring0O_get_g$name (dir, entry, segptr, code);

2-76 AN51

N

ﬂ

ring0_get__

‘Wwhere:

1. dir

2. entry

3. segptr

L. code

ring0_get_

is the pathname of the directory of the segmegt
(if the segment does not have a pathname, this is
"), (Output)

is the primary name of the segment. (OQutput)

is a pointer to the ring O segment. (Input)

is nonzero if, and only if, segptr does not point
to a ring 0 segment. (Output)

Entry: ringO_get_$names

This entry returns all the names and the directory name of a
ring 0 segment when given a pointer to the segment.

Usage

declare ring0_get_$names entry (char(¥), ptr, ptr,
fixed bin);

call ring0_get_$names (dir, names_ptr, segptr, code) ;

where:

1. dir

2. names_ptr

is the pathname of the directory of the segment.
(Output)

is a pointer to a structure containing the names
of the segment. (Output)

The following structure is used:

declare 1 segnames based (names_ptr) aligned,

a. count

b. names

¢. length

d. name

2 count fixed bin,
2 names (50 refer (segnames.count)),

3 length fixed bin,
3 name char(32);

is the number of names.

is a substructure containing an array of
segment names.

is the length of the name in characters.

is the space for the name.

2=T7 AN51

ring0_get__ ring0_get__

3. segptr is a pointer to the ring 0 segment. (Input)

4. code is nonzero if, and only if, segptr does not point
to a ring 0 segment. (Output)

2-T78 AN51

ring_zero_peek_ ring_zero_peek_

'Name: ring_zero_peek_
The ring_zero_peek_ subroutine is used to extract data from

the hardcore supervisor. Data that is not generally available to
normal users is returned only to privileged users.

Usage

declare ring_zero_peek_ entry (ptr, ptr, fixed bin (18),
fixed bin (35));

call ring_zero_peek_ (ptr0, ptr_user, nwords, status);

where:

1. ptr0O is a pointer to the data in ring 0 that is to
be copied out. (Input).

2. ptr_user is a pointer to the region 1in the user’s
address space where the data is to be copied.
(Input).

3. nwords is the number of words to be copied. (Input)

4. status is a returned status code which is nonzero if

the user did not have access to the requested
data. (Output)

2=T9 ANS51

set_lock_ set_loék_

Name: set_lock_

The set_lock_ subroutine contains entry points for locking
and unlocking user data bases. The following entry points are
documented in the MPM Subsystem Writers’” Guide (SWG), Order No.
AK92: set_lock_$lock, set_lock_$unlock.

Entry: set_lock_$admin lock

This entry performs the same function as set_lock_ $lock.
It, however, also grants increased priority scheduling to the
executing process and keeps metering statistics about its use.

Usage

declare set_lock_g$admin_lock entry (bit(36) aligned,
fixed bin, fixed bin);

call set_lock_$admin_lock (lock, wait_time, status);
where:
1. lock is the lock word to be locked. (Input/Output)

2. wait_time is the number of seconds for which this procedure
is to wait for the 1lock to be unlocked before

giving up. (Input)
3. status indicates the success of the call. See the SWG
section on set_lock_. (Output)

Entry: set_lock_$admin_unlock
This entry performs the same function as set_lock $unlock.

It, however, also rescinds increased priority scheduling to the
executing process and keeps metering statistics about its use.

2-80 ANS1

set_lock_ set_lock~

I

Usage

declare set_lock_$admin_unlock entry (bit(36) aligned,
fixed bin);

call set_lock_g$admin_unlock (1ock, code);

where:
1. lock is the lock word to be unlocked. (Input/Output)
2. code is a standard Multics status code. (Output)

2-21 ANS51

sort_items_ sort_items

Name: sort_items_

The sort_items_ subroutine provides a generalized, yet
highly efficient, sorting facility. Entries are provided for
sorting fixed binary (35) numbers, float binary (63) numbers,
fixed-length character strings, and fixed-length bit strings. A

generalized entry is provided for sorting other data types
(including data structures and data aggregates) and for sorting
data into a user-defined order.

The procedure implements the QUICKSORT algorithm of M. H.
van Emden, including the Wheeler modification to detect ordered
sequences.

Entry: sort_items_$fixed _bin
This entry sorts a group of aligned fixed binary (35,0)

numbers into numerical order by reordering a pointer array whose
elements point to the numbers in the group.

Usage
declare sort_items_¢$fixed_bin entry (ptr);
call sort_items_¢$fixed_bin (vP);

where vP points to a structure containing an array of unaligned
pointers to the aligned fixed binary (35,0) numbers to be sorted.
(Input)

Entry: sort_items_¢$float_bin
This entry sorts a group of aligned float binary (63)

numbers into numerical order by reordering a pointer array whose
elements point to the numbers in the group.

Usage
declare sort_items_$float_bin entry (ptr);
call sort_items_¢$float_bin (vP);
where vP points to a structure containing an array of unaligned

pointers to the aligned float binary (63) numbers to be sorted.
(Input)

2-82 AN51

N\

sort_items sort_items_

‘Entry: sort_items_g$char

This entry sorts a group of fixed-length unaligned character
strings into ASCII collating sequence by reordering a pointer
array whose elements point to the character strings in the group.
Usage

declare sort_items_$char entry (ptr, fixed bin (24));

call sort_items_$char (vP, length);

where:

1. vP points to a structure containing an array of
unaligned pointers to the fixed-length
unaligned character strings to be sorted.
(Input)

2. length is the number of characters in each string.
(Input)

Entry: sort_items_¢$bit

This entry sorts a group of fixed-length unaligned bit
strings into bit string order by reordering a pointer array whose
elements point to the bit strings 1in the group. Bit string
ordering guarantees that, if each ordered bit string were
converted to a binary natural number, the binary value would be
less than or equal to the value of its successors.

Usage
declare sort_items_$bit entry (ptr, fixed bin (24));

call sort_items_$bit (vP, length);

where:

1. vP points to a structure containing an array of
unaligned pointers to the fixed-length
unaligned bit strings to be sorted. (Input)

2. length is the number of bits in each string. (Input)

2-83 ANS1

sort_items_ sort_items

Entry: sort_items_$general

This entry sorts a group of arbitrary data elements,
structures, or other aggregates 1into a user-defined order by
reordering a pointer array whose elements point to the data items
in the group. The structure of data items, the information field
or fields within each item by which items are sorted, and the
data ordering principle are all decoupled from the sorting
algorithm by calling a user-supplied function to order pairs of
data items. The function is called with pointers to a pair of
items. It must compare the items and return a value that
indicates whether the first item of the pair is less than, equal
to, or greater than the second item. The sorting algorithm
reorders the elements of the pointer array based upon .the results
of the item comparisons.

Usage
declare sort_items_g$general entry (ptr, entry);

call sort_items_g¢$general (vP, function);

where:

1. vP points to a structure containing an array of
unaligned pointers to the data items to be
sorted. (Input)

2. function is a user-supplied ordering function. Its
calling sequence 1is shown 1in the '"Note"
below. (Input)

Note

The command sort_items_¢$general calls a user-supplied
function to compare pairs of data items. This function must know

the structure of the data items being compared, the field or
fields within each item that are to be compared, and the ordering
principle to be used in performing the comparisons. The function
returns a relationship code as its value. The <calling sequence
of the function 1s shown below.

2-384 ANS51

~

sort_items_ sort_items_

declare function entry (ptr unaligned, ptr unaligned)
returns (fixed bin(1));

value = function (ptr_first_item, ptr_second_item);
where:

1. ptr_first_item is an unaligned pointer to the first data
item. (Input)

2. ptr_second_item is an unaligned pointer to a data item to be
compared with the first data item. (Input)

3. value is -1 if the first data item is less than the
second.

is 0 if the first data item is equal to the
second.

is +1 if the first data item is greater than
the second. (Output)

Example

A simple example of a user-supplied ordering function is
shown below. It compares pairs of fixed binary (35,0) numbers.
If this function is passed to sort_items_$general, it performs
the same function as a call to sort_items_$fixed_bin, but with

less efficiency because of the overhead involved in calling the
function.

function: procedure (p1, p2) returns (fixed bin(1));

declare (p1, p2) ptr unaligned,
datum fixed bin(35,0) based;

if pt -> datum < p2 -> datum then
return (-1);

else if p1 -> datum = p2 -> datum then
return (0);

else
return (+1);

end function;

2-85 AN51

— ——

. Sort_items_ sort_items_

e ———————— e \

declare 1 v aligned,
2 n fixed bin (24),
2 vector (n) ptr unaligned;

2-86 AN51

sort_items_indirect_ sort_items_indirect_

"Name: sort_items_indirect_

The sort_items_indirect_ subroutine is a variation of the
sort_items_g$general entry. It provides a facility for sorting a
group of data items, based upon the value of an information field
that is logically associated with each item, but resides at a
varying offset from the beginning of each item. One of the names
in the name 1list associated with the status block returned by
hes_$status_ is an example of such an information field.

The procedure sort_items_indirect_ provides high performance
entries for sorting data items by the value of a single fixed
binary (35) field, float binary (63) field, fixed-length bit
string field, fixed-length character string field, or
adjustable-length character string field associated with each
item. A generalized entry point is provided for sorting other
types of information fields, for sorting aggregate information
fields, or for sorting items into a user-defined order.

To use sort_items_indirect_, the caller must create three
arrays: a vector of pointers to the data items being sorted (the
item vector); a vector of pointers to the single information
field within each item on which the sort is based (the field
vector); and an array of indices into these two vectors.

Notes

To use sort_items_indirect_$adj_char, one additional array
must be created: an array of 1lengths of the adjustable-length
character string information fields on which the sort is based.

For the sake of simplicity, the sort information field is
shown as part of the items being sorted in each of the diagrams
below. A more general application might show each item
containing a locator variable that addresses the sort field(s)
associated with that item.

The one-to-one correspondence between elements of the item
vector and elements of the field vector is shown below.

2-87 AN51

sort_items_indirect_ sort_items_indirect_

item
------- >i_ o _ _ _li
i i_field_ _{<-====-=
! | i |
| |
] |
| item I
| ————— > | |
Co i_field _1<----- t
item vector b L | P field vector
i X e | ——f===——=X i
i) Tm———— item ————rmm———— X
i Xeooeem Tm—————— > i ————rmm————— X |
i oo T-- |_field_ _|<====| —=qfo—=e-- X i
i i | |
| i
g item |
------- i i i
| _field K GRS

The array of indices can be used to reference elements of
both vectors. The field vector and index array are passed to
sort_items_indirect_, which references the sorting field in each
item through elements of these two arrays, as shown below.

index field vector
! 1 ' H ' item
i 2 | i i o |
| 3 im———] e Te——————— >\ _field_ _ |
| Yy i i | | |

The procedure sort_items_indirect_ reorders the index values
so that wvalues selected sequentially from the 1index array
reference points to the elements of a sorted list of information
fields. Because the sorting process involves only the
interchange of index values, there 1is still a correspondence
between the elements of the item vector and the elements of the
field vector after the sort is complete. Therefore, the index
array can also be used to reference a sorted list of items, as
shown below.

2-RR AN51

sort_items_indirect_ sort_items_indirect_

item
------- D
| _field_ _|
i | i
|
i item
| ———— >i_ o |
P i _field_ _|
index ' item vector . | |
2 : ! C—— 4—- |
| 1 | | Xmomm o= Tm——- item
i Yy i |) Ot Te——————— >l |
| 3 | i Xemm e +-T i_fleld_ _E
| |]
|
! item
------- i |
| _field !

If the information field upon which the sort is based is
located at a known offset from the beginning of each item, then
the calling program can avoid creating the index array and the
item vector by using the sort_items_ subroutine. (sort_items_
cannot process adjustable-length fields.) The field vector is
passed to sort_items_, and then the elements of the item vector
are computed by applying the appropriate offset to the
corresponding field vector elements.

A The QUICKSORT algorithm of M. H. van Emden (including the
Wheeler modification to detect ordered sequences) is used to
perform the sort.

Entry: sort_items_indirect_¢$fixed_bin
This entry sorts a group of information fields, which are
aligned fixed binary (35,0) numbers, into numerical order by

reordering an index array. The elements of this index array are

indices into an array of unaligned pointers to the numbers in the
group.

Usage
declare sort_items_indirect_$fixed_bin entry (ptr, ptr);

call sort_items_indirect_$fixed_bin (vP, iP);

2-89 AN51

sort_items_indirect_ sort_items_indirect_

where:

1. vP points to a structure containing an array of
unaligned pointers to the aligned fixed
binary (35,0) numbers to be sorted. (Input)

2. 1iP points to the structure into which the

ordered array of fixed binary (24) indices
into the wunaligned pointer array will be
placed. (Input) '

Entry: sort_items_indirect_¢$float_bin

This entry sorts a group of information fields, which are
aligned float binary (63,0) numbers, into numerical order by
reordering an index array. The elements of this index array are

indices into an array of unaligned pointers to the numbers in the
group.

Usage

declare sort_items_indirect_¢$float_bin entry (ptr, ptr);

call sort_items_indirect_$float_bin (vP, iP);

where:

1. vP points to a structure containing an array of
unaligned pointers to the aligned float
binary (63,0) numbers to be sorted. (Input)

2. 1iP points to the structure into which the
ordered array of fixed binary (24) indices
into the unaligned pointer array will be
placed. (Input)

Entry: sort_items_indirect_g$char

This entry sorts a group of information fields, which are
fixed-length unaligned character strings into ASCII collating
sequence by reordering an index array. The elements of this
index array are indices into an array of pointers to the
character strings in the group.

2-90 AN51

)

sort_items_indirect_ sort_items_indirect_

Usage

declare sort_items_indirect_¢$char entry (ptr, ptr,
fixed bin (24));

call sort_items_indirect_g¢$char (vP, index, length);

where:

1. vP points to a structure containing an array of
unaligned pointers to the unaligned
fixed-length character strings to be sorted.
(Input)

2. 1iPp points to the structure into which the
ordered array of fixed binary (24) indices
into the wunaligned pointer array will be
‘placed. (Input)

3. length is the number of characters in each string.

(Input)

Entry: sort_items_indirect_¢$bit

This entry sorts a group of information fields, which are
fixed-length unaligned bit strings into bit string order by
reordering an index array. The elements of this index array are
indices into an array of pointers to the bit strings in the
group. Bit string ordering guarantees that, if each ordered bit
string was converted to a binary natural number, the binary value
would be 1less +than or equal to the value of each of its
successors.

Usage

declare sort_items_indirect_$bit entry (ptr, ptr,
fixed bin (24));

call sort_items_indirect_$bit (vP, iP, length);

2-91 AN51

sort_items_indirect_ sort_items_indirect_

where:

1. vP points to a structure containing an array of
unaligned pointers to the fixed-length
unaligned bit strings to be sorted. (Input)

2. 1iP points to the structure into which the
ordered array of fixed binary (24) indices
into the wunaligned pointer array will be
placed. (Input) '

3. length is the number of bits in each string. (Input)

Entry: sort_items_indirect_g$general

This entry sorts a group of information fields (which are
arbitrary data elements, structures, or other aggregates) into a
user-defined order. It does this by reordering an array of
indices into a pointer array. The elements of this index array
point to the sort information field within the data items of the
group. The structure and data type of the information field and
the data ordering principle are decoupled from the sorting
algorithm by calling a user-supplied function to order pairs of
information fields. The function is called with pointers to a
pair of fields. It must compare the fields and return a value
that indicates whether the first field of the pair is less than,
equal to, or greater than the second field. The sorting
algorithm reorders the elements of the index array based upon the
results of the information field comparisons.

Usage

declare sort_items_indirect_g$general entry (ptr, ptr,
entry);

call sort_items_indirect_¢$general (vP, iP, function);

where:

1. vP points to a structure containing an array of
unaligned pointers to the information fields
to be sorted. (Input)

2. 1iP points to the structure into which the
ordered array of fixed bin (24) indices into
the unaligned pointer array will be placed.
(Input)

3. function is a user-supplied ordering function. (See

"Note" below.) (Input)

2-92 AN51

sort_items_indirect_ sort_items_indirect_

Note

The procedure sort_items_indirect_¢$general calls a
user-supplied function to compare pairs of data items. This
function must know the structure and data type of the information
fields, and it must know the ordering principle to be used to
compare a pair of information fields. The function returns a
relationship code as 1its value. The calling sequence of the
function is shown below.

declare function entry (ptr unaligned, ptr unaligned)
returns (fixed bin(1));

value = function (ptr_1st_field, ptr_2nd_field);

where:

1. ptr_1st_field is an wunaligned pointer to the first
information field. (Input)

2. ptr_an_fieid is an unaligned pointer to an information
field to be compared with the first
information field. (Input)

3. value is -1 if the first information field is less
than the second.
is 0 if the first information field is equal
to the second.
is +1 if the first information field is
greater than the second. (Output)

Example

A simple example of a user-supplied ordering function is
- shown below. It compares pairs of fixed binary (35,0) numbers.
If this function is passed to sort_items_indirect_$general, it
performs the same function as a call to -
sort_items_indirect_¢$fixed_bin, but with less efficiency because
of the overhead involved in calling the function.

2-93 AN51

sort_items_indirect_ sort_items_indirect_

function: procedure (p1, p2) returns (fixed bin(1));

declare(p1, p2) ptr unaligned,
field fixed bin(35,0) based;

if p1 -> field < p2 -> field then
return (-1);

else if p1 => field = p2 -> field then
return (0);

else
return (+1);

end function;

Entry: sort_items_indirect_$adj_char

This entry sorts a group of information fields, which are
unaligned adjustable-length character strings, into ASCII
collating sequence order by reordering an index array. The

elements in this index array are indices into an array of
unaligned pointers to the character strings in the group.

Usage
declare sort_items_indirect_$adj_char (ptr, ptr, ptr);

call sort_items_indirect_$adj_char (vP, iP, 1P);

where:

1. vP points to a structure containing an array of
unaligned pointers to the unaligned
adjustable-length character strings to be
sorted. (Input)

2. 1iPp points to the structure into which the
ordered array of indices into the unaligned
pointer array will be placed. (Input)

3. 1P points to a structure containing an array of

lengths of +the wunaligned adjustable-length
character strings to be sorted. (Input)

2-94 AN51

sort_items_indirect_ sort_items_indirect_

. Note

The structure pointed to by vP is to be declared as follows,
where n is the value of v.n:

declare 1 v aligned,
2 n fixed bin (24),
2 vector (n) ptr unaligned;

The structure pointed to by iP or 1P is to be 'declared as
follows, where n is the value of a.n:

declare 1 a aligned,

2 n fixed bin (24),
2 array (n) fixed bin (24);

2-95 AN51

sweep_disk_ sweep_disk_

Name: sweep_disk
The sweep_disk_ subroutine traverses the directory hiefarchy

below a specified node, calling a user-supplied routine at each
entry of the subtree.

Usage

declare sweep_disk_ entry (char(168) aligned, entry);
call sweep_disk_ (path, counter);
where:

1. path is the pathname of the base node of the subtree to
be scanned. (Input)

2. counter is an entry point called for each branch or link in
the subtree. (Input)
Notes

The routine counter 1is assumed to have the following
declaration and call:

declare counter entry (char(168) aligned, char(32) aligned,
fixed bin, char(32) aligned, ptr, ptr);

call counter (ddn, een, 1lrl, ename, bptr, nptr);

where:

1. ddn is the pathname of the directory immediately superior
to the directory that contains the current entry.
(Input)

2. een is the entryname of the directory that contains the
current entry. (Input)

3. 1rl is the number of levels deep from the given starting

node. (Input)

2-96 AN51

sweep_disk_ sweep_disk_

4. ename 1is the primary name on the current entry. (Input)

5. bptr is a pointer to the branch structure returned by
hes_$star_list for the current entry. (Input)

6. nptr is a pointer to the names area for the current entry’s
parent directory, returned by hes_g$star_list. (Input)

The routine sweep_disk_ attempts to initiate and terminate
directories to avoid a Known Segment Table (KST) overflow. If it
has sufficient access, it attempts to give itself access. If
unable to get access to a directory, it attempts to continue.
The contents of >process_dir_dir are ignored. Access is cleaned
up after a directory is processed.

2-97 AN51

system_info_ system_info_

Name: system_info_

The entry points discussed in this description are provided
by the system_info_ subroutine for the use of system modules in

addition to those described in the MPM Subroutines, Order
AG93.

The following entry points are documented 1in the
Subroutines:

system_info_¢$device_prices
system_info_g¢$device_rates
system_info_¢$installation_id
system_info_$next_shutdown
system_info_¢$prices
system_info_¢$rates
system_info_¢$shift_table
system_info_¢$sysid
system_info_$timeup
system_info_¢$titles
system_info_$users

Entry: system_info_g$abs_chn
This entry returns the event channel and process ID for
process that is running the absentee user manager.

Usage

declare system_info_$abs_chn entry (fixed bin(71),
bit(36) aligned);

call system_info_$abs_chn (ec, pid);
where:

1. ec is the event channel over which signals
absentee_user_manager_ should be sent. (Output)

No.

MPM

the

to

2. pid is the process ID of the absentee manager process

(currently the initializer). (Output)

Entry: system_info_g$next_shift_change

This entry point returns the time of the next shift change.

2-98

AN51

)

r

system_info_ system_info_

Usage

declare system_info_$next_shift_change entry (fixed bin,
fixed bin(71), fixed bin)

call system_info_$next_shift_change (nowshift, changetime,
newshf) ;

where:
1. nowshift is the current shift number. (Output)
2. changetime 1is the time the shift changes. (Output)

3. newshf " is the shift after changetime. (Output)

Entry: system_info_¢$shift_table

This entry point returns the system’s local shift definition
table.

Usage
declare system_info_$shift_table ((336) fixed bin);
call system_info_$shift_table (stt);
where stt is a table of shifts, indexed by half-hour within the

week. stt(1) gives the shift for 0000-0030 Mondays, etec.
(Output))

2-99 AN51

teco_get_macro_ teco_get_macro_

-Name: teco_get_macro_

The teco_get_macro_ subroutine is called by teco to search
for an external macro.

By default the following directories are searched:
1. working directory

2. home directory
3. system_library_tools

Usage

declare teco_get_macro_ entry (char(%*) aligned, ptr,
fixed bin, fixed bin(35));

call teco_get_macro_ (mname, mptr, mlen, code);
where:
1. mname 1is the name of the macro to be found. (Input)
2. mptr is a pointer to the macro. (Output)
3. mlen - is the length of the macro. (Output)

4. code is a standard Multics status code. (Output)

2-100 AN51

translator_info_ translator_infb_

‘Name: translator_info_

The translator_info_ subroutine contains utility routines
needed by the various system translators. They are centralized
here to avoid repetitions in each of the individual translators.

Entry: translator_info_g$get_source_info

This entry returns the information about a specified source
segment that is needed for the standard object segment: storage
system location, date time last modified, unique id.

Usage

declare translator_info_g$get_source_info entry (ptr,
char(#*), char(*), fixed bin(71), bit(36) aligned,
fixed bin(35));

call translator_info_$get_source_info entry (source_ptr,
dirname, entry_name, date_time_mod, unique_id,
error_code);

where:

1. source_ptr is a pointer to the source segment about
which information is desired. (Input)

2. dirname is a pathname of the directory in which the
source segment is located. (Output)

3. entry_name is the primary name of the source segment.
(Output)

4, date_time_mod is the date time modified of the source
segment as obtained from the storage system.
(Output)

5. unique_id is the unique id of the source segment as
obtained from the storage system. (Output)

6. error_code is a standard Multics status code. (Output)

2-101 AN51

translator_info_ translator_infd_

Status Codes

A zero status code indicates that all information has been
returned normally.

A nonzero status code returned by this entry is a storage
system status code. Because the interface to this procedure is a
pointer to the source segment, the presence of a nonzero status
code probably indicates that the storage system entry for the
source segment has been altered since the segment was initiated,
i.e., the segment has been deleted, or this process no longer has
access to the segment.

Not

The entryname returned by this procedure is the primaryname
on the source segment. It is not necessarily the same name as
that by which the translator initiated it.

2-102 AN51

virtual_cpu_time_ virtual_cpu_timé_

Name: virtual_cpu_time_

The virtual _cpu_time_ subroutine returns the CPU time wused
by the calling process not spent handling page faults, or system
interrupts. It is therefore a measure of the CPU time within a

process that is independent of other processes, current
configuration, and overhead to implement the virtual memory for

the calling process.

Usage
declare virtual_cpu_time_ entry returns (fixed bin(71));
time = virtual_cpu_time_ ();

where time 1is the virtual CPU time in microseconds, used by the
calling process. (Output)

2-103 ANS51

whotab whotab

Name: whotab

The whotab subroutine is the public information base for the
- system. All users who are listed by the who command have an
entry in this table which becomes active after they are logged
in. In addition, various system parameters of interest to all
users are -recorded in whotab. The answering service module
lg_ctl_ maintains most of the data; only the initializer process
can modify the segment.

Usage

declare 1 whotab based (whoptr) aligned,
mxusers fixed bin,

n_users fixed bin,

mxunits fixed bin,

n_units fixed bin,

timeup fixed bin(71),

sysid char(8),
nextsd fixed bin(T71)
until fixed bin(71),
lastsd fixed bin(71)
erfno char(8),

why char(32),
installation_id char(32),
message char(32),
abs_event fixed bin(T71),
abs_procid bit(36),
max_abs_users fixed bin,
abs_users fixed bin,

pad (17) fixed bin,

laste fixed bin,

freep fixed bin,

(1000),

active fixed bin,

person char(28) aligned,
project char(28),

anon fixed bin,

alias char(8),

timeon fixed bin(T71),
units fixed bin,

stby fixed bin,

idcode char(l),

chain fixed bin,
proc_type fixed bin,
group char(8),

pad1l (5) fixed bin;

,

’

PPN N NN

LWWuwwwuwwuwwuwwww O

~ 2-104 AN5 1

N\

whotab
where:

1. mxusers

2. n_users

3. mxunits

4, n_units

5. timeup

6. sysid

7. nextsd

8. until

9. lastsd

10. erfno

11. why

12. installation_id
13. message
14. abs_event
15. abs_procid
16. max_abs_users
17. abs_users
18. pad

19. laste
20. freep

whotab

is the maximum number of users allowed
on the system.

is the current number of users.

is the maximum number of 1load units
allowed.

is the current load.
is the time the system was started.
is the current system name.

is the time the system will be shutdown,
if nonzero. :

is the projected time of the next system
start-up.

is the time of last crash or shutdown.

is the error number of the 1last crash,
if known.
next shutdown, if

is the reason for

known.

is the name of the installation}

is a message for all users (not used).
is the event channel for signalling
absentee requests.

is the processid of the absentee user
manager.

is the current maximum number of

absentee users.
is the current number of absentee users.
is padding.

is the index of the last entry in

use.

is the index of the first free entry

chained through '"chain".

2-105 AN51

whotab whotab

21. active is nonzero if the user is logged in.
22. person is the person name.
23. project is the project ID.
24, anoni is 1 for an anonymous user, otherwise 0.
25. alias is the user alias (not used)f
26. timeon is the time of login.
27. units is the number of 1load wunits for the
user.
28. stby is 1 for a secondary user.
729. idcode is the tty ID code.
30. chain is a chain for the free list.
31. proc_type . is the process type:
1 = interactive;
2 = absentee.
32. group is the user’s load control group ID.
33. padi is unused.

2-106 AN51

INDEX

A

abbrev_ 2-2ff
add_copyright 1-2
as who 1-=-3ff
ask 2-6ff

B

backup_dump 1-6, 2-13

backup_load 1-7ff, 2-13,
2-15

bk _arg reader_ 1-6, 2-13ff

C

canonicalizer_ 2-19ff
check mst 1-10ff
ckm
see check_mst
command_processor_ 2-2, 2-4,
2=-21ff
comp_dir_info 1-15ff, 1-75,
2-69
copy_mst 1-18
copyright _archive 1-19ff
copyright_notice_ 1-2,
2-2Uff ‘
cpm
see copy_mst
create_ips_mask_ 2-26
cref
see cross_reference
cross_reference 1-21ff,
cu_ 1-39, 2-21, 2-27ff,
2-57

D
date_deleter 1-24
datebin_ 2-31ff ‘
decode definition_ 2-39ff
E

edit mst header 1-25ff
emh

see edit mst header
expand " 1-27,

F

find_include_file_ 1-80,
2-Usff :

gds

see get _device _status
gen_sst_card 1-28
gen_ted_card 1-29
generate_mst 1-30
get _bound_seg_info_ 2-51ff
get_device_status 1-31
get_initial_ring_ 2-53
get_library_segment 1-32ff
get_lock_id_ 2-54
get_primary_name_ 1-37,

2-55
get_seg_ptr_ 2-56ff
get_temp_seg_ 1-105, 2-60ff
gls

see get_library_segment
gm

see generate_mst
grab_tape_drive 1-37
gsc

see gen_sst_card
gte

see gen _ted_card

H

hash_ 2-63ff
hes_$get_page _trace 2-66ffF

I
icref
see
include cross _reference
if 1-39

include _cross_reference
1-41

AN51

lad

see list assigned_devices
link unsnap_ 2-68
list assigned_devices
list dir_info 1-16,

1-70, 1-75,
list dir _info_

1-70, 2-69ff .
list sub_tree 1-U44
listing tape_print
1st

see list sub_tree
1tp

see listing_tape_print

1-42
1‘)437

1-16, 1-43,

1-45fFF

M

mexp 1-53ff

N
nothing 1-60,

nt
see nothing
P
parse_file_ 2-TI1ff
pause 1-61,
pcd
see
print configuration_deck
pem :
see print _error _message
pgi ’
see print gen_info
print_configuration_deck
1-62, 1=-77
print _error message
print _gen_info 1-65, 2-T77
print_gen_info_ 1-65, 2-77
print_sample_refs 1-66fF,
1-73
print_text_boundary 1-68
psrf
see print_sample_refs
pthb
see print_text_boundary
ptsr
see
print_translator_search_rules

1-63ff

R

rebuild_dir 1-70, 1-75,

2-69
repeat _line 1-T71
resetcopysw 1-72
ring0 _get_ 2-78ff
ring zero_peek_ 2-81
rpl

see repeat_line
S

sac
see send_admin _command
sample refs 1-66ff, 1-73ff
save _dir_info 1-15, 1-43,
1-70’ 1-757 2-69
send_admin_command
set _lock 2-82ff °
set proc_required
set _text_boundary
set_timax 1-79
setcopysw 1-81
setquota 1-82
sort _items_ 2-8Uuff
sort _items_indirect _
sprq
see
sqQ
see
srf
see
stb
see
stm
see
stsr
see
set_translator_search_rules
sweep_disk_ 2-98ff
system_info_ 2-100ff

1-76

1-77
1-78

2-89ff
set _proc_required
setquota

sample_refs

set text boundary

set _timax

T

1-83ff, 2-102
1-87, -1-120
1-121,

teco
teco_error
teco_get_macro_

2-102
teco_ssd 1-121
test archive 1-122
test_tape 1-123ff

AN51

translator_info_ 1-67,
2-103ff

U
unassign_device 1-125
v

value 1-126ff
virtual_cpu_time_ 2-105

W

whotab 1-3, 2-106ff

i-3 AN51

R Cbk)ONG LINE - -

HONEYWELL iINFORMATION SYSTEMS
Publications Remarks Form*

*“

TITLE: SERIES 60 (LEVEL 68) MULTICS ORDER No.; AN51, REV, 0
SYSTEM TOOLS PROGRAM LOGIC MANUAL DATED: | FEBRUARY 1975
ERRORS IN PUBLICATION:
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
(Please Print)

FROM: NAME DATE:

COMPANY

TITLE

\

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

e eeeaaeceeaacceea--CUTALONGLINE ------"-"

CAY N ALARMC LINC

ENI N ALONG LINER

The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS ‘

12770

2.9C375 Inthe US.A.: 200 Smith Street, MS 061, waltham, Massachusetts 02154
Printed in U.S.A. In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario ANS51, Rev. 0

