

Roo-h

MULTICS BULK
INPUT/OUTPUT
ADDENDUMD

SUBJECT
Additions and Changes to the Manual

SPECIAL INSTRUCTIONS
This is the fourth addendum to CC34, Revision 1, dated March 1979.

Insert the attached pages into the manual according to the collating instruc-
tions on the back of this cover.

Throughout the manual, change bars in the margin indicate technical additions
and changes; asterisks denote deletions. These changes will be incorporated into
the next revision of this manual.

Note:

Insert this cover after the manual cover to indicate the updating of the
document with Addendum D.

SOFTWARE SUPPORTED
Multics Software Release 10.0

ORDER NUMBER
CC34-01D July 1982

34755

Printedin USA H Oneywe"

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove Insert
title page, preface title page, preface
iii through vi iii through vi
1-1, 1-=2 ' 1-1, 1=2
2-7, 2-8 2-7, 2-8
2-21, 2-22 2-21, 2-22
2-22.1, blank 2-22.1, blank
3-21, 3-22 3-21, 3-22
3-22.1, blank
3-35 through 3-38 3-35 through 3-38
3-51 through 2-54 3-51 through 3-55, blank

A-4.1, blank
C-1, C-2 C-1, C-2

G'31 G-4 0‘3: G‘u
G-4.1, blank

i-1 through i-}y i-1 through i-y

Honeywell disclaims the implied warranties of merchantability and fitness for a partic-

ular purpose and kes no exp war pt as may be stated in its written

agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or q

damages. The information and specificati in this d t are subject to chang

without notice.
(:) Honeywell Information Systems Inc., 19082 File No.:
7/82

1L13,

113

CC34D oy

SERIES 60 (LEVEL 68)

MULTICS BULK
INPUT/OUTPUT
SUBJECT
Information Needed by System Administrators and Operators in the Manage-
ment of Bulk Input/Output
SPECIAL INSTRUCTIONS

This manual supersedes the preliminary edition of Multics Bulk Input/Output,
Order No. CC34, Revision 0. Each section has been extensively revised; change
bars in the margins indicate technical changes and additions, and asterisks
indicate deletions.

Much of the information in this manual on the administration and operation of
the I/O daemon supersedes material that has been available in the Multics
Operators’ Handbook, Order No. AM81 and the Multics Administrators’ Manual ~
System, Order No. AK50. The superseded material has been removed from these
manuals.

Information about bulk input/output needed by users is in the Multics Pro-
grammers’ Manual - Communications Input/Output, Order No. CC92.

Please refer to the Preface for more specific information concerning changes to
this manual.

SOFTWARE SUPPORTED
Multics Software Release 7.0

ORDER NUMBER
CC34, Rev. 1 March 1979

Honeywell

PREFACE

~
The Multiecs Bulk Input/Output manual contains information needed by system

gdministrators and operators in the management of the daemons that handle
Input/output to unit record devices (card readers, printers, and punches).

Other manuals that provide additional information and that are referenced
in this manual include:

Document Referred to in Text As
Multics Programmers' Manual (MPM) MPM Reference Guide

Reference Guide
(Order No. AG91)

MPM Commands and Active Functions MPM Commands
(Order No. AG92)

Multics Operators' Handbook MOH
(Order No. AMg1)

Multics Administrators' Manual (MAM) MAM System
System

(Order No. AK50)

In addition to the above documents, the reader is referred to the appropriate
peripheral equipment manuals for information on particular devices.

RN
~’
| changes in cC34, Revision 1, Addendum D

Changes have been made in Sections 2 and 3 and in Appendixes A, C, and G.
The iod command command in Appendix A is new; therefore, it does not contain

change bars.

Honeywell disclaims the implied warranties of merchantability and fitness for a partic-
ular purpose and makes no express warranties except as may be stated in its written
agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or q
damages. The information and specificati in this d t are subject to chang
without notice.

QD Honeywell Information Systems Inc., 1982 File No.: 1L13, 1U1?
7/82 CC3Uwe

CONTENTS

Page

—_
!
s

Section 1 Introduction . . .« ¢ « ¢ ¢ o o o e .

Section 2 Directory Structure and Data Bases of the I/0
Daemon . . . T
I/0 Daemon Dlrectorles . o .
Contents of daemon dir d1r Dlrectory
Contents of io daemon dir Directory .
Contents of cards Directory
I/0 Daemon Tables . . e e e e e e e
I/0 Daemon Tables Source Language . .
Syntax . o ¢ o e e e e e e e o
Statements ¢ ¢ o .+ . .
Substatements for Lines . . .
Substatements for Devices . .
Substatements for Request Types .
Source File Example . . . o . .
Major and Minor Devices
Substatements for Minor Devices .
Source File Example Using Minor
Devices . « « ¢« + ¢ o« o o o
AIM Features
Substatements for Dev1ce Classes . .
Substatement for Default Request Type
Source File Example Using AIM . .
Standard Driver Modules
printer driver MODULE . . .
punch driver MODULE

.
[
OO~NOoOONELFLWLWUWW = ===

e« o o o o o o

[T T I A
J T G I G G)
MY -0

DSIHSIOS IOV VR

reader driver MODULE . .
spool driver ~MODULE .
remote driver MODULE .
Normal setup of the remote_ drlver
(Type I stations)
Setup for stations that cannot
input commands (Type II stations)
Remote Driver <string> Arguments .
Creation and Maintenance of I/0 Daemon
Tables . . . e e e e e e e e e
Creation and Malntenance of I/0 Daemon
Queues . . . e s s e e e e e e
Maintenance of AIM Features e e e e e e e e
Request Type Info Segments
Syntax For The Request Type Info Source
Segment . . . e
Example of a Request Type Info Source
Segment e o e e e e e e .

. . .

[} !
- -

) n n N l'\) NN
NN — —
[eRe JVe) 0 ~ wm (O) QN N —gN — 3% — S VN]

Py oRRY
N
N Y

Section 3 Operation of the I/0 Daemon
Login and Initialization of the I/O
Coordinator
Communicating w1th the Coordlnator

Interrupting the Coordinator . .
Coordinator Commands « .« &
1 1=
print devices e e e .
wait Status e e e e e e
term . . e e e e e e e e e e e e
restart status . . . e e e e e e e
Login and Tnltlallzatlon of Dev1ce Drivers

[}
g

o o o o o
.

[trr

EEFTLWWWWMNON =

.
Wwwwwuwwwww w
]

7/82 iii cC34D

7/82

CONTENTS (cont)

Logging in a Driver
Driver Initialization
Driver Initialization

Classes .

When Using Device

Terminals That Control fhé brivér.
Master Versus Slave Functions
Driver Initialization

Terminal

Driver Command Levels
Normal Driver Command
Request Command Level

Quit Command Level

.

Standard Driver Commands . .
General Control Commands

Control Commands After Interruptin

Request . . .

Information Commands .« e e e e .
Coordinator Communication Commands
Commands For Terminal Control
Error Recovery Commands .

Device Specific Driver Commands
Making The Driver Ask For A Command

With A Control

Le

vel

.

.

.

g

.

.

.

Entering Commands From A Multifunction

Device Card Reader

Using Preprinted Accountability Forms On

Control Terminal

Device Specific Driver Operations
Operation of the Printer Driver
Login and Initialization

Limitations

Processing Requests

.

Operation of the Punch Driver
Operation of the Spool Driver
Login and Initializaticn

Spooling Parameters

To Continue Spooling .

To Terminate Spooling
Spool Driver Messages
Spool Driver Commands
Operation of a Remote Driver

Initializing and Dialing

Station .

Sending a QUIT Signal To

Driver Command Descriptions
auto start delay

banner bars . .
banner type
cancel™ . .
clean pool

copy ~ . . .
ctl term .
defer . . .
defer time

® o e o o o o o
.

go o« o . .
halt
help . . .

hold
inactive 1limit
kill

logout
master .

new device
next . . .
paper info
pause_time

* e e o o

iv

.

® o o & o e o 6 ¢ o o

® o o o e o

® o o o e+ e o o o

.

.

.
.
.

e e o o o o

e o o o o o

In the Remote

The

* o o o o o

¢ o o o .

® e o o o o o o

@ ® o o o o e o o+ e o

w w
[}
=

[SSAVSEUSRUN USRS RON] w W
I
i i T R e N o) 20 0

P T T G Y
= SOV -

[SSAVSRVS RV RSN N RN

w
])
N —_

il e AN Ne o No N EN No We Weo W0 =]

2O 2 LS T A\ R S N i S ST S

W DWW WWWWWWW
I

LWwwi
[| LI B B |
Wwwwwwwww

Wwwwww
[
M EZTWWNDN -

CC34D

CONTENTS (cont)

print . . e e e e e s e e s e s e e e & 3237
prt control . . .

punch : . e . . 3-38
pun control . . . e e . . 3-39
read cards . . e . . 3-40

read¥ . « « ¢« ¢ s o« 0 o e o o .
reinit . .
release . . .
req status .
restart . . .
restart q . .
runout Spacing
sample” . . .
sample form .
sample_hs

save
sep cards
single . .
slave . .

e o o o e o

e o o o o e e o o e o
e o o o o o o o
e o e o o o o
e o o e o o o o o
e o o o o e o o ¢ o o o

e o o o e o o o

e o o ® o o 8 e o o o o
.
e ® o © o o ® ® o ® e e o o 8 e o & o e+ o v o
e o o o o o o ® o o o & o

T
Wt ! W www: ¢
1
=
-~

.
.
.
.
.
.
.
.
. . . .
.
.
.
.
.
.
.
.

e o o ® o e o & o ° ® e o o o

slave term« = . 3-51
start™. e e e e . 3-52
station e e e e . 3-52
status e e e e . . 2-53
step e e e e . 2-5Y4
X . . e e e e e 2-54
Section 4 Management of Card Input Station U1
Card Input Access Control U1
Card Input Password « . . . U1
Registering Card Input Users U-1

Remote Job Entry Submission Access
Control . . . e e e e .« e e e
Station Reglstratlon and Password . e e e
User Card Input Access Segment
System Station Access Control Segment . .
Reading User Card Decks . e e e e .
Reading Cards at the Central Slte
Login and Initialization . . .
Communicating with the Daemon .
Error Conditions . . . e
Reading Cards at the Remote Slte e e e e e

.
-

. . .

. . . .
.
.
.

[

I g i g S
]
AONUITNTENDNON = =

Appendix A Administrative Commands and Active Functions . A-1
create daemon queues, cdg A2
ev_prt_rqti T e « « « « o« A-3
dlsplay prt_ rqti o o000 .0 A-Y
iod command™ e « « + « « o A-H4.1
iod tables compiler « .« A-5

Jod val™ ¢ ¢« ¢ « + e + +« o« « + +« . A-6
print devices ¢ .+ .« « .« . . AT
print T iod tables e « « « « « « A-8
prlnt_llne idS &« v v ¢ 4 ¢« e e e o + « o« « o A9
print spooling tape . . e + &« « o« o« « « A-10

Description of the Spoollng Tape A-11

Appendix B Summary of I/0 Daemon Commands B=1
Standard Driver Commands . . . « « « « « « o B=1
Device Specific Driver Commands B-=3

Commands for Printers B-3

Commands for Printers at Request Command

Level Only e e e e . « « B=3

Commands for Local Punches e « « « + « o B-b

Commands for Remote Punches B-4

Command for Remote Punches at Request

Command Level Only B-4

7/82 v CC34D

CONTENTS (cont)

Page
Commands for Card Input Boy
Commands for Control Terminal Operation
(Most Drivers) B-y
Commands for Remote Device Control . B-4.1
Commands for Spool Driver B-4.1
Appendix C I/0 Daemon Admin exec_com Format ¢+« . . C-1
Appendix D Generating A Driver Process In Test Mode « « D=1
Test Directory Structure . . . e ¢+ « « « « o« D=1
User Generated Data Bases . . . e « « « + D-1
Shared Data Bases C e e e e e e e D-2
Manipulating Requests in the Test Queues . D-2.1
The Test Process o« o D=3
Testing a Remote Station .« e e . D-3
Setting Breakpoints D-4
Command Level Messages « . D=5
Sample exec com File s« « « + . D-b
Test Mode Commands D=7
coord, . . . « « D-7
debug o e e e e . D-8
driver D-8
pi e e e e D-9
resume o o . . o« e e e D-9
return L L L L L. D-10
Appendix E Driver to Driver Message Facility E-1
Appendix F I0 Modules For Remote Stations F-1
hasp workstation I/0 Module F-1
tty printer I/0 Module F-1

Appendix G The Hasp Workstation Simulator
Simulator Structure . e e e e . .
Definition of a HASP Workstation Simulator
Iod tables

"Sample iod tables Definition
args Statement Keywords
minor args Statement Keywords

Operating a HASP Workstation Simulator . . .
Special Instructions For Running The Printer
and Punch Simulators
receive
auto queue

D000
Cr
NN — -

]
O VI WN UEwWww

request type, rqt
hasp_ho§t_operators_eonsole, hhoe

OOO?O [RoN»]

e o o o
* o o o

(=3
]
-

Index e e e e e e e e e e e e e e e e e e e,

7/82 vi ~ cc3up

SECTION 1

INTRODUCTION

The bulk input/output facility is normally used to manage all card reading,
card punching, and printing requests on both local and remote unit record equipment.
Printing facilities include a set of priority queues for requests submitted by
users, the management of one or more printers, the handling of special forms,
and numerous operator commands to control the operation of this facility. An
optional operational mode allows the spooling of print requests onto tape for
subsequent printing on either the same or another system. The card input facilities
include both the input of data and the input and submission of absentee jobs.
This facility is integrated with the Multics access control mechanism and the
access isolation mechanism (AIM) so that integrity of users' data is maintained.
Accounting is provided for bulk input/output.

The software that handles printing, punching, and card input is called the
I/0 daemon. It normally runs with highly privileged access on the SysDaemon
project, though some of the drivers can run with fewer privileges if the site
desires. The I/0 daemon is organized into a coordinator process and a number of
driver processes; a driver is associated with each local or remote device.

The I/0 daemon normally is run with message coordinator terminals. The
particular terminal or terminals chosen depend upon the needs of the site. For
remote devices, partial control of the process is from the device itself, using
its card reader or input keyboard if available.

The system administrator sets up the environment in which this facility
runs by creating and modifying the I/0O daemon data bases, creating info segments
or other information to inform the user community of what is available, and
setting up special operator exec coms or instructions. The operator runs the
facilities according to instructions given by the system administrator, taking
care of the needs of the peripheral devices and following special requests made
by the system.

Section 2 of this manual describes the directory structure and data bases
used by the I/0 daemon. System administrators must be familiar with the material
in this section in order to set up the I/0 daemon to meet the needs of their
particular site.

Section 3 describes the operational capabilities of the I/O daemon and the
commands and operating procedures needed to make use of these capabilities.
Both the system administrator and the operators should be familiar with the
material in this section in order to provide the best possible service. Under
normal operational circumstances, the operator uses the special commands contained
in the system exec_coms described in the MOH.

1-1 CC34

Section U4 describes the data bases that a system administrator uses to
manage a card input station in a manner that ensures against security violations.
The control cards that the operator places at the beginning and end of each user
supplied card deck are described here, as well as the special operating instructions
used, in conjunction with those in Section 3, to operate the card reader.

Appendix A describes the administrator commands used to manage the 1I/0
daemon data bases and the operator command used to print a spooling tape.

Appendix B contains a summary of all I/0 daemon commands. For convenience,

copies of this section should be made and posted near control terminals used by
the I/0 daemon.

Appendix C explains I/0 daemon admin exec coms, with special reference to

the driver x command. A sample section of an admin exec_com completes this
appendix. .

Appendix D details how to generate an I/0 daemon driver process in a test
environment.

Appendix E describes how to set up a message facility for communication
between drivers and from drivers to devices.

Appendix F reproduces, from the first edition of this manual, the original
method of filling out the I/0 daemon tables for remote driver devices.

' Appendix G describes a facility for the simulation of a remote job entry
(RJE) workstation using the HASP communications protocol.

7/82 | 1-2 | cCc3up

SECTION 2

DIRECTORY STRUCTURE AND DATA BASES OF THE I/0 DAEMON

I/0 DAEMON DIRECTORIES

The Multies I/0 daemon software depends on the existence of certain
directories and segments. The most important of these directories and segments
are created and initialized at a new Multics site by the acet start up.ec
segment (described in MAM System). - -

The system administrator who manages and supervises the various I/0 daemon
processes must be familiar with that portion of the hierarchy around which the
daemon processes are organized. The main node of this hierarchy is the
directory named >daemon_dir_dir (with a short name of >ddd). This directory
contains segments and directories wused to support the various system daemon
processes.

Contents of daemon_dir_dir Directory

~ The >daemon_dir_dir directory contains the following directories of
interest:
io_daemon_dir holds all I/0 daemon data bases

cards a storage pool for card deck image segments read by the
system card input process (local or remote station)

io_msg_dir contains mailboxes for each device (station) for which
driver to driver messages will be sent or received

These directories and their contents are described in the following
paragraphs. The access isolation mechanism (AIM) access class for all these
directories is system low.

Contents of io_daemon_dir Directory

The >daemon_dir_dir>io_daemon_dir directory contains a set of
administrative data bases and working storage used to direct the activities of
the I/0 coordinator process and the various device drivers.

The main data base, iod_tables, is set up by a system administrator. Most
of the other segments and directories are created and maintained by the I/0
coordinator acting on information contained in the iod_tables segment.

—

2-1 CC34

are
inclu
(AIM)

12/79

The following segments are contained in io_daemon_dir:

coord comm.ms

coord_lock

iod tables

iod tables.iodt

iod_working_tables

iodc_data

printer_notice

XXX N.ms

ring 1 message segment in which driver processes place
messages for the I/0 coordinator

a segment used by the process overseer of I0.SysDaemon
to prevent initialization of a driver process before an
I/0 coordinator has Dbeen created; also prevents
creation of more than one I/0 coordinator

master control tables for the I/0 coordinator; compiled
by the iod tables_compiler command on request of a
system administrator

source segment for iod tables; may be updated by a
system administrator and compiled to yield iod_tables

working copy of iod tables used by the device drivers
and users; copied from iod_tables during 1I/0
coordinator initialization

a segment containing the process identifier of the I/0
coordinator and the event channel identifier to be used
by a new driver for initial communication with the
coordinator

an optional segment containing information that the
site administrator wants to be printed on the page
following the head sheet of every printer listing,
local or remote. The segment must contain ASCII text.
It should be no longer than 60 1lines and the line
length should correspond to the shortest printer device
in use. This feature is useful in notifying users of
printing charge rates, available request types, when
they are processed, stock forms wused for each, and
other useful inform .tion covering the printing
operations on the system.

ring 1 message segment for I/0 daemon queues; one such
message segment is creat.d for each priority queue of a
request type; XXX is the request type name and N is the
queue number (1<= N <=4)

There are several directories contained in the io daemon dir, some of which

site dependent.

Access class information about +these directories is

ded here as an aid +to those sites using the access isolation mechanism

coord_dir

working storage for the I/0 coordinator, which is
created and managed by the I/O coordinator; the access
class is the authorization of the I/O coordinator

2=2 CC34A

()

rqt_info_segs

meter dir

<{major device>

12/79

created by an administrator to hold any request type
info segments wused Dby drivers (see the cv_prt_rqgti
command in Appendix A and "Request Type Info Segments"
later in this section); the access class is system low

created by an administrator +to hold driver metering
data (for future use)

separate directory for each major device currently
being run by a device driver. These directories are
managed by the I/0 coordinator and their names are site
dependent. Each major device directory contains a
driver status segment for each minor device associated
with +the major device. The access class 1is the
authorization of the device driver.

2=-2.1 CC34A

12/79

This page intentionally left blank.

CC34A

()

Contents of cards Directory

The storage pool for card deck image segments consists of a subtree of the
directory hierarchy, which is headed by >daemon_dir dir>cards. One access class
directory for each access class (as needed) is contained in the cards directory.
Storage is always allocated within the access class directory that corresponds
to the process! authorization. Person directories are contained in the
appropriate access class directory. A person directory is created for each
person who needs temporary storage. A person directory contains all segments
and multisegment files for a given person at a given access class. For example,
if a user with Person_id TSmith is at system low, the following directory is
allocated for his card deck image segments: -

>daemon_dir_dir>cards>system_low>TSmith

Contents of io_msg_dir Directory

The >daemon_dir_dir>io_msg_dir directory contains mailboxes of the form
{device>.mbx for each device and remote station that uses the driver to driver
message facility. See Appendix E for more information.

I/0 DAEMON TABLES

In order to manage the wuse and operation of the I/0 daemon, an
administrative data base exists that can be adapted to the specific needs of a
particular Multics site. This data base contains several different tables of
information and hence is referred to as the "I/0O daemon tables." The data base
is generated from a source language description ordinarily prepared by a system
administrator. The 1iod_tables_compiler command (described in Appendix A) is
used to translate the source description into the encoded representation of the
I/0 daemon tables. The encoded representation, which 1is used by the 1I/0
coordinator, must be named "iod_tables". l

I1/0 Daemon Tables Source Language

The purpose of the I/0 daemon tables source language 1is to define the
devices and the request types to be used by the I/0 daemon. A source file
consists of a sequence of statements and substatements that define and describe
each device and request type. 1In addition, certain global information items are
defined that do not pertain to any particular device or request type.

SYNTAX

¢

The syntax of the source language statements and substatements is of the
form:

<keyword>: <parameter>;

The only exception to this is the "End" statement. The keyword of a statement
begins with a capital letter; the keyword of a substatement is entirely in
lowercase letters. Substatements describe attributes of devices, communication
lines, or request types for the given statement. Each group of one statement
and its substatements constitutes a statement description.

2-3 cc34

PL/I style comments beginning with "/%" ang ending with "¥*/" may appear
anywhere within the source file. Similarly, blanks, tabs, and newlines not
embedded within a keyword or parameter are ignored. However, in order to
include blanks, tabs, newlines, colons, or semicolons in a parameter enclose
them in quotes. If a parameter begins with a quote, all immediately following
characters up until the next quote are taken as the parameter. It is possible
to embed quotes within a quoted string wusing the double quoting escape
convention of PL/I.

STATEMENTS
The following statements may appear anywhere within the source file.

Time: <number)>;
defines the number of minutes that the coordinator saves a processed
request. When segment deletion is requested, it is delayed this
amount of time. If some problem is discovered that necessitates the
reprocessing of requests, those requests performed less than <number>
minutes ago can be restarted. One, and only one, Time statement must
appear in the file.

Max_queues: <number>;
defines the default number of priority queues for each request type.
The maximum value of <number> is 4, (Queue 1 is the highest priority
and queue 4 is the lowest priority.) One, and only one, Max_queues
statement must appear in the file.

Line: <name>;
defines the name of a logical line id and denotes the beginning of a
line description., Any subsequent ~substatements (see below) apply to
this line until the next Line, Device, or Request type statement is
encountered. Any <name> may be chosen; it can be” a maximum of 32
characters and cannot contain spaces or periods. There may be up to
360 Line statements. This statement is optional.

Device: <name>;
defines the name of a major device and denotes the beginning of a
device description. Any subsequent substatements (see below) apply to
this device until the next Line, Device, or Request type statement is
encountered. Any <name> may be chosen; it can be a maximum of 24
characters and cannot contain periods or spaces. At least one Device
statement must appear in the file.

Request type: <name>;

~ defines the name of a request type and denotes the beginning of a
request type description. Any subsequent substatements (see below)
apply to this request type until the next Line, Request_type, or
Device statement is encountered. Any <name> (not containing periods
or spaces) may be chosen; it can be a maximum of 24 characters.
Currently, however, the names of request types used by the dprint or
dpunch commands are restricted to a maximum of eight characters. At
least one Request_type statement must appear in the file.

End;

’ marks the end of the source language description. Unlike all other
statements, it has no parameter. Any text occurring beyond the End
statement is ignored. One, and only one, End statement must appear in
the file.

2-1 CC34

-’

SUBSTATEMENTS FOR LINES

Thg following substatements describe various attributes of a line and may
appear in any order following a Line statement.

channel: <name>;
defines the name of the communications channel to be attached when
using the logical line_id (defined in the Line statement). It is
normally a teletype channel identifier for an RJE station. The <name>
may be up to 32 characters and cannot contain any spaces. One, and
only one, channel substatement must be given for each Line statement.

att_desc: <stringd;
defines the attach description to be passed to the remote teleprinter
I/0 module. The <string> may be up to 256 characters and should
appear in quotes since there will be imbedded spaces. If the control
variable "a appears in <string> it will be replaced by the channel
<{name> (described above). One, and only one, att desc substatement
must be given for each Line statement. -

device: <name>;
defines a major device that can use this 1logical line id. At least
one device substatement must be given for each Line statement. Any
major device specified must also have the line: variable; substatement
under the Device statement.

SUBSTATEMENTS FOR DEVICES

The following substatements describe various attributes of a device and may
appear in any order following a Device statement.

driver module: <name>;

- defines the name of a procedure to be executed by a driver process
when running the associated device. The <name> can be a full pathname
or simply an entryname. 1In the latter case, the search rules are used
to locate the procedure. Several standard driver modules are provided
by the system (see "Standard Driver Modules" below). One, and only
one, driver_module substatement must be given for each Device
statement.

default type: <name>;
defines the default request type for the associated device. The
<{name> must appear as the parameter in a Request type statement.
Unless overridden by the operator when a driver 1is initialized, the
driver processes requests of this default type.

args: <string>;
defines an argument string to be interpreted by the driver module for
the associated device. The <string> may have any arbitrary format up
to a maximum of 256 characters. 1In practice, the composition of the
<{string> depends on the particular driver module that interprets it.
Each driver module has its own conventions for the <string> format
(see "Standard Driver Modules" below).

The following three substatements describe alternate methods by which a
driver may attach the associated device. These substatements are mutually
exclusive. One, and only one, of these =substatements must be given for each
device statement.

2-5 cc34

prph: <name>;
names an input/output multiplexer (IOM) peripheral channel through which
the associated device can be attached. The <name> must appear on a
PRPH card in the configuration deck.

line: <name>;

names a dedicated communications line channel through which the associated
device can be attached. If <name> is "variable" the channel can be
any logical line id defined by a Line statement. The driver process
must have the dialok attribute in the process definition table (PDT)
and the communications channel must be defined as slave in the channel
definition table (CDT). See MAM Communications, Order No. CC75, for
more information about the PDT and the CDT.

dial_id: <name>;
defines the dial identifier to be used if the associated device is to
be dialed to the driver process over a communications line.

The following three substatements describe alternate methods by which the
driver may attach a control terminal. These statements are mutually exclusive.
If none is specified, the driver assumes that no control terminal is desired.

ctl_line: <name>;
names a dedicated communications line channel through which the control
terminal can be attached. The driver process must have the dialok
attribute in the process definition table (PDT) and the communications
channel must be defined as slave in the channel definition table (CDT).
See MAM Communications, Order No. CC75, for more information about
the PDT and the CDT.

ctl_dial_id: <name>;
defines the dial identifier to be used if the control terminal 1is to
be dialed to the driver process over a communications line.

ctl_source: <name>;.
defines a message coordinator source name to be associated with the
driver. (The message coordinator is described in the MOH). A single
control terminal accepted by the message coordinator can be used to
control many different drivers.

SUBSTATEMENTS FOR REQUEST TYPES

The following substatements describe various attributes of a request type
and may appear in any order following a Request_type statement.

accounting: <name>;
defines the name of an accounting procedure to be executed by a driver
when processing requests of the associated type. The <name> can be a
full pathname or simply an entryname. In the latter case, the search
rules are used to locate the procedure. Also, the special <name>
"system" can be used to indicate the standard system accounting procedure.
If this substatement is omitted, "system" accounting is assumed.

7/81 2-6 cc3iuc

card_charge: "p1, p2, p3, pi4";

defines the resource price names for the card_charge of each queue of
the request type. This substatement is optional. If it is not specified,
the prices from system_info_$io_prices are used. p1 through p#4 are
resource price names, which are defined using the ed_installation parms
command. The prices must be defined before the iod_tables segment is
compiled, or the compilation will fail. The price names for each
queue must be given in order, from queue 1 to the maximum number of
queues for the Request type description. Each price is defined in
units of dollars per 1000 cards. Note: card_charge must not be specified
if line_charge is specified.

default_queue: <number>;

device:

The default queue substatement is used to define the default queue for
a request type. The value of <number> may be from 1 to max_queues.
If not specified, it is set to the value defined in the max_queues
substatement, but it will not be greater than 3.

<name>; :

specifies a device that can be used to process requests of the associated
type. The <name> must appear as a parameter in a Device statement.
More than one device substatement may be specified for a request type.

driver_userid: <access_name>;

7/81

defines the required person and project names for a driver of the
associated request type. If omitted, the <access_name> defaults to
I0.SysDaemon, which is the standard system driver. Other access names
may be used, for example, to provide a project with its own private
driver.

2-6.1 cc3ic

This page intentionally left blank.

7/81 cc3ic

generic_type: <name>;

defines the generic type of the associated request type. 1If the generic
type name matches the request type name, then the request type is the
default for the generic type. One, and onlyone, generic type substatement
must be given for each Request type statement. If the generic type is
neither "printer" nor "punch", the list daemon requests command (see
the MPM Commands) must be used with the —brief control argument. The
cancel daemon requests command cannot be used.

line_charge: "p1, p2, p3, pi";

The line charge substatement defines the resource price names for the
line charge of each queue of the request type. This substatement is
optional. If not specified, the prices from system info $io prices
will be used. If specified, each price name must be defined _in the
System price table, or the compilation of the the iod tables will
fail. The price names for each queue must be given in"order, from
queue 1 to the maximum number of queues for the Request type description.
Each price is defined in units of dollars per 1000 lines.

max queues: <number>;

The max queues substatement may be used to define the maximum number
of queues for a request type, when it is different from the global
Max queues value. This substatement is optional. The value of <number)>
may be from 1 to 4.

page_charge: "p1, p2, p3, pi";

rqti_seg:

The page charge substatement defines the resource price names for the
page charge of each queue of the request type. This substatement is
optional. 1If it is not specified, the prices from system info $io prices
are used. If specified, each price name must be defined in the system
price table, or the compilation of the iod tables fails. The price
names for each queue must be given in order, from queue 1 to the
maximum number of queues for the Request type description. Each price
is defined in units of dollars per 1000 pages.

Note: page charge must not be specified if generic type is "punch".

<name>;
The rqti seg substatement is used to define the name of the request
type info (rqti) segment to be used with the Request type statement.
This substatement is optional. When specified, <name> must correspond
to a segment entryname in the >ddd>idd>rqt info segs directory, or the
driver will fail initialization. When not specified, no driver will
look for an rqti segment for this Request_type statement.

SOURCE FILE EXAMPLE

The subset of the source language described so far is sufficient to prepare
a complete I/O daemon tables source file. Many sites will find they have no
need of any other features. Thus, before describing some of the less commonly
used statements and substatements, an example of a source file containing just
the ones described above is presented.

7/82

/* Example of an I/0 daemon tables source file */
/% Global parameters */

Time: 60; /* save requests for 60 minutes ¥/
Max _queues: 3; /* 3 priority queues per request type ¥/

2=-7 CC3uD

/* Devices */

Device: printer 1; /% onsite printer ¥/
driver_module: printer driver_ ;
prph: ~ prta;
default type: printer;

Device: punch 1; /* onsite punch ¥/
driver module: punch driver ;
prph: — puna; -

default type: punch;

/* Request types %/

Request type: printer; /¥ onsite printer requests ¥/
generic type: printer;
device:™ printer 1;
Request type: punch; /¥ all punch requests %/
generic type: punch;
max queues: 13
default queue: 1;
line charge punch price;
device: punch 1; '
End;

7 In the sample source file there are two devices and two request types. The
request types are handled by the standard system driver, IO.SysDaemon, as implied
by the absence of any driver userid substatement. These two request types,
printer and punch, are the default types for the dprint and dpunch commands
respectively. The majority of users concern themselves only with these two
request types. Output is produced onsite by the printer_1 and punch_1 devices.

MAJOR AND MINOR DEVICES

Special provisions have been made to handle "combination" devices that contain
more than one logical device (e.g., a printer and a punch) in a single physical
unit. The combination device as a whole is referred to as a "major device"; the
multiple subdevices, such as a printer and a punch, are referred to as "minor
devices". A major device is connected to Multics via a single communications
channel; it can be attached by one process only. Therefore, it is not possible
to have separate driver processes running the separate logical devices. To
overcome this problem, the driver software has been designed to simulate multiple
drivers within a single process. This means that from the coordinator's point
of view, each logical device is distinct and run by an independent driver process.
Consequently, each one of these logical devices can be fed requests of a different
request type and generic type.

Major devices are defined by the Device statement described earlier. Similarly,
minor devices are defined by a minor device substatement. The minor device
Substatement is treated as a substatement for devices and, as such, can be
freely intermixed with other substatements for devices.

minor device: <named>;

- defines the name of a minor device belonging to the associated major
device and denotes the beginning of a minor device description. Any
Subsequent substatements (see below) apply to this minor device until
the next minor device substatement or Line, Device, or Request type

statement is encountered. Any <name> may be chosen up to a maximum of
24 characters.

2-8 B cc3y

If no minor devices are explicitly defined for a major device, then a
default minor device is defined by implication, The primary purpose of a
default minor device is to allow certain minor device substatements to be
specified for a major device when it has no explicit minor devices. One such
Substatement is the default _type substatement that was previously described
under "Substatements for Devices." In fact, the default type substatement is
actually a substatement for a minor device. When no” minor devices are
explicitly defined, the default_type substatement applies to the default minor
device of the preceding major device. The same is true of all substatements for
minor devices.

SUBSTATEMENTS FOR MINOR DEVICES

The substatements below describe attributes of a minor device and may
appear in any order following a minor device substatement or following a Device
statement if no minor devices are specified.

minor_args: <string>;
defines an argument string to be interpreted by the driver module for
the associated major device. The string may have any arbitrary format
up to a maximum of 256 characters. Conventions for the <string>
format expected by standard system driver modules are described under
"Standard Driver Modules" later in this section.

default_type: <name>;
defines the default request type for the associated minor device. The
<{name> must appear as a parameter in a Request_type statement.

The device substatement described earlier is a substatement for a request
type and is used to name devices that can process requests of a given type.
Usually, the parameter of a device substatement is a major device name.
However, if minor devices are defined for the major device, then the device
substatement parameter must include both the major and minor device names
separated by a period (e.g., xyz.printer).

SOURCE FILE EXAMPLE USING MINOR DEVICES

This example shows a portion of a source file that illustrates the use of
minor devices.

Device: Xyz; /% a combination device ¥/
driver_module: dummy_driver_;
args: "dim= xyz";
line: a.h100;

minor device: printer;
minor args: "dev= printer";
default type: Xyz_prt;

minor device: punch;
minor args: "dev=z punch";
default_type: Xyz_pun;

Request type: Xyz prt;
generic type: printer;
device:™ xyz.printer;

Request type: Xyz_pun;
generic type: punch;
device:™ Xxyz.punch;

2-9 cCc3y

——*

AIM FEATURES

The I/0 daemon incorporates certain features in support of the access
isolation mechanism (AIM). System administrators at sites not using
authorizations above system low need not read the following and should instead
skip "Standard Driver Modules" below.

Every request processed by the I/0 daemon has an access class. The access
class of a request is equal to the authorization of the process that submitted
the request. Each piece of output normally has an access class banner. For
print requests, the access class banner appears on the head sheet of each
printout. For punch requests on the local punch, the access class banner
appears in-the flip cards at the beginning of each deck. At remote sites, no
access class banner appears. However, if the access class of a request is
system low and the access class name for system low is null, then the access
class banner is omitted. -

In the interest of security, some sites may find it desirable to have
requests of the same type automatically separated according to access class. To
illustrate how this access class separation might be used, imagine a site at
which two different access classes are defined. One of these, called "public,"
is available to all users. The other, called "confidential," is available to
only a limited number of users who deal with sensitive information. Further,
suppose that the site has two printers, both of which are used to process
requests of the same type. Assume that different distribution points for public
and confidential output exist so that stricter control can be exercised over the
release of confidential output. In this case, the operators must separate
confidential output from public output by examining the access class banners.
An error in bursting or separating the output could result in confidential
output being accidentally released with publiec output. In addition to this
security weakness, there is also the operational burden of separating the output
according to access class,

The I/0 daemon offers a solution to the above problems. Each driver
process can be made to handle only requests of a single access class or a range
of access classes. Therefore, all public output could be directed to one
printer and all confidential output to the other. Hence, both the operational
burden and the potential for operational errors mentioned above are eliminated.
To facilitate output handling, the public printer could actually be located in
the public distribution area while the confidential printer could be located in
the confidential distribution area.

The benefits of this automatic separation are not obtained without cost.
It is probable that printer wutilization and hence turnaround time for output
will be somewhat degraded on the whole. This is because it is unlikely that the
amount of output will be evenly divided between the access classes. For
example, the number of public requests might be much larger than the number of
confidential requests. In this case, the confidential printer would be
underutilized.

Other disadvantages become evident if one considers the situation where
there are fewer printers than access classes. If instead of two printers, only
one were available at the hypothetical site, then this printer would have to be
switched back and forth between public and confidential output. This switching,
of course, 1increases the operational burden. Also, it upsets the priority
selection of requests. Suppose, for example, that the site decides to switch
between public and confidential output every 30 minutes. A print request
submitted to queue 1 might have to wait this amount of time before being
processed. By contrast, if the printer were processing both access classes at
once, the request would be performed immediately (assuming queue 1 were empty) .

2-10 CC34

Unfortunately, even with the switching of printers from one access class to
another, automatic access class Separation of output simply does not scale up
for a large number of access classes. Clearly, at some point it becomes
impractical to rotate a small number of devices among a larger number of access
classes. Therefore, sites using a large number of access classes or sites not
willing to tolerate some of the drawbacks cited above may choose to forego
automatic access class separation of output. In this case, each device can be
made to handle the full range of access classes from system low to system high.
Care must be taken to ensure proper distribution of outputT Control forms can
provide a helpful receipt for each piece of output.

The mechanism for Separating output according to access class is the
"device class." Each request type can be partitioned into any number of
separate device classes. One or more devices can be specified for each device
class. Also, a range of access classes can be specified for each device class.
When a driver process is initialized, the operator normally indicates the device
to be run and the request type. However, if device classes are defined for the
request type, then the operator must also indicate a device class. This
determines the access class range of requests that the driver processes.

It is important to note that the device class of a request is not something
the user can specify. 1In fact, the entire device class concept is invisible to
users. Unlike the type and priority queue of a request, the device class is not
determined at request submission time. Rather, it is determined at request
processing time. Hence, it is possible to modify the I/0 daemon tables and
change the predicted device classes of requests stored in the queues.

A device class is defined by a device class substatement. The device_class
substatement is treated as a substatement Tfor request types and, as such, can be
freely intermixed with other substatements for request types.

device class: <name>;

- defines the name of a device class belonging to the associated request
type and denotes the beginning of a device class description. Any
subsequent substatements (see below) apply to this device class until
the next device_class substatement or Request type, Line, or Device
statement is encountered. Any <name> may be chosen up to maximum of
24 characters.

If no device classes are explicitly defined for a request type, then a
default device class is defined by implication. The primary purpose of a
default device class is to allow certain substatements for device class to be
specified for a request type when it has no explicit device classes. One such
substatement is the device substatement that was previously described under
"Substatements for Request Types." 1In fact, the device substatement is actually
a substatement for a device class. When no device classes are defined, the
device substatement applies to the default device class for the preceding
request type. The same is true of all substatements for device classes.

SUBSTATEMENTS FOR DEVICE CLASSES

The substatements below describe various attributes of a device class and
may appear in any order following a device_class substatement or following a
Request_type statement if no device classes are defined.

min_access_class: <access class>;

- defines the minimum access class of a request to be processed in the
associated device class. The {access_class> must be a standard access
class string as defined by the convert_authorization_ subroutine. 1If
omitted, the default minimum is system_low.

2-11 CC34

max_access_class: <access class>;

- defines the maximum access class of a request to be processed in the
associated device class. The Caccess_class> must be a standard access
class string. If omitted, the default maximum is the access_class
string given in min_access_class.

min_banner: <access_class>;

- defines the minimum access class banner to be placed on the head sheet
of printed output, on the flip cards of punched output, and on the
control forms for all output. Normally, the access class of the
request 1is used. However, if this access class 1is less than that
specified for min_banner, then the min banner value is used. The
<access_class> must be a standard access class string. If omitted,
the default min_banner is the access class string given in
min_access_class. -

device: <name>;
specifies a device that can be used to process requests of the
associated device class. The <name> must appear as the parameter of a
Device statement. More than one device substatement may be specified
for a device class.

Care should be taken to ensure that the full system access range
(system_low to system high) is covered by the union of access ranges of the
device classes for each request type. (If no device classes are defined for a
request type, the max_access_class substatement should be set to system high for
the default device class.)” If not, requests of access classes that are not
included are never processed. Upon discovering such a request, the 1I/0
coordinator prints an error message and skips the request. Also, it should be
noted that if two or more device <classes from the same request type have
overlapping access ranges, then a request falling in this overlap is assigned to
the device class defined first in the I/0 daemon tables source file.

As mentioned above, when multiple device classes are defined for a request
type, requests are generally not performed in the usual order dictated by
priority and submission time. This phenomenon is most noticeable when one
device must be shared among several device classes. In order to aid the
operators in determining when to switch a device to a different device class,
the I/0 coordinator keeps track of "waiting" requests. A waiting request is one
that is passed over in the normal request selection order while the coordinator
looks for a request to satisfy a different device class, or is explicitly
requested to run at high priority by an operator command. A count of waiting
requests 1is kept on a per device class basis. When the number of waiting
requests for a device class becomes large, this indicates that the device class
is receiving inferior service relative to some other device class for the same
request type. Thus, operators could be instructed to switch a device to another
device class whenever the number of waiting requests reaches some limit. (See
the coordinator command, wait_status, in Section 3.)

SUBSTATEMENT FOR DEFAULT REQUEST TYPE

The default type substatement described earlier under "Substatements for
Devices" names ~the default request type that a device processes unless
overridden by the operator. However, if device classes are defined for the
request type, then the parameter of the default type substatement must include
both the request type and device class names ~separated by a period (e.g.,
printer.confidential).

2-12 CC34

(\

SOURCE FILE EXAMPLE USING AIM

This example shows a portion of a source file that illustrates the use of
AIM features. :

Request type: printer;
generic_type: printer;
device_class: public; /% for system low output ¥/
device: printer_1; /% primary public printer %/
device: printer_2; /% can use this one in
emergencies¥*/
device class: confidential; /* for output above system_low */

min_access_class: levelil;

max_access_class: system_high;

min_banner: level2; /* all confidential output
has at least a level 2 banner
authorization #*/

device: printer_2; /% use only this printer located
in secure area ¥/
Device: printer_1;
driver_module: printer_driver_;
prph: prta;
default_type: printer.public;
Device: printer_2;
driver_module: printer_driver_;
prph: prtb;
default_type: printer.confidential;
Request type: punch;
generic_type: punch;
max_access_class: system_high; /% handle all access classes ¥/
Device: punch_1;
driver_module: punch_driver_;
prph: puna;
default_type: punch;

Standard Driver Modules

A driver module must be specified for each device defined in the I/0 daemon
tables. A driver module is a program that embodies specific knowledge of how to
manipulate a particular device. The standard driver modules provided by the
system are described below.

As mentioned earlier in this section, the <string> argument of the args or
minor args substatements are interpreted by each individual driver module. Even
though the format of these strings is defined as arbitrary, each of the standard
driver modules support a basic <string> having the following syntax:

key= value
The key must be unique in <string> and acts like a control argument. The value
is the argument associated with the key. Keys and values may not contain
commas, but may contain spaces. The key/value pairs are separated from one
another by a comma. For example:

args: "dim= device_dim_, form_type= xxx";

2-13) CC34

The complete <string> must appear in quotes and standard Multics quoting
conventions apply within <string>. The total length of <string> cannot exceed
256 characters.

The following paragraphs describe the args and minor_args keys that are
supported by each of the standard driver modules, as well as other attributes of
the I/0 daemon tables device specification.

printer_driver_ MODULE

This driver module should be specified for standard Multics printers. The
prph substatement must be specified for the associated device. Multiple minor
devices are not supported and the minor_args substatement is ignored. For standard
printer operation, no args substatement need be specified. However, the args
substatement can be used to define a nonstandard device interface module (DIM)
and/or a nonstandard control terminal accountability form type. This is done by
including the following key-value pairs in the args substatement.

dim= <DIM_name>

The "dim=" key defines <DIM_name> to be the DIM through which the device is
attached. The default DIM for printer_driver is prtdim .

form_type= <form_name>

The "form type=" key defines <form_name> to be the control form type. If not
specified, a default control form type is used.

punch_driver_ MODULE

This driver module should be specified for standard Multics punches. The
prph substatement must be specified for the associated device. Multiple minor
devices are not supported and the minor_args substatement is ignored. For standard
punch operation, no args substatement need be specified. However, punch_driver_
accepts an args statement of the same form as printer_driver_. The default DIM
is cpz.

reader_driver_ MODULE

This driver should be specified for standard Multics card readers. The
prph substatement must be specified for the associated device. Multiple minor
devices are not supported and the minor_args substatement is ignored. For standard
reader operation, no args substatement need be specified. However, the following
key-value pairs may be specified in the args substatement:

dim= <DIM_name>

The "dim=" key defines <DIM_name> to be the DIM through which the device is
attached. The default dim for reader_driver 1is crz.

7/81 2-14 cc3uc

station= <(Station_id>

The "stationz=" key defines <Station_id> to be the name of the card input station
to be associated with this card reader. The default station id is "reader".
For example:

Device: reader;
driver_module: reader_driver_;
prph: rdra;
default_type: dummy ;

Request_type: dummy ;
generic_type: dummy ;
max_queues: 13
device: reader;

While the reader_driver_ does not process requests from the coordinator,
the syntax of the iod_tables requires the presence of a request_type substatement.
This should be a dummy request type to which no users have access to submit
requests, as for the reader minor device of the remote_driver_.

Sites with CCU (combined card unit) devices should define two devices: one
with punch_driver_ for the punch, and one with reader_driver_ for the reader.

spool_driver_ MODULE

This driver module should be specified for a major device that will be used
to write user print requests onto tape instead of the printer. The prph substatement
must be specified, but the <name> need not be an IOM channel. (It is used as an
I/0 switch name for the tape attachment.) The default type may be omitted if
the operator is required to specify the request type each time the "device" is
used. For example:

Device: spooler;
driver_module: spool_driver_;
prph: tape;

The spool_driver_ ignores all args substatements. It does not accept multiple
minor devices and does not accept any control terminal specifications.

7/81 2-14.1 cc3i4c

This page intentionally left blank.

7/81 CC34c

remote_driver_ MODULE

This driver module should be specified for all remote printer/punch/reader
stations. Two types of stations are supported by the remote driver. A Type I
station can be initialized from any one of several communications lines. A Type
IT station, which does not have an input device, 1is initialized on a dedicated
communications 1line as a predefined station. The two station types are
deicribed separately below because the iod tables description of each is
different. -

The driver process must have the dialok attribute in the PDT, and it must
have the rw access to the access control segment (ACS) of +the communications
line it will attach. The remote driver can handle one minor device for a card
reader and an arbitrary number of minor devices for printers and punches within
the limits of the physical remote device and the line protocol. (A minor device
for the reader must be specified if the remote device is to read card input.)

The remote_driver is designed for maximum flexibility, so its description
is rather complex. The reader should examine the entire section before
attempting to set up a remote driver in the iod_tables.

Normal setup of the remote_driver_ (Type I stations)

To set wup the remote_driver_ for a remote station, the administrator
defines a set of communication lines for remote stations, with driver processes
listening to each line as stations dial in.

The operator types in the station id and password via the station command.
Unce validated, +the driver locates the major device that has the same name as
the station_id, and begins initialization. If default request types are defined
for the minor devices, they are used. If the default request type is omitted
for one or more minor devices, the remote station operator is asked to specify
the request +type. Of course, the minor device must be allowed to use the
request type by a device substatement in the Request type description.

There must be at least one Line statement for each communications line.
The Line statement defines the logical line id and specifies the channel, the
attach description (which defines the terminal type), and which stations may use
the line_id. PFor example:

Line: 2780 1;
channel: a.h001;
att_desc: "-tty "a -terminal ibm2780 -comm bisync

-ebedic -ttp IBM2780 -runsp 5 -ttd limit 2
-bretb -multi_record";

device: station a;

device: station b;
Line: 2780 2;

channel: a.h002;

att_desc: "-tty "a -terminal ibm2780 -comm bisync

-ebcdic -ttp IBM2780 -runsp 5 -ttd limit 2
-bretb -multi_record";

device: station a;

device: station b;

Each logical line_id (e.g., 2780 1) describes a communications line that a
station may dial into. The attach description defines the type of station using
the channel. If a single channel (communications line) is +to be used for more
than one device type, separate line ids can be defined with the same channel to

12/79 2-15 CC34A

allow the central site operator to choose the device type during driver
initialization,

The attach description string is the one wused to attach the teleprinter
device, or console, of the station. It is also the basis for the attachment
description of the other minor devices. If the attach description for a minor
device is to be different from the teleprinter device for that minor device, the
attach options may be put into the minor args following a dese= key. Any attach
options found in the minor args will override those of the teleprinter device
for that minor device.

Each station_id that may use a given line_id is 1listed as a device in the
device substatement of the Line statement, and each must correspond to a major
device in a Device statement,

There must be a Device description specified for each station_id. The
Device description must include a line substatement with the keyword "variable"
specified. This will allow the driver to use some or all of the communication
lines defined in Line statements. There must also be minor device substatements
defined for each device attached to the remote terminal. The default type
substatements may be omitted if the remote station operator is to specify the
request type for the minor devices. Normally, the Device description will be
general enough to allow the station to run any device type, as shown in the
following example. (This might not be true if =special attach options are
defined for one or more minor devices using the desc= key in the minor_args
substatement.) -

Device: station_a;

line: variable;

driver_module: remote_driver_;

minor_device: prt;

minor_args: "dev= printer";

/®* no default type has been specified #/

minor_device: pun;

minor args: "dev= punch";

default_type: sta pun; /% makes this rqt required */
/% Tor this minor_device #*/

minor_device: rdr; /* so we can read cards %/
minor args: "dev= reader";
default_type: sta_pun; /% just a dummy entry ¥/
Device: station_b;
line: variable;
driver_module: remote_driver_;
minor_device: prt;
minor args: "dev=z printer";

defauTt_type: stb_prt; /* always true for station_b *®/

minor device: pun;
minor args: "dev= punch";
default type: stb pun; /% makes this rqt required */
- /% Tor this minor_device */

minor_device: rdr; /* so we can read cards ¥/
minor args: "dev= reader";
default_type: sta_pun; /¥ just a dummy entry ¥/

Each station may dial in on either Line (see example above); its operating
characteristics will be the same. The Device descriptions for the two stations
shown have the following difference. Station_a is allowed to specify its
printer request type after giving its station command, but station_b will always

2-16 CcCc34

()

(. \

use the stb prt request type because this request type is specified 1in a
default type substatement.

The request type that is used for the default type of the reader minor
devices is needed to suppress questions to the operator and to satisfy the
syntax rules of the iod tables_compiler. The request type specified can be any
existing request type or it can be a dummy request type used for the reader. No
requests will ever be sent by the coordinator for the reader.

A Type I station is always assumed to have an input device, which acts as a
slave terminal for the driver. As such, any control terminal definitions
associated with the major device will be accepted for the preparation of
accountability forms only (see "Terminals that Control the Driver"). However, a
Type II station may accept a control terminal as a slave terminal if specified.

Setup for stations that cannot input commands (Type II stations)

.

Because it has no input device, the Type II station can be identified only
by the line it dials into. Therefore, the line substatement for the major
device specifies the exact channel name to be used. There are no Line
statements associated with this type of station.

Device: station_c;

line: a.h003;

driver_module: remote driver_;

args: "station= station ¢, slave= no,

desc= -terminal tfy_printer_ -comm tty ;

minor_device: prti;
default type: stc_text;
minor_args: "dev= printer, descz -pll 85 -ppl 66
-htab -ttp LA120 10061 _8X11";
minor_device: prt2;
default_type: stc_prt;
minor_args: "dev= printer, desc= =-pll 140

-ppl 88 -htab -ttp LA120_160L_8X11";
A default request type should be specified for each minor device. This is

done to avoid making the central site operator answer questions from the driver
for each minor device during driver initialization and reinitialization.

Remote Driver <string> Arguments
A1l the {string> arguments acceptable to the args and minor_args
substatements that are defined for the remote driver_ are described as follows:

a. Arguments which apply to both Type I and Type II stations.

2/80 2-17 CC34B

This page intentionally left blank.

2/80 CC34B

desc= <attach description>
The desc= key 1is used to specify additional parameters to the I/0 module in
the form of an iox_ attach description. This key may be used for any
minor_args substatement. Any attach options specified will override attach
options for the teleprinter device and/or any attach options which are common l
to all minor devices. This key is also wused in the args substatement for
Type II stations, to specify attach options for the teleprinter device. For
more information, see the definition of the attach description for the
communications module or terminal module associated with the major or minor

devices. Also, see the attach options for these device modules:
remote_teleprinter_, remote printer_, remote punch , and remote reader . For
descriptions of these modules and other I/0 modules, refer to the
MPM Communications Input/Output Order No. CC92.

2/80 2-17.1 : CC34B

dev= <minor_device_type>
The dev= key is used to specify the device type of a particular minor device.
This key is required for each minor device. The value of minor_device type
must be printer, punch, or reader.

form type=z <ctl_term_ form type>
The form_type= Kkey 1is wused to specify the name of a control terminal
accountability form. This 1is an optional argument and is used for major
devices only.

b. Arguments which apply only to Type II stations.

station= <station_id>

When the station= key is used in an args substatement, the driver will accept
any station_id (other than blank). The driver will accept any device dialing
in on this channel as this station_id without authentication controls. All
specified minor devices and default request types will be used. Normally,
the value will be the name of the Device (i.e., the station name). This is
used for a station without an input device or with a dedicated communications
line.

slave= <yes_or_no>
The slave= key value of '"yes" is wused to tell the driver that it should
accept commands from the remote terminal as a slave terminal, as well as from
the central site terminal (master terminal). The slave= yes argument can be
used to make a Type II station into a Type I station over a dedicated phone
line. This key is optional and is only used in the args substatement of the
major device. The default is "no".

CREATION AND MAINTENANCE OF I/O DAEMON TABLES

Creation of the 1I/0 daemon tables begins with the preparation of a source
segment using the language described earlier in this section. This source
segment can be produced with any text editor. As mentioned earlier, the source
segment is translated into a binary representation by the iod tables compiler
command (see Appendix A). By convention, this command assumes that all source
segments have a name ending with the iodt suffix. The standard name for the I/O
daemon tables source segment is iod tables.iodt. When this segment is compiled,
an object segment is created with the name iod tables.

The I/0 coordinator 1looks for the iod tables segment during its
initialization. It expects to find this ~segment in the directory
>daemon_dir_dir>io_daemon_dir. (Normally, the source segment is kept in this
same directory, although it is not essential.) The I/0 coordinator also looks
for a second segment named iod_working tables. This segment is the working copy
of the I/0 daemon tables and is the one referenced by driver processes and user
processes. The reason for this second segment is to facilitate making changes
to the 1I/0 daemon tables. Clearly, the source segment can be modified at any
time since it is not referenced by the I/0 daemon or by users. Also, the source
segment can be recompiled at any time. Doing so changes the iod tables segment,
but not the-iod_working tables segment. -

2/80 2-18 CC34B

Each time the 1I/0 coordinator is initialized, it compares the compilation
time of 1iod_tables to that of iod working tables. If the compilation time of
iod_tables is more recent, indicating that it has been recompiled, then the
contents of iod_working tables are replaced by the contents of iod tables.
Similarly, if no iod worklng tables segment exists (as would be the case at a
new site), one 1is created with the contents of the iod tables segment. Hence,
changes to the I/O daemon tables do not take effect until the next I/0
coordinator initialization. If an 1immediate change is necessary, then the
coordinator must be logged out and logged in again.

At times it may become necessary to examine the contents of iod tables,
iod_working tables, or some other object segment produced by the
iod tables compller For example, one might suspect that the iod working tables
segment has been damaged or one might lose the source segment from which

iod_tables was generated. The print_iod tables command (see Appendix A)
essentially performs the inverse translation of that performed by
iod tables compiler. Given any object segment generated by the

iod_tables_compiler, print_iod_tables prints a source 1language description of
that object segment. 1In fact, if the output from this command is directed to a
segment, the segment can be compiled by the iod_tables compiler to reproduce the
object segment.

CREATION AND MAINTENANCE OF I/O DAEMON QUEUES

The I/0 daemon queues are created automatically by use of the
create daemon queues command (see Appendix A). The queues are created 1in the
same directory as the I/0 daemon tables, i.e., >daemon dir dir>io daemon dir.
The command determines what queues to create based on information contained in
the iod_tables segment. For each request type, one to four queues are created
depending on the value of Max queues or the per request type max_queues,
whichever is in effect. The name of each queue is of the form XXX _N.ms where
XXX 1is the request type name and N is the priority number. The ms suffix
indicates that each queue is a ring 1 message segment.

Because the I/0 daemon queues are message segments, access to the queues is
determined by extended access modes. The I0.SysDaemon identity is given full
extended access, i.e., add, delete, read, own, and status (adros) to all queues.
For standard system queues (i.e., queues for which the driver userid of the
corresponding request type is I0O.SysDaemon) aros permission 1is given to all
users. Otherwise, the assumption is made that the queues are dedicated to the
particular project named in the driver userid. 1In this case, aros permission is
given just to users of that project. The ms _list _acl command can be used to
list the extended access on the queues and the ms set acl command can be used to
change the extended access on the queues. AlT message segment commands are
documented in the MAM System.

Changes to the I/0 daemon tables must sometimes be coordinated with changes
to the I/0 daemon queues. In particular, when a new request type is added, new
queues must be created for this request type. This can be done as soon as the
iod tables segment has been recompiled. Use of the create_daemon_queues command
does not affect any existing queues, but does create new queues for any newly
defined request types. If a request type is removed from the I/0 daemon tables,
the queues are not automatically deleted. The ms_delete command can be used to
delete obsolete queues.

2/80 2-19 CC34B

MAINTENANCE OF AIM FEATURES

At sites wusing authorizations above system _low, a special awareness is
required of the way in which AIM affects the I/0 daemon. To begin with, the I/0
coordinator should always be logged in at system high authorization. This is
appropriate because the coordinator must distribute requests of all access
classes. A driver process, on the other hand, does not necessarily process
requests of all access classes. A driver is associated with a device that in
turn 1is associated with a device <class. The max_access_class for the device
class defines an upper limit on request access classes handled by the driver.
Hence, a driver authorization need be no higher than the associated
max_access_class.

The access class of the io_daemon_dir directory must be system low so that
users of all authorizations have access to its various data bases. The
iod_tables and iod_working tables segments, for example, both have a system_ low
access class. This implies, of course, that the iod_tables segment can only be
compiled at system low authorization. The I/0 daemon queues should have a
system _high access class. This 1is possible because the queues are message
segments which, wunlike ordinary segments, can have a higher access class than
their containing directory. The access class of a message segment is determined
by the maximum authorization of the process that creates it. This implies that
the create_daemon_queues command should only be wused by persons having a
system_high maximum authorization. Furthermore, because the queues are created
in a system low directory, the user of create daemon_queues must have a
system_low authorization.

The directories contained in the io_daemon dir directory are potentially
"upgraded," i.e., they may have access classes higher than that of
io_daemon_dir. Specifically, the access class of the coord dir directory equals
the coordinator authorization while the access class of a driver directory
equals the authorization of the corresponding driver. Thus, at sites using
authorizations above system low, upgraded subdirectories are created 1in
io_daemon_dir. This implies that io_daemon_dir must have a quota so that quota
can be moved to upgraded subdirectories (as required by AIM). The coord dir
directory, if upgraded, 1is assigned a quota of 250 records. Each driver
directory is assigned a quota of 2 records if no minor devices are defined, or
else 2 records per minor device. The quota 1initially assigned to the
io_daemon_dir directory must take into account the requirements of these
subdirectories plus the I/0 daemon queues and the other segments 1in
io_daemon_dir. Somewhere between 300 and 350 records is usually sufficient.

REQUEST TYPE INFO SEGMENTS

Each printer request type may have an optional request type info segment

(rqti segment) associated with it that defines the physical paper
characteristics, the 1logical VFU channel stops, and some additional driver
control data. It is recommended that a special form have a specific request

type and thus a separate set of channel stops. The channel stops are set only
during driver initialization and remain constant for all requests done by the
driver.

In addition, a site may wish to wuse the request type feature to group
requests that use the same VFU tape, regardless of what preprinted form stock is
needed for the request. By using the ""auto print" driver mode, the operator
may run requests associated with a given VFU tape (request type) in sequence and
change the form stock on the printer to meet the needs of each request.

2/80 2-20 CC34B

Printers that have firmware loadable VFC images are loaded by the driver
during driver initialization (the paper may have to be realigned by the operator).
For printers that use punched paper VFU tapes, the physical VFU tape for the
request type must be mounted on the printer at the time the driver is initialized.
The driver indicates the number of lines-per-page and the lines-per-inch switch
setting that the operator should use.

The size of the head and tail sheets is set automatically to the physical
dimensions of the paper as defined in the request type info segment.

The directory named >daemon_dir_dir>io_daemon_dir>rqt_info_segs must give
Sma access to the administrator and s to all other users. — The initial ACL for
segments must be set to rw for the administrator and r to all other users. AIM

access, for those sites using the access isolation mechanism, should be system low
(the default). B

This directory contains all request type info segments. If a single segment
describes the paper characteristics for more than one request type, added names
may be used in place of separate identical segments. Info segments are only
required for printer request types that have the rqti seg substatement in the
iod_tables. When no rqti segment is used, the defaults described for the cv prt rqti
command are used (see "Syntax for the Request Type Info Source Segment" below).

The printer rqti segments are created by the cv_prt_rqti table conversion
command. The cv _prt rqti command description appears in Appendix!A. A sample
source file is shown in "Example of a Request Type Info Segment" below.

The contents of an rqti segment may be printed by the display prt rqti
command. This command formats its output so that when directed to a file, the
file can be used as input to the ev_prt rqti command.

Syntax For The Request Type Info Source Segment

The request type info source segment contains keywords that define certain
values put into the request type info segment. The general syntax is of the
form:)

keyword: <valued;

where the keyword defines a parameter to be set, and the <value> defines what
the value of the parameter is.

The keywords and a description of the values acceptable to the cv_prt rqti
command are defined as follows:

driver_attributes: ["]value{,["]value...};

The driver attributes keyword is used to establish some operating parameters
for the driver. There are two values defined: auto go and meter. Each
value may be preceded by the character """ to negate” the parameter. The
driver attributes keyword is optional (the default is “auto_go,"meter).

The auto go value is used to make the central site or remote printer driver

request Service from the coordinator immediately after initialization without
asking for a go command.

T7/82 2-21 CC34D

For printers on remote stations that are always made ready to accept print
files (e.g., where another computer simulates an RJE station), the auto go
value is particularly useful as a means of starting or resuming the processing
of print requests without operator intervention.

The meter value is used to tell the driver to maintain internal metering
data about its operation. (Note: metering is done according to the driver
module design and not all driver modules implement metering.)

driver_wait time: <number>;

The driver wait time keyword is optional (the default is 30 seconds.) It
is used to set the time interval that the driver will sleep if there are no
more requests in the queues. At the end of the interval, the driver will
again ask the coordinator to check the queues for requests. The value is a
decimal number between 30 and 300 seconds.

banner_type: standard | brief | none;

The banner type keyword is optional (the default is "standard"). This keyword
specifies To the driver whether the standard head/tail sheets will be printed
for each copy of a request, a brief version, or none (separator bars only).
The value must be either "standard", "brief", or "none".

banner bars: double | single | none;

The banner bars keyword is optional (the default is "double"). This keyword
specifies to the driver how the separator bars at the bottom of the head
sheet are to be printed. "Double" means overstruck separator bars, "single"
are non-overstruck bars, and "none" causes the bars to be suppressed.

prt_control: [“lvalue{,["lvalue...};

The prt control keyword is used to set some driver request processing modes.
There are four values defined: auto print, force esc, force nep, and
force ctl char. Each value may be preceded by the character """ to negate
its valueT The prt control keyword is optional (the defaults are auto print,
“force_esc, “force nep, and “force ctl char). -

auto print

This mode causes the driver to start printing each request as soon as it
is received from the coordinator (after a go command has been given).
This is the normal mode of operation. When this mode is turned off
(“auto print), the driver goes to request command level immediately after
printing the log message. This allows the operator to align the paper,
change the paper, print sample pages and issue all other commands allowed
at request command level (including the kill command).

force esc

This mode turns on the esc mode of the printer DIM during the processing
of each request. This mode must be on if the slew-to-channel functions

are to operate. (Note: users cannot set this mode from the dprint
command.) : .

7/82 7 2-22 ’ ‘ CC3LD

force nep

This sets the noendpage (nep) mode of the printer DIM during the processing
of each request, whether the user has requested that mode or not. This
mode should be used for any request type that uses preprinted or preformatted
paper (e.g., gummed labels, invoice forms, etc.) This causes the request
to be properly formatted even though the user may forget to give the
"-nep" control argument to the dprint command.

force_ctl_char

This sets the ctl char mode of the printer DIM during the processing of
each request, which allows an I/0 daemon to send control sequences directly
to a remote printer instead of discarding the characters or printing
their octal equivalents. Setting this mode enables users who prepare
print files through Compose to activate special printer features such as
superscripting or multiple fonts. This mode is honored only by the
remote printer driver module, remote driver .

message: <"string">;

7/82

The message keyword is optional. If specified, the value must be a character
string enclosed in quotes, and may include newline characters. This character
string must not be longer than 256 characters.

Any defined message is displayed on the operator terminal during the
initialization of an I/0 daemon driver for this request type. Typically,
this message would tell the operator to mount some special form stock or
which VFU tape number to use for this request type.

2-22.1 CC3u4D

This page intentionally left biank.

7/82 CC34D

message: <"string">;

The message keyword is optional. If specified, the value must be a
character string enclosed in quotes, and may include newline characters.
This character string must not be longer than 256 characters.

Any defined message is displayed on the operator terminal during the
initialization of an I/0 daemon driver for this request type. Typically,
this message would tell the operator to mount some special form stock or
which VFU tape number to use for this request type.

12/79 2-22.1 CC34A

This page intentionally left blank.

12/79 CC34A

paper_length: <number>;

The paper_length keyword is optional (the default is 66.) The value is a
decimal number Dbetween 10 and 127 which specifies the number of lines on
one physical page of the paper. The number of lines depends on the number
of lines per inch that 1is used (see the "lines per inch" keyword). This
number includes all lines,.even though they may normally be used for top or
bottom margins. For example, there are 66 1lines on an 11-inch page at six

lines per inch.

paper_width: <number>;
The paper_width keyword is optional (the default is 136.) The value is a
positive decimal number that specifies the maximum number of character
positions on one printed line. A warning message is given if a value
greater than 136 is specified.

lines_per_inch: <number>;
The lines_per_inch keyword is optional (the default is 6.) The value is a

number that specifies the vertical spacing used by the printer for this
request type. The value must be 6 or 8.

line(<line_no>): <ch_1,ch 2,ch_3,...,ch n>;
The line keyword is optional. There may be one line keyword for each line
from 1 to +the paper length. The line keyword specifies which logical VFU
channels are defined to stop at <line no>. There may be 1 to 16 channel
stops for any given line, each ch i is a number between 1 and 16.
For example:
line(20): 1,5,11;

specifies that a slew to channels 1, 5, or 11 causes the printer to stop at
the beginning of line 20.

NOTE: Line 1 is always defined as the form feed position. Typically the
operator positions line 1 at the fourth printable line on a page.
end;

This keyword is required. The end keyword has no value. It specifies the
end of the request type info source segment.

12/79 2-23 CC34A

Example of a Request Type Info Source Segment

/* SAMPLE SOURCE FILE FOR A PRINTER REQUEST TYPE INFO SEGMENT */
invoices.rqti *
invoices

/* Source file:
/* Data segment:

/* The first two keywords apply to the header data only. */

driver_attributes:
driver wait_time:

“auto _go; /* the default */

30;

* number of seconds driver will
/* wait before asking coord again

/* The following keywords apply only to the printer_driver_

banner_type:

banner_bars

prt_control:

standard; /* normal head/tail sheets */

/* otherwise say "brief" or "none" ¥*/

double; /* overstruck separator bars */

/* can be "single" or "none" */

auto_print, “force nep, “force_esc;

/* Message to the operator during driver initialization */

message:

"For the invoices, use VFU tape number 12.
The form stock is in storage bins 22, 23, and 24.";

/* Physical Paper Info */

/* The form stock is only 80 print positions wide and

72 lines per page at 8 lines per inch */
paper_width: 80; /* default is 136 */
paper_length: 725 /* default is 66 */
lines_per_inch: 8; /* default is 6 */

/* Channel Stops */

/* The logical channel stops are defined as follows: */
line(1): 13 /* channel 1 is top of form */
line(3): 4; /* chan 4 is the address line */
line(12): 73 /* chan 7 is the first entry line */
line(60): 73 /* and is also the bottom line */
end;

12/79 2-24

x/
*/

*/

*/

CC34A

SECTION 3

OPERATION OF THE I/O DAEMON

The following material describes all of the capabilities of the I/0 daemon
and all of the commands and operating procedures needed to make use of these
capabilities. In practice, at most sites, the commands needed for normal I/0
daemon operation are contained in the exec_com segments, system_start_up.ec and
admin.ec, and they need not be typed by the operator. However, the operator
must become familiar with the material in this section so he can handle special
requests and other unusual circumstances correctly.

All I/O Daemons (coordinator and drivers) use the iod_overseer_ process
overseer. This process overseer should be specified for each daemon in the PMF
of the daemon's project. Additionally, the PMF entry should specify the "“vinitproc"
attribute in addition to this overseer. (See MAM Project for description of the
PMF.)

I/0 Daemons set their search rules differently from ordinary users. Instead
of using the "default" set of search rules from the system search rules, they
use the "io_daemon" set. These can be changed by the wuse of the
set_system_search_rules command in the system_start_up.ec. (See MAM System.)

I/0 Daemons running in test mode (via the test_io_daemon command) do not
change their search rules. The search rules in effect at the beginning of the
test remain in force.

LOGIN AND INITIALIZATION OF THE I/0 COORDINATOR

The coordinator should be logged in before any drivers are created. At
some sites the coordinator and drivers are all logged in automatically at system
startup time. At other sites, the operator may be required to;}og in the coordinator
from an ordinary terminal. To do this, the operator types:

login IO SysDaemon
The system replies:

Password:
and the operator types the password for I0.SysDaemon.

At most sites, however, the I/0 coordinator is logged in as a consoleless
daemon from the initializer terminal. 1In this case the operator types:

login IO SysDaemon source_id

where source_id is the message coordinator source name for the I/0 coordinator.

/81 321 cc3uc

This page intentionally left blank.

7/81 CC34c

When the capabilities of the access isolation mechanism (AIM) are being
utilized at an installation, the operator may have to specify the authorization
he wishes for the coordinator (if the default authorization for I0.SysDaemon is
not acceptable). An authorization is specified by an additional argument to the
login command. See the description of the login command in the MPM Commands for
details. For example:

login IO SysDaemon -auth <{desired_authorization>
or:
login IO SysDaemon source_id -auth <{desired_authorization>
This is the same as above except for the -auth login control argument. The

driver is logged in at the authorization of desired_authorization. The actual
names to be used to specify the desired authorization are defined by the system

administrator.

7/81 3-1.1 CC34c

Once the I0.SysDaemon is logged in, the system asks for an operator command
as follows:

Enter command: coordinator or driver

The operator responds by issuing the coordinator command (short form "coord").
He types:

coordinator

If another coordinator has already been logged in, the following message is
typed:

iod_overseer_: Coordinator is already running.
At this point, the operator is again asked for a command. Only one coordinator

is permitted.

The coordinator process next prints its version number and attempts to
initialize itself. The first step of +this initialization is to finish work not
completed by the last coordinator process. If this step cannot be performed,
the following message is printed:

iodc_init: Warning--Cannot get o0ld saved list.
Some deletions may not be performed.

This error message is not fatal and coordinator initialization continues.
However, if any other errors are encountered, the coordinator prints an error
message followed by the line:

Process cannot be initialized.
This indicates a fatal error that should be brought to the attention of the
system administrator or other responsible person. When the initialization is
finished, the message:

I/0 Coordinator initialized

is returned. At this point, the coordinator is at command 1level and ready to
accept drivers.

COMMUNICATING WITH THE COORDINATOR

The coordinator performs its job automatically without requiring any
instructions from +the operator. Therefore, it is rarely necessary for the
operator to communicate with the coordinator. Occasionally, however, the
operator may wish +to issue one of the commands described below under
"Coordinator Commands."

INTERRUPTING THE COORDINATOR

It is never necessary to interrupt the coordinator in the course of normal
operation. However, in the event of a coordinator malfunction, or other unusual
situation, it is possible to send a quit signal to the coordinator. This signal
causes the coordinator to suspend its communication with drivers and thus
eventually bring all drivers to a standstill. For this reason, the quit signal
should not normally be used.

The method for sending a quit signal to the coordinator depends upon the
coordinator terminal. If +the coordinator is 1logged in from an ordinary
terminal, the operator should simply press the proper key to issue a quit signal

12/79 3-2 CC34A

(e.g., ATTN or INTERRUPT). If the coordinator is logged in from the initializer
terminal as a consoleless daemon, the operator types:

quit source_id

where source_id is the source name for +the coordinator. The coordinator
acknowledges the quit signal with the message:

"QUIT" received.
The coordinator then comes to command level and prints:

Enter command.
At this point, any of the commands described below under "Coordinator Commands"
can be typed by the operator with the exception of the term command. After each

command is processed, the coordinator returns to command level and again prints:

Enter command.

The operator should not send a second quit signal to the coordinator at this
time. If a second quit signal is received, the coordinator ignores it and
points out the mistake by printing the message:

io_coordinator: QUIT already pending.
The coordinator should not be left in the quit state for an extended period of
time since this effectively halts all active driver processes. The start

command, described later in this section, is used to return the coordinator to
normal operation following a quit signal.

COORDINATOR COMMANDS

The following is a list of coordinator commands.
1. logout

logs out +the coordinator. Normally, all driver processes should be
logged out before the coordinator. If driver processes are not logged
out, however, they automatically detect the fact that the coordinator
has been logged out. The drivers reinitialize and wait for a new
coordinator to be logged in.

2. list

causes the coordinator +to print a 1list of active devices, i.e.,
devices currently assigned to drivers. The request type and current
request number are printed for each active device.

3. print_devices

causes the coordinator +to print a list of all devices managed by the
I1/0 daemon. The devices are grouped according to the request types
they service. An asterisk (*) appearing before a device indicates
that the associated request type is the default for the device. The
driver access name and the driver authorization (if any) are given for
each request type.

4. wait_status
causes the coordinator +to print a 1list of device classes for which

requests have been added to +the wait 1list. The number of waiting
requests for each of these device classes is also printed. Requests

12/79 3-3 CC34A

are added to the wait list whenever a driver gives the "next" command,
or if the coordinator finds a request for a device class that is not
currently active. At sites having only one device class per request
type, no requests are automatically added to the wait list. At sites
having multiple device classes per request type, requests may be held
waiting whenever one or more drivers are active for a request type.
By examining how many requests are waiting for various device classes,
the operator can judge when it is appropriate to switch a device from
one device class to another so that all device classes receive
adequate service.

5. term device_name

terminates a driver so that the major device (and all minor devices)
assigned to it can be assigned to another driver. The device name for
the driver must be specified following the command. Normally, driver
termination is performed automatically when a driver logs out. In the
case where a driver process terminates abnormally, the coordinator
does not discover that the process is terminated until a new driver
attempts to log in; then it is unassigned from the old driver process
and is assigned to the new driver process. Therefore, the only time
it is necessary to use the term command is when one wishes to
terminate an active driver that cannot be logged out. This might be
necessary, for example, if +the driver 1is logged in from a remote
location. (If the driver process is running, the term command will
not cause the driver to detach the channel associated with the major
device. It will cause the driver +to eventually fault and probably
destroy itself.)

6. restart_status

causes the coordinator to print the number of restartable requests for
each different request series and to identify those request series for
which a restart cycle is in progress."

7. help

list commands acceptable to the io_coordinator.

LOGIN AND INITIALIZATION OF DEVICE DRIVERS

Device drivers must be logged in after the coordinator. If there 1is no
coordinator logged in, a driver waits up to 5 minutes for one to log in.
Otherwise, it prints an error message and logs out.

Logging in a Driver

At some sites, the drivers are logged in automatically at system startup
time. At other sites, the operator may be required to log in the driver. The
normal login identifier for the driver is I0.SysDaemon, the same as for the
coordinator. The procedure for 1logging in a driver 1is the same as that
described earlier for the coordinator.

Driver Initialization

Once the driver has been logged in, the system asks for an operator command
as follows:

12/79 3-4 CC34A°

Enter command: coordinator or driver
The operator responds by typing:
driver

At this point, if no coordinator is logged in, the driver waits for one (up to 5
minutes).

If the coordinator is present, the driver prints its version number and
starts to initialize itself. Once the initial checks are complete, the driver
prints:

Enter command or device/request_type:
The operator responds by typing a command or the name of a device. If the names
of the devices are unfamiliar, the operator may use the print devices command to

get a list of devices and request types that may be used. (This is the same as
the print_devices command described earlier under "Coordinator Commands.")

The operator may type "help" to get a list of acceptable commands. These
are:

<device name> {<request_type>} runs the given device -

listen <line_id> waits for remote station to dial the line
print_line_ids prints line_ids for the listen command
print devices prints device names and request types
logout logs out the driver

If a device name without a request type is given, the default is used. A
request type must be given when the operator wants the device to process a
request type other than the default. For example:

Enter command or device/request_type:
! prtb unlined

allows the operator +to process requests intended for printing on unlined paper
(of course, the unlined paper must be loaded on device prtb).

When the device performs multiple functions, such as the case of a remote
printer/punch, a minor device is specified for each logical function the device
supports. FEach minor device can process requests of different request types.
When the default request type for each minor device is to be used, the operator
should specify the request type keyword: "default". For example, when using a
multifunction device called "xyz", the response might look like:

Enter command or device/request_type
! xyz default

NOTE: The default request type keyword is always accepted, even if there
are no minor devices defined for the device specified.

When the operator wishes to prepare the driver to wait for a remote station
to log in, he responds with "listen <line_id>". The driver will 1look up the
logical line_id in the iod_working tables and attach the line as specified by
the attach description. For example:

Enter command or device/request_type;
! listen 2780 1
Attaching 1ine "2780 1" on channel (a.h001)
The driver will remain blocked until a device dials up on the specified line.
Then the driver will respond:

12/79 3-5 CC34A

Requesting station identifier on line "2780_1".

and the operator of the device which dialed up will be asked to enter the
station command:

station station name password

The driver validates that station name is registered with the specified password
and then initializes the driver using the device called station name and the
default request types (if defined) for each minor device.

When the default request type(s) is to be used and no default is defined
(or if the request type specification is ambiguous), the operator will be asked
to specify the request type to use for each minor device. For example, in the
case of the multifunction device "xyz":

Enter command or device/request_type
! Xyz

Enter request type (or default) for minor device "print":
! xyz_prt

Enter request type (or default) for minor device "punch":
! Xxyz_pun

The operator may type "new_device" if he wants to abort initialization of the

major device xyz and initialize a new major device. The default keyword may
also be used here to specify the default request type for a minor device.

If +there is some reason why the driver is not allowed to operate the
specified device(s) or request type(s), one or more error messages are typed
explaining the problem and the driver again asks for a command or
device/request_type.

Once the device(s) and request type(s) are known, the driver communicates
with the I/0O coordinator to announce its readiness. If the coordinator refuses

to accept the new driver, a message is printed and the operator 1is asked to
enter a new device name.

When the coordinator has accepted the driver, the driver prints any special
initialization messages for the device. After all initialization has been
completed, the driver responds by printing:

<device> driver ready at <time>

Enter command:
The driver is now at command 1level and is ready to start processing requests.
The operator enters any commands needed to cause the driver to operate as

desired. Finally, the operator enters the go command to begin processing
requests.

12/79 3-6 CC34A

Extensive error checking is performed during initialization. Certain
errors are fatal to initialization and others are not. When an error occurs
that is not fatal, a message is typed on the terminal and the driver requests
operator instructions. Fatal errors are denoted by the words "PFatal error:" in
the error message followed by a logout of +the driver or a request for a new
device. If a fatal error occurs, an administrator or member of the programming
staff should be notified prior to any further action by the operator.

Driver Initialization When Using Device Classes

A device class is a subdivision of a request type. When the administrator
has specified that a request type has one or more device classes, the operator
must identify the device class as well as the request type he wishes to use with
a device. The print_devices command provides the needed information.

The driver should be 1logged in at an authorization equal to the
max_access_class specified (by the system administrator) for the device class.
If the driver authorization is incorrect, an error message is printed and the
operator is asked for a new device and request type.

If the default request type and device class are desired, no action is
needed other than that described above. However, if a different request type or
device class is to be used, the operator's response must be slightly different.
The optional request type must be entered in the form:

<request_type>.<device_class>
to indicate that <device_class> of {request_type> is to be used.

For example, suppose there are two device classes defined for request type
printer: general and restricted. When the operator wishes +to use the general
device class on prta and the restricted device class on prtb he would do the
following:

1. log in the first driver and get the message:

Enter command or device/request_type:
and respond by typing:
printer 1 printer.public
2. log in the second driver and get the message:
Enter command or device/request_type:
and respond by typing:
printer_2 printer.confidential
Now all user requests for request type ‘"printer" in +the access class range
specified for device class "public" are processed on printer 1. Similarly, all

user requests for request type "printer" in the access class range specified for
device class "confidential" are processed on printer 2.

If this were the normal mode of operation, the default types for printer 1
and printer 2 could be specified as printer.public and printer.confidential,
respectively. Then the operator could omit the request type and device class,
as described earlier.

12/79 3-7 CC34A

TERMINALS THAT CONTROL THE DRIVER

A driver process is capable of receiving commands from two sources: the
normal login terminal (master terminal) and a slave terminal. The driver MUST
have a master 4terminal, but the slave terminal is optional. For most devices,
the slave terminal is an additional terminal attached to the driver. This is
also called the control terminal. Any driver can have a control terminal
specified (but it is meaningless for some drivers, e.g8., the spool driver). For
devices that have a multifunction device, the device itself can act as a slave
terminal.

When the site administrator has specified that a control terminal is to be
used with a device, the driver is not able to complete its initialization until
the control terminal has been attached, except for remote stations.

The slave terminal functions as a source of driver commands and a place to
write error messages, operational messages, and log messages.

The control terminal is primarily used to prepare receipts or
accountability forms to control the distribution of output. The control
terminal will take on the functions of a slave terminal if there 1is no other
slave terminal defined.

The control terminal is not always a slave terminal for a remote station.
A Type I station must login with the device providing command input. Hence, the
device will remain as the slave terminal, even though a control terminal may be
specified for the device. A Type II station may use a control terminal as a
slave terminal. Also, by typing "slave= yes" in the device args string of the
iod tables, the device may become the slave terminal even though a control
terminal is already attached.

Master Versus Slave Functions

The authority of the master terminal over the slave terminal ensures that
central operations has full control of the driver at all times. The slave
terminal is provided for decentralization of operational control when this
feature is needed. When the driver has a slave terminal, most operational
messages, such as requests for commands, are sent to the slave terminal instead
of the master terminal.

The master terminal is assured control at command level by not allowing a
quit signal to be issued from the slave terminal while the master terminal is
executing a command. Also, the master terminal can hold the driver at command
level in?efinitely if necessary. (See "Standard Driver Commands" later in this
section.

Otherwise, the slave terminal can perform almost every function that the
master terminal can. When the slave terminal is a control terminal, a short

message is printed every time a request is processed. This message can be
reformatted at the site to provide a more formal accounting for output generated
by a driver. (See "Using Preprinted Accountability Forms on the Control

Terminal" later in this section.)

12/79 3-8 CC34A

Driver Initialization With A Control Terminal

When a control terminal is to be attached by the driver, there 1is an
additional step performed just before +the driver comes to command level. The
driver waits for the control terminal to be assigned to it by the system control
process. The driver may request a specific terminal to be assigned or it may
wait for a terminal +to "dial" the driver process. Normally, no action is
required by the central site operator. Only the control terminal operator is
allowed to take action to connect the terminal. The sequence of messages might
look like this on the master terminal:

Enter command or device/request_type:
!' prt x
prt_x driver waiting for control terminal "<dial id>" to dial.

After the control terminal operator "dials" in the control terminal, the driver
continues with:

Control terminal accepted.
prt_x driver ready at 02/02/78 0200.0 est Thur
Now the driver is at command level.

While the driver is waiting for the control terminal, the control terminal
operator must dial +the terminal +to +the driver. First the terminal phone
connection must be completed. After the normal greeting message, instead of
using the login command, the operator types the dial command:

dial <dial_id> <driver_userid>
where <dial_id> is the identifier specified in the driver message above, and
{driver_userid> is the login identifier of the driver (normally IO.SysDaemon).
The control terminal operator must know the <dial id> for the particular driver.

However, this is not protected like a password. It only serves to distinguish
between the various driver processes with the same {driver_ userid>.

When +the dial command is accepted, a connection message followed by the
driver's ready message is printed on the control terminal:
prt_x driver ready at 02/02/78 0800.0 est Thur

Enter command:

At this point commands are accepted from either the master or slave (control)
terminals.

DRIVER COMMAND LEVELS

The driver supports several different command levels, each associated with
the function to be performed. These are not the normal Multics process command
levels and only limited sets of commands specific to a driver process are
accepted. Each command 1level other than +the normal driver command level
identifies the function by a word in parentheses following the command request
(e.g., "Enter command(quit):" for quit command level). Not all commands may be
used at every command level. The operator should be aware of any command level
restrictions identified in the command descriptions below.

12/79 3-9 CC34A

Normal Driver Command Level

A driver process indicates that it is at normal driver command level by
printing the request:

Enter command:
The driver comes to normal command 1level as soon as all initialization is

complete and also after each request is finished, if commands have been given or
step mode has been set.

Request Command Level

Request command level is used by some device drivers to allow the operator
to modify the normal processing of a request. For example, the printer driver
uses the request command level to allow the operator to specify the starting
page of the request or print sample pages for alignment.

The printer driver comes to request command level when it is running in
"auto print mode. The remote driver comes to request command level when it is
running in “auto_print mode or "auto_punch mode. (This mode is set Dby the

prt_control command or the rqti segment initial value.) Request command level
is indicated by the driver typing: :

Enter command(request):

Request command level 1is distinguished from normal command level by the word
"request" in parentheses. The use of request command level is a device specific
function. For a list of commands issued from request command level, the user
should refer to "Device Specific Driver Commands" later in this section. Most
other standard driver commands are also available at request command level.

Quit Command Level

A quit signal is transmitted to the driver 1in a manner similar to the way it is
transmitted to +the coordinator (as described earlier). When a quit signal is
received, the driver suspends its current operation and comes to quit command
level as indicated by typing:

* QUIT *
Enter command(quit):

Quit command level is distinguished from normal command level by the word "quit"
in parentheses.

Several standard driver commands can only be used at quit command level;
they are described below. Most driver specific commands may also be. used at
quit command level.

STANDARD DRIVER COMMANDS

The two classes of commands for a driver are: standard driver commands and
device specific driver commands. The device specific driver commands are
described later in this section under "Device Specific Driver Commands." The
standard driver commands are described here, grouped by their function.
Detailed descriptions of all the driver commands are given in alphabetical order
at the end of this section.

12/79 3-10 CC34A

1. general control

ready makes device ready to process requests

go begins processing of requests

halt stops processing of requests on a device

logout causes driver to log out, except for remote drivers
step causes driver to wait after each request

hold holds the driver at command level

new_device causes driver to request new device

inactive_limit sets time limit for inactivity logout

auto_start delay sets wait time between quit signal and start command
defer_time sets time limit for automatically deferring requests
X executes site-defined exec_coms

2. control after interrupting a request (quit)

start resumes driver operation
kill terminates the current request
cancel terminates and discards the current request
restart causes reprocessing of the current request
defer sends current request back to its queue
save saves the current request for possible restarting
3. information
help lists all driver commands
status lists current status of the driver
4. coordinator communication
restart N causes reprocessing of previous requests
save N saves requests for possible restarting
restart g returns to the head of each queue
next runs a specified request next

5. terminal control

slave term controls use of a slave terminal

ctl term controls operation of a control terminal

slave sends a message to the slave terminal

master sends a message to the master terminal
6. error recovery

reinit reinitializes the driver

release returns driver to normal command level

Some commands perform more than one function. However, these are clearly
distinguished by control arguments.

General Control Commands

General control commands (item 1 above) are used at normal command level to
initiate and control +the operation of the driver. This set of commands is
sufficient to run the driver if no unusual circumstances are encountered.

Control Commands After Interrupting a Request

A request is interrupted by giving the driver a quit signal. The commands
shown in item 2 above can only be wused at quit command level, although two have
other uses in different contexts. These commands are useful for modifying the
driver's sequence of operations:

12/79 3-11 CC34A

cancel kill restart

defer logout save
halt new_device start
help ready status
hold release step

If no commands have been given to the driver within 60 seconds following a
quit signal, an automatic start command is executed by the driver. The 60
second delay can be adjusted by the auto_start_delay command.

Information Commands

The commands in item 3 above provided to furnish additional information to the
operator. For device specific driver commands, the help command identifies
those commands that may be used for a given driver.

Coordinator Communication Commands

These commands (item 4 above) are used by the operator to instruct the
coordinator in how to handle requests. The operator must be able to prevent the

loss of requests due to device malfunction. To +this end, the coordinator
retains each completed request in a "saved" list for a period of time to allow
each one to be reprocessed if needed. The operator is able to shift the

priority of individual requests.

The coordinator keeps track of the requests in the list by their request
numbers. The request number argument to the save and restart commands is used
to identify requests to the coordinator. A request number is composed of a
request series and a sequential number indicating the order in which the request
was processed. For example, request number 50289 is the 289th request processed
by the device within the 50000 request number series. Each device or minor
device is assigned a series of 10000 sequence numbers during initialization.
The first series after coordinator initialization begins at 10001, the second
series begins at 20001, and so on. This ensures that each request 1in the
coordinator's "saved" list is uniquely identified.

Commands For Terminal Control

To ensure the master terminal's ability to define the functions of the
slave +terminal, two commands are provided (item 5 above) to control how the
driver treats slave terminal input and output.

Since +the slave terminal can be the device itself or an additional
terminal, the functions that allow the site operator (or device operator) to
control the slave are separated into two commands: 1) those applying to all
slave terminals (the slave_term command), and 2) those that only apply to an
additional control terminal attached to the process (the ctl term command) .

Error Recovery Commands

The commands in item 6 above are provided for error recovery. There may be
circumstances that make the driver unable to continue its operation. This could
occur if the coordinator process were terminated or if some control data were

12/79 3-12 CC34A

destroyed. When the driver can identify the problem, it takes some action, if
possible, to correct the situation.

Under some conditions, it may be necessary for the operator to reinitialize
the driver or even to log out without completing any pending requests.

DEVICE SPECIFIC DRIVER COMMANDS

The device specific driver commands allow the operator to control the
operation of different devices. Each driver module is capable of implementing
any commands necessary to control the operation of its device.

Driver modules are designed to be molded by a site into a form necessary to
support its own devices, each with its own set of commands. The operator should
familiarize himself with the commands associated with the driver modules used at
an individual site.

Standard device drivers operate printers and punches and can read card
decks from remote multifunction devices. One driver even writes printer
requests onto tape (spool driver). There are different device specific
commands for these generic functions and some additional commands associated
with operation of physical devices. The operator can use the help command of
the driver to display the full set of commands the specific driver can accept.
The device specific commands implemented by standard device drivers are listed
as follows:

1. commands for printers:
banner_ bars defines printing of separator bars
banner type defines what is printed on the banner
paper_info defines paper length, width, and lines per inch
prt_control defines printing control functions
sample hs prints a sample head sheet banner
single single spaces on formfeed and vertical tab
2. commands for printers (request command level only)
copy sets the copy number of the next copy
print prints the next copy starting at the current page
req_status gives status info about current request
sample prints a sample of the current page

3. commands for local punches

(no special punch device commands are required; standard command may

be used)
4. commands for remote punches
pun_control sets the punch control modes
(does not apply to the central site punch driver)
sep_cards controls punching of separator cards between each

output deck

5. command for remote punches (request command level only)

copy sets the copy number of the next copy

punch punches the next copy of current request

req_status gives status info about current request
6. commands for card input

12/79 3-13 : CC34A

clean pool deletes old card decks

read_cards starts card input

T. command for control of terminal operation (most drivers)
sample form prints a sample control form

8. commands for remote device control
pause_time sets pause time between requests

runout_spacing sets paper advance after a command request

9. commands for the spool driver
banner bars defines printing of separator bars
paper info defines paper length, width, and lines per inch
prt control defines printing control functions
sample hs prints a sample head sheet banner
single single spaces on formfeed and vertical tab

MAKING THE DRIVER ASK FOR A COMMAND

A command may be entered from the master or slave terminals at any time

after the driver has Dbeen initialized. However, when requests are being
processed continuously, the messages printed on the terminal may interfere with
operator input. Therefore, it is better +to make the driver ask for a command

and wait for the operator to respond. This may be done in two ways:

1. During a pause in terminal printing, the operator may simply press the
newline key of the terminal. This causes the driver to ask for a
command before processing the next request. (A go command is required
to allow the driver to continue.) When using the message coordinator,
the operator should send the hold command to the driver process.

2. At any time the operator may issue a quit signal to the driver. This
suspends the current request while the driver asks for a command.
After a quit signal, if the operator wishes the driver to finish the
current request and return to command level, he may give the step
command followed by the start command.

NOTE: When the driver is simulating form feeds on the control terminal, a
quit signal terminates form alignment. The driver completes the
control terminal message, if possible, before asking for a command.
However, the ctl term aligned command or the sample form command
must be given before the driver can accept a start command. . (See
"Using Preprinted Accountability Forms on the Control Terminal"

later in this section for a more detailed explanation of these
commands.)

ENTERING COMMANDS FROM A MULTIFUNCTION DEVICE CARD READER

A card reader in certain multifunction devices can be used as a slave
terminal to input commands. Driver commands must be punched on cards, one
command line to a card.

12/79 3-14 ‘ CC34A

USING PREPRINTED ACCOUNTABILITY FORMS ON THE CONTROL TERMINAL

A control terminal may be used to produce accountability records which
correspond on a one to one basis with each copy of each request processed by the
driver. The format of the accountability record may be redefined by each site
for each driver. In some security related applications, this feature may be
used to fill in +the blanks on preprinted document accountability forms to
provide a record of each piece of output.

The format of preprinted forms is likely to be different at each Multics
site. The administrator must ensure that a program is provided to correctly
print the request data on each form. He also must specify the form type
identifier to be used with the ctl term command to establish the site program
for printing forms. (The default form type for all drivers is a one-line
message per request.)

The operator must use the ctl term form type command to change the control
terminal message to the desired” format. Once +the new form type has been
accepted by a driver, the operator should use the sample form command to ensure
correct alignment of the data on the form. This is normally all that is needed
as long as the terminal hardware provides a form feed capability.

Otherwise, +the operator uses the form feed simulation functions of the
driver to ensure continued alignment. It is very important that the dimensions
of the form be specified by the driver command. (The commands that set form
feed si?ulation and form size can be part of the exec_com that initializes the
driver.

The following 1is an example of the command sequence to simulate form
control of a preprinted form with dimensions 8 inches wide by 5 inches long.
(Operator input is denoted by the exclamation point ("))

Enter command:

! ctl _term simulate
Forms will have to be aligned.
Enter command:

! ctl_term page length 30
Enter command:

! ctl_term modes 1170
Enter command:

! sample form

| sample data is printed on the control terminal |

Enter command:
! go

In this example, there are 30 lines to a 5-inch page and 70 characters to an
8-inch 1line (allowing for margins). The sample form command should be given
repeatedly until correct alignment of the form Is achieved. Finally, the go
command is given to begin processing requests.

When the operator issues a quit signal to the driver (from any terminal) or
when an unknown command is entered from the control terminal, the form alignment
is assumed to be incorrect. Therefore, the driver demands that the sample form
command (or +the ctl term aligned command) be g&iven before the next go command
(or start command affer a quit signal). This situation might look like:

Enter command:

! goo
prta driver: Invalid command for driver - goo
Enter command:

' go

12/79 3-15 CC34A

Control forms not aligned.
Enter command:
! sample_form

[sample form is printed on the control terminal]

Enter command:
' go

Now the driver can continue processing requests. Form alignment is ensured for
all input and output on the control terminal as long as:

commands are entered only when requested

. commands from the control terminal are entered correctly

no quit signals are issued

. the control terminal maintains paper alignment on the platen

S0 -

DEVICE SPECIFIC DRIVER OPERATIONS

Some drivers give special messages and/or request special instructions from
the operator during initialization or during operation. The following
paragraphs describe any special messages or operations for the standard device
drivers.

Operation of the Printer Driver

LOGIN AND INITIALIZATION

The printer driver is logged in like all other drivers (as explained in
"Login and Initialization of Device Drivers" above).
After the operator gives the response to the following:

Enter command or device/request_type:

any operator message defined in the rqti segment for the request type is printed
on the operator terminal, e.g.:

For the invoices, use VFU tape number 12.
The form stock is in storage bins 22, 23, and 24.

Next, any paper characteristics defined in the rqti segment are given to the
printer software. If +the printer is capable of receiving a firmware VFC image
from Multics, it is loaded and no further action by the operator is needed.
However, if the printer uses punched VFU tapes, an additional message is printed
on the operator terminal, having the form:

Mount VFU tape for 72 lines per page.

Set printer for 8 lines/inch.

The driver completes its initialization and waits at command level for the
operator to ensure that the printer is ready:

printer_1 driver ready at 01/30/78 1405.2

Enter command:

12/79 3-16 CC34A

After the correct VFU tape has been mounted on the printer, the driver is
ready to start processing requests. The operator can use the command "sample hs"
to print a sample head sheet and verify the correct paper alignment. Request
processing may be started in normal or step mode as desired by using the "go"
command.

The auto_go driver attribute in the rqti segment may be used to make the
driver skip the request for an initial command and immediately look for the
first request to process. However, the auto_go is cancelled if the printer
cannot accept a firmware VFC image.

LIMITATIONS |

With a PRT1200 or PRT1600, 20-1b paper should be used. (The use of lighter
weight paper may prove problematic.)

PROCESSING REQUESTS

As each request is received from the I/O coordinator, the printer driver
prints a short description of the request in the log, similar to:

Request 10001 printer q3: >prinp_files)invoices>Station;A.invoices
from Username.Project.a (for "Heading" at "Destination")
Time estimate for request 10001: 12.3 minutes

The time estimate is shown only if the estimate exceeds 1 minute.

If a maximum request time limit has been set by the defer limit command,
and the estimated processing time of the request exceeds this 11m1t the message
will look like:

Request 10001 printer q3: >print files>invoices>Station A.invoices

from Username.Project.a (for "Heading" at "Destination")
¥%Deferring Request 10001. Printing time estimate: 12.3 minutes

If the driver is running in auto print mode (the normal default), the request
is printed immediately. When completed, a message is printed in the log, giving
the charge for the request:

Charge for request 10001: $36.20 (27546 lines, 1523 pages per copy)
The driver then asks the I/0 coordinator for the next request (or returns to
normal command level if in step mode).

If the driver is not running in auto_print mode, the driver comes to the

request command level by printing:

Enter command(request):

7/81 3-17 CC34c

This page intentionally left blank.

7/81 cc3uc

This is not the normal driver command level. The driver is now ready to
accept additional request control commands (plus a help command) to specify the
starting page, to print a sample page, or to set the copy number of the current
copy. These request control commands are described above under "Device Specific
Driver Commands." At this point, the operator should verify that the correct
paper stock is on the printer, aligned at the top-inside-page position. The
operator may verify the alignment of the paper by printing a sample of the
starting page (specified by the operator) before printing the file.

After the "print" command is given, the driver prints a head banner and the
text of the file from the starting page to the end of the file and completes the
request as described above.

7/81 3-17.1 cc3uc

Operation of the Punch Driver

There are no special messages or commands for +the punch driver. The
Multics punch driver follows the general operation of I/0 daemons described
above. Log messages, time estimates, and charges shown for each request are
similar to those of the printer driver. The punch driver does not implement
request command level.

Operation of the Spool Driver

The Multics spool driver provides an alternative method for processing
users' print requests when the service printer is either down or substantially
backlogged. The spool driver obtains queued print requests from the coordinator
and writes the requests out onto magnetic +tape. The tape can then be processed
immediately or at a later +time in one of +two ways: the spooling tape can be
input to a Multics system using the print spooling tape command (described in
Appendix A) to write directly on the printer, or the spooling tape can be input
to another system that has software capable of reading and printing the contents
of the tape. The spool driver does not implement request command level.

LOGIN AND INITIALIZATION

The spool driver runs as a standard I/0 driver process and can process
printer requests. If +the printer request +type queues are to be used by the
spool driver while the printer driver 1is logged in and working, the following
situation arises: +two drivers of the same request type share the processing of
requests from the same queues in a round robin fashion -- the first ready driver
getting the next request in the queues. This scattering of print requests can
result in the printing of two adjacent requests in the queue at significantly
different times. To avoid this request scattering problem, the printer driver
should be logged out (or placed in "hold") before bringing up the spool driver.

The spool driver is logged in 1like any other driver and its operation is
selected by the operator when the driver requests:

Enter command or device/request_type:

The operatdr responds by typing +the name of the spooling device, and either
gives a request type or relies on the default request type (specified in the
iod_tables).

Any special initialization messages associated with the request +type are
printed at this point. The line length, page length, and lines per inch to be
used in printing the tape contents are printed for the operator.

Next, the tape data must be entered. At least one tape volume identifier
(tape number) must be supplied, but additional data may optionally be supplied.
This optional input includes a recording density and a number of requests
(files) or a number of lines to limit the spooling operations. The spool driver
asks for this information by printing:

Enter volids and optional tape data or limits:

For example, if the operator wishes +to spool 95 print requests to volume
070064 to be recorded at 800 bpi, he types:

-volid 070064 -density 800 -files 95

12/79 3-18 CC34A

SPOOLING PARAMETERS

The operator may make a selection from the following possible input
parameters:

-volid STRs, -vol STRs
where STR is a six-character volume identifier of a tape reel. Up to

three volid (separated by spaces) may be specified at one time, and at
least one volid must be specified.

-density N, -den N
where N 1is either 800 or 1600. If the -density control argument is
not specified, and the -interchange control argument is not specified,
the default density is 1600 bpi. Density can only be given once
during a spooling session or an error is indicated.

—-interchange, -int
specifies tape recording parameters that comply with the ANSI standard
requirements for interchange. With +this control argument, tape block
size is set to 2048 characters and recording density is set to 800
bpi.

-files N, -f1 N
where N is a number between 1 and 999999, indicating the number of
files (requests) to Dbe written to tape before stopping. There is no
default file limit. If this parameter is omitted, no limit is set on
the number of spooling requests.

~lines N, -1n N
where N 1is a number between 1 and 999999, indicating the number of
printed 1lines to spool before stopping. There is no default line
limit. If this parameter is omitted, no limit is set on the number of
lines spooled.

When +the coordinator accepts the spool driver as a driver and all the
preliminaries of validating the input parameters have been completed, the spool
driver prints:

Spool driver ready at 01/30/78 1452.8 edt Mon
Enter command:

The spool driver is now at normal command level and ready to start
processing requests. At this point the operator can modify the paper printing
parameters with the paper info command if desired. All standard driver commands
can be used as well as most device specific driver commands for printers. (The
spool driver does not support a request command level.)

To begin processing requests, the operator must type the go command.
Assuming that some outstanding print requests are queued, the spool driver
starts processing requests at the go command. The first print request message
is printed on the spool driver log, followed by a tape mount message; after the
first tape reel has been mounted requests continue to be processed and logged
sequentially until either the queues become empty or one of the spooling limits
has been reached. The spool driver output 1log looks something 1like the
following:

Request 10001 printer g3: >udd>Demo>JSmithdtest.
from JSmith.Demo.a (for "heading" at "destination")
Charge for request 10001.3: $1.65 (1055 lines, 10 pages)

Mounting volume xxxxxx with a write ring.
xxxxxx mounted on tape 04.

12/79 3-19 CC34A

Request 10002 printer g3: >udd>Demo> js>test
Request 10003 printer q3: >udd>Demo>js>test2

When any spooling 1limits have been reached, i.e., either 1lines limit or
files 1limit, the spool driver prints:

Reached specified spooling limits;

Current file limit is xxx
Current line limit is xxXx

Current file count is xxx
Current line count is XXX

Enter new file and/or line limits, or "detach":

The current file count is a tally of the number of files spooled so far.
The current 1line count is a tally of the number of lines spooled so far.
Current line limit is +the line limit stop last set. Current file limit is the
file limit stop last set. If the limits are zero, then they are not currently
set. Each copy that a user requests corresponds to one file spooled, but the
limits are approximate, as a request is processed completely before the limits
are checked.

At this time, the operator must choose to either enter new spooling limits
and continue, or to terminate the spool driver. If new 1line 1limits are
specified, the new 1limit is added to the current limit, and spooling continues
until that new limit is reached. If only a line limit is specified, the files
1limit is set to zero and only reaching the line 1limit halts spooling; and
likewise, if only a file limit is specified, the line limit is set to zero and
only reaching the file limit halts spooling. If both incremented limits are
specified, they are both incremented and spooling continues until one of the two
limits is reached, whichever one comes first.

TO CONTINUE SPOOLING

If the operator wishes to continue when the spooling limits have been
reached, he must renew the 1limits by entering new -files and/or -lines
parameters. The new values are added +to the current spooling limits. For
example, at this time the operator types:

-files 20 -lines 20000
to add 20 to the current file 1limit and 20000 to the current line 1limit and
spooling continues.

If the end of a volume is reached when only one volume identifier has been
specified, the spool driver asks for additional volume names:

Reached end of spooling volume list;

Enter more volids or "detach":

Here the operator types in another volume identifier, -volid &8TR, to
continue spooling or types detach to terminate spooling.

12/79 3-20 CC34A

TC TERMINATE SPOOLING

If the operator wishes to terminate spooling when spooling limits have been

rgached, he types "detach." The spool driver responds with a tally of files and
lines processed and then logs out.

SPOOL DRIVER MESSAGES

The spool driver automatically answers all questions asked by the tape ansi
I/0 module. The operator should not have to type answers to any questions from
tape_ansi_ that appear in the spool driver log. For example, should a given
volume need initialization, the following sequence of lines might appear on the
Spool driver terminal:

tape_ansi : Volume xxxxxx requires initialization, but
cannot read VOL1 label.
Do you want to initialize it? ! yes

SPOOL DRIVER COMMANDS

The special commands available to the spool driver are a subset of those
listed for printers. The spool driver does not have a request command level.
The commands available are:

banner bars
paper iInfo
prt control
sample hs
single™

Operation of a Remote Driver

The remote driver is designed to operate differently from most other drivers.
The major difference is that it is designed for unattended operation at the
central site. Normally, all commands will come from the remote terminal input
device. However, the central site operator is always able to override the remote
station operator. See the discussion of master and slave terminals earlier in
this section.

At the central site, the operator starts initialization using the listen
command. For example,
Enter command or device/request type:
! listen 2780 1
Attaching 11ne "2780_1" on channel (a.h001)
The driver will not wait for a remote station to dial in.

The following paragraphs concern the operation and control of the driver
from the remote station.

7/82 3-21 CC3u4D

INITIALIZING AND DIALING IN THE REMOTE STATION

The remote station operator must turn on the remote terminal and complete
its initialization according to the manufacturer's instructions. Be sure the
communications lines are connected to the modem and the terminal is configured
to receive data from Multics. 1In particular, the terminal must be configured to
transmit single card images if commands are to be read from cards.

The remote station operator must then complete the connection of the terminal
to the I/0 daemon. This is similar to the normal "login" of a process, except
that the I/0 daemon process is already logged in and waiting for the remote
terminal to dial into the process.

The operator must dial the central site phone number that is to connect to
the remote station. At this point the I/0O daemon asks the remote station operator
to:

Enter station command:
The operator must then supply the station command through the card reader or the

terminal, if it has a keyboard. (See the description of the station command
later in this section.) The station command identifies the station_id and password

assigned to the remote station as supplied by the system administrator. If the

terminal has an operator's station with both keyboard and CRT or printer, the
operator may omit the station password from the station command; the system will
then request the station's password via the prompt:

Enter station password:

and will either suppress printing of the password or print a mask to hide the
password.

Once this information is validated, the driver will start initialization of
the major device that has a name equivalent to the station id. If there are
default request types defined for any of the minor devices, fhese will be used.
Otherwise, the remote operator will be asked:

Enter request type for minor device <name>:

The operator may enter any request type that has been defined for the minor
device in the iod_tables.

Remote stations that have no input device must use a dedicated communications
line. 1In this case the driver is initialized from the central site as though it
were a peripheral driver (i.e., the device/request type is given in place of the
listen command). When the station dials into the dedicated communications line,
no station command is requested. Instead, the driver will immediately begin
initialization for the predefined device and request type associated with the
driver.

7/82 3-22 CC34D

~

The driver responds with any special rqti segment initialization messages
or messages for setting the VFU tape and lines per inch on the printer minor
device. The driver then responds with the message:

{device> driver on channel <channel id> ready at <time>
Enter command: -

The driver is now at normal command level and all the standard driver commands
can be given from the remote station by placing cards in the reader (or input
through some other terminal device).

If any printer minor devices specify an rqti segment that includes the
auto go driver attribute, those devices will automatically be readied as the
driver initializes. The driver will then skip the request for an initial command
and immediately look for requests to process for those minor devices.

The driver for a remote station provides several device-specific driver
commands that control any reader, printers, or punches. These are issued from
normal command level. After a request has been received from the coordinator,
the driver can come to request command level. This is enabled by the “autoprint
mode for printers (see the prt control command) and the “autopunch mode for
punches (see the pun control command).

The driver can accept commands to alter the processing of the current request
while at request command level. The commands are different for printers and
punches.

At request command level, a printer device can be adjusted to a specific
starting page or copy number and can print sample pages, as well as most other
driver commands.

T7/82 3-22.1 CC3up

This page intentionally left blank.

7/82 CC3up

) At request command level, a punch device can adjust 1its copy number. The
baglc‘use of request command level for a punch is to make the driver pause after
prlptlng the log message, to allow the remote device operator to clear the punch
d§v1ce, or redirect the data +to g specific file. This is very important for
blngry output since no separator cards are provided to 1identify the source,
beginning, or termination of the data.

SENDING A QUIT SIGNAL TO THE DRIVER

Many remote terminals do not have "quit" buttons or special commands (for
example, "CL" for G115/RCI protocol). Therefore, +to stop the driver from
printing, the remote station operator must press the STOP button (or equivalent)
on the remote terminal. This disrupts the normal communications protocol and
causes a quit to be signalled +to the driver. This may cause one problem when
using a 2780 bisync protocol; since the operator may have stopped +the driver
while it was printing, it cannot ask questions or print information for the
operator.

Sending a quit may cause loss of locally buffered input or output. The
reader should consult the manufacturer's documentation about the device. The
operator can still input commands. If no commands are +typed within the
auto_start delay wait time, the driver process issues an internal start command.
The following commands are useful after a quit signal:

cancel terminate and discard the current request

defer send current request back to its queue

kill terminate the current request

logout log out the driver (and get ready to run a new remote station)
reinit reinitialize the driver

release return to normal command level (this may repeat the current
request and may abort any current card input)

restart begin the current request over again (printers go to request
command level, punches restart at the current copy)

save save the current request for possible restarting
start resume whatever the driver process was doing at +the time of the
quit

If no commands are entered within 60 seconds after the driver receives a
quit signal, +the driver will automatically execute a start command. For some
remote stations, 60 seconds is too 1little time; the auto_start_delay command
below may be used +to increase the delay time. The hold command aborts an
automatic start.

DRIVER COMMAND DESCRIPTIONS

The following are commands used to invoke and manipulate I/0 daemon driver
processes. The conventions shown in the usage lines of +these commands are the
same as those wused throughout the Multics manuals. For a description of these
conventions, refer to Section III of the MPM Commands. For each of the driver
commands that contain an underscore, the command also can be given by omitting
the wunderscore (e.g., clean pool or cleanpool). This allows terminals that
cannot transmit an underscore to act as slaves in most cases.

12/79 3-23 CC34A

As mentioned earlier in this section, these commands fall 1into two
categories, standard driver commands and device specific driver commands. In
the following paragraphs, they are listed alphabetically and are described in
detail. (For a Dbrief summary and listing by category and specific device, see
Appendix B.)

12/79 3-24 CC34A

~

auto_start_delay auto_start_delay

Name: auto_start delay

) The auto_start_delay command displays or sets the length of time the driver
will wait +to issue the start command automatically after receiving a quit
signal. An automatic start is cancelled if command input is received.

Usage

auto_start delay {N}

where N is the desired delay time in seconds. N must be at least 30 seconds.
The default delay time is 60 seconds. When no argument is given, the current
delay time is displayed.

banner_bars banner_bars

Name: banner_bars

The banner_bars device specific driver command is used by printer drivers
to establish how the separator bars at the bottom of the head sheet are to be
printed. Printers +that can overstrike should use "double" (this is the
default). Other printers should use single.

Usage

banner_bars {minor device} {arg}

where minor_device is a minor device name (as shown by the status command) and
is required if +there is more than one printer minor device; arg can be one of
the following separator types:

double
overstrikes each separator line

single
single strikes each separator line

none
suppresses separator lines

-print

if arg is not given, or if a single arg "-print", is given, the
current value is printed

12/79 3-25 CC34A

banner_type banner_type

Name: banner type

The banner_type device specific driver command is used by printer drivers
to change the ~information printed on the front and back of each copy of a
request.

Usage
banner_type {minor_device} {key}

where minor_device is a minor device name (as shown by the status command) and
is required if there is more than one printer minor device; key must be one of
the following:

standard
prints the normal head and tail sheets.

none
prints nothing except the separator Dbars, if required (according to
the banner bars command),
brief
prints a short version of the head and tail sheets.
-print
if arg is not given, or if a single arg "-print", 1is given, the
current value is printed.
cancel cancel

Name: cancel

The cancel command terminates the request that the driver is currently
processing. The request is not placed in the coordinator's saved list and thus
cannot be restarted later. This command is only valid after a quit signal, or
at request command level.

After completing the command, the driver looks for another request to

process. (In step mode, it returns to command level.)
: Usage
cancel

12/79 3-26 CC34A

clean pool clean pool

Name: clean pool

The clean pool device specific driver command applies to drivers that can
read user card decks. It allows the operator to delete all segments in the
system card pool +that have been there more than a specified number of days.
This command is available for the master terminal only.

Usage

clean pool N

where N is the maximum length of time in days for segments to be retained in the
system card pool. All segments that have been in the card pool more than that
number of days are deleted. N must be a decimal number greater than gzero.

copy copy

Name: copy

The copy device specific driver command allows the operator to set the copy
number of the next copy of the current request to the value specified. This
command is used only at request command level.

Usage
copy N

where N is a decimal integer between 1 and the number of copies requested by the
user.

12/79 3-27 , CC34A

ctl_term ctl_term

Name: ctl_term

The ctl_term command applies only to a control terminal (if attached). It
allows the operator to specify the format of printed output.

One of the primary functions of the control terminal is +to print
information about each request processed, to aid in separating the output, and
to ensure proper accountability of output generated by the driver. It is
possible for the site to wuse preprinted forms for this purpose. (see "Using
Preprinted Accountability Forms on the Control Terminal"™ earlier in this
section.) In this case, alignment of the data on the form is very important.
Generally a terminal that supports vertical tab and form feed control characters
is used to ensure alignment. However, this command allows the operator to
request that the software simulate the action of form feed control characters if
the terminal does not provide this hardware support.

Usage

ctl term arg

where arg falls into one of two classes: general control or simulation control
(some arguments require an additional value to define the requested action):

general control

form_type STR
specifies the format program to be used to format the data printed
on the control terminal. If STR is "default", the form type is set
to the default format. -

detach

discontinues the use of the control +terminal. This argument is
restricted to the master terminal and is not reversible unless the
reinit command is given.

gimulation control

simulate
sets the driver to simulate form feeds by software. (This argument
is not reversible even by the reinit command.)

page_length N
sets the number of lines per logical page to N. This controls the
forward spacing needed to go to the top of the form.

aligned
indicates that the forms are aligned for the purpose of form feed
control. (A sample form can be printed by the sample_ form command.)

12/79 3-28 CC34A

defer defer

Name: defer

The defer command sends the current request back to its queue marked as
deferred. It is only issued from quit command level or request command level.

Usage

defer

Notes:

Requests are automatically deferred when the requested line 1length of the
device exceeds the physical line length, or when +the estimated processing time
of a)request exceeds the operator-defined limit (see the defer_time command
below).

A deferred request will be reprocessed when the driver 1is given the
restart_q command or when the coordinator is next initialized.

defer_time defer_time

Name: defer_ time

The defer time command is used to set or display the current time limit for
automatically deferring requests.

Usage
defer_time {minor_ device} {N}

where:

1. minor device
~ is the name of the minor device for which the time should be set or
displayed. It is optional for drivers that have only one minor
device (e.g., the central site printer). If specified, +this
argument must be the first argument.

sets a new defer time in minutes, with a precision of tenths (e.g.,
1.5 1is one minute, 30 seconds). A time of zero indicates that
infinite time is allowed. If N is not given, the current defer time
and driver output rate are displayed.

12/79 3-29 CC34A

&0 go

Name: g0

The go command makes the driver look for requests to process. If no
requests are currently available, the driver asks the coordinator for a request
for each "ready" device. These requests are processed as soon as they are
provided by the coordinator. (This command may not be wused at request command
level or immediately following a quit signal.)

Usage
go {N}

where N is the number of requests processed before the driver returns to command
ljevel. If N is not specified, the driver will continue to process requests and
will not return to command level until requested by the operator.

halt halt

Name: halt

The halt command provides the reverse function of the ready command. It
places the device or each of the specified minor devices in the inactive state.
The driver does not ask the coordinator for any further requests for a halted
device. However, the coordinator may have already supplied a "pending request"
for the halted device. In this case, any pending request is processed
immediately after the device has been halted (except when the command has been
issued following a quit signal).

Usage
halt dev! ... devn {-control_arg}

where:

1. devi
is the name of a device, or minor device in the case of a
multifunction device, that is to be placed in the inactive state.
The device names that can be used are those printed out by the
status command.

2. contrdl_arg

can be -all or -a to halt all devices. If the -all control argument
is used, no device names need be given. No control argument is
required if there 1is only one device for the driver. If there are
multiple minor devices, the operator must specify the ones to be
made inactive or else must specify -all to halt all minor devices.

12/79 , ’ - 3-30 CC34A

help help

Name: help

The help command prints the name of each command that may be executed by
the driver. A short description of the arguments is provided with each command
name. At request command level, the list of commands is limited to those unique
to that command level.

Usage

help
hold hold
Name: hold

The hold command is used to hold the driver at command level.

Usage

hold

Notes

When the hold command is issued from the master terminal, the slave
terminal is wunable to issue any command that would cause the driver to leave
command level until +the master terminal has issued a go command (or a start
command following a quit signal). This command should always be used following
a quit signal if the automatic start is to be canceled.

31 CC34A

12/79 3

inactive_limit inactive limit

Name: inactive_ limit

The inactive limit command allows the I1/0 Daemon to log out automatically
after a specified period of inactivity.

Usage

inactive limit {N}

where N is the number of minutes of inactivity allowed. N may be from zero to
200 minutes. Zero indicates no automatic logout; this is the default. The
current inactivity limit is displayed if N is not given.

Notes

The inactivity time counter is reset when a request or command is received
or a quit is signalled, as well as when the driver processes a new request. A
driver sitting at command level is considered active.

An inactivity logout will reinitialize a remote driver so that another
station can log in and use the line.

kill kill

Name: kill

The kill command terminates the request that the driver is currently
processing. The request is passed ‘back to the coordinator and placed in the
saved 1list where it may be restarted if desired (within the limits of the
coordinator save time).

After completing the command, the driver looks for another request to
process. (In step mode, it returns to command level.)

Usage

kill

12/79 3-32 CC34A

logout logout

Name: 1logout

The logout command terminates the driver process (like the standard Multics
logout command).

Usage

logout

Note

When the logout command is given from a remote station, the remote driver
reinitializes and gets ready to accept a new station.

master master

Name: master

The master command is the reverse of the slave command. It allows the
operator of the slave terminal to communicate with the operator of the master
terminal by sending a message.

Usage

master message

where message is any arbitrary one-line message containing no more than 120
characters.

12/79 3-33 CC34A

new_device new_device

Name: new_device

The new device command terminates the current device. The driver then asks
the operator to enter a new '"command or device/request_type" as described under
"Driver Initialization with a Control Terminal" above.

The coordinator is notified of the termination of the current device and
the device is detached by the process. If a control terminal has been attached,
it also is detached.

The new_device command may only be issued from the master terminal.

Usage

new_device

next next

Name: next

The next command specifies which request is to be taken from the queues
next. This allows the operator to specify priority requests and the order in
which they are to be run.

Usage

next -control args

where the -user control argument is required and at least one other argument
must be chosen from among the request identifiers (-entry, -path, and -id).

-user Person_id.Project_id
specifies the submitter of the request by user_id. The full person
and project names must be given.

-entry STR, -et STR
specifies the entryname of the request. Starnames are not allowed.
This control argument may not be used with the -path control
argument.

-id ID
specifies the match id of the request.

-path path, -pn path

specifies the full pathname of the request. Relative pathnames and
starnames are not allowed. This control argument may not be used

12/79 3-34 CC34A

next

next

with the -entry control argument.

-device STR, -dev STR

-queue

Note

specifies which of the driver's minor devices the command is being
given for. This control argument is optional for drivers with a
single minor device, but is required for drivers with multiple minor
devices. It serves to identify which request type the coordinator
will search to find the request.

N, -q N

specifies that only queue N of the request type should be searched
to find a matching request. This argument is optional; if not given,
all queues will be searched.

All requests to be run by the next command will be charged as though they
came from queue 1.

Requests chosen to run next will be run after any restarted requests (see

the restart

command in this section).

This command may be given several times before a go command, to specify the

exact order

paper_info

that requests in the queues are processed.

paper_info

Name : paper_info

The paper info device specific driver command defines the physical
characteristics of the paper as used by the printer software.

Usage

paper_info {minor_device} {-control args}

where minor

device is a minor device name (as shown by the status command) and

is required if there is more than one printer minor device; control args may be

one or more

-print

12/79

of the following:

print the current values. If this is given, it must be the only
control arg.

3-35 CC34A

paper_info paper_info

-11 N
sets the line length to N, where N is a decimal integer from 10 to
200.

-pl N
sets the page length to N, where N is a decimal integer from 10 to
127.

-1lpi N

sets the number of lines per inch to N, where N is either 6 or 8.

If no control arguments are given, the current values are printed.

Note

If the printer uses a firmware VFC image, a new image is loaded (which
causes the printer to go into an unsynchronized state). Otherwise, the operator
is told to mount a new VFU tape.

pause time pause_time

Name: pause_time

The pause_time device-specific driver command allows a remote device driver
to accept commands between requests by pausing a few seconds to allow the line
to turn around.

Usage
pause_time {N}

where N is the number of seconds that the driver must pause between requests. N
must be between 0 and 30 seconds. If N is not given, a value of 10 is assumed.

7/82 3-36 CC3uD

~’

print print

Name: print

) The print device-specific driver command starts the actual printing of a
file when the driver is at request command 1level. This command is used by
printer drivers only.

Usage

print {N}

where N is a decimal integer that identifies the page at which the driver starts

printing. If this argument is omitted, printing starts at the current page of
the file.

Notes

A "4+" or "-" preceding the page number indicates that the number is relative
to the current page.

If the starting page number is beyond the end of the file, an error message
is printed, and a new command is requested.

The print command causes a normal head sheet to be printed complete with
separator bars if needed. The head sheet is followed by the current page of the
file.

prt_control prt_control

Name: prt_control

The prt_control device specific driver command sets the driver request
processing modes. Each key may be preceded by the circumflex character (") to
set the value to off.

Usage

prt_control {minor_device} {args}
where minor device is a minor device name (as shown by the status command) and

is required if there is more than one printer minor device; args may be one or
more of the following:

12/79 3-37 CC3LA

prt_c

punch

Name:

ontrol prt_control

-print
if arg is not given, or if a single arg "-print" is given, the
current modes are printed.

auto print, "auto print
~ This mode causes the driver to start printing each request as soon
as it is received from the coordinator (after a go command has been
given). This is the normal mode of operation. When “~auto print is
turned off, the driver goes to request command level immediately
after printing the log message. This allows the operator to align
the paper, change the paper, print sample pages, and issue all other
commands allowed at request command level (including the kill command).

force esc, "“force esc
~ This mode turns on the esc mode of the printer DIM during the processing
of each request. This mode must be on if the slew-to-channel functions
are to operate. Normally, the force esc mode is set by data in the
request type info (rqti) segment. -

force nep, “force nep
~ This mode “sets the noendpage (nep) mode of the printer DIM during
the processing of each request, whether the user has requested that
mode or not. It is normally set from data in the rqti segment.
This mode is used for request types that require preprinted or
preformatted paper (e.g., gummed labels, invoice forms).

force ctl char

" This sets the ctl char mode of the printer DIM during the processing
of each request, which allows an I/0 daemon to send control sequences
directly to a remote printer instead of discarding the characters or
printing their octal equivalents. Setting this mode enables users
who prepare print files through Compose to activate special printer
features such as superscripting or multiple fonts. This mode is
honored only by the remote printer driver module, remote_driver_.

If no arguments are given, the current modes are printed.

punch

punch

The punch command is used by remote punch drivers at request command level
to proceed with the punching of the requested segment.

Usage

punch

7/82

3-38 CC34D

pun_control

Name: pun _control

The pun_control command is used by remote drivers
to set the punch control modes.
punch driver.

Usage

pun_control {minor_device} [<control mode>]

where:
1. minor device
is the name of +the punch minor
addressing. This argument is optional
minor device, but is required otherwise.

device
if ¢

2. {control mode>
specifies the modes to be set.
character """ to reset the mode.
given, the current modes for +the s
The following mode is currently defined:
autopunch
this mode allows the driver to
without operator intervention. When this
“autopunch the driver will come to
printing +the 1log message and wait for the
"punch" command before continuing.
-print
if control mode 1is not given, or if a singl
given, the modes are printed.
Notes
The “autopunch mode is normally wused by a remote
output to Dbe directed to a particular device based on
message. Once the proper device has been assigned,

"punch" for the driver to continue with the user's reques

12/79 3-39

pun_control

at normal command level

This command does not apply to the central site

which the
here in

command is
only one punch

The mode name may be preceded by the
This argument is optional.

If not

pecified minor device is printed.

process punch requests continuously

mode is not set (i.e.,

request command 1level after

operator to give the

e argument "-print" is

operator to allow the
information in the log
the operator must type

t.

CC34A

read_cards read_cards

Name: read_cards

The read_cards device specific driver command applies to device drivers
that can read user card decks. It allows the operator to input card decks from
a remote station or local device. The control card format required is the same
as that described under "Reading User Card Decks" in Section 4.

Usage

read cards

Notes

The card codes that are accepted by various card readers may vary from one
card reader to another. The operator should be familiar with the card codes
that should be used with the card reader at the remote station

ready ready

Name: ready

The ready command places the device and the specified minor devices in the
active or "ready" state. The driver only requests service from the coordinator
for a ready device. This command performs the reverse function of the halt
command .

Usage
ready devl ... devn {-control_arg}
where:
1. devi
ijs the name of a device, or minor device in the case of a
multifunction device, that is to be placed in the ready state.
2. -control_arg

can be -all or -a to place all devices in the ready state. If the
-all control argument is used, no device names need Dbe given. If
there is only one device, no control argument is required. In this
case, the ready command is executed automatically during driver
initialization. If there are multiple minor devices, the operator
must specify the ones to be made ready or else must gspecify -all to
make all minor devices ready.

12/79 3-40 CC34A

reinit reinit

Name: reinit

The reinit command reinitializes the driver. The same device(s) and
request type(s) are used without requesting operator input. However, remote
stations have to reissue the station command and any new default request types.
Also, if a control terminal 1is attached to the driver, its attachment, form
simulation mode, and form type are retained over +the reinitialization. PEach
device and request type is again requested from the coordinator.

The reinit command to the driver is almost the same as the standard Multics
new_proc command.

Usage

reinit

release release

Name: release

‘The release command returns the driver to normal command 1level. This
command is primarily used following a quit signal. If a request was in
progress, it is started over again.

Usage

release

12/79 3-41 CC34A

req_status req_status

Name: req_status

The req_status device specific driver command gives the operator.
information about the current request. This command may only be used at request
command level.

Usage

req_status {-control_arg}

where control_arg, for printers only, may be -long or -lg to give the operator
the following information:

number of multisegment file components
number of characters in file

currént page number

current copy number

current line count

current multisegment file component
char offset in current component

char offset from start of file

printer DIM modes

printer DIM position

If the control argument is omitted, only the first four items in the above
list are printed. 1In this case, the information looks like:

Request 10001: >print files>invoices>3tation A.invoices

file components: 2, char count: 4732865
page no: 1006 current copy no: 2

There is no control_arg defined for punches. The following three items are
printed:

current copy number

current request number

current pathname

In this case, the information looks like:

Request 20001 >punch_files>invoices>Station_A.invoices
current copy no: 2

12/79 3-42 CC34A

restart restart

Name: restart

The restart command 1is used either to restart processing of the current
request after a device malfunction or to reprocess requests in the coordinator's
saved list.

Usage

restart {arg}
where arg may be one of the following:

1. N

is the number of +the request to be restarted. The coordinator
searches 1its saved list for a matching request. If found, the
request will be re-processed ahead of any other requests, including
those from the "next" command. If the request had been saved in the
middle of a copy (suspended), the request will be restarted
beginning at the +top of the following page; a punch request will
start at the beginning of that copy.

2. -from N
specifies that all requests in the series beginning with request N
are to be restarted. This is an implicit save of all requests in
the series.

When the restart command is issued directly after a quit signal, with no
arguments, the driver's current request is restarted. For print requests, the
current page number, minus 5, and copy number are displayed and the driver goes
to request command level. For punch requests, the number of copies completed
(if more than one) is displayed and the operator is asked to note how many were
good.

Notes

The user is charged for the requested number of copies only, regardless of
how many copies were produced by this command.

If the request number series of a restarted request is still active, the
driver will be switched to another series. Each restarted request is assigned a
new request number, and any subsequent restart must be based on the new request
number.

12/79 3-43 CC34A

restart_q restart_q

Name: restart_q

The restart _q command signals the coordinator to start taking requests from
the beginning of~ the queue again. This allows any deferred requests to be run
if the operator has changed the deferring criteria (see the defer_time command
in this section).

Usage

restart_q {minor_device}

where minor device is the name of one of the minor devices being run by the
driver. It Tdentifies the request type queues to be restarted. It is optional
for drivers with a single minor device.

Notes

When several drivers are running from a single device class, and several
requests in the queues are still in progress, it is possible that some requests
will be repeated.

runout_spacing runout_spacing

Name: runout_spacing

The runout_spacing device specific driver command sets the number of lines
to advance the paper after requesting a command from a remote multifunction
slave terminal.

Usage
runout_spacing N

where N is the number of lines the driver advances the paper after requesting a
command from the slave. N may be from zero to 60.

12/79 3-44 CC34A

runout_spacing runout_spacing

Note

The runout spacing is normally set in the attach description from the
iod_tables. This command allows the operator to change the spacing so that
driver command requests may be seen clearly above the platen.

12/79 3-45 CC34A

sample sample

Name: sample

The sample device specific driver command is used by printer drivers at
request command level to print a sample page of the file for paper alignment or
to verify the starting position in the file. The current position of a new
request is always page 1. The same page may be printed as often as needed.

Usage
sample {N}

where N is the page number that the driver prints. If N is omitted, the driver
prints the current page in the file.

If N is preceded by a "+" or "-", the number is relative to the current
page of the file. For example, "sample +3" skips forward three pages and prints
the page; "sample -8" skips backward eight pages and prints +the page.
Similarly, "sample 500" skips to page number 500 and prints it.

If +the page number specified is beyond the end of the file, an error
message is printed similar to:

End-of-File record encountered. EOF at page 2000, line 10.

Unable to skip to starting page.

Enter command(request):
and a new command is requested.

The sample command prints a page with separator bars as an aid to the
operator in indicating the sample pages so they can be discarded.

12/79 3-46 CC34A

sample form sample_ form

Name: sample form

The sample_form device specific driver command is used to print a sample of
the data used to record request processing on the control terminal. The primary
function of this command is to verify the alignment of the forms on the control
terminal. The data is formatted by the program that is called for each copy of
each request. (See the ctl term command.)

Usage

sample form

Notes

If form feed simulation is being used, the command checks to see if
alignment has been set. If not, it is set before the sample form is printed.

The sample_form command applies to all drivers that use a control terminal.

sample hs sample hs

Name: sample hs

The sample_hs device specific driver command prints a sample head sheet to
align the paper before starting to print or after loading more paper. This
command should not be used in the middle of a request (e.g., after a quit)
unless the request is restarted using the restart command. Otherwise, the page
restart feature of the printer driver is placed out of synchronization.

Usage

sample_hs {minor_device}

where minor_device is a minor device name (as shown by the status command) and
is required if there is more than one printer minor device.

12/79 3-47 CC34A

save save

Name: save

The save command tells the coordinator that one or a series of requests are
to be retained beyond +the normal holding time. The action is 1limited to
requests in the specified request number series. The save command allows
requests to be saved for possible restarting until the coordinator is logged
out.

Usage

save {arg}

where arg may be one of the following:

1. N
specifies the request number in the coordinator's saved list. The
coordinator searches its 1list of finished requests and marks the
matching request number as saved for later restarting. The request
remains in the saved list until the request is restarted by the
restart command or until the coordinator is next initialized.

2. -from N

specifies that all requests in the series beginning with request N
are retained in the saved list.

If no argument is given, the current request will be returned to the
coordinator and saved for later restarting. For printers, the request will be
processed to the bottom of the next even page and a normal tail sheet will be
printed, showing a charge of zero. When the request 1is 1later restarted,
printing will begin at the top of the next odd page.

Notes

Once a saved request is restarted, it is not saved any 1longer than the
normal retention time. The coordinator never deletes the wuser's segment while
the request is being saved.

12/79 3-48 CC34A

sep_cards sep_cards

Name: sep cards

The sep cards command is used by a remote punch driver at normal command
level to control the punching of separator cards between each output deck. If
separator cards are not punched, the operator should run the driver in step mode
(see the step mode command) and remove the cards from the punch as each request
is completed.

Usage

sep_card {minor device} {arg}

where:

minor device
- is the name of the punch minor device which 1is being addressed.
This argument is optional if there is only one punch minor device,
but is required otherwise.

arg
may be of the following:
standard
the standard separator cards are to be punched (default).
none

no separator cards are to be punched.
-print

if arg is not given, or if a single arg "-print", is given, the
current value is printed.

12/79 3-49 CC34A

single single

Name: single

The single device specific driver command applies only to drivers that
operate a printer. It sets the single mode of the printer DIM so that form feed
and vertical tab characters are treated as newline characters for the current
request. It also cancels any additional requested copies that have not been
processed by the driver. The single command is wused after a quit to stop
runaway paper feeding caused, for example, by the printing of a non-ASCII
segment.

Usage

single

slave slave

Name: slave

The slave command is the reverse of the master command. It allows the
master terminal operator to communicate with the operator of the slave terminal
by sending a message.

Usage
slave message

where message is any arbitrary one-line message containing no more than 120
characters.

12/79 3-50 CC34A

()

slave_term slave term

Name: slave term

The slave_term command controls the ability of the slave terminal to enter
commands, issue quit signals, and receive log or error messages. The slave
terminal must be active for the command to be effective. The commands, no commands,
quits, and no_quits keys are restricted to the master terminal. -

Usage
slave_term key

where Key may be selected from the following:

commands
commands can be sent from the slave terminal to the driver. (Restricted
to master terminal.)

echo .
echoes each command line typed from the slave. (Input from the
exec_com used by the "x" command will not be echoed.)
errors
error messages are routed to the slave terminal.
log
log messages are routed to the slave terminal.
modes STRs

sets the slave terminal modes to those specified by STRs.

no commands
- no commands can be sent from the slave terminal to the driver.
(Restricted to master terminal.)

no_echo
suppresses echoing of the slave commands (default).

no errors
no error messages are routed to the slave terminal.

no_log
no log messages are routed to the slave terminal.

no_quits
no quit signals can be sent from the slave terminal to the driver.
(Restricted to master terminal.)

quits

quit signals can be sent from the slave terminal to the driver.
(Restricted to master terminal.)

12/79 3-51 CC34A

start start

Name: start

The start command allows the driver to resume operations suspended at other
than the normal command level, e.g., after a quit signal. Its function is
similar to the standard Multics start command. The start command cannot be
issued at normal command level (see the go command).

After a quit signal, this is the only command that allows control to be
returned to the point of process interruption. The action of the hold command
is reset when a start command is issued.

Usage

start

station station

Name: station

The station command is used by a driver to identify and validate a remote
station. This command is similar to the standard Multics login command.

Usage

station station_id {station_password}

where:

1. station id
Ts the registered id of the station, as defined by the administrator.

2. station password
Ts the registered password for the remote station.

7/82 3-52 ‘ CC34D

station station

Notes

The station's identifier and password are registered in the PNT using the
card input password as the station password and are supplied by the administrator
for each station location.

If the remote station includes an operator's terminal with keyboard and CRT
or printer, the station password may be omitted from the station command. The
system will then request the station password and either suppress printing of
the password or hide it with a suitable mask. This feature is particularly
useful when a remote station is actually a high-quality letter printer (e.g., a
Diablo 1640), where the printer is used both as the slave console and as the
actual output device.

Remote stations that have no input device do not have to give a station
command. However, these stations must use a dedicated phone line and have the
station identifier specified in the iod tables as described earlier for Type II
remote stations. -

status status

Name: status

The status command prints information about the current status of the driver.
The information provided is:

1. The I/0 daemon driver version.

2. The device name and channel.

3. The request type (per minor device if more than one).

4, Whether a request is in progress and the request number.

5. The device status: ready, halted, or not attached. (If there are
minor devices, this is provided per minor device.)

6. Whether there are any pending requests and their request numbers.

7. Whether step mode is set.

8. The names of any minor devices (to be used with the ready and halt
commands) .

Usage

status {-control_arg}

where control arg may be -long or -lg to print the status of inactive minor
devices (devices that cannot be made ready).

7/82 3-53 CC34D

step step

Name: step

The step command either sets (puts the driver into) or resets (takes the
driver out of) step mode. When in step mode, the driver returns to command
level after processing each request from the coordinator. When not in step
mode, the driver processes requests from the coordinator as soon as received
without operator interaction. Step mode is useful for checking the alignment of
paper on the printer or other device functions prior to allowing the driver to
run continuously without operator interaction.

Usage

step {arg}
where arg can be "set" or "reset" to put the driver into or take the driver out

of step mode. If no argument is supplied, step mode is set. The driver is not
in step mode immediately after driver initialization.

Name: x

The x command allows drivers to execute an admin exec com on a site-defined
basis. -

Usage

x function {args}
where:

1. function
is a site-defined function name.

2. args
are any arguments needed to implement function.

7/82 3-54 CC34D

Notes

When the user issues the x command, the driver constructs the command line:
exec_com >ddd>idd>NAME function {args}

where function and args are as above; NAME is either <major device> admin.ec for
standard drivers or <station id> admin.ec for remote drivers. If NAME is not
found, the driver will look Tfor the default of iod admin.ec (see Appendix C).
Added names can be used to group exec_coms into categories.

Drivers that run as IO.SysDaemon have a great deal of access to the storage
system. Administrators must be careful in choosing commands for the admin exec_coms
to avoid accidents or vandalism.

The Multics command iod command may be used within an admin exec_com to
execute arbitrary I/O daemon commands. For example:

iod_command defer_ time 30
may be used in an admin exec com to change the auto defer time limit for the

current driver to 20 minutes. = The iod_command command is described in detail in
Appendix A.

7/82 3-55 CC34D

SECTION 4

MANAGEMENT OF CARD INPUT STATION

CARD INPUT ACCESS CONTROL

Card input 1is subjected to special access control checks in order to
provide for security. This section describes the checks and the tables and
segments that support them.

Card Input Password

A card input password for each user, separate from that user's interactive
password, is stored in the system Password Name Table (PNT). This password is
assigned when a user 1is registered, and can be changed either by the user or a
system administrator.

Users without a card input password who have r access to
card_input_password.acs and the associated <station>.acs in the directory
>system_control 1>rcp may also use bulk data input, if +they have created a
card_input.acs segment in their mailbox directory (see below). 1In addition, the
card reading process must have rw access to >system_control_1>PNT.

Registering Card Input Users

Card input wusers are registered with the register command. For a I
description of the register command see the MAM Accounting manual, Order No.
AS68.

Remote Job Entry Submission Access Control

Any process (e.g., I0.SysDaemon and Card_input.Daemon) which is to read and
process remote job entry (RJE) card input must have e access to the segment:

>system_control_1>proxy>absentee_proxy.acs

to be able to submit proxy absentee requests.

Station Registration and Password

Each card input station (central or remote) is registered in the PNT with
the register command. A card input password is associated with each station. l

12/79 4-1 CC34A

The station card input password must be specified by the operator as part of the
sign-on sequence.

User Card Input Access Segment

Users must explicitly permit a station to submit card input for them by
creating the segment "card input.acs" in their mailbox directory:

>user_dir_dir>Project_id>Person_id
The ACL for +this segment must give r access to each station that the user
permits to submit bulk data input and e access for each station that the user
permits to submit RJE jobs. For example:

re Station_A.*.¥
The card reading process must have s access to the project_id and person_id

directories. If this segment does not exist or if the access 1is not as
specified, the card input is aborted.

System Station Access Control Segment

All users allowed to submit card input from a station must be on the ACL of
the stations access control segment (e.g-y Station_A.acs). Bach card input
station must have an access control segment residing in the directory
>system control_1>rcp. The card reading process must have s access %o this
directory. If access 1is not specified, or if this segment does not exist, the
card input is aborted.

The star convention may be used in the normal fashion, for example:

r user.*. ¥
re *.Project A.*
n L -

This check allows a site to specify that a certain station is reserved for
the use of a certain group of users, perhaps those who pay for the equipment.
It can also be used to ensure that certain stations are not used to submit RJE

card input for privileged users, such as *.SysAdmin, who should never normally
use the facility.

12/79 4-2 CC34A

()

READING USER CARD DECKS

Remote terminals with card readers and the central site reader can be used
to enter wuser card decks for both bulk data input and RJE. The operator must
issue the read cards command to the card reading process to start reading in
user card decks. The card reading process may be either the central site
Card_input.Daemon (see "Reading Cards at +the Central Site" below) or an I/0
daemon driver using the remote driver device driver module (see "Standard
Driver Modules" in Section 2). - -

Because different card readers have different punch card decoding
conventions, the wuser is warned +that the same character may require different
punch codes on different readers. Thus, for example, a + character may be
represented by a 12-8-2 punch on one reader, and a 12-0 on another. Obviously,
cards prepared for the first reader do not transmit the same data on the second
reader and may in fact be unreadable. The user should consult the
manufacturer's documentation before preparing any cards for input.

12/79 4-2.1 CC34A

12/79

This page intentionally left blank.

CC34A

()

~

To prepare the user's card decks for reading, the operator must lace pairs
of EOF and UID control cards in front and back of each deck. The cgntrolpcard
format, for operator supplied control cards, is as follows:

Column 1 Column 80
v v

++EQOF
++UID <uid_string>
++END

The card with ++EOF (starting in column one) is tne end-of-file marker. It
must be the first card placed in the card reader after the read cards command is
given. -

The card with ++UID <uid string> is a unique ID card; it must always follow
an EOF card. The <uid string> can be any string of characters (except spaces)
of 1 to 12 characters Tong (see example below). The <uid string> on the ++UID
cards at the front and back of each user's card deck must be identical. These
cards are used to separate user card decks. Therefore, the operator should keep
about 10 pairs of matching ++UID cards near the card reader so that he is able

to stack several user card decks in the hopper at one time.

The ++END card is used to terminate the reading of cards and allows. the
process to return to normal command level. If a ++END card is not placed after
the last ++UID card (or after and ++EOF card) the driver assumes that there are
more card decks to be read and waits for them to be loaded into the card reader.

A complete group of card decks, ready for reading, would appear as follows:

++EOF
++UID 77272727

(First User Card Deck)

++EQF

++UID 77272727
++EQOF

++UID ABCDEF

(Next User Card Deck)

++EOF.
++UID ABCDEF

++EOF.
++UID 1234567890

(Last'user Card Deck)
++EOF

++UID 1234567890
++END

The user must submit a complete card deck to operations. The deck must
follow the format specified in Appendix C of the MPM Reference Guide. For the
convenience of the operator, the general format is described here briefly.

12/79 4-3 CC344

e

XX

MINIMUM FORMAT OF A CARD DECK FOR BULK DATA INPUT

++DATA <deck_name> <Person_id> <Project_id>
++PASSWORD <XXXXXXXX>
++INPUT

(u;er data cards)

.

MINIMUM FORMAT OF A CARD DECK FOR REMOTE JOB ENTRY

++RJE <deck name> <Person_id> <Project_id>
++PASSWORD <xxxxxxx>
++INPUT

(user absentee commands)

Only the first two cards and the ++INPUT card are required for each deck.
All other cards are optional. Examples of optional cards that may appear in a
bulk input deck are:

++AIM <deck access class>
++FORMAT <punch format> <format control modes>
++CONTROL OVERWRITE

Examples of optional cards that may appear in an RJE input deck are:

++AIM <deck access class>

++FORMAT <punch format> <format control modes>
++RJECONTROL <ear control args>

++RJEARGS {ear args>

++EPILOGUE <command line>

++ABSIN <pathname>

For more information, see Appendix C of the MPM Reference Guide.

NOTE: The access clase specified on the ++AIM cards of each user deck MUST
match the authdrization of the card reading process. Normally, the
authorization is system_low and the ++AIM cards can be omitted.
However, if the authorization is greater than system_low, the ++AIM
cards are required and must match the authorization, or the card
reading aborts. So, the operator should always check user decks for
correct ++AIM cards.

READING CARDS AT THE CENTRAL SITE

In order for a Multics user to read data on punched cards into the Multies
system, those cards normally must be submitted to operations. Users normally
cannot use the central site card reader on their own, without operator
intervention. The central site card reader is controlled by a Multics daemon
named Card_Input.Daemon. This daemon is responsible for driving the card
reader, transferring the data into online storage, submitting local RJE jobs,
reporting errors, and communicating with the operator. The card daemon may use

4o cc34

(L)

the message coordinator to run as a "consoleless" daemon or may be logged in
from its own terminal.

Further information may be found under "Bulk Input/Output" in Section V of
the MPM Reference Guide and in the description of the card reader hardware.

Login and Initialization

The card input daemon is logged in like any other io daemon. Once logged
in it accepts a subset of the standard daemon commands, described below. The
authorization specified at login must be the same as the access class of the
card decks which the daemon is expected to process.

Communicating with the Daemon

When the central site card daemon requires instructions from the operator,
it types:

Card Daemon: Command?

This occurs after initialization, after reading an end card, after a quit signal,
or after some error condition is encountered. The following commands are understood
by the daemon and may be typed on the daemon terminal:

help
print a short description of available commands.

read_cards
start reading cards from the card reader. The daemon assumes that

the reader is ready (or waits for it after printing a message).

start
continue the operation in progress after having received a quit signal.

logout
logout the daemon.

reinit
attempt to reinitialize the card daemon by detaching the card reader
and reattaching it. This command may be used if the daemon appears
to be in an inconsistent state.)

abort
terminate the reading of the current load of card decks after a quit
signal has been received. To kill only the current card deck instead
of the whole load, immediately follow the abort command with the
read_cards command, and other decks in the card reader are processed
correctly.

clean_pool
delete o0ld card deck copies stored in the system storage areas.
This command causes the daemon to ask for the age of segments to be
deleted. (This command is normally used to the request of the system
administrator or in the event of a record quota overflow.)

7/81 4-5 cc3ic

Error Conditions

The card daemon attempts to recover from most errors involving incorrectly
punched control cards by forward spacing to the next card deck. That is, if an
error occurs during the reading of a card deck, that deck is skipped and the
reading continues with the next card deck. When the card daemon encounters a
deck having an access class (as specified on the ++AIM card) that is different
from its own access authorization, the card daemon stops the card reader and
requires that the problem be corrected before continuing.

READING CARDS AT THE REMOTE SITE

When the remote station operator has completed the station initialization
described in Section 3, the remote station accepts card input (either bulk card
input or RJE) after the operator enters the command:

read_cards
Log and error messages are output to the terminal as each deck is processed.

Error and status messages are sent to the submitter of the card deck via the
mail facility.

7/81 4-6 cc3ic

~”

APPENDIX A

ADMINISTRATIVE COMMANDS AND ACTIVE FUNCTIONS

This appendix contains descriptions of commands and active functions needed
by an administrator to manage the I/0 daemon.

The conventions shown in the usage 1lines of these commands are the same as
those used throughout the set of Multics manuals; briefly, arguments enclosed in
braces ({}) are optional and all others are required. For a complete
description of all of the usage line conventions, refer to Section III of the
MPM Commands.

A-1 cc34

create_daemon_queues create daemon_queues

Name: create_daemon_queues, cdq

The create_daemon_queues command creates the I/0 daemon queues. It determines
which queues to create by examining the iod_tables segment.

Usage
create_daemon_queues {path} {-control_args}

" where:

- 1. ath

P is the pathname of an iod_tables segment created by the
iod_tables_compiler. The queues are created in the containing directory
of path, using the request types specified by the iod_tables segment.
This argument is optional.

2. control_arg
can be one of the following:

-directory path, -dr path
queues are created in the directory whose pathname is path. This
control argument is provided for testing purposes only; normally, it
should be omitted. When not specified, the queues are created in
the >daemon_dir_dir>io_daemon_dir dlrectory This argument may not
be given with a path speciflcatlon.

-reset_access
resets the ACLs on each queue to the default value, if the queue
already exists.

Notes:

The I/0O daemon tables segment, called iod_tables, is expected to be found
in the same directory in which the queues are to be created. For each request
type defined in iod_tables, one to four queues are created, depending on the
maximum number of queues for that request type (as defined in iod_tables). The
name of each queue is of the form XXX _N.ms where XXX is the associated request
type name and N is the priority number of the queue. The ms suffix indicates
that each queue is a message segment.

For further details, see the discussion of the I/0 daemon tables in Section 2.

7/81 A-2 cc3uc

—————————————

cv_prt_rqti cv_prt_rqti

Name: cv_prt_rqti

The cv_prt_rqti command converts an ASCII printer request type info source
segment into a printer request type info segment (rqti segment) for use by the
I/0 daemon. The newly converted rqti segment is placed in the current working
directory. The entryname of the new rqti segment is the same as the entryname
of its source segment without the rqti suffix.

Usage
cv_prt_rqti path {-control_arg}

where:

1. path
is the pathname of the request type info source segment. The source
segment must have a rqti suffix, although the suffix may be omitted
in the command invocation.

2. control_arg
can be one of the following:

~brief, -bf
prints error messages in the short format.

~long, -1g
prints error messages in the long format. This is the default.

Notes

For a description of the syntax of a request type info source segment and
an example segment refer to Section 2.

Examgle

The command line:
cv_prt_rqti printer_info.rqti

creates a request type info segment named printer_info in the working directory.

A-3 cc34

display_prt_rqti display_prt_rqti

Name: display_prt_rqti

The display prt_rqti command interprets the contents of an I/0 daemon
printer request type info segment (rqti segment) and displays all defined
values. The output format is such that when directed to a file, the file may be
used as input to the cv_prt_rqti command.

Usage

display_prt_rqti path

where path is the pathname of the printer request type info segment.

A-4 cC34

iod_command iod command

Name: iod command

The iod_command command permits execution of I/0 daemon commands from
within admin exec_coms invoked by the I/0 daemon x command.

Usage

iod_command io daemon command {args}

where:
1. io_daemon command
isTthe I/0 daemon command to be executed.
2. args
are any arguments needed to implement the specified command.
Note

The go command may not be issued using iod _command.

Example
iod_command defer_time pica_ 10 30

may be used within an I/0 daemon admin exec_com to set the auto defer time of
the pica_10 minor device of the current I/0 daemon driver to 30 minutes.

7/82 A-4 .1 CC34D

This page intentionally left blank.

7/82 CC34D

V)

iod_tables;compiler iod_tables_compiler

Name: iod_tables_compiler

The iod_tables compiler command is the translator for the I/0 daemon tables
source language (described in Section 2). Source segments to be translated by
iod_tables_compiler must have a name ending with the suffix iodt. The name of
an object segment produced by iod_tables_compiler is the same as that of the
corresponding source segment with The iodEt suffix removed. The object segment
is placed in the working directory.

Usage

iod_tables_compiler path

where path is the relative or absolute pathname of the source segment to be
translated.

A-5 CC34

iod val iod _val

Name: iod_val

The iod val active function supplies several preset driver parameters to be
used in driver admin exec_coms. Site administrators use the iod_val active
function in conjunction with the driver x command to set up and modify these
exec_coms.

Usage
[iod_val key]

where key is a character string parameter name associated with the value to be
returned. The key, defined during initialization of the given driver, may be
one of the following:

For all standard drivers:

device
the name of the major device that the driver is running.

station_id
The name of the station id that the driver is running (equivalent to
the major device). The default is the name of the major device if
the station is not a remote device.

request_type
The name of the request type that is being run on the driver.

channel
the name of the iom or tty channel of the driver.

<{minor device>

the name of the request type that is being processed on the minor
device.

rqt_string
a string of request type names, separated by spaces, of all
(printer, punch, etc) request types the driver can process. This
key is equivalent to the request_type key if +the driver is running
only one minor device.

12/79 A-6 CC34A

iod val iod_val

For remote drivers:

request_type
the request type for a single printer device, if present.

pun_rqt
the request type for a single punch device, if present.

Notes

If a key is given that has not been defined, the string "undefined!" is
returned.

12/79 A-6.1 CC34A

print_devices print_devices

Name: print_devices

The print_devices command prints a 1list of devices . for each request type
handled by the 1I/0 daemon. Also, the driver access name and driver
authorization (if any) for each request type are printed. An asterisk (%)

immediately preceding a device name indicates that the associated request type
is the default for the device.

Usage
print_devices {-control_args}

where control_args can be one or more of the following:

-brief, -bf
suppresses printing of a heading line.

-access name STR, -an STR
Tists only devices for those request types having a driver access
name of STR (STR should be of the form Person_id.Project_id).

-request_type STR, -rqt STR
1ists only devices for the request type specified by STR (e.g.,
printer, punch).

-dir path
specifies the absolute pathname of the directory containing the

iod_working_tables segment. If not given, the directory >ddd>idd is
assumed.

A-T cc34

print_iod_tables print_iod_tables

Name: print_iod_tables

The print_iod_tables command displays the contents of an object segment
produced by the iod_tables_compiler command. The format of the output
corresponds exactly to the source language accepted by the iod_tables_compiler
command. In fact, if the output of the print_iod_tables command is directed to
a segment, the resulting segment can be translated by the iod_tables_compiler
command.

Usage

print_iod_tables path

where path is the relative or absolute pathname of the object segment to be
displayed.

A-8 cc34

(\

print_line_ids print_line_ids

Name: print_line_ids

The print_line_ids command prints a list of logical 1line ids and their
associated communications channel from data in the iod_working_tables segment.

Usage

print_line_ids {-control_args}

where:

1. ~brief, -bf
suppresses printing of a heading line.

2. -dir path ‘

specifies the absolute pathname of the directory containing the
iod_working_tables segment. If not given, the directory >ddd>idd is
assumed.

A-9 cc34

print_spooling_tape print_spooling_tape

Name: print_spooling_tape

The print_spooling tape command directly attaches a printer and prints the
contents of a tape written by the spool driver.

Usage
print_spooling_tape prtdim device {-control_args}

where:

1. prtdim

is the literal string "prtdim", which is the name of the standard
Multics printer I1/0 module (DIM).

2. device
is the name of the IOM channel for the printer device to use.

3. control_args :
are chosen from the following:

-number N, -nbr N
begins printing at N where N is the file number of a file on tape.
If it is omitted, printing begins with the first file on the
spooling tape.

-debug, =-db
turns on audit trace during printing. The default is debug off.

Example

To print a spooling tape, starting with the third file on the tape, using
the standard Multics printer I/0 module (identified as "prtdim") and the printer
(identified as "prta"), the operator types:

print_spooling_tape prtdim prta -nbr 3

Then the operator is asked for volume identifiers and spooling limits, as shown
below:

Enter volids and optional file limits:
The operator types:

-volid SPOOL1 -files 50
giving the volid of the spooling tape to be printed (SPOOL1) and a limit of 50
files to print before printing is stopped. The I/0 module, tape ansi ,
determines whether to read the spooling volume at 800 or 1600 bpi density and,

from the tape labels, the I/0 module determines the tape block size and maximum
line-length to be printed.

A-10 CC34

print_spooling_tape print_spooling_tape

Next, the operator is requested to mount the first volid and a message 1is
typed on the terminal as follows:

Mounting volume SPOOL1 with no write ring.
Volume mounted on tape_XX.

As each file on the spooling tape is printed, a message appears on the
terminal giving the number of the file. This continues until the file limit has

been reached or until the entire tape has been processed. The spool driver
output looks like the following:

Printing FILE 3
Printing FILE 4

Printing FILE 50

Reached end of data for current fileset.
Taking current volume down.

Printer detached.'

Processing of spooling tape ended.
Spooling file count is 48

Spooling line count is 1254

At this point, printing has finished and the operator can logout the
process.

Description of the Spooling Tape

The spool driver creates either an 800 or 1600 bpi ANSI standard tape
(ASCII) with D-format (variable length) records of a specified printer line
length, that are blocked to 8192 characters, unless the interchange option is
specified, in which case, the block size is 2048 characters and the density is
800 bpi. Each print request constitutes one ANSI tape file, which is surrounded
by ANSI standard tape labels. The exact format of the ANSI tape can be found by
referring to Draft Proposed Revision X3L5/419T of the American National Standard
Institute's ANSI X3.27-1969, "Magnetic Tape Labels and File Structure for
Information Interchange." Each 1line (logical record) of the request (print
file) is preceded by a USA printer carriage control character that directs a
printer action before the 1line is printed. These control characters and the
corresponding Multics spool driver slew functions are listed below.

A-11 cc34

print_spooling_tape

Cher Stew Fumstien
blank NL

0 2(NL)

- 3(NL)

+ CR

1 FF

2 none

3 none

4 none

5 none

6 none

7 boftom inside page
8 bottom inside page
9 none

A none

B none

C none

Note: The printer action

print_spooling_tape

Printer Action

One line spaced
Two lines spaced
Three lines spaced
Suppress line space

Skip to channel 1

~(top: line 3, any page)

Skip to channel 2
Skip to channel
Skip to channel

3
Y
Skip to channel 5
Skip to channel 6

7

Skip to channel
(odd page)

Skip to channel 8
(even page)

Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12

occurs before a line occurs printed.

CC34

\

APPENDIX B

SUMMARY OF I/0 DAEMON COMMANDS

The following is a list of the commands used to control I/0 daemon driver
processes. Standard driver commands and device specific driver commands are
described; the latter are broken down by device types. 1In the list, the name of
each command is followed by its usage line and a brief description of the
function of the command. All of the commands described below may also be
issued without the embedded underscores, e.g., cleanpool or clean_pool.

For more information, consult the specific driver documentation in
Section 3 or use the help command.

STANDARD DRIVER COMMANDS

auto_start_delay
Usage: auto_start_delay {N}
sets wait time between quit signal and automatic start command

cancel
Usage: cancel
terminates the request the driver is currently processing

(nonrestartable)

ctl term
Usage: ctl_term arg
allows the operator to specify actions of a control terminal

defer
Usage: defer
sends current request back to its queue

defer_time
Usage: defer_time {minor_device} {N}
sets time limit for automatically deferring requests

go
Usage: go {N}
causes the driver to look for requests to process

halt
Usage: halt devl ... devn {-control_arg}
places the device(s) in the inactive state

help
Usage: help
prints the name of each command that may be executed by the driver

hold

Usage: hold
holds the driver at command level

B-1 CC34

inactive_limit
Usage: inactive limit {N}
sets time limit FTor inactivity logout

kill
Usage: kill :
terminates the request the driver is currently processing ‘s’
(restartable) '
logout
Usage: 1logout
causes the driver process to log out
master

Usage: master message
allows the slave terminal operator to communicate with the operator of
the master terminal

new_device
Usage: new_device .
allows the operator to terminate the current device

next
Usage: next -control_args
processes a specified request next
ready
Usage: ready devl ... devn {-control_arg}
places the device(s) in the active state
reinit :
Usage: reinit
reinitializes the driver
release
Usage: release .
returns the driver to normal command 1level from any other command
level ~’
restart
Usage: restart arg
restarts processing of the current request or specified requests
restart_q
Usage: restart_q {minor_device}
tells coordinator to reexamine any deferred requests
save
Usage: save arg
suspends current request or keeps specified requests in the saved list
beyond the normal holding time
slave

Usage: slave message
allows the master terminal operator to communicate with the operator
of the slave terminal

slave term
Usage: slave_term key
controls the actions of the slave terminal

start
Usage: start
allows the driver to continue operation at the point where it was
interrupted by the quit signal

" station

Usage: station station_id password -
identifies a remote station at login

B-2 cCc34

status
Usage:
prints

step
Usage:

puts the driver into, or takes it out of,

Usage:

status {-control arg}
information about the current status of the driver

step {arg}
step mode

x function {args}

executes site-defined functions from admin exec_com

DEVICE SPECIFIC DRIVER COMMANDS

Commands for Printers

banner_bars
Usage:
allows

banner_bars {minor_device} {arg}

the operator to Specify how the separator bars are to be

printed

banner type
Usage:
allows
banner

paper_info
Usage:
allows

banner_type {minor_device} {key}
the operator +to specify what will be printed
sheets

on head and tail

paper_info {minor device} {-control _args}

the operator to specify line length, page length, and lines per

inch to be used in printing

prt_control
Usage:
allows

sample hs
Usage:
allows

single
Usage:
allows

prt_control {minor_device} {args}
the operator to set the driver request processing modes

sample_hs {minor device}

the operator to print a sample head sheet to align the paper

single

the operator to single space on formfeed and vertical tab

Commands for Printers at Request Command Level Only

copy
Usage: copy N
sets the copy number of the next copy to be printed to N
print
Usage: print {N}
starts printing the next copy from the current page or page N

req_status
Usage:
prints

sample
Usage:
prints

req_status {-control arg}
status information about the current request

sample {N}
a sample of the current page or page N

CC34A

Commands for Local Punches

No special punch device commands are required; standard commands may be
used.

Commands for Remote Punches

pun_control
Usage: pun _control {minor_device} {<control _mode>}
sets the punch control modes (does not apply to the central site
punch driver).

sep_cards

Usage: {minor device} {arg}
controls punching of separator cards between each output deck

Command for Remote Punches at Request Command Level Only

copy
Usage: copy N
sets the copy number of the next copy to be printed to N

punch
Usage: punch
proceeds with the punching of the requested segment

req_status

Usage: req_status
prints status information about the current request

Commands for Card Input

clean_pool
Usage: clean_pool N
allows the operator +to delete all segments in the system card pool
that have been there more than a specified number of days

read_cards
Usage: read cards

allows the operator to input card decks from a remote station or local
device

Commands for Control Terminal Operation (Most Drivers)

sample form
Usage: sample_form
prints on the control terminal a sample of the data used to record
request processing

12/79 B-4 CC34A

Commands for Remote Device Control

pause time
Usage: pause _time N
sets pause time, in seconds, between requests in order to accept input

runout_spacing
Usage: runout_spacing N
sets paper advance after requesting a command from 2 ramote
maltifunction slave terminal

Commands for Spool Driver

Spool driver commands are a subset of those for the printers described
under "Commands for Printers" above. The spool driver commands are:

banner bars
paper_info
prt_control
sample hs
single

12/79 B-4.1 CC34A

79

This page intentionally left blank.

CC34A

APPENDIX C

I/0 DAEMON ADMIN EXEC COM FORMAT

An I/0 daemon admin exec com is written by a site administrator to provide
site-defined driver x command functions. The use of admin exec_coms is optional,
but when missing, the driver x command will not work. See Appendix E for the

application of the admin exec com to the creation of a driver-to-driver message
facility. -

Each I/0 daemon admin exec com is located in the >ddd>idd directory and
follows standard exec com rules. There are two types of admin exec coms: general
and device specific. These differ only in segment name, to allow the site to
separate x command functions by device name (station id for remote stations).
The iod admin.ec segment is the general exec com and will be used by any driver
that cannot find a device-specific exec com. A <device> admin.ec segment is a
device-specific exec com for the given major device; for "example, prta admin.ec
is specific to device prta. Added names can be used to group several devices
under a single device-specific exec_com.

The Multics command iod command may be used within an admin exec_com to
execute arbitrary I/0O daemon commands. For example:

iod_command defer_time 30

may be used in an admin exec com to change the auto defer time limit for the
current driver to 30 minutes. ~ The iod_command command is described in detail in
Appendix A.

When writing an I/0 daemon admin exec com, the administrator must remember
that the process that executes it will, most likely, have full SysDaemon access
and privileges to the system. Therefore, care must be given in choosing what
functions should be placed at the hands of a remote station operator or an
inexperienced device operator.

The remainder of this appendix is a sample section of an admin exec com.
It includes examples of how some iod val active function keys can be used to
protect against operator errors. This sample is for illustration only; see the
iod admin.ec segment supplied in the release for working purposes.

7/82 Cc-1 CC3UD

iod_admin.ec (to be found in >ddd>idd)
This is the exec com for the IO Daemon driver "x" command.

The standard action is to transfer control to a label
which will implement the function of &1.

Any arguments associated with an "x" command function begin
with &2 in this exec_com.

R° Qo R9 Qo Qo RO RO RO Re Re Ro

&command line off
&goto &1.command

&label help.command

&

& For "x help" print a list of x command functions.
&

&print cdr -user Pers.Proj <{seg ident>

&print car -user Pers.Proj <seg ident>

&print pq {1ldr args} -

&quit -

&label cdr.command

&

& For "x cdr -user Pers.Proj <seg ident>"

$ to cancel a dprint request for This driver
&

&if [not [exists argument &2]]

&then &goto missing arg.error

cdr -rqt [iod_val request type] &f2

&quit -

&label car.command

&

& For "x car -user Pers.Proj <seg ident>"

& to cancel an RJE job sent by this station

&

&if [not [exists argument &21]
&then go to missing arg.error

car -sender [iod val station] &f2
&quit -

&label pq.command
&

& For "x pq {1dr_args}"
& to list all requests that can be processed by this driver
&

&if [exists argument %21
&then ldr -a &f2

4else 1ldr -a -admin -rqt (liod val rqt string]) -tt
&quit - -

&label &1.command
&

& This is a catchall for any undefined command functions.
&

&print Undefined driver x command function.
&

ioa "received command: “("a "“)" &f1
r -
&quit

&label missing arg.error
N —

&print Expected argument missing. Try again or type "x help".
&

&quit

12/79 Cc-2

The first argument to the "x" command is &1 in this exec_com.

CC34A

APPENDIX D

GENERATING A DRIVER PROCESS IN TEST MODE

This appendix describes how to generate a driver process in a test
environment. A working knowledge of the system software (commands, bound object
segments, archives, etc.) is assumed. The information provided here is to be
used only as a guide and is not intended to cover all circumstances and
requirements.

The test environment allows a user to test out changes to software and data
bases (ttt, rqti segments, iod tables, etc.) normally used by the systenm
coordinator and drivers, both remote and on-site. The test environment includes
more detail in error messages, and special commands which control +the test
process. Full use of the Multics command language is provided, enabling the
user to set break points using either the probe or the debug command.

TEST DIRECTORY STRUCTURE

The test directory structure is similar to that of the >ddd>idd directory.
Throughout +this appendix, the directory's pathname is indicated by the term
TEST_DIR. The test directory can be located anywhere that the user has sma
access. Also, some system data bases can be shared with those of the system
daemons.

If any request type is configured to use a request type info segment
(rqti), the rqt_info segs directory must be created by the user in the test
directory. This directory must contain all rqti segments to be used in the test
session.

If card input 1is to be performed, the card pool directory must be created
by the user in the test directory. This directory has a different name than the
cards directory used by a standard driver and has a different relative location
in the drivers' directory structure. This directory must have sufficient quota
assigned to it to handle whatever card input is to be performed. Directories
and quota are managed in the same manner as for the >daemon_dir_dir>cards
directory.

The segments and directories created by the coordinator in the test
directory are identical to those normally created in the
>daemon_dir_dir>io_daemon_dir directory. Refer to Section 2 for more
information about this diTrectory.

User Generated Data Bases

In TEST DIR the user creates the segment iod_tables.iodt (described in
Section 2). This segment must be compiled by the iod_tables compiler command
(described in Appendix A) to create the iod_tables segment.

12/79 D-1 CC34A

If the driver is run from other than an IO0.SysDaemon process, the following
must be present in the iod_tables.iodt segment for each request type used:

driver_userid: Person_id.Project_id;
accounting: nothing;

where Person_id.Project_id identifies the testing process. The nothing command
(see the Multics System Programming Tools manual, Order No. AZ03) will be called
instead of the charge user subroutine so that actual charges will be ignored.
If testing an accounting routine, its name should be given.

The user is required to create message segment queues for the request types
that will be used in the test session. This can be done by using the
create daemon queues command (described in Appendix A) or manually by using the
message segment commands (described in the MAM System). When using the

create_daemon_queues command, the -dr path control argument must be given:

create_daemon_queues -dr TEST_DIR

If testing remote devices, the user's process must have the dialok attribute in
the PDT and correct access to the access control segment for the communications
channel or peripheral device; see the system administrator for assistance.

The user may optionally use a different terminal type table (TTT) than the
system TTT. Refer to the MPM Communications Input/Output manual, Order No.
€C92, for a description of how to set up a TTT and the associated commands.

If the x command is used, an iod admin exec_com or device admin exec_com
must be included in TEST_DIR (see Appendix!C).

Shared Data Bases

The test process can share some data bases with the standard system daemon
drivers.

The file "PNT" in the >system_control_1 directory is used by the test process
to check station identifiers, passwords, and card input users; alternatively, a
copy of PNT may be used by issuing the command:

validate_card_input_$test TEST_DIR
This data base is normally maintained by the system administrator.
The required access control segments for card input are also the same ones

used by the system drivers. The testing process must have the same access to
these segments as a regular driver process.

7/81 D-2 CC34cC

MANTPULATING REQUESTS IN THE TEST QUEUES

Since the test driver process will be using message segments in the test
directory, the dprint, dpunch, list daemon requests (1dr) and
cancel daemon requests (cdr) commands must be made aware of the test
environment. ~This is done by calling special entries in each command procedure
and indicating the test directory as follows:

dprint $test TEST DIR

ldr$te§t_ldr TEST:DIR
cdr$test _cdr TEST_DIR

12/79 D-2.1 CC34A

12/79

This page intentionally left blank.

CC34A

()

Once this is done, the normal system printer/punch queues are no longer known to
the test process. Issuing the new_proc command is one method of restoring access
to the normal system queues; the user could also issue the above commands with
the pathname >ddd>idd.

THE TEST PROCESS

A standard I/0 daemon process operates either as a coordinator or as a
driver, and a check is made so that only one coordinator is operating on the
system at one time. 1In test mode, a single test process may perform the functions
of both coordinator and driver; or, after one interactive test process has become
a coordinator, another interactive process may become a driver. The second
interactive process must use the same test directory as the first process. The
test processes acting as coordinator and driver, are unknown to the standard
system I/0 daemon processes.

Experimental software should exist in either bound or loose form in the
test directory. If one component of a bound object segment is loose, then all
components must be loose. The user may want to initiate each object segment
first.

The test process is started by calling the test entry of the iod_overseer_
subroutine: :

test_io_daemon -dr TEST_DIR

When running the coordinator and driver in a single test process, the dialog
from this point looks like the following, with user responses preceded by an
exclamation point (!):

Enter command: coordinator or driver
! coord

I/0 Coordinator Version: X.X

I/0 Coordinator initialized
! driver

I/0 Daemon Driver Version: X.X
Driver running in test mode.

Enter command or device/request type:

At this point the driver will accept a device name to run a printer, punch,
or Type II remote device, or a listen command to initialize a Type I remote
station.

Testing a Remote Station

Assuming this remote device can accept command input (a Type I remote device),
the dialog continues:

! listen g115_1
Attaching 1ine "g115_1" on channel (b.h002).

Responses will be different for Type II devices, but operation is essentially
the same.

7/81 D-3 cc3uc

The test process waits here until the line becomes dialed up, and does not
respond to input from the terminal; the only way to get the process's attention
is to 1issue a quit signal. This will cause the process to print out the
following message:

Enter command(early quit):

A limited set of commands is available at early quit command level, one of which
is a help command which 1ists the few commands acceptable at this command
level. The process continues waiting for the dialup event from the FNP when the
user issues the start command. ’

When the dialup event occurs, the following message is printed:

Requesting station identifier.on line "g115_1",

At the same time the message "Enter station command:" is sent to the remote
device. The station command must then be entered from the remote device.

After the station command has been given, the process may be run as a
normal driver process. However, because the test entry was used, several other
commands have been made available to the user. One of these is the debug
command. This simply calls the system debug command. From within the debug
command, the user may use all the the debug command requests, including ".." to
execute normal Multics commands.

Within the coordinator/driver test process there exist two pseudo processes
stacked above the original interactive process: the coordinator in the middle,
and the driver on top. The user's terminal communicates with the driver process
after typing in "driver" during initialization. If the user issues the logout
command, he logs out only the driver part of the test process; the terminal is
then communicating with the coordinator part of the test process. The user may
now start a new driver servicing the same or another device defined in the test
directory's iod tables. To terminate the test session, the user issues the
logout command again, and the coordinator part of the process logs out. The
user is now back to normal Multics interactive command level.

Setting Breakpoints

The user may wish to set breaks in the software to investigate a problem.
A copy of the desired segment must be created and initiated in the test
directory. If the segment normally exists in a bound object segment, all
components must exist and be initiated in the test directory. At the user's
option, the source can be copied into the test directory and recompiled with the
map and table options. This allows full use of either the probe or the debug
command to investigate the problem.

If the debug command is used to set breaks, the user should enter debug,
set the breaks, and then bring up the test driver from within debug. This way
the process will transfer directly to debug whenever a break point is reached.

If the probe command is used, the user may enter probe, set breaks, and
optionally bring up the test driver within probe. If the test driver is already
initialized, the debug command must be given in order to enter probe (via the
debug request "..probe") to manipulate breaks previously set up by probe, if the
process is not stopped at a probe break.

D-4 CC34

Some errors occurring before full driver initialization invoke debug
automatically, while in test mode. The state of the process can be examined at

this point. A ".q" debug request will perform the equivalent of a start
command.

Command Level Messages

The standard command level message for the daemon coordinator/driver is:
Enter command:
Other possible levels can be:
early quit
quit
request
iodd signal (test mode only)
and are indicated parenthetically in the command level message. For example:

Enter command(quit):

D-5 cc34

SAMPLE EXEC COM FILE

The following is a sample of an exec_com that has proven useful in setting
up and running a test environment. When creating your own exec_com, remember to
replace TEST_DIR with the absolute pathname of the test directory.

&command_line off
&goto &ec_name

&label setup environment

sa TEST_DIR>¥** sma [user name].[user project]

sa TEST_DIR>coord_dir>** rw [user namel.[user project]

sa TEST _DIR>coord lock rw

sa TEST_DIR>iodc_data rw

mssa TEST_DIR>([segs *.ms]) adros [user namel.[user project]
& Initiate software in test directory at this point.

& set_ttt_path TEST_DIR>TTF.ttt

&quit

&label start_iod

&attach

test io daemon -dr TEST DIR
coord — -
driver

&detach

&quit

&label use_test_queues

& Call the test entry of the daemon request commands.
dprint_$test TEST_DIR

ldr$test_ldr TEST_DIR

cdr$test_cdr TEST_DIR

&quit

&label use_system_queues
dprint_$test >ddd>idd
ldr$test_ldr >ddd>idd
cdr$test_cdr >ddd>idd
&quit

&label make_tables
& Compile the iod_tables and generate any missing message segments.
iodtc iod_tables

create_daemon queues -dr TEST DIR
&quit — - -

7/81 D-6 cc34c

~

TEST MODE COMMANDS

The following is a description of the test mode commands. They may be
entered from the master terminal only.

coord ' coord

Name: coord

The coord command to the driver allows the coordinator part of the test
process to come to command level. ’

Usage

coord

Notes

This command should be followed by the start command as soon as the user is
finished with coordinator command level.

The driver part of the process has not been released but suspended. The
slave terminal cannot be used for input output in this condition. To reactivate
the driver, use the start command.

The driver command to the coordinator is not accepted after the coord
command has been given from the driver because the driver part of the process
has not been released.

If a return or logout command is issued, the entire coordinator/driver test
environment is released and the process returns to the original process command
level.

D-T7 CC34

debug debug

Name: debug

The debug command calls the system debug command to allow the user to set
and reset break points, execute interactive Multics commands, etc. This command
is available from coordinator command level or driver command level.

Usage

debug

Notes

The driver will respond with "Calling debug" on the master terminal.

driver . driver

Name: driver

The driver command to the coordinator creates the driver part of the user's
test process on top of the coordinator part.

Usage

driver

Notes

The driver command is accepted by the coordinator part of the user's test
process only if the driver part has not been suspended previously by the coord
command.

D-8 cc3u

\

The pi command to the driver generates a program_intérrupt signal.

Usage

pi

Notes

This allows the user to discard any undesirable output (or occurrence) by
generating a quit signal, and to then return to the last stack frame with a
program_interrupt handler (i.e., debug or probe). Normally, this command is
used to return to the debug command when one of its functions was interrupted by
a quit signal.

resume resume

Name: resume

The resume command directs the driver to attempt recovery from iodd signal
command level or return to normal command level from request or quit command
level (aborting any current request), as if it were not in test mode.

Usage

resume

Notes

In test mode, the driver will not attempt recovery of error condit;ons.
Instead, after all the error messages are displayed, it will stop at iodd signal
command level.

D-9 CC34

return return

The return command to the driver does the same thing as the logout command,
except that no messages are displayed, and the coordinator is not notified that
the driver has logged out. '

Note

The return command to the coordinator is the logout command.

D-10 CC34

APPENDIX E

DRIVER TO DRIVER MESSAGE FACILITY

To send a message to another user, the first wuser must provide enough
information to uniquely identify the second user's mailbox. With the standard
send_message command this is accomplished by specifying the wuser id of the
person to whom a message is being sent. . Because most standard drivers at a
given site run Simultaneously as the pseudo-user I0.SysDaemon, the user id must
be replaced by identification specific to individual drivers in order to enable
driver to driver communication to take place.

The unique attribute of a standard driver is the major device it is using.
For a remote driver, the station id is unique. Therefore to establish driver to
driver communication, mailboxes of form {device>.mbx must be created for each
standard driver and <station>.mbx for each remote driver. The mailboxes are
located in the directory >daemon_dir_dir>io_msg_dir. The site administrator
sets up these mailboxes- by typing:

change_wdir >daemon dir dir

create_dir io_msg_dir -access_class system_low
set_acl io_msg_dir s *

change_wdir io msg dir

mbx_create (deviceT device2 stationl station2 ...)

mbx_set_acl * adrosw ¥.SysDaemon adrosw ®.Driver_Projects

The message facility can be extended to all pfocesses by adding the
extended ACL term aosw *.¥ % to each mailbox (this would enable a user process
to supply the device operator with a request_id and ask for that request to be
run next).

At this point drivers are able to send messages to specific devices by a
command line of the form:

send_message -pn >ddd>io_msg_dir><device> <{message>

The next step in enabling the message facility is to define commands that
allow drivers to communicate with each other. To do this the site administrator
edits either the default iod admin.ec (see Appendix C) or the device or station
specific exec_coms to produce the three new driver commands X am, x sm, and x

pm.

To allow drivers to accept messages the site administrator adds the
following to the admin exec_com:

&label am.command

&

& for: x am -no args-
&

" am -pn >ddd>io_msg_dir>[iod val station id] -print -call iod_driver_message

defer_messages -pn')ddd)io_ﬁsg_dir>[iod:val station_id]
&quit

E-1 CC34

This initializes the mailbox; the driver can then receive messages. The
iod_val active function returns the major device (or station_id for remote
device) "that was established during driver initialization. Messages are
deferred so that a remote site that relies on one printer for both listings and
messages will not get messages in the middle of printing a request; for remote
sites that do not direct messages to the printer (i.e., that use a separate
console for slave or control output), it 1is also possible to remove the
defer_messages command from the exec_com. The iod_driver_message program
ensures that messages get to a slave if there is one active.

To allow one driver to send messages to another driver, the site
administrator adds the following to the admin exec_com:

&label sm.command

&

& for: x sm <station> <message>

&

&if [not [exists argument &2]]

&then &goto missing_arg.error

&if [not [exists argument &3]]

&then &goto conversational_sm

sm -pn >ddd>io_msg_dir>&2 from driver [iod_val station_id]: &f3
&quit

&label conversational sm

&print Enter your stafion_id as the first message line.
&print Type "." to exit send message.

send_message -pn >ddd>io_msg_dir>&2

&quit

To allow a drivér to print any pending messages (assuming that they are
deferred as shown above), the following should be added to the admin exec_com:
&label pm.command
: for: x pm -no args needed-
gm Tgn >ddd>io_msg_dir>[iod_val station_id] -call iod_driver_message
qui

The setup for the driver to driver message facility is now complete. Each
remote station operator can check for pending messages between requests by
giving the x pm command. If messages have not been deferred by the x am
command, each message will appear as soon as received.

E-2 cc34

\

APPENDIX F

IO MODULES FOR REMOTE STATIONS

hasp workstation 1I/0 Module

The hasp_workstation_ I/0 module allows one or more I/O daemon processes to
control the devices attached to a remote HASP workstation.

Each device of the workstation should be configured as a separate Type II
I/0 daemon; the slave parameter of the args substatement for each driver must be
given as "slave= no"; the line substatement must specify the appropriate subchannel
of the HASP multiplexed channel on which the remote station will be connected.

In this release, all commands needed to control the I/0 daemons driving the
devices of a HASP workstation must be entered by the central system operator.
This restriction will be removed in a future release.

tty printer I/0 Module

The tty_printer_ module will allow the I/O daemon to run a polled VIP7760
hardcopy terminal as a printer for dprint requests. It is used with the I/O
Daemon running the remote_driver_module for type II Stations (refer to Section 2).
A typical iod_table definition for a polled VIP Station would look like:

Device: vip1;
driver_module: remote_driver ;
line: b.h006.p01; /¥ MUX channel for printer ¥/
args: "station= vip1,

desc= -terminal tty_ printer_ -comm tty_
-pll 118 -ttp VIP7714 -htab -vtab"; .
minor_device: prt;
minor_args: "dev= printer";
default_type: vip1_prt;

The hardcopy device of a polled VIP station is typically an OEM version of
a TN1200 with no keyboard. This means that the usable line length is 118 characters.
If this line is to be set correctly during driver initialization, the request
type definition in the iod tables should specify an "rqti_seg" which sets the
physical line length to 118 (otherwise, remote driver_ will use a default line
length of 132 for no rqti segment). The paper_info driver command (see Section
2) can be used to correct a bad line or page length setting.

7/81 F-1 cc3ic

If the hardcopy device uses a VFU tape or wheel for Form Feed (FF) and
Vertical Tab (VT) control, set the stops as follows:

VT and FF at Line 1
VT only at Lines 11, 21, 31, 41, 51, 61
(assumes 66 lines per physical page)

It is always assumed that the terminal will support FF control characters.

Adding the -vtab option to the attach description of the args keyword will
enable vertical tabs to be sent whenever it is more efficient than multiple New
Line characters. Some terminals do a top of form function for both FF and VT
control characters. Hence, the -vtab option should not be used for these terminals.

Adding the -htab option to the attach description of the args keyword causes
Horizontal Tab (HT) characters to be sent instead of multiple space characters
whenever possible.

Often, head and tail sheet banners and separator bars are not needed at a
polled VIP station (they take a long time to print.) These can be suppressed in
the rqti_segment or by the driver commands:

banner_type none
banner_bars none

The tty_printer_I/0 Module can also be used to make the login terminal of
a non-system driver act as a printer. This would be specified as follows:

Device: my_prt;
driver_module remote_driver_;
line: user_i7o;
args: "station= my prt,

desc= -terminal tty_printer_ -comm syn_
-inhibit close -pll 118 -htab -vtab";

minor_device: prt;
minor_args: "dev= printer";
default_type: private_rqt;

Request_type: private_rqt;
driver_userid Person_a.Project_b;
rqti_seg: private_rqt_info;
accounting: nothing; /% use the nothing command ¥/
device: my_ prt.prt; .

This will cause the printer output switch to be connected via syn_ to the user_i/o
switch. The -inhibit close attach option is used to prevent driver commands,
which result in device detachment, from detaching the user_i/o switch.

7/81 F-2 cc3ic

slave=

If the "stationz" key is used in an args substatement the driver
will accept any value (other than blank) and accept all minor
devices to be wused with all devices that dial in without any
authentication controls. This would be used for a terminal without
a reader (print/punch only) or with a dedicated phone 1line.

<{yes or no>

The Wslave=" key value of "yes" is used to tell the driver that it
should accept commands from the remote terminal as a slave terminal,
as well as from the central site terminal (master terminal). This
key is optional and is only used in the "args:" subheader of the
major device. The default is no.

terminal= <terminal type_module_name>

The "terminalz" key is used to specify which terminal module will be
used for the device. This key is required (unless the "termcommz"
key is used elsewhere in an args substatement) and is only used for
a major device. (For example, "ibm2780_" is a terminal module.)

<{pathname>

If the first character of the args substatement 1is ">", the
remote driver assumes that the entire args string is a full
pathname. The driver will look in that segment for the args string
it will use. This is a useful feature if the desired args string is
longer than 256 characters (the 1limit for all args strings in the
iod_tables segment). The format is a sequence of key-value pairs
separated by a comma. There may be multiple 1lines, but each line
must end in a comma (even the last one). The entire string may be
quoted as long as there is a comma before the last quote. One such
segment may be used for many devices; however, there can only be one
args string per segment.

F=3 CC34

()

APPENDIX G

THE HASP WORKSTATION SIMULATOR

Multics provides a facility for the simulation of a remote job entry (RJE)
workstation using the HASP communications protocol. Through this facility, Multics
users can request that job decks be transmitted to a remote system for execution
and the resulting output be returned to Multics for printing/punching or online
perusal.

A HASP workstation is composed of card readers, card punches, line printers,
and an operator's console. Each device to be simulated by Multics is configured
as a separate sub-channel of a physical communications channel defined in the
CMF as a HASP multiplexer channel. (See MAM Communications for details on configuring
a HASP multiplexer.) Up to eight card readers may be configured in a workstation;
a total of no more than eight line printers and card punches may be configured;
exactly one operator's console must be configured.

SIMULATOR STRUCTURE

The I/0 daemon driver module hasp_ws_sim driver_ simulates the operation of
a workstation's card readers, line printers, and card punches; the command
hasp host operators console simulates the console. A separate process is used
to simulate each device to permit all devices to operate asynchronously, thus
achieving maximum throughput over the communications line.

The simulated operator's console is used to establish the identity of the
workstation with the remote system. Subsequently, it may be used to control the
operation of the workstation, request status on jobs executing on the remote
system, and examine the queues of output files waiting for transmission to Multics.

Card decks are transmitted from Multics through the simulated card readers
to the remote system. These decks are normally Jjobs to be executed by the
remote system. On Multics, each card deck must be contained in a segment. A
Multics user requests that a deck be transmitted by issuing the dpunch command;
a separate request type is used for each remote system.

The remote system transmits output files to Multics through the simulated
line printers and card punches. By default, the simulator automatically issues
dprint or dpunch requests for these files as appropriate. However, a site may
choose to have these output files placed into the system pool storage for subsequent
retrieval by Multics users. To use this option, the driver process must be
instructed to to expect control records in each output file and the remote
system must include these Multics control records to indicate which Multics user
owns the file. Adding control records to an output file may involve modifications
to the remote computer's operating system, the JCL of each job submitted for
remote execution, the programs executed by the each job, or a combination of the
above. (See MPM Reference for a description of the format of these control
records.)

7/81 G-1 CC34c

DEFINITION OF A HASP WORKSTATION SIMULATOR

To define a workstation simulator, the local administrator(s) must:

L Define the configuration of the workstation being simulated: the number of
card readers, line printers, and card punches must be agreed upon with the
remote system's administrator(s).

- Determine if the remote system requires that a SIGNON control record be
transmitted to establish the identity of the workstation. (The SIGNON record
is a special record defined by the HASP protocol to enable the host system
to establish the identity of the workstation. Many operating systems do
not require this control record, but validate the workstation in other
ways.) If a SIGNON record is required, it's exact content must be determined
for use in the attach descriptions described below.

- Define the HASP multiplexer channel as described in MAM Communications.

- Define a major device for each simulated device except the operator's console
and a request type for the submission of card decks in the system iod_tables.

- Create an ACS segment for each sub-channel of the HASP multiplexer channel,
give the process which will attach that sub-channel rw access to the ACS
and the dialok attribute in the PDT. (See MAM Communications and MAM System.)
It is recommended that the process which attaches the simulated operator's
console not be registered on the SysDaemon project.

- Determine the printer channel stops used in output files returned from the
remote system and insure that the Multics request type(s) used to print
those files include the appropriate logical channel stops in their RQTI
segments. (See "Request Type Info Segments" in section 2 of this manual.)
For example, many systems use channel stop #1 to represent the top of a
page; the RQTI segments should specify "Line (1): 1;" to insure correctly
formatted output.

IOD TABLES

With the exception of the operator's console, each simulated device is
controlled by an I/O daemon using the hasp_ws_sim_driver_ module. A separate
major device with exactly one minor device must be defined in the iod_tables for
each simulated device.

The major device definition must include a line statement specifying the
sub-channel of the simulated device; the "line: variable;" construct is not allowed.
Additionally, an args statement must be included specifying a station ID and use
of the hasp_host_ terminal I/0 module (see MPM Communications).

The minor device specification must include a minor_args statement which
specifies the type of device being simulated. Additional keywords may be used
in this statement as described below.

See "I/0 Daemon Tables" in section 2 of this manual for a description of
the iod_tables source language.

7/81 G-2 cc34c

Sample iod tables Definition

card punch, and two line printers follows:

args

7/81

The iod tables entries to simulate a HASP workstation with a card reader,

Device:
line:
driver module:
args:

minor device:
minor args:
default type:

Device:
line:
driver module:
args:

minor device:
minor args:
default type:

Device:
line:
driver module:
args:

minor device:
minor args:
default type:

Device:
line:
driver module:
args:

minor device:
minor args:
default type:

Request type:
generic type:
max queues:
device:

Request type:
generic type:
max queues:
device:
device:
device;

Statement Keywords

cde_rdri1;
a.h014.rdr1;

hasp ws sim driver

/% Card reader */

"station= CDC, desc= -terminal hasp_host -comm hasp";

rdr1;

"dev= reader out";

cdc_jobs;

cde prti;
a.h014.prt1;

hasp ws sim driver

/¥ Line printer #1 %/

"station= CDC, desc= -terminal hasp_host -comm hasp";

prti;

"dev= printer_in, request_type= cdec_output”;

dummy ;

cde prt2;
a.h014.prt2;

hasp ws sim driver

/% Line printer #2 */

"station= CDC, desc= -terminal hasp_host_ -comm hasp";

prt2;

"dev= printer in, auto queue=z no";

dummy ;

cde puni;
a.h014.puni;

hasp ws sim driver

/¥ Card punch ¥/

"station= CDC, descz -terminal hasp_host -comm hasp";

puni;

"dev= punch in";

dummy ;

cde jobs;
punch;

1.
céc_rdr1.rdr1;

dummy ;

dummy ;

1.

céc prti.prti;
ede_prt2.prt2;
cdc_puni.puni;

station= <station id>

identifies returned output files when said files are printed/punched
This keyword is required; the same value should be
used for all devices of a workstation simulator.

automatically.

G-3

/* Request type for submitting card #*/
/% ... decks to remote CDC system #*/

/* Required by line printers and */
/*¥ ... card punches to avoid errors %/
/% ... from iod_tables _compiler ¥/

cc3uc

desc= <attach description>

specifies the attach description used to attach the terminal/device
I/0 module. This keyword is required. The attach description must
include the "-terminal hasp host " and "-comm hasp" options; the "-tty"
option is provided automatically by the driver process. If the remote
system requires a SIGNON record, the "-signon" option must be included
for all devices of the workstation. (See MPM Communications for a
description of the hasp_host I/0 module.)

minor args Statement Keywords

dev= <{device_ type>
specifies the type of device being simulated by this driver process.
This keyword is required. The acceptable values for device_type are:

reader out

simulates a card reader for sending card decks to the remote
system.

printer_in
simulates a line printer for receiving output files from the
remote system.

punch in
simulates a card punch for receiving card decks from the
remote system.

auto receive=z <switch value>
“specifies the mode of operation of this driver whenever communication
is established with the remote system. The possible choices are (1)
to automatically wait for output files from the remote system or (2)
to 1listen for I/0 daemon commands from the operator. The possible
values for switch_value are:

yes
automatically wait for output files from the remote system
whenever communication is established. . (This mode is
especially useful with hardwired connections.)

no

listen for I/0 daemon commands whenever communication is
established.

This keyword cannot be given if "dev= reader out" is specified.
This keyword is optional; the default value Is "no" (listen for
I/0 daemon commands).

7/82 G-4 CC34D

7/82

auto_queue: <{switch value>
specifies whether output files received by this driver are

(1) automatically printed or punched locally or (2) scanned for
Multics control records and made available for online perusal as
described above. The possible values for switch value are:

yes
automatically queue the files for printing/punching; do
not scan for control records, or

no
scan the output files for Multics control records and
store them in system pool storage for online perusal;
do not automatically queue files for printing/punching.

This keyword cannot be given if "dev= reader out" is specified.
This keyword is optional; the default value is "yes"
(automatically queue output files).

request type= <rqt name)
rqt= <rqt name> -

specifies the Multics request type to be used for automatically
printing or punching output files. The request type specified
must be of generic type "printer" if "dev= printer in" is given
or generic type "punch" if "dev= punch in" is given; this keyword
cannot be given if "dev= reader out" Is specified. This keyword
is optional; the default request type used is the default specified

for the appropriate generic type.

G-4.1 CC34D

This page intentionally left blank.

7/82 CC3uD

OPERATING A HASP WORKSTATION SIMULATOR

SIMULATOR INITIALIZATION

To start a HASP workstation simulator:

] If necessary, issue the initializer "load_mpx" command described in the MOH
to cause the HASP multiplexer channel to wait for a connection.

= Login the process which is to run the simulated operator's console of the
workstation and issue the hasp_host_operators console (hhoc) command,
described below, to wait for the connection to be completed. If the remote
system requires a SIGNON record as part of the connection procedure, include
the "-signon" option on the hhoc command line.

a Complete the physical connection to the remote system.

» When the process running the operator's console prints the message
"Input:"indicating that the physical connection is established, perform any
logon sequence required to identify the workstation to the remote system.
The exact sequence used, if any, should be determined from the remote system's
administrative staff.

[] Login each of the driver processes for the other simulated devices. The
sequence used to login a driver process is described in "Login and Initialization
of Device Drivers" in section 3 of this manual. :

L On the terminal of the process running the operator's console, issue any
commands to the remote system required to ready all the devices of the
workstation.

L For each driver process running a simulated card reader, issue the commands:

ready

pun_control autopunch

go
These commands will start the transmission of card decks to the remote
system. :

a Issue the "receive" command for each driver process running a simulated

line printer or card punch. This command will cause these drivers to wait
for output files to be sent by the remote system. As each output file is
received, it is processed according to the specifications given in the
minor_args statement of the driver as described above.

SPECIAL INSTRUCTIONS FOR RUNNING THE PRINTER AND PUNCH SIMULATORS

In addition to the commands described in this section, the only other I/O
daemon commands which may be used in the driver process of a simulated line
printer or card punch are: logout, hold, new_device, inactive_time, x, start,
help, status, reinit, release, and clean_pool. These commands are described in
section 3 of this manual.

After use of the "receive" command described below, the driver only recognizes
pending commands while it is between output files. If it is necessary to execute
a command while a file is being received, a QUIT must be issued to the driver to
bring the driver to QUIT command level. The "hold" command can then be used to
cause the driver to remain at QUIT level; the "release" command can be used to
abort receiving the file and return to normal command level; and the "start"
command can be used to resume receiving the file.

7/81 G-5 CC34c

receive receive

Name: receive

The receive command causes the driver towait for output files to be transmitted
from the remote system. A message is issued at the start and end of each file
received. If automatic queueing of output files is enabled for this simulated
device, output files will be locally printed or punched after they have been
successfully received; otherwise, the output files will be placed into system
pool storage as specified by the ++IDENT control records which must be present
in the files.

Usage

receive

7/81 G-6 - cc34c

auto_queue auto_queue

Name: auto_queue

The auto_queue command controls whether output files received by this driver
are (1) automatically printed or punched locally or (2) scanned for Multics
control records and placed in system pool storage for online perusal.

Usage
auto_queue <switch_value>

where:

switch_value
must be chosen from:

yes .
automatically queue the files for printing/punching; do not scan
for control records, or

no
scan the output files for Multics control records and store them
in system pool storage for online perusal; do not automatically
queue files for printing/punching.

7/81 G-T7 CcCc3uc

request_type request_type

Name: request_type, rqt

The request_type command is used to specify the request type to be used for
the automatic queuing of output files received by this device.

Usage

rqt <rqt_name>
where:

1. rqt_name
is the name of the request type to be used for automatic queuing. The
generic type of this request type must agree with the type of device
being simulated ("printer" for simulated line printers, etc). This
parameter is optional; the default value is the request type specified
in the iod_tables definition of this driver. '

7/81 G-8 cc34c

hasp_host_operators_console hasp_host_operators_console

Name: hasp_host_operators_console, hhoc

The hasp_host_operators_console command is used to simulate the operation
of the operator's console of a HASP workstation. The operator's console is used
to identify a workstation to a remote system, to issue commands governing the
operation of the workstation, and to receive status information from the remote
system.

Usage

hhoc tty channel {control_arguments} {attach_arguments}
where:

1. tty_channel
is the name of the terminal channel to be attached as the operator's
console. This channel must be configured as the console sub-channel
of a HASP multiplexer channel (eg: a.hO14.op). See MAM Communications
for a further description of the HASP multiplexer.

2. control_arguments
may be chosen from the following:

-signon STR
specifies that the remote host requires a SIGNON record to be transmitted
before data transmission may occur. STR is the text of the control
record; it may be up to 80 characters in length. Before transmission
it is translated to uppercase and the remote system's character is
set.

-no_signon

specifies that the remote host does not require a SIGNON record.
(Default)

3. attach_arguments
are options acceptable to the hasp_host_ I/0 module. This command
supplies the -comm, -tty, and -device options automatically; these

options need not be given on the command line. (See MPM Communications
for a description of the hasp_host_ I/0 module.)

Notes

If the remote system requires a SIGNON, the -signon option should be supplied
on the command line specifying the exact SIGNON record to be transmitted.

For example, the command line:
hhoc a.hO14.0pr -signon "/*SIGNON REMOTET"

may be used to attach the channel a.h0O14.opr as the operator's console of a
remote IBM system expecting a connection from the workstation named REMOTET.

7/81 G-9 CC34c

hasp_host_operators_console hasp_host_operators_console

After attaching the channel specified on the command line,
hasp_host_operators_console prompts the user for terminal input with the string
"Input:".

Input from the terminal is transmitted directly to the remote system unless
the line begins with the request character, an exclamation mark (!); lines beginning
with the request character are interpreted by this command. The valid requests
are described below.

Any text received from the remote system is displayed directly on the terminal
without any interpretation by hasp_host_operators_console.

HASP HOST OPERATORS CONSOLE REQUESTS

The following requests are recognized by hasp_host_operators_console when
given at the beginning of a line of terminal input:

!'.. <REST_OF_LINE>
the rest of the line is passed to the Multics command processor for
execution as ordinary commands.
prints a message of the form:

hasp_host_operators_console N.N; connected to channel NAME.

where N.N is the current version of this program and NAME identifies
the channel connected as a console to the remote system.

'quit

causes the command to hangup the operator's console channel and return
to Multiecs command level.

7/81 G-10 cc3uc

INDEX

A card input station management (cont)
access control
password U4-1

abort command 4-5 registration U4-1
RJE submission u-1
access class 2-10, 2-20 station password 4-1
++AIM cards u-y station registration U4-1
daemon dir dir directory 2-1 system station access control
-7 segment 4.2, D-2
admin exec com C-1, E-1 user access segment U4-2
sample T-2 command summary B-Yy
reading cards at the central site
administrative commands A-1 4oy
create daemon queues A-2, D-2 daemon communication U4-5
ev prtTrqti 7-21, A-3 abort command 4-5
display prt rqti A-4 clean pool command U4-5
iod command™ A-.4.1 help command 4-5
iod"tables compiler 2-3, 2-18, A-5 logout command 4-5
iod"val active function A-6, C-1, read cards command U4-5
T E-2 reinit command U4-5
print devices 3-5, A-7 start command 4-5
printTiod tables 2-19, A-8 error conditions U4-6
printTline ids A-9 login and initialization u4-5
print spooTing tape A-10 reading cards, remote site U4-6

reading user card decks 4-2.1
AIM 1.1, 2-10, 2-20, 3-1.1

access class 2-1 Card_input.Daemon 4-1, 4-y

features 3-1.1

source file example 2-12 clean pool command A4-5
autoﬁprint mode 3-17 clean_pool command 3-27
auto_queue G-7 control terminals 3-8

driver initialization 3-8
auto start delay command 3-25
- - coord command D-7

B copy command 3-27

create daemon queues command A-2, D-2
banner bars command 3-25 - -
- ctl term command 3-15, 3-28
banner type command 3-26 -
- cv_prt rqti command 2-21, A-3

C
D
cancel command 3-26
daemon
card input station management U4-1 see I/0 daemon

i-1 CC3uD

debug command D-4, D-8
defer command 3-29
defer_time command 3-29

device classes 3-7

driver initialization 3-4
logging in a driver 3-4
substatements 2-11
device drivers 13-4, E-1
device specific driver commands 3-13
summary B-3
display prt rqti command A-l
driver
command levels 3-0
early quit D=4, D-5
iodd signal D-5
normal 3-10
quit 3-10, D-5
request 3-10, D-5
command summary B-1
commands 3-23
abort 4-5
auto start delay 3-25
banner bars 3-25
banner type 3-26
cancel™ 3-26
clean_pool 3-27, 4-5
copy 3-27
ctl term 3-15, 3-28
defer 3-29
defer_time 3-29
go 3-30
halt 3-30
help 3‘317 4-5
hold 3-31
inactive 1limit 3-32
kill 3-32
logout 3-33, D-4
master 3-33
new device 3-6, 3-34
next 3-34
paper info 3-35
pause time 3-36
print™ 3-37
prt_control 3-37
punch 3-38
pun control 3-39
ready 3-40
read cards 4-3, Y4-5
reinit 3-41, 4-5
release 3-41
req status 3-42
restart 3-43
restart q 3-44
runout sSpacing 3-41
sample” 3-46
sample form 3-47
sample hs 3-47
save 3-48
sep cards 3-49
single 3-50

driver (cont)

i-2

driver command

early quit command level

go command

halt command

HASP workstation simulator

commands
slave 3-50
slave term
start™ 3-52,
station 2-15,
status 3-53
step 3-54
X 3-54, A-6, C-1
initialization 3-8
message facility E-1
printer driver 3-16
see printer driver
punch driver 3-18
see punch driver
remote driver 3-21
see remote driver
spool driver 1-1,
see spool driver
terminal control
test mode D=1
commands D-7
coord D=7
debug D-8
driver D-8
pi D-9
resume
return

3-51
425

-6, 3-52

’ D‘Zv

3-18
3-8

D-9
D-10

D-8

D-5

exec com

admin exec com

C-1, D-6, E-1
test mode " D-6 .

3-30

3-30
G-1, G-5
commands
auto queue G-7
hasp host operators console, hhoc
~G-9 — _
receive G-6
request type, rqt G-8
definition G-2
iod tables G-2, G-3
sample definition
operation G-5
simulator G-1
special instructions, printer and
punch simulators G-5

G-3

CC3uD

HASP workstation simulator (cont)

statement keywords G-3, G-4
hasp_host_operators console, hhoec G-9
help command 3-31, 4-5
hold command 3-31

I
I/0 coordinator 2-1, 2-12, 2-18, 2-1
commands 3-3
help 3-4
list 3-3
logout 3-3
print devices 3-3
restart status 3-1
term 3y
wait status 3-3

initiaTization 3-1

login 3-1

test mode D-3
I/0 daemon 1-1, 2-1, 3-1

admin exec com C-1

AIM maintenance 2-20

command summary B-1

directories 2-1

cards 2-3
daemon dir dir 2-1
io daemon dir 2-1, D-1
io msg dir 2-3
queues 72-19
request type info segment
see rqti segment
search rules 3-1
tables 2-1, 2-3, 2-12, 2-15, D-1,
G-3
creation and maintenance 2-18
simulated device G-2
source language 2-3
AIM features 2-10
major and minor devices 2-8

source file example

2-7

source file example, AIM 2-12
source file example, minor

devices
statements

2-9
2-4

substatement, default request

2-12
substatements for
substatements for
substatements for

2-9
substatements for

2-6

devices 2-5
lines 2-4
minor devices

request typés

substatements, device classes

2-11
syntax 2-3
standard Driver

command summary 3-10

modules 2-13

inactive limit command

3-32

i-3

I0 modules for remote stations

remote driver F-1
tty printer TF-1
I0.SysDaemon 2-8, 3-2

iodd signal command level D-5

iod admin.ec
see admin exec_com
iod_command command A-4.1

iod_tables segment
see I/0 daemon tables

iod tables compiler command
~ A5 —

2

iod_val active function A-6,

kill command 3-32

logout command 3-33, 4-5, D-U4

major device 2-8

master command 3-33

master terminal 3-8

message facility E-1

message segments 2-19
minor device 2-8, 3-5
source file example
substatements 2-9

2-9

multifunction device
card reader 3-14

3-5

new _device command 3-6, 3-34

next command 23-34

paper_info command 3-35

'31

c-1,

2-18,

E-2

CC34D

pause_time command 3-36
pi command D-0
preprinted accountability forms 3-14
print command 3-37
printer driver 2-14, 3-16

command summary B-3

request command level 3-10
print_devices command 3-5, A-7
print_iod tables command 2-19, A-8
print_line_ids command A-9
print_spooling_tape command A-10
probe command D-4
prt_control command 3-37
punch command 3-38
punch driver

2-14, 3-18

pun_control command 3-30

queues 2-19

quit command level 3-10, D-5

reader_driver 2-14
ready command 3-40
read_cards U-5
read_cérds command 4-3
receive G-6
reinit command 3-41, 4-5
release command 3-41
remote driver 2-15, 3-21, 4-2.1
arguments 2-17
command summary B-4.1
initializing 3-22
Type I stations 2-15, 2-17, D=3
Type II stations 2-17, 2-18, D-3
request command level

‘request type info (rqti) segment
see rqti segment

3-10, 3-17, D-5

request_type, rqt G-8

req_status command 3-42

restart command 3I-43

restart_q command 3-44

resume command D-©

return command D-10

rqti segment 2-7, 2-20, D-1
source segment example 2-24

source segment syntax 2-21

runout spacing command 3-44

sample command 3-46
sample form command 3-47
sample_hs command 3-47
save command 3-48
sep_cards command 3-49
single command 3-50
slave command 3-50 .
slave terminali 2-17
slave_term command 3-51
spool driver 1-1, 2-14.1, 3-18
command summary B-U4.1
commands - 2-21
messages 3-21
tape description A-11
standard driver
command summary 3-10
modules 2-13
start command 3-52, 4-5
station command 2-15, 2-6, 2-52
status command 3-53

step command 3-54

terminals 3-8
X

x command 3-54, A-6, C-1, D-2, E-1

)

[}

e ——————— e — — CUT ALON,

)

)

— - c———— -

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

nrie| SERIES 60 (LEVEL 68) ORDERNO. [CC34, REV.

1

MULTICS BULK INPUT/OUTPUT

DATED |MARCH 1979

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. Lf you require a written reply, check here and furnish complete maiting address below.

FROM: NAME DATE

TITLE
COMPANY

ADDRESS

PLEASE FOLD AND TAPE —
NOTE: U. S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:
HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

NE —— ——— ——

{

A———--——-——- CUT ALONG LI

(\ FOLD ALONG LINE

\

(FOLD ALONG LINE

—————)———————————————————————————————)-_—————————*-————————-CUTALONGLINE - 3——’————”

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

SERIES 60 (LEVEL 68)
MULTICS BULK INPUT/OUTPUT
ADDENDUM A

ERRORS IN PUBLICATION

ORDERNO. [CC34-01A

DATED |DECEMBER 1979

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Y

FROM:

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here.

NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE—
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

- CUT ALONG LIL —_—

FOLD ALONG LINE

QT

FOLD ALONG LINE

_____._(}__

3

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

—————)»——————-——-————————————————-———————)————————————————————-CUTALONGUNE-

SERIES 60 (LEVEL 68) ORDERNO. | ~~34-01B
TITLE| MULTICS BULK INPUT/OUTPUT
ADDENDUM B
DATED | FEBRUARY 1980
ERRORS IN PUBLICATION
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION
Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here.
FROM: NAME DATE
TITLE
COMPANY
ADDRESS

PLEASE FOLD AND TAPE—
NOTE: U. S. Postal Service will not deliver stapled forms

N

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

-m—————————————j—————————"- CUT ALONG LI

i

(

FOLD ALONG LINE

FOLD ALONG LINE

T)‘“"——""—————-———-—————————-——————)"—"'—-———*"‘“——*‘—*“———-CUTALONGLINE-

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

LEVEL 68
MULTICS BULK INPUT /OUTPUT
ADDENDUM C

ERRORS IN PUBLICATION

ORDER NO.

CC34-01C

DATED

JULY 1981

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

D

FROM:

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here.

NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

I

v

(

——————————————jp——————— — — . CUTALONG L
FOLD ALONG LINE

(

FOLD ALONG LINE

(

]))
———————a)—~————————————————————————————— ——————————————————-CUTALONG LINE ———- /————

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form
.

MULTICS BULK
TITLE { INPUT/OUTPUT
ADDENDUM D

ERRORS IN PUBLICATION

ORDERNO. | CC34-01D

DATED | JULY 1982

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

C

-___.____.___.__-—A——-—-——-—-—— + CUT ALONG LINE
FOLD ALONG LINE

(

FOLD ALONG LINE

(

SERIES 60 (LEVEL 68)
MULTICS BULK
INPUT/OUTPUT

ADDENDUM A

SUBJECT

Information Needed by System Administrators and Operators in the Manage-
ment of Bulk Input/Output

SPECIAL INSTRUCTIONS
This is the first addendum to CC34, Revision 1, dated December 1978.
Insert the attached pages into the manual according to the collating instruc-
tions on the back of this cover.
Throughout the manual, change bars in the margin indicate technical additions
and changes; asterisks denote deletions. These changes will be incorporated into
the next revision of this manual.
Three new commands for punches: punch, pun_control, and sep_cards have been

added to Section 3. Also, Appendix F from Revision 1 has been deleted and has
been replaced with an all new Appendix F, I0 Modules for Remote Stations.

SOFTWARE SUPPORTED
Multics Software Release 8.0
ORDER NUMBER
CC34-01A December 1979
26353
751279 Honeywell

Printed in U.S.A.

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

title page, preface
iii through vi

2-1, 2=2

2-15 through 2-24

3-1 through 3-50

4-1 through 4-4

A-5, A-6

B-3, B-4

c-1, C=2

D-l ’ D"'2

D"s ’ D-6
F-1 through F-3, blank

i-1 through i-4

(:) Honeywell Information Systems Inc., 1979

12/79

Insert

title page, preface

iii through vi

2-1, 2=-2

2-2.1, blank

2-15 through 2-18
2-18.1, blank
2-19 through 2-22
2-22.1, blank
2-23, 2-24

3-1 through 3-54

4-1, 4-2
4-2.1, blank
4-3, 4-4
A-5, A-6
A-6.1, blank
B-3, B-4
B-4.1, blank
c-1, C-2
p-1, D-2
D-2.1, blank
D-5, D-6
F-1, F-2

i-1 through i-3, blank

File No.:

1113
CC34A

~ ' _ SERIES 60 (LEVEL 68)
MULTICS BULK

INPUT/OUTPUT

ADDENDUM B

SUBJECT

Information Needed by System Administrators and Operators in the Manage-
ment of Bulk Input/Output

SPECIAL INSTRUCTIONS

This is the second addendum to CC34, Revision 1, dated December 1978.
Insert the attached pages into the manual according to the collating instruc-
tions on the back of this cover.

P Throughout the manual, change bars in the margin indicate technical additions
and changes; asterisks denote deletions. These changes will be incorporated into
the next revision of this manual.

Due to a printing error in the last update of this manual, a page was omitted in
Section 2; therefore we are reissuing pages 2-17 through 2-20 which will correct
this error.
Note:
Insert this cover behind the manual cover to indicate the updating of
this document with Addendum B.

SOFTWARE SUPPORTED
Multics Software Release 8.0

ORDER NUMBER
CC34-01B February 1980

— 26941 H oneywell
. Printed in U.S.A.

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove Insert
iii through vi iii through vi
2-17, 2-18 2-17, blank
2-18.1, blank 2-17.1, 2-18
2-19, 2-20 2-19, 2-20
() Honeywell Information Systems Inc., 1980 File No.: 1L13

2/80 CC34B

(Konahe

LEVEL 68

MULTICS BULK
INPUT/OUTPUT
ADDENDUM C

SUBJECT

Information Needed by System Administrators and Operators in the Manage-
ment of Bulk Input/Output

SPECIAL INSTRUCTIONS

This is the third addendum to CC34, Revision 1, dated December 1978.

Insert the attached pages into the manual according to the collating instruc-
tions on the back of this cover.

Throughout the manual, change bars in the margin indicate technical additions
and changes; asterisks denote deletions. These changes will be incorporated into
the next revision of this manual.

Note:
Insert this cover behind the manual cover to indicate the updating of
this document with Addendum C.

SOFTWARE SUPPORTED
Multics Software Release 9.0

ORDER NUMBER
CC34-01C July 1981

32238

Printed in U.S.A. Honeywell

To update the manual, remove old pages and insert new pages as follows:

Remove
title page, preface
iii through vi

2-5 through 2-8

2-13, 2-14

3"‘1 ’ 3-2

3-17, 3-18

3-35, 3-36

4-5, 4-6

A-1, A=2

D-1, D-2

D-3 through D-6
F-1, F=2

i-1 through i-3, blank

The infc ion and specificati in this d

subject to change without notice. This document contains
information about Honeywell products or services that may
not be available outside the United States. Consult your

Honeywell Marketing Representative.

COLLATING INSTRUCTIONS

© Honeywell Information Systems Inc., 1981

7/81

Insert

title page, preface
iii through vi

2-5, 2-6

2-6.1, blank

2-7, 2-8

2-13, 2-14
2-14.1, blank

-17, blank
3-17.1, 3-18

3-35, 3-36

k-5, L4-6

A-1, A-2

D-1, D=2

D-3 through D-6
F-1, F-2

G-1 through G=10

i-1 through i-4

File No.:

1L13

cc34c

N

Honeywell

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

23098, 5C379, Printed in U.S.A. CC34, Rev. 1

