HONEYWELL

LEVEL 68
INTRODUCTION
TO EMACS
TEXT EDITOR

SOFTWARE

LEVEL 68

INTRODUCTION TO
EMACS TEXT EDITOR

SUBJECT

Introduction to the Emacs Text Editor and Description of the Most Generally
Used Editing Requests of Emacs Fundamental Mode

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics system provided
by the 2-volume set, New Users’ Introduction to Multics. Some of the
preliminary information covered in that set is summarized briefly here,
however, so that users at any level of experience can comprehend the techniques
presented in this manual.

SOFTWARE SUPPORTED
Multics Software Release 8.2

ORDER NUMBER
CP31-00 March 1981

Honeywell

Preface

This book is an introduction to the Multics Emacs text editor, a real-time
editing and formatting system designed for use on video terminals. The Emacs
editor has many powerful features and requests not described here. Instead,
only the basic requests and those thought to be most helpful for the general user
are included. Users desiring a complete description of the Emacs editor should
refer to the Emacs Text Editor Users’ Guide,Order No. CH27. In addition, the
Emacs Extension Writers’ Guide,Order No. CJ52, is available for more advanced
users who want to write their own editor extensions.

For many users, however, this manual provides all the information needed.
Since the Emacs editor includes a self-documentation feature (described in
Section 9), users can easily teach themselves the remaining requests. Users are
expected to be familiar with the Multics concepts described in the 2-volume set,
New Users’ Introduction to Multics — Part I (Order No. CH24), and — Part II
(Order No. CH25), referred to in this book as New Users’ Intro.

The term “file” is used interchangeably with “segment” in this manual, since
many of the editing requests have the word “file” as part of their command-
names. Throughout the manual, the Emacs text editor is frequently referred to
as "Emacs”; the Multics Operating System is referred to as “Multics.” Technical
or other unfamiliar terms are printed as all uppercase when first introduced,
and are included in the Glossary (Appendix C).

Section 1 is an introduction to the Emacs editor, the video terminal, logging
in, and entering the editor environment. Section 2 expands on the description of
the editor and how it works.

Section 3 describes the basic requests for positioning the cursor while editing
and describes how to exit from Emacs and log out. Section 4 explains the
requests for deleting text and retrieving deleted text. Section 5 shows how to
manipulate files (segments) and buffers, and Section 6 describes several
requests for formatting text.

Section 7 includes requests for locating character strings and globally substi-
tuting one string for another. Section 8 describes some requests that enhance
typing convenience. Finally, Section 9 describes the Emacs self-documentation
features and how to use them to extend your knowledge of Emacs.

Three appendixes are included as reference aids. Appendix A alphabetically
lists the requests described in this manual. Appendix B functionally lists the
requests. Appendix C is a glossary of Emacs terms.

The information and specifications in this document are
subject to change without notice. This document contains
information about Honeywell products or services that may
not be available outside the United States. Consult your
Honeywell Marketing Representative.

© Honeywell Information Systems Inc., 1981 File No.: 1L12 CP31-00

O

[=

One other manual referred to in this book is the Multics Programmers’
Manual MPM) — Commands and Active Functions, Order No. AG92. It is
referred to as the MPM Commands.

Multics Emacs was modelled after the EMACS editor at the Massachusetts
Institute of Technology (MIT) Artificial Intelligence Lab. EMACS was written,
in TECO, by staff members of the MIT AI Lab and the MIT Laboratory for

Computer Science, without whose encouragement and support this project
would not have been possible.

iii

CONTENTS

Page

Section 1 Introduction
The Terminal . . .
The Screen . .
The Keyboard .
Control Key
Escape Key .
Linefeed Key
Delete Key . .
Carriage Return Key

The Modem
Technical Requirements
Logging In e
Invoking the emacs Command
The Initial Display . .
Summary of Terms . .

e o e o o o .
e o e ® o o o o

e e e o o .0 o o

!
- O

e & o ¢ 4 o e o o ° o o s o o

e o o . e o * e . . .

e o o [.

i Y JUPUSE QP SR SN W W S S G |
]

=20V Joo oo NTUITUID =

Section 2 Entry and Editing of Text . . .
Typing in Text

Editing Text « « . .

Self-Inserting Characters

Cursor Moving Requests .

Deleting Requests

Other Requests

Summary of Terms . . .

!
EWWMNH NN = =

e o e e e © o o
e o o o o o o o
e ® e o o o o o
. e o o e e o .

Section 3 Requests for Moving the Cursor
Moving the Cursor Up or Down a Line .
“P and "N . . . e s e e e
Moving Forward or Backward a Character
"B and “F . . ¢ ¢ ¢ 4 o ¢ o o
The Point « « ¢« ¢« ¢« ¢ « o o« .
Moving to the Beginning or End of a
Line. o o« ¢ ¢ o o o o o o &
“Aand "E
Words « & o ¢ o ¢ o o & .
Moving Forward or Backward
ESC B and ESC F . .
Moving to the Beginning or
Buffer.«
ESC < and ESC > . .
Moving Through a Buffer Screen by
SCreeN. « o« o o o« o s o o o o o o o

[\
=
(o]
-3
Q

[T] »
=}
Q. e
Q o
-

.
ct

e o e e o o o

¢}

[
.
.
.
.

[}
(0] o oo (G2 R0) RV N g

w ww wwwww LWwwwwww DRI R VSIS I)
1
ENDNOND = =

iv CP31-00

[™

CONTENTS (cont)

"V and ESCV o o o o
Moving through a Buffer by Locating
Character Strings. « « ¢« o ¢« o « o
Numeric Arguments . . ¢« o o o« o o o o
Requests Accepting Numeric
Arguments.
"Xz e e e e e e e e

Aborting a Request or Prompt

G

Exiting from the editor .
“XTC . e e e e e e
Logging Out
Summary of Terms . .
Summary of Requests

e o o o o o e o
(¢]

e o o o o s [pee o
°

e o o o o o O e o
o]

e o o e o o N e o
o

Section 4 Deletions « . . .
Deleting a Character .
and the Delete
"D e e e e e e
Deleting Lines . . .
e
K .o. .. .
Deleting a Word . .
ESC # and ESC D
ESCD
Deleting a Region .
-
Exchanging the Mar
XX
"Wo. oo .
Retrieving Text .
Y L. . ..
Popping the Mar .
Literal Character Entry
Q. e e e e e
Summary of Terms .
Summary of Requests

e o o o X' o o o (Me o o o

Key
lete
and

e o o o o e o o o cte e o RKe o o o o o o o
e o o o o o o o o (De e ¢ L e o o o o o o o

e o . ° o e e . T e]
o

® e o o e e o e & pie © o © o o o o o o o o
S

® o o o e e o e o (fTte o ©° o o © o o o o ¢ o

e o o o o o e ¢ o o o o

Section 5 Files . . ¢« ¢« ¢ « «
Writing a File Out

Access Restriction
Inserting a File . .

S

® o e o o o o o o
e e e © o o o e o
® o o © o o o e o
e o o o o o o * o
e e e o o o o e o
e e o o o o o o o

Page

[
OO [02]

[| L I N B
— d ad b d d D D
VMIEE—aaaa00

] LI I |
- 0 L L L VOVVONNNEE WS

Bl g - I — P N g g . I N O g g Wwwwwuwwww w w w
1

-10
-10
-11
-14
-14
-14
-15
-16
5-1
5-1
5-1
5-3
5-3
5-3
5-4
5-5
5-5

CP31-00

CONTENTS (cont)

X e o .
Editing Multiple Buffers . .
Switching Buffers
“XB . b e e e e e e e e .
Listlng Buffers
“X°B

a

Restoring the Screen after a Loc 1
Display. « « o« ¢ o o o o o o &
Executing a Multics Command from
within Emaecs. . . . o e . . .
“X Carriage Return and “"X°E .
Clearing and Redisplaying the Screen
"L e e e e e e e e e e e e e
Summary of Terms
Summary of Requests

Section 6 Spacing and Formatting
Fill Mode . .
ESC X flllon and ESC
Margins e o o e s o o s @
"Xe e e e e e e e
“XF« o .
Ad justed Right Margln .
ESC X
opt-paragraph-definition-type
ESCQ . ¢ ¢« ¢« ¢« ¢ ¢ o o o &
Inserting Blank Lines .
AO [] [] L] L] L] . L] L]
Indentation
ESCI
Summary of Terms .
Summary of Requests

. 3 3 .

filloff .

e o Do o

e o o o o
e o e o e o o o

e o o o o o
e o e o o o
e o o o e o o

Searches and Substitutions .
Searchlng for a Character Strlng . o e
“S and "R . . .
Substituting One Character Strlng for
Another . . e o o e
ESC X replace and ESC % e o e
Summary of Requests

Section 7

Section 8 Typing Shortcuts
Changing the Case of WOrds
ESC L, ESC U, ESC C
Underlining
ESC and “Z_ .
Transp051ng Characters

T L] . L] L] L] . .

e o o o e o o
® e o e o o o
e e o o o o o
e o o o o o o
® ®o e o o o o
e e o o o o o

vi

Page

{ I TR I I B | | I I I I | [}
\O WO o0 00O ~ ~Noovnovn

!
CCoCoOOONNITUIUVIE WWWMNHN = =

[|
- ed

11
w N

[I I |
EEWW = - =

OO OO Ooe N i e B | (o, Xe Neo Yo e Ne Ne Ne) [o,Ne Neo,No Ne Yo, Ne) (G R R, RV, RO R0, | 19 (R RO R RV, RN, |
[}

CP31-00

)

CONTENTS (cont)

Page

|
=

Summary of Requests

Section 9 Help ¢ ¢ ¢« v ¢ ¢ o o o o o o o o o &
Asking For a Request's Description

ESC ?

Listing the Emacs Requests
ESC X make-wall-chart o« o e s
Summary of Requests

L] . . L] L]
.
O WO OO \O OO (@]
[}
JTWWN = =

Appendix A Alphabetized List of Fundamental Mode
RequeStS O O A-
Extended Request e o o o o s o o« « o A

Appendix B List of Fundamental Mode Requests by
FUI’]Ction] 3] 3] .] . B-1

Appendix C G].Ossary C-1

Index e) 3 O 1-1
ILLUSTRATIONS

Figure 1-1. A Screen Terminal . . . ¢ ¢ ¢ « ¢« o« « « « 1=3

Figure 1-2. A Terminal Keyboard « . . 1=4

Figure 3-1. EditOY‘ Entl"y and EXit . 3 . . L] 3-1’4

_Figure 9-1. Sample Column of the Wall Chart 9-4

vii CP31-00

,I‘ N\

/'\

SECTION 1

INTRODUCTION

Multics Emacs is an integrated editing, text preparation, and
screen management system designed to take advantage of the features

of modern display terminals. Text entry and editing on these
video screen display terminals are done interactively. You can
see the effects of Emacs editing on the screen as you type.

This manual does not describe all of the editing requests and
features available on the Emacs text editor. Instead, a subset
of the requests has been selected; those requests most generally
used were chosen. Once you have learned them, you can easily
progress to the remaining requests and concentrate on those of
specific interest to you. All the requests are documented within
Emacs itself, and Section 9 tells you how to make use of this
"self-documentation" feature.

Many examples of how the requests work are included in each
section, but you may find it additionally helpful to try each one
out, perhaps as you reach the "Summary of Requests" at the end of
the sections describing them. In this way, you will quickly "get
a feel for" Emacs.

Throughout this manual, Emacs designates the text editing system,

and emacs (all lowercase) designates the Multics command invoked
to use the system.

1-1 CP31-00

——

THE TERMINAL

Emacs has been designed especially for use on a video terminal
(often called a CRT, for cathode ray tube). The three parts of
the terminal that you will be using as you edit are:
e the screen
® the keyboard /
[the modem communicating between the terminal and Multics
(unless the terminal is hardwired, i.e., connected directly
to the Multics system) .
Figure 1-1 shows a typical video terminal and Figure 1-2 shows
a typical keyboard and the special keys described below.
~/
’
~7/

1-2 CP31-00

/

ToRER TR £y Ppere

CONTRy

A Screen Terminal

1-3

|
|

CP31-00

| DELETE KEY | [CARRIAGE RETURN KEY

[conTROL KEY | |EscaPE KEY

| LINEFEED KEY

Figure 1-2. A Terminal Keyboard

1-4 CP31-00

N

The Screen

The screen of your terminal is like a television screen, and
displays the information needed to communicate with Multics and
Emacs. Messages from the system appear on the screen, and your
responses, typed on the keyboard, also appear.

The Keyboard

Your keyboard resembles the keyboard of a typewriter, with
its letters and special characters, but has additional keys. Several
of them are important for Emacs usage. They include the following:

e control key
e escape key
e linefeed key
L delete key

e carriage return key

CONTROL KEY

Terminals vary, but you should be able to locate a key labelled
with the letters CTL, CTRL, CONTROL, CNTRL, or something similar.
This is the control key. It operates like a shift key in that it
must be held down while you hit one or more additional characters.
Simply pressing it and releasing it has no effect. For example,
if you press the "p" key, you get a lowercase p. If you press
the "p" key while holding down the shift key, you get an uppercase
P. If you press the "p" key while holding down the control key,
you get something called a control P. This control P is a CONTROL
CHARACTER. All control characters are interpreted as requests to
Emacs. Control characters are used to control Emacs, to manipulate
the cursor and the text.

In this manual, the ° symbol represents the control Kkey;
alphabetic characters following the °~ symbol are represented as
uppercase, even though, for them, a control character is the same
whether the shift key is held down or not (and generally you do
not hold it down).

1-5 CP31-00

ESCAPE KEY

The escape key is commonly labelled with the letters ESC,
ESCAPE, ALT, or ALTMODE. On some terminals, you may have to hold
down the shift key to get an escape. Unlike the control key,
which is held down while another character is typed, the escape
key is typed sequentially, i.e., before or after another character.
You use the escape key for some Emacs requests. Always be sure
to release the ESC key quickly, to avoid getting two (or more)
escapes in a row. Some terminals may not have an escape key; use
“[instead.

In this manual, the letters ESC represent the escape key.

LINEFEED KEY

Your keyboard should have a linefeed key labelled with the
letters LINEFEED, LF, or NEW LINE. The linefeed key is sometimes
used in Emacs, and you should turn off auto-linefeed on your
terminal if it has it.

DELETE KEY

The delete key is generally labelled with the letters DEL or
RUBOUT. As its name suggests, its use is to rub out, or erase,
the previously typed character(s). Emacs self-documentation
descriptions represent the delete key as the character sequence
\17T7.

CARRIAGE RETURN KEY

On Multics, a carriage return returns you to the left margin
and inserts a newline character in your input. This key is often
labelled either RETURN or CR.

The Modem

Your terminal must be connected to the Multics system in some
manner for the emacs command, or any other Multics command, to
work. Unless the terminal is directly connected (hardwired), the
modem or an acoustic coupler provides an interface to the
communications link between your terminal and Multics. Many modems
are equipped with a telephone receiver and dial. For this type
of modem, you dial a specific number to begin the logging in
procedure and make the connection to Multics. However, a wide
variety of modems exist; if you do not know how to establish the
connection between your terminal and the Multics system, you should
ask a technically qualified person at your site to help you log
in.

1-6 CP31-00

Technical Requirements

Two technical requirements that your terminal must meet are
that it be an ASCII terminal, and that it be capable of running
in full duplex mode, with no local display of Kkeyboard input
(i.e., controllable local echo). Your terminal and/or your modem
may have a switch that can be positioned to half or full duplex
mode; you should set these switches to full duplex. If your
terminal does not have controllable local echo, you should log in
in full duplex and echoplex modes (use the echo preaccess comand
before issuing the 1login command). Generally, your site will

have arranged for appropriate terminal modes to be set automatically

when you log in. If you find characters are printed out twice,
setting the modes and/or switches should correct the problem.
Again, if you have a question about either of these requirements,
ask your site's support staff for help.

If your terminal has an auto-linefeed key or switch, be sure
it is off, and use 1fecho mode to achieve its effect. Failure to
do this results in certain displays vanishing from the screen
prematurely.

LOGGING IN

The first thing you want to do is establish a connection with
the computer. This is called logging in. To log in, you must be
registered on the system, as a member of a certain project. You
are given a unique USER_ID (user identification) that consists of
a PERSON_ID (name) and PROJECT_ID (project name). For example,
Mary Smith, working in the sales department, may be given the
following User_id:

Smith.Sales

This User_id belongs to Mary alone; no one else can use it. Mary
also has a password, which along with her User_id allows her to
use the system.

The procedure for logging in is explained in depth in the New
Users' Intro--Part I. Briefly, however, to log in you turn power
on for the terminal, dial the appropriate telephone number, and
when you hear a beep signal, either press a button or place the
telephone receiver in the modem and wait. (This method is employed
unless your terminal is directly connected to Multics, in which
case you do not need to dial a phone number.) When a connection
has been established, a header of the following type is displayed
by Multics on the terminal:

1-7 CP31-00

Multics MR8.0: Honeywell LISD Phoenix, System M
Load = 7 out of 95.0 units: users = 7, 02/29/80 1404.3 ...

At this point, type the 1login command and your Person id,
separated by a blank, and then a carriage return (some sites
additionally require you to type your Project_id, separated by a
space from the Person_id). For example:

login Smith
Password:

or:

login Smith Sales
Password:

Multics then requests your password (the second line, above).
The display of your password, which you type in after the
system-generated Password: line, is suppressed by the system. If
you make an error while logging in, the system informs you of it
and asks you to try again; you must start again with login:

Login incorrect.

Please try again or type "help" for instructions.
login Smith

Password:

After you have successfully typed your password, the system
responds with information regarding your last login.

Smith Sales logged in 06/07/80 0937.5 mst Tue from ...
Last login 06/06/80 1359.8 mst Mon from terminal...

1-8 CP31-00

Wt

N

The last line of system-generated text in the log-in sequence
is the ready message. This message is printed to indicate that
Multies is at command level and ready to receive the next command.
The ready message consists of the letter r followed by the time
of day and two numbers that reflect system resource usage. For
more information about the ready message, refer to the ready command
in the MPM Commands:

r 12:22 3.229 1799

The complete log-in sequence for Mary Smith is:

login Smith
Password:

Smith Sales logged in 06/07/80 0937.5 mst Tue from ...
Last login 06/06/80 1359.8 mst Mon from terminal...
r 12:22 3.229 1799

INVOKING THE emacs COMMAND

You have logged in and received the ready message indicating
that you are at command level. To enter Emacs, type the emacs
command on your keyboard, followed by a carriage return (Multics
command lines are always terminated by a carriage return):

emacs

Depending upon the facilities available at your site, Emacs may
or may not ask you:

What type terminal do you have?

It asks this once per session, if it asks at all, and you respond
by typing in the name of the type of terminal that you are using.
If you type an unacceptable name, Emacs displays the names of all
terminals it supports. Among these names, you should be able to
find the acceptable form of the name of your terminal. Type it
in, followed by a carriage return.

1-9 CP31-00

If you cannot find your terminal listed, type:

quit

followed by a carriage return, to return to command level so that
you can log out. You can try again on a different terminal type,
or seek assistance.

The Initial Display

Once Emacs has recognized your terminal type, either
automatically or by querying you as described above, it takes
several seconds to get started. When it has started up, it clears
the screen, and displays the line:

Emacs (Fundamental) - main

at the lower left of the screen. This line is called the MODE
LINE. It tells you several things, the most important of which
is that you are talking to Multics Emacs, rather than to the
command processor or to another editor. The name of the MAJOR
MODE you are in 1is parenthesized, and here it is Fundamental
major mode. Emacs has several modes best suited for different
tasks, such as preparing text or programs in the various programming
languages. Major modes each have a distinct set of KEY BINDINGS
(typed key sequences that specify particular request instructions
to Emacs). MINOR MODES provide "fine tuning" to modify the way
Emacs works, but do not have a special set of key bindings. The
names of minor modes, if you are using any, appear right after
the major mode name in the mode line, enclosed in angle brackets
(<>). Fundamental mode is the simplest major mode, and the only
one described in this manual.

You can edit several things at once with Emacs. Each separate
thing being edited is edited in a separate work space called a
BUFFER. You actually edit in only one buffer at a time, but you
can move from buffer to buffer to work on the contents of each in
turn. The buffers are named so that you can differentiate between
them. The BUFFER NAME of the buffer you start out in is "main".
This name is the last item displayed in the mode line above.

1-10 CP31-00

1]

VR

~

The area between the top of the screen and the mode line 1is
where text appears, and where you deal with the text. This area
of the screen is called the WINDOW. The window always displays
about twenty consecutive lines (or however many fit on your particular
terminal) of the document you are editing. Of course, if your
document is shorter than that, part of the window is empty. The
MINIBUFFER is the two-line area below the mode line at the bottom
of your screen. Emacs uses this space for messages and questions,
without interfering with the text displayed in the window.
Initially, the minibuffer is empty.

At this point, the only sign of 1life in your window is a
blinking object in the upper left corner. This is the CURSOR.
It may be a blinking underline, or a blinking or solid box, depending
on your terminal. The cursor is the most important object in
Emacs. It is always on some position on the screen, and all
"action" occurs at the cursor. All the text you enter is entered
at the cursor (and the cursor moves), and any text you delete is
deleted at the cursor.

SUMMARY OF TERMS

When the emacs command is invoked, the first screen displayed
is pretty simple, since it is practically empty. You should,
however, be familiar with the following terms, and be able to
relate them to what appears on the screen.

] control character
® mode line

® major mode

e key bindings

e minor mode

) buffer

e buffer name
window
minibuffer

L J cursor

1-11 CP31-0¢(

/ N\

SECTION 2

ENTRY AND EDITING OF TEXT

TYPING IN TEXT

Entering text in Emacs is a simple process. After invoking
the Emacs command, you begin with an empty buffer named "main".
This buffer is your work space; you enter text simply by typing.
Whatever you type appears on the screen as you type it, beginning
at the top left of your screen at the cursor. As each character
is entered, the cursor moves to the right, marking where subsequent
characters will appear. When you type the carriage return key
for a Multics newline, the cursor moves down a line and to the
left edge of the screen, ready for a new line of typing. That is
all there is to text entry; characters enter at the cursor as you
type. The contents of your buffer are exactly as they appear on
your screen.

After the first character is typed into your buffer, an asterisk
(*) appears at the bottom of the screen, below the mode 1line.
This indicates that the buffer has been MODIFIED, or changed in
some way. When you are just starting out with an empty buffer,
this modification, of course, is the change from a buffer with no
characters in it, to one with characters in it. The asterisk
remains until a copy of the contents of the buffer, which is only
a temporary work space, is written out to a file, a segment in
the Multics storage hierarchy. The asterisk reappears whenever
new modifications occur that have not been written out. Basically,
the asterisk lets you know that changes have been made in the
buffer and they will not be saved in a permanent file until you
write them out. This is discussed more in Section 5.

2-1 CP31-00

EDITING TEXT

Editing is done in Emacs via editing REQUESTS. Each request
is a set of programmed instructions interpreted by the editor.
You issue, or INVOKE, a request by typing certain keys or Kkey
sequences. Each request (key or key sequence) is associated with
(i.e., bound to) a COMMAND-NAME, which tells Emacs what set of
instructions to follow when that request is typed. Command-names
for the requests are hyphenated, abbreviated (sometimes) names
intended to suggest the actions of the requests to you, as well
as specifying the appropriate instructions to Emacs.

You need an editor to type in new text or programs, correct
errors in new or existing text or programs, and make additions,
deletions, or changes to text or programs. The cursor's position
determines where all of this activity takes place. The particular
requests you issue determine what the activity is.

Self-Inserting Characters

When you type in new text, you are actually issuing Emacs
requests. Printing characters (other than #, @, and \, whose
special meanings are explained later) are called SELF-INSERTING,
because when you type one, it inserts itself into the text in
your buffer. So typing the letter "d", for example, tells Emacs:

What: to insert a "d"
Where: at the cursor

Using this type of request is easy.

Cursor Moving Requests

To make changes in text, you must be able to control the
position of the cursor, since that is where action occurs. Many
of the Emacs requests, therefore, serve to move the cursor from
place to place. For example, when you discover a typing error in
the line above your current position in the text, you must move
the cursor to that spot before using any requests to correct the
error. This manual describes requests that move the cursor:

e forward or backward a character
e forward or backward a word
Y to the beginning or end of a line

] to the next or previous line

2-2 CP31-00

S

e to the beginning or end of a buffer
® to the next or previous screen

Positioning the cursor is half the editing battle.

Deleting Requests

Once the cursor is positioned at the point where you want to
make a change, you need requests that actually make the correction.
If you are simply adding something, you just type in the addition.
Often, however, you first have to get rid of incorrect text.
Emacs provides many requests for making deletions. In addition,
a facility called the KILL RING saves deleted text so that you
can change your mind and retrieve something deleted (killed) in
error. The kill ring is useful for moving portions of text, too;
you can delete something from point A and reinsert is at point B.

This manual describes requests that delete:

® characters

[) words

e lines
In addition, you can delete (and retrieve) a REGION. A region is
any extent of text between the cursor and an arbitrary point

chosen by you. This arbitrary point is called the MARK; you SET
THE MARK by issuing yet another type of Emacs request.

Other Requests

Emacs has many additional requests that perform other tasks
besides moving the cursor and inserting or deleting characters.
They help you edit efficiently, format your work, read and write
your files from/to the storage system, and of course, return to
Multics command level from the Emacs editor. Some requests are
provided just to tell you what other requests are available, and
how they work. This manual does not cover all of the Emacs requests;
however, once you are comfortable with those presented here, you
can use these "help" requests to experiment with and learn as
many of the remaining requests as you choose. Depending on the
nature of your work, some will prove to be invaluable and frequently
used editing tools for you, while others may be used only
occasionally.

2-3 CP31-00

SUMMARY OF TERMS

A few new terms have been introduced that you should remember,
since they will be mentioned frequently.

modified buffer
request
command-name
kill ring
region

mark

CP31-00

N

SECTION 3

REQUESTS FOR MOVING THE CURSOR
When you log in and invoke the emacs command, you can see the

simplest cursor moving requests in action if you type in some
sample text. Suppose you type the following:

Congratulations You've just joined

the team of people gushing to learn Emacs
This is sample text created with

the emacs text editor._

Though you can, no doubt, supply your own mistakes, a few
have already been provided in this example.

Before this text was typed in, the cursor appeared in the
upper left corner of the screen. Carriage returns were used to
start each new line. As each letter or space (self-inserting
characters) was typed, the cursor moved one position to the right
as the new letter or space appeared on the screen. The underscore
above indicates the cursor's position after the typist enters the
final period.

MOVING THE CURSOR UP OR DOWN A LINE

To change team to stream in the second line, you must first
move up to that 1line from the 1last 1line. (In the examples
demonstrating the requests for cursor movement, the cursor's position
is represented by an underscore (_). In the examples where an
underscore is an integral part of the sample text, an underscore
representing the cursor appears a line lower than the text.)

3-1 CP31-00

“P AND °N

The request for moving up to the previous line is named
prev-line-command. You invoke it by first pressing the control
key, and holding it down while typing a p, and then releasing
both keys. This key sequence (request) is called control p, and
is represented as “P. After typing one "P, the screen looks like
this:

Congratulations You've just joined

the team of people gushing to learn Emacs
This is sample text created with

the emacs text editor.

After another “P, the cursor appears in the second 1line:

the team of people gushing to learn Emacs

Note that the cursor stays in the same column as it moves up
for each "P. With this request, the cursor always attempts to
stay in the same vertical position. However, if the cursor is
moving to a short line and is already beyond the last character
of the shorter 1line, it moves to the position right after the
last character on the shorter line, rather than to that directly
above its previous place.

When at the first line of your buffer, a “P simply rings a
bell (or beeps) on your terminal, since no previous line exists.

To move down a 1ine, use the "N request, named next-line-command.
This works the same as “P, except it moves the cursor down a line
at a time, and beeps the terminal if issued on the last line of
your buffer. Again, you issue this request by holding the control
key down while you type an n.

MOVING FORWARD OR BACKWARD A CHARACTER

While “P and °“N move the cursor up or down to the line to be
corrected, you still must get to the proper place within the line
for the correction. One way to move within the line is by moving
forward or backward a character at a time.

3=2 CP31-00

~

-

"B AND “°F

The request for moving backward (to the left) a character is
“B, backward-char. The following results when you type a “B in
the example above:

the team of people gushing to learn Emacs

The cursor moves from the h to the s. Typing three more "Bs puts
the cursor under the space:

the team of people_gushing to learn Emacs

Spaces between words are treated like any other character; tabs
and the newline characters at the ends of lines, however, count
as only one character. Thus, if the cursor were here:

Congratulations You've just joined
the team of people gushing to learn Emacs

it would appear here after the next "B:

Congratulations You've just joined_
the team of people gushing to learn Emacs

If the cursor is at the beginning of the buffer (under the C), a
“B beeps the terminal.

The “F request, forward-char, moves the cursor forward (to

the right) one character. Again, tabs and newlines count as one
character, and “F beeps the terminal if at the end of the buffer.

3-3 CP31-00

THE POINT

As mentioned earlier, all action occurs at the cursor, so you
move it to the t in team by means of the “P, °N, "B, and °F
requests. To change this to stream, you want to add an s before
and an r after the letter at the cursor. In Emacs, when the
cursor 1is properly positioned, you add letters just by typing
them in. For which letter is the cursor properly positioned?
The cursor's width can confuse you. The cursor's left edge is
actually what you want to be aware of. It can be described as
being between two characters, the character at the cursor and the
character preceding that one (the t of team and the space separating
team from the). This left-edge position between characters is
called the POINT. Whenev2r the cursor's position seems ambiguous
to you in relation to an editing maneuver, the point's position
should resolve the ambiguity.

In the example given, you would type an s, since the character
enters at the point:

the steam of people gushing to learn Emacs

The s is inserted, and the cursor remains under the t as the rest
of the line shifts one to the right. Now, typing a “F and then
an r converts steam to stream as desired.

The line with the cursor in it is called the CURRENT 1line.
You can get to either end of it by means of the next two requests.

“A AND “E

The “A request, go-to-beginning-of-line, moves the cursor to
the beginning of the current line, i.e., moves the point to just
before the first character. The “E request, go-to-end-of-line,
moves the cursor to the end of the current line (i.e., after the
last character and before the newline). On an empty or blank
line, this is the same as the beginning of that line. 1In the
"stream" line, above, suppose you want to add a period at the
end. Simply type a “E:

the stream of people gushing to learn Emacs_

3-4 CP31-00

Yl

Then you would simply type in the period:

the stream of people gushing to learn Emacs._

Typing a "“A while the cursor is anywhere in this line would put
it under the t of the.

WORDS

A word in Emacs is an unbroken string of upper and lowercase
alphabetics (a-z and A-Z), numbers, underscores, and backspaces.
Lower and uppercase letters can be mixed in any way. For example,
"new_payroll", "zeBrA", and "begin" are each one word; "delete-char"
and "segname$entry" are each two words.

MOVING FORWARD OR BACKWARD A WORD

The next two requests are examples of Emacs requests in which
the escape key is part of the key sequence. The letters ESC here
represent the escape key; when followed by a space and a character
(e.g., ESC F), you press and release the escape key and then type
the character, but not the space. Alphabetic characters are given
in capitals, but you can type either an upper or lowercase letter
(as for °N, “P, "B, etc.). Thus, for ESC F, you would type the
escape key, release it and type an f or F.

ESC B AND ESC F

The ESC B request, backward-word, moves the point backward
one word. '

e If the cursor is currently on some character of a word
other than the first character, it moves to the first
character of that word (so the point is to the left of
the first character).

) If the cursor is on a character between two words (even
if they are separated by many blank lines, punctuation,
etc.), or on the first character of a word (so that the
point is between the two words), it moves to the first
character of the preceding word.

3-5 CP31-00

Thus:

new_payroll, segname_$entry

after one ECS B becomes:

new_payroll, segname$entry

A word, remember, is an unbroken string of alphabetics, numbers,
underscores, and backspaces, so the dollar sign is the first break
backward, and the point is left before the word entry.

A second ESC B leaves you here:

new_payroll, segname$entry

and a third, here:

new_payroll, segname$entry

Note that the intervening white space and punctuation are skipped
over, and that the underscore in new_payroll is part of that
word.

The ESC F request, forward-word, moves the point forward over:
one word, as you might expect.

o If the cursor is currently on a character that is part of
some word, it moves to the first character after that
word.

e If the cursor is currently on a character between two
words, it moves tothe first character after the second of
those two words.

3-6 CP31-00

an

/ N
s

With the cursor as it is in the last example above,

has this effect:

an ESC F

new_payrolll segname$entry
Another ESC F:

new_payroll, segnamefentry
One more:

new_payroll, segname$entry

3-T

CP31-00

MOVING TO THE BEGINNING OR END OF THE BUFFER

When editing, you often need to get to the beginning or end
of the text in your buffer. Rather than moving through it line
by line, you can issue either of the following requests.

ESC < AND ESC >

The ESC < request, go-to-beginning-of-buffer, puts the point
before the first character in the buffer at the top of the document
being edited.

The ESC > request, go-to-end-of-buffer, moves the point to

the end of the buffer, before the newline on the last line of the
document.

MOVING THROUGH A BUFFER SCREEN BY SCREEN

Since your screen window only displays about twenty lines of
text, you need a quick way to view previous or succeeding screens
in longer documents. When the cursor is moved about in a buffer
containing more than one window of text, Emacs ensures that the
current line stays in view. For example, when the cursor is on
the last line showing in the window, a "N causes the screen to
clear and be refilled with that next line occupying the middle of
the screen, and the surrounding text displayed appropriately. So,
if you are viewing lines 51-71, say, and the cursor is on line
71, a "N moves the cursor to line 72 and displays lines 62-82.
The current line (72) shows up in the middle of the window. Emacs
always displays the current line appropriately without you worrying
about it. However, if you must read through a long document, or
locate a section to be edited, a convenient way to view succeeding
screens is required.

"V AND ESC V

To view the next screen, issue the "V request, next-screen.
The window fills with new text and the cursor moves to the upper
left corner, a new position in the buffer. If you type a “P
after a "V, Emacs chooses a different portion of the buffer to
display, centering the line of interest. The cursor always starts
out in the upper left corner after a "V, however. In addition,
the first line on the new screen after a "V is always the same as
the last line on the old screen. This helps orient you as you
"page" through the text.

3-8 CP31-00

N

To page backward through the text, use ESC V, prev-screen.
The previous screen is displayed, and the cursor moved again to
the upper left corner. With ESC V, the first line of the old
screen is displayed as the last line of the new screen. These
two requests provide a convenient way to read through, or rapidly
reposition the cursor in, a buffer.

Moving through a Buffer by Locating Character Strings

You can also move the cursor directly to a specified character
string contained in your text. You specify the character string,
and Emacs searches for it and moves the cursor there. This is
the most direct way to move to a specific point in your buffer,
but you must, of course, know rather precisely what you are looking
for. The requests for searching for a character string are described
in Section 7.

NUMERIC ARGUMENTS

Requests for which it is useful to specify "how many times"
to do them generally accept NUMERIC ARGUMENTS. Several of the
requests covered so far fall into this category.

You give a numeric argument by pressing the escape key, releasing
it, typing the number you wish, and then typing the request. For
example, to move five characters forward or go down four next
lines, you would give the "F or "N request numeric arguments of 5
and 4, respectively:

ESC 5 °F
ESC 4 °N

In a buffer containing a large document, you could go from line 1
to line 250, for example, by typing:

ESC 249 °N

The screen would fill with lines 240 to 260 (approximately), with
line 250 and the cursor in the middle of the screen.

3-9 CP31-00

Requests Accepting Numeric Arguments

Of the previous requests, the following accept numeric arguments.
Hereafter, as each new request is introduced, its action with a
numeric argument, if it accepts them, will be described. Using
numeric arguments with requests often greatly speeds your work.

e “P, prev-line-command, moves up the specified number of
previous lines; e.g., ESC 5 "“P moves up 5 lines.

e “N, next-line-command, moves down the specified number of
next lines; e.g., ESC 16 “N moves down 16 lines.

e “B, backward-char, moves backward the specified number of
characters; e.g., ESC 8 "B moves backward 8 characters.

e “F, forward-char, moves forward the specified number of
characters; e.g., ESC 3 “F moves forward 3 characters.

® ESC B, backward-word, moves backward the specified number
of words; e.g., ESC 6 ESC B moves back over 6 words.

e ESC F, forward-word, moves forward the specified number
of words; e.g., ESC 4 ESC F moves forward 4 words.

e "V, next-screen, pages forward the specified number of
windows and displays it; e.g., ESC 2 "V moves forward 2
windows.

e ESC V, prev-screen, pages backward the specified number
of windows and displays it; e.g., ESC 2 ESC V moves backward
2 windows.

] Self-inserting characters are added to the text the specified
number of times; e.g., ESC 10 * inserts 10 asterisks.

Ax=

The “X= request, linecounter, is described here because it is
often useful to know what line you are on, and how many lines the
buffer contains, when choosing a numeric argument. To issue it,
you must depress the control key and type an x while doing so,
then release both keys and type an equals sign (=). Your terminal
may require that you use the shift to get an equals sign. Emacs
prints the buffer length, current line number, and the cursor's
dprint column position in the MINIBUFFER. The minibuffer is the
two-line area below the mode line at the bottom of your screen,
and something like this appears in it after a “X=:

138 lines, current = 45, column = 13

3-10 CP31-00

7

ABORTING A REQUEST OR PROMPT RESPONSE

Occasionally, in the act of invoking an Emacs request, you
may change your mind about doing so. Requests do not have any
effect until you complete the keystroke sequence, SO if you have
typed the control key only, nothing happens and no harm is done.
If you have typed the escape Kkey, however, you may accidentally
issue an unwanted request when you resume typing. Or, if the
request happens to be one that prompts you for a response, and
you have completed the keystroke sequence, how do you escape from
the minibuffer without responding?

°G

The G request, command-quit, returns the cursor to the current
point in the buffer from the minibuffer prompt, if any, and beeps
the terminal. The prompting request 1is aborted. If you have
typed the escape Kkey, ~“G signals Emacs to ignore it, and beeps
the terminal; again, you have aborted any possible accidental
request. You can invoke “G at any time; since it always beeps
the terminal, it is useful not only for aborting requests, but
also for signalling you that Emacs has finished with previous
requests. When you hear the beep, you know Emacs has executed
the °G.

EXITING FROM THE EDITOR

If you wish, at this point, to log in and practice, you would
probably like to know how to get back out of the editor once you
have gotten in by invoking the emacs command.

“X~C

To return to Multics command level from Emacs, type the “X°C
request, quit-the-editor. The control key must be depressed while
you type the x and the c keys. Since you will be typing text,
but not writing it out to storage, you will get this message at
the top of your screen after typing “X“C:

Modified Buffers:
> ¥ main

3-11 CP31-00

This message means that the current buffer, indicated by the pointer
(>), is modified (*), and its buffer name is "main". At the same
time, Emacs writes a message and question, called a PROMPT, in
the minibuffer (the prompt is called that because Emacs is prompting
you for a response):

Modified buffers exist. Quit?_

The buffer becomes "modified" as soon as you make any change to
it, and stays modified until you write it out (described in Section
5). This prompt is Emacs' way of ensuring that your modifications
are not lost accidentally; you get no prompt after “X°C if your
file has been written out since the last modifications.

Answer this prompt by typing yes followed by a carriage return
to terminate the prompt. Angle brackets (<>) appear in the minibuffer
at the end of your response when you type the carriage return.
Emacs clears the screen and returns you to command level, indicated
by the appearance of the ready message at the top of the screen.

If you mistype the yes, Emacs lets you know that your response
was inappropriate, by replacing the Modified Buffers line across
the top of your screen with:

Please answer "yes" or "no"

A no answer, of course, simply returns the cursor to its former
position in the window, ready for more editing.

3-12 CP31-00

4

The figure below illustrates the commands and requests for
logging in to Multics, entering and exiting Emacs, and logging
out.

: ~
1 |
! !
login logout
[]]
\ \
]]
H Multics |
' command level :
mmmmmmmmmmmmmmooooomoe-
]
] []
| []
emacs “X°C

Figure 3-1. Editor Entry and Exit

Logging Out

Once returned to Multics command level, you invoke the logout
command to break the connection between your terminal and Multiecs.
After you have typed it, the system responds by displaying your
identification, the date and time of the logout, and the total
CPU time and memory units used.

logout

Smith Sales logged out 02/29/80 1249.4 mst Fri
CPU usage 17 sec, memory usage 103.1 units.
hangup

The word hangup is displayed by Multics to remind you to hang up
the telephone and to indicate that the connection has been purposely
broken.

SUMMARY OF TERMS

The new terms introduced in this section are listed below,
followed by the requests and their command-names.

3-13 CP31-00

SUMMARY
°P
“N
“B
°F
“A
“E
ESC
ESC
ESC
ESC

point
current line
numeric argument

prompt

OF REQUESTS
prev-line-command
next-line-command
backward-char
forward-char
go-to-beginning-of-line
go-to-end-of-1line

B backward-word

F forward-word

< go-to-beginning-of-buffer

> go-to-end-of-buffer
next-screen

\' prev-screen
linecounter
command-quit

quit-the-editor

CP31-00

P

2N

SECTION 4

DELETIONS

Making corrections or changes in text involves more than just
adding characters; you often must DELETE one or more characters.
This section describes how to delete single characters, words,
and entire regions, and also how to retrieve deleted words or
regions and reinsert them, possibly at a different place in your
text.

DELETING A CHARACTER

Quite often, you realize you have made a typing error a split
second after you make it. The next requests take advantage of
this realization, particularly if your mind works faster than
your fingers.

AND THE DELETE KEY

The rubout-char request is invoked by typing the # character
(pound or number sign) on your terminal. Alternatively, you can
type the delete key for rubout-char. Either request deletes the
previous character, i.e., the character to the left of the point.
When you type a # or the delete key, the character before the
cursor disappears, and the cursor, and any following text on the
line, moves over one position to the left, closing up the hole
made by the deleted character.

41 CP31-00

So, if you have the following:

Congratulations You've just joined
the stream of people g_

typing a # or the delete key while the cursor is right after the
g gives you:

Congratulations You've just joined
the stream of people _

You can delete backward as many characters or spaces as you want
by typing a # to delete them one at a time.

If you catch the error later, either on the same line or
beyond it, you must first position the cursor, and then issue the

request. So:

the stream of people gush_

could be corrected with three “Bs and then a #:

the stream of people ush

Then simply type an r followed by an ESC F to get you back to the
point where you can continue typing:

the stream of people rush_

4.2 CP31-00

PO

“D

The "D request, delete-char, deletes the character to the

right of the point, i.e., the character at the cursor. Because

you are deleting the character at the cursor instead of the character
just before the cursor, this request is somewhat easier to
conceptualize than rubout-char (#). However, depending on where
the error is, use whichever request requires the least effort in
repositioning the cursor.

For example, in the last three samples just above, to get
from the first of them to the third, you typed three "Bs, a #, an
r, and an ESC F. Using the delete char request, you could type
one ESC B, a "D, anr, and an ESC F. Where three “Bs were required,
one ESC B suffices to position the cursor at the g:

the stream of people gush

The "D then removes it and closes up the space:

the stream of people ush

and the rest of the sequence is the same as for the correction
made with rubout-char. With a numeric argument, "D deletes forward
the specified number of characters.

In summary, the rubout-char request,’issued by typing either
the # character or the delete key

® deletes the character before the cursor, and 1is most
convenient for deleting a character you have just typed.

The delete-char request, issued by typing a "D

® deletes the character at the cursor.

4-3 CP31-00

DELETING LINES

Some lines are lost causes, and the merciful thing is to kill
them outright and start over. To erase everything typed so far
on the current line, use the @ request, kill-to-beginning-of-line.
You issue it by typing the @ (commercial at sign) character. 1If
you have something like this:

To erris hynab, to firgiive d_

you can type an @ to delete everything to the left of the point,
and move the cursor (and any remaining text on the line) to the
beginning of the line. In the above, the cursor would move to
where the "T" had been, and you could simply retype the 1line
correctly. Text killed with the € request is saved on the kill
ring, described later in this section.

“K

The “K request, kill-lines, kills forward from the point to
the end of the line. If the point is already at the end of a
line, “K deletes the newline, adding the text of the next line
onto the end of the current line and moving succeeding lines up
one. If the line is empty, the point can be considered as at the
end of the line, since the beginning and end are the same, so “K
acts as above, effectively deleting the blank line. Some examples
follow:

To err is human, to forgive divine
My boss has never heard that line.
Or hearing it, 'twas not believed

That bosses were of gods conceived.

IO CP31-00

7~ To remove these lines, first type a “K:

My boss has never heard that line.
Or hearing it, 'twas not believed
That bosses were of gods conceived.

Another “K removes the now blank top line, and the remaining
three move up:

My boss has never heard that line.
Or hearing it, 'twas not believed
That bosses were of gods conceived.

The “K request accepts a numeric argument, and kills the specified
number of entire lines, starting at the current point on the
current line. You could get rid of the top two lines (two lines

— 2%2 the two newlines) by supplying an argument of 2, i.e., ESC 2

, to yield:

That bosses were of gods conceived.

Whereas ESC 4 “K kills four lines, four “Ks would not, since you
generally must type two “Ks to kill one line of text.

4-5 CP31-00

You can kill just part of the line (the part to the right of
the point):

I'd give an arm and a leg, and my eyeteeth,
for a piece of your peanut brittle.

After one “K, this looks like:

I'd give an arm and a leg
for a piece of your peanut brittle.

After a second “K:

I'd give an arm and a legfor a piece of your peanut brittle.

If you then need to reenter text (as in the above example, where
deleting the first comma necessarily deleted the Space after it),
the cursor is conveniently positioned for doing so, or for entering
additional text.

I'd give an arm and a leg, Peg, for a piece of your <...>.

is gotten simply by typing a comma, a space, "Peg,", and another
space.

Lines killed with the “K request are also saved on the kill
ring.

4-6 CP31-00

e

/ N

DELETING A WORD

ESC # AND ESC DELETE KEY

Words can be deleted in much the same way that characters
can, i.e., either the word or character to the left or right of
the point can be deleted. To delete the last word you typed, the
word left of the point, you use ESC # or ESC delete key. Both of
these key sequences invoke the rubout-word request, and you type
the escape key followed by either the # character or the delete
key. For convenience, only ESC # will be mentioned further, but
the ESC delete key request is identical. These two requests delete
the word to the left of the point, or that part of the word to
the left of the point if the cursor is in the middle of a word.
In other words, they delete all text between the point and the
place where the point would be moved by an ESC B, backward-word.

So, if the cursor is immediately after a word, ESC # deletes
only the characters of the word it follows:

becomes
three Frenched_hens three _hens

If the cursor is in the middle of a word, ESC # deletes that
part of the word to the left of the point:

becomes
one ebony pony one bony pony

If the cursor is at any other point, ESC # deletes all characters
between the point and the preceding word, as well as that preceding
word (intervening punctuation and white spaces are deleted, too):

becomes
two turtles, doves two doves

These two requests accept a numeric argument, deleting backward
the specified number of words. Deleted text is saved on the kill
ring.

47 CP31-00

ESC D

The ESC D request, delete-word, deletes the word, or part of
a word, to the right of the point, i.e., to the right of, and
+ including the character at, the cursor. It deletes forward from
; the point to the place where the point would be moved by an
- ESC F, forward-word.

Thus, if the cursor is on the first character of a word,
ESC D deletes the entire word:

becomes
It's not cold It's _cold

If the cursor is in the middle of a word, ESC D removes all
the characters from the one at the cursor to the last character
of the word:

becomes
Any messages? Any mess?

If the cursor is between words, ESC D removes all white space
and punctuation up to the second word, as well as the second
word:

becomes
Begg, Barrow and Steele Begg_and Steele

The ESC D request accepts a numeric argument, deleting forward
the specified number of words. Deleted text is saved on the kill
ring.

DELETING A REGION

A region is the extent of text between the current point and

a mark you set to delimit the other boundary of the region. Before
you can delete an entire region, you must set the mark to define

it.

4-8 CP31-00

77N

7’ N

~e

To set the mark, you position the point by moving the cursor
to where yow want it, and then issue the "@ request,
set-or-pop-the-mark. If your terminal requires a shift to get
the commercial at sign, this may be tricky, since you have to
hold both the control and shift keys down while you type an nan
character. Also, some terminals, e.g., those of Digital Equipment
Corp., require that you press the control key while typing the
space bar to transmit ,a “€. After you set the mark, the word
"Set" appears in the minibuffer to let you know the mark is set.

Since your purpose is to define a region, you next repositioh
the cursor to the other "end" of the region, i.e., position the
point after the last character to be included in your region.

Exchanging the Mark and the Point

XX

Once the mark is set at one end, and the point positioned at
the other, you are ready to delete the region. Before doing so,
however, you can verify that the mark is indeed set where you
want it. The request for this is “X"X, exchange-point-and-mark.
The cursor moves to where it was when you first set the mark, but
the region stays defined because the mark is now set at the former
point. Another "“X"X exchanges the mark and point again so that
everything 1is as before. However, the second exchange is
unnecessary, although it may be visually reassuring.

Suppose you want to change the part of the text following
created below:

This is sample text created with
the emacs text editor.

The first step would be to set the mark by positioning the point
before the w and issuing the "€ request:

This is sample text created with
the emacs text editor.

The only thing that happens on the screen after you type the ~e
request is that the word Set appears in the minibuffer.

4-9 CP31-00

The next step is to move the cursor to the end of the region
to be deleted:

This is sample text created with
the emacs text editor._

Now you can type “X"X to verify that the mark was set where you
wanted it:

This is sample text created with
the emacs text editor.

W

To delete, or "wipe" out, a region, use the “W request,
wipe-region. All the text between the mark and the point disappears
from the screen, including any newline characters within the region.
One "W transforms the above to:

This is sample text created _

Any succeeding lines would move up under this one.

Text deleted with a "W request is saved on the kill ring.

RETRIEVING TEXT

The @, “K, ESC # or ESC delete key, ESC D, and "W requests
each put deleted text on the KILL RING, from which you can retrieve
it immediately or even many requests later.

The kill ring has ten "slots" for saving your text. When you
issue one of the above requests, the text "killed" goes into the
first slot. (The #, delete key, and "D requests do not make use
of the kill ring, since characters deleted singly are easy to
retype if you want them back). If you later issue another kill
request, the text previously killed moves into the second slot,
and the newly killed text goes into the first slot just vacated.
Killed text keeps rotating down a slot in this fashion until all
ten slots are filled. At the next kill request, the first killed
text would be discarded, since no eleventh slot is available.

4-10 CP31-00

N

KILL MERGING is a feature that allows you to save related
killed text in the same slot in the kill ring. Kill merging
occurs when you type SUCCESSIVE kill requests, i.e., no intervening
keystrokes occur between the kill requests. You cannot type in
any new text or issue any other type of request. Text killed by
such successive requests is merged and saved in one slot.

Thus, an unbroken string of ESC # or ESC delete key, ESC D,
“K, and "W requests merges all the text killed. Although the €
request saves text on the kill ring, it does not participate in
kill merging.

Y

Kill merging is important because the "Y request, yank, retrieves
text from the kill ring. It is useful for repairing mistakes and
for moving lines and regions around. With no numeric argument,
“Y retrieves text from the first slot of the kill ring and inserts
it at the cursor. With a numeric argument, Y yanks text out of
the slot on the kill ring that corresponds to the number given.
Thus, if you want, for example, the second latest thing killed
(from the second slot), you would type ESC 2 "Y.

Some examples follow - assume that the mark is already set
before the w of with in the top line:

This is sample text created with
the emacs text editor._

Requests for moving the cursor
or deleting text

are available, too.

You have already seen that a "W at this point gives you:

This is sample test created _
Requests for moving the cursor
or deleting text

are available, too.

4-11 CP31-00

The cursor is in position, so you can type in a change:

This is sample text created for Emacs practice._
Requests for moving the cursor

or deleting text

are available, too.

What happens if you position the cursor at the end of the
second line and try another "W? The mark is still set, and remains
set until you set it somewhere else with “@. So, you would get:

This is sample text created _
or deleting text
are available, too.

You can retrieve the most recent kill by typing a “Y:

This is sample text created for Emacs practice.
Requests for moving the cursor_

or deleting text

are available, too.

The cursor is left by Y after the text retrieved.

Typing another “Y would not retrieve the text deleted by the
first "W, since the latest killed text remains in the first slot
until another kill moves it to the second slot, whether it has
been yanked by “Y once, never, or many times. Thus, another °Y
here would simply reinsert another copy of what was just yanked
at the cursor. This can be useful if you have some text to be
repeated, since you can delete it and then yank it back into all
the dlfferent places you want it. You need ESC 2 “Y to retrieve
from the second slot:

This is sample text created for Emacs practice.
Requests for moving the cursorwith

the emacs text editor._

or deleting text

are available, too.

4-12 CP31-00

Ve ~

/

To avoid problems like the above, remember that “Y inserts retrieved
text at the cursor (which was at the end of the second line), and
leaves the cursor after the retrieved text.

To see how kill merging works, suppose you put the cursor
under the w of cursorwith and type an ESC D:

This is sample text created for Emacs practice.
Requests for moving the cursor_

the emacs text editor.

or deleting text

are available, too.

You then realize the next line (third line) is unwanted, too, so
type a “K:

This is sample text created for Emacs practice.
Requests for moving the cursorthe emacs text editor.
or deleting text

are available,too.

That killed only the newline, so you type another “K:

This is sample text created for Emacs practice.
Requests for moving the cursor_

or deleting text

are available, too.

Perhaps now you decide the next line should go, too, and type two
more “Ks:

This is sample text created for Emacs practice.
Requests for moving the cursor_

are available, too.

4-13 CP31-00

Now, moving the cursor to the end of the buffer (ESC >) and adding -
a few new lines (carriage returns) gives you a chance to see just

what has been merged. A "Y yanks this text onto the screen, ~
below the remaining lines, at the cursor:

with
the emacs text editor. .
or deleting text_

Since this text was killed by typing only ESC D, “K, "K, “K, and
a last "K, with no other keystrokes between, all the text merged
for retrieval with a single "Y.

In practice, the text you delete with successive deleting
requests generally isrelated, since youwill not be yanking fragments
into the wrong places (hopefully) as was done above. You may
delete several lines with “Ks, or several words with ESC #s and
ESC Ds, and decide you want them back. Typing one "Y is far less
tedious than having to type several to reconstruct your text.

Popping the Mark

A MARK RING, similar to the kill ring, saves marks set by the ~’
"@ request, set-or-pop-the-mark. It "remembers" the last ten marks
set; you can move the cursor to each of these previous marks, in
turn, by giving any numeric argument to the "€ request. This is
called popping the mark from the mark ring, and the popped mark
is reset as the CURRENT mark, i.e., the mark used by “X°X or “W.
For example, ESC 1 "€ repositions the cursor at the position of
the second-most recently set mark, and resets it as the current
mark. If text was deleted from around that position, the current
mark is set at the position closest to its former position. Another
ESC 1 "€ repeats this process (going back to what had been the
third most recently set mark). You can move back through the
marks, "rotating the ring," by doing this as many times as you
wish. You may consider setting marks at strategic places in your
text just so you can return to them easily, via "€ with a numeric
argument, for review, further editing, or some other special reason. -

LITERAL CHARACTER ENTRY

Since the # and @ characters are themselves requests, you may
be wondering how to get them into your text instead of having
them delete part of it.

4-14 CP31-00

/"'\

“Q

To enter these characters literally, precede them with the “Q
quote-char. Alternatively, you can precede them with a

request,

backslash (\), the escape-char request.
an Emacs request, to enter it literally into your buffer you must

precede it with “Q or a \, too, just as you do for # or €.

To insert Type

#
e
\

“Q# or \#
Q€ or \@
“Q\ or \\

SUMMARY OF TERMS

The terms covered in this section

kill ring
kill merging
successive kill requests

mark ring

are:

Since the \ character is

Thus:

CP31-00

SUMMARY OF REQUESTS

rubout-char (to left of point)
delete key rubout-char (to left of point)
“D delete-char (to right of point)
e kill-to beginning-of-line

“K kill-lines

ESC # rubout-word (to left of point)

ESC delete key rubout-word (to left of point)

ESC D delete-word (to right of point
ce set-or-pop-the-mark

“X~X exchange-point-and-mark

“W wipe-region

Y yank

“Q quote-char

\ escape-char

4-16 CP31-00

N

s

SECTION 5

FILES

The purpose of any editor is to provide the means for creating
and editing files that you wish to save as segments in the Multics
storage system. Thus, you must be able to read files into Emacs
from storage, and write them out (or back out) into storage from
Emacs.

WRITING A FILE OUT

When you invoke the emacs command, you automatically start
out in the buffer named "main". As soon as you modify this buffer's
contents, an asterisk appears below the mode line, indicating
that the buffer's contents have changed. To save the new version
of the file in the buffer, you must write it out.

“X°W

The "“X"W request, write-file, writes the buffer's contents to
a storage segment. After typing a "X"W, you are prompted in the
minibuffer for the pathname of the segment to which you want the
file written:

Write File:

5-1 CP31-00

Type the pathname (you can type a relative or an absolute pathname)
in response to the prompt, and terminate it with a carriage return.
(If you make a mistake while typing in the minibuffer, you can
edit it as you would text.) for example, you can type
"first.practice" to create a segment named first.practice in your
working directory. As Emacs writes this file, the word Writing...
appears in the minibuffer:

Write File: first.practice<>
Writing...

When the word Written replaces Writing..., the file has been
successfully written. At the same time, the absolute pathname of
your file appears right below the mode line. This is called the
PATH LINE, and always tells you what file you are working with.
The asterisk disappears, since the copy of the file in the buffer
contains no modifications not written out to the stored segment.

The bottom of the screen now looks something like this:

Emacs (Fundamental) - main
>udd>Sales>Smith>first.practice
Write File: first.practice<>
Written.

When you make subsequent changes, the asterisk reappears in the
path line to indicate that the buffer's contents are again modified.
In addition, the word Modified replaces Written.

Emacs (Fundamental) - main
* >udd>Sales>Smith>first.practice
Write File: first practice<>
Modified.

The first time you use “X"W, you establish the buffer's DEFAULT
PATHNAME. When Emacs expects you to supply certain information,
and you do not, it uses, by default, the last appropriate information
that you did supply. Thus, if you have supplied a pathname already
for “X"W, and wish to write new modifications out to the same
segment, you can use "X"W again and type only a carriage return
(a null response) when it prompts you for the pathname. Emacs
then uses the default pathname established previously.

5-2 CP31-00

SN

2N

“X"S

The “X"°S request, save-same-file, works like “X"W, except that
it never prompts for a pathname. Instead, it always writes the
buffer's contents out using the default pathname. A default
pathname, of course, must be available, so if you are creating a
new file, the first write-out must be done with “X"W to establish
the default; subsequent write-outs can be done with “X°S. However,
the request for reading a file in (discussed below) also sets the
default pathname, so using "X"S to write such a file out is faster
than using “X"W. You never wait for a prompt, and you never have
to respond to one (even if only to type a null response). Saving
a keystroke here and there may seem trivial, but it is not when
you consider that you should write your work out frequently to
ensure that it gets saved.

READING A FILE IN

Every file read in goes into its own buffer, and you can have
as many buffers in Emacs as you wish. Suppose you are creating a
new document in the "main" buffer, and decide you would like to
look at a file prepared and stored previously.

“X°F
The “X"“F request, find-file, reads a file into a buffer. It

prompts you for the pathname (relative or absolute) of the file
you want:

Find File:

You type in the pathname, and terminate the prompt with a carriage
return (all Emacs prompts are terminated by CR), for example:

Find File: first.practice<>
Reading...

The word Reading... appears in the minibuffer while the file is
being read; it disappears when the file is read, and the screen
fills with the first twenty lines or so of the file. Although
the entire file does not appear on the screen, the buffer does
contain all of it. The cursor is at the first character of the
first line.

5-3 CP31-00

The mode line changes because you are no longer in the "main"
buffer (although that buffer and its contents still exist). When
no buffer exists that already contains the file you ask for, “X°F
reads the file into a new buffer whose name is taken from the
first component of the entry portion of the file's pathname (the
entry portion is the part of the pathname following the last >
sign). In this case, the file is first.practice, so the buffer
is named "first". It also sets the default pathname for the new
buffer to the file's pathname. Below are the mode line and path
line as they appear after reading in first.practice:

Emacs (Fundamental) - first
>udd>Sales>Smith>first.practice

You can now read or edit this file. If you make changes to it,
you can write it out with "X"S, since "X"F set its default pathname.
Alternatively, you can write it out to a different pathname, with
“X"W, if you wish to save the old version of it in the original
segment and store the new version in a different segment.

If you already have one or more buffers containing the file
you are reading in again with “X°F, Emacs lists these buffers on
your screen in a LOCAL DISPLAY. A local display consists of
information displayed at the top of your screen that temporarily
replaces the text being edited. A line of dashes and asterisks
is also displayed beneath the information so that you know this
is a local display and your buffer has not been destroyed. You
are then prompted for the name of the buffer you wish to use. If
the buffer specified in your response is one of those listed,
"X"F switches to it. If a new buffer name is specified, “X°F
reads the file into that buffer. A null response (just a carriage
return) switches you to the original buffer named by the first
component of the entry portion of the file's pathname (i.e., the
buffer entered when you read the file in for the first time).

“X°R

The “X"R request, read-file, is useful when you wish to undo,
quickly, any modifications you have made since the last write
request. This request prompts you for a file's pathname and reads
that file into the current buffer, replacing whatever was in the
buffer previously. It also sets the buffer's default pathname to
the pathname of the file read. If a null response is given to
the prompt, “X"R reads the buffer's default file (this is usually
what you want) set by a previous “X“F, “X"R, or “X"W.

5-4 CP31-00

s .

/ N

o

Access Restrictions

Sometimes you may encounter a problem when you try to write
out a file that you have read in without any trouble. This occurs
if you have read (r) access to the file, but do not have write
(w) access (access requirements are discussed in the New Users'
Intro - I). An error message like this:

Incorrect access on entry.

appears in the minibuffer in such a case. If you get such a
message, you cannot use "“X"S to write the file out; you must use
“X"W and supply a different pathname from the one used to read in
the file.

You may get the same message when reading a file in if you do

not have read access to it. If this occurs, you must request
access from the user whose segment you are attempting to read.

INSERTING A FILE

“XI

The ~“XI request, insert-file, inserts a file into the current
buffer at the point. You are prompted for the pathname of the
file to be inserted, and the file is read into the buffer without
destroying its previous contents; lines following the inserted
file are simply moved down below it. The cursor is left after
the newline at the end of the inserted file's contents. This
request does not change the default pathname for the buffer. For
example, if you read in "first.practice" with "X"F, you can position
the cursor wherever you want and issue a “XI. Responding to the
prompt:

Insert File:

with second.practice and a carriage return inserts a copy of the
contents of "second.practice" at the indicated spot (succeeding
lines of "first.practice" are moved down to accommodate the inserted
text). The default pathname is still "first.practice.” You can
insert the same file in your text at many places, or "assemble"
many different files into one file, by using “XI.

5-5 CP31-00

EDITING MULTIPLE BUFFERS

At the beginning of this section, you were in the "main"
buffer, creating text. To take a look at the first.practice file,
you read it in to the "first" buffer, and were automatically
switched to that buffer. You can read in as many more files as
necessary, and each goes into its own buffer as you are switched
to it. You can also read the same file into several separate
buffers; if you issue the “X"F request, and then type first.practice
in response to its prompt again, Emacs lists the buffers containing
this file, only the "first" buffer in this case, and prompts for
a buffer name. You may decide to use a new buffer for this copy
of the file, and type the name you want assigned to it, for
example, one. ‘

If you issue the "X"F request and type first.practice in response
to its prompt a third time, Emacs lists both "first" and "one" as
buffers containing the file (although they may contain different
versions of first.practice if you have edited these buffers). At
this point, you can use yet another buffer by typing a different
name, or reuse one of these two by typing its name. If you type
just a carriage return, Emacs returns you to the buffer "first",
filling the window with the contents of that buffer as they were
when you last used it.

Switching Buffers

So, suppose you now have three buffers: main, first, and
one. How can you move between them?

“XB

The “XB request, select-buffer, prompts you for the name of
the buffer to which you want to go. To issue this request, you
must hold the control key down while typing the X, and release it
before typing the b key. You then type the buffer name in response,
and Emacs switches to that buffer. The line that was current
when you left that buffer is centered on the screen, with the
cursor returned to the last current point.

If you give the name of a buffer not yet created, Emacs creates
it. You see a blank screen, since the new buffer is empty, with
the cursor placed in the upper left corner.

If you type only a carriage return in response to “XB's prompt,

you return to the last buffer you were in before entering the
current buffer.

5-6 CP31-00

)

SN

77

/ N

Whenever you switch buffers, the mode line and path line change
to reflect the name and path of the buffer switched to.

Listing Buffers

AXAB

To list the buffers in use in an Emacs editing session, issue
the “X"B request, list-buffers (hold down the control key while
typing both the x and b keys). A list of buffers appears as a
local display:

Listing of current Buffers

>¥one >udd>Sales>Smith>first.practice
first >udd>Sales>Smith>first.practice
*main

_ % X R X X X X X X X ¥ * __

The display contains the name of each buffer and the pathname

~of the file in it, if any. An asterisk (¥*) before a buffer's

name indicates a modified buffer. The greater-than sign (>)
indicates the current buffer.

Restoring the Screen after a Local Display

You remove a local display from your screen by typing the
linefeed key. If your terminal has an auto-linefeed switch, it
should be "off" to prevent a local display's automatic and premature
removal. When the local display disappears, the part of your
text that was under it reappears.

EXECUTING A MULTICS COMMAND FROM WITHIN EMACS

You may have some reason to invoke a Multics command while
you are editing in Emacs. You can avoid writing your files out,
exiting Emacs with "“X"C, invoking the Multics command, and then
reentering Emacs and reading your files in again. Two requests
are provided to do this.

5=-7 CP31-00

"X CARRIAGE RETURN AND “X"E

The “XCR request, eval-multics-command-line, is issued by typing
a "X and then the carriage return key. It prompts you for a
Multics command 1line, and executes it. It can be useful for
executing many Multics commands, for example:

set_acl to give someone access to your files
defer_messages to defer interactive messages
rename to change the name of a file

When you wish to execute a Multics command that produces terminal
output, use the "X"E request, comout-command. This request executes
the Multics command line (also prompted for as above) and displays
the command line's output in a buffer named "file output". After
examining the output, you can write it to a file if you want, and
switch back to your working buffer with “XB. Some Multics commands
you may wish to execute with “X"E include:

list to list your segments, perhaps prior
to reading one in

who to determine what people are currently
logged in

print_motd to see the message of the day

dprint to print a "hardcopy" of a (used

with “X"E because Multics prints
a line giving you the status of
your dprint request).

CLEARING AND REDISPLAYING THE SCREEN

“L

The "L request, redisplay-command, clears the screen and refills
it with the same text, except that the current line is centered
(unless the current line is already at or near the first line of
the buffer). Whenever something invalidates your screen's contents,
e.g., an incoming message or random characters from a bad telephone
line, "L restores the screen. With.a numeric argument, "L redisplays
the screen with the current line the specified number of lines
below the top of the screen, e.g., ESC 1 "L puts the current line
at the top, ESC 6 "L puts the current line six lines from the
top, etec. This is helpful when you want to reposition the lines
on the screen.

5-8 CP31-00

7™ SUMMARY OF TERMS

The terms introduced in this section include:
e path line
) default pathname

e local display

SUMMARY OF REQUESTS

X W write-file
X S save-same-file
XF find-file
X R read-file
XI insert-file
XB select-buffer
o~ X B list-buffers
XCR eval-multics-command-line
X E comout-command
L redisplay-command

I'd N

5-9 CP31-00

”4--\

N N

I

SECTION 6

SPACING AND FORMATTING

This section includes Emacs requests that help you manage the
appearance or format of your text.

FILL MODE

FILL MODE is an Emacs MINOR MODE that allows you to type text
into a buffer without ever typing the carriage return key. Text
is broken automatically at the end of each line so that is does
not extend past the FILL COLUMN, the right margin. Typing a
space, tab, or punctuation mark following a word that extends
past the fill column signals Emacs to "back up" to the white
space greceding that word and end the line there. Thus, you end
up with a ragged right margin.

In addition, the FILL PREFIX, if set, is automatically inserted
at the beginning of each new line when fill mode is on. The fill
prefix determines the left margin, and is empty unless you set it
to contain some combination of spaces and characters (see "Margins"
below for setting the fill prefix and fill column). The default
fill prefix is empty, i.e., the left margin is the left edge of
your screen. When not in fill mode, the fill prefix is inserted
only when you type a carriage return.

While in fill mode, if you want to end a line before the fill
column, type a carriage return at the end of the line. If you
want to extend past the fill column, precede each character after
the fill column with “Q. Or, you can turn off fill mode for the
line(s), and turn it back on after typing the line(s).

6-1 CP31-00

ESC X fillon and ESC X filloff

The ESC X fillon request turns fill mode on in the current
buffer, and the ESC X filloff request turns it off in the current
buffer. These two requests are EXTENDED REQUESTS. An extended
request is one that is not frequently used during editing, so it
is not bound to a key. Instead, you issue the ESC X request,
extended-command, by typing the escape key and then the x key.
It prompts you for a command-name (and arguments in those cases
requiring them), which you type in the minibuffer. Extended
requests, are called that because they are issued by typing the
ESC X request.

Thus, for example, to turn fill mode on, you type ESC X and
are prompted:

Command:

You then type the command-name, fillon, and a carriage return:

Command: fillon<>

All text entered in this buffer after this mode is turned on is
"filled" as you type, until you issue the ESC X filloff request
to turn this mode off. You must turn fill mode on/off in each
buffer where you want to use/stop using it.

MARGINS

Your right and left margins are generally set automatically
to accommodate your terminal's screen size. However, you can
change them. The left margin is changed by setting the fill
prefix, which is inserted automatically at the beginning of every
line by carriage return or fill mode. The fill prefix can contain
both spaces and characters, although you generally want only spaces
or tabs. The right margin is determined by the fill column.

6-2 CP31-00

™

N

“X.

The “X. request, set-fill-prefix, sets the fill prefix in
the current buffer. Before typing the “X., you position the cursor
on a line, and whatever combination of spaces and characters fall
between the cursor and the screen's left edge becomes the new
fill prefix. For example, if you want a fill prefix of five
spaces, put the cursor on the sixth character of a line beginning
with at least five spaces and issue this request. To reset the
£i11 column to the left screen edge, issue “X. at the beginning
of a line ("A gets you there).

“XF

The “XF request, set-fill-column, sets the fill column in the
current buffer. Before typing the “XF, you position the cursor
in the column that you want as the fill column. Fill mode thereafter
uses this column as the right margin. When you set the fill
column, its value is displayed in the minibuffer:

£fill column = 65

This request accepts a numeric argument that is the value to
be assigned to the fill column. Thus, ESC 65 °“XF sets column 65
as the fill column, and column 64 becomes the last column in
which text can be placed when you are in fill mode.

The fill column can be set to a column not on your screen (if
you want copies dprinted on wide paper, for example, and wish to
save time and paper). If you set the fill column for something
like this, your text will necessarily appear on the screen with
many continuation lines (\c appearing at the beginning of the
lines, with words broken randomly).

Adjusted Right Margin

Since fill mode gives you a ragged right margin, what do you
do to get an adjusted right margin instead (like the one in this
manual)? You must format paragraphs individually. Paragraphs
can be defined in two ways in Emacs.

6-3 CP31-00

ESC X opt paragraph-definition-type

The ESC X opt request is an extended request that sets various
options. One of the options is paragraph type; two types are
available. Thefirst,thedefaulttype,basicallydefinesparagraphs
as the text between two blank 1lines. Type 1 paragraphs always
begin at the beginning of a line, and the lines must be:

) preceded by an empty line, or
e the beginning of the buffer, or
e preceded by a Multics runoff or compose control line

(The Multics runoff and compose commands are text formatters;
each control line is itself a paragraph.)

If you change the paragraph type, you can change it back to
this default type by typing:

ESC X opt paragraph-definition-type 1

Typing ESC X prompts you in the minibuffer for the command-name,
opt in this case. You must also supply any arguments that the
extended request takes, and the arguments required here are
paragraph-definition-type and 1. You must also type the spaces
separating the arguments.

The second type of paragraph begins on any indented line,
i.e, any spaces or tabs at the beginning of a line begin a paragraph,
and the paragraph ends with the last character on the line preceding
the next indented line. So, paragraphs of type 2 begin at lines
that are: '

e indented, or
e the beginning of the buffer, or
e preceded by a Multics runoff or compose control line

You set the paragraph type to 2 by typing:

ESC X opt paragraph-definition-type 2

6-4 CP31-00

-

e

ESC Q

The ESC Q request, runoff-fill-paragraph, fills the current
paragraph in the same way that fill mode would. You can use it
to format your work as you complete each paragraph; formatting at
these longer intervals is slightly faster than fill mode 1ine-by-line
formatting.

With any numeric argument, e.g., ESC 1 ESC Q, the paragraph
is formatted with an adjusted right margin, with padding where
necessary.

With or without a numeric argument, ESC Q uses the fill prefix
and fill column for formatting. It also puts the original,
unformatted paragraph in the kill ring, so you can retrieve it if
you do not like the formatted version. |

INSERTING BLANK LINES

e

To quickly open up some space SO that you can add several
lines or paragraphs without waiting while Emacs continuallyrewrites
lines, as it would if you just typed the new text in, use the ~0
request, open-space.

This request puts a newline into your buffer ahead of the
current point. Text after the cursor point moves down a line and
over to the left margin, and pushes succeeding lines down one.
The cursor remains where it was when you issued the "0, so that
space opens up below it, and it stays above the inserted blank
lines, in position for you to enter the new text.

To insert several blank lines, issue this request with a numeric
argument. For example, ESC 4 "0 adds 4 blank lines, as below:

Once there were four rabbits,
and they lived in a hollow under the hill.

6-5 CP31-00

becomes, after ESC 4 ~0:

Once there were four rabbits,
- <blank line>
<{blank line>
<{blank line>
<{blank line>
and they lived in a hollow under the hill.

Then you type in the new text:

Once there were four rabbits,

Flopsy,

Mopsy,

Cottontail,

and Peter,_

and they lived in a hollow under the hill.

Any extra blank lines can then simply be deleted.

INDENTATION

ESC I

The ESC I request, indent-relative, allows you to prepare
outlines, programs, and tables easily. If the current 1line is
not indented, ESC I indents it the same way as the previous non-blank
line:

Today's agenda: becomes Today's agenda:
Division reports Division reports
Sales quotas_ Sales quotas

As you can see, the cursor is left at the column following the
inserted spaces.

6-6 CP31-00

S~ If the previous non-blank line and the current line are not
indented, ESC I indents the current line to the column occupied
by the first letter of the second word of the previous line:

becomes
May Sales Quotas: May Sales Quotas:
Atlantic Div. Atlantic Div.

If the current line is already indented (possibly by an ESC
I), ESC I reindents it to the column occupied by the first letter
of the next word to the right in the previous non-blank line:

Quotas: becomes Quotas:
Atl. Div. Atl. Div.
$120.5K_ $120.5K

With any numeric argument, e.g., ESC 1 ESC I, this request
indents the current line like the last previous line having less
indentation. Consider the next two examples:

2N
Quotas: after Quotas:
Atl. Div. ESC I Atl. Div.
$120.5K becomes $120.5K
Pac. Div._ Pac. Div._
After ESC I ESC I, that becomes:
Quotas:
Atl. Div. ‘
$120.5K
Pac. Div.
Another ESC I returns you to the state of the last example, with
P under the dollar sign. What happens if you try to reindent
then, with no second word above? The words Pac. Div. go back to
the left margin, since Emacs does not "know" about any further

levels of indentation. However, if it did, it would indent to
them:

6-17 CP31-00

Quotas: becomes Quotas:

Atl. Div. Atl. Div.
$120.5K $120.5K
Pac. Div, Pac. Div.

Although no second word appears on the previous line, the line
above that had one, so Emacs indents to that column. You can

always "try" different levels of indentation by experimenting with
ESC I and ESC 1 ESC 1I.

SUMMARY OF TERMS
® fill mode
e fill column
® fill prefix

e extended request

SUMMARY OF REQUESTS
ESC X extended-command
(ESC X) fillon
(ESC X) filloff
X. set-fill-prefix
XF set-fill-column

(ESC X) opt paragraph-definiton-type

ESC Q runoff-fill-paragraph
(0] open-space
ESC I indent-relative

6-8 CP31-00

a

SECTION 7

SEARCHES AND SUBSTITUTIONS

Searching is the term applied to the editor's method of locating
a particular character sequence, oOr character string. You may
want to do this simply to move the cursor to a portion of your
text where some editing is required, or you may be seeking to
replace a character string with something else. This latter
replacement of one character string with another 1is termed
substitution. Usually, the easiest way to make a substitution is
to search for the string to be replaced, delete it when found,
and type in the correction. However, occasionally you wish to
replace a particular string throughout the buffer; the substitution
requests serve that purpose.

SEARCHING FOR A CHARACTER STRING

Emacs provides two requests just for locating a character
string, which you are prompted for. One of these searches forward
from the current point to the end of the buffer. The other searches
backward from the current point to the beginning of the buffer.

“S AND "R

The ~S request is named string-search, and searches forward.
When you type it, you are prompted:

String Search:

T-1 CP31-00

Type in the characters you wish located, exactly as you expect
them to appear, including any spaces where required, and terminate
the prompt with CR. If the search Succeeds, the point is left
immediately after the first occurrence of the character string.
If no such string is found, the cursor does not move and Emacs
responds in the minibuffer:

Search fails.

Responding to a search request's prompt with only a carriage
return reuses the last search string supplied (the default search
string). Thus, you can locate several (or all) occurrences of
the same string without continually retyping it.

The“Rrequest,reverse-string-search,searchesbackwardthrough
the buffer. It works just like "S, except it leaves the point in
front of the located string (so you do not keep locating the same
string). Also, its prompt appears as:

Reverse String Search:

SUBSTITUTING ONE CHARACTER STRING FOR ANOTHER

These next two requests search for a specified character string,
which you are prompted for, and replace it with another, also
prompted for.

ESC X replace and ESC %

The ESC X replace extended request substitutes one string for
another at all occurrences of the first string between the current
point and the buffer's end. You are prompted for the string to
be replaced, and then for the string that is to replace it. If
no occurrences of the first string are found, the cursor does not
move. Otherwise, the point is left after the 1last substituted
string.

7=-2 CP31-00

'

/ N

The ESC % request, query-replace, allows you to substitute
one string for another selectively. You are prompted for the
search string and the replacement string individually; end each
prompt with CR. This request searches forward for the first string,
puts the point after it, and waits for one of the following responses
(type the appropriate keys):

space

CR

.

replaces this occurrence of the first string with the
second. Then searches for the next occurrence of the
first string and waits for a response again.

leaves this occurrence of the first string unchanged and
searches for the next occurrence of the first string,
again waiting for a response after locating it.

(period)

replaces this occurrence of the first string with the
second and then terminates the query replace.

leaves this occurrence of the first string unchanged and
terminates the query replace.

SUMMARY OF REQUESTS

~S

“R

string-search

reverse-string-search

(ESC X) replace

ESC % query-replace

T7-3 CP31-00

’

SECTION 8

TYPING SHORTCUTS

Several requests described in this section make the job of

entering text a 1little easier. Included are requests for
capitalizing words, underlining words, and transposing characters.

CHANGING THE CASE OF WORDS

ESC L, ESC U, ESC C

Three requests are provided for changing the case of a word
to lowercase (jack), uppercase (JACK), or capitalized initial letter
(Jack). Each can be issued when the cursor is on any character
of, or immediately after, the word to be affected. If you issue
these requests when the cursor is between words, but not immediately
after the first word, they affect the second word. Each leaves
the cursor immediately after the word. The requests are:

ESC L, lower-case-word, to lowercase a word.

ESC U, upper-case-word, to uppercase a word.

ESC C, capitalize-initial-word, to capitalize the initial
letter of a word.

Some examples of ESC L:

Jackknife_ becomes jackknife_
MASON mason_
MaGicAl magical_

8-1 CP31-00

Examples of ESC U:

Friday
MON., tue.

Examples of ESC C:

president
EMACS
COngress_

becomes

becomes

FRIDAY
MON., TUE.

President_
Emacs_
Congress_

To change the case of several words in a row, you can issue “Fs
after each case-altering request to position the cursor for the

next one:

thomas alva edison

after ESC C “F becomes:

Thomas alva edison

Repeat the ESC C, “F sequence:

Thomas Alva edison

A final ESC C:

Thomas Alva Edison_

8-2

CP31-00

2N

S

-

UNDERLINING

Related to the word case-altering requests are the word
underlining and underline-removing requests. They underline a
word, or remove the underlining from an underlined word. Since
almost no video terminal can overprint characters, underlined
text in Emacs appears as:

S\010__\010m_\010i_\0101_\010e

The \010s represent the backspaces. The text in your buffer,
though its appearance is disconcerting, is written out with the
proper number and placement of backspaces. The above would
generally be dprinted as Smile. To avoid problems, never use
backspaces for underlining; use ESC _ instead.

ESC _ AND “Z_

The ESC _ request, underline-word, underlines a word when
issued while the cursor is at any character in the word, or
immediately after it. When the cursor is between words, but not
immediately after the first word, ESC _ underlines the second
word (i.e., it affects the same word that the case-altering
requests do). The cursor 1is 1left immediately after the
underlined word:

becomes
hello _\010h_\010e_\0101_\0101_\0100

The "7 request, remove-underlining-from-word, removes
underlining from a word when the cursor is at any character in
the word, or immediately after it. Again, when the cursor is
between words, but not immediately after the first, “Z_ removes
the underlining from the second word. This request also leaves
the cursor after the affected word:

becomes
\010n0100\010w now

8-3 CP31-00

TRANSPOSING CHARACTERS

°T

One of the commonest typing errors is to transpose characters.
The °T request, twiddle-chars, transposes (interchanges) the two
characters to the left of the point. Generally, this means the
two characters just typed. Thus, after a “T:

Mutlics

charactesr_ becomes characters_

Multics

SUMMARY OF REQUESTS

ESC L
ESC U

ESC C

lower-case-word
upper-case-word
capitalize-initial-word
underline-word
remove-underlining-from-word

twiddle-chars

81 CP31-00

~

K AN

SECTION 9

HELP

Emacs has several requests whose only purpose in life is to
respond to your appeal for help. They provide online descriptions
of all the Emacs requests, i.e., you can find the request you
need, or check to see how a particular request works, simply by
issuing the appropriate help request.

ASKING FOR A REQUEST'S DESCRIPTION

ESC ?

When you are not sure what a certain key does, the ESC ?
request, describe-key, tells you. First, it prompts you for the
key you want explained:

Explain Key:

Type the key sequence you want to find out about, for example,
“X*S, (no carriage return is required to end this prompt response).
The minibuffer reads:

Explain Key: “X(prefix char): °S

9-1 CP31-00

The description of the request appears as a local display:

“X"s save-same-file
Save file. Writes the contents of the current buffer to
its default file. This request is equivalent to “X"WCR.

- X X X X X X X X ¥ X ¥__

If you give ESC ? a numeric argument, e.g. ESC 1 ESC ?, you
get just the key and its command-name, with no description. This
saves time when you just want a quick check, since the command-name
alone often provides the clue you want. With a numeric argument,
ESC ? displays the information in the minibuffer instead of as a
local display. Below is an example of the minibuffer's appearance
with "W as the prompt response:

Show Key Function: "W
"W = wipe-region

The “_ request, help-on-tap, provides several forms of help,
depending on the character you type after the “_ (on some terminals,
you have to type “? to send the "_ character). If you type "_?
(or “?? in those cases just notgd), for example, you get a display

of the current repertoire of “_. In that repertoire are °_D,
“_A, and “_L.

The " _D request gives you the descriptions of extended requests,
just as ESC ? gives descriptions of key-sequence requests. It
prompts you in the minibuffer for the command-name of the request
to be described:

Extended command to describe:
HELP: (? for more info):

~

(The second line above appears as soon as you type _+ The prompt
line appears above it when you type the "d".) You then type your
response, e.g., "fillon", and a description of fillon appears in
a local display.

9-2 CP31-00

/"\

The ~ A request lists all requests and extended requests that
contain a given character string in their command-names, and tells
what, if any, keys invoke them in the current buffer. You are
prompted for the character string, and type it in:

String to match for apropos command: forw_

As soon as you type the carriage return, the requests are listed,
in this case, forward-word, forward-char, etc. Since this manual
does not cover all of the requests, be prepared to see some
command-names you do not recognize. You can use ESC ? or "_D to
find out more about any unfamiliar ones.

The " _D request is equivalent to the ESC X describe extended
request; the command-name to be described is supplied as an argument
separated by a space from describe, before terminating the prompt
with CR. The °“_A request is equivalent to the ESC X apropos
extended requests; again, after typing apropos, type a space and
then the match string before ending the prompt with CR.

The " _L request gives a local display of the last 50 characters
you typed. When unexpected things happen, you can issue this
request to examine what you did so that you can identify and
correct any problems.

LISTING THE EMACS REQUESTS

ESC X make-wall-chart

The ESC X make-wall-chart extended request puts a list of all
the currently defined Fundamental mode command-names and their
associated keys into a new buffer.S You can then write the contents
out to a file and dprint a copy. The dprint makes a convenient
wall chart for hanging near your terminal. The wall chart is
divided into three columns (the dprint is 132 characters wide); a
sample (of one column only) appears below:

9-3 CP31-00

ESC F forward-word

ESC G go-to-line-number

ESC H mark-paragraph

ESC I indent-relative

ESC K kill-to-end-of-sentence
ESC L lower-case-word

Figure 9-1. Sample Column of the Wall Chart

This request provides you with the tool needed to learn all
the Fundamental mode requests. You can highlight selected requests
on the chart so that you can refer to them at a glance when
necessary. You can also experiment with unfamiliar requests that
interest you, after obtaining their descriptions via the ESC ?
and ‘_D requests. In addition, by editing the wall chart before
dprinting it, you can reorganize it to suit your own convenience.
You may wish to group related requests under special headings,
add notes that help you remember how they operate, or segregate
seldom-used requests.

The wall chart lists many requests with which you are unfamiliar.
In exploring them, you will be introduced to some of these Emacs
features (described in the Emacs Text Editor Users' Guide):

e programming language major modes (alm-mode, pli-mode,
fortran-mode, lisp-mode, electric-pli1-mode) for convenience
in writing and editing programs in those languages.

® mail facility (XM, “XR) the RMAIL major mode, for sending
and receiving electronic mail.

® message facility (accept-messages) for handling interactive
terminal messages.

e macro requests and Macro Edit major mode (edit-macros)
for writing, editing and executing your own keyboard macros
(a macro is a collected sequence of requests that
automatically performs the whole sequence each time you
execute it).

e multiple windows for displaying on the screen several buffers
at once, and editing them.

9-4 CP31-00

i

TN

4 N

L J setting your own key bindings for requests and macros

e request recognizing and dealing with sentences and
paragraphs

e requests for manipulating named marks and variables
(regions)

When you enter one of the other major modes (e.g., via “XM
for RMAIL mode), you can issue the ESC X make-wall-chart extended
request to list all the requests available in that mode. In
addition to the Fundamental mode requests that still operate in
the new mode, make-wall-chart lists the requests exclusive to the
new mode. To find out more about these mode-specific requests,
use the other help requests (ESC ? and "_D) while in the relevant
mode.

SUMMARY OF REQUESTS

ESC ? describe-key

"7 help-on-tap

"D help-on-tap (describe)
" A help-on-tap (apropos)
~ L help-on-tap

(ESC X) make-wall-chart

9-5 CP31-00

e

™

APPENDIX A

ALPHABETIZED LIST OF FUNDAMENTAL MODE REQUESTS

The following is a list of the Emacs Fundamental mode requests
described in this manual, alphabetized by the 1last character.
Everything preceding the last character of each request is arranged
in this suborder: ~, ESC, “X, “X", "Z. Extended requests are
listed separately at the end.

it rubout-char

ESC # rubout-word

e kill-to-beginning-of-1line

~e set-or-pop-the-mark

“X CR eval-multics-command-line
delete key rubout-char

ESC delete key rubout-word

ESC escape (for numeric arguments)
\ escape-char

“X. set-fill-prefix

“X= linecounter

ESC % query-replace

- help-on-tap

ESC _ underline-word

“Z_ remove-underlining-from-word
ESC < go-to-beginning-of-buffer
ESC > go-to-end-of-buffer

ESC ? describe-key

“A go-to-beginning-of-line

A-1 CP31-00

“B
ESC B
“XB
“X"B
ESC C
“X"c
“D
ESC D
“E
“X°E
°F
ESC F
“XF
“X°F
“G
ESC I
“XI

m
0o

> D
> =
>

=<}

>

>)
o B N 7]

>

wn

backward-char
backward-word
select-buffer
list-buffers

capitalize-initial-word
quit-the-editor

delete-char
delete-word

go-to-end-of-1line
comout-command

forward-char
forward-word
set-fill-column
find-file
command-quit

indent-relative
insert-file

kill-lines

redisplay-command
lower-case-word

next-line-command
open-space
prev-line-command

quote-char
runoff-fill-paragraph

reverse-string-search
read-file

string-search
save-same-file

twiddle-chars

CP31-00

ESC U upper-case-word

' next-screen

ESC V prev-screen

W wipe-region

“X°W write-file

ESC X extended-command

“X°X exchange-point-and-mark
Y yank

EXTENDED REQUESTS

ESC X filloff

ESC X fillon

ESC X make-wall-chart

ESC X opt paragraph-definition-type
ESC X replace

Yl

/ N

CP31-00

APPENDIX B
LIST OF FUNDAMENTAL MODE REQUESTS BY FUNCTION
The following is a list of the Fundamental mode requests described
in this manual, grouped according to the functions they perform.

MOVING THE CURSOR

Up or Down a Line

“P prev-line-command
“N next-line-command

Forward or Backward a Character/Word

“B backward-char
“F forward-char
ESC B backward-word
ESC F forward=-word

f a Line/Buffer

To Beginning or End

“A go-to-beginning-of-line
“E go-to-end-of-line

ESC < go-to-beginning-of-buffer
ESC > go-to-end-of-buffer

To Next or Previous Screen

v next-screen
ESC V prev-screen

B-1 CP31-00

I

NUMERIC ARGUMENTS, LINE NUMBER, ABORTING A REQUEST, ANLC EXITING THE ED

ESC
~Y=
"G
“X°C

DELETING

Characters

#
delete key
“D

Words

ESC #
ESC delete key
ESC D

Regions

"€
“XTX
W

Retrieving Text

~Y

LITERAL CHARACTER ENTRY

“Q
\

escape
linecounter
command-quit
quit-the-editor

rubout-char (left of point)
rubout-char (left of point)
delete-char (right of point)

kill-to-beginning-of-line
kill-lines

rubout-word (left of point)
rubout-word (left of point)
delete-word (right of point)

set-or-pop-the-mark
exchange-point-and-mark
Wwipe-region

yank

quote-char
escape-char

B-2 CP31-00

-’

7

FILES

Writing Out

“X"s

Reading lﬂ
“X°F
“X°R
“XI

EDITING MULTIPLE BUFFERS

“XB
“X°B

EXECUTING A MULTICS COMMAND

REDISPLAYING THE SCREEN

"L

SPACING AND FORMATTING

e

Fill Mode

ESC X exténded-command
ESC X fillon
ESC X filloff

Margins
X

“XF
ESC Q

write-file
save-same-file

find-file
read-file
insert-file

select-buffer
list-buffers

eval-multics-command-line (no output expected)

comout-command (output expected)

redisplay-command

open-space

set-fill-prefix
set-fill-column
runoff-fill-paragraph

ESC X opt paragraph-definition-type

B-3

CP31-00

Inde

ntation

SEARCHES AND SUBSTITUTIONS

ESC I

TYPI

°S

“R

ESC X replace
ESC %

NG SHORTCUTS

Changing the Case of Words

Unde

ESC L
ESC U
ESC C

rlining

Tran

ESC _
~Z

sposing Characters

HELP

°T

ESC ?

ESC X make-wall-chart

indent-relative

string-search
reverse-string-search

query-replace

lower-case-word
upper-case-word
capitalize-initial-word

underline-word
remove-underlining-from-word

twiddle-chars

describe-key
help-on-tap

CP31-00

SN

-

BUFFER

BUFFER,

APPENDIX C

GLOSSARY

a temporary work space in which you create and edit new
text, or edit a copy of a file read into the buffer for
editing. The buffer contents instantly reflect any changes
or additions you make; however, to save these changes,
you must write the buffer contents out to a file, since
buffers are discarded when you exit Emacs.

MODIFIED

a buffer whose contents have been changed in any way since
the last time they were written out to a file. An asterisk
appears at the beginning of the buffer's path line when
it is modified.

BUFFER NAME

a name assigned to a buffer by you or Emacs. When a file
is read in, the buffer takes its name from the first
component of the entry portion of the file's pathname.
When you first enter Emacs without reading a file in, the
first buffer is named "main." When you create a new buffer
via "“XB or reading a file in a second time, you assign
any name you choose.

COMMAND-NAME

the name of a request. The name specifies to Emacs the
set of programmed instructions to follow when the request
is issued. For example, the command-name for the request
that moves the cursor forward a character is forward-char.

C-1 CP31-00

CONTROL CHARACTER

a character typed while the control key is held down.
Control characters are interpreted as requests to Emacs.
Throughout the manual, control characters are represented
by preceding them with the caret character (for the control
key) and are depicted as uppercase (where applicable),
e.g., "F for control f.

CURRENT LINE

the line of the current buffer in which the cursor appears.

CURSOR

the blinking or solid box or underscore on the screen
that represents your current position in the buffer (see
"point").

DEFAULT PATHNAME
the file pathname that Emacs uses, by default, when you

do not provide one. The “X°F, “X"R, and “X"W requests
can set the default pathname for the current buffer.

EXTENDED REQUEST

see request, extended.

FILL COLUMN

the first column in which text is not to be placed when
in fill mode or when formatting with ESC Q. The fill
column serves as the right margin, and is set by “XF.

FILL MODE

a minor mode in which lines are automatically broken to
provide a ragged right margin determined by the fill column
(set by “XF). The fill prefix (set by “X.) is also
inserted automatically at the beginning of each line. Fill
mode makes carriage returns unnecessary.

C-2 CP31-00

r

N

FILL PREFIX

a fixed set of characters and/or spaces inserted at the
beginning of each line when you type a carriage return,
or inserted automatically when in fill mode or when
formatting with ESC Q. The fill prefix is set by “X..

KEY BINDING

the specific association of a request's command-name with
a key sequence. The key sequence is bound to the request
so that you can issue the request just by typing the
special keys, e.g., typing "XB to issue the select-buffer
request. For requests without key bindings, you must type
ESC X (the key sequence bound to the extended-command
request) and then the command-name of the request, e.g.,
ESC X make-wall-chart. Any request can be issued by the
latter method, whether or not a key sequence is bound to
it, e.g., typing ESC X select-buffer has the same effect
as typing “XB.

KILL MERGING

the merging of successively deleted text on the kill ring;
one “Y can retrieve it. To merge, text can be killed
with the ESC #, ESC delete key, ESC D, "K, and "W requests.

KILL RING

a ten-slot "ring" in which deleted text is saved for retrieval
by "Y. The ring rotates each time a slot fills; when all
ten slots are filled, the next rotation discards text
from the first slot so that it can be refilled, etc. The
“Y request retrieves text from the first slot, or from a
specified slot when a numeric argument is given.

LOCAL REQUEST

a display of information that temporarily displaces the
portion of the buffer shown on your screen. Requests
such as ESC ?, °_, and "X"B put up a local display, the
bottom of which is designated by a line of dashes and
asterisks. Type a linefeed to remove any local display.

C-3 CP31-00

MAJOR MODE

an Emacs mode of operation, having its own related set of
requests and key bindings to facilitate the performance
of a special task. Fundamental major mode is used for
general editing; separate programming language modes are
used for writing and editing in specific programming
languages; RMAIL mode is used for preparing and reading
electronic mail, etec.

MARK
a fixed point set by "@ to delineate one limit of a region;
the cursor point delineates the other limit of the region.
Up to ten marks can be set at any one time, the last one
set being the current mark used by "W and “X°X. Using a
numeric argument with “@ moves the cursor to the mark
specified by the argument.

MARK RING
a ten-slot ring, similar to the kill ring, for "remembering"
the locations of the last ten marks set by "“€. The cursor
can be moved to any mark on the ring by specifying the
slot-number of that mark in a numeric argument to "€@.

MINIBUFFER
the two-line area below the mode line at the bottom of
your screen, used by Emacs for messages and prompts so
that they do not interfere with the text displayed in the
window.

MINOR MODE
an Emacs mode of operation that modifies the way Emacs
works in some specific area, e.g., fill mode provides a
special formatting style. Minor modes, unlike major modes,
do not have a unique set of key bindings.

MODE

see major mode, minor mode, and fill mode.

C-4 CP31-00

2

SN

I \

MODE LINE

a line immediately below the buffer's window that displays
the Emacs major mode in effect in the current buffer (the
mode name(s) is parenthesized), followed by the minor mode
in effect, if any (enclosed in angle brackets), and the
buffer's name (separated by a dash). For example:

Emacs (Fundamental <fill>) -- main

MODIFIED BUFFER

see buffer, modified.

NUMERIC ARGUMENT

an argument supplied for certain requests to alter the
way they operate. Numeric arguments are given by pressing
the escape key, and then an appropriate number. Most
requests accepting numeric arguments simply repeat their
action the specified number of times, e.g., ESC 4 “F moves
forward four characters. Some, like Y, ~@, and ESC I
behave altogether differently when given a numeric argument.

PATH LINE

POINT

PROMPT

a line below the mode line that displays the absolute
pathname (the default pathname) of the file in the current
buffer. Until you specifically read a file into the buffer,
or write the buffer contents out to a file, no path line
exists. When you modify the buffer, as asterisk appears
at the beginning of the path line, and remains until you
write the changed file out again.

the position between characters indicated by the cursor's
left edge. Editing actions always take place at the current
point.

any phrase Emacs displays that requires a particular response
from you before Emacs can continue action; called a prompt
because Emacs is prompting you for the response.

C-5 CP31-00

REGION

REQUEST,

REQUEST

SCREEN

an extent of text between the current point and the current
mark, which has been set by the latest "€. A region can
be deleted by the "W request.

EXTENDED

a request, usually with no key binding, that is issued by
typing first the ESC X request (extended-command), and
then the command-name in response to ESC X's prompt. Any
request can be issued as an extended request when you can
remember only its command-name and not its key sequence.

a set of programmed instructions to Emacs, identified by
its command-name or key binding, if it has one. When you
issue a request, Emacs executes that request's program,
performing whatever editing procedure it defines.

the portion of your terminal used for the video display.
Occasionally, "screen" is used synonymously for "window",
which is actually only a part of the screen.

SUCCESSFUL KILL REQUESTS

WINDOW

a series of deleting requests that is uninterrupted by
any other request. The text deleted by successive kill
requests is merged on the kill ring; an “Y retrieves it
all.

the part of your terminal screen that displays a buffer's
contents. Generally, this is the area between the screen
top and the mode line.

C-6 CP31-00

N

S N

access on files 5-5
adjusted right margin 6-5
apropos, ESC X 9-=3
asterisk

special use of 2-2,
5-1, 5-7

3‘13)

backward-char, "B 3-2, 3-10

backward-word, ESC B 3-5,
3-10

blank lines 6-5

buffer 1-10, 8
creating 65-
current 3-1
listing 5-7
main 1-10, 2-1
modified 2-2,
multiple 5-6
name 1-10, 5-4
switching 5-6

3-
6
3

3-13

INDE

X

capitalization 8-1

capitalize-initial-word,
8-1

carriage return

as prompt terminator 3-13
character
self-inserting 2-2, 3-1

with numeric arguments
3-10

command level 3-14

command-name 2-2

command-quit, "G 3-11

comout-command, “X"E 5-8
control

character 1-5

key 1-5

CR
see carriage return

current
buffer 5
line 3-4
mark 4-1

cursor

CP31-00

ESC C

1-6, 2-1, 3-1

D ESC B 3-10
backward-word 3-5

default ESC C
fill prefix 6-1 capitalize-initial-word 8-1
pathname 5-2, 5-4
search string 7-2 ESC D

delete-word U4-7
delete key 1-6
rubout-char 4-1 ESC delete key
rubout-word 4-7
delete-word, ESC D 4-7

ESC F 3-10
deleting forward-word 3-6
characters U4-1
regions U4-10 ESC I
words U4-T7 indent-relative 6-6
describe, ESC X 9-3 ESC L

lower-case-word 8-1
describe-key, ESC ? 9-1
ESC Q
runoff-fill-paragraph 6-5

ESC U
upper-case-word 8-1
echoplex mode 1-7
ESC V, prev-screen 3-9, 3-10
emacs command 1-9

ESC X
entering Emacs 1-9 extended-command 6-2
error recovery 3-11 ESC X <command-name>

see entries under their
ESC command-names
see escape key

ESC _

ESC # underline-word 8-3

rubout-word 4-7
escape key 1-6, 3-5
ESC % in numeric arguments 3-9
query-replace 7-3
escape-char, \ 4-14

ESC <
go-to-beginning-of-buffer eval-multics-command-line,
3-8 “XCR 5-8
ESC > exchange-point-and-mark, “X°X
go-to-end-of-buffer 3-8 4-9
ESC ? executing Multics command 5-7

describe-key 9-1

i-2 CP31-00

i

N

exiting

from Emacs 3-11

from Multies 3-14
extended-command, ESC X 6-2

F

fill

column 6-1

mode 6-1

prefix 6-1, 6-2
filloff, ESC X 6-2
fillon, ESC X 6-2
find-file, “X°F 5-3
formatting

paragraph 6-5

with fill mode 6-1
forward-char, “F 3-3, 3-10
forward-word, ESC F 3-6, 3-10
full duplex mode 1-7
fundamental mode 1-10

go-to-beginning-of-buffer, ESC
< 3-8
go-to-beginning-of-line, “A

go-to-end-of-buffer, ESC >

3-8
go-to-end-of-1line, “E 3-4
greater-than sign

special use of 3-13, 5-7

i-3

help 9-1

help-on-tap, “_ 9-2

indent-relative, ESC I 6-6

indentation 6-6

insert-file, “XI 5-5

key binding 1-10

keyboard 1-2, 1-5

kill
merging
ring 2-3,

4-11, 4-13

4-10

kill-lines, “K 4-4

linecounter, “X= 3-10

linefeed key 1-6, 5=7
list-buffers, "X"B 5=7

local display 5-4

restoring screen after 5-7
logging in 1-7
login command 1-8
logout command 3-14
lower-case-word, ESC L 8-1

CP31-00

M
major mode 1-10
fundamental 1-10
margins

see fill mode and ESC Q

mark
ring

2-3
4.1y
minibuffer

1-11, 3-10

minor mode 1-10, 6-1

mode
fill
line
major
minor

6-1
1-10
1-10
6-1
modem 1-2, 1-6
modified buffer
see buffer

newline
3-4

1-6, 2-1, 3-1, 3-3,

next-line-command, “N 3-2,

3-10
‘V 3-8,

3-9

next-screen, 3-10

numeric argument

open-space, "0 6-5
opt, ESC X

paragraph-definition-type
6-4

i-u4

quit-the-editor,

paragraph 6-4

password 1-8

path line 5-2

pathname

default 5=2

point 3-4
popping the mark

prev-line-command,
3-10

prev-screen, ESC V

prompt 3-13

query-replace,

A

quote-char, “Q 4-

ragged right margi
read-file, "X"R 5
reading files in

ready message 1-9
redisplay-command,

region 2-3
deleting 4-10
setting the mark

414

“P

3-9

X~C
14

n 6-

-

5-3

“L

4-8

3-2 ’

, 3-10

ESC %2 T7-3

3-11

1

5-8

CP31-00

/“\

// N

K N

remove-underlining-from-word,
~Z 8-3

replace, ESC X 7-2

request 2-2
aborting a request 3
altering word case 8
buffer
listing 5-7
switching 5-6
buffer length 3-10

1M
1

deleting
character 4-1
line 4-4
region 4-10
word U-=7
extended 6-1
file
inserting 5-5
reading 5-3, ‘5-4
writing 5-1, 5-3
formatting

fill mode 6-2
margins 6-3
paragraph 6-5
help 9-1
extended request 9-2
indentation 6-6
line number 3-10
literal character entry

41y
mark
exchanging with point 4-9
popping 4-14

setting 4-9

moving cursor
backward character 3-2
backward word 3-5
beginning of buffer 3-8
beginning of line 3-4
end of buffer 3-8
end of line 3-4
forward character 3-3
forward word 3-6
next line 3-2
next screen 3-8
previous line 3-2
previous screen 3-9
to specified character

string T7-1

request (cont)

Multics command execution
5-8

opening space 6-5

paragraph definition 6-U

quitting the editor 3-11

redisplay 5-8

retrieving deleted text
4-11

searching 7-1

substitution 7-2

transposing characters 8-4

underlining 8-3

with numeric argument 3-10

restoring the screen 5-7, 5-8
reverse-string-search, "R 7-2
rubout-char

4-1

delete key 4-1
rubout-word

ESC # 4-7

ESC delete key 4-7

runoff-fill-paragraph, ESC Q
6-5

save-same-file, “X°S 5-3
screen 1-2, 3-8
searching 7-1
select-buffer, “XB 5-6

self-inserting character 2-2,

3-1
with numeric arguments

3-10
set-fill-column, “XF 6-3
set-fill-prefix, “X. 6-3

set-or-pop-the-mark,
414

“@ 4-9,

CP31-00

string-search, °S T7-1 _ Y

substitution 7-1
yank, Y 4-11

T
MISCELLANEOUS
tab 3-3
#
terminal rubout-char 4-1
requirements 1-7
types 1-9 *

see asterisk
text entry 2-1
>
transposing characters 8-4 see greater-than sign

twiddle-chars, “T 8-4 \
escape-char Ud-14

U \N177
see delete key

underline-word, ESC _ 8-3
see control key

underlining 8-3

~e
upper-case-word, ESC U 8-1 set-or-pop-the-mark U4-9
with a numeric argument
User_id 1-7 41y
“A
W go-to-beginning-of-line 3-4
“B 3-10
window 1-11, 3-8 backward-char 3-2
wipe-region, "W 4-10 “E

go-to-end-of-1line 3-4
word 3-5, 3-6

altering the case of 8-1 “F 3-10
deleting 4-7 forward-char 3-3
write-file, “X"W 5-1 “G

command-quit 3-11
writing files out 65-=1
“K
" kill-lines 4-4

“L
redisplay-command 5-8

i-6 CP31-00

r~

fa

“N 3-10
next-line-command

~0
open-space 6-=5
“P 3-10
prev-line-command 3-2
“Q
quote-char U-14
“R
reverse-string-search 7-2

°S
string-search 7-1

T
twiddle-chars 8-4
vV 3-10
next-screen 3-8
W
wipe-region 4-10
“X.
set-fill-prefix 6-3
linecounter 3-10
“XB
select-buffer 5-6
“XCR
eval-multics-command-line
5-8

“XF
set-fill-column 6-3
“XI
insert-file 5=5
“X°B
list-buffers 5-7
“X~C

quit-the-editor 3-11

“X"E
comout-command 5-8
“X"F
find-file 65-3
“X°R
read-file 5-U4
“X"s
save-same-file 5-=3
“X°W
write-file 5-1
XX
exchange-point-and-mark U4-9
Y
yank U4-11
AZ-
remove-underlining-from-word

8-3

“help-on-tap 9-2
"L 9-3

> >»)

o >

9-2
9-2
9-2

CP31-00

o
'~

N
Y=

4

oo - ———————- CUTALONG LINE —

)

~,

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

R -]
LEVEL 68 ORDER NO. CP31-00
TITLE | [NTRODUCTION TO EMACS
TEXT EDITOR
DATED | MARCH 1981

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

D Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE—
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

- CUT ALONG LI'\(——————

-

' FOLD ALONG LINE .

(

FOlD ALONG LINE

I ¢

Honeywell

Honeywell information Systems
In the U.S.A.: 200 Smith Street, MS 486, Wakham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Wilowdale, Ontario M2J) 1W5
In the U.K.: Great West Road, Brentford, Middiesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

31091, 7.5C481, Printed in U.S.A. CP31-00

