Honeywell

SERIES 60 (LEVEL 66)/6000

DATANET 355/6600
MACRO ASSEMBLER PROGRAM

SOFTWARE

DATANET 355/6600
Honeywell MACRO ASSEMBLER PROGRAM

SERIES 60 (LEVEL 66)/6000

SUBJECT:

Language Characteristics, Programming Methods,

Instructions, Pseudo-
Operations, Input/Output Operations.

SPECIAL INSTRUCTIONS:

This manual replaces DATANET 355 Macro Assembler Program, Order No.
BB98, for Series 6000 System users., Order No. BB98 must be wused by

Series 600 System wusers and by Series 6000 System users on prior
software releases.

SOFTWARE SUPPORTED:

Series 60 Level 66 Software Release 2
Series 6000 Software Release H

DATE:

December 1975

ORDER NUMBER:

DDOl, Rev. 0

PREFACE

The DATANET FNP Macro Assembler Program manual is intended as a guide for
the programmer using the Symbolic Macro Assembler (MAP). It contains all the
information needed by the programmer to code an assembly language program on the
coding form.

The manual is addressed to programmers experienced in assembly language
programming. It assumes some knowledge and experience in the use of indirect
address modification, hardware indicators, faults, interrupts and recovery
routines, macro operations, pseudo-operations, and other features normally
encountered in a very flexible instruction repertoire. It also assumes that the
programmer is familiar with the TWOs complement number system as used in a
sign-number machine.

-

(:) 1976, Honeywell Information Systems Inc. File No.: 1743,1P43 ~

DDO1

FUNCTIONAL LISTING OF PUBLICATIONS

SERIES 60

FUNCTION

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:
Basic Operating System

Job Control Language
Table Definitions
I/0 Vvia MME GEINOS

System initialization:
System Startup
System Operation
Communications System

Communications System
DSS180 Subsystem Startup

Data management:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing
File Input/Output
File Input/Output

I-D-S Data Query System
I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:
Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage
JOVIAL Language
FORTRAN Language
Macro Assembly Language

Generators:
Sorting
Merging

for

(LEVEL 66) and SERIES 6000 SYSTEMS

APPLICABLE REFERENCE MANUAL

TITLE

Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description
Series 6000 Summary Description
DATANET 355 Systems Manual

DATANET 6600 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual

System Tables

I/0 Programming

System Startup

System Operation Techniques

GRTS/355 and GRTS/6600 Startup
Procedures

NPS Startup

DSS180 Startup (Series 6000 only)

File Management Supervisor

I-D-S/I Programmer's Guide

I-D-S/I User's Guide

Indexed Sequential Processor

File and Record Control

Unified File Access System (UFAS)
(Series 60 only)

I-D-S Data Query System Installation

I-D-S Data Query System User's Guide

Source and Object Library Editor
System Library Editor

Total Online Test System (TOLTS)

Total Online Test System (TOLTS)
Test Pages

Honeywell Error Analysis and Logging
System (HEALS)

Macro Assembler Program (GMAP)

COBOL

COBOL User's Guide

JOVIAL

FORTRAN

DATANET 355/6600 Macro Assembler
Program

Sort/Merge Program
Sort/Merge Program

iii

ORDER
NO.

DC64
DA48
BS03
DC88

DD19
DD31
DD14
DB82

DD33
DD50

DDO05
DD51
DD34

DD45
DC52
DC53
DD38
DDO7
DC89

DD47
DD46

DD06
DD30
DD39
DD49
DD44
DD08
DD25
DD26
DD23
DDO02
DDO1

DDO09
DDO09

DDO1

FUNCTION

Simulators:

DATANET 355/6600 Simulation

Service and utility routines:

Loader

Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN

FNP Loader

Service Routines
Software Debugging

Time Sharing systems:

Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing
dataBASIC Language
dataBASIC Loading

Remote communications:

DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:

User's Procedures

Handbooks :

System-operator communication
Error Messages, Abort Codes

Pocket guides:

Control Card Formats
FORTRAN

Rev, 7602

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

DATANET 355/6600 Simulator

General Loader

Utility

UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion

Summary Edit Program

FORTRAN Subroutine Libraries

DATANET 355/6600 Relocatable Loader
Service Routines

Debug and Trace Routines

TSS General Information

TSS Terminal/Batch Interface

TSS System Programmer's Reference
Manual

Time Sharing BASIC

FORTRAN

Time Sharing Text Editor

dataBASIC System Language Manual

dataBASIC Load/Unload System

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Processing System User's
Guide

System Console Messages
Error Messages and Abort Codes

Control Cards and Abort Codes
FORTRAN Pocket Guide

iv

ORDER
NO.

DD32

DD10
DD12
DC91
DD11
DD24
DD20
DD35
DD42
DD43

DD22
DD21

DD17
DD16
DDO02
DD18
DD95
DD96

DD40
DD48
DB92

DD41

DD13
DC97

DD04
DD82

DDO1

CONTENTS

g
[
Q
o

Section I Introduction. . . e o o o o o

Relocatable and Absolute Assemblies.

Source Program Input . . .
SNUMB Control Card. .
355MAP Control Card .
LIMITS Control Card .
UPDATE Control Card (o

U

ct

[¢]

=)

o))
e o o o
1

e o o o o (Do o o o o o o o o o

ALTER Control Card.
ENDJOB Control Card
*¥***EQOF Control Card .
Typical Deck Setups. . .
Assembler Outputs. . . .
Binary Decks. . . .
Relocatable Object Decks
Preface Cards
Relocatable Text Cards. .

wvnnnnn
. e o o o o o
L [}

e o o o o o o o o
1

el el
HFHOONOAAAUIUIUIEWWWN -

® o o o o o © o o o © o o © o o © o © ° o o o
© o o o o e o o © o e o o o e o o o e o ° o o o o o
@ o o o o o © o o o o o o o e o © o o o o o o o o o
@ o o e o o o o o o 6 6 e ° e e & o o o o o o o o o
@ © o o o 6 o 8 6 & e o s © ° e s 0 o o o o ° o o o
® o o o o o o o o & o © o o o o o o o o o o o o o o
® o o o o o o o © o 6 e o o o o o o 6 e o o o o o o
® o o e o o o o o o o 6 o o o o ° ° o o o 5 o ° o o

n
o o o o o o o o o ° o o o o & o o o o

Absolute Object (Binary) Dec -11
Absolute Text Card. -11
Transfer Card 1-12
Assembly Listing. 1-12
Full Listing Format 1-13
Preface Card Listing. . . 1-15
SYMDEF, SYMREF, Labeled Common 1-15
Blank Common. . . . o o e 1-15
Symbolic Reference Table. o . 1-15
Error Flags ¢« « o o o s o o o 1-16

Section II Assembly Language Programming
Symbolic Coding Form . .
Location Field. .
E/0/8 Field . . .
Operation Field .
Variable Field. .
Comments Field. . .
Identification Field. .
Summary of Symbolic Card Forma
Language Structure
Character Set
Program Symbols
Types of Program Symbols.
Expressions in General . . .
Elements. . . « . « « .« &
Terms and Operators . .
Asterisk Used as An Element
Algebraic ExXpressions . « « « o
Evaluation of Algebraic Expressi
Boolean Expressions . . « . .« o
Evaluation of Boolean Expressions
Relocatable and Absolute Expressio

e o o o o o o
[}

e o o o o o o

.
. .
. . .
. . .
. o o
. . .
e o .
)

i
HrROVOOOoONNOTOONLITUULLLBWWWWHKH

e o o o o o o
o o o o o o o o (Fe o o o o o o o

n

e O e ¢ o o ¢ o o o 0o o o o o o o o o o

S

e © o o © o o @ o o o o o e s 0o o 0o o o o o o o o o
@« © 0 6 o o © o o o ° o o 8 o o o ° o 0 o e o o o o
e © 6 o © o 6 o ° o © o o ® o o o 0 & o o o o o o+ o
e © o o o 0 6 6 o o o o o ® 6 o o o o o o 0 o o o o
e 6 6 ¢ o 0 8 o o o o o & ° o o o o o o ° o o s o o
® © o 6 o © 8 ® o o o o o ® 6 o o o © 0 o e e o o o

NNNNNNNNNNNI})NNNNNNNNNNNN

o o o o S e o [N e o o o o s s o o o o 0 0 e o o s o

Special Relocatable Expressions . -11
therals -12
Decimal therals. e o o s o o o o 2-13
Octal therals. 2-14

\% DDO1

CONTENTS (cont)

Page

2-14
2-15
2-15

Alphanumeric Literals . .
SACI Literals . « « o o &
Instruction Literals. . .
Variable Field Literals .
Nonmemory Reference Instr

e o o o
® o o o o
e o o o o
e o o o o
e o o o o
NN

1

e o o o
[
(e o o o
1]
H e o o o
V]
e o o o
0]
[y
(<))}

L] L]

L] L]

[] L]
uction

Section III Processor Instructions.
Representation of Information. .

Single-Precision Data

Double~Precision Data

Alphanumeric Data

Number System. « « « « « o . . .

Instructions o« . .

Memory Reference Instructlon. .«

Nonmemory Reference Instructions.

Group 1 Nonmemory Instructions. .

Group 2 Nonmemory Instructions. .
r

Processor Registers.
Faults

1
HHEOOAOUVURBRENNHHRFR

Program Interrupts .

Processor Indicators .
Address Formation. . .
i

>N

e e o o ¢ o o o o e o o o o o o

e o @ (] * o . . e o L] .
. o o L] e o . e o L] L] .
. e o . L] e o o e o . . . L] * o
. ® o 6 ® o o o o o o o o o o o o
wwwwwwwwciuwwwwwww

o o o o o o o o o o o o o ¢ o o

.

.

.

.

.

.

.

.
a

Mo o o o o

Do o o o o

Basic Level Effective Address Format
Rules. . . . « o . o« o
Word Addre551ng - Ba51c Level e e e s o e
Character Addressing - Basic Level 3-17
Indirect Level Effective Address Formation
RuUleS. & & 4 o ¢ o o o o o o & e o o
Word Addressing - Indirect Level e .
Character Addressing - Indirect Level.
Processor Instructions . . . ¢« ¢ ¢ v o o .« &
Processor Instruction Description . . .
Effective Address and Memory Locatlon

on

e o o o .

ww
11

=

o

3-21
3-21

o o o o o
« o o o o
w
11
N
[\S]

e o o o o

3-28

SymbOlS) . . * o 3-28
Register Symbols . v v v ¢ ¢ ¢ o o « o o & 3-29
Register Positions and Content Symbols . . . 3-29
Other Processor SymbolS. . v « o o« & o o« o & 3-29

Memory Reference Instructions ¢ o« o o & 3-30
Load InstructionsS. « o v v ¢ ¢ & o o o o o & 3-30
Store Instructions 3-32
Add Instructions . . ¢ ¢ ¢ ¢ 4 4 4 4 4 0 . . 3-34
Subtract Instructions. . . « « o o o o o . o 3-37
Multiply Instructions. . .« « ¢ ¢« o v & o o & 3-39
Divide Instructions. . . v v v v o o o o o 3-40
Boolean Instructions . . « o ¢ o o o o & & & 3-41
Compare Instructions . . . v« v o« o o o o o & 3-43
Transfer Instructions. e o 6 o s s e e o @ 3-45
Input/Output Instructlons. e o o o s o o o 3-48

Nonmemory Reference Instructions. 3-49
Group 1, Immediate Add Instructions. 3-49
Group 1, Immediate Load Instructions 3-52
Group 1, Interrupt Control Instructions. . . 3-53
Group 1, Immediate Boolean Instructions. . . 3-54
Group 1, Immediate Compare Instructions. . . 3-55
Group 2, Data Movement Shift Instructions. . 3-57
Group 2, Data Movement Normalize

Instructions. . « ¢ ¢ & ¢« ¢ o ¢ ¢ o o o o @ 3-62
Group 2, Data Movement Copy Instructions . . 3-63
Group 2, Interrupt Control Instructions. . . 3-65
Group 2, Miscellaneous Instructions. 3-65

Section 1V Pseudo-0perations . ¢« ¢ ¢ o o o o o o o o o o o o o o 4-1

vi DDO1

CONTENTS (cont)

Control Pseudo-Operations. . . .

ON/OFF Switch Type Control Pseudo-Operatio

DETAIL ON/OFF - Detail Output Listing .
LIST ON/OFF - Control Output Listing, .

PCC ON/OFF - Print Control Cards. .
REF ON/OFF - References

REFMA ON/OFF - Reference Macro Operation

PARITY ON/OFF - ASCII Parity Control
PMC ON/OFF - Print Macro Expansion.
PUNCH ON/OFF - Control Card Output.
EDITP - Edit Print Lines.
Control Pseudo-Operations.
EJECT - Restore Output Listing.
REM = RemarksS « o« o o ¢ o o &
* In Column One --Remarks .
LBL - Label . . .
TTL - Title . . .
TTLS - Subtitle .
CPR - Copyright
ABS - Output Absolute Text. .
FUL - Output Full Binary Text

TCD - Punch Transfer Card .
HEAD - Heading.]
DCARD - Punch BCD Card., . .
END - End of Assembly . . .
OPD - Operation Definition.
OPSYN - Operation Synonym . . .
Location Counter Pseudo-Operation. .
USE - Use Multiple Location Counters
BEGIN -~ Origin of a Location Counter
ORG - Origin Set by Programmer. . .
LOC - Location of Output Text . . .
Symbol - Defining Pseudo-Operations. .
EQU - Equal TO. . o o e o o o o o .
FEQU - Special FORTRAN Equivalence.
BOOL - BOOlean. o o . . .
SET - Symbol Redefinition .
MIN - Minimum
MAX - Maximum «

® o o o ¢ o o o o o o o
® o @ o o o o o o o 6 & o o e o
® o o o o o o o 0 o o 6 ¢ ¢ & o @

SYMDEF - Symbol Definition., .
SYMREF - Symbol Reference ., .
NULL - Null e o o 0
EVEN - Force Location Counter Even.
ODD - Force Location Counter 0dd. .
EIGHT - Force Location Counter to a
Multiple of 8. . ¢« v v ¢ ¢ ¢« o« o &
BASE - Force Location Counter to a
Multiple Power of 2. . «. o o « &
Data Generating Pseudo-Operations. .
OCTAL = Octal « &« « o o o o o o &

e o o o o
e o o o o
e e o o o o

DEC - Decimal . ¢ ¢ ¢ o o« o o o o &
BCI - Binary Coded Decimal Informati

VFD - Variable Field Definition . .
ASCII, ASCIIC, ACI, ACIC - ASCII Cod

Information. . . « « ¢« ¢« ¢ ¢ o o .
SACI - Symbolic ASCII Information
DUP - Duplicate Cards . . « . . .
Memory Allocation Pseudo-Operations.
BSS - Block Started by Symbol . .
BFS - Block Followed by Symbol.
BLOCK - Block Common. . . . o .
LIT - Literal Pool Origin . . .

vii

® o o o o o o o Do O o o o

.
.
.
0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
)
.
.
.

n

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

g
[
[te]
o

LI W
1101 1
L

1
HROVYWVWOVWODOIONOAWUTUTWLT

o

LG G S TN S N
]
o

FNFN
b1

Ry

e

DDO1

Section V

CONTENTS (cont)

Conditional Pseudo-Operations. .
IFE - If Equal. e o o o o o o
IFG - If Greater Than
IFL - If Less Than. « « « « o«
INE - If NOt Equal. . . . 3 3 . . .

Special Word Format Pseudo-Operations. . .
MARK - Specify Symbol in Location Field
ARG - Argument - Generate Zero Operation Code

Computer WOrd. « « ¢ o o o o o o o o o o o
TTLDAT - Title Date . « « o o o o o o o o o
DATE - Current Date . « « « « & .
NONOP - Undefined Operation . « « « « o o &
ZERO - Generate One Word with Two Subfields
MAXSZ - Maximum Size of Assembly. . « « o+ o«
IND - Generate One Word for Indirect

Addressing . . . o . e e e o o o o o

Data Control Word Format Pseudo—Operatlons
ICW - I/0O Control Word Generator. . .
DCW - I/O Control Word Generator.

Macro Pseudo-Operations. « « « o « o«
Definition of the Macro Prototype

MACRO - Macro Identification
END - End Macro Prototype . « « &
Using a Macro Operation« &«
Pseudo-Operations Used Within Macro

Prototypes « o« o o o o o o o o o .
CRSM ON/OFF - Created Symbols . . .
ORGCSM - Origin Created Symbols . .
IDRP - Indefinite Repeat. .« + « & .
DELM - Delete Macro Named . . « « .
Implementation of System Macro Operation
PUNM - Punch Macro Prototypes . « « o« -«
LODM - Load System Macro Operations . . .
Notes and Example on Defining a Prototype

Program Linkage Pseudo-Operations. . .
CALL = Call Subroutines . . « « « o
SAVE - Save--Return Linkage Data. .

e o o o
e o o o

e o o o

e o o o o

e o o o o
o o o e o o o
o o o o o o o

.
.
.
.
.
O

e o o o o o
o o o o o o o

e o o o o o o o o
o o o o o o o o o
o o o o o o o o o

NN e o o o o

RETURN - Return--from Subroutines
ETC - Continuation. Y
System (Built-In) Symbols. « « « o o«

e e o o o @ o o o o o o o o o
e © o o o o o o o 0o o o o o o

.
.
.
.
3

Input/Output Operations
Peripheral Control Word. . . .
Direct Channel Programming . .
Indirect Channel Programming .
Program Interrupt Control. . .
Status « ¢ ¢ ¢ ¢ o o o o o . .
IOM Faults B
Intercomputer Adapter (ICA). .

DATANET FNP Interface . . .
Central System Interface. . .
W

Interrupt Cell Assignment Swi
Port Assignment for FNPs .
Mailbox Addresses. . « . .
Processor Fault Switches .
Emergency Interrupt Cell Number.
PCW Mailbox. . « o o o
DATANET FNP Control Word Formats. .
Peripheral Control Word (PCW). .
List Indirect Control Word (LICW)
Data Control Word (DCW). . . .« &
Configuration Status Format. . .

cne

o o (e o o o o 0o o o o o

h

e e o o o o o o o o (N e e o o o o o o o

L L] L] L] L] . L] L] . . . L] L] L] .
® ¢ o o @ o o o 6 o o o o 0 o 0 e 0 e o o
L] . L] L] L] L] L] L] . L] . L] . . . L] L] . . L] L]
L] L] . . . L] L] L] L] L] L L[] . L] .

viii

e o o o o o o o o

® o o o © o o o o o o o o o o o o o o o o

Page

4-37
4-38
4-38
4-39

4-43
4-44
4-44
4-45
4-45
4-46
4-47

4-50

[L UL
OWdNOOOON NIV R WNNNDN -

DDO1

CONTENTS (cont)

Page
Active Status Format . « o o o o o o o o o = 5-10
Status Word Format . « ¢ o o o ¢ o o o o o & 5-11
Central System Control Word Formats 5-12
Peripheral Control Word (PCW) in Central
System Mailbox. . . . e s s s s s & o o 5-12
Direct Interface Adapter (DIA) e o o s o s & o o e 5-14
DATANET FNP Interface . . . ¢ « o« ¢ o o o o o o 5-14
Central System Interface. . « ¢« ¢ ¢ o ¢ o o o« & 5=15
DATANET FNP Control Word Formats. . « « ¢« o« « & 5-16
Peripheral Control Word (PCW). . « o o« o o & 5-16
List Indirect Control Word (LICW). . «. . .+ o 5=17
Central System Address Extension & 5=19
Configuration Status Format. . . . « 5-19
Status Indirect Control Word (Status ICW). . 5-20
Status Word Format in DATANET FNP Memory . . 5-20
Central System Control Word Formats 5=22
Peripheral Control Word (PCW). . « « « o .+ & 5-22
Test and Bootload Indirect Control Word
(Test ICW/Bootload ICW) + &« o o o o o o o o 5-23
High Speed Line Adapter (HSLA) . « « o ¢ o o o o« & 5-23
General Information . « ¢« o« o ¢ o & ¢ o o o o & 5-23
PCW Format. . o o o o o o o o o o o o s o o o o 5-24
Command PCWO, PCW1l. « « o s o o s o o o o o o = 5-25
Command PCW2, PCW3.) e o o o o . o o 5-25
Control WOrds o o o o o o s o o o o o o o o o o 5-25
Indirect Control Word . . ¢« o o o o o o o o o & 5=25
Base Address WOrd . « « o o o o o o o o o o o o« 5-26
Mask Register WOrd. . « o« o o o o o o o o o o o 5-26
Control Word Memory Map (Example for
Channel 06). o ¢« & « o « o o o o o o o o o o & 5-26
Character Control Table . “ s e s e o 5-27
Character Control Character Addre551ng. o« o o e 5=-27
Status. . 0 0 . . ° . . . 5-29
Binary Synchronization Status. 5-31
Low Speed Line Adapter (LSLA). ¢ « « o« o o o o o & 5-31
General Information . . « o« o o o o o o o o o o 5-31
Control WOrds . « « o o o o o o o o o o o o o o 5-32
PCW FOrmat. . . . 0 - 0 5-33
Commands, PCWO, PCWl e o o o e o 4 o o e o o @ 5=33
Indirect Control WOrd o o o o o o o o o o o o o 5-33
Status. o . . 3 o 0 Y 5-34
Command Characters in DATANET FNP Memory. . . . 5-35
Status Characters in DATANET FNP Memory 5=36
Peripheral Subsystem Adapter (PSA) . . ¢« « « + « . 5-38
General Information . « « o ¢ ¢ o o ¢ o o o o 5-38
PSA Word FOrmatsS. « « o o o o o o o o o o o o o 5-38
Connect PCW (Operational Mode) . « « o« o o & 5-38
Interrupt Multiplex Word (IMW) . « « « o o & 5-39
SSCW or SCW (SSCW, SCW) e o « o o o o o o o o 5-39
List Pointer Word (LPW). « « « ¢ o o o o o & 5=-40
PSA Mailbox. « « « o e o o o s o s o o o 5-40
Instruction Data Control Word (IDCW) 5-40
Data Control Word (DCW). « « « o o o o o o o 5-41
Logical Channel DCW List . o o o o o o o o o 5-42
Status Word FormatsS. « o« ¢ o« o o o o o o o o« 5-42
PSA Error SUMMAYYe « o o o s o s o o o o o o 5=-44
Service Codes - MPC to PSA . . ¢ « ¢ ¢ o o & 5-45
Service Codes = PSA to MPC . . « o o « o o & 5=-45
MPC Commands . . . o . . o . 3 5-46
Special Controller CommandS. . « o o« o o o & 5-47
deC DeVice Status. 3 3 5_47
IOM Channel Status . ¢« ¢« « o ¢ ¢ o o o o o & 5-48

ix DDO1

Appendix

Appendix

Appendix

Appendix

CONTENTS (cont)

Document Handler Channel (DHC) . . .
General Information . « « « « .« &
MRS200/DRD200 . . « & .

Peripheral Control Word (PCW).
Status Word Format . « . . « .
DRD236/DHU1600. « o« o « o o & .
Load External Format (LDEX) .
Store External Format (STEX) .
Peripheral Control Word (PCW)
Character Control Word (CCW)
CCW Address Formation. . . .
Queue Status Word (QSW). . .
Terminate Status Word. . . .

Binary Synchronous Channel (BSC) .
Transmit Mode . « « « .« &
Receive Mode. . « « o« o« &
Control Words . « .« .« .

e o o o o o
e o o o o o
o o o o o o

Status Words. e o o o o o
Computer Monitor Adapter (cMa) .
Configuration Patching., . . .
Channel Number Patch . . .
Interrupt Level Patch. . .
Indirect Control Word Base Address
"Dead-Man" Timer Duration Patch. .

Data Response Timer Duration Patch

CMA Control Words o« .
Peripheral Control Word (PCW).
Indirect Control Word (ICW). .

Data Transfer . « « « « o
Status Words. « ¢« « « + &
System Monitoring
Control Console Adapter (CCA)
General Information .
Card Reade€r. « « o o o+

e o o o o o o o

e o o o o o o

General Information .
Line Printer . . « . & .
General Information . .
Timer and Switch Channel .
General Information
Common Peripheral Status Format.
DATANET FNP General Memory Map .
Interrupt Cells . . « . . .
Processor Fault Vectors . .
IOC Fault Status Locations. .
Coding Examples. . . .
BCD Addition. . . .
BCD Subtraction . .
Data Movement . . .
Binary to Binary Coded Decimal C
Routine. « « o« o o o o o
Character Transliteration

.

e ® o o o o o o o o o o o o o o o o o o

o o O o o o o o o o o o o o o o o o o s o

i
Standard Character Set. « « « o« o o o o« o &
Conversion Tables . . e o o o s o o o

Octal-Decimal Integer Table. e s e o o
Octal-Decimal Fraction Table

Table of Powers Of TwO. « ¢ o o o o o o o @

Table of Binary-Decimal Equivalents

o o e o o o o o

o o o o o o o o o o o o o o
e o o o o o o o e o o o o o
® o o o o o o o o o o o o o

e o o o

(e o o o o o o o
o © o o © o o © o © ® © ® ® © ® o o ® o 8 © ° ° o e ° o o o © o o o 0 & 5 o o o o o o o o o o o

He o o o o o o o
o)
Q

® o o o o o o o o

e ® 6 o 0 o © o @6 o o o o o o o o o © o o o o o o

I—'oooc'-o-'ocooooootoooo'.o
e o & o o o o o o o o o o s o o

Page

5-49
5-49
5-50
5-50
5-51
5-52
5-52
5-53

DDO1

Appendix E

Index

Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Table
Table
Table

Table
Table
Table
Table
Table
Table

www
L L L L LI I |
H oo Jo U wN =

cLwwwww

CONTENTS (cont)

The Twos Complement Number System

ILLUSTRATIONS

Symbolic Coding Form. . . e e e o o o o
Ranges of Fixed-Point Numbers e e e o o o e
Effective Address Formation Examples,
Character Addressing . . . e s e o
Character Address Addition Rules. .« o .
Indirect Level Word Addressing.
Indirect Level Character Addressing . .
Memory Reference, Effective Address For
Diagram. « « « « o o . . e o o o o
Nonmemory Reference, Effectlve Address
Formation Diagram. . « « o o o o o o =«
Symbolic ASCII SymboOlS. « « o o & o o =«
Character Control Character Addressing.
DATANET FNP Interrupt Cells « .
DATANET FNP Interrupt Vectors

TABLES

Processor Faults. . ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o o &
Memory Map - Interrupts e o e .
Indicators and Their Relation to the Bit
Positions of a Memory Location
Instruction Repertoire by Functional Class.
Instruction Repertoire (Alphabetical) . . .
Instruction Repertoire (Octal Codes). . . .

Memory Reference, Fractional Add (FA) Function.
Nonmemory Reference, Fractional Add (FA) Function

Pseudo-Operations by Functional Class . . .

xXi

* o o @
e o o o
e o o o

. .
. .
mati

e o o

e o o o o o o

Page
E-1

i-1

3-27
3-36
3-51
4-2

DDO1

SECTION I

INTRODUCTION

The DATANET 355/6600 Assembly Program (hereafter called MAP) is a program
which translates symbolic machine language into absolute or relocatable binary
machine instructions convenient for programmer use. The symbolic language is
sufficiently 1like machine language to permit the programmer to utilize all the
facilities of the computer which would be available to him if he were to code
directly in machine language.

An assembler resembles a compiler in that it produces machine language
programs. It differs from a compiler in that the symbolic language used with an
assembler is closely related to the language used by the computer, while the
source language used with a compiler resembles the technical language in which
problems are stated by human beings.

Compilers have several advantages over assemblers. The language used with
the compiler is easier to learn and is oriented toward the problem to be solved.
The user of a compiler usually does not need an intimate knowledge of the inner
workings of the computer. Programming is faster. Finally, the time required to
obtain a finished, working program is greatly reduced since there is less chance
for the programmer to make mistakes. The assembler - compensates for its
disadvantages by offering those programmers, who need a dgreat degree of
flexibility in writing their programs, that flexibility which is not currently
found in compilers.

The MAP assembler gives the programmer some of the conveniences of a
compiler and the flexibility of an assembler. The ability to design desired
macros in order to provide convenient shorthand notations plus the use of all
DATANET FNP machine instructions, as well as a complete set of pseudo-operations
provides the programmer with a very powerful and flexible tool. The output
options enable him to obtain binary text in relocatable as well as absolute
formats.

The MAP assembler is implemented in the classic format of Macro assemblers,
with several variations. There are two passes over the external text: the first
pass allows for updating and/or merging of an alter package to a previously
prepared assembly input. The alter package consists of changes to be made to
the previous assembly under control of alter cards. During Pass 1, all symbols
are collected and assigned their absolute or relocatable values relative to the
current location counter. Macro prototypes are processed and placed in the
macro skeleton table, immediately ready for expansion. All macro calls,
therefore, are expanded in Pass 2, allowing the macro skeleton table to be
destroyed prior to Pass 2.

Machine operation codes, pseudo-operations, and macro names are all carried
in the operation table during Pass 1. This implies that all operation codes,
machine or pseudo, along with macro names are looked up during Pass 1, and that
the general operation table is destroyed at the end of Pass 1. At the end of
Pass 1, the symbol table is sorted; and a complete readjustment of symbols by
their relative location counter is performed.

1-1 DDO1

The preface card(s) is punched at the beginning of Pass 2. All
instructions are generated during Pass 2. This is accomplished by performing a
scan over the variable fields and address modifications. This information is
then combined with the operation code from Pass 1 by wusing a Boolean OR
function. Apparent errors are flagged.

The symbolic cross-reference table is created as the variable fields are
scanned and expanded. The final edit of the symbol table is done at the end of
Pass 2. Generative pseudo-operations are processed with the conversion being
done in Pass 2., Pseudo-operations are available to control punching of binary
cards and printing images of source cards. Images of source cards in error will
be printed, regardless of control pseudo-operations. Undefined symbols and
error conditions are noted at the end of the printer listing.

The“tlassic format of a variable field symbolic assembly program is used
throughout MAP, Typically, a symbolic instruction consists of four major
divisions; location field, operation field, variable field, and comments field.

The location field normally contains a name by which other instructions may
refer to the instruction named. The operation field contains the name of the
machine operation, pseudo-operation, or macro-operation. The variable field
normally contains the location of the operand. The comments field exists solely
for the convenience of the programmer and plays no part in the assembly process.
An identification field is provided to give a means of identifying the location
of a card within a deck.

RELOCATABLE AND ABSOLUTE ASSEMBLIES

The MAP assembler processes the following types of inputs:

1. Source programs written originally in assembler language
2, Compressed source decks (COMDK) for item 1

3. Correction (ALTER) cards for item 1

The normal mode of the assembler in processing input subprograms of the
types indicated above is relocatable. Each subprogram in the job stream is
handled individually and is assigned memory locations normally beginning with
zero and extending to the upper limits required for that subprogram. Since a
job stream may contain many such subprograms, it is apparent that they cannot
all be loaded into a memory area starting with location zero: they must be
loaded into different memory areas. Furthermore, they must be movable
(relocatable) among the areas. For relocatable programs, the Assembler
provides: (1) delimiters identifying each subprogram; (2) information
specifying that the subprogram is relocatable; (3) the length of the subprogram
and (4) relocation control bits for each assembled word. Refer to the
DATANET 355/6600 Relocatable Loader reference manual for a detailed description
of the MAP relocation scheme.

Subprogram delimiters are the assembler output cards. The $ OBJECT card
heads the subprogram assembly and the $ DKEND card ends the assembly. An
assembly is designated as relocatable on a card-to-card basis by a unique
punched code on each binary card. The subprogram length is punched in the
preface card(s) which immediately follows the $ OBJECT card of each subprogram.
The relocation control bits are grouped together in the binary card and are
referenced by the Relocatable Loader while it is 1loading the subprogram into
absolute memory locations.

1-2 DDO1

The assembler designates that the assembly output is absolute on a
card-to-card basis by punching a unique code value in each card. This value
causes the Relocatable Loader to regard all addresses on a card as actual
(physical) memory address. Each absolute subprogram assembly begins with a
$ OBJECT card and terminates with the §$ DKEND card as in the relocatable
assemblies. The normal assembler operating mode 1is relocatable. It 1is set
absolute by the programmer use of the ABS pseudo-operation.

SOURCE PROGRAM INPUT

The following is the minimum required deck setup for the assembly of a
program written in MAP. Refer to the Control Cards Reference Manual for more
detailed information on system control cards.

1 8 16
$ SNUMB
$ IDENT
$ 355MAP Options
. Source Deck
$ UPDATE
. } Alter Deck (optional)
$ ENDJOB
***EOF

$ SNUMB Control Card

1 8 16
$ SNUMB Job Identifier,Urgency
where:

Job Identifier is from one to five characters and must be present on
the card.

Urgency is a number from 1 to 63 and represents the relative importance

of the job. If omitted, a value based on the system resources needed
for the job is calculated.

$ 355MAP Control Card

1 8 16

$ 355MAP Options
This card is used to call the assembler into memory from external storage.

The variable field specifies assembler output options. The following options
are available with MAP (standard options are underlined):

LSTOU - A listing of the assembled object program output will be
prepared.

1-3 DDO1

NLSTOU - No listing of the assembled object program output will be
prepared.

DECK - A binary object program deck will be prepared as output.

NDECK - No binary object program deck will be prepared as output.

GMAC - The GRTS System Macro operations will be 1loaded into the MAP
macro prototype area.

NGMAC - The GRTS System Macro operations will not be loaded.

ONS5 - Print all source images regardless of any pseudo-operations that
might otherwise result in their not being printed.

DUMP - Slave memory dump will be produced if activity terminates
abnormally.

NDUMP -~ A panel dump of program registers, slave prefix, and upper SSA
(Slave Service Area) will be produced if activity terminates
abnormally.

COPY - The binary object program deck produced by MAP will be copied to
the *B file, and SIM (DATANET 355/6600 Simulator Program) will be
called upon the completion of the assembly.

NCOPY - No binary object program deck will be copied to the *B file, and
MAP will return control to GCOS upon the completion of the
assembly.

COMDK - A compressed deck of the source program will be prepared as
output.

NCOMDK - No compressed deck of the source program will be prepared as
output.

NXEC - If the COPY option is specified and an assembly error is
encountered, NXEC causes the COPY option to be ignored.

SYMTAB - Prepare a listing of the Symbol Reference Table (if one has been

built) even though NLSTOU is specified.

$ LIMITS Control Card

1 8 16

$ LIMITS 20,32000,,10000

This control card assigns non-standard activity 1limits for the MAP
assembly. The first parameter is the processor run time for the activity in
hundredths of an hour. The second parameter is the memory required for the
activity. The fourth parameter is the maximum number of printed 1lines of
SYSOUT. If not specified this wvalue is 5120.

1-4 DDO1

$ UPDATE Control Card (optional)

1 8 16 73 80

3

UPDATE LIST Identification

R

The $ UPDATE control card is used when supplying alter input to the
assembler. The operand field is used when a listing of the $ ALTER cards is
required (LIST option). Any $ ALTER card out of order is listed as an alter
file error. The Identification field is optional and can be used to place an
identifier in columns 73-80 of each source card contained in the Alter File
(a*).

$ ALTER Control Card

1 8 16

$ ALTER M,N

The $ ALTER control card is used to make correction to the source card or
COMDK input. Source cards can be inserted or deleted, or can replace other
source cards from the input file to MAP by specifying the respective alter
numbers in the operand field.

The operand field contains alter numbers M,N taken from a previous assembly
listing of the job to which changes are to be made. The alter numbers are
consecutive card numbers starting with 00001 and increasing by one for each
source input card.

When it is desired to insert cards into a deck, the N subfield is not used.
In this case, the source cards following this $ ALTER card or other § control
card are inserted just prior to the card corresponding to alter number N.

When it is desired to delete and/or replace one or more cards from a deck,
the N subfield is given as shown above. When M and N are equal, card M is
deleted. When N identifies a card following M, all cards, M through N, are
deleted. In addition, any cards following the §$ ALTER card up to but not
including the next $ ALTER card (or other control card) will be inserted in
place of the deleted cards.

$ ENDJOB Control Card

1 8 16

$ ENDJOB Not Used

The § ENDJOB card is used to indicate that the job 1is a candidate for
allocation and execution, provided errors are not detected.

1-5 DDO1

***EOF Control Card

1

**¥EOF

This must be the last card of every job.

TYPICAL DECK SETUPS

Assemble with no compressed deck or binary deck produced.
1 8 16
$ SNUMB
$ IDENT
$ 355MAP NCOMDK ,NDECK
. Source Deck
$ ENDJOB
***EQF
Assemble a compressed deck with alters and produce a new compressed
deck.
1 8 16
$ SNUMB
S IDENT
S 355MAP COMDK
. Compressed Source Deck
$ UPDATE LIST
$ ALTER
. } Alter Deck
$ ENDJOB
***EOF

ASSEMBLER OUTPUTS

The MAP assembler outputs, based on the options specified on the § 355

control card,

are binary decks, assembly listing, and compressed decks.

DDO1

Binary Decks

Unless the NDECK option is specified on the $ 355 MAP card, the Assembler
punches a binary deck in relocatable, or absolute mode. The first card
generated by MAP for every object program is a $ OBJECT card. The $ OBJECT
control card has the following format:

1 8 16 ~,, 61 67 73 80
$ OBJECT Optional Time Date of Optional
Comment, of Assembly Label
Sequence Assembly or TTL
Options or blank Date

The Optional Comment Sequence Option subfield is either a product of the
second subfield of the ILBL pseudo-operation (described in the section on
pseudo-operations) or the entries may be inserted by the programmer. When
a sequence checking option is not specified, the Optional Label subfields
of all cards in a $ OBJECT deck are sequence checked and the activity
deleted in case of an error. When an error is detected, a message is
printed on the execution report. The following sequence checking option,
SEQ, is assumed if no option is specified:

SEQ - Check sequence and delete the activity if an error occurs.
CKSEQ - Check sequence and flag errors but do not delete the activity.
NSEQ - No sequence check.

Time of Assembly is in hours and thousandths of hours in the form XX.XXX.
This time appears in the page heading of the associated listing. If a TTL
card with a TTL date entry is present in the assembly, this field is a
blank.

Date of Assembly subfield is in the form mmddyy. If a TTL card with a TTL
date entry is present in the assembly, the TTL date from that card is
placed in this field by the assembler.

The Optional Label subfield is a product of the first subfield of the LBL
pseudo-operation. It is an alphanumeric identification number designating
the object program or subprogram. If not specified, it 1is produced
starting at 00000000.

The last card generated by MAP for every object program is the § DKEND
control card. It has the following format:

1 8 16 61 67 73 80

P
AL

$ DKEND blank Time of Date of Optional
Assembly Assembly Label

The assembler places the time of assembly in columns 61-66 in the form
xxX.xxx hours, and the date of assembly in columns 67-72 in the form mmddyy. The
Optional Label field is the same field as described under the $ OBJECT control
card with an appropriate numeric sequence number.

1-7 DDO1

Relocatable Object Decks

Relocatable object decks contain, in addition to the $ OBJECT and $ DKEND
cards, cards with preface information and text information.

Preface Cards

Preface cards provide the Relocatable Loader with pertinent size and
linkage information, such as:

) Length of the subprogram text region
° Length of Blank Common area required, if any

) Total number of SYMDEF, SYMREF, and Labeled Common symbols as well as
the symbols themselves.

o The relative entry value of the region length for each symbol.

The contents of each word on the Preface cards is as follows:

Words 1-2

0 23 89 1112 1718 35

100 nl 101 n2 n3

Bits 0-2 and 9-11 identify the card as a binary preface card.

Subfield nl contains the number of bits required to express the total
number of Labeled Common and SYMREF symbols referenced within the
subprogram. This number is calculated as follows:

nl - log (N+1)

where N is the count of symbols and the range of nl is 5 < nl < 14.

Subfield n2 contains the count of words on the Preface card beginning with
word 5.

Subfield n3 is the length of the subprogram text.
Words 3-4

Checksum of columns 1-3 and 7-72
Words 5-6

0 1718 2021 35

A M N

1-8 DDO1

Subfield A contains the length of Blank Common area required by the
subprogram.

Subfield M, if non-zero, specifies loading of the subprogram should start
at the next available address which is a multiple of the modulo of two
selected. The values for M are as follows:

M Modulo value

128
256
not used

Noud wh e
[=))
[~

If M is equal to zero, the subprogram is loaded starting at the next even
location.

Subfield N contains two times the number of SYMDEF, SYMREF, and Labeled
Common symbols contained on the Preface card(s). If N > 20, additional
Preface cards are required. On additional Preface cards, words 5 and 6 are
not changed. Words 7 through 46 contain symbol entries as follows:

Words n, n+l

0 56 1112 1718 2324 2930 35

Cl c2 C3 c4 C5 Cé

Words n+2, n+3

0 1718 2021 3233 35

A M K

The first two words (n,n+1l) of each entry is a symbol. The second two
words (n+2, n+3) describe that symbol completely as to its usage by the
subprogram being loaded. The value K (bits 33-35) defines the type of
symbol and thus, the meaning of the other fields involved:

K=0 - The symbol is a primary SYMDEF. Subfield A contains a value
equal to the position of the symbol relative to the beginning
of the subprogram. M is not used.

=1 - The symbol is a secondary SYMDEF. Subfield A contains a value
equal to the position of the symbol relative to the beginning
of the subprogram. M is not used.

=5 = The symbol is a SYMREF. Subfield A is zero. M is not used.

=6 - The symbol is the name of a Labeled Common region. Subfield A
contains the length of the region and cannot be zero. If M is
non-zero, the region is assigned beginning at the next
available address that is a multiple of the modulo of two
selected. (Same meaning as in words 5-6.) If M is zero, the
region is assigned beginning at the next even location.

1-9 DDO1

Relocatable Text Card

Text cards contain information required to execute the desired function.
This information is formatted to give the Relocatable Loader the necessary
parameters to form a useful block of data, or to form executable instructions in ~’
memory.

A relocatable text card contains the following:
Words 1-2

0 23 89 1112 1718 35

010 nl 101 n2 n3

Bits 0-2, 9-11 define the card as a column binary relocatable text card.

Subfield nl indicates the symbol (obtained from the Preface card) relative
to which this text is to be loaded. 1If nl is 2zero, the text is loaded
relative to the primary program region. Where 1l < nl< number of Labeled
Common symbols in the Preface card, nl then specifies the symbolic address
relative to which the text is to be relocated.

Subfield nl contains a count of the number of instructions associated with
this control word. The count does not include the five words of relocation
data and is not necessarily a count of the words on the card.

Subfield nl is the relative loading address under the 1load counter ~
specified by n3.

Words 3-4
Checksum of columns 1-3, 7-72.
Words 5-9

Relocation data. Each of words 5-8 contains nine 2-bit relocation
identifiers. Word 9 contains three identifiers. Each 2-bit identifier
contains relocation information for each instruction or data word in the
text of the card as follows:

00 - Absolute - no relocation applied.

01 - Relocatable - relocate relative to the load address of the
subprogram.

10 - Blank Common - relocate relative to the beginning of the Blank
Common region.

11 - Specfal Relocation - relocate relative to the preface entry
encoded in the word (SYMREF or Labeled Common) .

1-10 DDO1

Words 1l0-

48

Words 10-48 contain instructions and data (maximum of 39 woxrds per card).

If
comp
leas

the number of available instructions or data words on the card are not
letely used by the n specified in the control word (words 1-2), and at
t four words are left vacant on the card, then new control words (see

format of words 1-2) may appear after the last utilized word. The new

cont
The

data
have
ofte

rol word indicates a new word count n2 and a new loading address n3.
loading is then continued with the new address and with the relocation
continuously retrieved from words 5-9. The new control words do not
relocation bits associated with them. This process may be repeated as
n as necessary to fill the card.

Absolute Object (Binary) Decks

An absolute object deck consists of one or more absolute text cards and a
transfer card. Absolute text cards provide the Loader with binary text and an
absolute starting location to be used in assigning memory locations to the
contents of the card.
Absolute Text Card

This card contains the following:
Words 1-2

0 23 89 1112 1718 35

01 nl 101 n2 n3

Bits 0-2, 9-11 identify the card as a column binary absolute text card.

Subfield nl is zero

Subfield n2 contains a word count

Subfield n3 contains an absolute address

Words 3-4

Checksum of columns 1-3, 7-72.

Words 5-4

Inst

8

ructions and text (maximum of 44 words per card). If the number of

instructions or data words is not complete, and at least four words are

avai
cont

lable, words 1 and 2 may be repeated after the last word. These words
ain a new word count n2 and a new loading address n3.

1-11 _ DDO1

Transfer Card

The Transfer Card is generated automatically, as the 1last card of an
absolute subprogram assembly, by the END pseudo-operation. The Transfer Card
specifies to the Loader the entry location for the program. The Transfer Card
contains the following:

Words 1-2

0 23 89 1112 1718 35

000 nl 101 n2 n3

Bits 0-2, 9-11 identify the card as an absolute transfer card.

Subfield nl is zero
Subfield n2 is zero
Subfield n3 contains the transfer address

Words 3-48

Not used.

Assembly Listing

Each assembler listing consists of the following parts:

1. The contents of all preface cards (primary SYMDEF symbols, secondary

SYMDEF symbols, SYMREF symbols, Labeled Common symbols -- from the
BLOCK pseudo-operation). This section is omitted from an absolute
assembly.

2. The sequence of instructions in order of input to the assembler.

3. The symbolic reference table.

Full Listing Format

Each instruction word produced by the assembler is printed on a
132-character line. The line contains the following items for each such word of
all symbolic cards:

1. Error Flags - One character for each error type (See "Error Codes" in
this section).

2. Octal location of the assembled word.
3. Octal representation of the assembled word.

4, Relocation bits for the assembled word. If the word is a memory
reference instruction with instruction counter modification, the
relocation bits (0) are replaced with the address of the operand.
This value is placed in columns 27-31 right adjusted, with blanks for
leading zeros. (See "Relocatable and Absolute Expressions" in Section
II of this manual.)

1-12 DDO1

-~

~

5. Reproduction of the symbolic card, including the comments and
identification fields, exactly as coded.

6. Mapping data. Information to indicate the applicabilty of each record
listed.

The format of the full listing is:

Fields A B Cc D E F G H I
Columns 1-6 8-12 15-23 26-31 35-39 41-120 122-132
— —
Machine Source
Instruction Card
Image
A = Error flags
B = Relative absolute location
C = Tag
D = Operation code
E = Displacement field
F = Relocation bits
G = Alter statement number
H = Source card image
I = Compressed deck and Alter Deck Mapping Data

For field I, the data for each record has one of the following formats:

XXXXX = unmodified from input COMDK
XXXXXRYYYYY = xxxxx replaced (R) by yyyyy
Nyyyyy = new (N) alter number yyyyy
XXXXM , xxXxxXNDyyyyy = alters from xxxxm to xxxxn deleted (D) by yyyyy
(blank) = not present in either COMDK or A* alter file

The mapping data is printed on the listing if the following conditions
apply:

) No output compressed deck is being produced

° An A* alter file is present for the assembly

These data on the assembly listing make it feasible to develop software
from a reference base without working from successively new compressed decks.

1-13 DDO1

Several variations appear for the machine instruction (fields C,
bits 15-23). These are summarized below:

Type of Machine
Word

Memory Reference Instruction

Nonntemory Reference Instruction
Group 1

Nonmemory Reference Instruction

Group 2

IND/ZERO Pseudo-Operation

Data Generating Pseudo-Operation

IND/A,T, Character

1-14

Listing Format

XPXXPXKX
W

rag—— 1 |
Opcode

Displacement

a1
Opcode
Displacement

XXXXPXX
I\VJ <
sl I
Opcode
s2
Displacement
XPXXXXX
-
Tag or

Character Address
Word Address

XXXXXX

XPXPXXXX
T
Tag
Displacement

Character

DDO1

Preface Card Listing

The listing of the preface information is in a self-explanatory format,
with each major subdivision of preface symbols preceded by a heading. The order
is the same as that of the card(s) produced.

SYMDEF, SYMREF, Labeled Common

All SYMDEF symbols are listed with their name and octal location within the
listing, in ascending location order. All primary SYMDEFs are listed first and
then all secondary SYMDEFs.

The Labeled Common and SYMREF symbols are numbered sequentially 1 through
n, where the number represents the special relocation entry number employed in
referencing those special symbols.

Blank Common

Prior to the listing of the special symbols, the assembler enters a
statement of the amount of Blank Common memory requested by the subprogram. The
statement format is self-explanatory.

Symbolic Reference Table

The symbol table contains all symbols used, the octal values (normally the
location value), and the alter number of all instructions that reference the
symbol. The table format is as follows:

Octal Symbol References by Alter No.

2233 CNTR 216 159 164 216

The example above indicates that symbol CNTR has been assigned the value
2233 (octal) and is referenced in three places. The first alter number (216) is
the point in the instruction listing where the symbol is defined.

1-15 DDO1

Error Flags

The following 1list comprises the MAP error flags for individual
instructions and pseudo-operations:

Exror Flag Cause
Undefined U Undefined symbol(s) appear in the variable field.

Multidefined M Multiple-defined symbol(s) appear in the 1location and/or
variable field.

Address A Illegal value or symbol appears in the variable field. Also
used to denote the lack of a required field.

Index X Illegal index or address modifier.

Relocation R Relocation error; expression in the variable field will

produce a relocatable error upon loading.

Phase P Phase error: this implies undetected machine errors or
symbols defined in Pass 2 with a different value than
defined in Pass 1.

Even E Inappropriate character in column 7.

Conversion C Error in conversion of a subfield of a data generating
pseudo-operation. Illegal character.

Location L Error in the location field.
Operation (o) Illegal operation.
Table T An assembly table overflowed preventing the proper

processing of this card. Table overflow error information
appears at the end of the listing.

MAP also prints out the following error messages.

SYMBOL TABLE OVERFLOW

MACRO EXPANSION TABLE OVERFLOW

MACRO PROTOTYPE TABLE OVERFLOW

NO END CARD ON INPUT FILE

SYMBOL REFERENCE TABLE OVERFLOW

EXECUTION NOT POSSIBLE, NO SYMDEF

TOO MANY CARDS TO BE DUPLICATED

OPERATION TABLE OVERFLOW

UNEXPECTED EOF ON INTERMEDIATE FILE

NOT ENOUGH CARDS TO BE SKIPPED

NXEC OPTION SPECIFIED Fatal Error...Simulation Deleted
ERROR IN MACRO EXPANSION Assembler will attempt to Recover

1-16 DDO1

SECTION II

ASSEMBLY LANGUAGE PROGRAMMING

Program statements (source statements) written in assembler language
consist of three types:

1. Machine Instructions
2. Pseudo-Operations

3. Macro Instructions

Machine instructions are one-for-one symbolic representations of the
DATANET FNP instructions. The assembler produces one machine instruction in the
object program for each machine instruction statement in the source program.

Pseudo-operations are so called because of their similarity to machine
operations in an object program. Unlike machine operations, which perform some
part of a task directly concerned with solving a problem, pseudo-operations work
indirectly on the problem by performing machine conditioning functions and by
directing the assembler in the preparation of machine coding.

A Macro instruction statement causes the assembler to retrieve a specially
coded symbolic routine, modify the routine according to the information in the
Macro statement, and insert the modified routine into the source program for
translation into machine language.

SYMBOLIC CODING FORM

A source program is a sequence of source statements that are punched onto
cards. These statements are written on the standard coding form (Figure 2-1).
Each line of coding on the form is punched into one card.

The body of the form contains six fields as follows:

1. Location field in columns 1-6

2. E/0/8 (Even/0dd/Eight) field in column 7.
3. Operation field in columns 8-15

4. Variable field in columns 16-31

5. Comments field in columns 32-72

6. Identification field in columns 73-80

2-1 DDO1

)

urod burpod oTTOoqUAS

*T=-z @anbta

—...._.-.._...-....._-..._...._...—.. epeee _. ce gt _.w....... ._. ey .__._ e ooy -.._
o2l on o0] [o:} 0oL 09 0s ot oe o] [¢]] |
8 8 4 9 L] » £ 2 !
y T - T T T T TRy - T T T ERT T T T ERTT T T T T T ERTT T ™ T TrTT ™TTT
LA A A A rvrvyr1rvyri1r v vrryorrT T T rrvyryrryy vi1i17r7vvr 1T v ryrvrrrrrzr rvyvryrrrrrryrryrvyvourvzy LB L L TT1r v T
T T T Ty LENS Sun B S BNS S S Sun Sun S T T LANELZND JN S AN SN S B B AN BN SN N NN BN B NN SN BN NN N | S [S S N BN N BN SNN ANN SN S Sun A T T T T T T T
LN AN BN LA B LR | yrrrYrrrYrrrrvrrvo7v ™y T rvrvyvyrr v Trvorrxy T —.- LI I B B | TTT T T T v vV v v vy LA v v 1 v T i1
LAND SND BN SN NN B A TV T 1 7 rvyvrrvrrT T 7T rvyrvyegJyrrrvyvvyrrrrrvyvrrrorvrer L A A A AL I 2 O N AN B 4 T T T TT T 7T
AL AL A v l\- L L] -l LA RN B A L l LALLM] LA L) q]\- L Ll L]]‘1- Ll] LIS L !i LA D B AN A B LA B AN B S § ,ﬂ"
LN AL AL A S | LANILZDSE JNN A S SN B N NN N R | T LA N A SN R NI SN BN SN B BNN S SN BN R NN SN RN BN SN N LENS BN B B N N RER BN BN B BNR SN Eun A | T T T T T 7T T T T
LS SN B S Aam B ¢ T 7 T T r 7 7 rrrr T 7T T Ty LANE N B SN B A SR B B SNN AN S BN BN BN BED B f Ty T T VvV T T r 7T 7o 7T T T T T 7T T T
VT T T T T T T T T T T T L LANSE S AN AN N B NI B B BN SR N BN S B BN BN NN BN | -. T T 7T 7T 7V vV 7T 7T 7 VT T T T T T T LI
LAND SND Bun BN Bu AN LANELZN SN B B N BN NN BN BRR SN | T T T Trvyr vrr1rrrvygvrrrvyrryvyvyvrv v ororr LN BN S B B A R B BN BER N BED S B B T T T T T T T
T T Tt T T L T e e e e R o e o e e o B T T T T T T T T 1T T T
T T T TTT LANNLINR N AN BN AN AN M B BN BN T LINEL A S B S B B SN B B BN BN D B N BN BN SR SN NN BN T Y 7T 7T ¥ T T 7V V7T VT o177 | B R N S T T
T T T T LANE B B S S Bun BN S S SN Su S S S Bun S LANNLANE S BN SN B S S S S SN SN SN B B B SN B RN B S T I 7T 7T 7V 7T T T T 7T YT T T T T T T T T T 7
T T T T T LSS S A SNN SN BN SN SNE SN BN S S S B R LIS S S B N (N B N N U B B B B BN B R SN SN S RN LN SN N B S S S BER S SN B R | T T T T T
T T vV T T 7T7T L SN0 SN D SENS B BN B SN BN SN S T-T7 LANNL A B (NS [AN RN NN SR BN S S SN NN AR N BN SN SN B E | TV T T T T T T T 7T T T T TT T T T T T T
LA T Ll T ‘ LA L l LI A B T T T] LR B A § l- v T T 1.\- LA Al 1“- T A} -l T T T 1] T 0 L LA T T
T T T T T L IS, A L L AN AN S S B B B 77 LN NN S S S I NN BN BN S SN BN NN NN BN BN SNNN SN SNND BN SNN 0 TrTr7T 1V T Yrr v U Ty T rorT L LB
LN N SN S N | L L L A L L L L T YT rvryryrrryrrrrrvy v 1ryryr vy v v Yy T ¥V VT VT T E T Ty T T LANIL BN SN B B T YT
LZNLANELENE B S A AN LA B BN B B B N N B T A A SN S S B SN SN BN N B N B SO SN SN SN SN SE SN BEN B0 AN S S S B il SN SR SN B SED SN BN S B T T
LN SRR B B S S | [B S S N SN S SN BN BN B LI A LA S NN SN SNN NN SN RN NI SNER NN SN RN BN NND BN SN BN SN BN ANN LN NELANE SA B S RN B BN BN M B BN B M T T 1 LER BRI
L T v T 1\111 LI] LA A A) l‘- LA]\- LR Al-‘- T T] LERS Ll Al] L L) Lauu AR BN | rTREsTT T T LA T T
T LA T L] v L L A] T 1 7 T 775 1rr1rrJ5rrrr~—7 LI A LI] LA L T rrr T T T T TT LA T 1T rrrry LR T 7 1 1T L -
LN A | L) L] A LA T LA B) L L T 77T T rT LA B J T LA T LA L L L I L § T 7Fr vV v v v rrryrvorrT T 1T T TTT LB L
T T T T T T T T T T T LEN N B SN BN B S B SRS BN [S S Bun SN SEN SN SRR BNS BN SN LA S B e S S B BN S D B B B N T T T T T
T T T T LN, N S B BN BN BER SN B B | L LJRE ZN SN S D BED S BN SN SN NN N BN BN SN SN BN BED DU BN SN B TV T 7Yy T r T vy rrT) T 7T v T T r 1 rr
PR TP PR P P P e P TR LT,
30N3ND3S SINIWNOD LNNOYIN3IW3NO3Q ‘OvL'SS3yaav NOILVY¥3dO NOI1VI01

40

39vd

3iva

NV Y90ud

YINNVHI0Nd

DDO1

Location Field

This field may (in machine instructions or Macro's) contain a symbol or may
be blank. In certain pseudo-operations, described later, this field has a
special use.

E/0/8 Field

This l-character field allows the programmer to specify that this generated
machine word falls in an even location, an odd location, or a location which is
a multiple of eight. If this field is 1left blank, the instruction will be
located in the next available location.

Operation Field

The operation field can contain from zero to six characters selected from
the set 0-9, A-Z, and the period (.). The operation field may contain: (1) a
legal DATANET FNP machine instruction, (2) an assembler pseudo-operation, or (3)
a programmer macro-operation code. The character group must begin in column
eight (left justified) and must be followed by at least one blank.

A blank field or the special code ARG is interpreted as a 2zero operation
and the operation field is all zeros in the assembly coding. Anything appearing
in the operation field which is not in (1), (2), or (3) above is an illegal
operation and results in an error flag in the assembly listing.

Variable Field

The variable field can contain one or more subfields separated by commas.
The number and type of subfields vary depending on the machine-operation
instruction, pseudo-operation, or macro-operation.

The subfields within the variable field of machine instructions depend on
the instruction type. All subfields, regardless of number, are comma separated.
For memory reference machine instructions the format is:

16

Displacement Address, Tag, Character Address

2-3 DDO1

where:

The displacement address may be an absolute decimal number or an
obsolute expression

The tab may be 1, 2, 3, I or *

The character address may be B.0, B.l, C.0, C.l1 or C.2. These
character addresses have the following definitions:

Symbol
Symbol Synonym Value Meaning
B.O 0.2 2 9-bit data transmission, character 0
B.1 1.2 3 9-bit data transmission, character 1
c.0 0.3 4 6-bit data transmission, character 0
c.1 1.3 5 6-bit data transmission, character 1
C.2 2.3 6 6-bit data transmission, character 2

For nonmemory reference machine instructions Group 1 the format is:

16

Displacement Address, Character Address

For Group 1, the displacement address and character address, is specified
by the same conventions listed for the memory reference instructions.

For nonmemory reference machine instructions Group 2 the format is:

16

Shift Count or Null

For Group 2, the shift count is a decimal number specifying the number of
bit positions to shift, rotate, etc, data in the operational registers.

The variable subfields used with pseudo-operations are described
individually with the pseudo-operation. Subfields used with macro-operations
are substitutable arguments which, in themselves, may be instructions, operand
addresses, modifier tags, pseudo-operations, or other macro-operations. These
subfields are discussed with the macro-operations.

The first character of the variable field must begin in column 16. The end
of the variable field is determined by the first blank character encountered
(except for data generating pseudo-operations). If any subfield is null (no
entry given when one is needed), it is interpreted as zero.

Comments Field

The comments field is for the convenience of the programmer and plays no
part in the assembly process. Programmer comments follow the variable field and
are separated from that field by at least one blank column.

2-4 DDO1

~’

Identification Field

This optional

field is

used

identification and sequencing.

Summary of Symbolic Card Format

by

the programmer for instruction

The following is a breakdown of the card columns normally used.

Card

Columns

1-6
7
8-13

14-15

lé-blank

Blank-72

73-80

When
card.

LANGUAGE STRUCTURE

columns

Character Set

Assembler language statements may be written using the character set

in Appendix A.

Program Symbols

A symbol

of which is nonnumeric,

be taken

1. Their

Subfield

Location
Even/odd/eight
Operation

Blank
Variable field

Comments

Identification

are blank,

appearance in the

Contents

Symbol, blank, *

E, O, 8

Machine Instructions,
Pseudo-operation, macro-operation

Address - Tag for machine instruction,
Special fields for macro-operations
and pseudo-operations (see individual
descriptions).

Optional comments (Separated from
variable field by at least one blank).

Optional

the symbolic card is treated as a remarks

shown

is a string of from one to six nonblank characters, at least one
and the first of which is nonzero. The
from the set A-Z, 0-9, and the period (.).
location and variable fields of the assembler coding form.
known as location symbols and symbolic addresses.

characters may
Symbols can appear in the

pseudo-operation, or Macro-operation

2. Their use as the name of a subprogram in a CALL pseudo-operation

3. Their appearance in the SYMREF pseudo-operation.

Symbols are also

Symbols are defined by:
location field of an instruction,
DDO1

Every symbol used in a program must be defined exactly once, except for
those symbols which are initially defined and redefined by the SET
pseudo-operation. An error will be indicated by the assembler if any symbol is
referenced but never defined, or if any symbol is defined more than once.

The following are examples of permissible symbols:

A AlQ00 E1XP3 Aceecee
Z FIRST «XP3 B.707
Bl ALOG10 ADDTO 1234X
ERR BEGIN ERROR 3.141P

Types of Brogram Symbols

Symbols are classified into four types:

1. Absolute--A symbol which refers to a specific number.

2, Common--A symbol which refers to a location in common memory. These
locations are defined by the use of the BLOCK pseudo-operation.

3. Relocatable--A symbol which appears in the 1location field of an
instruction. Symbols that appear in the location field of symbol
defining pseudo-operations are defined as the same type as the symbol
in the variable field.

4, SYMREF--A symbol which appears in the variable field of a SYMREF
pseudo-operation; it 1is considered to be defined external to the
subprogram being assembled, and is accorded special handling by the
loader.

EXPRESSIONS IN GENERAL

In writing symbolic instructions, the use of symbols only in the allowable
subfields presents the programmer with too restrictive a language. Therefore,
in the notation of subfields of machine instructions, and in the variable fields
of pseudo-operations (and by following specific rules), the use of expressions
as well as symbols is permitted. Before discussing expressions, it is necessary
to describe the building blocks used to construct them. These building blocks
are elements, terms, and operators.

Elements

The smallest component of a complete expression is an element. An element
consists of a single symbol or an integer less than 217 | (The asterisk may also
be used as an element.)

2-6 DDO1

Terms and Operators

A term is a string composed of elements and operators. It may consist of
one element or, generally speaking, n elements separated by n - 1 operators of
the type * and /, where * indicates multiplication and / indicates division. 1If
a term does not begin with an element or end with an element, then a null
element will be assumed. It is not permissible to write two operators in
succession or to write two elements in succession.

Examples of terms are:

M MAN*T 7*Y
436 BETA/3 A*B*C/X*Y*7Z
START 4*AB/ROOT ONE*TWO/THREE

Asterisk Used as an Element

An asterisk (*) may be used as an element in addition to being used as an
operator. When it is wused as an element, it refers to the location of the
instruction in which it appears.

For example, the instructions

TRA 2
TEMP BSS 1
AB LDA -1
are equivalent to
TRA AB-*
TEMP BSS 1
AB LDA TEMP-*

and represent a transfer to the second instruction following the transfer
instruction and an accumulator load from the 1location preceding the load
instruction. There is no ambiguity between this usage of the asterisk as an
element and its use as the operator for multiplication since the position of the
asterisk always makes clear what is meant. Thus, **M means "the location of
this instruction multiplied by the element M." The ** means "the location of
this instruction times the null element" and would be equal to zero. The
notation *-* means "the location of this instruction minus the location of this
instruction." (See "Algebraic Expressions" and "Boolean Expressions".)

2=7 DDO1

Algebraic Expressions

An algebraic expression is a string composed of terms separated by the
operators + (addition) and - (subtraction). Therefore, an expression may
consist of one term or, more generally speaking, n terms separated by n - 1
operators of the type + and -. It is permissible to write two operators, +, and
-, 1in succession and the assembler will assume a null element between the two
operators. If no initial term or final term is stated, it will be assumed to be
zero, except when the divisor is zero, in which case the divisor is assumed to
be 1. An expression may begin with the operator + or -. However, if not
explicitly given, + will be assumed. Examples of permissible algebraic
expressions are:

A B+4 CY*DY+EX/FY=-100

SINE 7 -EXP*FUNC/LOGX+XYZ/10-SINE

XYZ -99 -X/Y *+5*X (the first asterisk refers to the
instruction location)

A-3 -88 X*Y --(equivalent to zero minus zero)

Evaluation of Algebraic Expressions

An algebraic expression is evaluated as follows: first, each symbolic
element is replaced by its numerically defined value; then, each term is
computed from left-to-right in the order of its occurrence. 1In division, the
integral part of the quotient is retained; the remainder is immediately
discarded. For example, the value of the term 7/3*3 is 6. In the evaluation of
an expression, division by =zero is equivalent to division by one and is not
regarded as an error. After the evaluation of terms, they are combined in a
left-to-right order with the initial term of the expression assumed to be zero
followed by a plus operator. If there is no final term, a null term will be
used. At the completion of the expression evaluation, the assembler reduces the
result by modulo 2% where n is the number of binary bits in the field being
defined. Grouping by parentheses is not permitted, but this restriction may
often be circumvented.

Boolean Expressions

A Boolean expression is defined similarly to an algebraic expression except
that the operators *, /, +, or - are interpreted as Boolean operators. The
meaning of these operators is defined below.

1. The expression that appears in the variable field of a BOOL
pseudo-operation uses Boolean operators.

2. The expression that appears in the octal subfield of the variable
field of a VFD pseudo-operation uses Boolean operators.

2-8 DDO1

Evaluation of Boolean Expressions

A Boolean expression is evaluated following the same procedure used for an
algebraic expression except that the operators are interpreted as Boolean.

In a Boolean expression, the form operators +, -, *, and / have Boolean
meanings, rather than their normal arithmetic meanings, as follows:

Operator Meanin Definition
+ OR, INCLUSIVE OR, 0+0=0
union 0+1=1
1+0=1
1+ 1=1
- EXCLUSIVE OR 0-0=0
symmetric difference 0 - 1 =1
1-0=1
1-1=0
* AND, intersection 0 *0=0
0 *1=0
1*0=0
1 *1=1
/ 1's complement, /0 =1
NOT /1 =0

Although / is a unary operation involving only one term, by convention A/B
is taken to mean A*/B. This is not regarded as an error by the assembler.
Thus, the table for / as a two-term operation is:

0/0
0/1

1/0
1/1

o
oK

u
o o

Other conventions are:

+A = A+ = A
-A = A- = A
A = A = 0 (possible error--operand missing)
A/ = A/0 = A

2-9 DDO1

Relocatable and Absolute Expressions

Expression evaluation can result in either relocatable or absolute values.
There are three types of relocatable expressions; program relocatable (R), Blank
Common relocatable (C), and Labeled Common relocatable (L). The rules by which
the assembler determines the relocation validity of an expression are complex,
and the presence of multiple location counters compounds the problem. Certain
of the principal pseudo-operations impose restrictions as to the type of
expression that is permissible; these are described separately under each of
the affected pseudo-operations:

BEGIN BOOL DUP FEQU MIN SET
BFS BSS EQU MAX ORG

b

The following rules summarize the conditions and restrictions governing the
admissibility of relocation:

1. Division involving a relocatable element(s) is not valid.

2. Multiplication of two relocatable elements is not valid.

3. The asterisk (*) symbol (implying current location counter) is a
relocatable element.

4, When the result of the evaluation of an expression is an absolute
element, the expression is absolute. '

5. When the result of the evaluation of an expression is a relocatable
element, the expression is relocatable.

6. When the result of the evaluation of an expression is the sum or
difference of a relocatable element and an absolute element, the
expression is relocatable.

7. When the result of the evaluation of an expression is the difference
between two relocatable elements, the expression is absolute.

As the result of the evaluation of an expression:

1. The sum of two or more relocatable elements is not wvalid.

2, The product of an absolute element and a relocatable element is not
valid.

3. A negative relocatable element is not valid.
4, The difference of two different types of relocatable elements is not

valid.

These rules are not a complete set of determinants but do serve as a basis
for establishing a method of defining relocation admissibility of an expression.

2-10 DDO1

Let Rr denote a programtext relocatable element, Rc denote a Blank Common

element,

and Rl denote a Labeled Common element. Next, take any expression and

process it as follows:

l.

2.

Replace all absolute elements with their respective values.

Replace any relocatable element with the proper Ri, where i = r, ¢, or
1. This yields a resulting expression involving only numbers and the
terms Rr, R1l, and Rc.

Discard all terms in which all elements are absolute.

Evaluate the resulting expression. If it is zero or numeric, the
original expression is absolute; if it is explicitly Rr, Rc, or Rl,
then the original expression is normal relocatable. Blank Common,
relocatable, or Labeled Common relocatable, respectively.

If the resulting expression is not as given in 4 above, it is a
relocation error and/or an invalid expression.

In the illustrative examples following, assume ALPHA and BETA to be normal
relocatable elements (Rr), GAMMA and DELTA to be Blank Common relocatable

elements
(R).
l.
2.
3.
4.

(Rc), and EPSILON and ZETA to be Labeled Common relocatable elements

Let N and K be absolutely equivalent to 5 and 8, respectively.

4*ALPHA-7-4*BETA

reduces to

4*Rr=-4*R1=0,

thus indicating a valid absolute expression.

N*ALPHA+8*GAMMA+21 - K*DELTA

reduces to

5*Rr+8*Rc-8*Rc=5Rr,

thus indicating an invalid expression.

EPSILON+N-ZETA
reduces to
thus indicating a valid absolute expression.

ALPHA-GAMMA+DELTA+7

reduces to

Rr-Rc+Rc=Rr,

thus indicating a valid relocatable expression.

Special Relocatable Expressions

All symbols defined as other than equal to some number (A EQU 4) are
defined relative to some explicit or implied location counter (USE, BLOCK) and
are subject to adjustment at the end of Pass 1. Therefore, they are considered
to be relocatable in Pass 1, even in an absolute assembly.

2-11 DDO1

Thus, special action must be taken, if they are to be referenced and used
in Pass 1 by certain pseudo-operations--those which call for an expression
evaluation for the determination of some count subfield, the result of which
must be absolute. As an example, consider

BCI 6 ,HOLLERITH TEXT
DUP 5,2

\

Normally, the count fields in the above are nonvariant and there is no
problem. Consider however

M BCI N,HOLLERITH TEXT
DUP N,M-1

The assembler is equipped to handle expressions in these count fields,
provided the result is absolute. But, since M 1in the above example is a
location symbol, and its value relative to the origin of the USE is all that is
known in Pass 1, a relocation error would result. The solution to this problem
is simply to define some symbol at the first available location of the counter
in question. It has a value of zero relative to the origin of that counter and
may be used as follows:

USE CTR

FIRST NULL

M BCI N,HOLLERITH TEXT
DUP N,M-FIRST-1

The result of this expression is now absolute, and truly represents the
Pass 1 value of the symbol M (less 1).

LITERALS

A literal in a subfield is defined as being the data to be operated on
rather than an expression which points to a location containing the data. In
MAP, literals are permitted in the nonmemory reference instructions and the
following pseudo-operations:

CALL ICW ZERO
DCW IND
All other uses of literals will result in a warning flag. The nonmemory

reference literals are of an immediate type and do not cause entries to be made
in the literal pool.

2-12 DDO1

The assembler retains pseudo-operation literals by means of a table called
a literal pool. When a pseudo-operation literal appears, the assembler prepares
a constant which is equivalent in value to the data in the literal subfield.
This constant is then placed in the literal pool, providing an identical
constant has not already been so entered. If the constant is placed in the
literal pool, it is assigned an address; and this address then replaces the
data in the literal subfield, the constant being retained in the pool. If the
constant is already in the literal pool, the address of the identical constant
replaces the data in the literal subfield.

The assembler processes six types of literals: (1) decimal, (2) octal, (3)
ASCII, (4) alphanumeric, (5) instruction, and (6) variable field. The
appearance of an equal sign in column 16 of the variable field, instructs the
assembler that the subfield immediately following is a 1literal. For
pseudo-operation literals (except CALL) all types of literals are permitted.
Instruction and variable field 1literals are not permitted for nonmemory
reference instructions. The CALL pseudo-operation is restricted to decimal,
octal, and alphanumeric literals where the character count is less than seven.

The instruction and variable field literals are placed in the literal pool.
Because they cannot be evaluated until Pass 2 of the assembly:; no attempt is
made to check for duplicate entries into the pool. For alphanumeric literals
with 7 or more characters and Symbolic ASCII (SACI) literals, no evaluation 1is
done until Pass 2; however, space is reserved in the literal pool.

Decimal Literals

1. Integers -- A decimal integer is a signed or unsigned string of
digits. It is differentiated from the other decimal types by the
absence of a decimal point, the letter B, the letter E, and the letter
D.

2. Single-Precision Floating-Point =-- A floating-point number is
distinguished by the presence of an E, a decimal point, or both. A
floating-point number consists of two parts: a principal part and an
exponent. The presence of the exponent is optional. The principal
part is a signed or unsigned decimal number with a decimal point in
any position of the number, or with an assumed decimal point at the
right-hand end of the number. If there is no exponent part, the
decimal point may not be assumed, but must be present.

The exponent part follows the principal part and consists of the
letter E followed by a signed or unsigned decimal integer.

3. Double-Precision Floating-Point -- The format of the double-precision
floating-point number is identical with the single-precision format
with two exceptions:

1. There must always be an exponent.
2. The letter E must be replaced by the letter D.

The assembler will ensure that all double-precision numbers begin in
even memory locations. Ambiguity of storage assignment as to even or
odd will always cause the assembler to force the first half of
double-precision word pairs to even locations; it will then issue a
warning in the printout listing.

2-13 DDO1

4, Fixed=-Point - A fixed=-point quantity possesses the same
characteristics as the floating-point =-- with one exception: it must
have a third part present. This is the binary scale factor denoted by
the letter B followed by a signed or unsigned integer. The binary
point is initially assumed at the left-hand end of the word between
bit positions 0 and 1. It is then adjusted by the binary scale
factor, designated with plus implying a shift to the right and with
minus, a shift to the left. Double-precision fixed-point follows the
rules of double-precision floating=-point with addition of the binary
scale factor.

Examples of decimal literals are:

==10 Integer

- =26,44167E-1 Single=-precision floating-point
=1.27743675385D0 Double-precision floating-point
=22,5B5 Fixed=-point

Octal Literals

The octal literal consists of the character O followed by a signed or
unsigned octal integer. The octal integer may be from one to six digits in
length plus the sign. The assembler will store it in a word, right-justified.
The word will be stored in its real form and will not be complemented if there
is the presence of a minus one. The sign applies to bit 0 only.

Examples of octal literals are:

=01257
=0-37742

Alphanumeric Literals

The alphanumeric, or Hollerith literal, consists of the letters H or nH,
where n is a character count followed by the data. If there is no count
specified, a literal of exactly one 6-bit character is assumed to follow the
letter H. 1If a count exists, the n characters following the character H are to
be used as the literal. If the value n is not a multiple of three, the last
partial word will be left-justified and filled in with blanks. The value n can
range from 1 through 53. (Embedded blanks do not terminate scanning of the
cards by the assembler.)

Examples of alphanumeric literals are:

=HA

=HG

=4HCONEPY (P represents a blank)
=7HTHEBENDB}

2-14 DDO1

N

SACI Literals

The Symbolic ASCII (SACI) literals consist of the letter A or nA where n is
a field count, followed by the data. The maximum value of n is 26 and the SACI
literal must be contained on one card (cannot be continued with the ETC
pseudo-operation) . In nonmemory reference literals, no count is specified; a
literal of exactly one Symbolic ASCII field (see the SACI pseudo-operation for
the permitted fields) is assumed to follow the letter A. If a count exists, the
n fields following the character A are to be used as the literal. If the value
of n is not a multiple of 2, the last partial word is left-justified and zero
filled. The fields are comma separated and a blank will terminate the scanning
of the card by the assembler, (blanks may be assembled by using the symbol SP) .
If the PARITY pseudo-operation is ON, parity is generated for each character.

Examples of Symbolic ASCII literals:

Literal Interpreted Value
=A$ 044

=ASP 040

=AEOT 004
=4ACR,LNF,?,DEL 015012, 077177
=7AT,LH,LE,SP,E,LN,LD 124150, 145040,

105156, 144000

See Figure 4-1 for the symbolic ASCII symbols.

Instruction Literals

The instruction literal consists of the equal sign (=) character followed
by the letter M. This is followed in turn by an operation code, one blank, and
a variable field. (The embedded blank does not terminate scanning of the card in
this instance.) Only the machine instructions and one pseudo-operation (ARG) are
legal in an instruction literal.

Examples of instruction literals are:

=MARGYBETA-ALPHA
=MTRABALPHA-BETA

Pseudo-operations containing instruction literals cannot wuse address
modification, since, if a modifier is encountered, it is assumed to be part of
the instruction literal.

N
1

15 DDO1

Variable Field Literals

The variable field 1literal begins with the character V. Subfields are
separated by commas. Each subfield is preceded by a count of bits for that
subfield and a slash (/). The total bit count for one literal subfield must not
exceed 18. The subfields of a variable field literal may be one of three types:
algebraic, Boolean, alphanumeric. See the "VFD (Variable Field Definition)"
pseudo-operation for the detailed description of use of variable field data.
The variable field format is the same for both the variable field literal and
the VFD pseudo-operation.

Examples of variable field literals are:
=v1.0/895,5/37,H6/C,15/ALPHA

=V18/ALPHA,012/235,6/0

Pseudo-operations containing variable field literals cannot use any of the
forms of a tag modifier.

Nonmemory Reference Instruction Literals

When a literal is used in a nonmemory reference instruction, the value of
the literal is not stored in the literal pool but is truncated to a 9-bit value
and placed in the displacement field of the instruction. Normally a literal
represents an 18-bit number. For the nonmemory, floating-point, Hollerith, and
SACI 1literal bits 0 through 8 of the literals are placed in the displacement
field. For all other literals, bits 9 through 17 are placed in the displacement
field.

Examples of nonmemory reference literals:

Coded Literal Assembled Instruction
ILA =100 673144

IANA =077 022077

IERA =0777531 322531

ILA =2B13 673040

ICMPA =H? 422017

ICMPA =AETX 422003

NOTE: If parity was specified as ODD and is ON, the last example would
assemble as 422203.

2-16 DDO1

SECTION III

PROCESSOR INSTRUCTIONS

REPRESENTATION OF INFORMATION

The DATANET FNP deals with four basic data sizes: 6 bits, 9 bits, 18 bits,
and 36 Dbits. The 6-bit and 9-bit sizes are called alphanumeric data

(characters); the 18-bit and 36-bit sizes are called single-precision data and
double-precision data, respectively.

Single-Precision Data

The single-precision data word occupies one memory location and consists of
18 bits arranged as follows:

18-bits

Double-Precision Data

The double-precision data word consists of 36 bits arranged as shown below.

This word occupies two consecutive memory locations, an even location and the
next higher odd location (a word pair).

0 1718 35

Even Location 0dd Location

3-1 DDO1

Alphanumeric Data

Alphanumeric data consists of 6-bit or 9-bit characters. A
single-precision word (one memory location) contains either two 9-bit characters
or three 6-bit characters as shown below. The three 6-bit characters are
numbered 0, 1 and 2; the two 9-bit characters are numbered 0 and 1.

6-Bit Characters:

0 56 1112 17

9-Bit Characters:

0 89 17

NUMBER SYSTEM

Instructions can be divided into two groups according to the way in which
the operand is interpreted: the "logical instruction" and the '"algebraic
instruction" group.

For the logical group, operands and results are regarded as unsigned,
positive binary numbers. In the case of addition and subtraction, the
occurrence of any overflow is reflected by the carry out of the most significant
(leftmost) bit position:

Addition: If the carry out of the leftmost bit position equals 1, then
the result is above the range.

Subtraction: If the carry out of the leftmost bit position equals 0, then
the result is below the range.

In the case of comparisons, the 2Zero and Carry Indicators show the
relation. ‘

For the algebraic group, operands and results are regarded as signed,
binary numbers, the leftmost bit being used as a sign bit, (a 0 being plus and 1
minus). When the sign is positive all the bits represent the absolute value of
the number; and when the sign is negative, they represent the 2's complement of
the absolute value of the number.

In the case of addition and subtraction the occurrence of an overflow is
reflected by the carry into and out of the leftmost bit position (the sign
position). If the carry into the leftmost bit position does not equal the carry
out of that position then overflow has occurred. If overflow has been detected
and if the sign bit equals 0, the resultant is below range; if with overflow,
the sign bit equals 1, the resultant is above range.

3-2 DDO1

An explicit statement about the location of the binary point is necessary
only for multiplication and division; for addition, subtraction, and comparison
it is sufficient to assume that the binary points are aligned. In the DATANET
FNP, multiplication and division are implemented for 2's complement fractional
numbers.

In integer arithmetic, the location of the binary point is assumed to be at
the right of the least-significant bit position; that is, depending on the
precision, to the right of bit position 17 or 35. The general representation of
a fixed-point integer is then:

n-2

- - 1.0
—ag2®+a_ 2% M 4a_ 2% P4l a2 vag2

where a, is the sign bit.

In fractional arithmetic, the location of the binary point is assumed to be
at the left of the most-significant bit position, that is, to the left of bit
position 1. The general representation of a fixed-point fraction is:

=(n-1)

~ag2+a;2l +a,2% +...4ag 2 +a 2"

The number ranges for the various cases of precision, interpretation, and
arithmetic are listed in Figure 3-1.

Precision
Interpretation | Arithmetic || Address Field Single Word Double Word
(XI’XZ:X3) (A’Q,Y) (AQ, Y-Pair)
Algebraic Integer - -2175 N< (217-1) -2355 N < (235-1)
Fractional - 1sNsa-2") |-1sKs (1-273%)
Logical Integer 0< N<x< (215-1) 0< N< (218-1) 0< N=<s (236-1)
Fractional - 0< N< (1-2-18) 0< N< (1-2-36)

Figure 3-1. Ranges of Fixed-Point Numbers

3-3 DDO1

INSTRUCTIONS

There are two basic types of DATANET FNP instructions: (1) memory
reference instructions, and (2) nonmemory reference instructions.

Memory Reference Instruction

The memory reference instruction has the following format in physical
memory.

0123 89 17
T T | Opcode D
where:
I = Indirect Bit: when on (=1l), the effective address is computed
from the indirect word.
T = Tag Field: used to specify address modification using one of
three index registers (X1, X2, X3) or the instruction counter
(IC).
Opcode = Operation Code: One of the 1legal FNP memory reference

operation codes.

D = Displacement

The basic method of forming effective addresses consists of adding the
9-bit displacement field (D) to the complete address obtained from one of the
three 1index registers or the instruction counter. The displacement (D) is
treated as a 9-bit number in the 2's complement form. This allows the effective
address to be greater-than, or less-than, the whole address in the base register
(X1, X2, X3, or IC). When indirect addressing is specified (I=1), the effective
address is used as the address of an indirect word with the following format:

0123 17

i T Y

This differs from the instruction word, in that Y is an address field
rather than a displacement field, and no base address is needed to form a full
15-bit address. The I specifies further indirect addressing.

Nonmemory Reference Instructions

The nonmemory reference instructions are those instructions that contain
the data to be used with the program addressable registers in the displacement
field. There are two groups of nonmemory reference instructions, with each
group having primary operation code(s) common to the group. The specific
instruction within the group is determined by wusing other fields of the
instruction word as suboperation codes.

3-4 DDO1

Group 1 Nonmemory Instructions

The Group 1 nonmemory reference instructions have the following format:

0 2 3 89 17
Sl Opcode D
where:

sl = Suboperation Code: used to determine the specific instruction
in the group.

Opcode = Operation Code: Codes octal 73,22,52, or 12 signify that this
is nonmemory reference Group 1 and that the displacement and
tag fields are to be handled in a different manner from the
Group 2 instructions.

D = Displacement: This field is the operand and is handled

differently for each instruction. See "Nonmemory Reference
Instructions" for descriptions of the instructions in this
group.

Group 2 Nonmemory Instructions

The nonmemory reference instructions in Group 2 have the following format:

0 2 3 89 1112 17

S1 Opcode S2 K

where:

S1l, S2 = Suboperation Codes: These two codes form a prefix and a suffix
to the operation codes and are used to determine the
instruction within the group.

Opcode = Operation Code: Code octal 33 signifies that the instruction
is a Group 2 nonmemory reference instruction.

K = Operation Value: This field is used for such functions as

shift counts.

3-5 DDO1

PROCESSOR REGISTERS

The program-accessible registers are as follows:

Name Mnemonic Length (bits)
Accumulator AQ 36
Three index registers X1, x2, X3 18
Instruction counter IC 15
Indicator register I 8

Input/output channel select
register] 6

The AQ register is used as follows:

° In fixed-point operations, as an operand register for double-precision
operations.

° In fixed-point operaticry, as operands for single-precision operations
where each AQ half serves independently of the other. The values are
then called A-register (AQ bits 0-17) and Q-register (AQ bits 18-35).

The index registers are used for address modification.

The indicator register 1is a generic term for all program-accessible
indicators within the processor. The name is used where the set of indicators
appears as a register, that is, a source or destination of data.

The instruction counter holds the address of the next instruction to be
executed.

The input/output channel select register specifies the input/output channel
for the programmed input/output operations.

FAULTS

Faults (internal interrupts) are included in the processor to provide for
program intervention when certain system errors or other events occur. Eight
types of faults are provided. When specific faults occur, program control is
automatically transferred to fixed memory locations. The eight types of faults
are shown in Table 3-1.

As shown in the table, two groups of faults are defined: those which
unconditionally abort the instruction in execution and those which do not. The
faults which do not cause an unconditional abort (non-abort faults) are
recognized under the same conditions as program interrupts except that they have
higher priority.

3-6 DDO1

Table 3-1. Processor Faults

Fault Vector

Octal Memory Unconditional
Location Fault Name Priority Abort
00440 Power shutdown 7 no
beginning
00441 Power-on restart 4 yes
00442 Memory parity 1 yes on instruction and
error indirect cycles; no on

operand cycles

00443 Illegal operation 2 yes
code

00444 Overflow 5 no

00445 Illegal store 3 yes
operation

00446 Divide check 6 no

00447 Illegal program 8 no
interrupt

The recognition of a fault causes the processor to execute a
hardware-forced TSY instruction wusing the contents of the memory location
assigned to the specific fault, as an indirect word. The memory location can be
program loaded with the starting address of a fault processing routine.

The instruction counter will always be the value present when the fault
occurred, namely the address of the faulty instruction. The forced TSY fault
response will increment that value by 1 for storage in memory.

Two faults have associated indicator and inhibit bits in the Indicator
Register: the Memory Parity Error and the Overflow faults. The other faults
have no indicators. The faults with indicators operate as follows: If the
fault occurs and is not inhibited, the jump to the fault vector occurs, and the
indicator bit is set. If the fault occurs and is inhibited, the jump to the
fault vector does not occur, and the indicator bit EE set. In either case, the
program receives indication of the occurrence of the fault.

The processor faults shown in Table 3-1 are described as follows:

Power Shutdown Beginning Fault =-- This fault is triggered by an external signal
to the DATANET FNP indicating impending power off. This fault can be inhibited
by a manual switch on the Operation and Maintenance Panel.

Power-On Restart Fault =-- This fault is triggered by an external signal to the
DATANET FNP indicating the power-on has occurred. The computer initializes and
transfers to the fault vector location. This fault can be disabled by a manual
switch on the Operation and Maintenance Panel.

3-7 DDO1

Memory Parity Error Fault -- This fault is triggered when a parity error occurs
during a read from memory by the processor. This fault can be program inhibited
by setting the Parity Fault Inhibit bit ON with the LDI instruction.

Illegal Operation Code Fault -- When the processor detects an illegal operation
code, this fault will occur. All unused operation codes are illegal.

Overflow Fault -- This fault is generated by an overflow during an arithmetic
operation. This fault can be program inhibited by setting the Overflow Fault
Inhibit bit ON with the LDI instruction.

Illegal Memory Operation -- The illegal memory operation fault will be generated
for the following reasons:

) Memory controller time out (hardware error)
° Illegal command to memory controller (hardware error)
° Oout of bounds address
) Any attempt to alter memory in a protected region
° A character address of seven (7)
Divide Check Fault -- This fault is generated when a division cannot be carried

out for one of the reasons specified with each divide instruction.

Illegal Program Interrupt Fault =-- The illegal program interrupt fault may be
generated 1n two ways:

1. The processor attempted to answer an interrupt when there was no
interrupt present (hardware error).

2, The processor answered a valid interrupt, but the contents of the word
in memory containing the interrupt sublevels were all zeros. This can
happen if the processor or IOM stores zero in one of the interrupt
sublevel locations after an interrupt has been set.

NOTE: A convenient way to determine if an interrupt was present in a word
is to look at bits 16 and 17 of the interrupt sublevel locations.
If they are both 1, then an interrupt in that 1level has been
answered.

Any faults which happen during a CIOC, LDEX, or STEX instruction are
answered by the processor, even though the IOM participated in the
cycle. The control strobes from the memory controller will not geo
to the IOM under those conditions.

3-8 DDO1

PROGRAM INTERRUPTS

The hardware priority of the program interrupt cells permits multi-level
programming. When an interrupt level cell with a higher priority than that of
the process currently in execution is set, execution ceases after the next
non-inhibited instruction. The interrupt handling sequence then begins which
results in a transfer to the higher priority process.

Normally the setting of an interrupt level cell is initiated by an 1/0
channel. For a single processor computer, program setting of interrupts has no
function for normal operation, since there is no other processor to communicate
with. However, program setting of the interrupt cells is possible with the SIC
instruction as a test and diagnostic aid.

The DATANET FNP has effectively 256 input/output program interrupt levels.
These are arranged in 16 levels of 16 sublevels each. Each level is referenced
by setting one of 16 flip/flop program interrupt cells arranged in priority
order. The level to be set is specified to the IOM by the I/0 channel.
Corresponding with each hardware cell is a sublevel word in memory. Each
sublevel word in turn can have up to 16 bits set. The sublevel word bit
position is the number specified by the four least significant bits of the I1/0
channel number of the channel which caused the interrupt. The level and
sublevel numbers are combined to reference the Interrupt Vector location. This
location can be program loaded with the starting address of an interrupt service
routine. The details of this sequence are described in the following
paragraphs.

The interrupt sequence begins when a channel specifies one of six Set
Interrupt cell operation codes, one of 16 interrupt levels (four interrupt level
lines) and one of 16 interrupt sublevels (four bits of the channel number) with
its command lines. The Request Service line to the IOM is then raised. When
the service request is answered, the IOM causes the Memory Controller to set the
flip/flop interrupt cell corresponding to the priority level of the interrupt.
The Memory Controller then uses an RAR (Read-Alter-Rewrite) cycle to access the
associated Interrupt Sublevel Word in memory. A one is set in the bit position
corresponding with the sublevel number. The format of the Interrupt Sublevel
Word is shown as follows:

0 151617

Interrupt Sublevels l<¢———Interrupt Answered

The Memory Controller then scans the flip/flop interrupt cells. When any
of the 1l6-level cells is ON, the controller raises the Interrupt Present line to
the processor. When the processor answers the Interrupt Present line, the
memory controller extracts the Interrupt Sublevel Word corresponding to the
highest priority enabled (not inhibited) interrupt and scans the word for the
highest priority sublevel within that word. The scan is from left to right (0
to 15), and the sublevels are serviced in that order.

The Memory Controller restores the word with the highest priority sublevel
bit reset to =zero, with all other bits left undisturbed. If the word is all
zero's when restored, then the interrupt cell corresponding to that level is set
to zero. If the word is not all zeros when restored, the 1level interrupt is
left at 1.

3-9 DDO1

Bits 16 and 17 of the Interrupt Sublevel Word are both set to one each time
that word is accessed by the Memory Controller in response to an interrupt.
These bits may only be set to zeros by program. This feature is available as a
diagnostic aid. If an interrupt is answered and the Interrupt Sublevel Word is
found to contain all =zeros in bits zero to 15, an Illegal Program Interrupt
fault is generated.

After the scan of the Interrupt Sublevel Word has detected a one and the
bit position (sublevel number) of the one is determined, the processor is forced
by hardware to execute a TSY instruction with two levels of indirect address
modification. The first indirect vector address is formed with the format:

0 1 910 1314 17

1| MBX Sublevel Level

t-Indirect bit

This indirect word points to the Interrupt Vector location. No memory
cycle is involved in obtaining either the TSY instruction or the first level
indirect word.

The second level indirect address is obtained from the memory location
specified by the Interrupt Vector Address just described. This location is
normally program loaded with the starting address of an interrupt service
routine.

Since the TSY is wired into the interrupt mechanism; the only variable for
the operating program is the vector to the service routine. This means that a
program cannot NOP (no operation) an interrupt (as might be done for a pseudo
mask). This must be done by a "spring loaded" transfer, that is, a vector out
to an immediate return.

The interrupt levels may be inhibited (masked), but not individual
sublevels within an Interrupt Sublevel Word.

3-10 DDVl

Table 3-2 shows the memory map of the Interrupt Vector and Interrupt
Sublevel word locations.

Table 3-2. Memory Map - Interrupts

Octal Sublevel No. Level No.

Address (Decimal) (Decimal)

00000 0 0)

00001 0 1

00002 0 2

00003 0 3

00004 0 4

00005 0 5

00006 0 6

00007 0 7

00010 0 8

00011 0 9

00012 0 10

00013 0 11 > Interrupt

00014 0 12 Vectors

00015 0 13

00016 0 14

00017 0 15

00020 1 0

00021 1 1

00377 15 15

00400 Not applicable 0
. Not applicable . Interrupt
. Not applicable . Sublevel
. Not applicable . Words

00417 Not applicable 15

The program can enable or inhibit any of the 16 interrupt levels via the
instruction SIER (Set Interrupt level Enable Register). Inhibiting an interrupt
level postpones its recognition until the level is enabled.

_The recognition of all interrupts may be inhibited via the instruction INH
(Inhibit Interrupts). Recognition of any interrupt is postponed until the
execution of an ENI (Enable Interrupts) instruction.

Recognition of any enabled interrupt or non-abort fault occurs at the
completion of the instruction execution in progress when the interrupt or fault
was set, with the following exceptions:

° All jump (transfer) instructions.

® ENI, INH, LDI, and STI instructions.

3-11 DDO1

PROCESSOR INDICATORS

The processor indicators give the programmer information about the present
state of the processor and the program it is executing. The indicators are set
automatically by the processor and, in general, indicate the results after the
execution of the present instruction. The Indicators can be regarded as
individual bit positions in an 8-bit Indicator Register (IR). An indicator is
set to the ON or OFF state by certain events in the processor, or by certain
instructions. The ON state corresponds to a binary one in the respective bit
position of the IR; the OFF state corresponds to a zero.

The description of each machine instruction includes those indicators that
may be affected by the instruction and the conditions under which a setting of
the indicators to a specific state occurs. If the conditions stated are not
satisfied, the state of the indicator remains unchanged.

The instruction set includes the LDI and STI instructions which transfer
data between a memory location and the Indicator Register. The indicators and
their relation to the bit positions of the memory location word are shown in
Table 3-3. For the purposes of these instructions, the Indicator Register and
the I/0 Channel Select Register are treated as one register. In other
operations, these registers are functionally separate.

Table 3-3. Indicators and Their Relation to the Bit Positions
of a Memory Location

Bit Position Indicator

0 Zero

1 Negative

2 Carry

3 Overflow

4 Interrupt inhibit

5 Parity fault inhibit

6 Overflow fault inhibit

7 Parity error

8

9

10 Not used

11

12

13 Input/output channel Select

14 Register

15

16

17

The following describes the individual indicators:

Zero Indicator =-- The =zero indicator is used to test for zero or non-zero
operands or resultants. It is set by instructions that change the contents of a
processor register (AQ, Xn) or adder, and by the comparison instructions. The
indicator is set ON when the new contents of the affected register or adder
output contains all binary zeros otherwise the indicator is set OFF.

The zero indicator is tested by the Transfer on Zero (TZE) and the Transfer
on Not Zero (TNZ) instructions.

3-12 DDO1

Negative Indicator -- The negative indicator is used to test for negative or
positive operands or resultants. It is affected by instructions thgt changg the
contents of a processor register (AQ) or adder, and by comparison 1nst¥uctlons.
The indicator is set ON when the contents of bit position 0 of this register or
adder output is a binary 1; otherwise it is set OFF. The contents of the index
registers do not affect this indicator.

The negative indicator is tested by the Transfer on Minus (TMI) and
Transfer on Plus (TPL) instructions.

Carry Indicator —-- The carry indicator is used to determine if an operation has
generated a carry out of the two most significant bits (bit positions 0 and 1).
This is not an arithmetic overflow. The carry indicator is affected by left
shifts, additions, subtractions, and comparisons. The indicator is set ON when
a carry is generated out of bit position 0; otherwise it is set OFF. On
arithmetic shifts to the left, a carry is produced whenever the number involved
is changed in sign during the shift.

The Transfer on No Carry (TNC) instruction tests the state of the carry
indicator.

Overflow Indicator -- The overflow indicator 1is wused to determine if the
resultant of an arithmetic operation has exceeded the word length of the
computer.

The overflow indicator is set ON if there is a carry out of either the most
significant bit (bit position 0) or the next most significant bit (bit position
1) but not both. It is affected by the arithmetic instructions, but not by
compare or Boolean instructions.

Since it is not set to OFF otherwise, the Overflow Indicator reports any
overflow that has occurred since it was last set OFF by one of the instructions
Transfer on Overflow (TOV) or Load Indicator Register (LDI).

The TOV instruction tests the status of the overflow indicator and sets it
OFF.

Ooverflow Fault Inhibit Indicator -- If the overflow fault inhibit indicator is
ON, then the setting ON of the overflow indicator does not cause an overflow
fault trap to occur. The overflow fault inhibit indicator can be set ON or OFF
only by the instruction LDI. Clearing of the overflow fault inhibit indicator
to the enabled state does not generate a fault from a previously set overflow
indicator. The status of the overflow fault inhibit indicator does not affect
the setting, testing, or storing of the overflow indicator.

Parity Error Indicator -- The parity error indicator is set to ON when a parity
error is detected during the access of words from memory. It may be set to ON
or OFF by the LDI instruction.

Parity Fault Inhibit Indicator -- When the parity fault inhibit indicator is ON,
the setting of the parity error indicator does not cause a parity error fault
trap to occur. When the parity fault inhibit indicator is OFF, such a trap will
occur. The parity fault inhibit indicator can be set to ON or OFF only by the
IDI instruction. Clearing of the parity inhibit indicator to the unmasked state
does not generate a fault from a previously set parity error indicator. The
status of the parity fault inhibit indicator does not affect the setting,
testing, or storing of the parity error indicator.

3-13 DDO1

Interrupt Inh%bit Indicator -- The interrupt inhibit indicator is affected by
the Lgad Indlgator Register (LDI), Interrupt Inhibit (INH) and Enable Interrupt
(ENI) instructions. If interrupts are inhibited, this indicator is turned on.

ADDRESS FORMATION

. The DATANET FNP memory is addressed by an 18-bit two-part address as
ollows:

CY [WY

The CY field is the character address and the WY field is the word address.
The character and word addresses are used for all memory references. The 15-bit
WY specifies one of 32,768 (18-bit) words (maximum) in the normal binary
fashion. The 3-bit CY specifies the desired character by a code assigned to
each character.

The addressable characters, their CY codes, and fractional interpretations
are:

Fractional CcYy
Interpretation Value Character Addressed

0/3 100 6-bit character number 0 (bits 0-5)
1/3 101 -6-bit character number 1 (bits 6-11)
2/3 110 6-bit character number 2 (bits 12-17)
0/2 010 9-bit character number 0 (bits 0-8)
1/2 011 9~bit character number 1 (bits 9-17)

Full

word 000 entire 18-bit word

The character addressing feature is wvalid only for single-precision
(18-bit) memory references.

3-14 DDO1

When characters are addressed, they are transferred.to and from the memory
right justified. Unused bits are zeros for operations from memory.and are
ignored for operations to memory. An example of a load and store operation upon
6-bit character No. 0 (CY = 100) is:

0

Zeros Char. Word presented to processor or IOM

1112 17

S

0 56 17

Char. Unchanged Word in memory

Basic Level Effective Address Formation Rules

The basic method of forming an effective address (Y**) consists of adding
the 9-bit instruction displacement (D) field to a selected base register (X1,
X2, X3, or IC). The displacement field is treated as a 9-bit twos complement

number to allow the effective address to be greater than, or less than, the base
address.

When the instruction specifies indirect addressing (I bit=1), the effective

address is calculated as above to form the address for an indirect word with the
format:

0123 17

1L T Y

3-15 DDO1

The Y field of the indirect word is an address field, and n i
has .tg be added to form the effective address. The inéirect bgt g:szﬁggeﬂggg
spec;fles whethe; or not continued indirect addressing is to be performed. The
? fleld specifies which of the three index registers is to be used for further
1nd}r§ct modlf@cation. If the T field in the indirect word is 00, no
modlflcgtlon 1s performed and the Y field becomes the effective address (Y**)
The basic address formation rules are:)

Instruction Word Indirect Word
I=0 I=1 I=0 I=1
T=00 Y**=IC+D Y*=C (IC+D) Y**=y Y*=C (Y)
T=01 Y**=X1+4+D Y*=C (X1+D) Y**=X1+Y Y*=C (X1+Y)
T=10 Y**=X24D Y*=C (X2+D) Y**=X2+Y Y*=C (X2+Y)
T=11 Y**=X3+4D Y*=C (X3+D) Y**=X3+Y Y*=C (X3+Y)
NOTE: Y** = Effective operand address
Y* = Address of indirect word

There is no limitation on the number of indirect levels at modification.

The memory reference instructions can be divided into two types:
single-precision and double-precision. All single-precision instructions can
address an 18-bit word, a 6-bit character, or a 9-bit character.
Double-precision instructions can address only word pairs as operands.

When forming the effective address for a single-precision instruction, the
data size to be used is determined by the index register specified (if any) for
address modification. Each of the three 18-bit index registers (X1, X2, and X3)
contains two parts, a 15-bit word address part (WXn) and a 3-bit character
address part (CXn), in the same way that the memory address has a character part
and a word part. When the processor selects the index register for address
modification, the CXn field of the index register is examined. If that 3-bit
field contains any of the character address codes, the resultant memory
reference will involve a character. If the CXn field of the selected index
register contains the code for a full word address (CXn=000), the resultant
memory reference will involve a full 18-bit word. If no index register is
selected, word addressing is always used. The IC has only 15 bits; these 15
bits correspond to a word address. The nonexistent 3-bit C field of the IC is
treated as if it contained the word code (000).

WORD ADDRESSING - BASIC LEVEL

If the effective address is the address of a full word, it is formed by
adding the D field of the instruction to the word part of the specified base
register. The D field is expanded into a 15-bit quantity by extending the sign
of D (bit 9) six places to the left. The addition of the expanded D field and
the IC is limited to 15 bits so that carries out of bit 3 will not affect CY*.

3-16 DDO1

0123 8910 17

I| T opP S D Instruction word in memory

0 23 910 17

000 IS S D Expanded D field

0 23 17

000 IC or Xn Instruction counter or Index
Register

The effective address is formed by examining the C field of the selec?ed
base register (IC or Xn, n = 1,2,3). If that field is 000, the effective
address is formed as shown above.

Since the IC is a 15-bit register, it can only be used for word addressing.

CHARACTER ADDRESSING - BASIC LEVEL

In character addressing, memory is considered as containing 18-bit words
divided into two 9-bit characters, or three 6-bit characters. The address of
6-bit character number-0 of location Z would be 2 + 0/3. Similarly the address
of 9-bit character number-0 of location Z would be Z + 0/2. The character and
word address fields of a memory address correspond to the fraction and word
number.

When the FNP computes an effective address for a character, it treats the
quantities involved as if they were integer and fractional addresses. For
example, if C(Xn) = (Q+0/3), the effective address computed for an LDA
instruction with a displacement of (1+2/3) (referencing Xn), would be (Q+0/3) +
(1+2/3) = (Q+1+2/3).

A Load A Register (LDA) instruction with a displacement field of (-1+2/3)
referencing Xn would have an effective address of (Q+0/3) + (-1+2/3) =
(Q-1+2/3) . This allows forward and backward addressing of a character string.

The effective address in the character addressing mode is formed by
treating the D field of the instruction as having a 3-bit character (fractional)
part and a 6-bit word part. The 6-bit word part is expanded into a 15-bit

signed number by extending bit 12 of the instruction word nine places to the
left.

3-17 DDO1

The resultant 15-bit number is added to the 15-bit word portion of the
sglected index register. The 3-bit character field (C) of the expanded
dlsplagement, and the 3-bit C field of the selected index register together
determlne the C field of the effective address. For example, if the C field of
Fhe displacement has a value 101 (i.e., 6-bit character number 1), which is
1nterpr§ted as 1/3, and the C field of the index register has a value 101 (1/3),
the C field of the effective address will be 110 (2/3), which is 6-bit character
number 2. The expansion of the D field is:

0123 89 111213 17
T op CD S WD Instruction in memory
wa
012 34 1112 17
CD | Sl=t— S WD Expanded D field
0123 17
CXn WXn Selected index register (X1,X2,X3)

If the C fields of the D field and the selected index register combine to
form a fraction greater than, or equal to 1, the word address portion of the
effective address is increased by one. This can happen for example, when an LDA
instruction with a D field interpreted as (1+2/3) references X1, for which the
contents are interpreted as (Q+1/3). The effective address is then (Q+1/3) +
(1+2/3) = (Q+2+0/3).

A list of examples showing the effective address formation for various
combinations of C values is shown in Figure 3-2. This figure shows both the
machine operation (in octal) and its fractional interpretation.

When the effective address is formed by the character addition process,
carries from the word field addition do not affect the character addition.
However, carries from the character field addition go "end around" to the word
field addition, as in the case of (2/3+1/3) = 3/3 = (1+0/3).

A summary of the character addition rules, in the form of an addition table
is shown in Figure 3-3. This figure shows the actual machine numbers (in octal)
and their fractional interpretation.

3-18 DDO1

D Field of Expanded Effective
Instruction D Field Address
CX, WX Word C, (expansion)W CY*, WY* Meaning

5,07642 403 4, (000)03 5,07645 Six-bit character No. 1
(07642 + 1/3) [+ (3 + 0/3) = (07645 + 1/3) | of location 07645
5,07642 603 6, (000)03 4,07646 Six-bit character No. O
(07642 + 1/3) | + (3 + 2/3) = (07646 + 0/3) | of location 07646
3,07642 203 2,(000)03 3,07645 Nine-bit character No. 1
(07642 + 1/2) |+ (3 + 0/2) = | (07645 + 1/2) | of location 07645
3,07642 302 3, (000)03 2,07646 Nine-bit character No. 0
(07642 + 1/2) |+ (3 + 1/2) = (07646 + 0/2) | of location 07645
5,07642 677 6,(777)77 4,07642 Six-bit character No. 0
(07642 + 1/3) |+ (-1 + 2/3) = (07642 + 1/3) | of location 07642
5,07642 577 5,(777)77 6,07641 Six-bit character No. 2
(07642 + 1/3) |+ (-1 + 1/3) = (07641 + 2/3) | of location 07641
3,07642 377 3,(777)77 2,07642 Nine-bit character No. 0
(07642 + 1/2) |+ (-1 + 1/2) = (07642 + 0/2) | of location 07642
3,07642 277 2,(777)77 3,07641 Nine-bit character No. 1
(07642 + 1/2) |+ (-1 + 0/2) = (07641 + 1/2) | of location 07641

Figure 3-2.

Effective Address Formation Examples, Character Addressing

3-19

DDO01

S9TNY UOTITPPY SSOIPPY JI930RvIRyYD

*g-¢ 2anbTa

*£11ed punoie-pus ue S33BOTPUT + ()

*3ineg uoijeaadp siolg 1e3aTII ue

S3sn®d [1B3ID0 °SSIIPPE 1330BABYD IATIDI3IIS 9yl Se poajeasusld Juisq ; [eID0 UB UT ITNSAI SUOTIRUTqWOD TeBITTI (1)
wwuoz
| _ | | _ _ _ _
| | | | | | | |
| | | N
t | - + | S RV I VR R) BRI Lyo- L 1889111
n“ - +m_H+m\H +¢_H+m\o 9 _ €/ i“ - +m_ - i_ - N_ - 9 £/c
L | - 7| THE/0 |9 “ €/z | s “ Al R I B “ - L “ - L “ - S €/1
L] - 9| ez s _ €/1 | v _ e/ol ¢ | - L] - L] - L] - y €/0
L _ - +L _ - | _ - L _ - | +e _ 1+2/0 € _ U1 |+ |- T € /1
L “ - +L “ - +L _ - L _ - € “ /1 [A “ 2/0 +L “ - L “ - [4 /0
N_ - +~_ - +n“ - s_ - +~_ - wl - i_- L] - 1 mwmos
(o]
_ _ | _ | _ “ _ 1aneq
N L _ - tlo- | | - | - e - Ly - o] - 0 pao
LJesetir [9T e/z] st e/t v | ¢/o| ¢ | @t ef wo 1 | Ponfo | paon 18320 TFUOTIOBI]
_ _ _ _ | _ _Hason _
m | m “ i
SvE (g il gl et gl gy [5ls
ErR ol el Ep B[R OEIEl S| E; | BElE O |EIR
| £ £ 5 | &7, ¢ 5 15 |75
2| LR TR L be] e i lE

a papuedxg yo pPIatd J

DDO1

3-20

Indirect Level Effective Address Formation Rules

WORD ADDRESSING - INDIRECT LEVEL

In indirect level addressing, the source of the address is the indirect
word instead of the instruction, as in basic level addressing. A difference
from basic level addressing is that the indirect word contains an address field,
not a displacement field. The address field of the indirect word may be used
with or without index register modification. Figure 3-4 shows the effective
address formation for word addressing without and with index register
modification respectively.

Without Index Register Modification

Indirect word in memory:

Expanded Y Field:

0 00 Y } Y* = Y

With Index Register Modification

Indirect word in memory:

0123 17

I| Xn Y

Expanded Y field:

012 3 17
0| Xn Y 7
Index Register: > Y* = Y + Xn
012 3 17
0 00 Xn

J

Figure 3-4. 1Indirect Level Word Addressing

3=-21 DDO1

CHARACTER ADDRESSING - INDIRECT LEVEL

Thg character addressing mechanism may also be used during indirect
addreSSLQg. If the T field of the indirect word references an index register
Fhe C field of which is non-zero, the 15-bit address field of the indirect word
is broken into a 3-bit C field and a 12-bit signed word field, as shown in
Figure 3-5. The effective address is then calculated using the same fractional
address rules as in basic level addressing.

Y-Field Expansion

Indirect word in memory

0123 56 17

| T CcY WY

Expanded indirect word:

0 2 34 56 17

\
CcY S S WY

N g - > CY* = FA(CY,CXn)
WY* = WY+WXn+FA (carry)

0 2 3 17
CX WXn

S

Figure 3-5. Indirect Level Character Addressing

PROCESSOR INSTRUCTIONS

Processor instructions (machine instructions) written for the assembler
consist of a symbol (or blanks) in the location field, a 3- to 6-character
alphanumeric code representing a DATANET FNP operation in the operation field,
and an operand address (symbolic or numeric) plus a possible modifier tag in the
variable field. Legal symbols wused in the location fields, and as operand
addresses in the variable fields, have been previously described.

The standard machine mnemonics are entered left justified in the operation
field. Mnemonics by functional class are listed in Table 3-4 showing Execution
Time and octal code. Table 3-5 contains an alphabetical listing of mnemonics.
Table 3-6 contains a listing of mnemonics by octal codes.

3-22 DDO1

Table 3-4. Instruction Repertoire by Functional Class

Memory Reference Instructions

Execution Time
Octal Code Instruction (Microseconds)

Data Movement - Load

07 LDA Load A 2.0
47 LDQ Load Q 2.0
04 LDAQ Load AQ 2.4
43,03,41 LDXn Load Xn (n = 1,2,3) 2.0
44 LDI Load Indicator register 2.0
Data Movement - Store
17 STA Store A 2.1
57 STQ Store Q 2.1
14 STAQ Store AQ 2.1
53,13,50 STXn Store Xn (n = 1,2,3) 2.1
54 STI Store Indicator register 2.1
56 STZ Store Zero 2.1
Arithmetic - Addition
06 ADA Add to A 2.0
46 ADQ Add to Q 2.0
15 ADAQ Add to AQ 2.4
42,02,40 ADCXn Add character address to Xn 2.0
16 ASA Add stored to A 2.5
76 AOS Add one to storage 2.5
Arithmetic - Subtraction
26 SBA Subtract from A 2.0
66 SBQ Subtract from Q 2.0
24 SBAQ Subtract from AQ 2.4
36 SSA Subtract stored from A 2.5
Arithmetic - Multiplication
01 MPF Multiply fraction 6.7
Arithmetic - Division
21 DVF Divide fraction 7.5
Boolean Operations
34 ANA AND to A 2.0
32 ANSA AND to storage A 2.5
37 ORA OR to A 2.0
72 ORSA OR to storage A 2.5
35 ERA EXCLUSIVE OR to A 2.0
62 ERSA EXCLUSIVE OR to storage A 2.5
Comparison
27 CMPA Compare with A 2.0
67 CMPQ Compare with Q 2.0
63,23,61 CMPXn Compare with Xn 2.0
20 SZN Set zero and negative
indicators from memory 2.0
31 CANA Comparative AND with A 2.0

3-23 DDO1

Table 3-4 (cont). Instruction Repertoire by Functional Class

Execution Time

Octal Code Instruction (Microseconds)
Transfer of Control
71 TRA Transfer unconditionally 1.0
10 TSY Transfer and store (IC)
iny 2.2
74 TZE Transfer on zero 1.0
64 TNZ Transfer on not zero 1.0
75 TMI Transfer on minus 1.0
65 TPL Transfer on plus 1.0
45 TNC Transfer on no carry 1.0
55 TOV Transfer on overflow 1.0
Input/Output
60 CIOC Connect input/output channel 3.3
30 LDEX Load external (I/0) channel 3.0
70 STEX Store external (I/0) channel 3.1

Nonmemory Reference Instructions

Execution Time

Octal Code Instruction (Microseconds)
GROUP 1
Immediate Load
673 ILA Immediate load A 1.3
473 ILQ Immediate load Q 1.3
Immediate Add4
773 IAA Immediate add to A 1.3
573 IAQ Immediate add to Q 1.3
173,273, IACXn Immediate add character 1.3
373 address to Xn
Immediate Boolean
022 IANA Immediate AND to A 1.3
122 IORA Immediate OR to A 1.3
322 IERA Immediate EXCLUSIVE 1.3
OR to A
Immediate Compare
422 ICMPA Immediate compare with 1.3
A
222 ICANA Immediate comparative 1.3
AND to A
Interrupt Control
012 RTER Read Interrupt Level 2.2
' Enable Register
412 RIA Read Interrupt Address 2.5
052 SIER Set Interrupt Level 2.3
Enable Register
452 SIC Set Interrupt Cells 2.5

3-24 DDO1

Table 3-4 (cont).

Octal Code

GROUP 2

7333
6333

4332,
0332,4333

2332,
3332,3333

3331
7331
4331
2331

0337
4337
0335
0336
4336
0334
2337
6337
2335
2336
3336
6336
7336
2334
1336
1334

Instruction Repertoire by Functional Class

Execution Time

Instruction (Microseconds)
Data Movement
cQA Copy Q register into
A register 1.3
CAQ Copy A register into
Q register 1.3
CAXn Copy A register into
Xn register 1.3
CXnA Copy Xn register into
A register 1.3
Interrupt Control
INH Interrupt inhibit mode ON 1.3
ENI Interrupt enable mode ON 1.3
DIS Delay until interrupt 1.3
NOP No operation 1.3
Shifts
ARS A right shift 1.2 + 0.25N!
QRS Q right shift
LRS Long right shift
ALS A left shift
QLS Q left shift
LLS Long left shift
ARL A right logic
ORL Q right logic
LRL Long right logic
ALR A left rotate
ALP A left parity rotate
QLR Q left rotate
QLP Q left parity rotate
LLR Long left rotate Y
NRM Normalize 1.4 + 0.35N!
NRML Normalize long 1.4 + 0.25N%

1y

Number of bits shifted

DDO1

Table 3-5.

Instruction Repertoire (Alphabetical)

Mnemonics
ADA IACXn QLS
ADAQ IANA QRL
ADCXN IAQ QRS
ADQ ICANA RIA
ALP ICMPA RIER
ALR IERA SBA
ALS ILA SBAQ
ANA ILQ SBQ
ANSA INH SEL
A0S IORA SIC
ARS LDAQ ssa
ASA LDEX STA
CANA LDI STAQ
CAQ LDQ STEX
CAXn LDXn STI
CIoC LLR STQ
CMPA LLS STXn
CMPQ LRL STZ
CMPXn LRS SZN
CQA MPF TMI
CXnA NOP TNC
DIS NRM TNZ
DVF NRML TOV
ENI ORA TPL
ERA ORSA TRA
ERSA QLP TSY
IAA QLR TZE

DDO1

Table 3-6. Instruction Repertoire (Octal Codes)
Memory Reference Nonmemory Reference
Group 1 Group 2
Octal Octal Octal Octal Octal
00 - 40 ADCX3 073 SEL 0330 —— 4330 -—
0l MPF 41 LDX3 173 IACX1 0331 -— 4331 DIS
02 ADCX2 42 ADCX1 273 IACX2 0332 CAX2 4332 CAX1
03 LDX2 43 LDX1 373 IACX3 0333 -— 4333 CAX2
04 LDAQ 44 LDI 473 ILQ 0334 LLS 4334 -—
05 -— 45 TNC 573 IQQ 0335 LRS 4335 -—
06 ADA 46 ADQ 673 ILA 0336 ALS 4336 QLS
07 LDA 47 LDQ 773 IAA 0337 ARS 4337 QRS
10 TSY 50 STX3 012 RIER 1330 —— 5330 -—
11 —-_— 51 -— 112 -— 1330 -— 5331 -—
12 Group 52 Group 1 212 - 1332 -_—- 5332 —_—
13 STX2 53 STX1 312 -— 1333 -— 5333 -—
14 STAQ 54 STI 412 RIA 1334 NRML 5334 —
15 ADAQ 55 TOV 512 -— 1335 - 5335 -
16 ASA 56 STZ 612 -— 1336 NRM 5336 -
17 STA 57 STQ 712 -— 1337 -— 5337 -—
20 SZN 60 CIOoC 052 SIER 2330 - 6330 -—
21 DVF 61 CMPX 3 152 -— 2331 NOP 6331 -—
22 Group 62 ERSA 252 - 2332 cXx1a 6332 -
23 CMPX2 63 CMPX1 352 -— 2333 —-—— 6333 CAQ
24 SBAQ 64 TNZ 452 SIC 2334 LLR 6334 -
25 - 65 TPL 552 —_— 2335 LRL 6335 —_—
26 SBA 66 SBQ 652 -— 2336 ALR 6336 QLR
27 CMPA 67 CMPQ 752 -_— 2337 ARL 6337 QRL
30 LDEX 70 STEX 022 IANA 3330 ——— 7330 -
31 CANA 71 TRA 122 IORA 3331 INH 7331 ENI
32 ANSA 72 ORSA 222 ICANA 3332 CX2A 7332 -
33 Group 73 Group 1 322 IERA 3333 CX3A 7333 CQA
34 ANA 74 TZE 422 ICMPA 3334 -_—— 7334 -
35 ERA 75 TMI 522 -— 3335 - 7335 —-—
36 Ssa 76 A0S 622 -— 3336 ALP 7336 QLP
37 ORA 77 -— 722 -— 3337 —— 7337 -—
3=-27 DDO1

Processor Instruction Description

The descriptions of the DATANET FNP instruction set are arranged by
functional class including data movement, arithmetic, Boolean operations,
comparison, transfer of control, and miscellaneous operations. For the
description of the machine instructions it is assumed that the reader is
familiar with the general structure of the processor, the representation of
information, the data formats, and the method of address modifications, as
presented in the preceding paragraphs. :

A fixed format is presented for the description of each machine
instruction. The format includes the mnemonic and name of the instruction, a
summary, indicators, and pertinent notes.

A heading identifies the mnemonic and name of the instruction. The octal
code is shown in the word format and includes any suboperation codes.

The summary presents the change in the status of the processor that is
effected by the execution of the instruction. The operation is described in a
shorthand, symbolic form. If reference is made to the status of an indicator,
then it is the status of this indicator before the operation is executed.

Only those indicators for which the status can be changed by the execution
of this instruction are 1listed. Indicators that are not listed are not
affected. In most instances, a condition for setting ON as well as one for
setting OFF 1is stated. If only one of the two is stated, then this indicator
remains unchanged. Unless explicitly stated otherwise, the conditions refer to
(for example) the contents of registers as existing after the execution of the
instruction.

Notes exist only in those instances where the summary is not sufficient for
an understanding of the operation.

The following abbreviations and symbols are used for the description of the
machine operation.

EFFECTIVE ADDRESS AND MEMORY LOCATION SYMBOLS

Y* = The effective address of the respective instruction

Y pair = A symbol denoting that the effective address Y designates a
pair of memory locations (36 bits) with successive addresses,
the lower one being even. When effective address is even,
then it designates the pair (Y, Y + 1), and when it is odd,
then the pair (Y - 1, Y). 1In any case the memory location
with the lower (even) address contains the most significant
part of a double-precision number, or the first of a pair of
instructions.

D = Displacement contained in the D field of the instruction.

3-28 DDO1

REGISTER SYMBOLS

A = Accumulator register (18 bits)

Q = Quotient register (18 bits)

AQ = Combined accumulator-quotient register (36 bits)

X = Index register n (n = 1,2,3) (18 bits)

CcX = Positions 0,1,2 of Xn

WX = Positions 3 . . . 17 of X

IC = Instruction counter (15 bits)

I = Indicator register (8 bits)

S = Input/output channel selection register

Z = Temporary pseudo-result of a nonstore comparative operation

REGISTER POSITIONS AND CONTENT SYMBOLS

Ri = The ith position of R

Ri...j The positions i through j of R

R stands for any of the registers listed above as well as for a memory
location or a pair of memory locations.

C(R) = The contents of the full register R

C(R) i The contents of the ith position of R

C(R)i...J

The contents of the positions i through j of R

When the description of an instruction states a change only for a part of a
register or memory location, then it is always understood that the part of the
register or memory location which is not mentioned remains unchanged.

OTHER PROCESSOR SYMBOLS

—_— = Replaces

= Compare with

AND = The Boolean connective AND (symbol A)
OR = The Boolean connective OR (symbol V)
%#E = The Boolean connective NON-EQUIVALENCE (EXCLUSIVE OR)

3-29 DDO1

Memory Reference Instructions

LOAD INSTRUCTIONS

LDA - Load A

012 3 89 17
L] T 07 DISPLACEMEMT
Summarry
C(Y)—»C(a)
Indicators
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g= 1, then ON; otherwise OFF
LDQ - Load Q
012 3 89 17
IL| T 47 DISPLACEMENT
Summary
C(Y)—»C(Q)
Indicators
Zero If c(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g= 1, then ON; otherwise OFF
LADQ - Load Q
0123 89 17
I | T 04 DISPLACEMENT
Summary
C(Y-pair)—C(AQ)
Indicators
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g= 1, then ON; otherwise OFF
3=-30 DDO1

LDXn - Load Xn (n =1,2,3)
0123 89 17

T| T |43,03,0r 41 DISPLACEMENT

Summar

c(Y) (Bits 0-17)——»C (Xn)

Indicators

Zero If C(Xn) = 0, then ON; otherwise OFF

LDI - Load Indicator Register
0123 89 17

I| T 44 DISPLACEMENT

Summary
c(Y) (Bits 0-17,12-17)—»C(X)

Indicators
If corresponding bit in C(Y) is 1, then ON; otherwise OFF

NOTE: The relation between bit positions of C(Y) and the indicators is

follows:
Bit Position Indicators

0 Zero

1 Negative

2 Carry

3 Overflow

4 Interrupt Inhibit

5 Parity fault Inhibit
6 overflow fault Inhibit
7 Parity Error

8

. Not used
11
12

. Input/output channel
. select register
17

as

DDO1

STORE INSTRUCTIONS

STA - Store A

0123

89

17

17

DISPLACEMENT

Summarz
C(A)——»C(Y)

Indicators

None affected

STQ - Store Q

0123

89

17

57

DISPLACEMENT

Summarz
C(Q)———=cC(Y)

Indicators

None affected

STAQ - Store AQ

0123

89

17

14

DISPLACEMENT

Summary
C(AQ)——»C(Y-pair)

Indicators

None affected

DDO1

STXn - Store Xn (n =
Summary
C(Xn)—»C(Y)
Indicators

None affected

STZ - Store Zero

Summary
00...0—>»C(Y)

Indicators

None affected

1,2,3)

(Bits 0-17)

0123 89 17

| T |53,13,0r 50| DISPLACEMENT

0123 89 17

| T 56 DISPLACEMENT
3-33

DDO1

STI - Store Indicator Register

0123 89 17
L | T 54 DISPLACEMENT
Summary
C(I) (Bits 0-7,12-17)—C(Y) (Bits 0-7,12-17)
0——»C(Y) (Bits 8-11)
Indicators
The relation between bit positions of C(Y) and the indicators is as
follows:
Bit Position Indicators
0 Zero
1 Negative
2 Carry
3 Overflow
4 Interrupt Inhibit
5 Parity fault Inhibit
6 Overflow fault Inhibit
7 Parity Error
8
. Not used
11
12
. Input/output channel
. select register
17
The ON state corresponds to a ONE bit, the OFF state to a ZERO bit.
ADD INSTRUCTIONS
ADA - Add to A
0123 89 17
T | T 06 DISPLACEMENT
Summary
c(a) + Cc(Y)—»=C(Aa)
Indicators
Zero If ¢c(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of Apis generated, then ON; otherwise OFF

DDO1

ADQ - Add to Q
0123 89 17

| T 46 DISPLACEMENT

Summary
c(Q) + c(Y)—»C(Q)

Indicators
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qois generated, then ON; otherwise OFF

ADAQ - ADD to Q

0123 89 17

1L T 15 DISPLACEMENT

Summary
C(AQ) + C(Y-pair)—C(AQ)

Indicators
Zero If c(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF
Overflow If range of AQ exceeded, then ON
Carry If a carry out of AQ, is generated, then ON; otherwise
OFF
ADCXn - Add Character Address to Xn (n=1,2,3)
0123 89 17
| T |42,02,0r 40 DISPLACEMENT
Summary
FA [c(xn), c(¥)]—»cC(X)
Indicators
Zero If C(Xn) = 0, then ON; otherwise OFF

The Fractional Add (FA) function 1is a special addition for character
address (fractional) handling. The rules for forming the result:[FA C(Xn),
CY] are shown in Figure 3-6 and Table 3-7. The entries in the table of FA
function are the resulting octal contents of the C portion of the effective
address.

3-35 DDO1

CY WY c(y)

(i; WY + WXn

</

CXn WX C(Xn)

e
0 23 17
Xn WXn C(Xn) after
operation
carry

Figure 3-6. Memory Reference, Effective Address Formation Diagram

Table 3-7. Memory Reference, Fractional Add (FA) Function

cen Word (0/2) (1/2) (0/3) (1/3) (2/3) | Illegal

C(Xn) 0 1 2 3 4 5 6 7
Word

0 0 7 7 7 7 7 7 7

1 7 7 7 7 7 7 7 7
(0/2) 2 7 7 2 3 7 7 7 7
(1/2) 3 7 7 3 | 24carry 7 7 7 7
(0/3) 4 7 7 7 7 4 5 6
(1/3 5 7 7 7 7 5 6 4+carry 7
(2/3) 6 7 7 7 6 4+carry | 5+carry 7
Illegal 7 7 7 7 7 7 7 7 7

NOTE: 7 indicates an illegal combination which results in an illegal
memory operation fault on the first memory reference.

3-36 DDO1

ASA - Add A to Storage

Summary

0123 89 17

| T 16 DISPLACEMENT

Cc(n) + Cc(Y)—»C(Y)

Indicators

Zero
Negative
Overflow
Carry

If c(Y) = 0, then ON; otherwise OFF

If C(Y)g = 1, then ON; otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Yyis generated, then ON; otherwise
OFF

AOS - Add One to Storage

Summary

C(Y) + 0...01—/»C(Y)

Indicators

Zero
Negative
Overflow
Carry

SUBTRACT INSTRUCTIONS

SBA - Subtract from A

Summarz

0123 89 17
I| T 76 DISPLACEMENT
If c(Y) = 0, then ON; otherwise OFF

If C(Y)g = 1, then ON; otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Ypis generated, then ON; otherwise
OFF

0123 89 17

| T 26 DISPLACEMENT

c(a) - Cc(Y)—»C(Aa)

Indicators

Zero
Negative
Overflow
Carry

If Cc(Aa) 0, then ON; otherwise OFF

If c(A)o 1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of Agis generated, then ON; otherwise
OFF

3-37

DDO 1

SBQ - Subtract from Q

0123 89 17

| T 66 DISPLACEMENT

Summary
c(Q) - C(Y)—»C(Q)
Indicators
swZero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Q(p is generated, then ON; otherwise

OFF

SBAQ - Subtract from AQ

012 3 89 17
| T 24 DISPLACEMENT
Summary
C(AQ) - C(Y-pair)—C(AQ)
Indicators
Zero If c(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Overflow If range of AQ exceeded, then ON
Carry If a carry out of AQqp is generated, then ON; otherwise
OFF
SSA - Subtract Stored from A
0123 89 17
I| T 36 DISPLACEMENT

Summary
c(a) - C(Y)—»C(Y)

Indicators
Zero If c(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Yy is generated, then ON; otherwise

OFF

3-38 DDO1

MULTIPLY INSTRUCTIONS

P .
’ MPF - Multiply Fraction
0123 89 17
T 0l DISPLACEMENT
Summary
c(a) x c(Y)—»C(AQ), left-adjusted
Indicators
Zexro If c(AQ) = 0, then ON; otherwise OFF
Negative If c(aQ)g = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
Notes
1. Two 18-bit fractional factors (including sign) are multiplied to
form a 35-bit fractional product (including sign), which is
stored in AQ, left-adjusted. Bit position 35 of AQ is filled
with a zero bit.
0 1 17 01 17
o
S Factor Xp Factor
A Register Memory Location Y
01 34 35
S Product 0
Combined AQ Register
2, An overflow can occur only in the case (-1) x (-1).
~

3-39 DDO1

DIVIDE INSTRUCTIONS

DVF - Divide Fraction

0123 89 17
| T 21 DISPLACEMENT
Summary
C(AQ) + C(Y); fractional quotient —3»C(2)
remainder —3»C (Q)
Indicators
If division takes place:
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g= 1, then ON; otherwise OFF
If no division takes place:
Zero If divisor = 0, then ON; otherwise OFF
Negative If dividend < 0, then ON; otherwise OFF

Notes

1. A 35-bit fractional dividend (including sign

18-bit fractional divisor (including sign)
remainder

quotient (including sign) and an 18-bit

) is divided by
to form an 18-bit
(including

an

sign). Bit position 17 of the remainder corresponds to bit

position 34 of the dividend. The remainder sign is equal to

dividend sign unless the remainder is zero.

the

DDO1

~’

34 35

7
S Dividend
A
Combined AQ Register Not used
in division
01 17
S Divisor
Memory Location Y
0 1 17 0 1 17
S Quotient S Remainder
A Register Q Register

2. Ifldividend|>|divisor
itself does not take place.

, or if divisor
Instead, a divide fault trap occurs;

0, then the division

the divisor C(Y) remains unchanged, and C(AQ) is the dividend.

BOOLEAN INSTRUCTIONS

ANA - AND to A

Summar

0123

89 17

DISPLACEMENT

c(a) AND C(Y)—»C(Aa), for all bit i =0,1,...,17
i i i

Indicators
Zero If C(a)
Negative If C(Ah

0, then ON; otherwise OFF
1, then ON; otherwise OFF

3-41

DDO1

ANSA - AND to Storage A

0123 89 17

I| T 32 DISPLACEMENT

Summary
C(a); AND C(¥Y);—»C(Y); for all bit i =0,1,...,17

Indicators
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF

ORA - OR to A

0123 89 17

| T 37 DISPLACEMENT

Summary
C(A)i OR C(Y)i——>C(A)i for all bit i =0,1,...,17

Indicators
Zero If C(A) = 0, then ON; otherwise OFF
Negative If c(a)g = 1, then ON; otherwise OFF

ORSA - OR to Storage A

L| T 72 DISPLACEMENT

Summarx
C(A); OR C(Y)—»C(Y); for all bit i =0,1,...,17

Indicators
Zero If c(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF

3-42

DDO1

ERA - EXCLUSIVE OR to A

0123 89 17 .
T 35 DISPLACEMENT
Summary
C(A)i'7'é c(Y)—C(n), for all bit i = 0,1,...,17
Indicators
Zero If c(A) = 0, then ON; otherwise OFF
Negative I1f C(A)g = 1, then ON; otherwise OFF
ERSA - EXCLUSIVE OR to Storage A
0123 89 17
| T 62 DISPLACEMENT
Summary
c(a); % c(y)—»C(¥); for all bit i =0,1,...,17
Indicators
Zero If c(Y) = 0, then ON; otherwise OFF
Negative If C(Y)y = 1, then ON; otherwise OFF
COMPARE INSTRUCTIONS
CMPA - Compare with A
0123 89 17
T 27 DISPLACEMENT
Summar
Comparison C(A) : : C(Y)
Indicators
Algebraic Comparison - (Signed fixed-point)
Zero
l Negative
carry Relation Sign
0 0 0 C(A) > C(Y) c(a)g =0, C(Y)y =1
0 0 1 c(a) > c(y)
1 0 1 c(a) = C(Y)} C(a)g = C(Y)g
0 1 o c(a) < C(Y)
0 1 1 c(a) < Cc(Y) C(a)g =1, C(Y)y =0
3-43 DDO1

Logic Comparison - (Unsigned fixed point)

Zero Carry Relation
0 0 c(a) < c(y)
1 1 Cc(a) = c(y)
0 1 c(a) > c(y)
CANA -~ Compare AND with A
0123 89 17
I | T 31 DISPLACEMENT
Summary
Z; = C(p); AND C(Y)i for all bits i = 0,1,...,17
Indicators
Zero if Z = 0, then ON; otherwise OFF
Negative If Zo = 1, then ON; otherwise OFF
CMPQ - Compare with Q
0123 89 17
| T 67 DISPLACEMENT
Summary
Comparison C(Q) :: C(Y)
Indicators
Algebraic Comparison
Zero
Negative
carry Relation Sign
0O 0 O c(Q) > c(y) c(Q)y = 0, C(Y)0 =
0 0 1 c(Q) > C(y)
1 01 c(Q) = C(Y) c(Q)y = c(Y),
0 1 o c(Q) < c(y)
0o 1 1 c(Q) < C(Y) C(Q)o =1, C(Y)O =
Logic Comparison
Zero Carry Relation
0 0 C(Q) < c(v)
1 1 c(Q) = c(Y)
0 1 C(Q) > C(Y)
3-44 DDO1

CMPXn - Compare with Xn

012 3 89 17
T (63,23,0r 61 DISPLACEMENT
Summary
Comparison C(Xn) :: C(Y)
Indicators
Zero If C(Xn) = C(Y), then ON; otherwise OFF
SZN - Set Zero and Negative Indicators from Storage
0123 89 17
i T 20 DISPLACEMENT
Summary
Test the number C(Y)
Indicators
Zero Negative Relation
0 0 Number C(Y) > 0
1 0 Number C(Y) = 0
0 1 Number C(Y) < 0
TRANSFER INSTRUCTIONS
TRA - Transfer Unconditionally
012 3 89 17
r| T 71 DISPLACEMENT
Summary
Y—»C(IC)
Indicators
None affected
3=-45

DDO1

TSY - Transfer and Store IC in Y

0123 89 17
| T 10 DISPLACEMENT
Summarz
C(IC) + 1—»C(Y),Y + 1—»C(IC)
Indicators
Iione affected
TZE - Transfer on Zero
0123 89 17
T | T 74 DISPLACEMENT
Summarx
If 2zero indicator is ON, then Y—3C(IC)
Indicators
None affected
TNZ - Transfer on Not Zero
0123 89 17
| T 64 DISPLACEMENT
Summarx
If zero indicator OFF, then Y—3®C(IC)
Indicators
None affected
TMI - Transfer on Minus
0123 89 17
L | T 75 DISPLACEMENT
Summarx
If negative indicator ON, then Y—®C(IC)
Indicators
None affected
3-46 DDO1

TPIL, - Transfer on Plus
0123 89 17

| T 65 DISPLACEMENT

Summary
If negative indicator OFF, then Y—C (IC)

Indicators

None affected

TNC - Transfer on No Carry

0123 89 17

| T 45 DISPLACEMENT

Summary
If carry indicator OFF, then Y—3C(IC)

Indicators

None affected

TOV - Transfer on Overflow

0123 89 17

| T 55 DISPLACEMENT

Summary

If overflow indicator ON, then Y—3C(IC) and the overflow indicator
is turned OFF

Indicators

Overflow Set OFF

3-47 DDO1

INPUT/OUTPUT INSTRUCTIONS

CIOC - Connect Input/Output Channel

LDEX

0123 89 17

I| T 60 DISPLACEMENT

Summarx

The contents of the effective address C(Y*) and the contents of the
I/0 channel select register are transmitted to the input/output
controller (IOM).

Indicators

None affected

NOTE: Y* (effective address) is the address of a Peripheral Control Word
(PCW) for the input/output channel specified by the contents of the
I/0 channel select register. The IOM accesses the double-precision
(36-bit) PCW at Y* and sends it, or portions thereof, to the channel
indicated.

- Load External Register
0123 89 17
| T 30 DISPLACEMENT
Summary
The contents of the effective address (Y*) and the contents of the I/O
channel select register are transmitted to the input/output controller
(I0M) .
Indicators

None affected

NOTE: Y* (effective address) is the address of a data word accessed by the
IOM and sent to the input/output channel specified by the I/0
channel select register.

3-48 DDO1

STEX - Store External Register

0123 89 17

I | T 70 DISPLACEMENT

Summary

The effective address C(Y*) and the contents of the input/out channel
select register are sent to the input/output controller (IOM).

Indicators

Nong affected

NOTE: The IOM stores the data from the selected input/output channel at
the address specified by the effective address Y¥*.

Nonmemory Reference Instructions

GROUP 1, IMMEDIATE ADD INSTRUCTIONS

IAA - Immediate Add to A

7 73 DISPLACEMENT

Summarx
C(A) + D (Bits 9-17) ————»C(A)

Indicators
Zero If ¢c(A) = 0, then ON; otherwise OFF
Negative If C(A); = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If carry out of Ay is generated, then ON; otherwise OFF

NOTE: The D field (9-17) is treated as a 2's complement number. Before

the add occurs, the sign bit, Y9, is extended nine places to the
left to form an 18-bit, signed operand.

3-49 DDO1

IAQ - Immediate Add to Q

5 73 DISPLACEMENT

Summarx
C(Q) + D (Bits 9-17)———»C(Q)

Indicators
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)y = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If carry out of Qg is generated, then ON; otherwise OFF

NOTE: The D field (9-17) is treated as a 2's complement number. Before
the add occurs, the sign bit, Y9, is extended nine places to the
left to form an 18-bit signed operand.

IACXn - Immediate Add Character Address to Xn (n =1,2,3)
0 2 3 89 17
1,2
or 3 73 DISPLACEMENT
Summary

FA [C(Xn), D (Bits 9-17)]—C(Xn)

Indicators

Zero If C(Xn) = 0, then ON; otherwise OFF

NOTE: This instruction increases (or decreases) X by the number of
characters and/or words specified in the D field of the instruction.

The Fractional Add (FA) function, 1is a special addition for
character address (fractional) handling. The rules for forming the
result: (FA C(Xn), D) are shown in the following diagram shown in
Figure 3-7 and Table 3-8. The entries in Table 3-8 are the
resulting octal contents of the C position of the effective address.

3-50 DDO1

9 111213 17
CY S WY
FA
A
/‘J;ﬁ A
0 2 3 17
CXn WXn
r N\
0 2 3 17
carry
Xn WXn

D field of instruction

C(Xn)

C(Xn) after operation

Figure 3-7. Nonmemory Reference, Effective Address Formation Diagram

Table 3-8. Nonmemory Reference, Fractional Add (FA) Function
Word (0/2)| (1/2) |(o/3) (1/3)| (2/3) |Illegal
D9..1l1 0 1 2 3 4 5 6 7
CXn
Word 0 0 7 7 7 7 7 7 7
1 7 7 7 7 7 7 7 7
(0/2) 2 7 7 2 3 7 7 7 7
(1/2) 3 7 7 3 | 2+carry 7 7 7 7
(0/3) 4 7 7 7 7 4 5 6 7
(1/3) 5 7 7 7 7 5 6 |4+carry 7
(2/3) 7 7 7 7 6 |4+carry|5+carry 7
Illegal 7 7 7 7 7 7 7 7
NOTE: 7 indicates an illegal combination which results in an illegal

memory operation fault on the first

memory reference.

3-51

DDO1

GROUP 1, IMMEDIATE LOAD INSTRUCTIONS

ILA - Immediate Load A

6 73 DISPLACEMENT

Summarx
Y (Bits 9-17)————C(a)

Indicators

0, then ON; otherwise OFF
1, then ON; otherwise OFF

Zero If C(Aa)
Negative If C(A)g

NOTE: The Y field (bits 9-17) is treated as a 2's complement number. When
the load occurs the sign bit, Y9, is extended to Ag.

ILQ - Immediate Load

4 73 DISPLACEMENT

Summarx
Y (Bits 9-17)——3»C(Q)

Indicators
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)p = 1, then ON; otherwise OFF

NOTE: The Y field (bits 9-17) is treated as a 2's complement number. When
the load occurs, the sign bit, Y9, is extended to Q.

3-52 DDO1

GROUP 1, INTERRUPT CONTROL INSTRUCTIONS

SEL - Select Input/Output Channel

0 73 CHANNEL NO.

Summary
Y (Bits 12-17)—input/output select register

Indicators
None affected

NOTE: The contents of the input/output select register selects the channel
for the CIOC, STEX, and LDEX instructions.

RIER - Read Interrupt Level Enable Register

0 2 3 89 17

0 12 000

Summarx

The contents of the interrupt level enable register are transferred to
the C(A) bits 0-15. The C(A) bits 16-17 are set to 0.

Indicators
Zero If c(A) = 0, then ON; otherwise OFF
Negative If Cc(a)g = 1, then ON; otherwise OFF

RIA - Read Interrupt Address

4 12 000

Summarx

The address corresponding to the highest priority interrupt cell,
which is ON and enabled, is transferred to C(A) bits 10-17. The C(Aa)
bits 1-9 are set to 0. The C(A) bit 0 is set to 1. The interrupt
cell is then reset.

If no interrupt cells are ON and enabled, the C(A) are set to the
location of the 1Illegal Program Interrupt Fault Vector with the
Indirect bit set; C(A) = 400447 (octal).

Indicators

Zero - set OFF
Negative - set ON

NOTE: The level of the interrupt cell occupies C(A) bits 14-17. The
channel number of the interrupt cell occupies C(A) bits 10-13.

3-53 DDOl1

SIER - Set Interrupt Level Enable Register

0 2 3 89 17

0 52 000

Summarx

The C(A) bits 0-15 are transferred to the 1l6-bit interrupt level
enable register.

Indicators

None affected

NOTE: When a bit in the interrupt level enable register is 1, the program
interrupt level corresponding to that bit is enabled.

SIC - Set Interrupt Cells
0 2 3 89 13 14 17

4 52 00 CELL NO.

Summarx

The C(A) register (bits 0-15) is set by an OR operation with the
interrupt cells on the level specified by Y (bits 14-7).

Indicators

None affected

GROUP 1, IMMEDIATE BOOLEAN INSTRUCTIONS

IANA - Immediate AND to A

Summarx
C(A); AND Y—»C(A);y for all i =0,1,2,....17

Indicators
Zero If c(aA) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF

NOTE: The value of Y (9-17) is treated as a 2's complement number. When
the AND occurs, the value of Y9 (sign) is extended nine places to
the left to form an 18-bit signed operand.

3-54 ' DDO1

IORA - Immediate OR to A

Summary
Cc(a); OR Yy—»C(A), for all i = 0,1,....17

Indicators
Zero If c(A) = 0, then ON, otherwise OFF
Negative If c(a)g = 1, then ON, otherwise OFF

NOTE: The value of Y (9-17) is treated as a 2's complement number. When
the OR occurs, the value of Y9 (sign) is extended nine places to the
left to form an 18-bit signed operand.

IERA - Immediate EXCLUSIVE OR to A

0 2 3 89 17
3 22 Yy
Summarx
4 C(a); & Y, for all bits i = 0,1,....17
Iﬁdicators
Zero If ¢c(aA) = 0, then ON; otherwise OFF
Negative If C(A)0 = 1, then ON; otherwise OFF

NOTE: The value Y (9-17) is treated as a 2's complement number. When the
EXCLUSIVE OR occurs, the value of Y9 (sign) is extended nine places
to the left to form an 18-bit signed operand.

GROUP 1, IMMEDIATE COMPARE INSTRUCTIONS

ICMPA - Immediate Compare A

Summarx

Comparison C(A) : : Y

3-55 DDO1

Indicators

Algebraic Comparison

Zero Negative Carry Relation Sign

0 0 1 c(a) >y

1 0 1 c@) = Y}C(A)o = Y9

0 1 0 C(a) <Y

0 1 1 c(a <Y c(ay =1, Y9 =0

Logic Comparison

Zero Carry Relation

0 0 c(a) <y
1 1 c(a) =Y
0 1 c@a) >y

NOTE: The value of Y (9-17) is treated as a 2's complement number. When
the Comparison occurs, the value of Y9 (sign) is extended nine
places to the left to form an 18-bit signed operand.

ICANA - Immediate Comparative AND with A

0 2 3 89 17

2 22 Y

Summarx
Z; = C(A); AND Yy for all bits i =0,1,....17
i i i

Indicators
Zero If Z = 0, then ON; otherwise OFF
Negative If Zg = 1, then ON; otherwise OFF

NOTE: The value of Y (9-17) is treated as a 2's complement number. When
the COMPARATIVE AND occurs, the value Y9 (sign) is extended nine
places to the left to form an 18-bit signed operand.

3-56 DDO1

GROUP 2, DATA MOVEMENT SHIFT INSTRUCTIONS

ARS - A Right shift
0 2 3 89 1112 17

0 33 7 COUNT

Summarx

Shift right C(A) by Y (12-17) positions; fill vacated positions with
c(A)o.

Indicators

0, then ON; otherwise OFF
1, then ON; otherwise OFF

Zero If C(A)
Negative If C(A)g

QRS - Q Right Shift
0 2 3 89 1112 17

4 33 7 COUNT

Summary

Shift right C(Q) by Y (12-17) positions; fill vacated positions with

Indicators
Zero If Cc(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF

LRS - Long Right Shift

0 2 3 89 1112 17
0 33 5 COUNT
Summary
Shift right C(AQ) by Y (12-17) positions; £fill vacated positions with
C(AQ)g .
Indicators
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF

3-57 DDO1

ALS - A Left shift

Summarz

0 2 3 89

1112 17

COUNT

Shift left C(A) by Y (12-17) positions, fill vacated positions with

zZeros.

Indicators
Zero

Negative
Carry

QLS - Q Left shift

Summarz

Shift left
zeros.

Indicators
Zero

Negative
Carry

LLS - Long Left shift

Summarz

If C(a) 0, then ON; otherwise O
If C(A)0 1, then ON; otherwise O
If C(A)0 ever changes during the s
OFF

0 2 3 89

FF
FF
hift, then ON; otherwise

1112 17

COUNT

C(Q) by Y (12-17) positions, fil

If C(Q) 0, then ON; otherwise O
If C(Q)0 1, then ON; otherwise O
If C(Q) . ever changes during the s
OFF 0

1 vacated positions with

FF
FF
hift, then ON; otherwise

1112 17

COUNT

Shift left C(AQ) by Y (12-17) positions; fill

zeros.

Indicators

zZero
Negative
Carry

If C(AQ) 0, then ON; otherwise
If C(AQ)O'= 1, then ON; otherwise
If C(AQ)O ever changes during the
wise OFF

3-58

vacated positions with

OFF
OFF
shift, then ON; other-

DDO1

ARL - A Right Logic

Summary

3 89 1112

17

33 7

COUNT

shift right C(A) by Y (12-17) positions; fill vacated positions with

Zeros.
Indicators

Zero
Negative

QRL - Q Right Logic

If c(Aa)
If c(a),

o,
1, then ON;

then ON;

otherwise OFF
otherwise OFF

3 89 1112

17

33 7

COUNT

Summary
shift right C(Q) by Y (12-17) positions; fill vacated positions
zZeros.

Indicators
Zero If c(Q) = 0, then ON; otherwise OFF
Negative If C(Q)o = 1, then ON; otherwise OFF

LRL - Long Right Logic
0 2 3 89 1112 17
2 33 5 COUNT

Summarx

shift right C(AQ) by

Zeros.

Indicators

Zero
Negative

If c(AQ)
If C(AQ%

with

Y (12-17) positions; £fill vacated positions with

0,
1,

then ON;
then ON;

otherwise OFF
otherwise OFF

DDO1

ALR - A Left Rotate

0 2 3 89 1112 17

2 33 6 COUNT

Summarx

Rotate C(A) by Y (12-17) positions; enter each bit leaving position
zero into position 17.

Indicators

Zero If C(Aa)
Negative If C(Aa)g

0, then ON; otherwise OFF
1, then ON; otherwise OFF

ALP - A Left Parity Rotate

0 2 3 89 1112 17

3 33 6 COUNT

Summary
Rotate C(A) by Y (12-17) positions, enter each bit leaving position
zero into position 17.

Indicators
Zero If the number of 1's leaving position 0 is even, then ON;

otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF

QLR - Q Left Rotate
0 2 3 89 1112 17

6 33 6 COUNT

Summarz

Rotate C(Q) by Y (12-17) positions; enter each bit leaving position
zero into position 17.

Indicators
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)p = 1, then ON; otherwise OFF

3-60 DDO1

QOLP - Q Left Parity Rotate
0 2 3 89 1112 17

7 33 6 COUNT

Summar

Rotate C(Q) by Y (12-17) positions, enter each bit leaving position
zero into position 17.

Indicators
Zero If the number of 1's leaving position 0 is even, then ON;
otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF

LLR - Long Left Rotate

0 2 3 89 1112 17

2 33 4 COUNT

Summar

Rotate C(AQ) by Y (12-17) positions; enter each bit leaving position
zero into position 35.

Indicators

Zero If C(AQ)
Negative If C(AQ)g

0, then ON; otherwise OFF
1, then ON; otherwise OFF

3-61 DDO1

GROUP 2, DATA MOVEMENT NORMALIZE INSTRUCTIONS

NRM - Normalize

Summarx

c(a)

0 2 3 89 1112 17

normalized —3C (2)

Indicators

Zero

Negative If C(A)g

If Cc(a) 0, then ON; otherwise OFF

1, then ON; otherwise OFF

Overflow Set OFF

Notes

l.

If the overflow indicator is OFF, this instruction shifts the
C(A) 1left wuntil the C(A)o;é C(A);. The C(X1) are decremented
for each position shifted.

If the overflow indicator is ON, the C(A) are shifted right one
position, and then the sign bit C(A), is inverted to reconstitute
the original sign. Furthermore, the overflow indicator is set
OFF and the C(X1l) are incremented.

This instruction can be used to correct overflows.

If C(A) = 0, then no shift occurs.

X1 is decremented or incremented using the full adder (18-bit
field), not the character address addition used with other index
register operations.

3-62 DDO1

NRML - Normalize Long

0 2 3 89 1112 17
— 1 33 4 00
Summary
C(AQ) normalized —»C(AQ)
Indicators

Zero If c(aAQ) = 0, then ON; otherwise OFF

Negative If Cc(AQ)o = 1, then ON; otherwise OFF

Overflow Set OFF

Notes

1. If the overflow indicator is OFF, this instruction shifts the
c(aQ) 1left until C(AQ)g $ c(a),. The C(X1l) are decremented for
each position shifted.

2. If the overflow indicator is ON, the C(AQ) are shifted right one
position, and then the sign bit C(2Q)g is inverted to
reconstitute the original sign. Furthermore, the overflow
indicator is set OFF and the C(X1l) are incremented.

3. This instruction can be used to correct overflows.

o~ 4. If c(AQ) = 0, then no shift occurs.

S5e X1 is decremented or incremented using the full adder (18-bit
field), not the character address addition used with other index
register operations.

GROUP 2, DATA MOVEMENT COPY INSTRUCTIONS
CQA - Copy AQ into A
0 2 3 89 1112 17
7 33 3 00
Summary
c(Q)—»C(a), C(Q) does not change
Indicators /
/
Zero If c(aA) = 0, then ON; otherwise OFF
Negative If C(A)o = 1, then ON; otherwise OFF
S~

3-63 DDO1

CAQ - Copy A into Q

0 2 3 89 1112 17
6 33 3 00
Summarx
C(A)—»C(Q), C(A) does not change
Indicators
Zero] If C(Q) .= 0, then ON; otherwise OFF
Negative If C(Qo = 1, then ON; otherwise OFF
CAXn - Copy A into Xn (n =1,2,3)
0 2 3 89 1112 17
4,0,4 33 2,2,3 00
Summarx
C(A)—»C(Xn), C(A) does not change
Indicators
Zero If C(Xn) = 0, then ON; otherwise OFF
CXnA - Copy Xn into A (n =1,2,3)
0 2 3 89 1112 17
2,3,3 33 2,2,3 00
Summary

C(X)—»C(A), C(Xn) does not change

Indicators

Zero If c(A) = 0, then ON: otherwise OFF

DDO1

GROUP 2, INTERRUPT CONTROL INSTRUCTIONS

INH - Interrupt Inhibit
0 2 3 89 1112 17

Summar

Program execute interrupts are inhibited

Indicators

Interrupt inhibit indicator is turned ON

ENI - Enable Interrupt
0 2 3 89 1112 17

Summar

Program execute interrupts are enabled

Indicators

Interrupt inhibit indicator is turned OFF

GROUP 2, MISCELLANEOUS INSTRUCTIONS

DIS - Delay Until Interrupt Signal
0 2 3 89 1112 17

Summary

No operation takes place; the processor waits for a program interrupt
signal.

Indicators

None affected

NOTE: An interrupt may occur even if the Interrupt inhibit indicator is
turned ON.

3~65 DDO1.

NOP - No Operation

Summarx

No operation takes place.

Indicators

None affected

NOTE: XX are optional sync bits for test and diagnostics only.
must be zero for all other users.

89

1112

15 16 17

33

00

X

X

3-66

These bits

DDO1

SECTION IV

PSEUDO-OPERATIONS

Pseudo-operations are so called because of their similarity to machine
operations in an object program. In general, machine operations are prodgced by
computer instructions and perform some task, or part of a task, directly
concerned with solving the problem at hand. Pseudo-operations work indirectly
on the problem by performing machine conditioning functions, such as allocating
memory, and by directing the assembler in the preparation of machine coding. A
pseudo-operation affecting the assembler may generate several, one, Or no words
in the object program.

Pseudo-operations are grouped, in this section, according to function:

FUNCTIONAL GROUP PRINCIPAL USES

Control Selects printout options for the assembly listing,
directs punchout for absolute/relocatable binary
program decks, and selects format for the absolute
binary deck.

Location counter Provides programmer control for single or multiple
location counters.

Symbol definition Defines assembler source program symbols by means
other than listing in the location field of the
coding form.

Data generation Produces binary data words for the assembly
program.

Memory allocation Provides programmer control for the use of memory.

Special Generates zero operation code instructions and
continued subfields for selected pseudo-

operations.

Macro Begins and ends macro prototypes; provides
assembler generation of macro-argument symbols;
and repeats substitution of arguments within macro
prototypes.

Conditional assembly Provides conditional assembly of variable numbers
of input words based upon the subfield entries of
these pseudo-operations.

Program linkage Generates standard system subroutine calling
sequences and return (exit) linkages.

4-1 DDO1

Table 4-1 contains a complete listing of pseudo-operation mnemonic codes.

Table 4-1.

Pseudo-Operation

Mnemonic

Pseudo-Operations by Functional Class

Functions

Control Pseudo-Operations

ABS
CPR

. DCARD

DETAIL ON/OFF
EDITP ON/OFF
EJECT

END

FUL

HEAD

LBL

LIST ON/OFF
OPD

OPSYN

PARITY ON/OFF
PCC ON/OFF
PMC ON/OFF
PUNCH ON/OFF
REFMA ON/OFF
REF

REM

TCD

TTL

TTLS

*

Output Absolute Text
Copyright

Punch BCD Card

Detail Output Listing
Edit Print Lines
Restore Output Listing
End of Assembly

Output Full Binary Text
Heading

Label

Control Output Listing
Operation Definition
Operation Synonym
ASCII Parity Control
Print Control Cards
Print Macro Expansion
Control Card Output
Reference Macro Operation
References

Remarks

Punch Transfer Card
Title

Subtitle

Remarks

Location Counter Pseudo-Operations

BEGIN
LoC
ORG
USE

Origin of a Location Counter
Location of Output Text
Origin Set by Programmer

Use Multiple Location Counters

Symbol Defining Pseudo-Operations

BASE

BOOL
EIGHT
EQU
EVEN
FEQU
MIN
MAX
NULL
ODD
SET
SYMDEF
SYMREF

Force Location Counter to a Multiple
Power of 2

Boolean

Force Location Counter to Multiple of 8
Equal To

Force Location Counter Even

Special FORTRAN Equivalence

Minimum

Maximum

Null

Force Location Counter 04d

Symbol Redefinition

Symbol Definition

Symbol Reference

4-2 DDO1

Table 4-1. (cont) Pseudo-Operations

Data Generating Pseudo-Operations

ASCII,ACI,ASCIIC,ACIC
BCI

DEC

DUP

OCT

SACI

VFD

ASCII Coded Information

Binary Coded Decimal Information
Decimal

Duplicate Cards

Octal

Symbolic ASCII Information
Variable Field Definition

Memory Allocation Pseudo-Operations

BFS
BLOCK
BSS
LIT

Block Followed by Symbol
Block Common

Block Started by Symbol
Literal Pool Origin

Conditional Pseudo-Operations

IFE
IFG
IFL
INE

If Equal

If Greater Than
If Less Than

If Not Equal

Special Word Format Pseudo-Operations

ARG

DATE
IND
MARK
MAXS?Z
NONOP
TTLDAT
ZERO

Argument--Generate Zero Operation

Code Computer Word
Current Date

Generate Word for Indirect Addressing
Specify Symbol in Location Field

Maximum Size of Assembly
Undefined Operation

Title Date

Generate Word with Two Subfields

Data Control Word Format Pseudo-Operations

DCW
ICW

Macro Pseudo-Operations

I/0 Control Word Generator
I/0 Control Word Generator

CRSM ON/OFF
DELM

ENDM

IDRP

LODM

MACRO
ORGCSM
PUNM

Created Symbols

Delete Macro Named

End Macro Prototype
Indefinite Repeat

Load System Macro Prototypes
Macro Identification

Origin Created Symbols

Punch Macro_Prototypes

Program Linkage Pseudo-Operations

CALL
SAVE
RETURN

Call Subroutines
Save-Return Linkage Data
Return from Subroutines

DDO1

Table 4-1. (cont) Pseudo-Operations

Continuation Pseudo-Operation

ETC Continuation

Pseudo-operations are described in source program format.

CONTROL PSEUDO-OPERATIONS

ON/OFF Switch Type Control Pseudo-Operation

The subset of the control pseudo-operations consisting of those operations
which may best be described as switches (current state may be ON or OFF) are:

DETAIL, LIST, PCC, REF, PMC, PUNCH, EDITP, CRSM

Provisions have been made to allow the user to treat these switches in a
push-down pull-up manner so that he may recall prior states of a switch and
retrieve that state at some later point. The depth to which this may be
accomplished is 35; a switch may therefore have a current state plus 35
"remembered" states.

The mnemonic representing the push-down feature is SAVE; pull-up or
retrieve-prior is designated by the mnemonic RESTORE. The mnemonic for turning
the current state of a switch on is ON; its counterpart is OFF. If a switch
alteration is implied but not explicitly given, its current state will be
alternated (i.e., if OFF, turn ON); if alteration is not implied, its current
state will be unchanged. For example, the eight possible variable field
representations using CRSM function (for illustration purposes only) are:

1. CRSM ON turn switch ON

2. CRSM OFF turn switch OFF

3. CRSM alternate current status of switch

4. CRSM SAVE push down--remember current state
and leave unchanged

5. CRSM SAVE,ON push down, and set switch ON

6. CRSM SAVE,OFF push down, and set switch OFF

7. CRSM SAVE, push down, and alternate current
switch setting

8. CRSM RESTORE pull up prior state of switch

The assembler has been preset with a "current" state for each switch, and
35 remembered states which are the same. RESTOREs past this point will pull-up
an ON state for all switches. The initial setting is given in the discussion of
each of the pseudo-operations in question, and corresponds to the normal mode of
operation.

4-4 DDO1

DETAIL ON/OFF - Detail Output Listing

12 8 16

Blanks DETAIL ON (Normal mode)

Blanks DETAIL OFF

Some pseudo-operations generate no binary words; however, several of them
generate more than one. The generative pseudo-operations are: ACI, ACIC, ASCII,
AscIic, 1Icw, Dcw, ocT, DEC, BCI, DUP, CALL, SAVE, RETURN, and VFD. The DETAIL
pseudo-operation provides control over the amount of listing detail generated by
the generative pseudo-operations.

The use of the DETAIL OFF pseudo-operation causes the assembly listing to
be abbreviated by eliminating all but the first word generated by any of the
above pseudo-operations. In the case of the DUP pseudo-operation, only the
first iteration will be listed. The DETAIL ON pseudo-operation causes the
assembler to resume the listing which had been suspended by a DETAIL OFF
pseudo-operation.

If the assembler is already in a specified ON/OFF mode, then the
pseudo-operation requesting the same ON/OFF mode is ignored.

LIST ON/OFF - Control Output Listing

12 8 16

Blanks LIST ON (Normal mode)

The LIST pseudo-operation with OFF in the variable field causes the normal
listing to change as follows: LIST OFF will appear in the listing; thereafter,
only instructions which are flagged in error appear. If the assembly ends in
the LIST OFF mode, only the error messages appear.

The LIST pseudo-operation with ON in the variable field causes the normal
listing, which was suspended by a LIST OFF pseudo-operation, to be resumed. If
the assembler is already in a specified ON/OFF mode, then the pseudo-operation
requesting the same ON/OFF mode is ignored.

PCC ON/OFF - Print Control Cards

1 8 16

Blanks PCC OFF (Normal mode)

The PCC pseudo-operation affects the listing of the following
pseudo-operations:

DETAIL LIST TTL PMC EDITP
EJECT ABS TTLS PUNCH PARITY
LBL REF CRSM IDRP REFMA
INE IFE IFG IFL

4-5 DDO1

PCC ON causes the affected pseudo-operations to be printed. PCC OFF causes
the.afgected pseudo-operations to be suppressed; this is the normal mode at the
beginning of the assembly. If the assembler is already in a specified ON/OFF
mode, then the pseudo-operation requesting the same ON/OFF mode is ignored.

The LBL, TTL, and TTLS operations are not affected if the alter number is
less than four (1, 2, or 3).

REF ON/OFF - References

1 8 16

Blanks REF ON (Normal mode)

The REF pseudo-operation controls the assembler in making entries into the
symbol reference table and controls the listing of nonreferenced symbols. REF
ON (the normal mode) causes the assembler to begin making entries to the symbol
reference table. REF OFF causes the assembler to stop making entries to the
symbol reference table. If the assembler is already in a specified ON/OFF mode,
another request for the same mode is ignored.

The entry LNRSM (list nonreferenced symbols) can also be used as a subfield
of the variable field, to list nonreferenced symbols when the assembler is in
the REF ON mode. The variable field scan is terminated when either an ON, OFF
or RESTORE subfield is encountered. Therefore, these entries should always be
last when used in a series of subfields.

Examples:

1. REF ON or the absence of a REF pseudo-operation causes a listing of
only referenced symbols, and references to those symbols.

2, REF LNRSM, ON or REF LNRSM causes 1listing of all symbols and
references.

3. REF OFF causes listing of all symbols, but no references. (REF LNRSM,
OFF has the same effect because the LNRSM entry is only effective when
the assembler is in the REF ON mode.)

REFMA ON/OFF - Reference Macro Operation

1 8 16

Blanks REFMA OFF (Normal mode)

The REFMA ON pseudo-operation causes the assembler to create a separate
symbol reference table for the macro operations. Each entry of this table
consists of a macro name and the alter number(s) at which the name is
referenced. If a macro name is present but not referenced, it will not appear

in the table.

4-6 DDO1

For a macro name to be referenced, REFMA ON must be specified prior to
defining the macro operation. However, since tbe MAP macro operations are
loaded automatically by the assembler before this REFMA pseudo—operaylon
appears, the LODM pseudo-operation must be used to load these macro operations
again if it is required to reference them. REFMA OFF causes the assembler to
stop referencing macro operations.

Examples:

1. To reference GRTS system macro operations:

REFMA ON
LODM « GRTM

All macro operations under the name .GRTM will be referenced until
REFMA OFF is encountered.

2. To reference MAP system macro operations:

REFMA ON
LODM «GMAC

All macro operations under the name .GMAC (MAP Macro operations) will
be referenced until REFMA OFF is encountered.

3. To reference program macro operations:

REFMA ON
SPLL MACRO
#1 1
STA #3-*
ILQ 0

ENDM SPLL

The symbolic name of the macro operation (in the location field of the
macro identification) must be unique for the program in which the REFMA
pseudo-operation is used. = The use of this name in the location field at any
other instruction, pseudo-operation, or macro operation will result in a
multidefined symbol error.

PARITY ON/OFF - ASCII Parity Control

1 8 16

Blanks PARITY OFF (Normal mode)

The PARITY ON pseudo-operation causes the assembler to generate parity on
ASCII characters wused in literals, and any 'used in the Symbolic ASCII
pseudo-operation (SACI). PARITY OFF (normal mode) suppresses the parity
generation. If the assembler is already in a specified ON/OFF mode, another
request for the same mode is ignored.

The entry of ODD or EVEN (EVEN is the normal mode) in a subfield in the
variable field specifies the way parity is to be generated when the assembler is
in the PARITY ON mode. The variable field scan is terminated when either an ON,
OFF, or RESTORE subfield is encountered; therefore, these entries should always
be last when used in a series of subfields.

NOTE: The SAVE and RESTORE function applies only to the ON/OFF mode for
the pseudo-operation. EVEN and ODD remain in the 1last mode
specified until changed Dby a different PARITY EVEN/ODD
pseudo-operation.

4-7 DDO1

Examples:

PARITY ON causes EVEN parity to be generated for all ASCII literals and
SACI subfields.

PARITY ODD,ON causes odd parity to be generated for ASCII characters in
literals and SACI subfields.

PARITY EVEN,ON causes even parity to be generated for ASCII characters in
literals and SACI subfields.

PARITY OFF or the absence of the PARITY pseudo-operation causes the
suppression of parity generation.

PMC ON/OFF - Print Macro Expansion

1 8 16

Blanks PMC OFF (Normal mode)

The PMC pseudo-operation causes the assembler to list or suppress all
instructions generated by a macro call. PMC ON causes the assembler to print
all generated instructions. PMC OFF causes the assembler to suppress all but
the macro call. If the assembler is already in a specified ON/OFF mode, then
the pseudo-operation requesting the same ON/OFF mode is ignored.

PUNCH ON/OFF - Control Card Output

1 8 16

Blanks PUNCH ON (Normal mode)

Subject to the DECK/NDECK option of the $ 355MAP card, the normal mode of
the assembler is to punch binary cards for everything it assembles. If PUNCH is
used in the operation field with OFF in the variable field, the binary deck will
not be punched, beginning at the point the assembler encounters the PUNCH

pseudo-operation.

These conventions hold true for both the output binary deck, and the load
file counterpart, in the case of assemble and execute activities.

If the assembler is already in a specified ON/OFF mode, then the
pseudo-operation requesting the same ON/OFF mode is ignored.

4-8 DDO1

EDITP - Edit Print Lines

1 8 16

Blanks EDITP OFF (Normal mode)

The EDITP pseudo-operation has a special application. It is used when the
program includes the character 2 (17) and/or ! (77) punched somewhere on a
symbolic card. In normal operation these characters have special meaning to the
printer subsystem and may cause character shifting, line suppression, slewing,
or buffer overflow. As such, an EDITP ON instruction, causes the output routine
to issue printer commands which will treat these as non-special characters. The
assembler will then remain in this mode until an EDITP OFF pseudo-operation is
encountered.

CONTROL PSEUDO-OPERATIONS

EJECT - Restore Output Listing

1 8 16

Blanks EJECT Column 16 must be blank

The EJECT pseudo-operation causes the assembler to position the printer
paper at the top of the next page, to print the title(s), and then print the
next line of output on the second line below the title(s).

REM - Remarks

1 8 16

Blanks REM Remarks and comments can start in
or column 12 or later

remarks

The REM pseudo-operation causes the contents of this line of coding to be
printed on the assembly 1listing (just as the comments appear on the coding
sheet). However, for readability, columns 8-10 are replaced by blanks before
printing.

REM is provided for the convenience of the programmer; it has no other
effect upon the assembly.

4-9 DDO1

* In Column One--Remarks

12 8 16

*Remarks and comments in columns 2-80

A card containing an asterisk (*) in column 1 is taken as a remark card.
The contents of. columns 2-80 are printed on the assembly listing just as they
appear on the coding sheet; the asterisk has no other effect on the assembly
program.

LBL - Label

1 8 16
Blanks LBL X,Y
where:

X=null or up to 8 alphabetic and numeric characters.

Y=null or up to 42 alphabetic and numeric characters.

LBL causes the assembler to serialize the binary cards using columns 73-80,
(columns 79 and 80 for full binary cards). The LBL pseudo-operation allows the
programmer to specify a left-justified alphabetic label for the identification
field and begin serialization with some initial serial number other than zero.
The LBL pseudo-operation also allows the programmer to specify up to 42
characters of comments on the $ OBJECT card of the binary deck. The comment, if
present, begins in column 16 of the $ OBJECT card. The following conditions

apply:

1. If the first subfield is null, the assembler discontinues
serialization of the binary deck.

2, If the first subfield is not blank, serialization begins with the
characters appearing in the first subfield; the characters are
left-justified and filled in with terminating zeros up to the
position (s) used for the sequence number. Serialization is
incremented until the rightmost nonnumeric character is encountered,
at which time the sequence recycles to zero.

3. If no LBL pseudo-operation appears in the symbolic deck, the assembler
begins serializing with 00000000.

4. If the second subfield is blank, the assembler inserts blanks in the
variable field of the $ OBJECT card.

5. If the second subfield is not blank, the characters in this subfield
are inserted on the $ OBJECT card in columns 16 through column 57.

4-10 DDO1

TTL - Title

1 8 16

Blanks TTL Title in the variable field
or an

integer

The TTL pseudo-operation causes the printing of a title at the top of each
page of the assembly listing. When the assembler encounters a new TTL ca;d, tye
output listing is restored to the top of the next page and the new title is
printed. The information punched in columns 16-72 is interpreted as the title.
A date of the form mmddyy in columns 63-68 is utilized by the TTLDAT
pseudo-operation from the first TTL card encountered.

The title can be redefined by use of repeated TTL pseudo-operations as
often as the programmer desires. The title may be deleted by a TTL
pseudo-operation with a blank variable field. If a decimal integer appears in
the location field, the page count is renumbered beginning with the specified
integer.

TTLS - Subtitle

1 8 16

Blanks TTLS Subtitle in the variable field
or an

integer

The TTLS pseudo-operation is identical in function to the TTL
pseudo-operation except that it causes subtitling to occur. When a TTLS
pseudo-operation is encountered, the subtitle provided in columns 16-72 replaces
the current subtitle; the output listing is restored to the top of the next
page. The title and new subtitle are then printed.

The maximum number of subtitles that may follow a title is one.

CPR - Copyright

1 8 16
Blanks CPR G or H, Subfield in variable field
year(s) dependent upon copyright

notice required

Each use of the CPR pseudo-operation generates one copyright line.
Conventionally, the CPR card (or cards, if a sequence of copyright 1lines are
desired) follows the IBL and TTL cards in the source program. The copyright

notice appears on the first page of the program printout, just prior to preface
information.

The G or H denotes the company under which the program is copyrighted:

G - General Electric Company
H - Honeywell Information Systems Inc.

4-11 DDO1

In the absence of a G or H, the H is assumed. When present th
must be the first subfield. ’ P ! & ¢ or H

. Subfields other than G or H must be 4-digit numerics defining the years in
which the program was copyrighted. No more than four years may be listed within
one use of the CPR pseudo-operation.

For example:
CPR G, 1969, 1970
CPR 1970, 1971

will produce the following copyright notices:

Copyright 1969, 1970 by the General Electric Company
Copyright 1970, 1971 by Honeywell Information Systems Inc.

ABS - Output Absolute Text

1 8 16

Blanks ABS Column 16 must be blank

The ABS pseudo-operation causes the assembler to produce an output of
absolute binary text.

The normal mode of the assembler is relocatable; however, if absolute text
is required for a given assembly, the ABS pseudo-operation should appear in the
deck before any instructions or data. It may be preceded only by listing
pseudo-operations. It may, however, appear repeatedly in an assembly
interspersed with the FUL pseudo-operation. It should be noted that the
pseudo-operations affecting relocation are considered errors in an absolute
assembly.

Pseudo-operations that will be in error if used in an absolute assembly
are:

BLOCK SYMDEF SYMREF

For a description of the absolute binary card format, see the definition
for the FUL pseudo-operation.

FUL - Output Full Binary Text

1 8 16

Blanks FUL Column 16 must be blank

The FUL pseudo-operation is used to specify absolute assembly and the FUL
format for absolute binary text.

4-12 DDO1

The FUL pseudo-operation has the same effect and restrictions on the
assembler as ABS, except for the format of the binary text ou?pgt. 'The format
of the text is of continuous information with no address .1dent1f§cat19n; that
is, the absolute binary cards are punched with program 1nstruct}ons in columns
1-78 (52 words). Such cards can be used in self-loading operations or other
environments where control words are not required on the binary card. Sequence
numbers are punched in columns 79-80 starting with 00 and continuing to 99 with

rollover to 00.

TCD - Punch Transfer Card

1 8 16

Blanks TCD An expression in the variable field
or a

symbol

In an absolute assembly, the binary transfer card, produced at the end of
the deck as a result of the END card, directs the loading program to cease
loading and turn control over to the program at the point specified by the
transfer card. Sometimes it is desirable to cause a transfer card to be
produced before encountering the end of the deck. This is the purpose of the
TCD pseudo-operation. Thus, a binary transfer card is produced, generating a
transfer address equivalent to the value of the expression in the variable
field.

TCD is an error in the relocatable mode.

HEAD - Heading

1 8 16

Blanks HEAD From 1 to 7 subfields in the variable
field, each containing a single, nonspecial
character used as a heading character

In programming, it is sometimes desirable to combine two programs, or
sections of the same program, that use the same symbols for different purposes.
The HEAD pseudo-operation makes such a combination possible by prefixing each
symbol of five or fewer characters with a heading character. This character
must not be one of the special characters; that is, it must be one of the
characters A-7%, 0-9, or the period (.). Using different heading characters, in
different program sections later to be combined for assembly, removes any
ambiguity as to the definition of a given symbol.

The effect of the HEAD pseudo-operation is to cause every symbol of five or
less characters, appearing in either the location field or the variable field,
to be prefixed by the current HEAD character. The current HEAD character
applies to all symbols appearing after the current HEAD pseudo-operation and
before the next HEAD or END pseudo-operation.

4-13 DDO1

Deheading is accomplished by a zero or blanks in the variable field. To
understand more thoroughly the operation of the heading function, it is
necessary ?o kgow'that the assembler internally creates a six-character symbol
by right-justifying the characters of the symbol and filling in leading zeros.
Thus, if the assembler is within a headed program section and encounters a
symbo} of five or fewer characters, it inserts the current HEAD character into
the plgh-order, leftmost character position of the symbol. Each symbol, with
1t§ inserted HEAD character, then can be placed in the assembler Symbol Table as
unique entries and assigned their respective location values.

It is also possible to head a program section with more than one character.
This is done by using the pseudo-operation HEAD in the operation field with from
two to seven heading characters in the variable field, separated by commas. The
effect of a multiple heading is to define each symbol of that section once for
each heading character. Thus, for example, if the symbols SHEAR, SPEED, and
PRESS are headed by

HEAD X,Y,%
nine unique symbols
XSHEAR XSPEED XPRESS
YSHEAR YSPEED YPRESS
ZSHEAR ZSPEED ZPRESS

are generated and placed in the Assembler Symbol Table. This allows regions by
HEADX, HEADY, or HEADZ to obtain identical values for the symbols SHEAR, SPEED,
and PRESS.

Cross-referencing among differently headed sections can be accomplished by
the use of six-character symbols or by the use of the dollar sign ($).
Six-character character symbols are immune to HEAD; therefore, they provide a
convenient method of cross-referencing among differently headed regions.

When a symbol within a headed section is also to be a SYMDEF symbol, it
must be a six-character symbol (immune to HEAD).

To allow the programmer more flexibility in cross-referencing, the MAP
assembler language includes the use of the dollar sign ($) to denote references
to an alien-headed region.

If the programmer wishes to reference a symbol of less than six characters
in another program section, he merely prefixes the symbol by the HEAD character
for that respective section, separating the HEAD character from the body of the
symbol by a dollar sign ($).

To reference from a headed region into a region that is not headed (zero
heading), the programmer can use either the heading character zero and the
dollar sign (0$) preceding the symbol; or, if the symbol is the initial value of
the variable field, then the appearance of only the leading dollar sign will
cause the zero heading to be attached to the symbol.

4-14 DDO1

Examgle:

START LDA A=-* Initial instruction (no heading)
TRA B$SUM-* Transfer to new headed section
A BSS 1
HEAD B
SUM LDA sa-*
- Section headed B
TRA 0SSTART+2-*
END

The LDA S$A-* could have been written as LDA 0$A-*, as they both mean the
sanme.,

DCARD - Punch BCD Card

1 8 16

Blanks DCARD N,M Two subfields in the variable field

The first subfield (N) contains a decimal integer (limited only by the size
of available memory), and the second subfield (M) contains a single BCD
character used as a decimal data identifier. The assembler punches the next N
cards after the DCARD pseudo-operation with the specified BCD identifier in
column one of each of these N cards and with the BCD information taken from the
corresponding source cards on a one-for-one basis.

There are no restrictions on the BCD information that can be placed in
columns 2-72 of the source cards. (One of the significant uses of DCARD is to
generate 355SIM control cards.)

The DCARD has the further effect of suppressing the normal automatic
generation of a $ OBJECT and $ DKEND card.

END - End of Assembly

1 8 16

Blanks END Blanks or an expression in the variable field
or a

symbol

The END pseudo-operation signals the assembler that it has reached the end
of the symbolic input deck; it must be present as the 1last physical card
encountered by the assembler.

If a symbol appears in the location field, it is assigned the next
available location.

4-15 D01

In a relocatable assembly, the variable field must be blank; in an
absolute assembly, the variable may contain an expression. In relocatable
decks, the starting location of the program will be an entry location and the
location specified is given to the loader by a special control card used with
the loader. Absolute programs require a binary transfer card which is generated
by the END pseudo-operation. The transfer address is obtained from the
expression in the variable field of the END card,

OPD -~ Operation Definition

1 8 16

New OPD One or more subfields, separated by commas, in
Oper- the variable field. The subfields define the bit
ation configuration of the new operation code

code

The OPD pseudo-operation can be used to define or redefine machine
instructions to the assembler. This allows programmers to add operation codes
to the Assembler Table of Operation Codes during the assembly process. This is
extremely useful and powerful in defining new instructions or special bit

configurations.

The variable field subfields are bit-oriented and have the same general
form as described under the VFD pseudo-operation. In addition, the wvariable
field considered in its entirety, requires the use of either of two specific

36-bit formats for defining the operation.

1. The normal instruction format

2. The input/output operation format

4-16 DDO1

0123 8 9 1112 171819202122 2526272829303132333435
% Y/ R
3 4

S1 oF 52 ///A ! Olml / /a AP P

where:

)

1]

sl Suboperation field 1 (MBZ) for Memory Reference Instructions)
OP = Primary operation field (bits 3 through 8 of instruction)

S2 = Suboperation field 2 (MBZ for Memory and Nonmemory, Group 1,
Reference Instructions)

m = Modifier tag type (0O=allowed; l=not allowed)
ml : register modification
m2 : indirect addressing
a = Address field conditions (0=not required; l=required)
al : address required/not required
a2 : address required even
a3 : address must be absolute

a4 : character field allowed/not 1/0)

p = Octal assembly listing format (x represents one octal digit)
000 : x XX XXX Memory Reference Instructions
001 : xxxX XXX Nonmemory, Group 1 Instructions
010 : xxxx XX Nonmemory, Group 2 Instruction
011l : x xXXXXX IND and ZERO pseudo-operations
100 : XXXXXX Data generating pseudo-operations
101 : x x XXXX IND pseudo-operations with character sub-field

To illustrate the wuse of OPD, assume one wished to define the current
machine instruction, Load A (LDA). Using the preceding format and the octal
notation (as described under the VFD pseudo-operation), can be coded as:

1 8 16

LDA OPD o03/0,06/07,03/0,6/,02/2,6/,03/5,1/,01/1,2/,03/0
°* LDA OPD ol2/0070,6/,02/2,6/,03/5,02/1,5/
o LDA OPD 018/007000,018/401240

or in other forms, providing the bit positions of the instruction-defining
format are individually specified to the assembler.

NOTE: "036" is illegal for OPD since eighteen bit octal fields are the
maximum lengths possible.

4-17 DDO1

) The input/output operation defining format and subfields for types 0 and 1
is as follows:

0 1112 17181920 222324 2627 2930 3233 35
/ oP 1 V/ il // pl // p2
% (bits 30-35) % // //
where:
OP = New operation code for bit positions 30-35
i = Type of input/output command
0 : oP 000000
0000kk
l: OP da 000000
00dakk
pl = Listing format of first word (bits 0-17). (See preceding instruction
format for description)
p2 = Listing format of second word (bits 18-35). (See preceding

instruction format for description)

As an example of the use of OPD to generate an input/output command (using
the above format for the variable field and defining the bits according to the
rules for VFD), assume one wanted to generate the exact command, Write Tape
Binary (WTB). This could be written as

1 8 16

WTB OPD 12/,06/15,02/3,04/1,06/4,06/2

or in various other bit oriented forms.

OPSYN - Operation Synonym

1 8 16

A sym—- OPSYN A mnemonic operation code in the variable field
bol or

opera-

tion

code

The OPSYN pseudo-operation is used for equating either a newly defined
symbol or a presently defined operation to some operation code already in the
operation table of the assembler. The operation code may have been defined by a
prior OPD or OPSYN pseudo-operation; in any case, it must be in the assembler
operation table. The new symbol to be defined is entered in the location field
and the operation code that must be in the assembler operation table is entered
in the variable field. The new symbol must be defined (entered into the
operation table) by the OPSYN pseudo-operation code before it is used as an
operation code.,

4-18 DDO1

,

e

LOCATION COUNTER PSEUDO-QPERATION

USE - Use Multiple Location Counters

1 8 16

Blanks USE A single symbol, blanks or the word PREVIOUS in
the variable field

The assembler provides the ability to employ multiple location counters via
the USE pseudo-operations. This pseudo-operation causes the assembler to place
succeeding instructions under control of the location counter represented by the
symbol in the variable field. Each location counter begins with the wvalue of
zero, and its size is determined as being the highest value assumed by it (that
is, occupied by some instruction assembled under it). This is not always the
last instruction under the USE, as an ORG may have occurred within it. At the
completion of the first pass through the symbolic program, the length of each
USE will be a known value, and the order of memory allocation will be implied by
the order of first presentation to the assembler. Thus, the origin of each
location counter may be computed based on the origin and size of the one
preceding it. There is an assumed location counter, called the blank USE,
implied in all assemblies, which has a natural origin of zero.

Automatic determination of a counter origin may be overriden with the BEGIN
pseudo-operation. In this case, the chain of location counters will be made,
completely ignoring those counters which have an associated BEGIN. In more
general terms, then, the origin of a non-begin location counter is taken as one
more than the highest value taken by Eﬁe next prior non-begin counter. The
first of these non-begin counters has an origin of zero, by gefinition. The
location counter 1iIn control at the time that a USE is encountered is suspended
at its current value and preserved as the PREVIOUS counter. It may be called
back into operation at any later point in the program without confusion as to
its current state, and will begin counting at the address one higher than the
last location counted.

If the word PREVIOUS appears in the variable field, the assembler
reactivates the location counter just before the present one. It is not
possible to go back more than one level via the USE PREVIOUS command.

BEGIN - Origin of a Location Counter

1 8 16

Blanks BEGIN Two subfields in the variable field

The BEGIN pseudo-operation is used to arbitrarily specify the origin of a
given location counter. As such, it will not be tied into the chain of location
counters as described in USE. Its origin, however, may be an expression
involving some symbol, or symbols, defined under another location counter, in
which case it will be linked to the chain at the specified point. The user must
beware of overlaying code with this pseudo-operation.

4-19 DDO1

The location counter symbol is specified in the first subfield and is given
the value specified by the expression found in the second subfield. Any symbol
appearing in the second subfield must be previously defined and must appear
under one location counter. The BEGIN pseudo-operation may appear anywhere in
the deck; it does not invoke the counter, a USE pseudo-operation must be given
to bring a location counter into effect.

ORG - Origin Set by Programmer

1 8 16

Blanks ORG An expression in the variable field
or a

symbol

The ORG pseudo-operation is used to change the next value of a counter,
normally assigned by the assembler, to a desired value. If ORG is not used, the
counter is initially set to zero.

All symbols appearing in the variable field must be previously defined. If
a symbol appears in the location field, it is assigned the value of the variable
field. If the result of the evaluation of a variable field expression is
absolute, the instruction counter is reset to the specified value, relative to
the current location counter. If an expression result is relocatable, the
current location counter is suspended and the counter to which the expression is
relocated will be invoked with the value given by the expression.

LOC - Location of Output Text

1 8 16

Blanks LOC An expression in the variable field

The LOC pseudo-operation functions identically to the ORG pseudo-operation,
with one exception; it has no effect on the loading address when the assembler
is punching binary text. That is, the value of the location counter is changed
to that given by the variable field expression, but the loading will continue
to be consecutive. This provides a means of assembling code in one area of
memory, although execution will occur at some other area of memory.

All symbols appearing in the variable field of this pseudo-operation must
be previously defined.

The sole purpose of the LOC pseudo-operation is to allow program coding to
be loaded in one area of memory and then to be subsequently moved to another
area for execution.

4-20 DDO1

SYMBOL-DEFINING PSEUDO-OPERATIONS

The flexibility in program writing can be augmented by defining symbols to
the assembler with pseudo-operations. This symbol definition capability is used
for (1) equating symbols, or (2) defining parameters used frequently by the
program that are subject to change.

It should be noted that they do not generate any machine instructions or
data, but are available merely for the convenience of the programmer.

EQU - Equal To

1 8 16

Symbol EQU An expression in the variable field

The EQU pseudo-operation defines the symbol in the location field to have
the value of the expression appearing in the variable field. The symbol in the
location field assumes the same mode as that of the expression in the variable
field; absolute or relocatable. (See "Relocatable and Absolute Expressions".)

All symbols appearing in the variable field must be previously defined and
must fall under the same location counter. SYMDEF or SYMREF symbols cannot
appear in the variable field.

If the asterisk (*) appears in the variable field denoting the current
location counter value, it is given the value of the next sequential location
not yet assigned by the assembler; this with respect to the unique location
counter presently in effect.

FEQU - Special FORTRAN Equivalence

1 8 16

Symbol FEQU A symbol in the variable field

The FEQU pseudo-operation equates the symbol in the location field with the
symbol in the variable field; the latter yet undefined.

The restrictions for this pseudo-operation are: (1) the variable field may
not contain an expression, (2) the symbol in the variable field may not
subsequently appear in either field of another FEQU pseudo-operation, and (3) if
HEAD characters are in effect, both symbols (or neither symbol) must be able to
be headed.

As implemented, both symbols are essentially held in abeyance until the
variable field symbol is defined. At that point, both symbols take on the same
value and characteristics, and are available for normal functions.

4-21 DDO1

It should be noted that the symbol in the variable field does not have to
be undefined. Nor does it have to be a symbol. It may be a number, or the
current location counter value symbol (*). However, in these cases, FEQU acts
just as EQU, and the location symbol is immediately defined with the indicated
value.

BOOL - Boolean

1 8 16

Symbol BOOL A Boolean expression in the variable field

The BOOL pseudo-operation defines a constant of 18 bits and is similar to
EQU except that the evaluation of the expression in the variable field assumes
Boolean operators. By definition, all integral values are assumed to be octal;
in error otherwise. The symbol in the location field will always be absolute,
and the presence of any expression other than absolute in the variable field
will be considered an error. (See "Relocatable and Absolute Expressions".)

All symbols appearing in the variable field must be previously defined.

SET - Symbol Redefinition

1 8 16

Symbol SET An expression in the variable field

The SET pseudo-operation permits the redefinition of a symbol previously
defined to the assembler. This feature is useful in macro expansions where it
may be undesirable to use created symbols (CRSM).

All symbols entered in the variable field must be previously defined and
mist fall under the same location counter. SYMDEF or SYMREF symbols cannot be
used in the variable field.

The symbol in the location field is given the value of the expression in
the variable field. The SET pseudo-operation may not be used to define or
redefine a relocatable symbol. (See "Relocatable and Absolute Expressions".)

When the symbol occurring in the location field is defined by other than a
previous SET, the current SET pseudo-operation is ignored and flagged as an
error.

The last value assigned to a symbol by SET affects only subsequent inline
coding instructions using the redefined symbol.

4-22 DDO1

MIN - Minimum

1 8 16

Symbol MIN A sequence of expression, separated by commas in
the variable field--all of the same type; that
is, a relocatable or absolute

The MIN pseudo-operation defines the symbol in the location field as having
the minimum value among the various values of all relocatable or all absolute
expressions contained in the variable field.

All symbols appearing in the variable field must be previously defined and
must fall under the same location counter. SYMDEF or SYMREF symbols cannot be
used in the variable field.

MAX - Maximum

The MAX pseudo-operation 1is coded in the same format as MIN above. It
defines the symbol in the location field as having the maximum value of the
various expressions contained in the variable field.

All symbols appearing in the variable field must be previously defined and
must fall under the same location counter. SYMDEF or SYMREF symbols cannot be
used in the variable field.

SYMDEF - Symbol Definition

1 8 16

Blanks SYMDEF Symbols separated by commas in the variable field

The SYMDEF pseudo-operation is used to identify symbols which appear in the
location field of a subprogram when these symbols are referred to from outside
the subprogram (by SYMREF). Also, the programmer must provide a unique SYMDEF
for use by the Loader +to denote each subprogram entry point for the loading
operations. The symbols used in the variable field of a SYMDEF entry are called
SYMDEF symbols. Multiple defined SYMDEF symbols cannot occur since the
assembler ignores the current definition if it finds the same symbol previously
entered in the SYMDEF table.

The appearance of a symbol in the variable field of a SYMDEF entry
indicates that:

1. The symbol must appear in the 1location field of only one of the
instructions within the subroutine in which SYMDEF occurs.

2. The assembler places each SYMDEF symbol and its relative address in
the preface card.

3. At load time, the loader builds a table of SYMDEF symbols to be used
for linkage with SYMREF symbols.

4-23 DDO1

It is possible to classify SYMDEF symbols as primary and secondary. A
secondary SYMDEF symbol is denoted by a minus sign in front of the symbol. The
Loader will provide linkage for a secondary SYMDEF symbol only after linkage is
made to a primary SYMDEF within the same subprogram. Secondary SYMDEF symbols
are appropriate when using the system subroutine library and generating routines
for accessing the library. Secondary SYMDEF symbols are normally defined as
secondary entries to subroutines within a subprogram 1library. The use of
primary and secondary SYMDEF symbols is also described in the DATANET 355/6600
Relocatable Loader manual.

SYMREF - Symbol Reference

1 8 16

Blanks SYMREF A sequence of symbols separated by commas entered
in the variable field

The SYMREF pseudo-operation is used to denote symbols that are used in the
variable field of a subprogram, but are defined in a location field external to
the subprogram. Symbols used in the variable field of a SYMREF entry are called
SYMREF symbols.

When a symbol appears in the variable field of a SYMREF entry, the
following items apply:

1. The symbol should occur in the variable field of at least one
pseudo-operation (cALL, IND, ZERO, VFD, DCW, ICW), within the
subroutine.

2. At assembly time, the assembler enters the SYMREF symbol in the
preface card of the assembled deck and places a special entry number
in the variable fields of all pseudo-operations (in the referenced
subroutine) that contain the symbol.

3. At loading, the Loader associates the SYMREF symbol with a
corresponding SYMDEF symbol and places the appropriate address in all
pseudo-operations that have been given the special entry number.

Symbols appearing in the variable field of a SYMDEF instruction must not
appear in the location field of any entry within the subroutine in which SYMREF
is used.

Example:
Base Program or Subprogram Referencing Subprogram
SYMREF PROG SYMREF PROG
PROG SAVE 1,2 .
LDA TEMP-* TSY PRG-*,I
RETURN PROG
PRG IND PROG
TEMP BSS 1

4-24 DDO1

NULL - Null

1 8 16

Symbol NULL The variable field is not interpreted

The NULL pseudo-operation acts as an NOP machine instruction during
assembly. No actual words are assembled. A symbol on a NULL operation is
defined as the current value of the location counter.

EVEN - Force Location Counter Even

1 8 16

Symbol EVEN The variable field is not interpreted
or

blanks

The EVEN pseudo-operation effects the same result as the E in column 7. If
the location counter is odd, an NOP operation is generated, thereby making it
even. If there 1is a symbol in the location field, it is defined at the even

address.

ODD - Force Location Counter 0dd

1 8 16

Symbol ODD The variable field is not interpreted
or

blanks

The ODD pseudo-operation has the same effect as an O in column 7. If the
location counter is even, an NOP operation is generated, thereby making it odd.
If there is a symbol in the location field, it is defined at the odd address.

EIGHT - Force lLocation Counter to a Multiple of 8

1 8 16

Symbol EIGHT The variable field is not interpreted
or

blanks

The EIGHT pseudo-operation has the same effect as an 8 in column 7. If the
location counter is not a multiple of 8, a TRA n is generated, where the value
of n is the number of locations skipped, and the location counter is bumped by
n. If there is a symbol in the location field, it is defined at the mod-8

address.

4-25 DDO1

BASE - Force Location Counter to a Multiple Power of 2

1 8 16

Symbol BASE One subfield in the variable field
or

blanks

The BASE pseudo-operation is used to force the location counter to a
multiple of a power of two. If the location counter is not a multiple of this
number, a TRA n is generated, where the value of n is the number of locations to
the next location that is a multiple of the base selected. If there is a symbol
in the location field, it is defined at the appropriate address.

The subfield contains one of the following values; 8, 16, 32, 64, 128, 256.
These are the only legitimate values for the variable field. All others are
ignored.

ExamBle:

Assume the location ALPHA must start at a multiple of sixty-four. Force
this condition as follows:

ALPHA BASE 64

With the location counter at 1123 (octal) this would print out (without
column headings): :

Location Contents Relocation
01123 071055 0
01200 ALPHA BASE 64

NOTE: In each of the four pseudo-operations, (EVEN, ODD, EIGHT, and
BASE) the origin of the location counter is also forced to a
related address. For EVEN and ODD, it is forced even; for
EIGHT, it it is forced to a multiple of eight; and for BASE, it
is forced to a multiple of a power of two.

DATA GENERATING PSEUDO-OPERATIONS

The assembler provides eight pseudo-operations which can be wused to
generate data in the program at the time of assembly. These are BCI, OCT, DEC,
VFD, ASCII, ASCIIC, ACI, ACIC and SACI. All are word oriented except VFD which
is bit oriented. The pseudo-operation DUP does not generate data, but through
its repeat capability, causes symbolic instructions and pseudo-operations to be
iterated.

4-26 DDO1

OCTAL - Octal

1 8 16

Symbol OCT One or more subfields separated by commas appearing
or in the variable field; each one containing a signed
blanks or unsigned octal integer

The OCT pseudo-operation is used to program octal integer data into an
assembled program. The OCT pseudo-operation causes the assembler to generate n
locations of OCT data where the variable field contains n subfields (n-1
commas) . Consecutive commas in the variable field cause the generation of a
zero data word, as does a comma followed by a terminal blank. Up to six octal
digits plus the leading sign may make up the octal number.

The OCT configuration is considered true and is not complemented on
negatively signed numbers. The sign applies only to bit 0. All assembly
program numbers are right-justified, retaining the integer form.

Example:
ocr 1,-4,7701,+3,,-77731,04

If the current location counter is set at 506, the instruction above is
printed out as follows (less the column headings) :

Location Contents Relocation
00506 000001 0 ocr 1,-4,7701,+3,,
00507 400004 0 -77731,04
00510 007701 0
00511 000003 0
00512 000000 0
00513 477731 0
00514 000004 0
DEC - Decimal
1 8 16
Symbol DEC One or more subfields in the variable field,
or separated by commas, each containing a decimal
blanks entry

The assembler allows four types of decimal information that can be
specified for conversion to binary data. The various types are uniquely defined
by the syntax of the individual subfields of the DEC pseudo-operation. The

basic types are single-precision, fixed-point numbers ; single-precision,
floating-point numbers ; double-precision, fixed-point numbers; and
double-precision, floating-point numbers. All fixed-point numbers are

right-justified in the assembled binary words; floating-point numbers are
left-justified to bit position eight with the binary point between positions 0
and 1 of the mantissa.

4-27 DDO1

Example (Single Precision):

GAMMA DEC 3,-1,6.,.2E1,1B9,1.2E1B14,-4

This instruction prints out the following data words (without column
headings), assuming that GAMMA is located at 1041.

Location Contents Relocation

01041 000003 0 GAMMA DEC 3,-1,6.,.2E1,
01042 777777 0 1B9,1.2E1B14,
01043 006600 0 -4

01044 004400 0

01045 000400 0

01046 000140 0

01047 777774 0

The presence of the decimal point and or the E scale factor implies
floating-point, while the added B (binary scale) implies fixed-point binary
numbers. The absence of all of these elements implies integers.

DEC -1B9,-1.,1000

With the location counter at 1050, the subfields above generate:

Location Contents Relocation
01050 777400 0 DEC -1B9,-1.,1000
01051 001000 0
01052 001750 0

Example (Double Precision):

BETA DEC .3D0,0.D0,1.2D1B68,1D-1

The location counter is at the address BETA (1060); the subfields above
generate the following double words:

Location Contents Relocation

01060 776463 0 BETA DEC .3D0,0.DO,
01061 146314 0 1.2D1B68,1D-1
01062 400000 0

01063 000000 0

01064 000000 0

01065 000140 0

01066 772631 0

01067 463146 0

4-28 DD01

BCI - Binary Coded Decimal Information

1 8 16

Symbol BCI Two subfields in the variable field: a count
subfield and a data subfield

or
blanks

The BCI pseudo-operation is used to enter binary-coded decimal (BCD)
character information into a program.

The first subfield is numeric and contains a count that determines the
length of the data subfield. The count specifies the number of 3-character
machine words to be generated; thus, if the count field contains n, the data
subfield contains 3n characters of data. The maximum value for n is 18. The
minimum value for n is 1.

The second subfield contains the BCD characters, three per machine word.
Example:
BETA BCI 6,NO ERROR CONDITION

.Again, assume the location counter set at 506 (location of BETA); the above
instruction prints out (less column headings):

Location Contents Relocation
00506 454620 0 BETA BCI 6,NO ERROR
00507 255151 0 CONDITION
00510 465120 0
00511 234645 0
00512 243163 0
00513 314645 0
VFD - Variable Field Definition
1 8 16
Symbol VFD One or more subfields in the variable field
or separated by commas
blanks

o ?he VFD pseudo-operation is wused to define the data word in terms of
individual bits.

4-29 DDO1

. In gonsider%ng the definition of a VFD subfield, it is understood that the
unit of information is a single bit (in contrast with the unit of information in
the BCI pseudo-qperation which is six bits). Each VFD subfield is one of four
types: an algebraic expression, a Boolean expression, alphanumeric (H or R), or
ASCII fA). Each subfield contains a conversion-type indicator and a bit count;
the.max1mum value is 18 bits. The bit count is an unsigned integer which
defines the length of the subfield; it is separated from the data subfield by a
slagh (/). If the bit count is immediately preceded by an 0, H, R, or A, the
variable-length data subfield is either Boolean, alphanumeric, or ASCII. 1In the
absepce of any type indicators, the data subfield is algebraic. A Boolean
?Ebflfld)contains an expression that is evaluated using the Boolean operators

v/ 2T 1T .

R is an alphanumeric indicator which specifies right adjustment of the
argument. Unused bit positions are zero filled. R is wused only in a VFD
pseudo-operation.

The contents of the ASCII subfields can be any ASCII symbol listed in
Figure 4-1, or any three digit octal number in the range 000 through 777. (See
the "SACI pseudo-operation" in this section.)

The data subfield is evaluated according to its form: algebraic, Boolean,
alphanumeric, or ASCII. An 18-bit field results. The low-order n bits of the
algebraic or Boolean expression determines the resultant field value; whereas
for the alphanumeric subfield the high-order n bits are used for H, and
low-order n bits are used for R. For an ASCII subfield the high-order bits are

used.

If the required subfields cannot be contained on one card, they must be
continued by the use of the ETC pseudo-operation. This is done by terminating
the variable field of the VFD pseudo-operation with a comma. The next subfield
is then given as the beginning expression in the variable field of an ETC card.
If necessary, subsequent subfields may be continued onto following ETC cards in
the same manner. Except for the H type alphanumeric, the scanning of the
variable field is terminated upon encountering the first blank character.

The VFD may generate more than one machine word; if the sum of the bit
counts 1is not a multiple of a discrete machine word, the last partial string of
bits is left-justified and the word completed with zeros.

Examples:

1. Assume the address ALPHA is packed in the first word, decimal 3 in the
next six bits, the literal letter B in the next six bits, and an octal
77 in the last six bits of the second word, as follows:

Location Contents Relocation
01053 000731 1 VFD 18/ALPHA,6/3,H6/B,
01054 032277 0 06/77

The total number of bits under a VFD need not be a multiple of a full
word, nor is the total field (sum of all subfields) restricted to one
word. The total field width, however, for a single subfield is 18
bits.

4-30 DDO1

2. Consider a program to generate a six-word identifier for a table.

Assume n is the word length of the table and is equal to 12.

You wish

to place twice the length of the table in the first 12 bits, the name

of the table in the next 60 bits, the location of the

bits--all in a six-woxrd key.

With the location counter at 1054.

VFD 12/2%12,H18/PRE,H18/SSU,H18/RE,H6/,18/TABLE,
8/,6/-1

will generate

Location Contents Relocation
01054 003047 0 VFD 12/2*12,H18/PRE,H18/
01055 512562 0 SSU,H18/RE,H6/,18/
01056 626451 0 TABLE,8/,6/-1
01057 252020 0
01060 002351 1
01061 001760 0

where 1 specifies the relocatability of TABLE.

With the location counter at 5221,

VFD A9/A,A9/252,A18/CR,LNF,Al2/A,B,06/77

will generate

table
TABLE is a program relocatable symbol equal to 23§1 (octal)
next 18 bits, zero in the next eight bits, and -1 in the next

(where
) in the
six

Location Contents Relocation

05521 301252 0 VFD A9/A,A9/252,A18/CR,LNF,
05522 015212 0 Al2/A,B,06/77

05523 301377 0

assuming a PARITY pseudo-operation appeared before this statement and

indicated ODD parity.

ASCII, ASCIIC, ACI, ACIC - ASCII Coded Information

1 8 16
Symbol ASCII One or more subfields separated by commas
or ASCIIC
blank ACI
ACIC

The ASCII and ASCIIC pseudo-operations are used to enter lower
character information.

case ASCII

DDO1

The ACI and ACIC pseudo-operations are used to enter wupper case ASCII
character information.

In the ASCII and ACI pseudo-operations, the first subfield is numeric and
specifies the number of two-character machine words to be generated. If the
count is n, the data field contains 2n characters. The maximum value for n is
28, the minimum is one.

In the ASCIIC and ACIC pseudo operation, the first subfield specifies the
number of two-character machine words (as in ASCII and ACI). A second subfield
contains a decimal number that specifies the number of characters to be
assembled. This number is converted to binary and is inserted in the first half
of the first assembled word.

NOTE: This number is not examined by the assembler. It is converted and
stored only.

The second subfield in ASCII, ACI and the third subfield of ASCIIC, ACIC
contain the ASCII characters, two per machine word.

Example:

BETA ASCII 4, NO ERROR
ASCIIC 5,8, NO ERROR

Assume the location counter is set at 506 (location of BETA); the
instructions above would print out (less column headings) :

Location Contents Relocation

00506 156157 0 BETA ASCII 4,NO ERROR
00507 040145 0
00510 162162 0
00511 157162 0
00512 010156 0 ASCIIC 5,8,NO ERROR
00513 157040 0
00514 145162 0
00515 162157 0
00516 162040 0
SACI - Symbolic ASCII Information
1 8 16
Symbol SACI One or more subfields separated by commas
or
blank

The SACI pseudo-operation provides the ability to assemble all of the ASCII
character set using the character itself, a descriptive symbol, or any
three-digit octal number. 1In addition, parity can be generated for each ASCII
character symbol processed, if the PARITY pseudo-operation is used. Parity is
not generated for the octal representation of subfields used in place of the

symbols.

4-32 DDO1

~’

V)

i : ; listed in
Each subfield should contain one of the characters or symbols

Figure 4-1, or any octal subfields in the range 000 thrgugh 777. A symbol must
be used in place of an actual comma (,) or blank () since these characters are

used as field delimiters when scanning the variable field.
NOTE: Each octal subfield must contain exactly three characters.

Two SACI subfields are stored for each word generated. ;f an odd number of
subfields is specified, only the upper half of the last word is used: the lower

half contains zeros.

Example:

MESG SACI SYN,SYN,SYN,SYN,SOH,H,B, ,B, ,STX,ETX
MESG SACI CR,LNF,6,0,0,8P,D,I,S,C,0,N,N,E,C,T,S

Assuming the PARITY pseudo-op has not appeared, or is set to OFF, and the
location counter is set at 2103 (location of MESG); the instructions above
would print out as follows (less column headings) :

Location Contents Relocation
02103 026026 0 MESG SACI SYN,SYN,SYN,SYN,
02104 026026 0 SOH,H,B, ,B, ,
02105 001110 0 STX ,ETX
02106 102100 0
02107 102100 0
02110 002003 0
02111 015012 0 MESS SACI CR,LNF,6,0,0,SP,
02112 066060 0 p,1,s,c,0,N,N,E,
02113 060040 0 c,T,s
02114 104111 0
02115 123103 0
02116 117116 0
02117 116105 0
02120 103124 0
02121 123000 0

Assum%ng the PARITY pseudo-operation appeared and is set to EVEN,ON and the
location counter is set at 2103 (location of MESG); the above would print
out as follows (less column headings):

Location Contents Relocation
02103 226226 0 MESG SACI SYN,SYN,SYN,SYN,
02104 226226 0 SOH,H,B, ,B, ,
02105 201110 0 STX,ETX
02106 102300 0
02107 102300 0
02110 202003 0
02111 215012 0 MESS SACI CR,LNF,6,0,0,SP,
02112 066060 0 p,1,s,c,0,N,N,E,
02113 060240 0 c,T,S
02114 104311 0
02115 123303 0
02116 317116 0
02117 116305 0
02120 303324 0
02121 123000 0

4-33 DDO1

The following is an example of the octal digit ub fi i
pSeudo-operatic g s ield in the SACI

MESG SACI a,B,C,101,102,103,777

~
Assuming .the PARITY pseudo-operation has appeared and is set to ODD,ON and
thg location counter is set at 4271 (location of MESG); the above would
print out as follows (less column headings):
Location Contents Relocation
04271 301302 0 MESG SACI A,B,C,101,102,103,777
04272 103101 0
04273 102103 0
04274 777000 0
Symbol Value Symbol Value Symbol Value Symbol Value
NULL 000 SP 040 100 GRA 140
SOH 001 : 041 A 101 a 141
STX 002 " 042 B 102 b 142
ETX 003 # 043 C 103 c 143
EOT 004 $ 044 D 104 ol 144
ENQ 005 % 045 E 105 e 145
ACK 006 & 046 F 106 f 146
BELL 007 ' 047 G 107 g 147
BSP 0l0 (050 H 110 h 150
HT 011) 051 I 111 i 151
LNF 012 * 052 J 112 3j 152
VT 013 + 053 K 113 k 153
FF 014 R 054 L 114 1 154
CR 015 - 055 M 115 m 155 v’
SO 016 . 056 N 116 n 156
SI 017 / 057 (o} 117 o 157
DLE 020 0 060 P 120 P 160
DCl 021 1 061 Q 121 q 161
DC2 022 2 062 R 122 r 162
DC3 023 3 063 S 123 s 163
DC4 024 4 064 T 124 t 164
NAK 025 5 065 U 125 u 165
SYN 026 6 066 v 126 v 166
ETB 027 7 067 1) 127 \ 167
CAN 030 8 070 X 130 x 170
EM 031 9 071 Y 131 y 171
SUB 032 : 072 Z 132 z 172
ESC 033 ; 073 L 133 LBR 173
FS 034 < 074 \ 134 VTL 174
GS 035 = 075] 135 RBR 175
RS 036 > 076 A 136 TILDE 176
us 037 ? 077 —_— 137 DEL 177
Figure 4-1. Symbolic ASCII Symbols
~

4-34 DDO1

DUP - Duplicate Cards

1 8 16

Symbol DUP Two subfields in the variable field separated
or by a comma

blanks

The DUP pseudo-operation provides an easy method for generating tables and
or data. It causes the assenbler to duplicate a sequence (range) of
instructions, or pseudo-operations, a specified number of times.

The first subfield in the variable field is an absolute expression which
defines the count. The value of the count field specifies the number of cards
following the DUP pseudo-operation that are included in the group to be
duplicated. The value in the count field must be a decimal integer 1less than,
or equal to, ten.

The second subfield is an absolute expression which specifies the number of
iterations. The value in the iteration field specifies the number of times the
group of cards, following the DUP pseudo-operation, is to be duplicated. This
value can be any positive integer less than 2 to the 18 power minus 1. The
groups of duplicated cards appear in the assembled 1listing immediately behind
the original group.

If either the count field or the iteration field contains zero or is null,
the DUP pseudo-operation is ignored.

If a symbol appears in the location field of the pseudo-operation, it is
given the address of the next location to be assigned by the assembler.

If an odd or even address is specified for an instruction within the range
of a DUP pseudo-operation, the instruction is placed in an odd or even address
and a filler used when needed. The filler is an NOP instruction.

All symbols appearing in the variable field of the DUP pseudo-operation
must be previously defined. Any symbols appearing in the location field of the
instructions being duplicated are defined only on the first iteration, thus
avoiding multiple-defined symbols. The SET pseudo-operation would be the
exception to this rule.

The only instructions or pseudo-operations which may not appear in the
range of a DUP operation are END, MACRO, and DUP. An ETC pseudo-operation can
not appear as the first card after the range of a DUP operation.

4-35 DDO1

MEMORY ALLOCATION PSEUDO-OPERATIONS

These pseudo-operations are used to reserve specified memory areas for use
as storage areas or work areas.

BSS - Block Started by Symbol

1 8 16

Symbol BSS A pgrmissible expression in the variable field

gi o defines the amount of storage to be reserved
anks

The BSS pseu@o—operation is used by the programmer to reserve an area of
memory fgr_ working or data storage. The variable field contains an expression
that specifies the number of 1locations the assembler must reserve in the
program,

If a symbol is entered in the location field, it is assigned the value of
the first location in the block of reserved storage. If the expression in the
variable field contains symbols, they must be previously defined and must yield
an absolute result. No binary cards are generated by this pseudo-operation.

BFS - Block Followed by Symbol

1 8 16

Symbol BFS A permissible expression in the variable field
or defines the amount of storage to be reserved
blanks

The BFS pseudo-operation is identical to BSS, with one exception. If a
symbol appears in the location field, it is assigned the value of the first
location after the block of reserved storage has been assigned.

BLOCK - Block Common

1 8 16

Symbol BLOCK A symbol in the variable field

The purpose of the BLOCK pseudo-operation is to specify that program data
which follows the block entry is to be assembled in the LABELED COMMON region of
the user program under the symbol appearing in the variable field. BLOCK, in
effect, is another location counter external to the text of the program.

The symbol in the variable field specifies the label of the COMMON area to
be assembled. If the variable field is left blank, the normal FORTRAN BLANK
COMMON is specified, and data following the BILOCK pseudo-operation is assembled
relative to the unlabeled (BLANK COMMON) memory area of the user program. It is
not possible to assemble data or instructions into BLANK COMMON. Storage
labeling and reservation only is permitted.

4-36 DDO1

The pseudo-operations which take the program out of BLOCK mode and into

some other mode are:

BLOCK (for some other LABELLED COMMON)

USE

ORG/LOC, where the value of the expression is relocatable

END

It should be noted that BLOCK does not cause the assembler to make. the
current USE location counter PREVIOUS. As such, a USE PREVIOUS following a
BLOCK will cause the location counter in effect prior to the last USE, to be
invoked. A maximum of 63 labeled COMMON areas are permitted in a program.

LIT - Literal Pool Origin

1 8 16

Symbol LIT Column 16 must be blank
or

blanks

The LIT pseudo-operation causes the assembler to punch and print all
previously developed literals. If the LIT entry occurs in the middle of the
program, the literals up to that point are punched or printed starting with the
first available location after LIT; the literal pool is reinitialized as if the
assembly had just begun.

If there are literals remaining in the pool when the END card is
encountered, the origin of the literal pool is one location past the final word
defined by the program. The maximum number of LIT pseudo-operations allowed in
a program is 63.

CONDITIONAL PSEUDO-OPERATIONS

The pseudo-operations INE, IFE, IFL, and IFG add flexibility to
variable-length or conditional expansions of the macro prototype. When used
within a macro call, the conditional pseudo-operation affects cards within the
macro operation itself. The use of these pseudo-operations, however, is not
limited to macro operations; they may be used in a subprogram to effect
conditional assembly of segments of the program.

The programmer must avoid using noncomparable elements within these
pseudo-operations. The first comma encountered in the variable field is
considered as separating the first subfield from the second subfield (the fields
to be compared). Symbols used in the variable field will normally have been
previously defined. On the other hand, one of the primary uses of conditional
pseudo-operations is to test if a symbol has been defined at a given point in an
assembly. Consequently, undefined symbols within a conditional are not flagged
in the left margin of the listing. If the symbol is never defined within the
assembly, the symbol will be listed as unde fined at the end of the listing.

Formats of conditional pseudo-operations follow.

4-37 DDO1

IFE - If Equal

1 8 16

Blanks IFE X, ¥, n Two or three subfields in the variable
or %aaa field. X is compared with Y; if equal,
the next n cards are assembled. aaa is

a defined symbol

The IFE pseudo-operation provides for conditional assembly of the next n
cgrds, depending on the relationship of the first two subfields of the variable
field. Tpe next n cards are assembled if, and only if, the expression or
alphanumeric string in the first subfield is equal to the expression or
alphanumeric string in the second subfield. If the compared subfields are not
equal, the next n cards are bypassed. Resumption begins at card n+l. The n is
specified in the third subfield and is assumed to be one, if not specified.

Two types of comparisons are possible in the subfields of the IFE
pseudo-operation. The first is an algebraic comparison after the expression has
been evaluated. The second is an alphanumeric comparison and the relation is
the collating sequence. Alphanumeric strings in the variable field of IFE are
denoted by placing the subfield within apostrophe marks. 'If either the first or
second subfield is designated as an alphanumeric string, the other is
automatically classified as such. Each alphanumeric subfield is right justified
(with zero fill) within a l12-character field before comparison is made.

If the first character of the condition span argument is the percent symbol
(3), the rest of the field is assumed to be a symbol defined in a succeeding
line of coding. If the condition fails (i.e., the conditional coding is
skipped), the assembler scans forward to the line which contains the symbol and
resumes assembly with that line. If the symbol is not detected prior to the end
of the program, an error flag is printed. If the conditional assembly occurs
within a macro skeleton, and the symbol is not detected prior to the end of the
macro operation, an error flag is printed and assembly resumes with the first

line following the macro operation.

IFG - If Greater Than

1 8 16 o

Blanks IFG X, ¥, n Two or three subfields in the variable
or %aaa field. If X is greater than Y, the next
n cards are assembled. aaa is a defined

symbol

The IFG pseudo-operation provides for conditional assembly of the next n
cards, depending on the value of the first two subfields of the variable field.
The next n cards are assembled if, and only if, the expression or alphanumeric
string in the first subfield is greater than the expression or alphanumeric
string in the second subfield. If the first subfield is not greater, the next n
cards are bypassed. Resumption begins at card n+l. The n is specified in the
third subfield and is assumed to be one if not present.

4-38 DDO1

of comparisons are possible in the subfiel@s of the IFG
pseudegpzzgiion. ThIenp first is a stra%ght numeric comparison after Fhe
expression has been evaluated. The second is an alphapumerlg comparlson, using
the relation of the collating sequence. Alphgnumerlg sFrlngS in the variable
field of the IFG are denoted by placing the subfield Wlthln apostrophe marks.
If either the first or the second subfield is designated as an alphanumeric
string, the other is automatically cla§sifie§ as such. Each alphanumeric
subfield is right justified (with zerxo fill) within a 12-character field before

comparison is made.

If the first character of the condition span argument is tpe percent sympol
(%), the rest of the field is assumed to be a symbol defined in a succeeding
line of coding. If the condition fails (i.e.! the copdltlonal coding is
skipped) , the assembler scans forward to the line which contains tpe symbol and
resumes assembly with that line. If the symbol is not detected prior to the end
of the program, an error flag is printed. If the conditional assembly occurs
within a macro skeleton, and the symbol is not detected prior to the end of _the
macro operation, an error flag is printed and assembly resumes with the first
line following the macro operation.

IFL - If Less Than

Blanks IFL X, ¥, n Two or three subfields in the variable
or %aaa field. If X is less than Y, the next n
cards are assembled. aaa is a defined
symbol

The IFL pseudo-operation provides for conditional assembly of the next n
cards, depending on the value of the first two subfields of the variable field.
The next n cards are assembled if, and only if, the expression or alphanumeric
string in the Ffirst subfield is less than the expression or alphanumeric string
in the second subfield. If the first subfield is not less, the next n cards are
bypassed. Resumption begins at card n+l. The n is specified in the third
subfield and is assumed to be one if not present.

Two types of comparisons are possible in the subfields of the IFL
pseudo-operation. The first is a straight numeric comparison after the
expression has been evaluated. The second is an alphanumeric comparison, using
the relation of the collating sequence. Alphanumeric strings in the variable
field of IFL are denoted by placing the subfield within apostrophe marks. If
either the first or second subfield is designated as an alphanumeric string, the
other is automatically classified as such. Each alphanumeric subfield is right
juztified (with 2zero f£fill) within a l2-character field before comparison is
made.

If the first character of the condition span argument is the percent symbol
(%), the rest of the field is assumed to be a symbol defined in a succeeding
line of coding. If the condition fails (i.e., the conditional coding is
skipped), the assembler scans forward to the line which contains the symbol and
resumes assembly with that line. If the symbol is not detected prior to the end
of the program, an error flag is printed. If the conditional assembly occurs
within a macro skeleton, and the symbol is not detected prior to the end of the
macro operation, an error flag is printed and assembly resumes with the first
line following the macro operation.

4-39 D01

INE -If Not Equal

1 8 16

Blanks INE X, ¥, n Two or three subfields in the variable
or %aaa field. X is compared with Y; if not equal,
the next n cards are assembled. aaa is a
defined symbol

The INE pseudo-operation provides for conditional assembly of the next n
c;rds, depending on the relationship of the first two subfields of the variable
field. The value of the expression in the first subfield is compared to the
value of the expression in the second subfield. If they are not equivalent, the
next n cards are assembled, where n is specified in the third subfield;
otherwise, the next n cards are bypassed, resumption beginning at the (n+l)th
card. If the third subfield is not present, n is assumed to be one.

Two types of comparisons are possible in the subfields of the INE
pseudo-operation. The first is an algebraic comparison after the expression has
been evaluated. The second is an alphanumeric comparison, using the relation of
the collating sequence. Alphanumeric strings in the variable field of INE are
denoted by placing the subfield within apostrophe marks. If either the first or
second subfield is designated as an alphanumeric string, the other is
automatically classified as such. Each alphanumeric subfield is right justified
(with zero fill) within a l2-character field before comparison is made.

If the first character of the condition span argument is the percent symbol
(%), the rest of the field is assumed to be a symbol defined in a succeeding
line of coding. If the condition fails (i.e., the conditional coding is
skipped), the assembler scans forward to the line which contains the symbol and
resumes assembly with that line. If the symbol is not detected prior to the end
of the program, an error flag is printed. If the conditional assembly occurs
within a macro skeleton, and the symbol is not detected prior to the end of the
macro operation, an error flag is printed and assembly resumes with the first

line following the macro operation.

SPECIAL WORD FORMAT PSEUDO-OPERATIONS

MARK - Specify Symbol in Location Field

1 8 16

Symbol MARK Blanks or comment in the variable field

The MARK pseudo-operation allows a symbol to be specified in the location
field without having this symbol entered in the symbol table. The
pseudo-operation is explicitly provided to allow the definition of the extent of
a block of conditional code within a macro skeleton without creating multiple
defined symbols. No word of coding is generated by this pseudo-operation. The
same symbol may appear in several MARK pseudo-operations in the same program
without generating error flags.

4-40 DDO1

ARG - Argument—-Generate Zero Operation Code Computer Word

1 8 16

Symbol ARG One to three subfields in the variable field

The use of ARG pseudo-operation field causes the assempler to generate a
binary word with bit configuration in the general instruction format. The
operation code 00 is placed in the operation field. Thg variable field is
interpreted in the same manner as a standard machine instruction.

TTLDAT - Title Date

1 8 16
Blanks TTLDAT

or

Symbol

The use of the TTLDAT pseudo-operation causes the date in columns 63-68 of
the first TTL card to be assembled at the current available address in BCI
format. If there is no date on the first TTL card, the characters NO TTL are
assembled instead.

DATE - Current Date

1 8 16

Blanks DATE Column 16 must be blank

The DATE pseudo-operation is used to enter the current date into a program.
The six-character current date in the form mmddyy is inserted into an assembled
program at this point.

Example:
Location Contents Relocation
01021 000601 0 DATE
01022 050607 0

T?is/example shows the results of a DATE pseudo-operation assembled on
6/15/67.

NONOP - Undefined Operation

When an NONOP pseudo-operation is encountered, NONOP is looked up in the
operation table and used in place of the undefined operation. NONOP is
initially set as an error routine, but OPD, OPSYN or MACRO pseudo-operation can
be used to redefine NONOP.

4-41 DDO1

ZERO - Generate One Word with Two Subfields

1 8 16

Symbol ZERO Two subfields in the variable field
or

blanks

The ZERO pseudo-operation is used for the definition of a value to be
loaded into index registers. The assembler generates a binary word divided into
two subfields. The first subfield is the address field: stored in bit positions
3-17. The second subfield is the character address field (optional) : it can be
a numeric or symbolic value and is stored in bit positions 0-2.

Examples:

Assume it is necessary to load an index register with the character address
of the starting location for the data buffer, BUFFR. Assume also that the
buffer contains six-bit data characters. Using the ZERO pseudo-operation,
this word is defined:

ZERO BUFFR,C.0

With the location counter at 2057 (octal) and the 1location 1004 (octal)
assigned for BUFFR, this would print out (without column headings) :

Location Contents Relocation
02057 4 01004 1 ZERO BUFFR,C.0

If instead of six-bit data characters the buffer contained nine-bit data
characters, the following example creates a word suitable for wuse in
character addressing:

ZERO BUFFR,B.0

With the location counter at 2057 (octal) and the location 1004 (octal)
assigned for BUFFR, this would print out:

Location Contents Relocation
02057 2 01004 1 ZERO BUFFR,B.O0

MAXSZ - Maximum Size of Assembly

1 8 16

Blank MAXSZ A decimal number in the variable field

The decimal number represents an estimate of the largest number of
assembled instructions and data in the program or subprogram. The variable
field number is evaluated, saved, and printed at the end of the assembly
listing. It may then be compared with the actual size of the assembly.

4-42 DDO1

MAXSZ pseudo-operation is provided as a convenience and may be inserted
anywhere in the coding.

IND - Generate One Word for Indirect Addressing

1 8 16

Symbol IND Three subfields in the variable field, separated
or by commas

blanks

The IND pseudo-operation is used for the definition of a value to 'be gsed
in indirect addressing. The assembler generates a binary word divided into
three subfields. The first subfield is an address field placed into b;t
positions 3-17. The second subfield is a tag field having the same format as in
memory reference instructions and is stored in bit positions 0-2. If a third
subfield exists, it specifies a character address subfield. By definition, the
first subfield becomes a 12-bit displacement subfield and the character address
is stored in bit positions 3-5. Both the second and third subfields are
optional.

Examples :

1. Assume a program has a Memory Reference Instruction whose effective
address points to the location ALPHA, and the desired data is the
location of BETA. The following IND pseudo-operation accomplishes
this function.

ALPHA IND BETA
With the location counter at 4032 (octal) and the symbol BETA having

the value 11236 (octal), the following would print out (without column
headings) :

Location Contents Relocation
04032 0 11236 1 ALPHA IND BETA

2. Consider the program situation where one wishes to wuse character
addressing with an indirect word. Assume a Memory Reference
Instruction points to location GAMMA indirectly. The following use of
the IND pseudo-operation displays the use of this method of character
addressing.

GAMMA IND 0,1,C.0

With the 1location counter at 1530 (octal) the following would print
out (without column headings):

Location Contents Relocation
01530 1 4 0000 0 GAMMA IND 0,1,c.0

NOTE: With any type of character addressing, an index register must always
be specified. Furthermore, the index register referenced must
contain a compatible character address in bit positions 0-2. That
is, an instruction using six-bit characters must reference an index
register with six-bit character addressing.

4-43 DDO1

DATA CONTROL WORD FORMAT PSEUDO-OPERATIONS

ICW - I/0 Control Word Generator

1 8 16

Symbol ICW Four subfields in the variable field, separated
or by commas

blanks

The ICW pseudo—operatiop provides a simple way of generating Indirect
Contrgl Words for I/O programming. The assembler generates two words and forces
the first word to always start in an even location.

The fir§t subfield is an address subfield that points to the first word
where data will be loaded or stored (depending on the particular I/0 operation).
It may be an absolute or relocatable value.

The second subfield is a character address subfield that specifies the size
of data transmission fields and the starting position for character
transmissions. The allowable symbols in this subfield are:

Symbol Value Meaning

18 bit data transmission

36 bit data transmission

bit data transmission, char
bit data transmission, char
bit data transmission, char
bit data transmission, char
bit data transmission, char
ndirect Idle, no data transmission

=

NHOHONM

NHO KO

HO0.0WUUS
NoOUBWN RO
H O o\ O\ O O

The third subfield specifies a tally count. The count is the number of
individual data transmissions required to send or receive a block of data. This
subfield is optional. If no subfield is present, the field is set to zero.

The fourth subfield is used to set the exhaust bit in the Indirect Control
Word. It must be an absolute expression having the value zero or one. If the
exhaust bit is equal to one, neither the address fields or tally are incremented
during an I/0 operation. This is an optional field and is assumed to be zero if
absent.

Example:

Assume it is desired to transmit a block of data to a six bit character
channel device. An ICW pseudo-operation may be used to create an Indirect
Control Word for the transmission:

ICW BUFFER,C.0,160

With the location counter at 1163 (octal) and the location 3046 (octal)
assigned for BUFFER, this would print out (without column headings):

Location Contents Relogation
01163 233100 0
0ll64 4 03046 1 ICW BUFFER,C.0,160
01165 000240 0

4-44 DDO1

DCW - I/O0 Control Word Generator

1 8 16

Symbol DCW Three subfields in the variable field, separated
or by commas

blanks

The DCW pseudo-operation is similar to the ICW pseudo-operation. _This
pseudo-operation generates an 1/0 control word for a direct I/0 channe}. Direct
channels normally transmit data to and from memory 36 bits at one time. Thus
for direct channels, the character address subfield in the ICW pseudo-operation
is a fixed value. This pseudo-operation, therefore, eliminates the character
address subfield in the ICW.

The first subfield is an address subfield. It should point to the first
word of a data buffer which begins in an even location. This address can be
absolute or relocatable.

The second subfield specifies a tally count. This count is the number of
word pairs to be transferred for this I/0 operation. This subfield is optional
and if absent, zero is assumed.

The third subfield is used to set the exhaust bit. The subfield must be

an absolute expression having the value zero or one. This is an optional field
and is assumed to be zero if not present.

MACRO PSEUDO-OPERATIONS

Programming applications frequently involve:

1. Coding of a repeated pattern of instructions that within themselves
contain variable entries at each iteration of the pattern.

2, Basic coding patterns subject to conditional assembly at each
occurrence.

The macro pseudo-operation provides a shorthand notation for handling this
special type of operation. Having once determined the iterated pattern, the
programmer can, within the MACRO pseudo-operation, designate selectable fields
of any instruction of the pattern as variable. Thereafter, by coding a single
macro entry, the entire pattern can be used as many times as needed,
substituting different parameters for the selected subfields on each pass.

When the iterated pattern is defined by a name, this name becomes the
operation code of the macro entry.

4-45 DDO1

. As a generative operation, the macro operation causes n card images (where
n 1s normally greater than one) to be generated; these may have substitutable
arguments. The macro entry is known as the prototype or skeleton, and the card
images that may be defined are almost unrestricted as to type:

1. Any processor instruction
2. Almost any assembler pseudo-operation

3. Any previously defined macro operation

Qard images of these types are subject to the same conditions and
restrictions when generated by the macro processor as though they had been
produced directly as inline coding.

To wuse the macro prototype, once named, the programmer enters the macro
operation code in the operation field and arguments in the variable field of the
MACRO entry. The arguments comprise variable-field subfields and refer directly
to the argument pointers specified in the fields of the card images of the
prototype. By suitably selecting the arguments in relation to their use in the
prototype, the programmer causes the assembler to produce inline coding
variations of the n card images defined within the prototype.

The effect of a macro operation is the same as an open subroutine it
produces inline coding to perform a predefined function. The inline code is
inserted in the normal flow of the program so that the generated instructions
are executed inline with the rest of the program each time the macro operation
is used.

An important feature in specifying a prototype is the wuse of macro
operations within a given prototype. The assembler processes such "nested"
macro operations at expansion time only. The nesting of one macro definition
within another prototype 1is not permitted. If macro operation codes are
arguments, they must be used in the operation field for recognition. Thus, the
macro entry must be defined before its appearance as an argument; that is, the
prototype must be available to the assembler before encountering a demand for
its use.

Definition of the Macro Prototype

The definition of a macro prototype is made up of three parts:

1. Creation of a heading card that assigns the prototype a name.

2. Generation of the prototype body of n card images with their
substitutable arguments.

3. Creation of a prototype termination card.

4-46 DDO1

~~

MACRO - MACRO Identification

1 8 16

Symbol MACRO The variable field may contain blanks or any
nunber of options separated by commas

The MACRO pseudo-operation code defines a macro operation by symbolic name.
The symbol in the location field conforms to standard symbol formation rules and
defines the name of a macro call whose prototype is given on the next n lines.
The prototype definition continues until the assembler encounters the proper
ENDM pseudo-operation. The name of the macro call is a required entry. If the
symbol 1is identical with an operation code already in the table, the macro
operation is used as a new definition for that operation code. It is entered in
the assembler operation table with a pointer to the associated prototype that is
entered in the Macro Prototype Table.

The following options can be specified in the variable field of the MACRO
pseudo-operation:

Symbol Meaning

C Comments option. This option instructs the assembler to save
columns 1 through 72 of every macro prototype card within the
range of this macro definition. This enables comments that are
included in the macro definition to be printed in the macro
expansion.

M Multiple definition option. This option is used to suppress the
multiple definition flag normally given to any MACRO
pseudofoperation that redefines an existing operation code
mnemonic.

Example:

LDM MACRO C,M

END - End Macro Prototype

1 8 16

Blanks ENDM A symbol in the variable field

The symbol in the variable field of the ENDM pseudo-operation is the
symbolic name of the macro operation as defined in the location field of the
corresponding MACRO pseudo-operation (heading card). Every macro prototype must
contain both the terminal ENDM pseudo-operation and the MACRO pseudo-operation.

4-47 DDO1

Thus, every macro prototype has the form

Heading card (OPNAME MACRO
e

Prototype body {

ENDM OPNAME

Terminal card

where OPNAME represents the prototype name that is placed in the Assembler
Operation Table.

The prototype body contains a sequence of standard source-card images (of
the types 1listed earlier). that otherwise would be repeated frequently in the
same source program. Thus, for example, if the iterated coding pattern

LDA A+5 - *
LDQ B+5 - *
STA C - *

STQ D - *

LDA U- *

LDQ Y - *

STA BETA - *
STQ ALPHA - *
LDA W+X = *
LDQ Y+Z - *
STA GAMMA - *
STQ NEXT1 - *

appeared in a subprogram, it can be represented by the following prototype body
(preceded by the required prototype name):

1 8 16

LDM MACRO Macro prototype with substitutable
LDA #1-* arguments in the variable field
LDQ #2-%*
STA $3-*
STQ $#4-%*
ENDM LDM

The previous coding examples could then be represented by the macro
operation LDM as follows:

LDM (A+5), (B+5), C, D
LDM U,V, BETA,ALPHA
LDM (W+X), (¥+2), GAMMA,NEXT1

4-48 DDO1

The assembler recognizes substitutable arguments.by thg presence of the
number-sign (#) jdentifier. Having sensed this identifier, it examines the gext
one or two digits. (Sixty-three is the maximum number of arguments usable in a

single prototype.)

Macro prototype arguments may appear in the locatiop fiel@, %n the
operation field, in the variable field, and coincidentally in combinations gf
these fields within a single card image. Substitutions that can be made 1in
these fields are:

1. Location field--any perﬁissible location symbol (see comments below)

2. Operation field--all machine instructions, all pseudo—gperations
(except the MACRO pseudo—operation) and previously defined macro
operations

3. Variable field--any allowable expression followed by an admissible
modifier tag and separated from the expression by a delimiting comma.

In general, anything appearing to the right of the first blank in the
variable field is copied into the generated card image. For example, a
substitutable argument appearing in the comments field of a card image--that is,
separated from the variable field by one or more blanks--is not interpreted by
the assembler (except in the case of the ACI, ASCII, ACIC, ASCIIC, BCI, REM,
TTL, and TTLS pseudo-operations). This means that only pertinent information in
the location, operation, and variable fields is recognized, that internal blanks
are not allowed in these fields, and that the first blank in these fields causes
field termination.

When specifying a symbol in a location field of an instruction within a
prototype, the programmer must be aware that this macro operation is used only
once. On the second use, the same symbol is redefined causing a
multiple-defined symbol. Consequently, the use of location symbols within the
prototype is discouraged. Alternatively, for cases where repeated use of a
prototype is necessary, two techniques are available: (1) use of Created Symbols
and (2) placement of a substitutable argument in the location field and a unique
symbol in the argument of the macro operation each time the prototype is used.
These techniques are described below under the caption "Using a Macro
Operation".

The location field, operation field, and variable field can contain text
and arguments that can be linked by entering the substitutable argument (for
example, AB#3) directly in the text, with no blanks or special symbols preceding
or following the entry. Linking is especially useful in the .operation field and
in the partial subfields of the variable field. (Refer to the description of
ACI, ACIC, ASCII, ASCIIC, BCI, REM, TTL, and TTLS immediately following.) As an
example of the first use, consider a machine instruction such as LD(R) where R
can assume the designators A, Q, AQ, and X1-X3.

The prototype NAME

NAME MACRO
LD#2
----- A, #1
ENDM NAME

contains a partial operation field 5K argument; when the 4inline coding 1is
generated, LD#2 becomes LDA, LDQ, etc., as designated by the argument used in
the macro operation.

4-49 DDO1

The ACI, ACIC, ASCII, ASCIIC, BCI, REM, TTL a i
e AC ’ nd TTLS pseudo-o erations
usec} w.1thJ..n the prototype are scanned in full for substitutable argumeﬁts. The
vaylable field of thgse Pseudo-operations can contain blanks and argument
_pointers. The following illustrates a typical use:

ALPHA MACRO
NOTE#1 REM IGNOREY # 2BERRORSPONK # 3
ENDM ALPHA

An asterisk (*) type remarks card cannot appear in a macro prototype.

Using a Macro Operation

Use of a macro operation can be divided into two basic parts; definition
of the prototype and writing the macro operation. The ' first part has been
described on the preceding pages; writing the macro operation to call upon the
prototype is the process of using the MACRO pseudo-operation.

The macro operation card is made up of two basic fields; the operation
field that contains the name of the prototype being referenced and the variable
field that contains subfield arguments relating to the argument pointers of the
prototype on a sequential, one-to-one basis. For example, the defined prototype
LDM, mentioned earlier, can be called for expansion by the macro entry

LDM (A+5), (B+5), C, D

where the variable field arguments, separated by commas and taken left-to-right,
correspond with the prototype pointers #1 through #4. These arguments are then
substituted in the corresponding positions of the prototype to produce a
sequence of instructions using these arguments in the assigned location,
operation, and variable fields of the prototype body.

The maximum number of macro call arguments is 63; arguments greater than 63
are treated modulo 64. For example, the 70th argument is the same as the 6th
argument and 1is so recognized by the assembler. Each such argument can be a
literal, a symbol, or an expression (delimited by commas) that conforms to the
restrictions imposed upon the field of the machine instruction or
pseudo-operation within the prototype, where the argument will be inserted.

The following conditions and restrictions apply to the expansion of macro
operations:

1. Anything appearing in the location field of a prototype card image,
whether text or a substitutable argument, causes generation to begin
in column 1 for that text or argument.

2. Location field text generated from an argument pointer (in a prototype
location field) producing a resultant field extending beyond column 8
causes the operation field to begin in the next position after the
generated text. Normally, the operation field begins in column 8.

4-50 DDO1

3. Operation field text generated from an argument pglnter (ln. a
prototype operation field) producing a resultant flgld extending
beyond column 16 causes the variable field to start 1n Fhe next
position after the generated text. Normally, the variable field will

begin in column 16.

4. The variable field may begin after the first blank that terminates the
operation field but not later than column 16 in the absence of the
condition in 3 above.

5. No generated card image may have more than 72 characters recorded;
that is, the capacity of one card image cannot be exceeded (columns
73-80 are not part of the card image).

6. No argument string of alphanumeric characters can exceed 57
characters.

7. Up to 63 levels of macro nesting are permitted.

An argument can also be declared null by the programmer when writing the
macro operation; however, it must be declared explicitly null. Explicitly null
arguments may be specified in either of two ways; by writing the delimiting
commas in succession with no spaces between the delimiters, or by terminating
the argument list with a comma with the next normal argument of the list
omitted. (Refer to the "CRSM pseudo-operation".) A null argument means that no
characters are inserted in the generated card image wherever the argument is
referenced. When a macro operation argument relates to an argument pointer and
the pointer requires the argument to have multiple entries or contains blanks,
the corresponding argument must be enclosed within parentheses, with the
parenthetical argument set off by the normal comma delimiters. The
parenthetical argument may contain commas as separators. Examples of prototype
card images that require the use of parentheses in the macro call are
pseudo-operations such as IDRP, VFD, BCI, and REM, as well as the variable field
of any entry where the address and tag may be one argument.

It is also possible to enclose an argument within brackets, making them
subarguments; in the case blanks are ignored as part of the argument. For
example the macro call of the macro operation named ABC may be written as

ABC [a,
ETC 24,
ETC 2*p]

and is equivalent to
ABC (A,24,2*D)

even though numerous blanks occur after the arguments A, and 24,. Thus, the
assenmbler packs everything it finds within brackets and suppresses all blanks
therein. The above manner of writing the macro call provides additional
flexibility in programming one subargument per card with an ETC
pseudo-operation, the blanks no longer being significant.

It may happen that the argument list of a macro operation extends beyond
the capacity of one card. 1In this case, the ETC pseudo-operation is used to
extend the list to the next card. In using ETC, the last argument entry of the
macro operation is delimited by a following comma, and the first entry of the
ETC card is the next argument in the 1list. Within the prototype, as many ETC
cards as required may be used for internal macro operations, or VFD
pseudo-operations.

4-51 DDO1

Pseudo-Operations Used Within Macro Prototypes

Need for Prototype Created Symbols. A macro prototype, in which an
argument pointer 1s used in the location field, requires that a new symbol be
specified each time the prototype is called. In addition, where a
nonsubstitutable symbol is used in a prototype location field, the macro
operation may be used only once without incurring an assembler error flag on the
second and all subsequent calls to that prototype (multiple-defined symbol).
Primarily, to avoid the former task of having to repeatedly define new symbols
when using the macro operation and to enable repeated use of a prototype with a
location field symbol (nonsubstitutable), the created symbol concept is
provided.

Use of Created Symbols. Created symbols are of the type .xxx. where xxx
runs from 001 through 999, thus making possible up to 999 created symbols for an
assembly. The periods are part of the symbol. The assembler generates a
created symbol only if an argument in the macro operation is implicitly null;
that is, only if the macro operation defines fewer arguments than given in the
related macro prototype, or if the designator # is used as an argument.
Explicitly null arguments will not generate.

Example:

Assume a macro prototype of the form

NAME MACRO
—_——— #1,4#2

L X=-*

#5 0 em——- ALPHA, #3
———— $4-%
TMI #5=-*
EBDN NAME

with five arguments, 1 through 5. The macro operation NAME in the form

NAME A,2,,,B

specifies the third and fourth arguments as explicitly null; _con§equently,
no created symbols are provided. The expansion of the operation is

----- A,2
_____ X—%*
B eee—— ALPHA (Unless a specified modification
----- is given, IC modification will be
assumed.)
TMI B-*

The macro operation card image
NAME A2,

indicates the third argument is explicitly null, while arguments four and
five are implicitly null. Consequently, created symbols are provided for
arguments four and five, but not for three. This is shown in the expansion
of the macro operation:

----- A,2

011, = me——- X=*

.012, = emem=- ALPHA, (Unless a specified modification
----- 011.-* given, IC modification will be
TMI .012 assumed.)

4-52 DDO1

i itting the
A created symbol may be requested for the third argument by omitt
last comma¥ To change an explicitly null a;gument to an 1@p%lc1tly null
argument, insert the # designator in an explicitly null position. Thus,
for the preceding example

NAME A,2,,#,B

the fourth argument becomes implicitly null and a created symbol will be
generated.

CRSM ON/OFF - Created Symbols

1 8 16

Blanks CRSM ON Normal mode

Created symbols are generated only within macro prototypes. They can be
generated for argument pointers in the location, operation, and variable fields
of instructions or pseudo-operations that use symbols. Accordingly, the CRSM
pseudo-operation affects only coding produced by the expansion of macro
operations. CRSM ON causes the assembler to initiate or resume the creation of
symbols; CRSM OFF terminates the symbol creation if CRSM ON was previously in
effect. If the assembler is already in the specified mode, the pseudo-operation
is ignored.

ORGCSM - Origin Created Symbols

1 8 16

Blanks ORGCSM One expression in the variable field

The variable field of the ORGCSM pseudo-operation entry is evaluated and
becomes the new starting value between the periods of the created symbols.

IDRP - Indefinite Repeat

1 8 16

Blanks IDRP #3 An argument number or blanks in the variable
field, depending on the IDRP of the IDRP pair

The purpose of the IDRP pseudo-operation 1is to provide an iteration
capability within the range of the macro prototype by letting the number of
grouped variables in an argument pointer determine the iteration count.

The IDRP pseudo-operation must occur in pairs, thus delimiting the range of
the iteration within the macro prototype. The variable field of the first IDRP
must contain the argument number that points to the particular argument used to
determine the iteration count and the variables to be affected. The variable
field of the second IDRP must be blank.

4-53 DDO1

At expansion time, the programmer denotes the groupi i
: C ping of the variables
(subarguments) of. the iteration by placing them in parentheses, as the nth
;;gggenté where n is the argument value contained in the initial IDRP variable
ie entry.

IDRP is 1limited to wuse within the macro prototype, and nesting is not
permltyed. However, as many disjoint IDRP pairs may occur in one macro
operation as is desired.

For example, given the macro skeleton

NAME MACRO
IDRP #2
ADA #2-%
IDRP
ENDM NAME

the macro CALL (with variables X1,X2, and X3)

A NAME Q+2, (X1,x2,x3) ,B
generates
A .
ADA X1-*
ADA X2-*
ADA X3-*

In this example, arguments #1l and #3, Q+2, and B respectiva2ly, are used in
the skeleton ahead of and after the appearance of the IDRP range-iteration
pair.

DELM - Delete Macro Named

1 8 16

Symbol DELM A symbol in the variable field
or

Blanks

The DELM pseudo-operation deletes the macro named in the variable field
from the macro prototype area, and disables the corresponding operation table
entry. With this pseudo-operation, systems that require many macro prototypes,
or that have minimal memory allocation at assembly time, can re-use this memory
for redefining or defining new macro operations. Redefinition of a deleted
macro name does not produce an M (multiply-defined) error flag on the assembly
listing.

4-54 DDO1

A~

Implementation of System Macro Operations

The assembler can load a unique set (or sets) of macro operations.under
control of a pseudo-operation. This permits the lgnguage processors to unlque;y
identify the standard system macro operations required for the assembly of their
programs.

System macro operations are, by definition, locate@ on tpe System File on a
mass storage device. They are written by the System Editor, in System Loadable
Format, as a freestanding system program. The catalog name is the same gsed by
MAP in the loading operation. For proper implementation, the MASTER option of
the System Editor parameters card must be specified. It may be in absolute or
relocatable System Loadable Format.

This implementation technique permits any unit, or related group of MAP
users to define and implement a unique set of system macro operations.

PUNM - Punch Macro Prototypes

1 8 16

Blanks PUNM The variable field is not examined

This pseudo-operation causes the assembler, in pass one, to scan the
operation table for all macro operations defined. It then appends the
definitions to the end of the prototype table and constructs a control word
specifying the length of this area and the number of macro operations defined
therein.

At the beginning of pass two, this information is punched in relocatable
binary instruction cards, along with $ OBJECT, preface, and $ DKEND cards. The
primary SYMDEF of this deck will arbitrarily be .MACR.

In the normal preparation of system macro operations, it is not desirable
to include the MAP system macro operations. For this reason, the assembly of a
set of system macro operations should have NGMAC specified on the $ 355MAP card.

LODM - Load System Macro Operations

1 8 16

Blanks LODM Two subfields in the wvariable field

The LODM pseudo-operation causes the assembler to issue MME GECALL for a
set of system macro operations. The name used in the GECALL sequence is the
symbol taken from the first subfield of the variable field of the LODM
pseudo-operation. Macro operations thus loaded are appended to (not overlayed)
the Macro Prototype Table. They are defined and made available for immediate
use. If a macro prototype is redefined by this operation, the LODM operation is
flagged with an M. If the user wishes to suppress the M flag, the second
subfield must contain an M.

4-55 DDO1

Example:

LODM «GRTM,M

Notes and Examples on Defining a Prototype

The following examples show some of the ways in which macro operations may

be used.

1. Field substitution
Prototype definition:

ADDTO MACRO
LDA
ADA
STA
ENDM
Use:
ADDTO

2, Linkage of text and arguments
Prototype definition:

INCX MACRO
IACIACX #3
INE
TRA
ENDM

Use:
INCX

or
INCX

$1 - *
$2

43 - *
ADDTO

A,(1,1) ,B+5

#2
#1,'1"
#l - *
INCX

Loca,l1,1

1,1,1

3. Argument in a BCI pseudo-operation

Prototype definition:

ERROR MACRO
TSY
ZERO
BCI
ENDM
Use:
ERROR

4. Macro operation in a prototype
Prototype definition:

TEST MACRO
LDA

Use:

4-56

DIA-*

#1

10 ,ERRORY # 1JCONDIT IONBIGNORED
ERROR

5

#1-*
#2-*
#4-*
#5

TEST

A,B,TZE,ALPHA, 3

DDO1

5. Indefinite Repeat

Prototype definition (for generating a symbol table):

SYMGEN MACRO
IDRP #1
$#1 BCI 2,#1
IDRP
ENDM SYMGEN
Use:
SYMGEN (LABEL,TEST,ERROR,MACRO)

6. Subroutine macro CALL

Prototype definition:

DOO MACRO

K SET 0
IDRP #2

K SET K+1
IDRP
TSY $1-*
TRA 1+K
IDRP #2
ZERO #2
IDRP
ENDM DOO

Use:
DOO SRT, (ARG1,ARG2,ARG3)

PROGRAM LINKAGE PSEUDO-OPERATIONS

CALL - Call Subroutines

1 8 16

Symbol CALL Subfields in the variable field with contents and
or delimiters as described below
blanks

The CALL pseudo-operation generates the standard subroutine calling
sequence.

The first subfield in the variable field of the operation is separated from
the next n subfields by a left parenthesis. This subfield contains the symbol
that identifies the subroutine being called. It is possible to modify this
symbol by separating the symbol and the modifier with a comma. (In a relocatable
assembly the symbol entered in this subfield is treated as if it were entered in
the variable field of a SYMREF operation.)

The next n subfields are separated from the first subfield by a left
parenthesis and from subfield n+l by a right parenthesis. Thus the next n
subfields are contained in parentheses and are separated from each other by
commas. The contents of these subfields are arguments used in the subroutine
being called.

4-57 DDO1

The next m subfields are separated from the previous subfields by a right
parenthesis and from each other by commas. These subfields are used to define
locations for error returns from the subroutine. If no error returns are
needed, then m=0. ’

The last subfield contains an identifier for the operation. This
identifier is used when a trace of the program is made. The identifier may be
an expression contained in apostrophes. Thus the last subfield is separated
from the previous subfields by an apostrophe. If the last subfield is omitted,
the assembly program provides an identifier (the assigned alter number of the
CALL pseudo-operation itself.)

In the following examples, the calling sequences generated by the
pseudo-operation are listed below the CALL pseudo-operation. For clarification,
ARAAA defines the location of the CALL pseudo-operation; SUB is the name of the
subroutine called; MOD is an address modifier; Al through An are arguments; El
through Em define error returns; E.I. is an identifier; and .NAME. is the
location of the first SYMDEF defined in the routine. The number sequences
1,2,...,n and 1,2,...,m designate argument positions only.

Relocatable mode:

AAAAA CALL SUB,MOD(Al,A2,...,An)E1l,E2,...,Em'E.I."

AAAAA TSY 2,I
TRA 4+n+m
IND SUB ,MOD
ZERO .NAME .,
ZERO E.I.
ZERO Al
ZERO A2
ZERO An
IND Em
IND E2
IND El

Absolute mode:

AAAAA CALL SUB,MOD(Al,A2,...,An)E1,E2,...,Em'E.I."

AAAAA TSY 2,I
TRA 4+n+m
IND SUB,MOD
ZERO
ZERO E.I.
ZERO Al
ZERO A2
ZERO An
IND Em
IND E2
IND El

4-58 DDO1

Ve N

If the variable field of the CALL cannot be contained on a singlg line of
the coding sheet, it may be continued in succeed%ng lings by using the ETC
pseudo-operation. This is done by terminating the varlaple fleld. of the CALL
operation with a comma. The next subfield is then thg first subflelq of Fhe ETC
pseudo-operation. Subsequent subfields may be continued in following lines in
the same manner.

When a CALL to an external subprogram appears within a headed sect%on, the
external subprogram must be identified by a six-character symbol (immune to
HEAD) .

If a CALL is being used to access an internally defined subroutine, the
subroutine must be placed before the CALL in the program deck. Also, a SYMDEF
pseudo-operation with the symbol identifying the subroutine in its variable
field must be placed before the CALL in the program deck. Starting the
subroutine with a SAVE pseudo-operation automatically provides the SYMDEF.

SAVE - Save--Return Linkage Data

1 8 16

Symbol SAVE Blanks or subfields separated by commas in the
variable field--as described below

The SAVE pseudo-operation produces instructions necessary to save specified
index registers and the contents of the indicator register. .

The symbol in the location field of the SAVE operation is wused for
reference by the RETURN operation. (This symbol is treated by the assembler, in

the relocatable mode, as if it had been coded in the variable field of a SYMDEF
operation.

The subfields in the variable field, if present, each contain an integer
1-3. Thus, each subfield specifies one index register to be saved.

When the SAVE variable field is blank, the following coding 1is generated:

BCI 2 ,NAME
BBBBB IND

TRA 4

LDI 2

TRA BBBBB-*, I

ZERO

STI -1

The @ns?ructions generated by the SAVE pseudo-operation are listed below.
Example 1 is in the relocatable mode, and Example 2 is in the absolute mode.
The symbols il through in are integers 1-3.

NAME, as selected by the assembler, is the first SYMDEF defined in the

routine. This may be accomplished explicitly with SYMDEF pseudo-operation, or
implicitly with SAVE.

BBBBB is a symbol that must be present; it is always a primary SYMDEF.

4-59 DDO1

Examples:

l.

2.

BBBBB

BBBBB

BBBBB

BBBBB

SAVE

BCI
IND
TRA
LDX(il)
LDX(i2)

LDX(in)
LDI
TRA
ZERO
ZERO

ZERO
ZERO
STI
STX(il)
STX(i2)

STX(in)

SAVE

IND
TRA
LDX(il)
LDX(i2)

LDX(in)
LDI
TRA
ZERO
ZERO

L]

ZERO
ZERO
STI
STX(il)
STX(12)

STX (in)

il,i2,...,in
2,NAME

4+2n
2+n
2+2

2+n
2+n
=(3+n)
X(il)
X(i2)

X(in)

-1
= (2+n)
-(2+n)

=(2+n)

il,i2,...,in

4+42n
2+n
2+n

2+n
2+n
=(3+n)
X(il)
X(1i2)

X(in)

-1
= (2+n)
=(2+n)

=(2+n)

4-60

DDO1

P

RETURN - Return--From Subroutines

1 8 16

Symbol RETURN One or two subfields in the variable field
or

blanks

The RETURN pseudo-operation 1is used for exit from a subroutine. The
pseudo-operations generated by a RETURN pseudo-operation must make reference to
a SAVE operation within the same subroutine. This is effected by the first
subfield of RETURN, which must always be present. This symbol must be defined
in the location field of a SAVE pseudo-operation.

The second subfield is optional and, if present, specifies the particular
error return to be made; if the second subfield contains the value k, then the
return is made to the kth error return.

In the examples following, the assembled instructions generated by RETURN
are listed below the RETURN operation. For both examples the assembler
generates the same group of instructions when in either the relocatable or

absolute mode.

Examples:

1. RETURN BBBBB

TRA 1,I
IND BBBBB+2

STA 8

LDA 8,I
ERA 8

I2AA -k

ASA 7,1
LDA

TRA 1,I

IND BBBBB+2
IND

IND BBBBB, I
TRA 0,I

IND BBBBB

4-61 DDO1

ETC - Continuation

1 8 16

Blanks ETC Variable field contains information overflow of
previous card

The ETC pseudo-operation permits the continuation of a variable field that
exceeds the space limitations of one card. The variable field of the previous
card must be terminated by a comma to indicate continuation. There is no 1limit
as to the number of ETC cards utilized. The ETC pseudo-operation can be used
with any macro, VFD, and CALL pseudo-operation; it cannot be used with the DUP
pseudo-operation. ETC can not be used to continue a macro operation.

If the ETC pseudo-operation is used within a macro skeleton and within an
IDRP loop, the IDRP loop must not intervene between the ETC and the subject
instruction or another connecting ETC. For example:

VFD #6018/777001,
IDRP #1

ETC 09/#1

IDRP #1

Note that this example violates both parts of the restriction.

SYSTEM (BUILT-IN) SYMBOLS

It is possible to include additional permanently defined system symbols in
the assembler. This is done by a reassembly of the Macro Assembler and by
placing the necessary information in the required tables.

4-62 DDO1

SECTION V

INPUT/OUTPUT OPERATIONS

Program control of input/output operations is by the use of the Connect
Input/Output Channel (cIOC), Load External Channel (LDEX), Store Extgrnal
Channel (STEX), and Select Input/Output Channel (SEL) machine instructions.
These instructions transfer data between memory and the channels on the
Input/Output Multiplexer (IOM).

The CIOC instruction always accesses a double-precision (36-bit) Peripheral
Control Word (PCW) and sends it, or portions thereof, to the channel indicated
by the I/0 Channel Select Register. If the channel has a 6-, 9-, or 18-bit
interface, it uses only part of the word.

The LDEX and STEX instructions are used to transfer data to and from
channels operating in a static mode. The channel for the transfer is designated
by the I/O Channel Select Register. The I/O Channel Select Register is loaded by
the SEL (Select I/O Channel) instruction.

The instructions are executed as follows:

1. The processor decodes the LDEX, STEX, or CIOC.
2. The processor calculates the effective address by the normal method.

3. When the effective address is generated, the processor sends a request
for transfer directly to the IOM and presents the address and channel
number to the IOM for that transfer. The processor indicates the type
of transfer required (CIOC,LDEX,STEX).

4, When the IOM is ready, it initiates a memory cycle using the address
supplied by the processor. When the cycle is complete, the IOM
releases +the waiting processor which resumes its program. The
processor is assigned top priority in accessing the IOM so that the
processor waits at most, one memory cycle.

PERIPHERAL CONTROL WORD

Program control of dynamic channels is accomplished by the connect
sequence. In the connect sequence the IOM pulls a Peripheral Control Word (PCW)
from memory into the IOM registers. The format of the PCW varies from channel to
channel; but, in general, it specifies the device command to be executed and
other information needed by the channel. The PCWs for specific channels are
described in this section.

5-1 DDO1

DIRECT CHANNEL PROGRAMMING

Channels that ope;ate in a direct mode (maintain address and tally outside
memory} are normally high performance, high data-rate channels.

After initiation by the CIOC instruction, the IOM pulls the PCW from a
memory location. The IOM places the required portions of the PCW on the output
lines to the selected channel. The device interprets the PCW and requests the
first Data Control Word (DCW) and stores it in the channel. The DCWs may be in a
sequential list or a threaded list determined by the channel.

Once initiated, the channel requests transfers asynchronously from the
program until the DCW(s) is exhausted. Status information is normally obtained
from this type of high performance channel in the form of a pre-assigned status
location that the channel updates in memory immediately after completing the
data transaction. The channel normally signals the end of the transaction by
issuing a Set Interrupt Cell request.

INDIRECT CHANNEL PROGRAMMING

The indirect channel operates much the same as the direct channel using an
Indirect Control Word (ICW). In the indirect mode, the ICW is obtained from a
memory location by the IOM each time a channel requests an indirect data
transfer, thus relieving the channel of the addressing and tally counting.

The ICW must be set up by the program prior to issuing the CIOC instruction
to the channel. Once started, the indirect device operates independent of the
program, signalling the end of a data transfer by a Set Interrupt Cell request.

Status for an indirect channel is normally placed in memory, using a status
ICW, after the data transfer and before the Set Interrupt Cell request is issued
by the channel.

PROGRAM INTERRUPT CONTROL

The program interrupt is the main method of communication between
input/output and the program. The interrupt enable register has 16 bits, one for
each of 16 interrupt levels. There are 16 interrupts per level for an effective
256 program interrupts. The interrupts are enabled in groups of 16. The Set
Interrupt Enable Register (SIER) and Read Interrupt Enable Register (RIER)
instructions provide program access to the Interrupt Enable Register.

STATUS

For most devices, status is stored in the same manner as data, using an ICW
or DCW. The Store Status and Set Interrupt Cell may be requested simultaneously
by the channel. Status word formats vary with the types of channels and are
specified with the individual channel in this section.

Static status information may be obtained by the program from a channel at
any time by using the STEX instruction.

5-2 DDO1

IOM FAULTS

The IOM detected faults result in a status in octal locations 420-447 (as
determined by the channel number, modulo 16) store sublevel and a program
interrupt (level O, determined by the channel, modulo 16).

The fault status word has the following format:

0 78 1011 1314 17

Data Interrupt
MBZ Command Command Fault Type

where:

Data Commands may be

Bits

8-10 Meaning
000 None

001 Load

0l0 Store
011 ADD

100 Subtract
101 AND

110 OR

111 Fault

Interrupt Commands may be

Bits

11-13 Meaning

000 None

001 Unconditional

010 Conditional or TRO (Tally Run Out)
011 Conditional or PTRO (Pre-Tally Run Out)
100 Conditional or Data Negative

101 Conditional or Zero

110 Conditional or Overflow

111 Fault

Bits Fault

14-17 Type

0000 None

0100 Program Fault

1000 Memory Parity Error

1100 Illegal Command to IOM

1010 Adder/Bus Parity

1001 Indirect Channel Detected Parity
1101 Direct Channel Detected Parity
1111 IOM Bus Priority Break

5-3 DDO1

The following code combinations cause an Illegal Channel Request Fault:

Data Interrupt
Command Command
Code Code

7 X

X 7

0 0

0 2

0 3

0 4

0 5

0 6

X = Any code

INTERCOMPUTER ADAPTER (ICA)

The Intercomputer Adapter (ICA) links the input/output .bus of the DATANET
FNP Input/Output Multiplexer (IOM) with the Central System controller. The ICA
transfers data and control information back and forth between the DATANET FNP
memory and the Central System memory.

The DATANET FNP generates a list of control words that define the location
of data in its memory and the location in the Central System memory that is to
reserve the data, sets up the Peripheral Control Word mailbox, and executes a
Connect Input/Output Channel (CIOC) instruction to the ICA.

The Central Processor (program) sets up a mailbox with instructions to
interrupt the ICA and then executes a CIOC to the ICA.

DATANET FNP Interface

IOM Channel (patchable in ICA) 4
Interrupt Vectors (patchable in ICA)

Fault (level 0) 100
Terminate (level 2) 102
Specials (all level 3) 03, 23, 43, 63, 103,...,363
Mailboxes

IOC Fault Status ‘ 424
Status ICW (patchable in ICA) 452, 453
PCW (Mailbox - patchable in ICA) 454, 455

List ICW structure

5-4 DDO1

Central System Interface

Up to four DATANET FNPs may be configured on a single Central System.

INTERRUPT CELI, ASSIGNMENT SWITCHES

Switch Settings
FNP Number (for C/S with IOM)

3
7
13
17

wN = O

PORT ASSIGNMENT FOR FNPs

The DATANET FNP must be assigned a higher port priority than the C/S
processor unit, but a lower port priority than the C/S IOM.

MAILBOX ADDRESSES

The Central System mailbox address for FNP-0 is
600g *A+14004

where: A is the number of C/S IOMs configured.

Add 100g for each additional FNP configured.

PROCESSOR FAULT SWITCHES

Central System processor fault switches should be set by the algorithm:
600g *A+100g *B+1400g (for FNP-0)

where: A is the number of C/S IOMs configured and
B is the number of FNPs configured

Add 40g for each additional C/S processor unit configured.

5-5 DDO1

EMERGENCY INTERRUPT CELL NUMBER

is derived from the interrupt cell

. The emergency interrupt cell number
assignment switches on the ICA panel. It depends on
configured.
Emergency Interrupt
FNP Number Switch Setting Cell Number
0 3 19
1 7 23
2 13 29
3 17 33

PCW MAILBOX

the

number of

FNPs

The FNP data PCW mailbox is set by switches on the ICA configuration panel.
It may vary for different configurations, but is usually set at 454.

DATANET FNP Control Word Formats

PERIPHERAL CONTROL WORD (PCW)

Model AA2
0 1718 2324 2930 35
Mailbox
(454-455) W O—»0 X C
C-FIELD
COMMAND | (Opcode) W-FIELD X-FIELD NOTES
Connect 67 Central System Not used
address sent
with connect Only commands
allowable if
Set 73 Central System Central System ICA is busy
Execute address (used interrupt cell
Cell only for port to be set
select.)
None Any DATANET FNP Not used PCW inter-
except address of List pretation if
67 or 73 | ICW ICA is not
busy

DDO1

Model ABl

N 0 17 21222324 2930 35
Mailbox
(454-455) W MBZ PP | T X C
1|2
where:

Same as on previous page

HN=E0
I

Pl = 0dd parity for bits 0-17
P2 = 0dd parity for bits 18-35 including bit 21
T = Test/normal mode; 0 = normal mode, 1 = test mode

LIST INDIRECT CONTROL WORD (LICW)

Model AA2
0 23 1718 222324 35
1 Y MBZ TALLY
where:
Bits 0-2 = 001
S~ Y = Starting address of DCW list
MBZ = Must be zero
E = Exhaust bit for Tally field
TALLY = Number of 36-bit words to transfer
Model ABl

Same as for Model AA2

DATA CONTROL WORD (DCW)

Model AA2
0 1718 2324 2930 35
DCW1 1) MBZ X C
0 23 1718 222324 35
DCW2 1 Y MBZ E Z
S~

5-7 DDO1

where:

C, W, X, Y, 2

Defined in following table

E, MBZ Same as on previous page
C-FIELD W=-FIELD X-FIELD Y-FIELD Z-FIELD
Command (Opcode) (C/s Address) (FNP Address)
EXECUTE 66 Used for port Not used Loc for XEC Not used
select only data
CONNECT 67 Specifies addr. | Not used Not used Not used
sent with CON.
DISCONNECT 70 Not used Not used Not used Not used
SXC 355 71 Not used Specifies| Not used Not used
(Level 3) channel
number
JUMP 72 Not used Not used Specified Not used
addr, of new
List ICW
Set 73 Used for port No. of Not used Not used
Execute Cell select only int, cell
to be set
CONFIG. 74 Bits 16-17 Not used First loc. Tally
used only of config.
data
DATA XFER to 75 Central System Not used DATANET FNP Tally
Central starting starting
System address address
DATA XFER 76 Central System Not used DATANET FNP Tally
from Central starting starting
System address address
DATANET FNP 77 Not used Not used DATANET FNP Tally
WRAPAROUND starting (must
address be even)
READ/CLEAR 65 Central System Not used DATANET FNP Tally
Central starting starting
System, or to address address
STORE
DATANET FNP
5-8 DDO1

Model ABl

0 1718 2021222324 2930 35
DCW1 W MBZ [P |P X C
12 |2
0 1718 2021222324 35
DCW2 |1 Y MBZ [P |P [E Z
1 [2
where:
E, MBZ = Same as on previous page
Pl = 0dd parity for bits 0-17
P2 = 0dd parity for bits 18-35 including bit 21
c,W,X,Y,2 = Same as above, except for the following
Command C W X Y 2
Illegal 77 - - - -
Command
DATANET DATANET FNP Tally
FNP 66 Not used | Not used | starting (must be
WRAPAROUND address even)
CONFIGURATION STATUS FORMAT
System Controller Port Configurations (Wyg-17 =00)
Format (Loc. Y):
0 8 17 26 35
Port A Port B Port C Port D
Bits Function
0-2, 9-11, 18-20, 27-29 Indicates ICA configuration panel logical port
number assignments.
3, 12, 21, 30 Indicates ports are interlaced (if = 1)

4, 13, 22, 31

5, 14, 23, 32

6-8,

15-17,

24-26,

33-35

Indicates ports are enabled (if = 1)

Indicates whether a System Initialize
accepted (if = 1) or ignored (if = 0)

Indicates memory size in each port.

signal is

DDO1

Central System Mailbox and Interrupt Cell Switches (W16lJ =01)
Format (Loc. Y):
0 17 31 35
Central System MB2Z Interrupt
Mailbox Switches Cell Switches
Lower/Upper Address Bounds (W16-17=1°)
Format (Loc. Y):
0 8 18 26 33 34 35
Lower Address MB2Z Upper Add. | MBZ
Bounds Switches Bounds
Switches

Disable memory timer (0O=Disabled, l=enabled)—————————T

Address bounds (0=disabled, l=enabled)

Central System write inhibit (0O=disabled, l=enabled)

Zeros (Wpq_;; =11)
Format (Loc. Y):

Always stored as a word of zeros.

ACTIVE STATUS FORMAT

Status Indirect Control Word (ICW)

0 23 1718 2324 35
C Y MBZ E TALLY
C field - 001 (indirect 36)
Y field - DATANET FNP memory address where status will be stored
E-bit - Exhaust bit (set to one when tally exhausted)

TALLY field Number of 36-bit words to be transferred.

DDO1

STATUS WORD FORMAT

Model AA2

BIT FUNCTION (Indication)

0-2

3-5 Logical number assigned to physical ports A, B,
6-8 c, D, respectively on ICA configuration panel
9-11

12-18 MBZ

19 0dd tally for Opcode 77 from DATANET FNP
20 Illegal CON from DATANET FNP

21 Illegal Opcode from DATANET FNP

22 List ICW TRO (Tally Run Out)
23 List ICW did not specify 36-bit word

24 Address < Lower Boundary
25 Address > Upper Boundary
26 Central System Write inhibit

27 Central System Test command while busy
28 Illegal Opcode from Central System
29 Central System INA
30 E bit set in List ICW
31 Parity error (Central System)
32
33
34 Illegal action from Central system
35

Model ABl

BIT FUNCTION (Indication)
0-2
3-5 Logical number assigned to physical ports A, B,
g-gl Cc, D, respectively on ICA configuration panel
12-14 MBZ
15 FNP Parity

16-18 MBZ
19 0dd tally for Opcode 66 from DATANET FNP
20 Illegal CON from DATANET FNP
21 Illegal Opcode from DATANET FNP

22 List ICW TRO (Tally Run Out)
23 List ICW did not specify 36-bit word

24 Address < Lower Boundary
25 Address > Upper Boundary

26 Central System Write Inhibit

27 Central System Test command while busy
28 Illegal Opcode from Central System

29 Central System INA

30 E bit set in List ICW

31 Parity error (Central System)

32

33 Illegal action from Central system

34

35

DDO1

Central System Control Word Formats

PERIPHERAL CONTROL WORD (PCW) IN CENTRAL SYSTEM MAILBOX

Model AA2
0 1718 2324 2930 35
W MBZ X C
where:
W,X,C are as follows:
C-FIELD W-FIELD
COMMAND (Opcode) C/S Address X=-FIELD
SXC 71 Not used Cell number
DATANET FNP
(Level 3)
BOOTLOAD 72 Specifies Central System Not used
"Boot ICW" addressl

SXC 73 Specifies Central System Cell number
Central address (used for port
System select only)
TEST DATA 75 Specifies Central System Not used
XFER to "Test ICW" addressl
Central
System
TEST DATA 76 Specifies Central System Not used
XFER to "Test ICW" addressl
DATANET FNP
Central 77 Specifies Central System Not used
System address containing
Wraparound wraparound data
1TEST ICW and BOOT ICW format:

0 1718 222324 35

FNP Starting Address MBZ E Tally

5-12

DDO1

/\\.

Model ABl

0 1718 21222324 2930 35
w MBZ P (T X

where:

P = 04d parity

T = Test mode bit

W,X,C are as follows:
C-FIELD W-FIELD

COMMAND (Opcode) C/S Address X-FIELD
Store 40 Not used Not used
Emergency
Store Execute 41 Loaded into Loaded into
Register ARG Execute Register
Increment 42 Not used Not used
AR6
C/S Wraparound 74 C/S Address Not used
Illegal 77 - -
Command

Actual Status Word Format

The Central System status word is stored in location = mailbox + 3

BIT FUNCTION (Indication)
0-14 MBZ
15 } FNP Parity
l6-17 MBZ
18 FNP INA .
19 0dd tally for Opcode 66 from FNP
20 Illegal CON from FNP
21 Illegal Opcode from FNP
22 List ICW TRO
23 List ICW did not specify 36-bit word
24 Address < Lower Boundary
25 Address > Upper Boundary
26 Central System Write Inhibit
27 Central System Test command while busy
28 Illegal Opcode from Central System
29 Central System INA
30 E bit set in List ICW
31 Parity error (Central System)
32
33 Illegal action from Central System
34
35

DDO1

DIRECT INTERFACE ADAPTER (DIA)

The Direct Interface Adapter (DIA) provides a data and control i i
. information
link betweep the DATANET FNP Input/Output Multiplexer (IOM) and the Central
System IOM Direct Channel Adapter (DCA).

Data is transferred between the DIA and DCA on a 36-bit bidirectional

interface and between the DIA and DATANET FNP on a 36-bit direct or indirect
transfer mode.

DATANET FNP Interface

I/0 Channel Number = n

where: n is a switch settable value in the range 0 to 17 octal.

Interrupt Vectors
Fault = n*l6 (level 0)
Terminate = n*l6 + t;

where: t is a switch settable value. The switches labeled TERMINATE
INTERRUPT LEVEL specify the value of t. It can be set in the
range 0 to 17 octal but must always be set to the value 2 for
operation with GRTS software.

Special = x*16 + s

where: s is a switch settable value. The switches labeled SPECIAL
INTERRUPT LEVEL specify the value of s. It can be set in the
range 0 to 17 octal, but must always be set to the value 3 for
operation with GRTS software. The symbol x varies from 0 to
17 octal giving the sixteen different special interrupt vector
addresses. If s is set to the value 3 (i.e. level 3), the
special interrupt vectors would be assigned at the following
locations: 03, 23, 43, 63, 103, 123, 143, 163, 203, 223, 243,
263, 303, 323, 343, 363.

Mailboxes
IOM Fault Status = 400 + n

DIA Mailbox Base Address = m

where: m value is a switch settable value in the range 000 to 774 in
increments of four. This address must always be 454 or above
to prevent conflict with locations already assigned to
interrupt vectors, interrupt cells, IOM fault status words,
processor fault vectors, and the DATANET FNP timer mailbox.
GRTS software further restricts the mailbox base address
setting to be less than 500 octal. Thus the value of m must
be one of the following for operation with GRTS software:
454, 460, 464, 470, 474,

PCW Mailbox = m, m+l

Status ICW Mailbox = m+2, m+3

5-14 DDO1

Central System Interface

Central System IOM Channel Number - Varies for each system.

Interrupt Level Numbers
Fault = Level 1 (Fixed in hardware)
Terminate = Level 3 (Fixed in software)
Special = 7 used for the following three functions:

(1) For terminating T and D commands (the switches labeled
TERMINATE INTERRUPT LEVEL should be set to the value 7).

(2) For reporting an emergency condition such as when the
Central System attempts to access a DATANET FNP DIA in the
masked state (the switches labeled EMERGENCY INTERRUPT LEVEL
should be set to the value 7)

(3) For reporting a GRTS software failure. (This interrupt
LEVEL is fixed to the value 7 in GRTS software.)

When a special interrupt is received by GCOS, the DATANET FNP is
considered to be down.
Mailboxes

Central System IOM Fault Status is stored via the IOM Fault Channel mailbox
as is the case for any other IOM channel.

Central System IOM Channel Mailbox is not used by the hardware since this
channel is a Direct Channel.

Central System DIA Mailbox Base Address is set using the switches labeled
PCwW MAILBOX ADDRESS. This value varies with the number of IOMs configured
in the Central System. Use the following algorithm to determine the proper
value for FNP #0:

Mailbox Base = 1400 + 600 *A

where: A = No. of IOM's configured.

5-15 DDO1

DATANET FNP Control Word Formats

PERIPHERAL CONTROL WORD (PCW)

0 23 1718 2021222324 2627 2930 35
P| P
001 Y 0 0 0 0 0 0 o Xx c
1] 2
where:
Bits 0-2 = 001 Specifies an indirect 36 chardcter address.
Bit 21 = Pl signifies the parity bit to make bits 0-17 of this
word odd parity.
Bit 22 = P2 signifies the parity bit to make bits 18-35 of this
1 word odd parity.
Bit 23 = M Specifies the DIA channel should be masked if this bit

is equal to one. All other fields are ignored if this

bit is one. If this bit is equal to zero, the DIA
channel is unmasked and the operation code (C-field)
is interpreted and executed.
Fields C,X,Y are as follows:
COMMAND C-FIELD Y-FIELD X-FIELD NOTES
(Opcode)
Interrupt 73 Not used Central System IOM
Central interrupt level
System no. to be set
Start Any legal | DATANET FNP Not used PCW interpreted
DIA List Opcode address of only if DIA is
Service except 73| LIST ICW not busy
IThis assumes the CIOC instruction is addressing the DIA PCW mailbox. If it is
not, bit 23 is not used in the PCW mailbox.
5-16 DDO1

LIST INDIRECT CONTROL WORD (LICW)

P
0 23 1718 222324 35
001 Y 0 MBZ E Z
where:
Bits 0-2 = 001 Specifies an indirect 36 character address.
Bits 3-17 = Y DATANET FNP address where DCW list begins. This
must be an even location.
Bit 23 = E Signifies the tally (Z-field) has exhausted. This
bit is set to one when the tally is decremented from
one to =zero. Once the E bit is set, the Y and Z
fields are not incremented or decremented further on
subsequent accesses.
Bits 24-35 = 1% Specifies the number (tally) of 36-bit words to be
processed in the DCW list.
Command Data Control Word (Command DCW)
0 1718 2021222324 2930 35
DCW1 W MBZ P| P| B X C
Z
//‘\ l 2
0 23 1718 2021222324 35
M
DCW2 | 001 Y 0 MBZ P| P| B Z
Z
1 2
where:
B@ts 0-2 (DCW2) = 001 Specifies a direct 36 character address.
Bit 21 = P1 Signifies the parity bit used by software to
' make bits 0-17 have odd parity.
Bit 22 = P2 Signifies the parity bit used by software to
make bits 18-35 have odd parity.
7/

5-17 DDO1

Fields C,W,X,Y,Z are as follows:

COMMAND C-FIELD W-FIELD X-FIELD Y-FIELD Z-FIELD
(Opcode) (C/s Address) FNP-ADDRESS
READ CLEAR 65 Central System Extended DATANET FNP Tally
Central starting address starting
System; address bits address
or to STORE AQ0-AS5
DISCONNECT 70 Not used Not used Not used Not used
INTERRUPT 71 Not used Specifies |Not used Not used
DATANET FNP channel
(on level number in
specified bits 26-29
by SPECIAL
INT. switch)
JUMP 72 Not used Not used Specifies Not used
addr. of new
List ICW
INTERRUPT 73 Not used Specifies |Not used Not used
Central interrupt
System level no.
in bits
27-29
CONFIGURATION 74 Specifies Not used Loc. of Tally
STATUS starting config.
configuration data
format in
bits 16-17
DATA XFER to 75 Central System | Extended DATANET FNP Tally
Central starting address- starting
System address bits address
AQ0-A5
DATA XFER to 76 Central System | Extended DATANET FNP Tally
DATANET FNP starting address- starting
address bits address
A0-AS5
5-18 DDO1

CENTRAL SYSTEM ADDRESS EXTENSION

223 218 217 20
L
Address 256K
Extension
Ao’ AS A6 A23
Address extension bits Ay-Ag are obtained from the x-field of the DCW.
This allows addressing 16K of Central System memory.
CONFIGURATION STATUS FORMAT
Zeros (W;¢_;; = 00)
Format (Loc Y): always stored as a word of zeros.
Central System Mailbox and Interrupt Level Switches Wi6-17 = 01)
Format (Loc Y):
0 1718 2930 3233 35
Central System PCW
Mailbox Address Switches MBZ A B
:/\
where:
Bits 30-32 = A Specifies Test Data Terminate Level to be set on
Central System IOM.
Bits 33-35 = B Specifies Emergency Interrupt Level to be set on
Central System IOM.
Lower/Upper Address Bounds (W16-17 = 10)
Format (Loc Y):
0 1415161718 32333435
Lower Address Bounds 0| 0 |[A | Upper Address Bounds [B [C |D
Switches Switches
where:
Bit 17 = A Signifies bootload command is enabled if equal one or
disabled if equal zero.
Bit 33 = B Signifies memory timer is disabled if equal =zero or
enabled if equal one.
Bit 34 = C Signifies address bounds check is disabled if equal zero
or enabled if equal one.
Bit 35 = D Signifies Central System Write Inhibit is disabled if
o equal zero or enabled if equal one.

5-19 DDO1

Zeros (w16-17

Format (Loc Y):

= 11)

always stored as a word of zeros.

STATUS INDIRECT CONTROL WORD (STATUS ICW)

0 23 1718 222324 35
001 Y 000O0O0]|E Z
where:

Bits 0-2 = 001 Specifies an indirect 36 character address.

Bits 3-17 = Y DATANET FNP memory address where status will be
stored by the DIA.

Bit 23 = E Signifies the tally (z-field) has exhausted. This
bit is set to one by hardware when the tally is
decremented from one to zero. Once the E bit is
set, the Y and Z fields are not incremented or
decremented further on subsequent accesses.

Bits 24-35 = Z Specifies the number of 36-bit status stores which

can be made in the DATANET FNP.

STATUS WORD FORMAT IN DATANET FNP MEMORY

1314151617181920 35

Not used

0 00 See below

see below

L— Ready line

5-20 DDO1

BIT FUNCTION (INDICATION)
0-13 Zero (not used)

14 DIA internal parity error (Data transfers)

15 FNP software parity error (mailbox or DCW pair)

16 Zero

17 When equal to one, indicates the Central System
Direct Channel is in operational mode

18 Zero

19 Zero

20 Illegal connect from DATANET FNP

21 Illegal Opcode from DATANET FNP (or control word
Parity error if bit-15 equals one)

22 List ICW tally runout

23 DATANET FNP address field did not specify direct
36-bit address in control word

24 Address less than lower bound switches

25 Address greater than upper bound switches

26 Central System write inhibit violation

27 Central System test command while busy

28 Illegal Opcode from Central System

29 Central System not available

30 E bit set in List ICW

31 Parity error detected by DIA in Central System IOM

32

33 } Parity error detected in Central System1

34

35 System fault detected in Central System IOM

lgtatus bits 32-34 indicate parity error in data transfers as

follows:

Bit 32
Bit 33
Bit 34

C/S IOM to DCA
DCA to C/s IOM
DIA to DCA

DDO1

Central System Control Word Formats

PERIPHERAL CONTROL WORD (PCW)

1718 21222324 2930 35
W 0 0O0OTPO X C
where:
Bit 22 = P Signifies the parity bit used by software

word

contain

parity.

W,X,C are as follows:

an odd number of bits.

to make
Set to one for odd

C-FIELD W-FIELD X-FIELD
COMMAND (Opcode) (C/S Address)
INTERRUPT 71 Not used Specifies
DATANET FNP channel
(on level number in
specified bits 26-29
by SPECIAL
INT. switch)
BOOTLOAD 72 Specifies Extended
FNP Central System address
Boot ICW bits -
address AQ0-AS5
INTERRUPT 73 Not used Specifies
Central System interrupt
level no.
in bits
27=29
TEST DATA 75 Specifies Extended
Transfer to Central System address
Central Test ICW bits
System address A0-AS5
TEST DATA 76 Specifies Extended
Transfer to Central System address
DATANET FNP Test ICW bits
address AQ0-A5

this

DDO1

P

TEST AND BOOTLOAD INDIRECT CONTROL WORD (Test ICW/Bootload ICW)

0 23 1718 222324 35
001 Y 0 MBZ 1 z
where:
Bits 0-2 001 Specifies a direct 36 character address

mn
L]

Bits 3-17 Specifies the starting address in DATANET FNP for
data transfer. The starting address in the Central
System is the word following this control word.

Bit 23 = E Tally exhaust bit.

Bits 24-35 = Z Specifies the number of 36-bit words to be

transferred.

HIGH SPEED LINE ADAPTER (HSLA)

The High-Speed Line Adapter (HSLA) is a multiline communications controller
with up to 32 concurrently operating lines. It handles both synchronous and
asynchronous character-oriented communication terminals operating at various
transmission rates =-- 75 to 50,000 bits per second.

The HSLA controller bus provides the interface between DATANET FNP
subchannel units. Data transfer between the controller and the
character-buffered subchannels is parallel by character and between the
subchannel and the terminals is in serial bit form.

General Information

I/0 Channel - 6-10 (octal):
The channel assignment is hardware patchable.

HSLA Subchannel - 1000-1777 (HSLA #1)
Comm. Regions - 2000-2777 (HSLA #2)
3000-3777 (HSLA #3)

Interrupt Vectors:

Level 4 (all)
Level 5 (all)
Level 6 (all)
Level 7 (all)

active subchannels 0-15

active subchannels 16-31
configuration subchannels 0-15
configuration subchannels 16-31

5-23 DDO1

PCW Format

PCW [COMMAND COMMAND CONFIGURATION CONFIGURATION BISYNC.
BIT PCWO PCW1l PCW2 PCW3 PCW3
(ASYNCHRONOUS) (SYNCHRONOUS) (SYNCHRONOUS)
0-1 =00 =01 =10 =11 =11
2-5 |COMMAND COMMAND COMMAND COMMAND
6 |<———— (NOT USED) >
7-11 SUBCHANNETL N UMBER (0-31)
12 (LPR (Lat. Parity\
receive)
13 LPS (Lat. Parity
send) \
14 NOT < < LPO (Lat. Parity) >
odd)
15 - > ACW (Alt. Cont.
Word)
16 USED CCT (CCT enable)
17 L (Spare))
18-23 N OT USED BY HSLA -
24 (Reserved for |2 Stop Bits (IF=l) (Reserved for (24) 1f=1, CRC-1l6
25 subchannel Not used subchannel) polynomial;
26 broadside cmds) If=0, CCITT
polynomial
27 RECEIVE MODE (27) 1f=1, EBCDIC
code;
If=0, ASCII code
28 NOT SEND MORE 110 bps Bit 8 synchr. (28) If=1, Transp.
char. data
If=0, Non-Transp.
data
29 WRAPAROUND 134.5 bps Bit 7 synchr. (29) If=1, Timer
char. is enabled
30 DATA TERMINAL 150 bps Bit 6 synchr.
READY char. .
31 REQUEST TO 300 bps Bit 5 synchr.
SEND char.
32 MAKE BUSY 1050 bps Bit 4 synchr.
char.
33 USED SUPERVISORY 1200 bps Bit 3 synchr.
SEND char.
34 CALL REQUEST 1800 bps Bit 2 synchr.
char.
35 SPARE 75/600 bps Bit 1 synchr.
(option) char.

DDO1

command PCWO0, PCWl

o~ Opcode

2 345 Command

0000 No command sent. (req'd to send broadside commands in PCW1)

0001 Subchannel input status request

0010 Subchannel output status request

0011 Subchannel configuration status request

0100 Set subchannel mask bit (in mask register)

0101 Reset subchannel mask bit (in mask register)

0110 Switch subchannel Receive data buffer

0111 Switch subchannel Send data buffer

1000 Initialize (HSLA all subchannels)

1001 Store mask register (in subchannel 0 ICW table,
loc's 12 and 13)

1010 (not used)

1011 (not used)

1100 Resync (Restart sync search and continue until sync is
established)

1101 Transmit line break (approx. 600 msec.)

1110 (not used)

1111 (not used)

Command PCW2, PCW3

Opcode
2 345 Command
1100 5-bit character (asynchronous) Character length is ignored
1101 6-bit character (asynchronous) for BSC subch. It is wired
—~ 1110 7-bit character (asynchronous) for 8 bits per character.
1111 8-bit character (asynchronous)

Control Words

Relative
address
(octal) Function
0-1 Receive ICW primary
2-3 Receive ICW secondary
4-5 Send ICW primary
6-7 Send ICW secondary
10-11 Base Address used (word 10) and spare (word 11)
12-13 Mask register (subch. 0 only, not used elsewhere)
14-15 Active ICW, status
16-17 Config. status mailbox

Indirect Control Word

0 23 1718 222324 35
C Y MBZ E T
C - Character position
o~ Y - Absolute memory address
E - Exhaust bit
T - Tally

5=25 Dnol

Base Address Word

0 89 101112 1415 17

BA M |s MBZ TSF

BA (0-8) - base address (of CCT)

M (9-10) =~ modifier

S (11) - short table indicator

MBZ (12-14) - must be zero

TSF(15-17) - table switch field (for switching tables

in transparent mode)

Mask Register Word

0 3132 3435

Subchannels 0-31 respectively 1

(32-34) - priority scan indicator 4

Control Word Memory Map (Example for Channel 06)

ICW Address Subchannel Number Interrupt Vector Locations
octal decimal octal active configuration

01000-01017 0 0 00004 00006
1020~ 1037 1 1 024 026
1040- 1057 2 2 044 046
1060~ 1077 3 3 064 066
1100~ 1117 4 4 104 106
1120- 1137 5 5 124 126
1140- 1157 6 6 144 146
1160- 1177 7 7 l64 166
1200~ 1217 8 10 204 206
1220~ 1237 9 11 224 226
1240~ 1257 10 12 244 246
1260~ 1277 11 13 264 , 266
1300~ 1317 12 14 304 306
1320~ 1337 13 15 324 326
1340~ 1357 14 16 344 346
1360~ 1377 15 17 364 366
1400~ 1417 16 20 005 007
1420- 1437 17 21 025 027
1440~ 1457 18 22 045 047
1460- 1477 19 23 065 067
1500~ 1517 20 24 105 107
1520~ 1537 21 25 125 127
1540~ 1557 22 26 145 147
1560~ 1577 23 27 165 167
1600~ 1617 24 30 205 207
1620~ 1637 25 31 225 227
1640- 1657 26 32 245 247
1660- 1667 27 33 265 267
1700~ 1717 28 34 305 307
1720~ 1737 29 35 325 327
1740- 1757 30 36 345 347
1760~ 1777 31 37 365 367
Channel 07 = 2000 - 2777

Channel 10 = 3000 - 3777

5-26 DDO1

Character Control Table

Base Address 0

o o o o o o o o

BA+77
(Octal)

89 17

Character

Control Character

Character Control Character

The Character Control Character (CCC) has the following format:

0 23 4 5 6 8
T |R|S|P C
T = Table switch field
R = Resync
S = Switch buffers
P = Parity inhibit
C = Command

The Command field can be as follows:

000
001
010
011
100
101
110
111

marker,
marker,
marker,
marker,

normal character, store
terminate+l, store
terminate+2, store
terminate non-store

set status bit only, store
interrupt+l, store

no store

interrupt non-store

Character Control Character Addressing

Figure
addressing,

5-1 contains a block diagram of Character Control

5=27

Character

DDO1

butsseappy Iejoexey) TOIFUO) I93jdoeaeyd °T=G o2InbTJg

L1 £ 2 0 5109
M 0) 03 $SaIppY

L1 T €1 21 11 € ¢ 1 0 Sisquny 31g

193s139y
$S91ppY

A S T
Y wm\ Y il < $31g Jo 1aquny

:MO.. .HN@@&« ITd-6

» » gs7 4 A gsy

LHJ ! Y LG € \.\NIW 6 ") s31g 3o 13quNy
19 |za |eg |+ |sa |oa |sq | eq I X x| & Og Mve

1 <1 71 L IL 0T 68 0 s1oquny 31g
gs1 aSH

19308IBY) pOATIID9Y

DDO1

5-28

Status

Status words for active and configuration status are as follows:

T ACTIVE STATUS

CONFIGURATION

I
0 0 = send, 1 = receive
1 lhormal marker character received
2 1delayed marker character received
3 terminate character received

4 alternate buffer is active (if=1)
5 switch buffers after status store

(if=1)
6 TYO (if = 1)
7 TY1l (if = 1)
8 lateral parity error

9 lemd. sent to unimplemented subch.
10 1change in date set status occurred
11 (spare - MBZ)

12 transfer timing error (if = 1)
13 (spare - MBZ)

14 (spare - MBZ)

15 No stop bit received (async only)
16 DLO (data line occupied ACU)

17 PWI (power indicator - ACU)

18 data set ready

19 clear to send

20 carrier detect

21 supervisory receive

22 ACR (abandon call and retry-ACU)
23 data set status lead up (ACU)

24 ring indicator

25 line break

26 (spare)

27 receive mode

28 send mode

29 wraparound mode

30 data terminal ready

31 request to send

32 make busy

33 supervisory transmit

34 | call request (ACU)

35 (spare - reserved for subchannel)

= 1 (configuration)
sync. (if=1l),async. (if=0)
spare

See Subchannel type

(spare)
(spare)
(spare)
check lat. parity receive

generate lat. send parity (8-bit

codes only)

lat. parity odd (if=1), even
(if = 0)

two send ICW's (if = 1)

use BAW (if = 1)

(spare - MBZ)

(spare - MBZ)

(spare - MBZ)

5-bit character (async. only)
6-bit character

7-bit character

8-bit character

use two stop bits (if bit 1=1)
(spare)

(spare)

(spare)

See Configuration
Status

lysed with receive status only

5-29

DDO1

The

Channel Types are:

Bit Subchannel Type
345678
0000O0O Illegal
0000O01 General purpose S/C
000010 General purpose S/C (with ACU)
000011 Dual synchronous ASCII S/C
000100 Dual synchronous ASCII S/C (with ACU)
000101 Dual asynchronous S/C (EIA)
000110 Not to be used (reserved for SLA 355)
000111 Dual asynchronous S/C (VCA)
001000 General purpose S/C (MIL188)
001001 Wideband S/C (TELPAK)
00101 High level data link control S/C (ADCCP)
001011 Dual synchronous S/C (MIL188)
0011100 Bi-synchronous S/C (BSC)
001101 Voice answerback S/C (generator)
001110 Voice answerback S/C (receiver)
001111 Spare
010000 Dual asynchronous S/C (MIL188)
010001 High level data link control S/C (ADCCP) (wide band)
010010
Spare
111111
The Configuration Status is:
Configuration
Status

Bit Asynchronous Synchronous

28 110 bps bit 8)

29 134.5 bps bit 7

30 150 bps bit 6

31 300 bps bit 5

32 1050 bps bit 4 > sync

33 1200 bps bit 3 character

34 1800 bps bit 2

35 75/600 bps bit 1)

5-30

DDO1

BINARY SYNCHRONIZATION STATUS

S~ BSC Config
Status Bit Status
0 Must = 1 (sync.)
3-8 (octal) Subchannel type = 14

24 1 = CRC-16 Polynomial
0 = CCITT Polynomial

27 1 = EBCDIC Code
0 = ASCII Code

28 1 = Transparent Data
0 = Non-Transparent Data

29 1 = Timer Enabled

LOW SPEED LINE ADAPTER (LSLA)

The Low-Speed Line Adapter (LsLA) is a communications controller that
provides time division multiplexing, developing a message frame composed of a
number of 8-bit characters. It handles up to 52 low-speed terminals operating
at speeds up to 110 bits per second, or 26 terminals at speeds up to 150 bits
per second, or 17 terminals at speeds up to 300 bits per second. Terminals with
different transmission speeds can be mixed on a single LSLA.

ah
General Information
° I/0 Channel (through LSLA channel card) - 11-16 (octal)
) Interrupt Vectors
Channel
Number 11 12 13 14 15 16
IOM Detected Error 220 240 260 300 320 340
Active 221 241 261 301 321 341
Configuration 222 242 262 302 322 342
° Control Words (character control does not apply) (see Note 1)
l. PCW's
2., ICW's
° Character Control - does not apply
2

5-31 DDO1

° Status (via status ICW's) (see Note 2)

NOTES: 1. LSLA uses PCW0 and PCW1l only, as follows:

PCWO:

bits 0-5 and 23 are read.

PCWl: bits 0-5, 23, and 27-31 are read.

2. Status same as HSLA status, except as follows:

CONFIGURATION STATUS -~ only bits 0, 3-8,

ACTIVE STATUS

Control Words

23, 28-35

are used. Channel type (bits 3-8)

is coded 06.

27-31 are used.

- only bits 0, 4-7, 10,

Relative Address
(octal) Function
0-1 Primary Receive ICW
2-3 Secondary Receive ICW
4-5 Primary Send ICW
6-7 Secondary Send ICW
10-13 Not Used
14-15 Active Status ICW
l6-17 Configuration Status Mailbox
Channel Control Word Block
Number Address Range (octal)
11 00500 = 00517
12 00520 - 00537
13 00540 - 00557
14 00560 - 00577
15 00600 - 00617
16 00620 -~ 00637

12, 18-20,

DDO1

PCW Format

PCW Command Command
Bit PCWO PCW1
Active Active-Broadside
0-1 00 0l
2-5 See Command PCWO See Command PCW1l
6-22 Not used Not used
23 Mask bit Mask bit
24-26 Not used Not used
27 Not used Receive mode
28 Not used Send Mode
29 Not used Wraparound
30 Not used Data Terminal Ready
31 Not used Request to send
32-35 Not used Not used
Commands PCWO, PCW1
Opcode
Octal|2 3 4 5 Command
0 0000 No command sent (Req'd to send broadside commands
in PCW1)
1 0001 Subchannel input status request
2 0010 Subchannel output status request
— 3 0011 Subchannel configuration status request
! 4 0100 (not used)
5 0101 (not used)
6 0110 Switch subchannel receive data buffer
7 0111 Switch subchannel send data buffer
10 1000 Initialize
11 1001 (not used)
12 1010 (not used)
13 1011 (not used)
14 1100 Resync (Restart sync search and continue until sync
is established)
15 1101 (not used)
le6 1110 (not used)
17 1111 (not used)
Indirect Control Word
0 23 1718 222324 35
C Y MBZ E T
C - Character position
Y - Absolute memory address
E - Exhaust bit
T - Tally
P
5-33

DDO1

Status

BIT ACTIVE STATUS CONFIGURATION
0 0 = send, 1 = receive =1 (configuration)
1 MBZ Sync. (=1)
2 MBZ MBZ
3 MBZ 0
4 Alternate buffer is active (if=1) 0
5 Switch buffers after status store
(if=1) 0 Subchannel type (06)
6 TYO (if=1) 1
7 TY1l (if=1) 1
8 MBZ 0
9 MBZ 1 MBZ
10 Data set status change (Receive only) MBZ
11 MBZ MBZ
12 Transfer timing error (if=1) MBZ
13 MBZ MBZ
14 MBZ MBZ
15 MBZ Two send ICWs (=1)
16 MBZ MBZ
17 MBZ MBZ
18 Data set ready MBZ
19 Clear to send MBZ
20 Carrier detect MBZ
21 MBZ MBZ
22 MBZ MBZ
23 MBZ 8-bit character (=1)
24 MBZ MBZ
25 MBZ MBZ
26 MBZ MBZ
27 Receive mode MBZ
28 Send mode 0
29 Wraparound mode 0
30 Data terminal ready 0
31 Request to send 1 ASCII "SYN"
32 MBZ 0 character 026 (octal)
33 MBZ 1
34 MBZ 1
35 MBZ 0

lRrules for Data Set Status change interrupt:

If Data Set Ready changes state; or if Data

Set Ready is sent, and either Clear

to Send or Carrier Detect changes state; an Active status interrupt occurs and
Receive status is stored with bit 10 set to one.
5-34 DDO1

Command Characters in DATANET FNP Memory

Type I - device control (no ACU):

0 8 0 1 2 3 4 5 6 7 8
2338(ESC-odd parity) 0 4 1 FS CM |BSY CD CA B
N A J
N N
character (3j) character (j+1) - command character

Command character decode:

P - odd parity
CD - data terminal ready
CM - answer control (for Bell 103E)
CA - request to send
BSY - busy
FS - frequency select
B - line break transmit

The command consists of ESC (odd parity) and the next "non-fill" character.
Fill characters (037 octal) may occur between the ESC and the command character.

Type I - device control (with ACU):

0 8 0 1 2 3 4 5 6 7 8

2335 (ESC-odd parity) 0 P 1 N N N N |CRQ [DPR

\ ~ A —~ J
character (j) character (j+1) - command character

Command character decode:

P - odd parity

NNNN - number bits for ACU (binary)
DPR - digit present
CRQ - call request

5-35 DDO1

Type II - special control:

0 8 0 1 2 3 8

2338(ESC-odd parity) 0 P 0 Opcode

. —~— A J
character (j) character (j+1) - command character

Command character decode (P = odd parity):

- Error count command?

- Spare

- Low speed wraparound reset
- Low speed wraparound setl
- High speed wraparound 1,2

- Configuration mode cmdl,2
- Disable protect

- Channel status request

Status Characters in DATANET FNP Memory

Type I - channel modem status (no ACU):

0 8 0 1 2 3 4 5 6 7 8
233, (ESC-odd parity) 0 P 1 |cc | cz |CcB | CE | CF B
A\ A J
——
character (3j) character (j+1) - status character

Status character decode:

cCc

CB
CE
CF

- odd parity

- data set ready
- restraint

- clear to send

- ring

- carrier detect
- line break

lpisable protect required preceding this command. For example: ESC, DAP, ESC,

CONFIG.

2command must be sentvin T and D time slot.

5-36 DDO1

Type I - channel status (with ACU):

0 8 0 1 2 3 4 5 6 7 8
2338(ESC-odd parity) 0 4 1 PI |(DSS |PND |DLO |ACR X
\ ~" Al N -~
character (3j) character (j+1) - status character
Status character decode:
P - odd parity
PI - power indicator
PND -~ present next digit
DSS - data set status
ACR - abandon call - retry
DLO - data line occupied
X - not used except by T and D
These commands consist of ESC (odd parity) and the next "non-fill"
character. Fill characters (037 octal) may occur between the ESC and the
command character.
Type II - special status (via T and D channel)
—~ 0 8 0 1 2 3 4 5 6 7 8
233 (ESC-0dd parity) 0 P 0 N N N N B A
— A J
~ —~
character (3j) character (j+1) - special status character
Status character decode:
P - odd parity
NNNN - error count (binary)
BA - (=00) for error count
P

5-37 DDO1

PERIPHERAL SUBSYSTEM ADAPTER (PSA)

The Peripheral Subsystem Adapter (PSA) provides the interface between the

DATANET FNP and the Disk Subsystems for message switching functions.

General Information

IOM Channel Number (Octal) - 03 or 05

Interrupt Vectors

Chan. 03 Chan. 05

Level 1 (Special) 61 121
Level 2 (Terminate/Marker) 62 122

PSA Word Formats

BASE ADDRESS WORD

° Contains starting address of PSA mailbox (must have separate
for each MPC).

° Must be loaded by a LDEX instruction prior to issuing connect.

0123 17

MP C| Address 0

Selected MPC
0 # MPC #1
1l - MPC #2

H
Hh
nonon

CONNECT PCW (OPERATIONAL MODE)

0 2223 24 2526 28 33 35
LC MPC
Msk| Cmd Msk # L. C. #
5-38

mailbox

DDO1

Bit Description
0-22 MBZ (Used only for T and D mode. Bits 24 and 25 must be set in
PCW to enable T and D mode.)
23 Physical Channel Mask
24-25 Physical Channel Command
26 Logical Channel Mask
27 MBZ
28 MPC Select - 0 = MPC #1; 1 = MPC #2
33-35 Logical Channel Select

Channel Command (Bits 23-25)

23 24 25

1 0 0 Mask PSA

0 0 0 Normal Startup of Logical Channel

0 1 1 T and D PCW

1 1 1 Reset MPC and Mask all Logical Channels

INTERRUPT MULTIPLEX WORD (IMW)

o
(=
[oe]

wn
o
[
N
w
>
Ul
o)}
~
Y ©
o
=
[\S)
w
>
(8]
(o)}
~J

~ ~—

T M

Bit 0 (S)
"T" Field
"M" Field

Set to 1 when a Special Interrupt has occurred.
Terminate Interrupt by Logical Channel
Marker Interrupt by Logical Channel

SSCW OR SCW (SSCW,SCW)

0 23 1718 222324 35

001 Address 010 0 E Tally

SSCW = Special Status Control Word (Status stored in ASCII format)
SCW = Status Control Word

5-39 DDO1

LIST POINTER WORD (LPW)

0 1 23 17

R| 01 Address

Bit 0 (Restricted) -~ When set to 1 restricts DCW List Services to one IDCW.

PSA MAILBOX

° Address in Base Address Register points to starting location of
mailbox area.

0 1718 35
IMW
SSCw
LPW
L.C. %0
SCW
LPW
L.C. #1
SCwW
LPW 1
L.C. #n
SCw
IMax. of eight (8) logical channels may be configured.
If a second MPC is configured on this PSA it will have a
separate identical mailbox.
INSTRUCTION DATA CONTROL WORD (IDCW)
0 56 1112 1718192021222324 2930 35 39
Device Device 11 C M Chan. Char. or Rec.
Instruction |Address Instruction Tally 0000
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
(V=7) (8-15) (16-23) (24-31) (32-39)

5-40 DDO1

DATA

Bits 0-5 - MPC System Command

Bits 6-11 - Device Code
First IDCW will establish Device Code. Subsequent IDCW Device Codes
will be ignored. This makes it impossible for a program to switch
devices within a list.

Bits 12-17 - Ignored
Bits 18-20 - Must be on. (This distinguishes DCW from an IDCW.)
Bit 21 - Ignored

Bit 22 - Continue
Indicates this is not last IDCW in list. Upon completion of this
IDCW, a "Move Pointer" Service Code will be issued to obtain new IDCW.

Bit 23 - Marker Bit (Ignored if Continue Bit (22) not on.) Upon completion
of IDCW, MPC will issue Service Codes to Store Marker Status and Set
Marker Interrupt. MPC will then issue a Move Pointer Service Code to
obtain a new IDCW.

Bits 24-29 - Channel Instruction
Must be the following:

00 = Unit Record Transfer

02 - Peripheral Action (No Data transfer: e.g., Request Status,
Release, Restore)

2 (X) - Command Extension Modifiers

4 (X)- Special Controller Commands

If 2(X):
21 =~ Inhibit Automatic Retry
22 - Inhibit Alternate Track Logic and E-D-C Logic
23 - Special Permission Execution

o Read Override RPS Queue
o Write Override RPS Queue
24 - EDAC Override (190); Check Char. Override (181)
25 - Read and perform error correction on data before transferring
data to EUS (PSA).
If 4(X):
40 - Special Controller Command

Device Address Field Bits 6-11) MBZ.
Bits 30-35 - Record Tally or Character

Contains number of times device instruction is to be reissued by
Controller. (Chan. Inst. - 02)

CONTROL WORD (DCW)

0 23 1718 21222324 35
001 Data Address 0 MBZ |Cmd. Tally
Bits 22 23 Identify Type of DCW

0 0 = I0OTD = I/0 Transfer and Disconnect

0 1 = I0TP = I/0 Transfer and Proceed

1l 0 = TDCW = Transfer DCW

1 1 = IONTP = I/O Non-transfer and Proceed

5-41 DDO1

LOGICAL CHANNEL DCW LIST

Separate DCW lists for each logical channel configured.

0 1718 35
IDCW
DCW
DCW
DCw
DCW
° Logical Channel LPW in PSA mailbox points to starting address of DCW
list.
STATUS WORD FORMATS
Terminate/Marker Status - First Word (5 Bytes from MPC)
012 56 1112 15161718 2324 2930 35 39
Major Software IOM/Chan. Record
T |P|Status [Substatus Status I A Status MBZ Residue 0000
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
(0-7) (8-15) (16=-23) (24-31) (32-39)
Bit 0 - Set by MPC when status stored (Software flag).
Bit 1 - Power Bit (= 1 if MPC power off).
Bit 2-5 - MPC Major Status
Bit 6-11 - MPC Substatus
Bit 12-15 - Software Status;
Stored as zeros by MPC. Can be used by software to indicate software
detected errors to Slave program after hardware has stored the Status
Word.
Bit 16 - Initiate Interrupt
Status stored during Instruction Sequence; No Data Transfer.
Bit 17 - Abort Bit
Stored as "O" by MPC. Set to 1 by software if this transaction caused

program to abort.

DDO1

Bit 18-23 - IOM/Channel Status
Divided into two independent three bit segments:

Channel detected user faults
IOM detected user faults reported to PSA

Bits 18-20
21-23

Bits 24-29 - MBZ

Bits 30-35 - Residue Record Count
(Illegal for disk subsystem. Will always be stored as zZeros.)

Terminate/Marker Status - Second Word (36 Bits from PSA)

0 23 1718 21222324 35

MBZ| Next Address of Data TCP [Cmd DCW Tally Residue

Bit 0-2 - MBZ

Bit 3=17 - Contents of DCW Register

Bit 18-21 - Terminate Character Position Code
Bit 22-23 - DCW Cmd.

Bit 24-35 - Contents of Tally Register

Special Status (ASCII Format)

01 8910 171819 262728 35
0 0 0 0
R/_/\ T J - ~ - ~" J
Byte 0 Byte 1 Byte 2 Byte 3
Bits 1-8 (Byte 0) - MPC sends this character all zeros.

Bits 10-17 (Byte 1) - MPC Device # (MPC Controller is device #0).

Bits 28-35 (Byte 3) 01 - Pack Change
02 - Device Released
03 - Power off

Bits 19-26 (Byte 2{} Type of Special Interrupt:

NOTE: The Special Status Store will be followed by a Special Interrupt
(Level 1).

5-43 DDO1

PSA ERROR SUMMARY

FAULTS

Data Parity Error,
Internal PSIC

Connect while busy
(Unexpected PCW)

Data Parity Error.
PSI

Parity error,lFNP IOM
to or from PSIC treated

as a FNP IOM detected
fault.

Illegal Service Code
Parity error during
Service Code sequence.
Illegal DCW

Service Code for not

busy or masked logical
channel.

(PSIC is masked for these
FNP IOM Detected Fault
Masking PCW

Tally Runout with
Terminate from MPC

ACTION

Terminate later
if Data Service.

Terminate now if
not Data Service.

Terminate when
LC is active.

Terminate later.

Terminate now.

Terminate now.

Terminate now.

Terminate now.

conditions)
Terminate now.

Terminate when LC #
is active.

Termination in
process.

1Detected on FNP ABl and 6600 Models

2pault Byte - Bits 0 and 1

00 - Special IOM Instruction

01 - PSA Detected Illegal SVC or P.E.

FAULT
TO

BYTE SENT

MPC

4 5 6 7 Meaning

10 - sStatus Store and Terminate cycle should follow.
11 - L. C. Masked - Abort (No Status and Term. cycle)

(MPC should Retry.)

0 Terminate

0 Terminate

0 Abort

0 Abort

0 PSIC Tally
Runout

DDO1

SERVICE CODES - MPC TO PSA

MEANING

Initiate new channel program.

Move pointer and initiate Command Transfer.

Backup pointer

Data

Data

Data

Data

Transfer,
Transfer,
Transfer,

Transfer,

and initiate Command Transfer.
Read Binary

Read ASCII

Write Binary

Write ASCII

Store Special Status

Store Terminate Status

Set Terminate Interrupt

Set Marker Interrupt

Set Special Interrupt

All other codes are illegal.

SERVICE CODES - PSA TO MPC

Connect

Disconnect

5-45

DATA
BITS

23

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0010
0001

5

0001
0010
0011
0100
0101
0110
0111
1000
1001
1101
1110
1111

0000
0000

HEXI-
DEC.

(o]

L= I < B v

DDO1

MPC COMMANDS

Sent to MPC in Bits 0-5 of IDCW.

ocTAL
00
04
10
11
16
17
21
22
23
25
26
27
30
31
32
33
34
36
37
40
42
72
76
77

HEX.

00
04
08
09
OE
OF
11
12
13
15
16
17
18
19
1A
1B
1C
1E
1F
20
22
3A
3E

3F

DESCRIPTION
Request Status
Read Non-Standard
Boot C/S

Boot ITR

Write Control Reg.
Format

Read EDAC

Read Status Register
Read ASCII

Read

Read Control Register
Read Header
Execute DLI

Write

Write ASCII

Write and Compare
Seek

Special Seek
Preseek

Reset Status
Restore

Set Standby
Release

Reserve

5-46

DDO1

SPECIAL CONTROLLER COMMANDS

Suspend

Read Mem, ASCII
Read Lock
Initiate Read
Write Mem. ASCII
Write Lock
Initiate Write
Release

Read Mem. Binary
Write Mem. Binary
Cond. Write Lock

MPC DEVICE STATUS

Major and Substatus fields of first Status Word.

MAJOR
STATUS

0000 -

000
000
001

0001 -

000
100

0010 -

000
000
001
010
100

0011 -

000
000
000
0X1
X1X
1X0

0100 -

000
000
000
000
001
010

SUBSTATUS
2345678 9 10 11

READY

000
0XX
0XX

No Substatus
Retrys
Device in T and D

BUSY

000
000

Positioning
Alternate Channel

ATTENTION

001
0lo0
000
000
000

Write Inhibit
Seek Incomplete
Device Fault
Device in Standby
Device Off-Line

DATA ALERT

001
010
100
000
000
000

Transfer Timing
Parity

Invalid Seek Addr.
Header Verification
Cyclic Check
Compare Alert

END-OF-FILE

000
0x1
01X
100
000
000

Good Track

Last Consec. Block
Block Count Limit
Def. Track-Alt. Assg.
Def. Track-No Alt.
Alt. Track Det.

DDO1

0101 -~ INSTRUCTION REJECT

000 001 Invalid Opcode

000 010 Invalid Device Code
000 100 IDCW Parity

001 000 Inv. Inst. Seq.

1010 - MPC DEVICE ATTENTION

000 001 config. Error

000 010 Multiple Device

000 011 Device No. Error

001 011 CA Error and OPI Down
001 100 Alert EN-1

001 110 cA Alert (No EN-1)

1011 - MPC DEVICE DATA ALERT

000 001 Transmission Parity
000 010 Inconsistent Cmd.

000 011 Sum Check Error

000 100 Byte Lockout

001 110 EDAC Parity

010 001 Sector Size Error

010 010 Non-Standard Sect. Size
010 011 Search Alert (lst)

010 100 Cyclic Code (#1lst)

010 101 Search Alert (#lst)
010 110 Sync Byte #Hex 19

01l 010 EDAC Corr. #Last Sect.
011 011 EDAC Corr. -B. C. L.
011 100 EDAC Uncorr.

1101 - MPC COMMAND REJECT
000 001 Illegal Procedure
000 010 Illegal L. C. #

000 011 Illegal Suspend
000 100 Continue Bit Not Set

IOM/CHANNEL STATUS

Bits 18-23 of first Status Word

18 19 20
0 0 1 Connect While Busy
0 1 0 PSA Internal P. E.
0 1 1 Illegal DCW
l 1 O Transmission P. E.

21 22 23

0 0 0 (Not Used)

5-48 DDO1

DOCUMENT HANDLER CHANNEL (DHC)

N General Information

The Document Handler Channel interfaces document reade;/so;ters to the FNP
IOM. The reader/sorter may be one of four types used primarily in

the banking

characters.

MICR (4 Bit Char.)

- Magnetic Ink Character Recognition

OCR (7 Bit Char.) - Optical Character Recognition

industry.
Model Number Description
4WDHC 600 AC1 Document Handler Ch. MRS200 or DRD200
4WDHC 601 AAl Document Handler Ch. DRD236 or DHU1600
DHC Comm. Region Description
Chan. Term, Status Data ICW | Q Status | Int. Vec.
No. Option Device ICW (Base) (+2) ICW (+4) (Term.)
12 DHC Doc. Hdlr. #1 540 542 544 242
13 DHC Doc. Hdlr. #2 550 552 544 262
14 DHC Doc. Hdlr. #3 560 562 564 302
15 DHC Doc. Hdlr. #4 570 572 574 322
o 11 DHC Doc. Hdlr. #5 600 602 604 222
7 DHC Doc. Hdlr. #6 610 612 614 162
° The options above have the capability of reading MICR or OCR

° The DHC provides the only method of inputting OCR or MICR information
from documents to Central System.
Reader/Sorter Characteristics:

° MRS200 - MICR (Magnetic Ink Character Recognition) Reader/Sorter
- E13B MICR Font
- 1200 Documents ‘per minute
- 12 pockets

° DRD200 - Optical Document Reader/Sorter
- COC5 Optical Bar Font

- Mark Sense Recognition (Optional)
- 1200 Documents per minute

- 2 pockets

5-49

DDO1

° DRD236 - High-speed MICR Reader/Sorter

E13B MICR Font
1625 Documents per minute

- Up to 32 pockets

® DHU1600~- Same as DRD236

MRS200/DRD200

PERIPHERAL CONTROL WORD (PCW)

0 1718 222324 2930 35
MBZ MBZ M | Device Code| Device Command
where:
M = Mask (logical "1" Masks)
Device Code used for Pocket Select
Device commands are:
Operation Octal Code Device Code
Feed Continuous 41 00
Read Document 01 00
Pocket Document 43 XX
Stop Feed 61 00
Request Status 00 00
Reset Status 40 00
Remote Manual Halt 62 00

XX = Device Code pocket
order in which the
the Reader Sorter.

selection. Table shows
pockets are arranged on

Device Code

Pocket

ool WNDEHO

Reject

Special Sort

DDO1

° Initiate Status (Bit 16) - ICW Base Address + 4 (No Interrupt)

° Configuration and patch plug for channel number and ICW address is
installed on the FNP backpanel pins associated with the LA WWB.

STATUS WORD FORMAT

012 56 111213 15161718 2324 35
Major Sub- D Channel
T|P| Status | Status |H MBZ |I |O Status MBZ
where:
T (Terminate Bit) - A one means Peripheral went busy after command or

status was stored.

P (Power Bit) - A one means no power on Peripheral.
I (Initiate Bit) - A one means Peripheral did not go busy after
command.

Channel Status:

000000 - Normal (No Errors)

000001 - Transmission Parity Error

000010 - Tally Runout Error

000100 - Channel Detected Peripheral Fault

010000 - Connect While Busy

100000 - Bus Write Parity (ABl) not used on DHC

DH - Must be a one for Document Handler Channel (Echo Bit)

Major Status and Substatus

Major Status Substatus

2|13 4 5|6 7 8|9 10 11

Ready 0o0O0O0/00O0O0O O O

Attention 0010/00XZX X 1 Feeder/Pocket Alert
00XX 1 X Manual Halt
00X1 X Document Jam
0010 0 Feed Alert
0100 1 Last Batch

Data Alert 0011000 Transfer Timing Alert

o
o o o K o|lo o X
-

X XXX X Multiple Feed
XXX1 X Late/No Read Command
XX1X X No Pocket Command
X1XX X TCD Alert

5-51 DDO1

Major Status Substatus

Command 010

[

X000 Xx 1 Invalid Opcode

Reject X000 1 X Invalid Device Code

Special Substatus:
Document committed 1XXX X X

Other Status Conditions in Bit (0-17) Special Echo Line (Bit 12)

DRD236/DHU1600

DHC601 connects the Reader/Sorter to FNP

o Requires computer clock pulse (SCCP) furnished by oscillator on IOM
Backpanel (4-Megahertz)

) Uses a base address word (BAW) to reference a control character word
(CCW) table.

° CCW used to control Data Store, Q-Status Word and Q-Status Store. (Q
symbols)

° BAW loaded by LDEX instruction prior to issuing connect.

LOAD EXTERNAL FORMAT (LDEX)

° Loads the BAW with B Bus bits 8-17, and the CCW command register with

B Bus 0-7.
0 7 8 9 11 12 14 15 17
L] T T
1 | |
B-Bus : ! B-Bus I
1 1]
AN\ . J
0 5 6 7113 5 6 8 9 11 12
I 1 L
I I
CCW CMD. Not ! [|
Reg. Used ! BAW - Reg. : !
1 | J

5-52 DDO1

STORE EXTERNAL FORMAT (STEX)

Reads the contents of the BAW across C Bus 0-9 and the contents

of the

°
CCW Command Register across C Bus 10-16, plus mask bit 17.
0 9 10 11 12 13 14 15 16 17
o H
Bl Bl & | u| &
BAW (03-12) o 5 5 ; H 5
W]] xe] Ee]
(o] [0} o Fi) © O Q
] (2] ! o) o ! 3]
(0] [H B 9] []
o E 1 1 i N —~ A
S|s|8|s| 8 |3|&|=
(5] 3 [+4 [+4 ~ 2] ~ =
- CCW 00-05, 07—

PERIPHERAL CONTROL WORD (PCW)

Defines operation to be performed by the Peripheral or T and D Wrap.

5-53

DDO1

Bit Position

Description

0 0dd Parity bit on even word only.
1-2 Wraparound data when in Wraparound Mode (Bit 16) can
be used to simulate either MICR or OCR character.
3-7 Select Pocket (00-31) if used with Bit 14. Turn on
Pocket light is used with Bit 9.
8 MBZ - Reserved for Opcode Extension
9-16 Opcode Field (Bit Position):
9 - Sorter Pocket Light (with Bit 3-7)2
10 - Batch Count Plus On?
11 - Start - Feed A (MICR)1
12 - Start - Feed B (OCR)1
13 - Stop Feed
14 - Pocket Select (with Bits 3-7)
15 - Request Status?
16 - Wraparound1
17-22 Must Be Zero
23 M = Mask Bit
24-35 MBZ
! Exclusive Bits - Only one on at a time.
2 May be 'OR'ed with other instruction bits.
5-54 DDO1

CHARACTER CONTROL WORD (CCW)

) A Double Word located in a table that is used for command, status, and
replacement character.

0 78 1112 1718 252627 35

CCW Command MBZ CCW Status MBZ P | Replace Character

CCW Command

CCW Bit Mnemonic Definition
00 Don't Store If one, character not stored
0l Store-Q and If one, queue character and Q status is
Q Status stored.
02 Term-soft Terminate via software
03 Res=-Int-Ctr Reset Interval Counter
04 Res-TOT-Ctr Reset Total Counter
05 Res-Stat-Reg Reset Status Register
06 - MBZ
07 Replace Replace character just read with
CCW Replace character

CCW Status (Used and Interpreted by Software)

Status Bit Definitions
12 Garbage
13 Ignore (can't read) Character
14 Dash
15 Plus
16 Not Used
17 Blank

P - Bit 26 contains odd one parity on 0Odd Word.

Replace Character - 4 Bit MICR
- 7 Bit OCR

5-55 DDO1

CCW ADDRESS FORMATION

° The character read (OCR or MICR) is appended to the BAW to reference a
Double Word in CCW Table.

1. FEED-A-Format

0 23 1213 1617
Table
0 0 1] BAW Register MICR 0 Length:
Character Iz_%E?H
Pairs
2. FEED-B Format
0 23 910 1617
Table
0 0 1lf BAW Register OCR Character | 0 Length:
Word
Pairs
QUEUE STATUS WORD (QSW)
° Used to form a Status Table
e Stored Indirect double precision to the location specified by Channel
ICW Base Address +4.
0 56 1112 1718 2829 35
"Q" Status Interval Total
Character | Register Count MBZ Count
QSW Bits Definition
0-5 Contain the "Q" character to be stored, either read or
CCW replace character.
6-11 Contain in the CCW Status Register (stored from CCW and
software interpreted).
12-17 Contain the Interval Count.
18-28 Must be Zero.
29-35 Contain the total count.

NOTE: Count and Status Registers are cleared by channel after each
document is read.

DDO1

TERMINATE STATUS WORD

~ ° Stored Indirect single precision to location specified by Channel
‘ Base Address +2.

° No special status on DHC601

0 89 17

Peripheral Status

Channel Status

Peripheral Status

Nine Status bits indicate peripheral status.

ICW

tus and will cause an

conditions

Bit Position Code Definition Interrupt
0 SNOTR Sorter Not Ready Yes
1 RTERM Read Terminate Yes
2 - Not Used
3 STLP Too Late to Pocket No
SDDL Double Document Detect No
5 SJAM Document Jam No
6 BTDL Batch Ticket Detect No
Level
7 BCEL Batch Number Count No
S~ Enable
8 SMRT Document Missort No
The first two bit conditions act as major sta
interrupt. The rest of the status conditions act as sub-status
will not cause an interrupt.
Channel Status
The following status bits indicate Channel Status.
Bit Position Code Definition ITnterrupt
9 STAST Status Stored Yes
10 TYO Tally Runout Yes
11 - Not used
12 TY1l Pre-Tally Runout Yes
13 WRAP Wraparound Mode Yes
14 XFER Transfer Timing Error Yes
15 STERM Software Terminate Yes
16 NODOC No More Documents to Read Yes
17 PEPCW PCW Parity Error Yes
7

and

DDO1

BINARY SYNCHRONOUS CHANNEL (BSC)

The BSC subchannel operates with either ASCII or EBCDIC code with either
transparent or non-transparent data. When properly configured by the FNP
program, the BSC subchannel is capable of transmitting and receiving data in any
one of the following operational configurations:

) Non-transparent operation/ASCII code
[) Non-transparent operation/EBCDIC code
° Transparent operation/ASCII code
° Transparent operation/EBCDIC code

The general formats of the message transmission blocks and control
sequences transmitted and received in each of these configurations are:

/—i::——-Timer Insertion

S|S|S|S|sS S|S I|C|C|S|S E|C|C|P Typical EBCDIC
Y|Y|Y|Y|I Y|Y T|R|R|Y|Y T|R|R|A Non-transparent
N[N|N|N[X N|N B|C|C|N|N X|C|C|D Format

|+ Store—>| ﬂ-Store—»' <€ Store —p»

| 1 ') ' 1 1

| [e—cre—» |<—CRC—>| |e— crRC—>]

!Timer Insertion

S|S|s|s|D|sS D|D D|S D|I|C|C|S|S|D|s D|IE|C|C|P Typical EBCDIC
Y|Y|Y|Y|L|T LIL L|Y LITIR|R|Y|Y|L|I L|T|R|R|A Transparent
N|N|N|[N|E| X ElE E|N E{B|C|C|N|N|E |X E|X|C|C|D Format

}q.——!-si:ore—ﬂ Store* q—étoré——'»'

el e et L et T

| ICR | | “Crd | &= I CRC I c| Crc
S|s|s|s|N|P Typical Control
Y|Y|Y|Y|A|A Sequence Format
N|N|N|N|K|D

Store

/—!::—-Timer Insertion

S|S|Ss|Ss|s DATA S|S DATA I|L|DATA E|L|P| Typical ASCII
Y|Y{Y|Y|T FIELD Y|Y FIELD T|R|FIELD |T|R|A Non-transparent
NIN|N|N|X N|N B|C X|C|D Data Format

<¢— Store —] |<——— Store—»‘

5-58 DDO1

Transmit Mode

In general, this subchannel is used as a normal synchronous channel. The
software sets up the data, data buffer areas and control words to configure the
subchannel.

In setting up the data area, software provides the data field including
control characters. The hardware supplies the synchronizing sequence, error
control and pad character. For the non-transparent ASCII mode the error control
(Longitudinal Redundancy Check Character) must be generated and checked (in
receive mode) by software. For the other modes the error control is provided
entirely by hardware.

There is one second timer used in the transmit mode and a three second
timer for receive mode. If the message takes 1longer than one second to
transmit, the hardware insets two synchronizing characters (or DLE SYN for
transparent operation) to maintain message synchronization. The receiving end
deletes these characters from the message.

The hardware recognizes the control characters in the message to determine
when to insert the CRC (Cyclic Redundancy Check) bytes.

For non-transparent ASCII, the operation of the channel is similar to an
HSC355 of HSS355 subchannel. Software takes care of the LRC and terminates the
transfer properly with the correct DCW data count.

For non-transparent EBCDIC, the hardware recognizes SOH or STX as start of
message. AN ITB is recognized but does not cause a termination. When ETX or
ETB is recognized, the hardware appends the CRC bytes and pad byte (all 1's) to
the message and terminates whether the DCW is expired or not. This operation is
also terminated with an expired DCW, whether an ETX or ETB is the last byte in
the buffer or not. An ENQ character is recognized as an abort character and
causes termination without CRC's and pad. The following control sequence
characters are recognized by the hardware in non-transparent EBCDIC mode: NAK,
ENQ, EOT, DLE, DLE'70', DLE/, and DLE. In the transmit mode, a pad character is
added by the hardware and the operation is terminated.

For transparent operations (ASCII or EBCDIC) the hardware recognizes DLE
STX as a start character and DLE ETX or DLE ETB as the termination character.
The DLE ITB is recognized but does not cause a terminate. The DLE ENQ
combination is recognized as an abort condition.

5-59 DDO1

Receive Mode

As in the transmit mode, software sets up the data buffers and control
words to configure the channel. For non-transparent ASCII, the
character-control-table (CCC) must be specified by software and the LRC
calculation and checking is the responsibility of the software. Character
parity, however, is provided by the hardware.

For non-transparent EBCDIC and transparent operations (ASCII or EBCDIC),
the hardware terminates upon recognizing the message terminate characters or by
DCW tally run out (see Transmit Mode).

In the receive mode with the timer running (3 sec.), the hardware stores
status if the timer runs out without receiving any message syncronization
characters, but does not terminate data reception.

Control Words

PCWO0 may be used to command the HSLA. There are no changes to its format.

PCWl is used to set up the BCS Subchannel. The format is:

PCW1

Bit Definition

0-1 Must be = 01

2-3 Must be = 00 (part of operation code)

4-5 Part df operation code

6 Not used

7-11 Subchannel number (0-31)

12-26 Not used

27 1 = Receive mode, 0 = Disable receive mode
28 1l = Send mode, 0 = Disable send mode

29 (for T and D)

30 1l = Set Data Terminal Ready, 0 = Reset DTR
31 1 = Set Request to Send, 0 = Reset RTS

32 (for T and D)

33-34 Not used

35 (for T and D) /

5-60 DDO1

PCW3

PCW3
Bit

0-1
2-3
4-6
7-11
12

13

14

15

16
17-19
20-23

24

25-26
27
28
29

30-35

is used to configure the subchannel for operation with the correct
code (ASCII or EBCDIC) transparent or non-transparent data and with the correct
cyclic check polynomial (CRC-16 for EBCDIC and CCITT for ASCII). The format is:

Definition

Must be - 11

Must be - 01

Not

used

Subchannel number (0-31)

LPR

LPS

Status Words

There

interrupts,

(lateral parity-check or receive)

(lateral parity - generation send)

0dd lateral parity, 0 = Even lateral parity
(two send buffers - ICW's)

Use char. control table, 0 = Don't use

used
‘used
CRC-16 Polynomial (xM6+x1°+x2+1)
CCITT Polynomial (Xx'6+x!2+x°+1)

used

EBCDIC code (8 bits), 0 = ASCII code (7+1 parity)
Transparent mode, 0 = Non-transparent

Enable Transmit and Rec. Timers, 0 = Disable timers

used

are two types of status stored, Active and Configuration. They may
both be obtained by software command. In addition, prior to all software

Active

status is stored by the hardware. Status stores may be

initiated by the HSLA or by the subchannel. Configuration status is obtained by
software command only.

5-61 DDO1

Active Status

Bit Definition

0 1

Receive status, 0 = Send status

1 1 = Normal marker character received
2 1 = Delayed marker character received
3 1 = Terminate character received
4 0 = Active primary buffer, 1 = Active alternate buffer
5 1 = Buffers will be switched after status store
6 1l = Tally is zero
7 1l = Tally is one
8 1 = Lateral parity error detected somewhere in message received
9 1 = Command sent to unimplemented subchannel
10 1 = Change in data set (modem) status has occurred
11 Not used
12 1 = Transfer timing error
£3-17 Not used
18 1l = Data Set Ready line is up, 0 = DSR is down
19 1l = Clear To Send line is up, 0 = CTS is down
20 1l = Carrier Detect line is up, 0 = CD is down
21-23 Not used
24 1 = Ring Indicator is up, 0 = RI is down
25 Not used
26 1 = Receive block terminate
27 1 = Receive mode
28 1 = Send mode
29 (for T and D)
30 1 = Data Terminal Ready is up, 0 = DTR is down
31 1 = Request To Send is up, 0 = RTS is down
32 (for T and D)
33 1l = CRC error was detected
34 1l = Receive time out occurred (3 sec.)
35 (for T and D)

5-62 DDO1

Configuration Status

Bit

17-19
20-23
24
25-26
27
28
29

30-35

1 =
1l =

Not

Definition

Configuration status
Synchronous subchannel

used

Subchannel type number = 14 (octal)

Not

used
(Receive lateral parity check)

(Send lateral parity generate), 7+1 codes

0dd lateral parity, 0 = Even lateral parity

Two send buffers, 0 = One send buffer

Use CCT, 0 = Don't use CCT on receive
used

used

CRC-16 Polynomial, 0 = CCITT Polynomial
used

EBCDIC code (8 bits), 0 = ASCII code (7+1)
Transparent mode, 0 = Non-transparent
Timers enabled, 0 = Timers disabled

used

5-63

DDO1

COMPUTER MONITOR ADAPTER (CMA)

The Computer Monitor Adapter (CMA) provides a data and monitor link between

dual DATANET FNP systems used in message switching.

path between the two systems for constant update of each systems

tables and status.

Configuration Patching

CHANNEL NUMBER PATCH

Patchable to any six-bit code

INTERRUPT LEVEL PATCH

Send and Receive interrupts patchable to
levels.

INDIRECT CONTROL WORD BASE ADDRESS PATCH

Patchable in range of 460 to 770 (octal)

. The ICW Base Address is the location of
e The ICW Base Address +2 is the location
] The ICW Base Address +4 is the location
e The ICW Base Address +6 is the location

"DEAD-MAN" TIMER DURATION PATCH

Patchable for 250 ms, 500 ms or 1.0 second.

DATA RESPONSE TIMER DURATION PATCH

Patchable for 125 ms or 250 ms.

5-64

It provides a communication
communication

any of 16 program interrupt

the Receive ICW.

of the Send ICW.

of the Receive Status ICW.

of the Send Status ICW.

DDO1

CMA Control Words

~~
PERIPHERAL CONTROL WORD (PCW)
The general format of the PCW used for control of the CMA is:
Bit No. O 2223 2930 3233 35
Spare Op-
Not Used - MBZ Command MBZ code
No. of Bits 23 7 3 3
The seven command bits in the PCW are used to send broadside commands to
the CMA:
Bit Function
23 Mask Channel
24 Timer Control
25 Receive Mode
26 Send Mode
27 Wraparound Mode
28 Switch Control
29 Parity Test
The 3 Opcode bits are encoded (bit 33 = MSB) as follows:
I~ Opcode
Value Function
(octal)
0 (no op)
1 Timer reset
2 Request Send Status
3 Request Receive Status
4 to 7 (spare)
When a PCW is sent to the CMA, the command bits result in the following
actions by the CMA.
Bit Action by CMA
23 When a 1, the channel is masked and initialized and does not
request service of the IOM; when a 0, the channel is unmasked and
may request IOM service as necessary for normal operation.
24 When a 1, the CMA dead-man timer is enabled; when a 0, the timer
is stopped.
25 When a 1, the CMA receive mode logic is enabled; when a 0, it is
disabled.
o~ 26 When a 1, the CMA send mode logic is enabled; when a 0, it is
disabled.

5-65 PDO1

27 When a 1, the CMA external interface lines are wrapped back on
one another; when a 0, the external interface lines of the CMA
are returned to their normal operational state.

28 When a 1, the Switch Control lead to the Line Transfer Device is
turned on (indicating "permission" to be placed on-line); when a
0, the Switch Control lead is turned off.

29 When a 1, the CMA send logic is forced to generate incorrect
parity (even) on data bytes to be sent while in the wraparound
mode. When a 0, normal odd parity is generated. This bit is
interpfeted by the CMA only when in the wraparound mode (PCW bit
27 = 1).

The Opcodes in the PCW sent to the CMA result in the following actions by
the CMA.

Opcode Action by CMA

0 No action caused by this Opcode. Used in conjunction with
broadside commands not requiring any Opcode.

1 Causes the "dead-man" timer to be reset to the beginning of its
timing cycle. This Opcode is ignored if sent when the timer is
disabled by command bit 24.

2 Causes the CMA to store Send Status and issue a Send Status
Interrupt.
3 Causes the CMA to store Receive Status and issue a Receive Status
Interrupt.
4-7 (spare - reserved for future use)

INDIRECT CONTROL WORD (ICW)

Indirect data transfers between the CMA and the FNP memory are effected by
the IOM through the use of ICW's - one for send data, one for receive data, one
for send status and one for receive status. The ICW's are stored in FNP memory
locations based on the ICW Base Address.

The memory address of the appropriate ICW is presented to the IOM by the
CMA when an indirect data transfer is requested by the CMA.

All four ICW's have the same format:

Bit No. O 23 1718 222324 35
C Y 0 MBZ E TALLY
No. of Bits 3 14 1 5 1 12

C - Byte size should be 010 or 011 (9-bit characters) for Send ICW and
Receive ICW. Should be 000 (18-bit word) for Send Status ICW and
Receive Status ICW.

5-66 DDO1

y - Address of first data word bit 17 is forced to zero by channel.

E - Exhaust bit. If a one, tally has run out.

TALLY - Number of accesses to memory.

Data Transfer

Data transmission initiated by FNP program.
Program sets up transmit buffer and Send ICW.
Program issues PCW to CMA to set Send mode.

Channel issues "Send Mode On" indicator to other system and starts 250
ms "Send Mode Response" timer.

If other system does not respond, first CMA resets Send mode, stores
Send status and issues a Send status interrupt.

If other system responds with "Receive Mode On" indication within
timer period, CMA requests the first data byte.

Data reception requires FNP program to set up receive buffer and
Receive ICW.

Program issues a PCW to CMA to set Receive mode.

Status Words

Two types of status are stored by the CMA - Send Status and Receive Status.

These

status words are placed on the least significant bit positions of the C

Bus (corresponding to the bit positions in an 18-bit FNP word) :

C Bus Bit Send Status Receive Status
17 Line Switch Mode!l Line Switch Mode
16 Line Switch Position! Line Switch Position
15 System Confidence System Confidence
(other system)l (other system)
14 Switch Control Switch Control
(other system)1 (other system)
13 Switch Control Switch Control
12 Wraparound Mode Wraparound Mode
11 Send Mode Send Mode
10 Receive Mode . Receive Mode
9 Timer Control Timer Control
8 Send PTRO2 Receive PTRO3
7 Send TROZ2 Receive TRO2

5-67 DDO1

C Bus Bit

Send Status Receive Status

6 Parity error on byte sent Parity error on byte received
5 Transmission terminated by Send Mode (other system)4
receiving system
4 Data parity error Data parity error
(IOM to CMA) (CMA to IOM)
3 PCW parity error?
2 Send mode response timeout 2
lcauses a Send Status interrupt whenever change in state occurs.
2causes a Send Status interrupt whenever bit changes to one.
3causes a Receive Status interrupt whenever bit changes to one.
4Causes a Receive Status interrupt whenever change in state occurs.

The functions of the Send Status word bits are:

Bit

17

16

15
14
13

12
11

10

Function
When a 1, indicates that the 1line transfer switch is in the
automatic mode of operation. When a 0, indicates that the line

transfer switch is in the manual mode of operation.

When a 1, indicates that the system is connected to the
communication 1lines. When a 0, indicates that the system is not
connected to the communication lines (other system online).
When a 1, the System Confidence signal from the other system CMA is
on. When a 0, it is off.
When a 1, the Switch Control signal from the other system CMA is
on. When a 0, it is off.
When a 1, the Switch Control signal (this CMA) is on. When a 0, it
is off,
When a 1, the CMA is in the Wraparound Mode. When a 0, it is not.
When a 1, the CMA's Send logic is enabled. When a 0, it is not.
When a 1, the CMA's Receive logic is enabled. When a 0, it is not.
When a 1, the dead-man timer is enabled. When a 0, it is not.
When a 1, a Send pre-tally run out has occurred.
When a 1, a Send tally run out has occurred.
When a 1, the other system CMA detected a parity error on a byte
sent to it. (Status reported at end of Send operation).
When a 1, the system turned its Receive mode off.
When a 1, a data byte containing a parity error was received from
the IOM. (Status reported at end of Send operation).

5-68 DDO1

3 When a 1, a PCW containing a parity error was received from the
IOM. (This PCW is not executed).

2 When a 1, the other system did not respond with a Receive mode on
indication within the 250 millisecond interval after Send mode was
set. Did not respond with a Data Received strobe after a Data
Available strobe. (Resets Send mode and cause status store).

The functions of the Receive Status word bits are:

Bit Function
17-9 (same as for Send status word)
8 When a 1, a pre-tally run out occurred on the 1last byte stored
indirect by the CMA.
7 When a 1, a Receive tally run out has occurred.
6 When a 1, a parity error was detected on a data byte received from

the other system. This is not reported until the data transfer
operation is completed.

5 When a 1, indicates that the other system Send mode is on. When a
0, indicates that the other system Send mode is off.

4 When a 1, indicates that a data byte transferred from the CMA to

the 1IOM was received by the IOM with a parity error. This status
is not reported until the data transfer operation is terminated.

System Monitoring

Monitoring by CMA hardware timer which must be periodically reset by FNP
program, If timer runs out, is disabled by program, or system loses power, the
System Confidence signal is turned off.

System Confidence signal is turned on (and maintained) by FNP program issue
of PCW to enable dead-man timer. This causes CMA to turn on signal and start a
one-second timer (hardware). This timer must be reset by program (PCW) within
each one second time period.

5-69 DDO1

CONTROL CONSOLE ADAPTER (CCA)

The Control Console Adapter (CCA) provides the interface between the
DATANET FNP and the console keyboard/printer,

General Information

° I/0 Channel Number = 0 (hardware patchable)

° Interrupt Vectors (octal) (hardware patchable)
IOM detected fault - 00
Special - 01
Terminate - 02

Terminate interrupt may be caused by ICW PTRO, TRO, CR(01l5), Control-X
(030), X-off (023) or 30-second timer elapse. Always preceded by
normal status store.

) Control Words
1. PCW
0 2324 2930 35
;7’
M MB2Z Opcode
7
where:
Bit 23 = M - Mask bit
Bits 30-35 = Opcode as follows
Op- Command MAP
code Mnemonic
00 Request Status REQS
44 Write Mode WTTY
50 Read Mode RTTY
54 Wraparound Mode ——

2. ICW Addresses (hardware patchable)

Status - 460, 461 (Indirect 9)
Data - 462, 463
® Status Return Character

Bit Meaning

Ready

Timer Runout

Tally Runout
Pre-tally Runout
Transfer Timing Error
Control Character
Connect While Busy
Illegal PCW

Parity on Read

co~NoUndd WO

5-70 DDO1

N

CARD READER

General Information

° I/0 Channel number = 1 (hardware patchable)
° Interrupt vectors (hardware patchable)
IOM detected fault - 20
Special - 21
Terminate - 22
o Control words
1. PCW
0 2324 2930 35
7.
(even) (odd)
where:
Bit 23 = M - Mask bit
Bits 30-35 = Opcode as follows
Op- Command MAP
code Mnemonic
00 Request status REQS
40 Reset status RESS
01 Read card binary RCB
02 Read card decimal RCD
03 Read card mixed RCM
2. ICW Addresses
Status - 464, 465 Indirect 36
Data - 466, 467 1Indirect 6
® Status
Major Status Substatus
Bits 2345 6 789 10 11
Ready 00O00O 0000O0 0 O
Device 0010 0000O0 0 1 card hopper alert
Attention
0000O0 1 O manual halt
0001 0 O last batch
0010 0O O feed failure
0100 0 O card jam
1000 0o o0 read alert
1X1X X X sneak feed
Data alert 0011 0000 0 1 transfer timing area
0000 1 0 validity error
Command
reject 0101 X XXX X X
Busy 1000 [XXXX X X
5-71

DDO1

LINE PRINTER

General Information

° I/0 Channel number =

2 (hardware patchable)

° Interrupt Vectors (octal) (hardware patchable)
Fault (IOM detected) = 40
Special = 41
Terminate = 42
° Control Words
1. PCW
0 2324 2930 35
”
77777777777 Ppood
Z
(even) (0dd)
where:
Bit 23 = M
Bits 30-35 = Opcode as follows
Op- Command MAP
code Mnemonic
00 Request status REQS
40 Reset status RESS
Write printer, non-edited, no slew WPR
Write printer, non-edited, slew 1 WPR1
Write printer, non-edited, slew 2 WPR2
Write printer, non-edited, slew to TOP WPR20
Write printer, - edited, no slew WPRE
Write printer, - edited, slew 1 WPRE1
Write printer, - edited, slew 2 WPRE2
Write printer, - edited, slew to TOP WERE 20
61 Slew 1 line SLW1
62 Slew 2 lines SLW2
63 Slew to top of form SLW20
2. ICW Addresses (hardware patchable)
Status - 470, 471 Indirect 36
Data - 472, 473 Indirect 6
5-72

DDO1

) Status

Major Status Substatus

-
[

Bits 2 34 5

Ready 0000
Attention 0010 out of paper

manual halt

VFU tape alert

check

alert before printing
transfer timing alert
alert during printing
paper low

slew alert

top of page echo

Data alert 0 0 1 1

Command 0101
reject

invalid opcode

slew alert on last

slew command

top page echo on last slew

= XX HXOXONXOOOOoOoon
X HX XEHEMXNMOMXOOOOON
OO NMXHNMOMENXNMIMNO|®
OO MXNXHEHOOMMIMINO|Wv
OO MMNMXORENMMMINMO|O
M OXE XXX ORNXNXNXNXEor

o
o
(=]

TIMER AND SWITCH CHANNEL

General Information

° I/0 Channel no. = 77 (octal) (hardware patchable)
° Interrupt vectors (hardware patchable)

IOM detected fault - 360

Interval timer runout - 361

Elapsed timer rollover - 362
° Mailboxes (hardware patchable)

450 = Interval timer
451 - Elapsed timer

° PCW - Only mask bit (23) is used
- Affects interval timer only (elapsed timer unaffected)

- If mask bit = 1, interval timer turned OFF.

- If mask bit = 0, interval timer turned ON.
° Status - None reported
e Other -~ To read maintenance panel data switches, use STEX to channel
77 (octal)

5-72

DDO1

COMMON PERIPHERAL STATUS FORMAT

The status word has the following format:

012 56 1112 15161718 2324 3233 35
1 P| Major Substatus MB2Z 1A Status MBZ CPR
Status Detected
by Channel
Bit O - A one indicates a status has been stored.
Bit 1 P - A one indicates that the device does not have power on or

Major Status

Substatus
Bit 16 I
Bit 17 A

there is no device attached.

The major status received from the peripheral subsystem.

The substatus received from the peripheral subsystem.

Set if the device instruction 1is not accepted by the
peripheral. The peripheral subsystem does not go busy as a

result of this instruction.

Stored as zero by the hardware - reserved for software use.

Status Detected by Channel (Bits 18-23)

Bit 18

Bit 19

Bit 20

Bit 21

Bit 22

Bit 23

CPR
Bits 33-35

Not used.

Connect While Busy - Error flag denoting that a connect was
received while the channel was busy with a previous
operation.

Control Word Error - An illegal ICW count of zero was sensed
in a PCW while the channel was busy with a previous
operation.

Character Position Error - An illegal character position
count (6 or 7) was sensed in processing a PCW that called
for data transfer.

Tally Runout Error - Tally runout condition was sensed
during data service mode.

Transmission Parity Error - Channel detected parity error on
character from peripheral subsystem.

The channel returns the character position residue to the
DATANET FNP. This residue is the character number into
which the next data character would be transmitted if the
transaction were continued. This channel always transmits a
36-bit word but indicates the last actual character + 1
(modulo 6) as the character position residue.

Must be zero

5-74 DDO1

DATANET FNP GENERAL MEMORY MAP

Address Function
(octal)

00000
Interrupt vectors
00377

00400
Interrupt cells

00417
00420
IOM fault status
00437
00440
Processor fault vectors
00447
00450
I/0 Comm. Region
00777
01000 HSLA #1 I/0)
01777 Comm. Region
02000 HSLA #2 I/0
02777 Comm. Region > (optional program area)
03000 HSLA #3 I/0
03777 Comm. Region)
04000
77777 Program area

Interrupt Cells

There are 256 interrupt cells available in the DATANET FNP, divided into 16
levels with 16 cells each. Levels correspond to words in memory, with cells
being equivalent to bit positions (0-15) within the level. Levels 0-15 are
located in 400 (octal) through 417 (octal) respectively.

Masking is by level only, and interrupt service (answering) priority is by
cells within a level, then by level (level 0 highest).

The interrupt vector location corresponding to any cell (bit) within a
level is found as follows:

(interrupt vector address)8 = (bit position X 208) + (levels)

Conversely, if an interrupt vector location is known, the corresponding
level is equal to the four least significant bits of the vector address, and the
bit position (cell) is equal to the next four bits of the address.

Figure 5-2 shows a general interrupt cell map. Interrupt vectors are shown
in Figure 5-3.

5-75 DDO1

Bit Position

Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 (400)! DATANET FNP IOM Detected Channel Faults

1 (401) IOM Channel Specials

2 (402) IOM Channel Terminates N

3 (403) ICA Specials (via SXC cmd.) 0

4 (404) Active subchannels 0-15 T

5 (405) Active subchannels 16-31 HSLA #1

6 (406) Config. subchannels 0-15

7 (407) Config. subchannels 16-31

8 (408) Active subchannels 0-15 U

9 (411) Active subchannels 16-31 HSLA #2]
10 (412) Config. subchannels 0-15 E
11 (413) Config. subchannels 16-31 D
12 (414) Active subchannels 0-15
13 (415) Active subchannels 16-31 HSLA #3
14 (41e6) Config. subchannels 0-15

15 (417) Config. subchannels 16-31

labsolute memory addresses in parenthesis
Figure 5-2. DATANET FNP Interrupt Cells
5-76 DDO1

Interrupt)
— Address | Level Function
’) (octal) | (decimal)
00000 0 fault
*001 1 Console special (request)
002 2 terminate
003 3 ICA Special #0
004 4 active subchannel 0
005 5 HSLA #1 active subchannel 16
006 6 config. subchannel 0
007 7 config. subchannel 16
010 8
011 9 Reserved for
012 10 HSLA #2
013 11
014 12
015 13 Reserved for
0le6 14 HSLA #3
017 15
020 0 fault
021 1 Card Reader special
022 2 terminate
023 3 ICA Special #1
024 4 active subchannel 1
025 5 HSLA #1 active subchannel 17
— 026 6 config, subchannel 1
o 027 7 config. subchannel 17
030 8
031 9 Reserved for
032 10 HSLA #2
033 11
034 12
035 13 Reserved for
036 14 HSLA #3
037 15
040 0 fault
041 1 Line { special
042 2 Printer terminate
043 3 ICA Special #2
044 4 active subchannel 2
045 5 active subchannel 18
046 6 HSLA #1 config. subchannel 2
00047 7 config. subchannel 18
Figure 5-3. DATANET FNP Interrupt Vectors
N

DDO1

Interrupt

Address | Level Function

(octal) | (decimal)

00048 8

A 051 9 Reserved for
052 10 HSLA #2
053 11
054 12
055 13 Reserved for
056 14 HSLA #3
057 15
060 0
061 1
062 2
063 3 ICA Special #3
064 4 active subchannel 3
065 5 HSLA #1 active subchannel 19
066 6 config. subchannel 3
067 7 config. subchannel 19
070 8
071 9 Reserved for
072 10 HSLA #2
073 11
074 12
075 13 Reserved for
076 14 HSLA #3
077 15
100 0 IcAa fault
101 1 Unassigned
102 2 ICA terminate
103 3 ICA Special #4
104 4 active subchannel 4
105 5 active subchannel 20
106 6 HSLA #1 config. subchannel 4
107 7 config. subchannel 20
110 8
111 9 Reserved for
112 10 HSLA #2
113 11
114 12
115 13 Reserved for
116 14 HSLA #3

00117 15

Figure 5-3 (cont). DATANET FNP Interrupt Vectors

DDO1

.
i .

Interrupt

Address | Level

(octal

) | (decimal)

Function

00120

121
122
123

124
125
126
127

130
131
132
133

134
135
136
137

140
141
142

143

144
145
146
147

150
151
152
153

154
155
156
157

160
161
162
163

164

165
Y 166
00167

0
)
2

=
[l =

’}:S\Dm
—_— Y —

w

~Noyu s

Unassigned

ICA Special #5

active subchannel 5
HSLA #1 active subchannel 21

config. subchannel 5

config. subchannel 21

Reserved for
HSLA #2

Reserved for
HSLA #3

HSLA #1 fault
Unassigned

ICA Special #6

active subchannel 6
HSLA #1 active subchannel 22

config. subchannel 6

config. subchannel 22

Reserved for
HSLA #2

Reserved for
HSLA #3

HSLA #2 fault
Unassigned

ICA Special #7

active subchannel 7
HSLA #1 active subchannel 23

config. subchannel 7

config. subchannel 23

Figure 5-3 (cont). DATANET FNP Interrupt Vectors

DDO1

Interrupt

Address | Level Function

(octal) | (decimal)

00170 8

A171 9 Reserved for
172 10 HSLA #2
173 11
174 12
175 13 Reserved for
176 14 HSLA #3
177 15
200 0 HSLA #3 fault
201 1)
202 2 Unassigned
203 3 ICA Special #8
204 4 active subchannel 8
205 5 HSLA #1 active subchannel 24
206 6 config. subchannel 8
207 7 config. subchannel 24
210 8
211 9 Reserved for
212 10 HSLA #2
213 11
214 12
215 13 Reserved for
216 14 HSLA #3
217 15
220 0 LSLA fault
221 1 <active
222 2 configuration
223 3 ICA Special #9
224 4 active subchannel 9
225 5 HSLA #1 active subchannel 25
226 6 config. subchannel 9
227 7 config. subchannel 25
230 8
231 9 Reserved for
232 10 HSLA #2
233 11
234 12
235 13 Reserved for

Y 236 14 HSLA #3

00237 15

Figure 5-3 (cont). DATANET FNP Interrupt Vectors

DDO1

Interrupt

Address | Level Function
(octal) | (decimal)
00240 0

241 1 Unassigned

242 2

243 3 ICA Special #10

244 4 active subchannel 10
245 5 HSLA #1 active subchannel 26
246 6 config. subchannel 10
247 7 config. subchannel 26
250 8

251 9 Reserved for

252 10 HSLA #2

253 11

254 12

255 13 Reserved for

256 14 HSLA #3

257 15

260 0

261 1 } Unassigned

262 2

263 3 ICA Special #11

264 4 active subchannel 11
265 5 HSLA #1 active subchannel 27
266 6 config. subchannel 11
267 7 config. subchannel 27
270 8

271 9 Reserved for

272 10 HSLA #2

273 11

274 12

275 13 Reserved for

276 14 HSLA #3

277 15

300 0

301 1 Unassigned

302 2

303 3 ICA Special #12

304 4 active subchannel 12
305 5 HSLA #1 active subchannel 28
306 6 config. subchannel 12
0307 7 config. subchannel 28

Figure 5-3 (cont). DATANET FNP Interrupt Vectors

5-81

DDO1

Interrupt

Address | Level Function

(octal) | (decimal)

00310 8

A311 9 Reserved for
312 10 HSLA #2
313 11
314 12
315 13 Reserved for
316 14 HSLA #3
317 15
320 0
321 1 Unassigned
322 2
323 3 ICA Special #13
324 4 active subchannel 13
325 5 HSLA #1 active subchannel 29
326 6 config. subchannel 13
327 7 config. subchannel 29
330 8
331 9 Reserved for
332 10 HSLA #2
333 11
334 12
335 13 Reserved for
336 14 HSLA #3
337 15
340 0
341 1 Unassigned
342 2
343 3 ICA Special #14
344 4 active subchannel 14
345 5 HSLA #1 active subchannel 30
346 6 config. subchannel 14
347 7 config. subchannel 30
350 8
351 9 Reserved for
352 10 HSLA #2
353 11
354 12
355 13 Reserved for

Y 356 14 HSLA #3

00357 15

Figure 5-3 (cont). DATANET FNP Interrupt Vectors

DDU1

Interrupt
—~ Address | Level Function
‘ (octal) | (decimal)
00360 0 Timer channel fault
361 1 Interval timer runout
362 2 Elapsed timer rollover
363 3 ICA Special #15
364 4 active subchannel 15
365 5 HSLA #1 active subchannel 31
366 6 config. subchannel 15
367 7 config. subchannel 31
370 8
371 9 Reserved for
372 10 HSLA #2
373 11
374 12
375 13 Reserved for
Y 376 14 HSLA #3
00377 15
Figure 5-3 (cont). DATANET FNP Interrupt Vectors
- Processor Fault Vectors
Absolute
Address Function
(octal)
0040 Power off
0041 Power on
0042 Memory Parity
0043 Illegal Operation Code
0044 Overflow
0045 Illegal Memory Operation
0046 Divide Check
0047 Illegal Program Interrupt
I~

DDO1

IOC Fault Status Locations

Address Function
(octal)
00420 I/0 Chan. 0 (console)
1 I/0 Chan. 1 (card reader)
2 I/0 Chan. 2 (line printer)
3 Not used
4 I/0 Chan. 4 ICA
5 Not used
6 I/0 Chan. 6 (HSLA)
00427 Not used (reserved for HSLA #2)
00430 Not used (reserved for HSLA #3)
1 I/0 Channel 11 (LSLA)
2 Not used (reserved for LSLA #2)
3 Not used (reserved for LSLA #3)
4 Not used (reserved for LSLA #4)
5 Not used (reserved for LSLA #5)
6 Not used (reserved for LSLA #6)
00437 Timer Channel

CODING EXAMPLES

The following pages show examples of coding techniques for performing
typical program functions. These examples:

1. Illustrate the use of address modification variations for indexing,
indirection, and character addressing.

2. Demonstrate operations performed on characters.

The 1list of examples is by no means complete in that it does not present

all of the processor capabilities; however, the examples serve as convenient
references for programmers newly acquainted with the DATANET FNP,

Each example is self-contained and self-explanatory. In most cases,
questions that may be raised can be answered by referring to the descriptions of
particular instructions or pseudo-operations.

5-84 DDO1

BCD Addition

The following example illustrates the addition of two words containing

integers. The example limits the result to 999.

0l LDI OVMASK=-* INHIBIT OVERFLOW FAULTS

02 LDA A-%* TO ADD C=A+B IN BCD

03 ADA B-¥* COMPUTE A+B

04 ADA OCTL66-* ADD OCTAL 66 TO EACH DIGIT TO FORCE CARRIES
05 STA C-*

06 ANA OCTL60-* EXTRACT OCTAL 60 FROM EACH NON-CARRY
07 ERSA C-* SUBTRACT OCTAL 60 FROM EACH NON-CARRY
08 ARL 3 SUBTRACT

09 ERA MINUS1-* OCTAL 06

10 IAA 1 FROM EACH

11 ASA C-* NON-CARRY

12 OVMASK OCT 004000 OVERFLOW FAULT INHIBIT INDICATOR

13 OCTL66 OCT 666666 OCTAL 66s
14 OCTL60 OCT 606060 OCTAL 60s
15 MINUS1 DEC -1 MINUS ONE

01 Inhibits an overflow fault from occurring during add operations.
02 Places the number in A into the accumulator.

03 Adds the number in B to the accumulator. Column V in the

BCD

table

following, shows the possible results for any digit. It should be

noted that there are 19 possible results, indicated by lines 0-18.

04 Forces any carries into the units position of the next digit. Column

W contains the 20 possible results for each digit position.
additional possibility (line 19) arises from the fact that there
be a carry of one into a digit.

05 Stores the intermediate result in C.

06 Extracts an octal 60 from each non-carry digit. The results

The
can

are

indicated in Column X. The digits that did not force a carry (lines

0-9) result in an octal 60, the digits that had a carry into the
digit (lines 10-18) result in 00.

07 Performs an exclusive OR of the contents of the accumulator with
contents of C. This in effect subtracts octal 60 from each digit

next

the
that

did not have a carry (lines 0-9). The results are indicated in Column

Y.

08 Shifts the octal 60s to the right three places.

09
10 Negates the contents of the accumulator.

11 Adds to memory of the contents of the accumulator with the contents of
C. This in effect subtracts a 06 from each digit that did not have a

carry. The results are indicated in Column Z.

DDO1

ADDITION RESULTS

LINE Vi w X Y Z
0 00 | 66 | 60 6 | 00
1 01 | 67 |60 7 |01
2 02 |70 |60 |10 |02
3 03 |71 (60 (11 (03
4 04 |72 |60 |12 |04
5 05173 [60 |13 |05
6 06 | 74 |60 |14 |06
7 07 |75 [60 |15 |07
8 10 | 76 (60 |16 |10
9 11 | 77 |60 |17 |11

10 12 [00 | 0O 0 |00
11 13 |01 |00 1|01l
12 14] 02 | 00 2 |02
13 15 | 03 {00 3|03
14 l6 | 04 | 00 4 (04
15 17 | 05 | 00 5105
16 20 | 06 |00 6 | 06.
17 21| 07 |00 7 107
18 22 110 {00 |10 |10
19 -- |11 {00 {11 |11

BCD Subtraction

The following is an example of subtracting one BCD number from another BCD

number.

11
12
13

01

02
03

04

05

The contents of A must be equal to or greater than the contents of B.

LDI OVMASK-* INHIBIT OVERFLOW FAULTS
LDA A-* [TO SUBTRACT C=A-B IN BCD

SBA B-* COMPUTE A-B
STA C-*
ANA OCTL60-* EXTRACT OCTAL 60 FROM EACH BORROW
ERSA C-* SUBTRACT OCTAL 60 FROM EACH BORROW
ARL 3 SUBTRACT
ERA MINUS1-* [OCTAL 06
IAA 1 FROM EACH
ASA Cc-* BORROW
OVMASK OCT 004000 OVERFLOW FAULT INHIBIT INDICATOR
OCTL60 OCT 606060 OCTAL 60s
MINUS1 DEC -1 MINUS ONE

Inhibits an overflow fault from occurring during the subtract
operations.

Loads the accumulator with the contents of A.

Subtracts the contents of B from the accumulator. The possible
results for each digit are indicated in Column W.

Stores the intermediate result in C.
Extracts an octal 60 from each digit that required a borrow. The

possible results of this instruction are indicated in Column X, line
0-19 (10-19 refer to those which result in octal 60.)

5-86 DDO1

06

07

08
09

10

An exclusive OR to storage, in effect subtracts the octal 60s in the
accumulator from the corresponding digit in C. The possible results
for each digit are displayed in Column Y.

Shifts the octal 60s in the accumulator right three places.

Negates the contents of the accumulator.

An add to storage, is in effect a subtraction of 06 from each digit
that required a borrow, the result being placed in C. Column Z of the
table reflects the possible results for each digit.

SUBTRACTION RESULTS

LINE W X Y Z

0 11 0|11 |11
1 10 010 (10
2 07 007 |07
3 06 0 |06 | 06
4 05 0 [05|05
5 04 0)04 |04
6 03 00303
7 02 0]02]02
8 01l 0|01)01
9 00 0|00 |00

5-87 DDO1

Data Movement

Loop Termination - (move 100 nine-bit characters from block A to block: B) .

1. Index register as a counter

1 8 16
LDX1 COUNT=-*
LDX2 BLKA-*
LDX3 BLKB=-*

pA LDA 0,2,.B.0
STA 0,3,B.0
IACX3 0,B.1
IACX2 0,B.1
IACX1 -1
TNZ Z-*
TRA -

COUNT DEC 100

BLKA ZERO BLOCKA,B. 0

BLKB ZERO BLOCKB,B.0

BLOCKA BSS 50

BLOCKB BSS 50

NOTE: The negative indicator is not set during the execution of index

2, Memory

register instructions.
testing the

when
index.

Thus, the zero indicator must be used
result of an arithmetic operation with an

cell as a counter

1 8 16
ILA -COUNT
STA CNTR-*
LDX2 BLKA-*
LDX3 BLKB=-*
Z LDA 0,2,B.0
STA 0,3,B.0
IACX3 0,B.1
IACX2 0,B.1
AOS CNTR-*
TMI Z-%
TRA -
COUNT EQU 100
CNTR BSS 1
BLKA ZERO BLOCKA,B.0
BLKB ZERO BLOCKB,B.0
BLOCKA BSS 50
BLOCKB BSS 50

DDO1

3. Character position as terminator

1 8 16
LDX2 BLKA-*
LDX3 BLKB-*
Z LDA 0,2,B.0
STA 0,3,B.0
IACX3 0,B.1
IACX2 0,B.1
CMPX2 END-*
TNZ Z=*
TRA -
BLKA ZERO BLOCKA,B.0
BLKB ZERO BLOCKB,B.0
END ZERO BLOCKA+50,B.0
BLOCKA BSS 50
BLOCKB BSS 50

Binary to Binary Coded Decima

1 Conversion Routine

FUNCTION

CALLING SEQUENCE -

CONDITIONS -

BINBCD ZERO
STX1

STX2
LDX1

LDX2

BNB10 NULL
ILQ

BNB20 NULL
SBA
TMI

IAQ
TRA
BNB30 NULL
ADA
ALS
STQ

IACX1
IACX2
CMPX2
TNZ
LDX2

ILQ

ON ENTRY

ON EXIT

This routine converts any binary number having a
decimal value of 32767 or 1less into its BCD
equivalent,

TSY BINBCD-*
RETURN

The accumulator register should contain the number
to be converted.

The combined AQ register contains the BCD result
right adjusted, with blanks for leading zeros.

(RETURN)

BNBSV1-*

SAVE REGISTERS

BNBSV2-*

BNBTAB-*
LO

BNBBF=-*
LO

0 CL

0,1 sI
BNB30-*

CATION OF CONVERSION TABLE
CATION OF OUTPUT BUFFER
EAR COUNTER

MULATE A DIVIDE

END OF THE GREAT DIVIDE

1
BNB20-*

0,1 AD
3 SH
0,2,C.0

BUMP QUOTIENT

D BACK TO REALITY
IFT REMAINDER

SAVE CONVERTED DIGIT
1 BUMP TABLE ADDRESS
0,C.1 BUMP BUFFER POINTER

BNBEND=-*
Is
BNB10O-*
NO
BNBBF=-*
YE
BLNK

THE CONVERSION DONE...
. DO IT AGAIN

S. INSERT BLANKS FOR LEADING ZEROS.

5-8¢ DDO1

BNB40 NULL

LDA 0,2,C.0

GET NEXT DIGIT
TNZ BNB50-*

NON-ZERO--FINI
STQ 0,2,C.0

REPLACE AUTT FOR BLANK
IACX2 0,C.1 BUMP BUFFER POINTER
CMPX2 BNB40-* ,

NO. GET SOMEMORE
STZ -1,2,C.2

SINGLE ZERO
BNB50 NULL

LDAQ BNBBUF-*
ANSWER TO THE AQ REG
LDX2 BNBSV2-*
RESTORE REGISTERS
LDX1 BNBSV1-*
TRA BINBCD-*,I EXIT
BLNK BOOL 000020 A BCD BLANK
BNBSV1 ZERO 0 INDEX REGISTER ONE SAFE STORE
BNBSV2 ZERO 0 INDEX REGISTER TWO SAFE STORE
BNBBF ZERO BNBBUF,C.1
TEMPORARY BUFFER TALLY
BNBEND ZERO BNBBUF+2,C.0
END OF THE TEMPORARY BUFFER
BNBUFEBCI 2, 00000
TEMPORARY BUFFER
BNBTAB ZERO *+1 BINARY TO BCD CONVERSION TABLE
DEC 10000,8000,6400,5120,4096

Character Transliteration

The following example illustrates a method of transliterating each
character of a card image that has been punched in the Standard Character set to
the octal value of the corresponding character in the upper case ASCII set. The
card origin is at IMAGE and the converted card image is stored starting at
BUFFER.

01 LDX1 BCDBF=-* STARTING LOCATION OF BCD CARD IMAGE
02 LDX2 ACIBF-* STARTING LOCATION OF ASCII CARD IMAGE
03 ILQ 80 INITIALIZE LOOP COUNT

04 LOOP LDX3 0,1,C.0 LOAD A BCD CHARACTER

05 LDA TRANS-*,I CONVERT CHARACTER TO ASCII

06 STA 0,2,B.0 STORE CONVERTED CHARACTER IN BUFFER
07 IACX1 0,C.1

08 IACX2 0,B.1

09 IAQ -1

10 TNZ LOOP-*

11 BCDBF ZERO IMAGE,C.0
12 ACIBF ZERO BUFFER,B.0
13 TRANS IND TABLE, 3

14 IMAGE BSS 27 BCD CARD IMAGE

15 BUFFER BSS 40 ASCII CARD IMAGE

16 TABLE OoCT 060 BCD OCTAL REPRESENTATION 00 CHARACTER 0
17 oCT 061 01 1
18 ocCT 062 02 2
19 oCT 063 03 3
20 OoCT 064 04 4
21 ocT 065 05 5

5-90 DDO1

~

OCT
OCT
oCT
OCT
oCT
OCT
OCT
OCT
OCT
OCT
OCT
OoCT
oCcT
OoCT
OoCT
OCT
OoCT
OCT
oCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OoCT
OoCT
OCT
oCT
OCT
OCT
OoCT
ocCT
oCT
OCT
OCT
OCT
OCT
OCT
OCT
oCT
OCT
OCT
OCT
OCT
OCT
OCT
oCT
OCT
OCT
oCT
oCT
OoCT
OoCT
OCT
OCT
oCcT

066
067
070
071
133
043
100
072
076
077
040
101
102
103
104
105
106
107
110
111
046
056
135
050
074
134
136
112
113
114
115
116
117
120
121
122
055
044
052
051
073
047
053
057
123
124
125
126
127
130
131
132
137
054
045
075
042
041

5-91

e= =l oo~ ’Nl-<><2<C!HUJ\+ S *0 I WOYOZRHRUBS A A~L PHIQOHEHUODQEPE VYV «®#=M OoJ0

DDO1

STANDARD CHARACTER SET

APPENDIX A

STANDARD INTERNAL HOLLERITH ASCII ACI
CHARACTER MACHINE OCTAL CARD PSEUDO-OP | PSEUDO-OP
SET CODE CODE CODE CODE
0 000000 00 0 060 060
1 000001 01 1 061 061
2 000010 02 2 062 062
3 000011 03 3 063 063
4 000100 04 4 064 064
5 000101 05 5 065 065
6 000110 06 6 066 066
7 000111 07 7 067 067
8 001000 10 8 070 070
9 001001 11 9 071 071
[001010 12 2-8 133 133
001011 13 3-8 043 043
@ 001100 14 4-8 100 100
: 001101 15 5-8 072 072
> 001110 16 6-8 076 076
? 001111 17 7-8 077 077
E 010000 20 (blank) 040 040
A 010001 21 12-1 141 101
B 010010 22 12-2 142 102
c 010011 23 12-3 143 103
D 010100 24 12-4 144 104
E 010101 25 12-5 145 105
F 010110 26 12-6 146 106
G 010111 27 12-7 147 1¢7
H 011000 30 12-8 150 110
1 011001 31 12-9 151 111
& 011010 32 12 046 046
. 011011 33 12-3-8 056 056
I 011100 34 12-4-8 135 135
(011101 35 12-5-8 050 050
< 011110 36 12-6-8 074 074
\ 011111 37 12-7-8 134 134
t 100000 40 11-0 136 136
J 100001 41 11-1 152 112
K 100010 " 42 11-2 153 113
L 100011 43 11-3 154 114
M 100100 A 11-4 155 115
N 100101 45 11-5 156 116
0 100110 46 11-6 157 117
P 100111 47 11-7 160 120
Q 101000 50 11-8 161 121
R 101001 51 11-9 162 122
- 101010 52 11 055 055
$ 101011 53 11-3-8 044 044
* 101100 54 11-4-8 052 052
) 101101 55 11-5-8 051 051
5 101110 56 11-6-8 073 073
! 101111 57 11-7-8 047 047
+ 110000 60 12-0 053 053
/ 110001 61 0-1 057 057
S 110010 62 0-2 163 123
T 110011 63 0-3 164 124
U 110100 64 0-4 165 125
v 110101 65 0-5 166 126
W 110110 66 0-6 167 127
X 110111 67 0-7 170 130
Y 111000 70 0-8 171 131
z 111001 71 0-9 172 132
- 111010 72 0-2-8 137 137
s 111011 73 0-3-8 054 054
% 111100 74 0-4-8 045 045
= 111101 75 0-5-8 075 075
" 111110 76 0-6-8 042 042
: 111111 77 0-7-8 041 041
A-1

DDO1

APPENDIX B

CONVERSION TABLES

OCTAL-DECIMAL INTEGER TABLE

Octal 10000 20000 30000 40000 50000 60000 70000
Decimal 4096 8192 12288 16384 20480 24576 28672
Octal 100000 200000 300000 400000 500000 600000 700000 1000000
Decimal 32768 65536 98304 131072 163840 196608 229376 262144

Octal| 0 1 2 3 4 5 6 T Octal] O 1 2 3 4 5 (] 1

0000| 0000 0001 0002 0003 0004 0005 0006 0007 1000| 0512 0513 0514 0515 0516 0517 0518 0519
0010| 0008 0009 001G 0011 0012 0013 0014 0015 1010} 0520 0521 0522 0523 0524 0525 0526 0527
0020|0016 0017 0018 0018 0020 0021 0022 0023 1020} 0528 0529 0530 0531 0532 0533 0534 0535
0030| 0024 0025 0026 0027 0028 0029 0030 0031 1030|0536 0537 0538 0539 0540 0541 0542 0543
0040 0032 0033 0034 0035 0036 0037 0038 0039 1040| 0544 0545 0546 0547 0548 0549 0550 0551
0050| 0040 0041 0042 0043 0044 0045 0046 0047 1050 0552 0553 0554 0555 0556 0557 0558 0559
0060 | 0048 0049 0050 0051 0052 0053 0054 0055 1060 0560 0561 0562 0563 0564 0565 0566 0567
0070|0056 0057 0058 0059 0060 0061 0062 0063 1070|0568 0569 0570 0571 0572 0573 0574 0575
0100|0064 0065 0066 0067 0068 0069 0070 0071 1100} 0576 0577 0578 0579 0580 0581 0582 0583
0110|0072 0073 0074 0075 0076 0077 0078 0079 1110|0584 0585 0586 0587 0588 0589 0590 0591
0120|0080 0081 0082 0083 0084 0085 0086 0087 1120} 0592 0593 0594 0595 0596 0597 0598 0599
01300088 0089 0090 0091 0092 0093 0094 0095 1130|0600 0601 0602 0603 0604 0605 0606 0607
0140|0096 0097 0098 0099 0100 0101 0102 0103 1140|0608 0609 0610 0611 0612 0613 0614 0615
0150} 0104 0105 0106- 0107 0108 0109 0110 0111 1150|0616 0617 0618 0619 0620 0621 0622 0623
0160}0112 0113 0114 0115 0116 0117 0118 0119 1160|0624 0625 0626 0627 0628 0629 0630 0631
017010120 0121 0122 0123 0124 0125 0126 0127 1170|0632 0633 0634 0635 0636 0537 0638 0639
0200|0128 0129 0130 0131 0132 0133 0134 0135 1200|0640 0641 0642 0643 0644 0645 0646 0647
0210{0136 0137 0138 0139 0140 0141 0142 0143 1210|0648 0149 0650 0651 0652 0653 0654 0655
0220|0144 0145 0146 0147 0148 0149 0150 0151 1220|0656 0657 0658 0659 0660 0661 0662 0663
0230|0152 0153 0154 0155 0156 0157 0158 0159 1230|0664 0665 0666 0667 0668 0669 0670 0671
0240|0160 0161 0162 0163 0164 0165 0166 0167 1240|0672 0673 0674 0675 0676 0677 0678 0679
0250]0168 0169 0170 0171 0172 0173 0174 0175 1250|0680 0681 0682 0683 0684 0685 0686 0687
02600176 0177 0178 0179 0180 0181 0182 0183 12600688 0689 0690 0691 0692 0693 0694 0695
0270|0184 0185 0186 0187 0188 0189 0190 0191 1270|0696 0697 0698 0699 0700 0701 0702 0703
0300|0192 0193 0194 0195 0196 0197 0198 0199 1300|0704 0705 0706 0707 0708 0709 0710 0711
0310|0200 0201 0202 0203 0204 0205 0206 0207 13100712 0713 0714 0715 0716 0717 0718 0719
0320)|0208 0209 0210 0211 0212 0213 0214 0215 1320|0720 0721 0722 0723 0724 0725 0726 0727
0330|0216 0217 0218 0219 0220 0221 0222 0223 1330|0728 0729 0730 0731 0732 0733 0734 0735]
0340 | 0224 0225 0226 0227 0228 0229 0230 0231 1340|0736 0737 0738 0739 0740 0741 0742 0743
0350|0232 0233 0234 0235 0236 0237 0238 0239 1350 10744 0745 0746 0747 0748 0749 0750 0751
0360 | 0240 0241 0242 0243 0244 0245 0246 0247 1360|0752 0753 0754 0755 0756 0757 0758 0759
037010248 0249 0250 0251 0252 0253 0254 0255 13700760 0761 0762 0763 0764 0765 0766 0767

[Gual Jo400 1e 0777] (e [1400 75 1777]
[Becimai] 0256 1o 0511} [Decimai [0788 10 1023]

Octal| 0 1 2 3 4 5 6 7 Octal| O 1 2 3 4 5 6 7

0400 | 0256 0257 0258 0259 0260 0261 0262 0263 1400|0768 0769 0770 0771 0772 0773 0774 0775
0410|0264 0265 0266 0267 0268 0269 0270 0271 1410|0776 0777 0778 0779 0780 0781 0782 0783
04200272 0273 0274 0275 0276 0277 0278 0279 142010784 0785 0786 0787 0788 0789 0790 0791
04300280 0281 0282 0283 0284 0285 0286 0287 1430)0792 0793 0794 0795 0796 0797 0798 0799
0440 | 0288 0289 0290 0291 0292 0293 0204 0295 1440|0800 0801 0802 0803 0804 0805 0806 0807
0450 | 0296 0297 0298 0299 0300 0301 0302 0303 1450 10808 0809 0810 0811 0812 0813 0814 0815
0460 | 0304 0305 0306 0307 0308 G309 0310 0311 1460 |0816 0817 0818 0819 0820 0821 0822 0823
0470|0312 0313 0314 0315 0316 0317 0318 0319 1470|0824 0825 0826 0827 0828 0829 0830 0831
0500 | 0320 0321 0322 0323 0324 0325 0326 0327 1500 |0832 0833 0834 0835 0836 0837 0838 0839
05100328 0329 0330 0331 0332 0333 0334 0335 1510 |0840 0841 0842 0843 0844 0845 0846 0847
05200336 0337 0338 0339 0340 0341 0342 0343 1520 | 0848 0849 0850 0851 0852 0853 0854 0855
0530{0344 0345 0346 0347 0348 0349 0350 0351 1530 | 0856 0857 0858 0859 0860 0861 0862 0863
0540|0352 0353 0354 0355 0356 0357 0358 0359 1540 |0864 0865 0866 0867 0868 0869 0870 0871
0550|0360 0361 0362 0363 0364 0365 0366 0367 1550 | 0872 0873 0874 0875 0876 0877 0878 0879
0560 { 0368 0369 0370 0371 0372 0373 0374 0375 1560 | 0880 0881 0882 0883 0884 0885 0886 0887
0570|0376 0377 0378 0379 0380 0381 0382 0383 1570 {0888 0889 0890 0891 (892 0893 0894 0895
0600|0384 0385 0386 0387 0388 0389 0390 0391 1600 | 0896 0897 0898 0899 0900 0901 0902 0903
0610|0392 0393 0394 0395 0396 0397 0398 0399 1610|0904 0905 0906 0907 0908 0909 0910 0911
0620|0400 0401 0402 0403 0404 0405 0406 0407 1620|0912 0913 0914 0915 0916 0917 0918 0919
0630|0408 0409 0410 0411 0412 0413 0414 0415 1630 {0920 0921 0922 0923 0924 0925 0926 0927
064010416 0417 0418 0419 0420 0421 0422 0423 1640 {0928 0929 0930 0931 0932 0933 0934 0935
0650 | 0424 0425 0426 0427 0428 0429 0430 0431 1650 0936 0937 0938 0939 0940 0941 0942 0943
0660 | 0432 0433 0434 0435 0436 0437 0438 0439 1660 | 0944 0945 0946 0947 0948 0949 0950 0951
0670 | 0440 0441 0442 0443 0444 0445 0446 0447 1670 | 0952 0953 0954 0955 0956 0957 0958 0959
0700|0448 0449 0450 0451 0452 0453 0454 0455 1700 | 0960 0961 0962 0963 0964 0965 0966 0967
07100456 0457 0458 0459 0460 0461 0462 0463 1710|0968 0969 0970 0971 0972 0973 0974 0975
0720|0464 0465 0466 0467 0468 0469 0470 0471 1720 {0976 0977 0878 0979 0980 0981 0982 0983
07300472 0473 0474 0475 0476 0477 0478 0479 1730 {0984 0985 0986 0987 0988 0989 0980 0991
0740|0480 0481 0482 0483 0484 0485 0486 0487, 1740|0992 0993 0994 0995 0996 0997 0998 0999
0750|0488 0489 0490 0491 0492 0493 0494 0495 1750 | 1000 1001 1002 1003 1004 1005 1006 1007|
0760|0496 0497 0498 0499 0500 0501 0502 0503, 1760|1008 1009 1010 1011 1012 1013 1014 1015
0770|0504 0505 0506 0507 0508 0509 0510 0511 1770|1016 1017 1018 1019 1020 1021 1022 1023

B-1

DDO1

OCTAL-DECIMAL INTEGER TABLE (Cont.)

Occal 10000 | 20000 30000 | 40000 | 50000 | 60000 | 70000
Decimal 4096 8192 12288 16384 | 20480 | 24576 28672
Octal 100000 | 200000 300000 | 400000 | 500000 [600000 | 700000 | 1000000
Decimal 32768 65536 98304 131072 163840 196608 | 229376 262144
Octal] 0 1 2 3 4 5 6 7 Octal{ 0 1 2 3 4 5 6 1
2000 {1024 1025 1026 1027 1028 1029 1030 1031 3000|1536 1537 1538 1539 1540 1541 1542 1543
2010 (1032 1033 1034 1035 1036 1037 1038 1039 3010 | 1544 1545 1546 1547 1548 1549 1550 1551
2020 [1040 1041 1042 1043 1044 1045 1046 1047 3020 |1552 1553 1554 1555 1556 1557 1558 1559
2030 (1048 1049 1050 1051 1052 1053 1054 1055 3030 {1560 1561 1562 1563 1564 1565 1566 1567
2040 [1056 1057 1058 1059 1060 1061 1062 1063 3040 | 1568 1569 1570 1571 1572 1573 1574 1575
2050 (1064 1065 1066 1067 1068 1069 1070 1071 3050 |1576 1577 1578 1679 1580 1581 1582 1583
2060 [1072 1073 1074 1075 1076 1077 1078 1079 3060 {1584 1585 1586 1587 1588 1589 1580 1501
2070|1080 1081 1082 1083 1084 1085 1086 1087 3070|1592 1593 1594 1595 1586 1587 1588 1509
2100|1088 1089 1090 1091 1092 1093 1094 1095 3100 |1600 1601 1602 1603 1604 1605 1606 1607
2110 {1096 1097 1098 1099 1100 1101 1102 1103 31101608 1609 1610 1611 1612 1613 1614 1615
2120 (1104 1105 1106 1107 1108 1109 1110 1111 3120|1616 1617 1618 1619 1620. 1621 1622 1623
2130 (1112 1113 1114 1115 1116 1117 1118 1119 3130 |1624 1625 1626 1627 1628 1629 1630 1631
2140 (1120 1121 1122 1123 1124 1125 1126 1127 3140 {1632 1633 1634 1635 1636 1637 1638 1639
2150 (1128 1129 1130 1131 1132 1133 1134 1135 3150 11640 1641 1642 1643 1644 1645 1646 1647
2160 {1136 1137 1138 1139 1140 1141 1142 1143 3160 |1648 1649 1650 1651 1652 1653 1854 1655
2170 (1144 1145 1146 1147 1148 1149 1150 1151 3170|1656 1657 1658 1659 1660 1661 1662 1663
2200 [1152 1153 1154 1155 1156 1157 1158 1159 3200 |1664 1665 1666 1667 1668 1669 1670 1671
22101160 1161 1162 1163 1164 1165 1166 1167 3210|1672 1673 1674 1675 1676 1677 1678 1679
2220 (1168 1169 1170 1171 1172 1173 1174 1175 3220|1680 1681 1682 1683 1684 1685 1686 1687
2230 (1176 1177 1178 1179 1180 1181 1182 1183 3230|1688 1689 1690 1691 1692 1693 1694 1695
2240 {1184 1185 1186 1187 1188 1189 1190 1191 3240|1696 1697 1698 1699 1700 1701 1702 1703
2250 (1192 1193 1194 1195 1196 1197 1198 1199 3250 {1704 1705 1706 1707 1708 1709 1710 1711
2260 {1200 1201 1202 1203 1204 1205 1206 1207 3260 1712 1713 1714 1715 1716 1717 1718 1719
2270|1208 1209 1210 1211 1212 1213 1214 1215 3270 {1720 1721 1722 1723 1724 1725 1726 1727
2300 {1216 1217 1218 1219 1220 1221 1222 1223 3300 {1728 1729 1730 1731 1732 1733 1734 1735
2310 (1224 1225 1226 1227 1228 1229 1230 1231 3310|1736 1737 1738 1739 1740 1741 1742 1743
2320 (1232 1233 1234 1235 1236 1237 1238 1239 3320 1744 1745 1746 1747 1748 1749 1750 1751
2330|1240 1241 1242 1243 1244 1245 1246 1247 3330|1752 1753 1754 1755 1756 1757 1758 1758
2340 1248 1249 1250 1251 1252 1253 1254 1255 334011760 1761 1762 1763 1764 1765 1766 1767
2350 [1256 1257 1258 1259 1260 1261 1262 1263 3350|1768 1769 1770 1771 1772 1773 1774 1775
2360 [1264 1265 1266 1267 1268 1269 1270 1271 3360 (1776 1777 1778 1779 1780 1781 1782 1783
2370|1272 1273 1274 1275 1276 1277 1278 1279 3370|1784 1785 1786 1787 1788 1789 1790 1781
[[Octal_T2400 10 2777] [octal 2400 10 3777]

[Decimat [1280 10 1535 | [Decimel [1792 10 2047]

Octal| 0 1 2 3 4 5 6 1 Octol| 0 1 2 3 4 5 [] 1

24001280 1281 1282 1283 1284 1285 1286 1287 3400|1792 1793 1794 1795 1796 1797 1798 1799
24101288 1289 1290 1291 1292 1293 1294 1295 3410|1800 1801 1802 1803 1804 1805 1806 1807
24201296 1297 1298 1299 1300 1301 1302 1303 3420|1808 1809 1810 1811 1812 1813 1814 1815
2430|1304 1305 1306 1307 1308 1309 1310 1311 3430 {1816 1817 1818 1819 1820 1821 1822 1823
2440|1312 1313 1314 1315 1316 1317 1318 1319 3440|1824 1825 1826 1827 1828 1829 1830 1831
2450|1320 1321 1322 1323 1324 1325 1326 1327 3450 (1832 1833 1834 1835 1836 1837 1838 1839
2460|1328 1329 1330 1331 1332 1333 1334 1335 3460 | 1840 1841 1842 1843 1844 1845 1846 1847
24701336 1337 1338 1339 1340 1341 1342 1343 3470 (1848 1849 1850 1851 1852 1853 1854 1855
2500|1344 1345 1346 1347 1348 1349 1350 1351 3500 (1856 1857 1858 1859 1860 1861 1862 1863
25101352 1353 1354 1355 1356 1357 1358 1359 3510|1864 1865 1866 1867 1868 1869 1870 1871
2520|1360 1361 1362 1363 1364 1365 1366 1367 3520 |1872 1873 1874 1875 1876 1877 1878 1879
25301368 1369 1370 1371 1372 1373 1374 1375 3530|1880 1881 1882 1883 1884 1885 1886 1887
25401376 1377 1378 1379 1380 1381 1382 1383 3540 1888 1889 1890 1891 1892 1893 1894 1895.
2550 (1384 1385 1386 1387 1388 1389 1390 1391 3550 [1896 1897 1898 1899 1900 1901 1502 1803 :
25601392 1393 1394 1395 1396 1397 1398 1399 3560 |1904 1905 1906 1907 1908 1909 1910 1911
2570|1400 1401 1402 1403 1404 1405 1406 1407 3570 {1912 1913 1914 1915 1816 1917 1918 1919
2600|1408 1409 1410 1411 1412 1413 1414 1415 3600 (1920 1921 1922 1923 1924 1925 1926 1927
2610|1416 1417 1418 1419 1420 1421 1422 1423 3610 {1928 1929 1930 1931 1932 1933 1934 1935
2620|1424 1425 1426 1427 1428 1429 1430 1431 3620 [1936 1937 1938 1939 1840 1841 1942 1943
2630 1432 1433 1434 1435 1436 1437 1438 1439 3630 |1944 1945 1946 1947 1948 1849 1950 1951
2640 | 1440 1441 1442 1443 1444 1445 1446 1447 3640 |1952 1953 1954 1955 1956 1957 1958 1959
2650 | 1448 1449 1450 1451 1452 1453 1454 1455 3650 |1960 1961 1962 1963 1964 1965 1986 1967
2660 {1456 1457 1458 1459 1460 1461 1462 1463 3660 11968 1969 1970 1971 1872 1973 1974 1975
2670|1464 1465 1466 1467 1468 1468 1470 1471 3670 [1976 1977 1978 1979 1880 1981 1982 1983
2700 {1472 1473 1474 1475 1476 1477 1478 1479 3700 [1984 1985 1886 1987 1988 1989 19680 1881
2710|1480 1481 1482 1483 1484 1485 1486 1487 3710|1992 1993 1994 1995 1996 1997 1998 1999
27201488 1489 1490 1491 1492 1493 1494 14985 3720 {2000 2001 2002 2003 2004 2005 2006 2007
27301496 1497 1498 1499 1500 1501 1502 1503 3730|2008 2009 2010 2011 2012 2013 2014 2015
2740|1504 1505 1506 1507 1508 1509 1510 1511 3740|2016 2017 2018 2019 2020 2021 2022 2023
2750|1512 1513 1514 1515 1516 1517 1518 1519 3750 | 2024 2025 2026 2027 2028 2029 2030 2031
27601520 1521 1522 1523 1524 1525 1526 1527 3760 | 2032 2033 2034 2035 2036 2037 2038 2039
2770|1528 1529 1530 1531 1532 1533 1534 1535 3770 | 2040 2041 2042 2043 2044 2045 2046 2047

B-2

DDO1

OCTAL-DECIMAL INTEGER TABLE (Cont.)

Octal | 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal | 4096 8192 | 12288 | 16384 | 20480 | 24576 | 28672
Octal 100000 | 200000 | 300000 | 400000 | 500000 | 600000 ; 700000 1000000
Decimal| 32768 65536 98304 | 131072 | 163840 | 196608 | 229376 262144
Octel| 0 1 ‘3 3 4 L (] 1 Octel} 0 1 2 3 4 1) L] 1
4000|2048 2049 3050 2051 2052 2053 2054 2055 5000 |2560 2561 2562 2563 2564 2565 2566 2567
4010|2056 2057 3058 2050 2060 2061 2062 2063 5010 |2568 2560 2570 2571 2572 2573 2874 2575
4020|2064 2065 2066 2067 2068 2069 2070 2071 5020 [2576 2577 2578 2579 2580 3581 2583 2
4030} 2072 2073 2074 2075 2076 2077 2078 2079 5030 |2584 2585 2586 2587 2588 2589 2500 2591
4040|2080 2081 2082 2083 2084 2085 2086 2087 5040 | 2692 2503 2504 2595 2596 2597 2598 2509
4050|2088 2089 2090 2091 2092 2093 2094 2095 5050|2600 2601 2602 2603 2604 2605 2608 2607
4060|2096 2097 2098 2099 2100 2101 2102 2103 5060 | 2608 2609 2610 2611 2612 2613 2614 2615
4070|2104 2105 2106 2107 2108 2109 2110 2111 5070 | 2616 2617 2618 2619 2620 2621 2622 2623
4100{2112 2113 2114 2115 2116 2117 2118 2119 5100 | 2624 2625 2626 2627 2628 2629 2630 2631
4110|2120 2121 2122 2123 2124 2125 2126 2127 5110|2632 2633 2634 2635 2636 2637 2638 2639
4120]2128 2120 2130 2131 2132 2133 2134 2135 5120 |2640 2641 2642 2643 2644 2645 2646 2647
4130|2136 2137 2138 2139 2140 2141 2142 2143 5130 |2648 2640 2650 2651 2652 2653 2654 2655
4140|2144 2145 2146 2147 2148 2149 2150 2151 5140 |2656 2657 2658 2659 2660 2661 2662 2663
41502152 2153 2154 2155 2156 2157 2158 2159 5150 | 2664 2665 2666 2667 2668 2669 2670 2671
4160|2160 2161 2162 2163 2164 2165 2166 2167 5160 | 2672 2673 2674 2675 2676 2677 2678 2679
4170|2168 2169 2170 2171 2172 2173 2174 2175 5170 | 2680 2681 2682 2683 2684 2685 2686 2087
42002176 2177 2178 2179 2180 2181 2182 2183 5200 | 2688 2689 2600 2691 2692 2693 2604 2605
4210|2184 2185 2186 2187 2188 2189 2180 2161 5210 {2696 2697 2698 2699 2700 2701 2702 3703
42202192 2193 2194 2195 2196 2197 2198 2189 5220 | 2704 2705 2708 2707 2708 2709 2710 3711
4230|2200 2201 2202 2203 2204 2205 2206 2207 5230 |2712 2713 2714 2715 2716 2717 2718 2719
42402208 2209 2210 2211 2212 2213 2214 2215 5240|2720 2721 2722 2723 2724 2725 2728 2727
4250|2216 2217 2218 2219 2220 2221 2222 2223 5250 | 2728 2729 2730 2731 2732 2733 2734 2738
4260|2224 2225 2226 2227 2228 2228 2230 2231 5260 {2736 2737 2738 2739 2740 2741 2742 2743
4270|2232 2233 2234 2235 2236 2237 2238 2239 5270 | 2744 2745 2748 2747 2748 2749 2750 2751
4300|2240 2241 2242 2243 2244 2245 2246 2247 5300 | 2752 2753 2754 2755 2756 3757 2758 2759
4310|2248 2249 2250 2251 2252 2253 2254 2255 5310 | 2760 2761 2762 2763 2764 2765 2766 2767
4320|2256 2257 2258 2259 2260 2261 2262 2263 5320|2768 2769 2770 2771 2772 2773 2774 2775
4330|2264 2265 2268 2267 2268 2268 2270 2271 5330|2776 2717 2778 2779 2780 2781 2782 2783
4340|2272 2273 2274 2275 2276 2277 2278 2279 5340 | 2784 2785 2786 2787 2788 2789 2790 2791
4350] 2280 2281 2282 2283 2284 2285 2286 2287 5350 | 2792 2793 2794 2795 2796 2797 2798 2799
4360|2288 2289 2290 2201 2292 2293 2294 2205 5360 | 2800 2801 2802 2803 2804 2805 2806 2807
4370|2296 2297 2208 2299 2300 2301 2302 2303 5370|2808 2809 2810 2811 2612 2813 2814 2815
[Couel Ta4400 1o 4777] [octat_Ts400 1o 5777)
[Decime [2304 10 2559] [Decimal | 2816 10 3071]
Octal| 0 1 2 3 4 5 8 1 Octal| 0 1 2 3 4 5 (] 1
4400|2304 2305 2306 2307 2308 2309 2310 2311 5400|2816 2817 2818 2819 2820 2821 2822 2823
4410{2312 2313 2314 2315 2316 2317 2318 2319 5410|2824 2825 2826 2827 2828 2829 2830 2831
442012320 2321 2322 2323 2324 2325 2326 2327 5420 | 2832 2833 2834 2835 2836 2837 2838 2839
44302328 2320 2330 2331 2332 2333 2334 2335 5430 | 2840 2841 2842 2843 2844 2845 2846 2847
4440|2336 2337 2338 2339 2340 2341 2342 2343 5440 | 2848 2849 2850 2851 2852 2853 2854 2855
4450|2344 2345 2346 2347 2348 2349 2350 2351 5450|2856 2857 2858 2859 2860 2861 2862 2863
44602352 2353 2354 2355 2356 2357 2358 2359 5460 | 2864 2865 2866 2867 2868 2869 2870 2871
4470|2360 2361 2362 2363 2364 2365 2366 2367 5470|2872 2873 2874 2875 2876 2877 2878 2879
4500 | 2368 2360 2370 2371 2372 2373 2374 2375 5500|2880 2881 2882 2883 2884 2885 2886 2887
4510|2376 2377 2378 2379 2380 2381 2382 2383 5510|2888 2889 2890 2891 2892 2893 2894 2895
4520|2384 2385 2386 2387 2388 2389 2390 2391 5520 (2896 2897 2898 2899 2900 2801 2902 2803
4530|2392 2393 2394 2395 2396 2397 2398 2309 5530 | 2004 2905 2906 2007 2908 2809 2910 2911
4540|2400 2401 2402 2403 2404 2405 2406 2407 5540 | 2012 2913 2014 2015 2916 2917 2018 2919
4550|2408 2409 2410 2411 2412 2413 2414 2415 5550|2920 2921 2922 2923 2924 2925 2926 2927
4560|2416 2417 2418 2419 2420 2421 2422 2423 5560 | 2928 2029 2930 2931 2932 2933 2034 2935
45702424 2425 2426 2427 2428 2428 2430 2431 5570 | 2036 2937 2938 2039 2940 2941 2042 2943
4600|2432 2433 2434 2435 2436 2437 2438 2439 5600 | 2944 2945 2948 2947 2048 2949 2050 2851
4610|2440 2441 2442 2443 2444 2445 2446 2447 5610 | 2952 2953 2954 2055 2956 2957 2858 2959
4620|2448 2449 2450 2451 2452 2453 2454 2455 5620 | 2060 2961 2962 2063 2064 2965 2066 2967
4630|2456 2457 2458 2459 2460 2461 2462 2463 5630 | 2968 2969 2970 2971 2972 2973 2074 2975
46402464 2465 2466 2467 2468 2469 2470 2471 5640 | 2976 2077 2978 2079 2980 2881 2082 2083
4650 | 2472 2473 2474 2475 2476 2477 2478 2479 5650 12984 2985 2986 2987 2988 2989 2890 2091
4660|2480 2481 2482 2483 2484 2485 2486 2487 5660 | 2092 2993 2094 2995 2096 2997 2998 2999
4670|2488 2489 2490 2491 2492 2493 2494 2485 5670 | 3000 3001 3002 3003 3004 3005 3006 3007
4700|2496 2497 2498 2499 2500 2501 2502 2503 5700 | 3008 3009 3010 3011 3012 3013 3014 3015
4710]2504 2505 2506 2507 2508 2509 2510 2511 57103016 3017 3018 3019 3020 3021 3022 3023
4720|2512 2513 2514 2515 2516 2517 2518 2519 57203024 3025 3026 3027 3028 3029 3030 3031
4730|2520 2521 2522 2523 2524 2525 2526 2527 57303032 3033 3034 3035 3036 3037 3038 3039
4740 2528 2529 2530 2531 2532 2533 2534 2535 57403040 3041 3042 3043 3044 3045 3046 3047
4750|2536 3537 2538 2539 2540 2541 2542 2543 5750|3048 3049 3050 3051 3052 3053 3054 3055
4760 | 2544 2545 2546 2547 2548 2549 2550 2551 5760 | 3056 3057 3058 3059 3060 3061 3062 3063
4770|2552 2553 2554 2555 2556 2557 2558 2559 5770 | 3064 3065 3066 3067 3068 3069 3070 3071
B-3

DDO1

OCTAL-DECIMAL INTEGER TABLE (Cont.)

Octal 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal | 4096 8192 12288 16384 | 20480 | 24576 28672
Octal 100000 | 200000 300000 | 400000 | 500000 | 600000 | 700000 | 1000000
Decimal 32768 65536 98304 131072 163840 196608 229376 262144
Octol| 0 1 2 3 4 5 6 17 Octal| 0 1 2 3 4 5 (] 1
6000|3072 3073 3074 3075 3076 3077 3078 3079 7000 | 3584 3585 3586 3587 3588 3589 3580 3591
6010 3080 3081 3082 3083 3084 3085 3086 3087 70103592 3593 3594 3595 3596 3597 3508 3509
6020|3088 3089 3090 3091 3092 3093 3094 3095 7020|3600 3601 3602 3603 3604 3605 3606 3607
6030) 3096 3097 3098 3099 3100 3101 3102 3103 7030|3608 3609 3610 3611 3612 3613 3614 3615
6040) 3104 3105 3106 3107 3108 3109 3110 3111 7040|3616 3617 3618 3619 3620 3621 3622 3623
6050|3112 3113 3114 3115 3116 3117 3118 3119 7050 | 3624 3625 3626 3627 3628 3629 3630 3631
6060]3120 3121 3122 3123 3124 3125 3126 3127 7060 | 3632 3633 3634 3635 3636 3637 3638 3639
6070|3128 3129 3130 3131 3132 3133 3134 3135 7070 (3640 3641 3642 3643 3644 3645 3646 3647
6100|3136 3137 3138 3139 3140 3141 3142 3143 7100 | 3648 3649 3650 3651 3652 3653 3654 3655
6110(3144 3145 3146 3147 3148 3149 3150 3151 7110|3656 3657 3658 3659 3660 3661 3662 3663
6120|3152 3153 3154 3155 3156 3157 3158 3159 7120 (3664 3665 3666 3667 3668 3669 3670 3671
6130|3160 3161 3162 3163 3164 3165 3166 3167 7130(3672 3673 3674 3675 3676 3677 3678 3679
6140} 3168 3169 3170 3171 3172 3173 3174 3175 7140 (3680 3681 3682 3683 3684 3685 3686 3687
6150|3176 3177 3178 3179 3180 3181 3182 3183 7150 | 3688 3689 3690 3691 3692 3693 3694 3695
6160 3184 3185 3186 3187 3188 3189 3190 3191 71603696 3697 3698 3699 3700 3701 3702 3703
617013192 3193 3194 3195 3196 3197 3198- 3199 7170 [3704 3705 3706 3707 3708 3709 3710 3711
62003200 3201 3202 3203 3204 3205 3206 3207 7200|3712 3713 3714 3715 3716 3717 3718 3719
6210|3208 3209 3210 3211 3212 3213 3214 3215 7210|3720 3721 3722 3723 3724 3725 3726 3727
62203216 3217 3218 3219 3220 3221 3222 3223 7220|3728 3729 3730 3731 3732 3733 3734 3735
6230 3224 3225 3226 3227 3228 3229 3230 3231 7230 (3736 3737 3738 3739 3740 3741 3742 3743
624013232 3233 3234 3235 3236 3237 3238 3239 72403744 3745 3746 3747 3748 3749 3750 3751
6250|3240 3241 3242 3243 3244 3245 3246 3247 7250 3752 3753 3754 3755 3756 3757 3758 3759
6260 | 3248 3249 3250 3251 3252 3253 2354 3255 7260|3760 3761 3762 3763 3764 3765 3766 3767
62703256 3257 3258 3259 3260 3261 3262 3263 7270|3768 3769 3770 3771 3772 3773 3774 3775
63003264 3265 3266 3267 3268 3269 3270 3271 730013776 3777 3778 3779 3780 3781 3782 3783
6310 3272 3273 3274 3275 3276 3277 3278 3279 731013784 3785 3786 3787 3788 3789 3790 3791
6320|3280 3281 3282 3283 3284 3285 3286 3287 73203792 3793 3794 3795 3796 3797 3798 3798
63303288 3289 3290 3291 3292 3293 3294 3295 7330 (3800 3801 3802 3803 3804 3805 3806 3807
634013296 3297 3298 3299 3300 3301 3302 3303 73403808 3809 3810 3811 3812 3813 3814 3815
6350 3304 3305 3306 3307 3308 3309 3310 3311 7350(3816 3817 3818 3819 3820 3821 3822 3823
63603312 3313 3314 3315 3316 3317 3318 3319 7360 | 3824 3825 3826 3827 3828 3829 3830 3831
637013320 3321 3322 3323 3324 3325 3326 3327 7370|3832 3833 3834 3835 3836 3837 3838 3839

[_Octal_T7400 10 7777]

Octalj 0 1 2 3 4 5 6 1 Octal| 0 1 2 3 4 5 6 1

6400 (3328 3329 3330 3331 3332 3333 3334 3335 7400 | 3840 3841 3842 3843 3844 3845 3846 3847
641013336 3337 3338 3339 3340 3341 3342 3343 7410 | 3848 3849 3850 3851 3852 3853 3854 3855
64203344 3345 3346 3347 3348 3349 3350 3351 74203856 3857 3858 3859 3860 3861 3862 3863
64303352 3353 3354 3355 3356 3357 3358 3359 7430|3864 3865 3866 3867 3868 3869 3870 3871
64403360 3361 3362 3363 3364 3365 3366 3367 7440|3872 3873 3874 3875 3876 3877 3878 3879
6450 (3368 3369 3370 3371 3372 3373 3374 3375 7450 | 3880 3881 3882 3883 3884 3885 3886 3887
64603376 3377 3378 3379 3380 3381 3382 3383 7460 | 3888 3889 3890 3891 3892 3893 3894 3895
64703384 3385 3386 3387 3388 3389 3390 3391 7470|3896 3897 3898 3899 3900 3901 3902 3903
65003392 3393 3394 3395 3396 3397 3398 3399 7500 [3904 3905 3906 3907 3908 3909 3910 3911
6510 (3400 3401 3402 3403 3404 3405 3406 3407 75103912 3913 3914 3915 3916 3917 3918 3919
6520 3408 3409 3410 3411 3412 3413 3414 3415 75203920 3921 3922 3923 3924 3925 3926 3927
6530|3416 3417 3418 3419 3420 3421 3422 3423 7530 | 3928 3929 3930 3931 3932 3933 3934 3935
6540 | 3424 3425 3426 3427 3428 3429 3430 3431 7540 (3936 3937 3938 3939 3940 3941 3942 3943
6550|3432 3433 3434 3435 3436 3437 3438 3439 7550 { 3944 3945 3946 3847 3948 3949 3950 3951
6560 (3440 3441 3442 3443 3444 3445 3446 3447 7560 { 3952 3953 3954 3955 3956 3957 3958 3959
65703448 3449 3450 3451 3452 3453 3454 3455 7570 (3960 3961 3962 3963 3964 3965 3966 3967
6600 [3456 3457 3458 3459 3460 3461 3462 3463 7600 3968 3969 3970 3971 3972 3973 3974 3975
6610 (3464 3465 3466 3467 3468 3469 3470 3471 7610 (3976 3977 3978 3979 3980 3981 3982 3983
6620 {3472 3473 3474 3475 3476 3477 3478 3479 76203984 3985 3986 3987 3988 3989 3990 3991
6630|3480 3481 3482 3483 3484 3485 3486 3487 7630|3992 3993 3994 3995 3996 3997 3998 3999
6640|3488 3489 3490 3491 3492 3493 2494 3495 764014000 4001 4002 4003 4004 4005 4006 4007
6650|3496 3497 3498 3499 3500 3501 3502 3503 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
6660|3504 3505 3506 3507 3508 3509 3510 3511 7660|4016 4017 4018 4019 4020 4021 4022 4023
6670} 3512 3513 3514 3515 3516 3517 3518 3519 7670|4024 4025 4026 4027 4028 4029 4030 4031
67003520 3521 3522 3523 3524 3525 3526 3527 7700|4032 4033 4034 4035 4036 4037 4038 4039
6710|3528 3529 3530 3531 3532 3533 3534 3535 7710|4040 4041 4042 4043 4044 4045 4046 4047
67203536 3537 3538 3539 3540 3541 3542 3543 7720 | 4048 4049 4050 4051 4052 4053 4054 4055
6730) 3544 3545 3546 3547 3548 3549 3550 3551 7730 | 4056 4057 4058 4059 4060 4061 4062 4063
67401 3552 3553 3554 3555 3556 3557 3558 3559 7740 | 4064 4065 4066 4067 4068 4069 4070 4071
6750] 3560 3561 3562 3563 3564 3565 3566 3567 7750|4072 4073 4074 4075 4076 4077 4078 4079
6760|3568 3569 3570 3571 3572 3573 3574 3575 7760 | 4080 4081 4082 4083 4084 4085 4086 4087
6770} 3576 3577 3578 3579 3580 3581 3582 3583 7770 | 4088 4089 4090 4091 4092 4093 4094 4095

DDO1

OCTAL-DECIMAL FRACTION TABLE

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000 .000000 .100 125000 .200 250000 .300 .375000
.001 001953 .101 .126953 .201 .251953 .301 .376953
.002 003906 .102 .128906 .202 .253906 .302 .378906
.003 .005859 .103 .130859 .203 .255859 .303 .380859
004 .007812 104 .132812 .204 .257812 .304 .382812
005 .009765 .105 .134765 .205 .259765 .305 .384765
.006 .011718 .106 .136718 .206 .261718 .306 .386718
.007 .013671 .107 .138671 .207 .2636T1 .307 .388671
.010 015625 .110 140625 .210 265625 .310 390625
011 017578 111 142578 211 .267578 311 392578
.012 .019531 112 144531 212 .269531 312 .394531
.013 .021484 .13 .146484 213 .271484 313 .396484
014 023437 14 .148437 214 .2173437 314 398437
.015 025390 115 150390 215 .275380 .315 .400380
.016 1027343 .116 .152343 .216 .277343 .316 402343
017 029296 117 154286 217 .279296 317 .404296
.020 .031250 .120 .156250 .220 .281250 .320 .406250
.021 033203 121 .158203 221 .283203 .321 .408203
.022 035156 122 .160156 .222 .285156 .322 .410156
.023 037109 .123 .162108 .223 .287109 .323 412109
.024 039062 124 .164062 224 .289062 324 414062
.025 .041015 125 .166015 .225 .291015 .325 .416015
.026 042968 .126 .167968 .226 .292968 .326 417968
.027 044921 127 .169921 227 294921 .327 .419921
.030 046875 .130 171875 .230 .296875 .330 421875
.031 .048828 .131 .173828 .231 .298828 331 .423828
.032 050781 132 175781 .232 .300781 .332 425781
.033 .052734 .133 177734 .233 .302734 .333 427734
034 1054687 134 .179687 .234 .304687 .334 429687
035 056640 135 .181640 .235 .306640 .335 .431640
.036 058593 .136 .183593 .236 .308593 .336 .433583
.037 .060546 .137 .185546 .237 .310546 337 435546
.040 .062500 .140 .187500 .240 .312500 .340 437500
041 064453 141 .189453 .241 314453 341 439453
.042 .066406 .142 .191406 242 .316406 342 .441406
.043 068359 .143 .193359 .243 .318359 .343 443359
.044 070312 144 .195312 244 .320312 344 445312
045 072265 .145 .197265 .245 .322265 345 447265
.046 074218 146 .199218 .246 .324218 .346 .440218
.047 076171 .147 201171 247 326171 347 451171
.050 078125 .150 .203125 .250 .328125 .350 453125
051 .080078 .151 .205078 .251 .330078 .351 .455078
.052 .082031 .152 .207031 .252 .332031 .352 457031
.053 083984 .153 .208984 .253 .333984 .353 .458984
.054 085937 .154 .210937 254 .335937 .354 460937
.055 087890 .155 .212890 .255 .337890 .355 462890
.056 089843 .156 .214843 .256 .339843 .356 .464843
.057 091796 157 .216796 .257 .341796 .357 466796
.060 093750 .160 .218750 .260 .343750 .360 .468750
.061 095703 .161 .220703 .261 345703 .361 .470703
.062 097656 .162 .222656 .262 .347656 .362 472656
.063 .099609 .163 .224609 .263 349609 .363 474609
.064 .101562 .164 .226562 .264 .351562 .364 .476562
.065 .103515 .165 .228515 .265 .353515 .365 .478515
.066 .105468 .166 .230468 .266 355468 .366 480468
.067 .107421 167 .232421 .267 .357421 .367 482421
070 109375 .170 .234375 270 359375 .370 484375
071 .111328 BY) .236328 2m .361328 3m .486328
072 .113281 172 .238281 272 .363281 372 .488281
073 .115234 173 .240234 273 .365234 373 480234
074 117187 174 .242187 274 .367187 374 .492187
075 119140 175 .244140 275 .369140 375 494140
076 .1210938 .176 .246093 .276 .371093 376 .486093
017 .123046 177 .248046 271 373046 371 498046

DDO1

OCTAL-DECIMAL FRACTION TABLE (Cont.)

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000000 000000 .000100 .000244 000200 .000488 .000300 .000732
.000001 000003 000101 000247 000201 000492 000301 000736
000002 .000007 .000102 .000251 .000202 000495 000302 000740
.000003 .000011 .000103 000255 .000203 000499 .000303 000743
000004 .000015 .000104 000259 .000204 000503 .000304 .000747
.000005 000019 .000105 000263 .000205 000507 000305 000751
.000006 .000022 .000106 .000267 000208 000511 000308 .000755
000007 .000026 .000107 .000270 .000207 .000514 000307 000759
.000010 .000030 .000110 .000274 .000210 000518 .000310 .000762
.000011 .000034 .000111 .000278 .000211 000522 000311 .000766
.000012 .000038 .000112 .000282 .000212 000526 .000312 .000770

000013 000041 .000113 .000286 .000213 .000530 .000313 .000774
.000014 .000045 .000114 .000289 .000214 .000534 .000314 000778
.000015 .000049 .000115 000293 .000215 .000537 .000315 000782
.000016 000053 .000116 .000297 000216 .000541 .000318 .000785
.000017 .000057 .000117 .000301 .000217 .000545 000317 000789
.000020 000061 .000120 .000305 .000220 .000549 .000320 000783
.000021 000064 .000121 .000308 .000221 000553 .000321 .000787
.000022 .000068 .000122 .000312 .000222 000556 .000322 .000801
.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805
.000024 .000076 .000124 000320 1000224 .000564 .000324 .000808
.000025 .000080 .000125 .000324 .000225 .000568 000325 .000812
000026 .000083 .000126 .000328 000226 .000572 .000326 .000816
000027 .000087 .000127 .000331 000227 .000576 .000327 000820
.000030 .000081 .000130 000335 .000230 .000579 .000330 .000823
.000031 000095 .000131 .000339 000231 .000583 .000331 .000827
.000032 .000099 .000132 000343 .000232 .000587 .000332 .000831
.000033 000102 .000133 .000347 .000233 .000591 .000333 000835
.000034 .000106 .000134 .000350 .000234 000595 .000334 000839
.000035 .000110 .000135 .000354 000235 000598 000335 .000843
.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846
.000037 000118 .000137 .000362 .000237 .000606 .000337 000850
.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854
.000041 000125 .000141 .000370 .000241 .000614 .000341 .000858
.000042 .000129 .000142 .000373 000242 000617 000342 .000862
.000043 .000133 .000143 .000377 .000243 .000621 000343 .000865
.000044 .000137 .000144 .000381 .000244 000625 .000344 000869
.000045 .000141 .000145 .000385 .000245 000629 .000345 .000873
.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877
.000047 .000148 000147 .000392 .000247 .000637 .000347 000881

000050 .000152 000150 .000396 .000250 .000640 .000350 .000885

000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888
000052 .000160 .000152 .000404 .000252 .000648 .000352 000892
.000053 .000164 .000153 .000408 000253 000652 .000353 .000896
.000054 .000167 .000154 .000411 000254 .000656 000354 .000900
000055 .000171 .000155 .000415 .000255 .000659 000355 .000804
000056 .000175 .000156 .000419 000256 .000663 000356 000907
000057 .000178 .000157 .000423 .000257 -.000667 .000357 .00u911
000060 .000183 .000160 .000427 .000260 000671 .000360 000915
.000061 .000186 .000161 .000431 .000261 000675 .000361 000818
.000062 000190 .000162 .000434 .000262 .000679 000362 .000923
.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926
.000064 .000198 .000164 .000442 .000264 .000686 .000364 000930
.000065 .000202 .000165 .000446 .000265 .000690 000365 .000934
.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938
000067 .000209 .000167 .000453 000267 .000698 .000367 .000942
.000070 .000213 .000170 .000457 .000270 000701 000370 000946
.000071 000217 .000171 .000461 000271 000705 .CC0371 000949
000072 .000221 000172 .000465 000272 .000709 .000372 000953
.000073 000225 .000173 .000469 000273 .000713 000373 000957
.000074 .000228 .000174 .000473 .000274 .000717 .000374 000961
.000075 .000232 .000175 .000476 000275 .000720 .000375 000965
.000076 .000236 000176 .000480 .000276 .000724 000376 000968
.000077 .000240 .000177 1000484 000277 .000728 .000377 000972

DDO1

OCTAL~-DECIMAL FRACTION TABLE (Cont.)

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
000400 .000976 .000500 .001220 .000600 .001464 000700 001708
000401 .000980 000501 001224 .000601 .001468 .000701 .001712
.000402 .000984 000502 .001228 .000602 .001472 000702 001716
.000403 000988 .000503 .001232° .000603 .001476 000703 1001720
.000404 000991 .000504 .001235 .000604 .001480 .000704 .001724
000405 000995 000505 .001239 000605 .001488 .000705 .001728
.000406 000999 .000506 .001243 .000606 .001487 000706 .001731
000407 001003 000507 .001247 .000607 1001491 .000707 .001735
000410 001007 .000510 .001251 .000610 .001495 .000710 .001739
.000411 .001010 .000511 001255 .000611 .001499 1000711 .001743
000412 .001014 .000512 1001258 .000612 1001502 .000712 001747
1000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750
.000414 001022 000514 .001266 .000614 .001510 .000714 .001754
.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758
.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762
.000417 .001033 1000517 001277 000617 .001522 .000717 .001766
000420 .001037 000520 .001281 .000620 .001525 .000720 .001770
.000421 1001041 .000521 .001285 .000621 001529 .000721 001773
000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777
.000423 .001048 .000523 001293 .000623 .001537 .000723 .001781
1000424 .001052 1000524 .001296 000624 .001541 1000724 .001785
1000425 001056 000525 001300 1000625 001544 .000725 .001789
000426 .001060 .000526 .001304 .000626 .001548 .000726 001792
1000427 001064 000527 .001308 .000627 .001552 000727 001796
.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800
.000431 .001071 .000531 .001316 000631 .001560 .000731 .001804
.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808
000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811
1000434 .001083 000534 001327 .000634 4001571 .000734 .001815
000435 .001087 .000535 1001331 .000635 .001575 .000735 .001819
.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823
.000437 001094 .000537 .001338 .000637 .001583 000737 .001827
.000440 .001098 .000540 .001342 .000640 001586 .000740 .001831
000441 1001102 .000541. .001346 .000641 .001580 1000741 .001834
.000442 .001106 .000542 .001350 .000642 .0015984 .000742 .001838
.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842
.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846
.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850
.000446 .001121 .000546 .001365 .000646 .001609 000746 .001853
.000447 1001125 .000547 .001369 .000647 .001613 .000747 .001857
.000450 .001129 -000550 001373 .000650 .001617 000750 .001861

.000451 .001132 .000551 .001377 .000651 .001621 .000751 001865
000452 .001136 000552 .001380 .000652 .001625 .000752 .001869
.000453 .001140 000553 .001384 000653 .001628 .000753 .001873
.000454 .001144 000554 .001388 .000654 .001632 .000754 .001876
.000455 .001148 000555 .001392 .000655 .001636 .000755 001880
.000456 001152 .000556 .001396 .000656 .001640 000756 .001884
000457 .001155 1000557 .001399 .000657 .001644 000757 .001888
.000460 .001159 .000560 .001403 .000660 001647 000760 .001892
.000461 1001163 000561 001407 .000661 001651 .000761 .001895
.000462 .001167 .000562 001411 000662 .001655 000762 .001899
.000463 .001171 .000563 .001415 .000663 .001659 000763 .001903

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001807
.000465 .001178 -000565 .001422 .000665 .001667 .000765 001911

.000466 .001182 .G00566 .001426 .000666 .001670 .000766 .001914
.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001818

.000470 .001190 000570 .001434 .000670 .001678 .000770 .001822

.000471 .001194 .000571 001438 000671 .001682 .000771 .001926

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930

.000473 .001201 .000573 .001445 .000673 001689 .000773 001934

.000474 .001205 .000574 .001449 .000674 001693 000774 .001937

.000475 .001209 000575 001453 .000675 .001697 .000775 1001941

.000476 .001213 000576 001457 .000676 001701 .000776 .001945

.000477 .001216 000577 001461 .000677 .001705 .000777 .001949

DDO1

128
256
512

1024
2 048
4 096

8 192
16 384
32 768

65 536
131 072
262 144

524 288
1 048 576
2 097 152

4 194 304
8 388 608
16 777 216

33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1 073 741 824

2 147 483 648
4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368
68 719 476 736

137 438 953 472
274 877 906 944
549 755 813 888

1099 511 627 776

O3 Ok WNM O

[S o o
(=N} (-1 M=) b W N - O

[
-

[N SN]
»w N

25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

40

APPENDIX C

TABLE OF POWERS OF TWO

2™
1.0

0.5
0.25
0.125

0.062 5
0.031.25 .
0.015 625

0.007 812 5
0.003 906 25
0.001 953 125

0.000 976 562 5
0.000 488 281 25
0.000 244 140 625

0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 §
0.000 007 629 394 531 25
0.000 003 814 697 265 625

0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625

0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125

0.000 000 000 058 207 660 913 467 407 226 562 5

0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

DDO1

APPENDIX D

TABLE OF BINARY - DECIMAL EQUIVALENTS

Number
Maximum Decimal of Number Maximum Decimal Fractional Value
Integral Value Decimal| of
Digits Bits
1 1 .5
3 2 .75
7 3 .875
15 1 4 .937 5
KT R e IR
63 6 .984 375
127} 2 | 7].9921875 This chart provides the information nec-
255 8 .996 093 75 essary to determine:
511 9 .998 046 875
10231 3 | 10 | .9990234375 a. The number of bits needed to
2 047 11 .999 511 718 75 represent a given decimal
4 095 12 .999 755 859 375 number. Use columns one and
8191 13 .999 877 929 687 5 three or four and three.
16383l 4 | 14 | .999 938 964 84375
32 767 15 -999 969 482 421 875 b. The number of bits needed to
65 535 . 16 .999 984 741 210 937 S represent a given number of
1310714 5 | 17 | =999 992 370 605 468 75 decimal digits (all nines).
262 i43 18 <999 996 185 302 734 375 Use columns two and three.
524 287 19 .999 998 092 651 367 187 5
1048 575 6|20 _1.999 999 046 325 683 593 75 c¢. The maximum decimal value
2 097 151 21 +999 999 523 162 841 796 875 represented by a given
4 194 303 22 .999 999 761 581 420 898 437 5 number of bits, use columns
8 388 607 23 .999 999 880 790 710 449 218 75 one and three or three and
16777215 7 24__1..999 999 940 395 355 244 609 375 _ four.
33554 I T T T z5 [999999 970 197 677 612 304 687 5
67 108 863 26 -999 999 985 098 838 806 152 343 75
1azirzr) s | 27 | 999 999 992 549 419 403 076 171 875
268 435 455 28 999 999 996 274 709 701 538 085 937 5
536 870 911 29 999 999 998 137 354 850 769 042 968 75
10737418231 9 | 30 | .999 999 999 068 677 425 384 521 484 375
Z1a7 383647 | 30 -999 999 999 534 338 712 692 260 742 187 5
4 294 967 295 32 <999 999 999 767 169 356 346 130 371 093 75
8 589 934 591 33 <999 999 999 883 584 678 173 065 185 546 875
171798691831 10 | 34 _|.999 999 999 941 792 339 086 532 592 773 437 5
34 3597387367 35 999 999 999 970 896 169 543 266 296 386 718 75
68 719 476 735 36 +999 999 999 985 448 034 771 633 148 193 359 375
137438953 471 11 37 _] .999 999 999 992 724 042 385 816 574 096 679 687 5
274 87T 908 983 T | 738 [9997999 995 996 362 021 192 908 287 048 339 843 75
£49 755 813 887 39 999 999 999 998 181 010 596 454 143 524 169 921 875
1099511 627775 12 _ | 40 | .999 999 999 999 090 505 298 227 071 762 084 960 937 5
2 199 u23 255 551 41 999 999 999 999 545 252 649 113 535 881 042 480 468 75
4 398 046 511 103 42 <999 999 999 999 772 626 324 556 767 940 521 240 234 375
8796 093 022 207 43 <999 999 999 999 886 313 162 278 383 970 260 620 117 187 5
L1592 186 044 415] 13 | 44 |.999.999 999 999 943 156 581 139 191 985 130 310 058 593 75
35 184 372 088 831 45 999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46 999 999 999 999 985 789 145 284 797 996 282 577 514 648 4375
140737488 355 3270 14| 47) .999 999 999 999 992 894 572 642 398 998 141 288 757 324 218 75
2817474 976 710 655 48

DDO1

APPENDIX E

THE TWOS COMPLEMENT NUMBER SYSTEM

First consider a simple example of twos complement numbers, namely integers
of three bits each, numbering the bits 0, 1, and 2, respectively, from 1left to
right. Then the integer xyz represents the decimal quantity -4x+2y+z:

hence 011 represents +3
010 represents +2
001 represents +1
000 represents +0
111 represents -1
110 represents =2
101 represents -3
and 100 represents =4

Thus each decimal integer from -4 to 3 has a unique representation as a
twos complement number. Bit 0 also serves as the sign-bit, since it is 0 for
all positive numbers and 1 for all negative numbers. Note that 000 is a
positive number.

We perform the addition abc+xyz as though abc and xyz were signless binary
integers from 0 to 7, ignoring any carry out of bit 0 of the sum. If the true
sum is not an integer from -4 to 3, then we have an overflow. We observe that
the carry out of bit 0 = the carry out of bit 1 if, and only if, there is no
overflow. 1In the case when a # x, we cannot have an overflow, since the sum
ranges from -4 to 2. It follows that a + x = 1 and that the carries must be
equal, since we have 0+l = 1 with carry 0 and 1+1 = 0 with carry 1. 1In the case
when a = x, we have no overflow if, and only if, bit 0 of the sum = x. We have
this equality if, and only if, the carries are equal, since we have 0+0+0 = 0
with carry 0 and 1+1+41 = 1 with carry 1. We conclude that our overflow test is
a valid one. The following examples are illustrations of twos complement
addition:

CARRIES 00 11 00 01 11 10
abc 110=-2 110=-2 010=+2 010=+2 110=-2 110=-2
XyZ 001=+1 011=+3 001=+1 011=+3 111=-1 101==3
abc+xyz 111=-1 001=+1 011=+3 101=-3 101=-3 011=+3
REMARKS NO OVF. NO OVF. NO OVF. OVF. NO OVF. OVF.

E-1 DDO1

Say that uvw is the ones complement of xyz (and vice versa) if uvw+xyz =
111. Hence wu+x = v+y = w+x = 1. Say that the quantity uvw+00l is the twos
complement of xyz, observing that its decimal value is:

-4u+2v+w+l =4 (1=-x)+2 (1-y)+(l-2z)+1

-(=-4x+2y+z),

or minus the value of xyz. For this reason we call Xyz a twos complement
number. We perform the subtraction abc-xyz by the triple addition abc+uvw+001
(in effect, by adding abc and uvw with a forced carry of 1 into the 1low order
bit 2). We use the same overflow test as for addition. Note that 000-000 = 000
(no overflow) and that 000-100 = 100 (overflow). Hence 000 is its own twos
complement, and 100 does not have a proper twos complement. Note the
conspicuous absence of a -0 from the twos complement system on the previous
page.

We may generalize the above discussion to include twos complement integers
of n bits each. The integer

XoX) Koo o X, o X)

represents the decimal quantity as:

n-1 n-2 n-3
-2 X0+2 X1+2 X2+. . .+2xn_2 =Xn_1

The same rules as above hold for addition, overflow, complementation, and
subtraction. There are several choices for n:

8 for exponent fields

18 for address fields

18 for single-precision integers
36 for double-precision integers

o e o o
wnunn

The use of twos complement numbers offers many advantages.
1. It eliminates housekeeping before and after addition and subtraction
in the computer hardware.

2. It permits addition and subtraction modulo 2n, since we may always
consider a number to be signless.

3. It permits addition of a quantity to a field of a word, without any
ed to worry about the sign-bit. (In the sign-magnitude system, one
would add the quantity if the sign were positive, and subtract the
quantity if the sign were negative.)
4, It makes zero a unique positive number.
5. It is compatible with index register arithmetic.
The wuser must always remember that the computer is a twos complement
machine, especially when converting programs that were originally written for a
machine with sign-magnitude or ones complement arithmetic. For example, the

sign magnitude convention of "changing sign" corresponds to the twos complement
convention of "negation" (or "complementation").

E-2 DDO1

$ 355MAP

$ 355MAP Control Card 1-3
$ ALTER

$ ALTER Control Card 1-5
$ DKEND

$ DKEND card 1-2

$ DKEND control card 1-7
$ ENDJOB

$ ENDJOB Control Card 1-5
$ LIMITS -

$ LIMITS Control Card 1-4
$ OBJECT

$ OBJECT card 1-2
$ SNUMB

$ SNUMB Control Card 1-3
$ UPDATE

$ UPDATE Control Card 1-5
* % *EOF

***EOF Control Card 1-6
A*

Alter File (A*) 1-5
ABORT

unconditional abort 3-6
ABS

ABS - Output Absolute Text 4-12

ABS pseudo-operation 4-12
ABSOLUTE 2-6

ABS - Output Absolute Text 4-12

absolute binary cards 4-13
Absolute Object (Binary) Deck
Absolute Text Card 1-11
absolute text cards 1-11
RELOCATABLE AND ABSOLUTE ASSEMBLIES

1-11

1-2
Relocatable and Absolute Expression
2-10
Accumulator 3-6

ACI
ACI and ACIC pseudo-operations

4-32

INDEX

ACI (cont)
ASCII ASCIIC ACI ACIC - ASCII Coded
Information 4-31
ACIC

ACI and ACIC pseudo-operations 4-32
ASCII ASCIIC ACI ACIC - ASCII Coded

Information 4-31

ACTIVE
ACTIVE STATUS FORMAT 5-10

ADA
ADA - Add to A 3-34

ADAPTER
COMPUTER MONITOR ADAPTER (CMA) 5-64
CONTROL CONSOLE ADAPTER (CCA) 5-=70
DIRECT INTERFACE ADAPTER (DIA) 5-14
HIGH SPEED LINE ADAPTER (HSLA) 5=23
INTERCOMPUTER ADAPTER (ICA) 5-4
LOW SPEED LINE ADAPTER (LSLA) 5-31

PERIPHERAL SUBSYSTEM ADAPTER (PSA)

5-38
ADAQ
ADAQQ- ADD to Q 3-=35
ADCXN
ADCXn - Add Character Address to Xn
3-35
ADD

ADA - Add to A 3-34

ADAQ - ADD to Q 3-=35

ADCXn - Add Character Address to Xn

3-35

ADD INSTRUCTIONS 3-34

ADQ - Add to Q 3-35

AOS - Add One to Storage

ASA - Add A to Storage

Fractional Add 3-50

Fractional Add (FA) function 3-35

GROUP 1 IMMEDIATE ADD INSTRUCTIONS
3-49

IAA - Immediate Add to A 3-49

IACXn - Immediate Add Character
Address to Xn 3-50

3-37
3-37

IAQ - Immediate Add to Q 3-=50
Addition 3-2
Arithmetic - Addition 3-23

BCD Addition 5-85

DDO1

ADDITION (cont)
Character Address Addition Rules
3-20

ADDRESS
ADCXn - Add Character Address to Xn
3-35

ADDRESS FORMATION 3-14

Base Address Word 5-26, 5-38

Basic Level Effective Address
Formation Rules 3-15

CCW ADDRESS FORMATION 5-56

character address 3-14

Character Address Addition Rules
3=-20

effective address (Y**) 3-15

EFFECTIVE ADDRESS AND MEMORY
LOCATION SYMBOLS 3-28

Effective Address Formation
Examples 3-19

IACXn - Immediate Add Character
Address to Xn 3-50

INDIRECT CONTROL WORD BASE ADDRESS
PATCH 5-64

Indirect Level Effective Address
Formation Rules 3-21

indirect vector address 3-10

MAILBOX ADDRESSES 5-5

RIA - Read Interrupt Address 3-53

word address 3-14

ADDRESSING
CHARACTER ADDRESSING - BASIC LEVEL
3-17
CHARACTER ADDRESSING - INDIRECT
LEVEL 3-22

Character Control Character
Addressing 5-27

forward and backward addressing
3-17

WORD ADDRESSING - BASIC LEVEL 3-16

WORD ADDRESSING - INDIRECT LEVEL
3-21 :

ADMISSIBILITY
admissibility of relocation 2-10

ADQ
ADQ - Add to Q 3-35

ALGEBRAIC
Algebraic Expressions 2-8
algebraic instruction 3-2
Evaluation of Algebraic Expressions
2-8

ALLOCATION
Memory allocation 4-1
MEMORY ALLOCATION PSEUDO-OPERATIONS
4-36

ALP
ALP - A Left Parity Rotate 3-60

ALPHANUMERIC
Alphanumeric Data 3-2
Alphanumeric Literals 2-14

ALR
ALR - A Left Rotate 3-60

ALS
ALS - A Left Shift 3-58

ALTER
Alter File (A*) 1-5

ANA
ANA - AND to A 3-41

ANSA
ANSA - AND to Storage A 3-42

A0S
AOS - Add One to Storage 3-37

AQ
AQ register 3-6
CQA - Copy AQ into A 3-63
SBAQ - Subtract from AQ 3-38
STAQ - Store AQ 3-32

AREA
Length of Blank Common area 1-8

ARG 2-3
ARG - Argument--Generate Zero
Operation Code Computer Word 4-41
ARG pseudo-operation 4-41

ARITHMETIC
Arithmetic Addition 3-23
Arithmetic - Division 3-23

Arithmetic - Multiplication 3-23

Arithmetic - Subtraction 3-23
ARL

ARL - A Right Logic 3-59
ARS

ARS - A Right shift 3-57
ASA

ASA - Add A to Storage 3-37
ASCII

ASCII and ASCIIC pseudo-operations

4-31

ASCII ASCIIC ACI ACIC - ASCII Coded
Information 4-31

PARITY ON/OFF - ASCII Parity
Control 4-7

SACI - Symbolic ASCII Information
4-32

ASCIIC
ASCII and ASCIIC pseudo-operations
4-31
ASCII ASCIIC ACI ACIC - ASCII Coded
Information 4-31

ASSEMBLER
ASSEMBLER OUTPUTS 1-6

ASSEMBLY
Assembly Listing 1-12

i-2 DDO1

ASSEMBLY (cont)

Conditional assembly 4-1

Date of Assembly 1-7

END - End of Assembly 4-15

MAXSZ - Maximum Size of Assembly
4-42

RELOCATABLE AND ABSOLUTE ASSEMBLIES

1-2
Time of Assembly 1-7

ASSIGNMENT
PORT ASSIGNMENT FOR FNPs 5-5

ASSIGNMENT SWITCHES
INTERRUPT CELL ASSIGNMENT SWITCHES
5-5

ASTERISK
asterisk (*) in column 1 4-10
Asterisk Used as an Element 2-7

BACKWARD
forward and backward addressing
3-17
BASE
BASE - Force Location Counter to a
Multiple Power of 2 4-26
Base Address Word 5-26, 5-38
BASE pseudo-operation 4-26

INDIRECT CONTROL WORD BASE ADDRESS
PATCH 5-64

BASIC LEVEL
Basic Level Effective Address
Formation Rules 3-15
CHARACTER ADDRESSING - BASIC LEVEL
3-17

WORD ADDRESSING - BASIC LEVEL 3-16
BCD
BCD Addition 5-85
BCD Subtraction 5-86
DCARD - Punch BCD Card 4-15
BCI
BCI - Binary Coded Decimal
Information 4-29
BCI pseudo-operation 4-29
BEGIN
BEGIN - Origin of a Location
Counter 4-19
BEGIN pseudo-operation 4-19
BF'S
BFS - Block Followed by Symbol 4-36
BFS pseudo-operation 4-36
BINARY
absolute binary cards 4-13
Absolute Object (Binary) Deck 1-11
BCI - Binary Coded Decimal
Information 4-29
Binary Decks 1-7
BINARY SYNCHRONIZATION STATUS 5-31

BINARY SYNCHRONOUS CHANNEL (BSC)
5-58

BINARY (cont)
Binary to Binary Coded Decimal
Conversion Routine 5-89
column binary relocatable text card
1-10
FUL - Output Full Binary Text 4-12
BITS
Relocation bits 1-12
BLANK
Blank Common 1-15
length of Blank Common 1-9
Length of Blank Common area 1-8

BLOCK
BFS - Block Followed by Symbol 4-36
BLOCK - Block Common 4-36
BLOCK pseudo-operation 4-36
BSS - Block Started by Symbol 4-36

BOOLEAN

BOOL - Boolean 4-22

BOOL pseudo-operation 2-8, 4-22

Boolean Expressions 2-8

BOOLEAN INSTRUCTIONS 3-41

Boolean Operations 3-23

Evaluation of Boolean Expressions
2-9

GROUP 1 IMMEDIATE BOOLEAN
INSTRUCTIONS 3-54

BSC
BINARY SYNCHRONOUS CHANNEL (BSC)
5-58

BSS
BSS - Block Started by Symbol
BSS pseudo-operation 4-36

4-36

BUILT-IN
SYSTEM (BUILT-IN) SYMBOLS 4-62
CALL
CALL - Call Subroutines
CALL pseudo-operation

4-57
4-57

CANA

CANA - Compare AND with A 3-44
CAQ

CAQ - Copy A into Q 3-64
CARD

$ 355MAP Control Card 1-3
ALTER Control Card 1-5
DKEND card 1-2
DKEND control card 1-7
ENDJOB Control Card 1-5
LIMITS Control Card 1-4
OBJECT card 1-2
SNUMB Control Card 1-3
UPDATE Control Card 1-5
***EOF Control Card 1-6
absolute binary cards 4-13
Absolute Text Card 1-11
absolute text cards 1-11
CARD READER 5-71

- nnnnn-nn

DDO1

CARD (cont)
column binary relocatable text card
1-10

DCARD - Punch BCD Card 4-15

DUP - Duplicate Cards 4-35

NO END CARD ON INPUT FILE 1-16

NOT ENOUGH CARDS TO BE SKIPPED 1-16

PCC ON/OFF - Print Control Cards
4-5

Preface Card 1-8

Preface Card Listing 1-15

PUNCH ON/OFF - Control Card Output
4-8

Relocatable Text Card 1-10

Reproduction of the symbolic card
1-13

Summary of Symbolic Card Format 2-5

TCD = Punch Transfer Card 4-13

TOO MANY CARDS TO BE DUPLICATED
1-16

transfer card 1-11, 1-12

CARRY
Carry Indicator 3-13
TNC - Transfer on No Carry 3-47
Transfer on No Carry (TNC) 3-13

CAXN
CAXn - Copy A into Xn 3-64

ccAa
CONTROL CONSOLE ADAPTER (CCA) 5-70

ccw
CCW ADDRESS FORMATION 5-56
CHARACTER CONTROL WORD (CCW) 5=55

CELL
EMERGENCY INTERRUPT CELL NUMBER 5-6
INTERRUPT CELL ASSIGNMENT SWITCHES
5-5
Interrupt Cells 5-75
SIC - Set Interrupt Cells 3-54

CENTRAL
Central System Control Word Formats
5-12, 5-22
Central System Interface 5-5, 5-15
CHANNEL
BINARY SYNCHRONOUS CHANNEL (BSC)
5-58

CHANNEL NUMBER PATCH 5-64
CIOC - Connect Input/Output Channel
3-48

Control Word Memory Map (Example
for Channel 06) 5-26

DIRECT CHANNEL PROGRAMMING 5-2

DOCUMENT HANDLER CHANNEL (DHC) 5-49

I/0 Channel Select Register 3-12

Input/output channel select 3-6

input/output channel select
register 3-6

LOGICAL CHANNEL DCW LIST 5-42

SEL - Select Input/Output Channel
3-53

TIMER AND SWITCH CHANNEL 5-73

CHARACTER
ADCXn - Add Character Address to Xn
3-35

character address 3-14

Character Address Addition Rules
3-20

CHARACTER ADDRESSING - BASIC LEVEL
3-17

CHARACTER ADDRESSING - INDIRECT
LEVEL 3-22

Character Control Character
Addressing 5-27

Character Control Table 5-=27

CHARACTER CONTROL WORD (CCW) 5=55

Character Set 2-5

Character Transliteration 5-90

Command Characters 5-35

IACXn - Immediate Add Character
Address to Xn 3-50

IND/A T Character 1-14

Status Characters 5-36

CHECK
Divide Check Fault 3-8
CIOC
CIOC = Connect Input/Output Channel
3-48
CLASS

Instruction Repertoire by
Functional Class 3-23
Mnemonics by functional class 3-22

CMA
CMA Control Words 5-65
COMPUTER MONITOR ADAPTER (CMA) 5-64

CMPA
CMPA - Compare with A 3-43

CMPQ
CMPQ - Compare with Q 3-44

CMPXN
CMPXn - Compare with Xn 3-45

CODE

ARG - Argument--Generate Zero
Operation Code Computer Word 4-41

ASCII ASCIIC ACI ACIC - ASCII Coded
Information 4-31

BCI - Binary Coded Decimal
Information 4-29

Binary to Binary Coded Decimal
Conversion Routine 5-89

CODING EXAMPLES 5-84

Illegal Operation Code Fault 3-8

SERVICE CODES - MPC TO PSA 5-45

SERVICE CODES - PSA TO MPC 5-45

SYMBOLIC CODING FORM 2-1, 2-2

COLUMN
asterisk (*) in column 1 4-10
column binary relocatable text card
1-10

COMDK 1-4

i-4 DDO1

COMMAND
Command Characters 5-35
Command PCWO PCW1l 5-25
Command PCW2 PCW3 5-25
Commands PCWO PCWl 5-33
MPC COMMANDS 5-46
SPECIAL CONTROLLER COMMANDS 5-47

COMMENT
Comments Field 2-4
Optional Comment Sequence Option
1-7

COMMON 2-6

Blank Common 1-15

BLOCK - Block Common

Labeled Common 1-9

length of Blank Common 1-9

Length of Blank Common area 1-8

SYMDEF SYMREF and Labeled Common
symbols 1-8

SYMDEF SYMREF Labeled Common 1-15

COMMON PERIPHERAL STATUS FORMAT
5-74

4-36

COMPARATIVE
ICANA - Immediate Comparative AND
with A 3-56

COMPARE
CANA - Compare AND with A
CMPA - Compare with A 3-43
CMPQ - Compare with Q 3-44
CMPXn - Compare with Xn 3-45
COMPARE INSTRUCTIONS 3-43
GROUP 1 IMMEDIATE COMPARE
INSTRUCTIONS 3-55
ICMPA - Immediate Compare A

3-44

3-55

Comparison 3-23
COMPUTER
ARG - Argument--Generate Zero
Operation Code Computer Word 4-41
COMPUTER MONITOR ADAPTER (CMA) 5-64

CONFIGURATION
Configuration Patching 5-64
CONFIGURATION STATUS FORMAT 5-9,
5-19
System Controller Port
Configurations 5-9

CONNECT

CIOC - Connect Input/Output Channel

3-48

CONNECT PCW (OPERATIONAL MODE) 5-38
CONSOLE

CONTROL CONSOLE ADAPTER (CCA) 5-70
CONTENT

REGISTER POSITIONS AND CONTENT

SYMBOLS 3-29

CONTINUATION

ETC - Continuation 4-62

CONTROL 4-1

355MAP Control Card 1-3

ALTER Control Card 1-5

DKEND control card 1-7

ENDJOB Control Card 1-5

LIMITS Control Card 1-4

SNUMB Control Card 1-3

UPDATE Control Card 1-5

***EOF Control Card 1-6

Central System Control Word Formats

5-12, 5-=22

Character Control Character
Addressing 5-27

Character Control Table 5-27

CHARACTER CONTROL WORD (CCW)

CMA Control Words 5-65

Control Word Memory Map (Example
for Channel 06) 5-26

Control Words 5-25, 5-32

DATA CONTROL WORD (DCW)

DATA CONTROL WORD FORMAT
PSEUDO-OPERATIONS 4-44

DATANET FNP Control Word Formats

v uvn-nnn

5-55

5-7, 5-41

5-6, 5-=16

DCW - I/O Control Word Generator
4-45)

GROUP 1 INTERRUPT CONTROL
INSTRUCTIONS 3-53

GROUP 2 INTERRUPT CONTROL
INSTRUCTIONS 3-65

ICW - I/0 Control Word Generator
4-44

Indirect Control Word 5-25, 5-33

INDIRECT CONTROL WORD (ICW) 5-66

INDIRECT CONTROL WORD BASE ADDRESS
PATCH 5-64

INSTRUCTION DATA CONTROL WORD
(IDCW) 5-40

Interrupt Control 3-25

LIST INDIRECT CONTROL WORD (LICW)
5-7, 5-17

LIST ON/OFF - Control Output
Listing 4-5

ON/OFF Switch Type Control
Pseudo-Operation 4-4

PARITY ON/OFF - ASCII Parity

Control 4-7
PCC ON/OFF - Print Control Cards
4-5

PERIPHERAL CONTROL WORD 5-1

PERIPHERAL CONTROL WORD (PCW)
5-16, 5-22, 5-50, 5-53, 5-65

PROGRAM INTERRUPT CONTROL 5-2

PUNCH ON/OFF - Control Card Output
4-8

Transfer of Control

5-6,

3-24

CONTROL WORD

PERIPHERAL CONTROL WORD (PCW) 5-12
CONTROLLER
SPECIAL CONTROLLER COMMANDS 5-47
System Controller Port
Configurations 5-9
CONTROL PSEUDO-OPERATIONS 4-4, 4-9

DDO1

CONVERSION
Binary to Binary Coded Decimal

Conversion Routine 5-89
CorPYy 1-4
CAQ - Copy A into Q 3-64
CAXn - Copy A into Xn 3-64
CQA - Copy AQ into A 3-63

CXnA - Copy Xn into A 3-64
GROUP 2 DATA MOVEMENT COPY

INSTRUCTIONS 3-63
COPYRIGHT
CPR - Copyright 4-11

COUNTER

BASE - Force Location Counter to a
Multiple Power of 2 4-26

BEGIN - Origin of a Location
Counter 4-19

EIGHT - Force Location Counter to a
Multiple of 8 4-25

EVEN - Force Location Counter Even
4-25

instruction counter

Location counter 4-1

LOCATION COUNTER PSEUDO-OPERATION
4-19

ODD - Force Location Counter 0Odd
4-25

USE - Use Multiple Location
Counters 4-19

3-6

CPR

CPR - Copyright 4-11

CPR pseudo-operation 4-11
CoA
CQOA - Copy AQ into A 3-63

CREATED
CRSM ON/OFF - Created Symbols
ORGCSM - Origin Created Symbols
4-53

4-53

CRSM
CRSM ON/OFF - Created Symbols
CRSM pseudo-operation 4-53

4-53

CURRENT
DATE - Current Date 4-41
CXNA
CXnA - Copy Xn into A 3-64
DATA
Alphanumeric Data 3-2
DATA CONTROL WORD (DCW)
DATA CONTROL WORD FORMAT
PSEUDO-OPERATIONS 4-44
Data Generating Pseudo-Operation

5-7, 5-41

1-14

DATA GENERATING PSEUDO-OPERATIONS
4-26

Data generation 4-1

Data Movement 3-25, 5-88

Data Movement - Load 3-23

Data Movement - Store 3-23

DATA (cont)
DATA RESPONSE TIMER DURATION PATCH
5-64
Data Transfer 5-67
Double-Precision Data 3-1
GROUP 2 DATA MOVEMENT COPY
INSTRUCTIONS 3-63
GROUP 2 DATA MOVEMENT NORMALIZE
INSTRUCTIONS 3-62
GROUP 2 DATA MOVEMENT SHIFT
. INSTRUCTIONS 3-57
INSTRUCTION DATA CONTROL WORD
(IDCW) 5-40
Relocation data 1-10
SAVE - Save--Return Linkage Data
4-59
Single-Precision Data 3-1
DATANET FNP
DATANET FNP Control Word Formats
5-6, 5-16
DATANET FNP GENERAL MEMORY MAP
DATANET FNP Interface 5-4

5-75

DATE
DATE - Current Date
Date of Assembly 1-7
DATE pseudo-operation
TTLDAT - Title Date

4-41

4-41
4-41

DCARD
DCARD - Punch BCD Card
DCARD pseudo-operation

4-15
4-15

DCW
DATA CONTROL WORD (DCW) 5-7, 5-41
DCW - I/O Control Word Generator
4-45
DCW pseudo-operation 4-45
LOGICAL CHANNEL DCW LIST 5-42
DEC

DEC - Decimal 4-27

DEC pseudo-operation 4-27
DECIMAL
BCI - Binary Coded Decimal
Information 4-29

Binary to Binary Coded Decimal
Conversion Routine 5-89
DEC - Decimal 4-27

Decimal Literals 2-13
DECK 1-4
Absolute Object (Binary) Deck 1-11
Binary Decks 1-7
Relocatable Object Deck 1-8
TYPICAL DECK SETUPS 1-6
DEFINITION
Definition of the Macro Prototype
4-46
OPD - Operation Definition 4-16
Symbol definition 4-1
SYMDEF - Symbol Definition 4-23

VFD - Variable Field Definition
4-29

DDO1

DELAY
DIS - Delay Until Interrupt Signal
3-65

DELETE
DELM - Delete Macro Named 4-54

DELIMITER
Subprogram delimiter 1-2
DELM
DELM - Delete Macro Named
DELM pseudo-operation 4-54

4-54

DEVICE

MPC DEVICE STATUS 5-47
DHC

DOCUMENT HANDLER CHANNEL (DHC) 5-49
DIA

DIRECT INTERFACE ADAPTER (DIA) 5-14
DIRECT

DIRECT CHANNEL PROGRAMMING 5-2

DIRECT INTERFACE ADAPTER (DIA) 5-14
DIS

DIS - Delay Until Interrupt Signal

3-65

DIVIDE
Divide Check Fault
DIVIDE INSTRUCTIONS
DVF - Divide Fraction

3-8
3-40
3-40

DIVISION

Arithmetic - Division 3-23
DOCUMENT HANDLER

DOCUMENT HANDLER CHANNEL (DHC) 5-49
DOUBLE-PRECISION

Double-Precision Data 3-1

Double-Precision Floating-Point

2-13

DRD236/DHU1600 5-52

DUMP 1-4

DUP
DUP - Duplicate Cards
DUP pseudo-operation

4-35
4-35

DUPLICATE
DUP - Duplicate Cards 4-35
TOO MANY CARDS TO BE DUPLICATED
1-16

DVF
DVF - Divide Fraction

E/0/8
E/0/8 Field

3-40

2-3

EDIT

EDITP - Edit Print Lines 4-9

EDITP
EDITP - Edit Print Lines
EDITP pseudo-operation

4-9
4-9
EFFECTIVE

Basic Level Effective Address
Formation Rules 3-15

effective address (Y**) 3-15

EFFECTIVE ADDRESS AND MEMORY
LOCATION SYMBOLS 3-28

Effective Address Formation
Examples 3-19

Indirect Level Effective Address
Formation Rules 3-21

EIGHT
EIGHT - Force Location Counter to a
Multiple of 8 4-25
EIGHT pseudo-operation 4-25
EJECT
EJECT - Restore Output Listing
EJECT pseudo-operation 4-9

4-9

ELEMENT
Asterisk Used as an Element 2-7
Elements 2-6
EMERGENCY
EMERGENCY INTERRUPT CELL NUMBER 5-6
ENABLE
Enable Interrupt (ENI) 3-14
ENI (Enable Interrupts) 3-11
ENI - Enable Interrupt 3-65

RIER - Read Interrupt Level Enable

Register 3-53

SIER (Set Interrupt level Enable
Register) 3-11

SIER - Set Interrupt Level Enable
Register 3-54

END

END - End Macro Prototype 4-47

END - End of Assembly 4-15

END pseudo-operation 1-12, 4-15

NO END CARD ON INPUT FILE 1-16

ENDM
ENDM pseudo-operation 4-47
ENI
Enable Interrupt (ENI) 3-14
ENI (Enable Interrupts) 3-11
ENI - Enable Interrupt 3-65
EOF
UNEXPECTED EOF ON INTERMEDIATE FILE
1-16
EQU
EQU - Equal To 4-21
EQU pseudo-operation 4-21

EQUAL

EQU - Equal To 4-21

DDO1

EQUIVALENCE
FEQU - Special FORTRAN Equivalence
4-21

ERA
ERA - EXCLUSIVE OR to A 3-43

ERROR
Error Flag 1-12
Error Flags 1-16
ERROR IN MACRO EXPANSION 1-16
error message 1-16
MAP error flags 1-16
Memory Parity Error 3-7
Memory Parity Error Fault 3-8
Parity Error Indicator 3-13
PSA ERROR SUMMARY 5-44

ERSA
ERSA - EXCLUSIVE OR to Storage A
3-43

ETC
ETC - Continuation
ETC pseudo-operation

4-62
4-62

EVALUATION
Evaluation of Algebraic Expressions
2-8
Evaluation of Boolean Expressions
2-9

EVEN
EVEN - Force Location Counter Even
4-25
EVEN pseudo-operation 4-25
EXAMPLE
CODING EXAMPLES 5-84
Control Word Memory Map (Example
for Channel 06) 5-26
Effective Address Formation
Examples 3-19

EXCLUSIVE
ERA - EXCLUSIVE OR to A 3-43
ERSA - EXCLUSIVE OR to Storage A
3-43
IERA - Immediate EXCLUSIVE OR to A
3-55

EXECUTION
EXECUTION NOT POSSIBLE NO SYMDEF
1-16

EXPANSION
ERROR IN MACRO EXPANSION 1-16

MACRO EXPANSION TABLE OVERFLOW 1-16

PMC ON/OFF - Print Macro Expansion

4-8
EXPRESSION
Algebraic Expressions 2-8
Boolean Expressions 2-8

Evaluation of Algebraic Expressions
2-8

Evaluation of Boolean Expressions
2-9

i-8

EXPRESSION (cont)
EXPRESSIONS IN GENERAL 2-6
Relocatable and Absolute Expression
2-10
Special Relocatable Expressions
2-11

EXTERNAL
LDEX - Load External Register
LOAD EXTERNAL FORMAT (LDEX)
STEX - Store External Register
STORE EXTERNAL FORMAT (STEX)

3-48
5-52

3-49
5-53

FA
Fractional Add (FA) function 3-35

FAULT
Divide
FAULTS
Faults (internal interrupts)
forced TSY fault 3-7
Illegal Operation Code Fault 3-8
Illegal Program Interrupt Fault

3-10
IOC Fault Status Locations
IOM FAULTS 5-3
Memory Parity Error Fault
Overflow Fault 3-8
Overflow Fault Inhibit Indicator
3-13

Overflow faults 3-7
Parity Fault Inhibit 3-8
Parity Fault Inhibit Indicator
Power Shutdown Beginning Fault
Power-On Restart Fault 3-7
PROCESSOR FAULT SWITCHES 5-5
Processor Fault Vectors 5-83
Processor Faults 3-7

Check Fault
3-6

3-8
3-6

3-8,
5-84
3-8

3-13
3-7

FEQU
FEQU - Special FORTRAN Equivalence
4-21
FEQU pseudo-operation 4-21
FIELD
Comments Field 2-4
E/0/8 Field 2-3
Identification Field
Location Field 2-3
MARK - Specify Symbol in Location
Field 4-40
Operation Field 2-3
Variable Field 2-3
Variable Field Literals 2-16
VFD - Variable Field Definition
4-29

2-5

FILE
Alter File (A*) 1-5
NO END CARD ON INPUT FILE 1-16
UNEXPECTED EOF ON INTERMEDIATE FILE
1-16
Fixed-Point 2-14
FLAG
Error Flag 1-12
Error Flags 1-16

DDO1

FLAG (cont)
MAP error flags 1-16
FLOATING-POINT
Double-Precision Floating-Point
2-13
Single-Precision Floating-Point
2-13

FNP
PORT ASSIGNMENT FOR FNPs 5-5
FORCE
BASE - Force Location Counter to a
Multiple Power of 2 4-26
EIGHT - Force Location Counter to a
Multiple of 8 4-25
EVEN - Force Location Counter Even
4-25
ODD - Force Location Counter 0dd
4-25

FORCED

forced TSY fault 3-7
FORM

SYMBOLIC CODING FORM 2-1, 2-2
FORMAT

ACTIVE STATUS FORMAT 5-10

Actual Status Word Format 5-13

Central System Control Word Formats

5-12, 5-22

COMMON PERIPHERAL STATUS FORMAT
5-74

CONFIGURATION STATUS FORMAT 5-9,
5-19

DATA CONTROL WORD FORMAT
PSEUDO-OPERATIONS 4-44
DATANET FNP Control Word Formats

5-6, 5—16
format of the full listing 1-13
Full Listing Format 1-12
Listing Format 1-14
LOAD EXTERNAL FORMAT (LDEX) 5=52
PCW Format 5-33
PSA Word Formats 5-38
SPECIAL WORD FORMAT
PSEUDO-OPERATIONS 4-40
STATUS WORD FORMAT 5-11, 5-51
STATUS WORD FORMATS 5-42

STORE EXTERNAL FORMAT (STEX) 5-53
Summary of Symbolic Card Format 2-5

FORMATION

ADDRESS FORMATION 3-14

Basic Level Effective Address
Formation Rules 3-15

CCW ADDRESS FORMATION 5-56

Effective Address Formation
Examples 3-19

Indirect Level Effective Address
Formation Rules 3-21

FORTRAN

FEQU - Special FORTRAN Equivalence
4-21

i-9

FORWARD
forward and backward addressing

3-17
FRACTION
DVF - Divide Fraction 3-40
MPF - Multiply Fraction 3-39

FRACTIONAL
Fractional Add 3-50
Fractional Add (FA) function 3-35
FUL
FUL - Output Full Binary Text 4-12
FUL pseudo-operation 4-12

FUNCTION
Fractional Add (FA) function 3-35
FUNCTIONAL
Instruction Repertoire by
Functional Class 3-23
Mnemonics by functional class 3-22
GENERATION
Data generation 4-1
GENERATOR
DCW - I/0 Control Word Generator
4-45
ICW - I/0 Control Word Generator
4-44
GMAC 1-4
GROUP 1
GROUP 1 IMMEDIATE ADD INSTRUCTIONS
3-49
GROUP 1 IMMEDIATE BOOLEAN
INSTRUCTIONS 3-54
GROUP 1 IMMEDIATE COMPARE
INSTRUCTIONS 3-55
GROUP 1 IMMEDIATE LOAD INSTRUCTIONS
3-52
GROUP 1 INTERRUPT CONTROL
INSTRUCTIONS 3-53
Group 1 Nonmemory Instructions 3-5
GROUP 2
GROUP 2 DATA MOVEMENT COPY
INSTRUCTIONS 3-63
GROUP 2 DATA MOVEMENT NORMALIZE
INSTRUCTIONS 3-62
GROUP 2 DATA MOVEMENT SHIFT
INSTRUCTIONS 3-57
GROUP 2 INTERRUPT CONTROL
INSTRUCTIONS 3-65
GROUP 2 MISCELLANEOUS INSTRUCTIONS
3-65
Group 2 Nonmemory Instructions 3-5

HEAD
HEAD - Heading 4-13
HEAD pseudo-operation 4-13
HEADING
HEAD - Heading 4-13

DDO1

HIGH SPEED

HIGH SPEED LINE ADAPTER (HSLA) 5-23
HSLA
HIGH SPEED LINE ADAPTER (HSLA) 5-23
I/0
DCW - I/O Control Word Generator
4-45
I/0 Channel Select Register 3-12

ICW - I/O Control Word Generator

4-44
IAA
IAA - Immediate Add to A 3-49
IACXN
IACXn - Immediate Add Character
Address to Xn 3-50
IANA
IANA - Immediate AND to A 3-54
IAQ
JAQ - Immediate Add to Q 3-50
IC
TSY - Transfer and Store IC in Y
3-46
ICA
INTERCOMPUTER ADAPTER (ICA) 5-4
ICANA
ICANA - Immediate Comparative AND
with A 3-56
ICMPA
ICMPA - Immediate Compare A 3=55
ICw
ICW - I/O Control Word Generator
4-44
ICW pseudo-operation 4-44
INDIRECT CONTROL WORD (ICW) 5-66
IDCW
INSTRUCTION DATA CONTROL WORD
(IDCW) 5-40
IDENTIFICATION
Identification Field 2-5
MACRO - MACRO Identification 4-47
IDRP
IDRP - Indefinite Repeat 4-53
IDRP pseudo-operation 4-53
IERA
IERA - Immediate EXCLUSIVE OR to A
3-55
IF GREATER THAN
IFG - If Greater Than 4-38
IF LESS THAN
IFL - If Less Than 4-39

IF NOT EQUAL

INE - If Not Equal 4-40
IFE

IFE pseudo-operation 4-38
IFG

IFG - If Greater Than 4-38

IFG pseudo-operation 4-38
IFL

IFL - If Less Than 4-39

IFL pseudo-operation 4-39
ILA

ILA - Immediate Load A 3-52

ILLEGAL
Illegal Memory Operation 3-8
Illegal Operation Code Fault 3-8
Illegal Program Interrupt Fault
3-10

3-8,

ILQ
ILQ - Immediate Load 3-52

IMMEDIATE

GROUP 1 IMMEDIATE ADD INSTRUCTIONS
3-49

GROUP 1 IMMEDIATE BOOLEAN
INSTRUCTIONS 3-54

GROUP 1 'IMMEDIATE COMPARE
INSTRUCTIONS 3-55

GROUP 1 IMMEDIATE LOAD INSTRUCTIONS

3-52

IAA - Immediate Add to A 3-49

IACXn - Immediate Add Character
Address to Xn 3-50

IANA - Immediate AND to A 3-54

IAQ - Immediate Add to Q 3-=50

ICANA - Immediate Comparative AND
with A 3-56

ICMPA - Immediate Compare A 3-55

IERA - Immediate EXCLUSIVE OR to A
3-55

ILA - Immediate Load A 3-52

ILQ - Immediate Load 3-52

IORA - Immediate OR to A 3-55

IMPLEMENTATION

Implementation of System Macro

Operations 4-55

IMw
INTERRUPT MULTIPLEX WORD (IMW)

IND
IND - Generate One Word for
Indirect Addressing 4-43
IND pseudo-operation 4-43

IND/A
IND/A T Character 1-14
IND/ZERO

IND/ZERO Pseudo-Operation 1-14

DDO1

INDEFINITE
IDRP - Indefinite Repeat 4-53

INDEX
index registers 3-6

INDICATOR

Carry Indicator 3-13

indicator register 3-6, 3-12

Indicator Register (IR) 3-12

Interrupt Inhibit Indicator 3-14

LDI - Load Indicator Register 3-31

Load Indicator Register (LDI) 3-13

Negative Indicator 3-13

Overflow Fault Inhibit Indicator
3-13

Overflow Indicator 3-13

Parity Error Indicator 3-13

Parity Fault Inhibit Indicator 3-13

PROCESSOR INDICATORS 3-12

STI - Store Indicator Register 3-34

SZN - Set Zero and Negative
Indicators from Storage 3-45

Zero Indicator 3-12

INDIRECT

Indirect Control Word 5-25, 5-33

INDIRECT CONTROL WORD (ICW) 5-66

INDIRECT CONTROL WORD BASE ADDRESS
PATCH 5-64

indirect vector address 3-10

LIST INDIRECT CONTROL WORD (LICW)
5=-7, 5-17

INDIRECT ADDRESSING
IND - Generate One Word for
Indirect Addressing 4-43

INDIRECT CHANNEL
INDIRECT CHANNEL PROGRAMMING 5-2

INDIRECT LEVEL
CHARACTER ADDRESSING - INDIRECT
LEVEL 3-22
Indirect Level Effective Address
Formation Rules 3-21
WORD ADDRESSING - INDIRECT LEVEL
3-21

INE
INE - If Not Equal 4-40
INE pseudo-operation 4-40

INH
INH (Inhibit Interrupts) 3-11
INH - Interrupt Inhibit 3-65
Interrupt Inhibit (INH) 3-14

INHIBIT
INH (Inhibit Interrupts) 3-11
INH - Interrupt Inhibit 3-65
Interrupt Inhibit (INH) 3-14
Interrupt Inhibit Indicator 3-14
Overflow Fault Inhibit Indicator

3-13

Parity Fault Inhibit 3-8
Parity Fault Inhibit Indicator 3-13

INPUT

NO END CARD ON INPUT FILE 1-16
SOURCE PROGRAM INPUT 1-3
types of inputs 1-2

INPUT/OUTPUT 3-24

CIOC - Connect Input/Output Channel
3-48

Input/output channel select 3-6

input/output channel select
register 3-6

INPUT/OUTPUT INSTRUCTIONS 3-48

INPUT/OUTPUT OPERATIONS 5-1

input/output program interrupt
levels 3-9

SEL - Select Input/Output Channel
3-53

INSTRUCTION

ADD INSTRUCTIONS 3-34

algebraic instruction 3-2

BOOLEAN INSTRUCTIONS 3-41

COMPARE INSTRUCTIONS 3-43

DIVIDE INSTRUCTIONS 3-40

GROUP 1 IMMEDIATE ADD INSTRUCTIONS
3-49

GROUP 1 IMMEDIATE BOOLEAN
INSTRUCTIONS 3-54

GROUP 1 IMMEDIATE COMPARE
INSTRUCTIONS 3-55

GROUP 1 IMMEDIATE LOAD INSTRUCTIONS
3-52

GROUP 1 INTERRUPT CONTROL
INSTRUCTIONS 3-53

Group 1 Nonmemory Instructions 3-5

GROUP 2 DATA MOVEMENT COPY
INSTRUCTIONS 3-63

GROUP 2 DATA MOVEMENT NORMALIZE
INSTRUCTIONS 3-62

GROUP 2 DATA MOVEMENT SHIFT
INSTRUCTIONS 3-57

GROUP 2 INTERRUPT CONTROL
INSTRUCTIONS 3-65

GROUP 2 MISCELLANEOUS INSTRUCTIONS
3-65

Group 2 Nonmemory Instructions 3-5

INPUT/OUTPUT INSTRUCTIONS 3-48

instruction counter 3-6

INSTRUCTION DATA CONTROL WORD
(IDCW) 5-40

Instruction Literals 2-15

Instruction Repertoire by
Functional Class 3-23

INSTRUCTIONS 3-4

LOAD INSTRUCTIONS 3-30

logical instruction 3-2

Machine instruction 2-1

Macro instruction statement 2-1

Memory Reference Instruction 1-14,
3-4

Memory Reference Instructions 3-30

memory reference machine
instructions 2-3

MULTIPLY INSTRUCTIONS 3-39

Nonmemory Reference Instruction
1-14

Nonmemory Reference Instruction
Literals 2-16

DDO1

INSTRUCTION (cont)
Nonmemory Reference Instructions

3-4
nonmemory reference machine
instructions 2-4
Processor Instruction Description
3-28
PROCESSOR INSTRUCTIONS 3-22
STORE INSTRUCTIONS 3-32
SUBTRACT INSTRUCTIONS 3-37
Integers 2-13
INTERCOMPUTER
INTERCOMPUTER ADAPTER (ICA) 5-4
INTERFACE
Central System Interface 5-5, 5-15

DATANET FNP Interface 5-4

DIRECT INTERFACE ADAPTER (DIA) 5-14
INTERMEDIATE
UNEXPECTED EOF ON INTERMEDIATE FILE
1-16
INTERNAL
Faults (internal interrupts) 3-6
INTERRUPT
DIS - Delay Until Interrupt Signal
3-65

EMERGENCY INTERRUPT CELL NUMBER 5-6

Enable Interrupt (ENI) 3-14
ENI (Enable Interrupts) 3-11
ENI - Enable Interrupt 3-65

Faults (internal interrupts) 3-6

GROUP 1 INTERRUPT CONTROL
INSTRUCTIONS 3-53

GROUP 2 INTERRUPT CONTROL
INSTRUCTIONS 3-65

Illegal Program Interrupt Fault 3-8,
3-10

INH (Inhibit Interrupts) 3-11

INH - Interrupt Inhibit 3-65

input/output program interrupt

levels 3-9
INTERRUPT CELIL ASSIGNMENT SWITCHES
5=5

Interrupt Cells 5-75
Interrupt Control 3-25
Interrupt Inhibit (INH) 3-14
Interrupt Inhibit Indicator
INTERRUPT LEVEL PATCH 5-64
INTERRUPT MULTIPLEX WORD (IMW)
interrupt sequence 3-9
interrupt service routine
Interrupt Sublevel 3-11
Interrupt Sublevel Word
Interrupt Vector 3-11
Interrupt Vector location 3-9
Memory Map - Interrupts 3-11
PROGRAM INTERRUPT CONTROL 5-2
program interrupts 3-6, 3-9
RIA - Read Interrupt Address 3-53
RIER - Read Interrupt Level Enable
Register 3-53
SIC - Set Interrupt Cells

3-14
5-39
3-10

3-9

3-54

INTERRUPT (cont)
SIER (Set Interrupt level Enable

Register) 3-11
SIER - Set Interrupt Level Enable
Register 3-54

IOC

IOC Fault Status Locations 5-84
IOM

IOM FAULTS 5-3

IOM/CHANNEL
IOM/CHANNEL STATUS 5-48

IORA
IORA - Immediate OR to A 3-55

IR

Indicator Register (IR) 3-12
LABEL

LBL - Label 4-10

Optional Label 1-7

LABELED
Labeled Common 1-9
SYMDEF SYMREF and Labeled Common

symbols 1-8
SYMDEF SYMREF Labeled Common 1-15
LADQ
LADQ - Load Q 3-30
LANGUAGE
LANGUAGE STRUCTURE 2-5
LBL
LBL - Label 4-10
LBL pseudo-operation 4-10
LDA
LDA - Load A 3-30
LDEX
LDEX - Load External Register 3-48
LOAD EXTERNAL FORMAT (LDEX) 5-52
LDI
LDI - Load Indicator Register 3-31
Load Indicator Register (LDI) 3-13
LDQ
LDQ - Load Q 3-30
LDXN
LDXn - Load Xn 3-31
LEFT
ALP - A Left Parity Rotate 3-60
ALR - A Left Rotate 3-60
ALS - A Left Shift 3-58
LLR - Long Left Rotate 3-61
LLS - Long Left Shift 3-58
QLP - Q Left Parity Rotate 3-61
QLR - Q Left Rotate 3-60
QLS - Q Left shift 3-58
DDO1

LENGTH
length of Blank Common 1-9
Length of Blank Common area 1-8
Length of the subprogram text
region 1-8

LEVEL
input/output program interrupt
levels 3-9

INTERRUPT LEVEL PATCH 5-64

RIER - Read Interrupt Level Enable
Register 3-53

SIER (Set Interrupt level Enable
Register) 3-11

SIER - Set Interrupt Level Enable
Register 3-54

LICW
LIST INDIRECT CONTROL WORD (LICW)
5-7, 5-17

LINE
EDITP - Edit Print Lines 4-9

HIGH SPEED LINE ADAPTER (HSLA) 5-23
LINE PRINTER 5-72
LOW SPEED LINE ADAPTER (LSLA) 5-31

LINKAGE
Program linkage 4-1
PROGRAM LINKAGE PSEUDO-OPERATIONS

4-57
SAVE - Save--Return Linkage Data
4-59
LIST
LIST INDIRECT CONTROL WORD (LICW)
5-7, 5-17

LIST ON/OFF - Control Output
Listing 4-=5

LIST POINTER WORD (LPW) 5-40

LNRSM (list nonreferenced symbols)
4-6

LOGICAL CHANNEL DCW LIST 5-42

LISTING

Assembly Listing 1-12

DETAIL ON/OFF - Detail Output
Listing 4-5

EJECT - Restore Output Listing 4-9

format of the full listing 1-13

Full Listing Format 1-12

LIST ON/OFF - Control Output
Listing 4-5

Listing Format 1-14

Preface Card Listing 1-15

LIT
LIT - Literal Pool Origin
LIT pseudo-operation 4-37

4-37

LITERAL
Alphanumeric Literals
Decimal Literals 2-13
Instruction Literals 2-15
LIT - Literal Pool Origin
LITERALS 2-12
Nonmemory Reference Instruction
Literals 2-16

2-14

4-37

LITERAL (cont)

Octal Literals 2-14

SACI Literals 2-15

Variable Field Literals 2-16
LLR

LLR - Long Left Rotate 3-61
LLS

LLS - Long Left Shift 3-58
LNRSM

LNRSM (list nonreferenced symbols)

4-6

LOAD

Data Movement - Load 3-23

GROUP 1 IMMEDIATE LOAD INSTRUCTIONS
3-52

ILA - Immediate Load A

ILQ - Immediate Load

LADQ - Load Q 3-30

LDA - Load A 3-30

3-52
3-52

LDEX - Load External Register 3-48
LDI - Load Indicator Register 3-31
LDQ - Load Q 3-30

LDXn - Load Xn 3-31

LOAD EXTERNAL FORMAT (LDEX) 5-52
Load Indicator Register (LDI) 3-13

LOAD INSTRUCTIONS 3-30
LODM - Load System Macro Operations
4-55

LOADER

Relocatable Loader 1-3, 1-10
LOADING

loading of the subprogram 1-9

LOC
LOC - Location of Output Text 4-20
LOC pseudo-operation 4-20

LOCATION

BASE - Force Location Counter to a
Multiple Power of 2 4-26

BEGIN - Origin of a Location
Counter 4-19

EFFECTIVE ADDRESS AND MEMORY
LOCATION SYMBOLS 3-28

EIGHT - Force Location Counter to a
Multiple of 8 4-25

EVEN - Force Location Counter Even
4-25

Interrupt Vector location 3-9

IOC Fault Status Locations 5-84

LOC - Location of Output Text 4-20

Location counter 4-1

LOCATION COUNTER PSEUDO-OPERATION
4-19

Location Field 2-3

MARK - Specify Symbol in Location
Field 4-40

Octal location 1-12

ODD - Force Location Counter 0dd

4-25
USE - Use Multiple Location
Counters 4-19

DDO1

LODM
LODM - Load System Macro Operations
4-55

LODM pseudo-operation 4-55
LOGIC
ARL - A Right Logic 3-59
LRL - Long Right Logic 3-59
ORL - Q Right Logic 3-59
LOGICAL
LOGICAL CHANNEL DCW LIST 5-42
logical instruction 3-2
LONG
LLR - Long Left Rotate 3-61
LLS - Long Left Shift 3-58
LRL - Long Right Logic 3-59
LRS - Long Right Shift 3-57
NRML - Normalize Long 3-63
LOW SPEED
LOW SPEED LINE ADAPTER (LSLA) 5-31
LPW
LIST POINTER WORD (LPW) 5-40
LRL
LRL - Long Right Logic 3-59
LRS
LRS - Long Right Shift 3-57
LSLA
LOW SPEED LINE ADAPTER (LSLA) 5-31
LSTOU 1-3
MACHINE
Machine instruction 2-1
memory reference machine
instructions 2-3
nonmemory reference machine
instructions 2-4
MACRO 4-1
Definition of the Macro Prototype
4-46
DELM - Delete Macro Named 4-54
END - End Macro Prototype 4-47
ERROR IN MACRO EXPANSION 1-16
Implementation of System Macro
Operations 4-55
LODM - Load System Macro Operations
4-55
MACRO - MACRO Identification 4-47

MACRO EXPANSION TABLE OVERFLOW 1-16
Macro instruction statement 2-1
MACRO PROTOTYPE TABLE OVERFLOW 1-16
MACRO pseudo-operation 4-47

MACRO PSEUDO-OPERATIONS 4-45

PMC ON/OFF - Print Macro Expansion

4-8
Pseudo-Operations Used Within Macro
Prototypes 4-52

PUNM = Punch Macro Prototypes 4-55
REFMA ON/OFF -~ Reference Macro

Operation 4-6

MACRO (cont)

Using a Macro Operation 4-50
MAILBOX

MAILBOX ADDRESSES 5-=5

PCW MAILBOX 5-6

PSA MAILBOX 5-40

MAP
Control Word Memory Map (Example
for Channel 06) 5-26

DATANET FNP GENERAL MEMORY MAP 5-75
MAP error flags 1-16
Memory Map - Interrupts 3-11
MARK
MARK - Specify Symbol in Location
Field 4-40
MARK pseudo-operation 4-40
MASK
Mask Register Word 5-26
MAX
MAX - Maximum 4-23
MAX pseudo-operation 4-23

MAXIMUM
MAX - Maximum 4-23
MAXSZ - Maximum Size of Assembly
4-42

MAXSZ

MAXSZ - Maximum Size of Assembly
4-42

MAXSZ pseudo-operation 4-43

MEMORY

Control Word Memory Map (Example
for Channel 06) 5-26

DATANET FNP GENERAL MEMORY MAP

EFFECTIVE ADDRESS AND MEMORY
LOCATION SYMBOLS 3-28

Illegal Memory Operation 3-8

Memory allocation 4-1

MEMORY ALLOCATION PSEUDO-OPERATIONS

4-36

Memory Map - Interrupts

Memory Parity Error 3-7

Memory Parity Error Fault 3-8

Memory Reference Instruction
3-4

Memory Reference Instructions

memory reference machine
instructions 2-3

5-75

3-11

1-14,

3-30

MESSAGE

error message 1-16
MIN

MIN - Minimum 4-23

MIN pseudo-operation 4-23
MINIMUM

MIN - Minimum 4-23

MINUS

TMI - Transfer on Minus 3-46

DDO1

MINUS (cont)

Transfer on Minus (TMI) 3-13
MNEMONICS
Mnemonics by functional class 3-22
MODE
CONNECT PCW (OPERATIONAL MODE) 5-38
MONITOR
COMPUTER MONITOR ADAPTER (CMA) 5-64
MONITORING
System Monitoring 5-69
MOVEMENT
Data Movement 3-25, 5-88
Data Movement - Load 3-23
Data Movement - Store 3-23
GROUP 2 DATA MOVEMENT COPY
INSTRUCTIONS 3-63
GROUP 2 DATA MOVEMENT NORMALIZE
INSTRUCTIONS 3-62
GROUP 2 DATA MOVEMENT SHIFT
INSTRUCTIONS 3-57
MPC
MPC COMMANDS 5-46
MPC DEVICE STATUS 5-47
SERVICE CODES - MPC TO PSA 5-45
SERVICE CODES - PSA TO MPC 5-45
MPF
MPF - Multiply Fraction 3-39
MRS200/DRD200 5-50
MULTIPLE

BASE - Force Location Counter to a
Multiple Power of 2 4-26

EIGHT - Force Location Counter to a
Multiple of 8 4-25

USE - Use Multiple Location

Counters 4-19

MULTIPLEX

INTERRUPT MULTIPLEX WORD (IMW) 5-39
MULTIPLICATION

Arithmetic - Multiplication 3-23
MULTIPLY

MPF - Multiply Fraction 3-39

MULTIPLY INSTRUCTIONS 3-39

NCOMDK 1-4

NCOPY 1-4
NDECK 1-4
NDUMP 1-4
NEGATIVE

Negative Indicator 3-13
SZN - Set Zero and Negative

Indicators from Storage 3-45

i-15

NGMAC 1-4
NLSTOU 1-4

NONMEMORY

Group 1 Nonmemory Instructions 3-5

Group 2 Nonmemory Instructions 3-5

Nonmemory Reference Instruction
1-14

Nonmemory Reference Instruction
Literals 2-16

Nonmemory Reference Instructions
3-4

nonmemory reference machine
instructions 2-4

NONOP
NONOP - Undefined Operation 4-41
NONOP pseudo-operation 4-41
NONREFERENCED
LNRSM (list nonreferenced symbols)
4-6
NOP
NOP - No Operation 3-66
NORMALIZE
GROUP 2 DATA MOVEMENT NORMALIZE
INSTRUCTIONS 3-62
NRM - Normalize 3-62
NRML - Normalize Long 3-63
NRM
NRM - Normalize 3-62
NRML
NRML - Normalize Long 3-63
NULL
NULL - Null 4-25
NULL pseudo-operation 4-25

NUMBER
CHANNEL NUMBER PATCH 5-64
EMERGENCY INTERRUPT CELL NUMBER 5-6
NUMBER SYSTEM 3-2

NXEC 1-4
NXEC OPTION SPECIFIED 1-16
OBJECT
Absolute Object (Binary) Deck 1-11
object program 2-1
Relocatable Object Deck 1-8

oCT
OCT pseudo-operation 4-27
OCTAL
OCTAL - Octal 4-=27
Octal Literals 2-14
Octal location 1-12
Octal representation 1-12
ODD
ODD - Force Location Counter 0dd
4-25

DDO1

ODD (cont)
ODD pseudo-operation 4-25
ON/OFF
CRSM ON/OFF - Created Symbols
DETAIL ON/OFF - Detail Output
Listing 4-5
LIST ON/OFF - Control Output
Listing 4-5
ON/OFF Switch Type Control
Pseudo-Operation 4-4
PARITY ON/OFF - ASCII Parity
Control 4-7
PCC ON/OFF - Print Control Cards

4-53

4-5

PMC ON/OFF - Print Macro Expansion
4-8 ,

PUNCH ON/OFF - Control Card Output
4-8

REF ON/OFF - References 4-6
REFMA ON/OFF - Reference Macro
Operation 4-6

ON5 1-4
OPD

OPD - Operation Definition
OPD pseudo-operation 4-16

4-16

OPERATION

ARG - Argument--Generate Zero
Operation Code Computer Word

Boolean Operations 3-23

Illegal Memory Operation 3-8

Illegal Operation Code Fault 3-8

Implementation of System Macro
Operations 4-55

INPUT/OUTPUT OPERATIONS 5-1

LODM - Load System Macro Operations

4-55

4-41

NONOP =- Undefined Operation 4-41
NOP - No Operation 3-66
OPD - Operation Definition 4-16

Operation Field 2-3

OPERATION TABLE OVERFLOW 1-16

OPSYN - Operation Synonym 4-18

REFMA ON/OFF - Reference Macro
Operation 4-6

Using a Macro Operation 4-50
OPERATIONAL

CONNECT PCW (OPERATIONAL MODE) 5-38
OPERATORS

Terms and Operators 2-7
OPSYN

OPSYN - Operation Synonym 4-18

OPSYN pseudo-operation 4-18

OPTION
NXEC OPTION SPECIFIED 1-16
Optional Comment Sequence Option
1-7

OPTIONAL
Optional Comment Sequence Option
1-7

i-16

OPTIONAL (cont)
Optional Label 1-7

OR

ERA - EXCLUSIVE OR to A 3-43

ERSA - EXCLUSIVE OR to Storage A
3-43

IERA - Immediate EXCLUSIVE OR to A
3-55

IORA - Immediate OR to A

ORA - OR to A 3-42

ORSA - OR to Storage A 3-42

SSCW OR SCW (SSCW SCW) 5-39

3-55

ORA
ORA - OR to A 3-42

ORG
ORG - Origin Set by Programmer
ORG pseudo=-operation 4-20

4-20

ORGCSM
ORGCSM - Origin Created Symbols
4-53
ORGCSM pseudo-operation 4-53
ORIGIN
BEGIN - Origin of a Location
Counter 4-19
LIT - Literal Pool Origin 4-37
ORG - Origin Set by Programmer
ORGCSM - Origin Created Symbols
4-53

4-20

ORSA
ORSA - OR to Storage A 3-42
OUTPUT
ABS = Output Absolute Text 4-12
ASSEMBLER OUTPUTS 1-6
DETAIL ON/OFF - Detail Output
Listing 4-5
EJECT - Restore Output Listing 4-9
FUL - Output Full Binary Text 4-12
LIST ON/OFF - Control Output
Listing 4-5
LOC - Location of Output Text 4-20
PUNCH ON/OFF = Control Card Output
4-8

OVERFLOW
MACRO EXPANSION TABLE OVERFLOW 1-16
MACRO PROTOTYPE TABLE OVERFLOW 1-16
OPERATION TABLE OVERFLOW 1-16
Overflow Fault 3-8
Overflow Fault Inhibit Indicator
3-13
Overflow faults 3-7
Overflow Indicator 3-13
SYMBOI. REFERENCE TABLE OVERFLOW
1-16
SYMBOIL TABLE OVERFLOW 1-16

TOV - Transfer on Overflow 3-47

Transfer on Overflow (TOV) 3-13
PARITY

ALP - A Left Parity Rotate 3-60

Memory Parity Error 3-7

DDO1

PARITY (cont)
Memory Parity Error Fault 3-8
Parity Error Indicator 3-13
Parity Fault Inhibit 3-8
Parity Fault Inhibit Indicator
PARITY ON/OFF - ASCII Parity

Control 4-7

QLP - Q Left Parity Rotate 3-61
PARITY ON pseudo-operation 4-7

3-13

PATCH
"DEAD-MAN" TIMER DURATION PATCH
5-64
CHANNEL NUMBER PATCH 5-64
DATA RESPONSE TIMER DURATION PATCH
5-64
INDIRECT CONTROL WORD BASE ADDRESS
PATCH 5-64
INTERRUPT LEVEL PATCH 5-64
PATCHING
Configuration Patching 5-64

PCC
PCC ON/OFF - Print Control Cards
4-5
PCC pseudo-operation 4-5

PCW
CONNECT PCW (OPERATIONAL MODE)
PCW Format 5-33
PCW MAILBOX 5-6
PERIPHERAL CONTROL WORD (PCW) 5-6,
5-12, 5-16, 5-22, 5-50, 5-53, 5-65

5-38

PCWO
Command PCW0 PCWl 5-25
Commands PCW0 PCWl 5-33

PCW1l
Command PCWO0 PCWl1l 5-25
Commands PCW0 PCW1l 5-33

PCW2
Command PCW2 PCW3 5-25
PCW3
Command PCW2 PCW3 5-25
PERIPHERAL
COMMON PERIPHERAL STATUS FORMAT
5=74

PERIPHERAL CONTROL WORD 5-1

PERIPHERAL CONTROL WORD (PCW) 5-6,
5-12, 5-16, 5-22, 5-50, 5-53, 5-65

PERIPHERAL SUBSYSTEM ADAPTER (PSA)

5-38
PLUS
TPL - Transfer on Plus 3-47
Transfer on Plus (TPL) 3-13
PMC
PMC ON/OFF - Print Macro Expansion
4-8

PMC pseudo-operation 4-8

i-17

POINTER

LIST POINTER WORD (LPW) 5-40
POOL

LIT - Literal Pool Origin 4-37
PORT

PORT ASSIGNMENT FOR FNPs 5-5

System Controller Port

Configurations 5-9

POSITIONS
REGISTER POSITIONS AND CONTENT
SYMBOLS 3-29
POWER

BASE - Force Location Counter to a
Multiple Power of 2 4-26
Power Shutdown Beginning Fault 3-7

POWER-ON
Power-On Restart Fault 3-7

PREFACE
Preface Card 1-8
Preface Card Listing 1-15

PRIMARY
primary SYMDEF 1-9

PRINT
EDITP - Edit Print Lines 4-9
PCC ON/OFF - Print Control Cards
4-5
PMC ON/OFF - Print Macro Expansion
4-8

PRINTER
LINE PRINTER 5-72

PROCESSOR
OTHER PROCESSOR SYMBOLS 3-29
PROCESSOR FAULT SWITCHES 5-5

Processor Fault Vectors 5-83
Processor Faults 3-7
PROCESSOR INDICATORS 3-12

Processor Instruction Description
3-28

PROCESSOR INSTRUCTIONS

PROCESSOR REGISTERS 3-6

state of the processor and the
program 3-12

3-22

PROGRAM

Illegal Program Interrupt Fault
3-10

input/output program interrupt
levels 3-9

object program 2-1

PROGRAM INTERRUPT CONTROL 5-2

program interrupts 3-6, 3-9

Program linkage 4-1

PROGRAM LINKAGE PSEUDO-OPERATIONS
4-57

Program statements 2-1

Program Symbols 2-5

source program 2-1

SOURCE PROGRAM INPUT 1-3

3-8'

DDO1

PROGRAM (cont)
state of the processor and the
program 3-12
Types of Program Symbols 2-6

PROGRAMMER
ORG - Origin Set by Programmer 4-20

PROGRAMMING
DIRECT CHANNEL PROGRAMMING 5-2
INDIRECT CHANNEL PROGRAMMING 5-2

PROTOTYPE

Defining a Prototype 4-56

Definition of the Macro Prototype
4-46

END - End Macro Prototype 4-47

MACRO PROTOTYPE TABLE OVERFLOW 1-16

Pseudo-Operations Used Within Macro
Prototypes 4-52

PUNM - Punch Macro Prototypes 4-55

PSA
PERIPHERAL SUBSYSTEM ADAPTER (PSA)
5-38
PSA ERROR SUMMARY 5-44
PSA MAILBOX 5-40
PSA Word Formats 5-38
SERVICE CODES - MPC TO PSA 5-45
SERVICE CODES - PSA TO MPC 5-45

PSEUDO-OPERATION 2-1

ABS pseudo-operation 4-12

ACI and ACIC pseudo-operations 4-32

ARG pseudo-operation 4-41

ASCII and ASCIIC pseudo-operations
4-31

BASE pseudo-operation 4-26

BCI pseudo-operation 4-29

BEGIN pseudo-operation 4-19

BFS pseudo-operation 4-36

BLOCK pseudo-operation 4-36

BOOL pseudo-operation 2-8, 4-22

BSS pseudo-operation 4-36

CALL pseudo-operation 4-57

CONDITIONAL PSEUDO-OPERATIONS 4-37

CONTROL PSEUDO-OPERATIONS 4-4, 4-9

CPR pseudo-operation 4-11

CRSM pseudo-operation 4-53

DATA CONTROL WORD FORMAT
PSEUDO~-OPERATIONS 4-44

Data Generating Pseudo-Operation
1-14

DATA GENERATING PSEUDO-OPERATIONS
4-26

DATE pseudo-operation 4-41

DCARD pseudo-operation 4-15

DCW pseudo-operation 4-45

DEC pseudo-operation 4-27

DELM pseudo-operation 4-54

DETAIL pseudo-operation 4-5

DUP pseudo-operation 4-35

EDITP pseudo-operation 4-9

EIGHT pseudo-operation 4-25

EJECT pseudo-operation 4-9

END pseudo-operation 1-12, 4-15

ENDM pseudo-operation 4-47

EQU pseudo-operation 4-21

PSEUDO-OPERATION (cont)

ETC pseudo-operation 4-62

EVEN pseudo-operation 4-25

FEQU pseudo-operation 4-21

FUL pseudo-operation 4-12

HEAD pseudo-operation 4-13

ICW pseudo-operation 4-44

IDRP pseudo-operation 4-53

IFE pseudo-operation 4-38

IFG pseudo-operation 4-38

IFL pseudo-operation 4-39

IND pseudo-operation 4-43

IND/ZERO Pseudo-Operation 1-14

INE pseudo-operation 4-40

LBL pseudo-operation 4-10

LIT pseudo-operation 4-37

LOC pseudo-operation 4-20

LOCATION COUNTER PSEUDO-OPERATION
4-19

LODM pseudo-operation 4-55

MACRO pseudo-operation 4-47

MACRO PSEUDO-OPERATIONS 4-45

MARK pseudo-operation 4-40

MAX pseudo-operation 4-23

MAXS7 pseudo-operation 4-43

MEMORY ALLOCATION PSEUDO-OPERATIONS

4-36

MIN pseudo-operation 4-23

NONOP pseudo-operation 4-41

NULL pseudo-operation 4-25

OCT pseudo-operation 4-27

ODD pseudo-operation 4-25

ON/OFF Switch Type Control
Pseudo-Operation 4-4

OPD pseudo-operation 4-16

OPSYN pseudo-operation 4-18

ORG pseudo-operation 4-20

ORGCSM pseudo-operation 4-53

PCC pseudo-operation 4-5

PMC pseudo-operation 4-8

PROGRAM LINKAGE PSEUDO-OPERATIONS
4-57 -

Pseudo-Operations Used Within Macro
Prototypes 4-52

PUNCH pseudo-operation

REF pseudo-operation 4-

REM pseudo-operation 4-

RETURN pseudo-operation 4-61

SACI pseudo-operation 4-32

SAVE pseudo-operation 4-59

SET pseudo-operation 4-22

SPECIAL WORD FORMAT
PSEUDO-OPERATIONS 4-40

SYMBOL~-DEFINING PSEUDO-OPERATIONS
4-21

SYMDEF pseudo-operation 4-23

SYMREF pseudo-operation 4-24

TCD pseudo-operation 4-13

TTL pseudo-operation 4-11

TTLDAT pseudo-operation 4-41

TTLS pseudo-operation 4-11

USE pseudo-operations 4-19

VFD pseudo-operation 2-8, 4-29

ZERO pseudo-operation 4-42

4-8
6
9

PUNCH

DCARD - Punch BCD Card 4-15

DDO1

PUNCH (cont)
PUNCH ON/OFF - Control Card Output
4-8

PUNCH pseudo-operation 4-8

PUNM - Punch Macro Prototypes 4-55
TCD - Punch Transfer Card 4-13
PUNM
PUNM - Punch Macro Prototypes 4-55
QLP
QLP - Q Left Parity Rotate 3-61
QLR
QLR - Q Left Rotate 3-60
QLS
QLS - Q Left Shift 3-58
QRL
QRL - Q Right Logic 3-59
QRS
QRS - Q Right Shift 3-57
QSW
QUEUE STATUS WORD (QSW) 5-56
QUEUE
QUEUE STATUS WORD (QSW) 5-56
READ
RIA - Read Interrupt Address 3-53

RIER - Read Interrupt Level Enable
Register 3-53

READER
CARD READER 5-71

REDEFINITION
SET - Symbol Redefinition 4-22
REF
REF ON/OFF - References
REF pseudo-operation 4-6

4-6

REFERENCE

Memory Reference Instruction
3-4

Memory Reference Instructions

memory reference machine
instructions 2-3

Nonmemory Reference Instruction
1-14

Nonmemory Reference Instruction
Literals 2-16

Nonmemory Reference Instructions
3-4

nonmemory reference machine
instructions 2-4

REF ON/OFF - References 4-6

REFMA ON/OFF - Reference Macro
Operation 4-6

SYMBOL REFERENCE TABLE OVERFLOW
1-16

Symbolic Reference Table

SYMREF - Symbol Reference

1-14,

3-30

1-15
4-24

REFMA

REFMA ON/OFF - Reference Macro
Operation 4-6

REFMA ON PSEUDO-OPERATION 4-6

REGION

Length of the subprogram text
region 1-8

REGISTER

RELOCATABLE

AQ register 3-6

I/0 Channel Select Register

index registers 3-6

indicator register 3-6, 3-12

Indicator Register (IR) 3-12

input/output channel select
register 3-6

LDEX - Load External Register

LDI - Load Indicator Register

Load Indicator Register (LDI)

Mask Register Word 5-26

PROCESSOR REGISTERS 3-6

REGISTER POSITIONS AND CONTENT
SYMBOLS 3-29

REGISTER SYMBOLS 3-29

RIER - Read Interrupt Level Enable
Register 3-53

SIER (Set Interrupt level Enable
Register) 3-11

SIER - Set Interrupt Level Enable
Register 3-54

STEX - Store External Register

STI - Store Indicator Register

3-12

3-48
3-31
3-13

3-49
3-34

2-6

column binary relocatable text card
1-10

RELOCATABLE
1-2

Relocatable
2-10

Relocatable

AND ABSOLUTE ASSEMBLIES
and Absolute Expression

Loader 1-3, 1-10

Relocatable Object Deck 1-8

Relocatable Text Card 1-10

Special Relocatable Expressions
2-11

RELOCATION

admissibility of relocation 2-10
Relocation bits 1-12

Relocation data 1-10

REM

REM - Remarks 4-9

REM pseudo-operation 4-9

REMARKS

REM - Remarks 4-9

REPEAT

IDRP - Indefinite Repeat 4-53

REPERTOIRE

Instruction Repertoire by
Functional Class 3-23

REPRESENTATION

Octal representation

1-12

DDO1

REPRESENTATION (cont)
REPRESENTATION OF INFORMATION 3-1

REPRODUCTION
Reproduction of the symbolic card
1-13
RESPONSE
DATA RESPONSE TIMER DURATION PATCH
5-64
RESTART
Power-On Restart Fault 3-7
RESTORE
EJECT - Restore Output Listing 4-9
RETURN
RETURN - Return--From Subroutines
4-61

RETURN pseudo-operation 4-61

RIA
RIA - Read Interrupt Address 3-53

RIER
RIER - Read Interrupt Level Enable
Register 3-53

RIGHT
ARL - A Right Logic 3-59
ARS - A Right Shift 3-57
LRL - Long Right Logic 3-59

LRS - Long Right Shift 3-57

QRL - Q Right Logic 3-59
QRS - Q Right sShift 3=57
ROTATE

ALP - A Left Parity Rotate 3-60

ALR - A Left Rotate 3-60

LLR - Long Left Rotate 3-61

QLP - Q Left Parity Rotate 3-61

QLR - Q Left Rotate 3-60
ROUTINE

Binary to Binary Coded Decimal
Conversion Routine 5-89
interrupt service routine 3-10

RULES
Basic Level Effective Address
Formation Rules 3-15
Character Address Addition Rules
3-20
Indirect Level Effective Address
Formation Rules 3-21

SACI
SACI - Symbolic ASCII Information
4-32
SACI Literals 2-15
SACI pseudo-operation 4-32

SAVE
SAVE - Save--Return Linkage Data
4-59
SAVE pseudo-operation 4-59

SBA

SBA - Subtract from A 3-37
SBAQ

SBAQ - Subtract from AQ 3-38
SBQ

SBQ - Subtract from Q 3-38
SCW

SSCW OR SCW (SSCW SCW) 5-39
SECONDARY

secondary SYMDEF 1-9
SEL

SEL - Select Input/Output Channel

3-53

SELECT

I/0 Channel Select Register 3-12

Input/output channel select 3-6

input/output channel select
register 3-6

SEL - Select Input/Output Channel
3-53

SEQUENCE
interrupt sequence 3-9
Optional Comment Sequence Option
1-7

SERVICE
interrupt service routine 3-10
SERVICE CODES - MPC TO PSA 5-45
SERVICE CODES - PSA TO MPC 5-45

SET

Character Set 2-5

ORG - Origin Set by Programmer 4-20

SET - Symbol Redefinition 4-22

SET pseudo-operation 4-22

SIC - Set Interrupt Cells 3-54

SIER (Set Interrupt level Enable
Register) 3-11

SIER - Set Interrupt Level Enable
Register 3-54

SZN - Set Zero and Negative
Indicators from Storage 3-45

SHIFT
ALS - A Left shift 3-58
ARS - A Right Shift 3-57
GROUP 2 DATA MOVEMENT SHIFT
INSTRUCTIONS 3-57

LLS - Long Left shift 3-58
LRS - Long Right Shift 3-57
QLS - Q Left Shift 3-58

QRS - Q Right Shift 3-57
Shifts 3-25

SHUTDOWN
Power Shutdown Beginning Fault 3-7

SIC
SIC - Set Interrupt Cells 3-54

i-20 DDO1

SIER
SIER (Set Interrupt level Enable

Register) 3-11
SIER - Set Interrupt Level Enable
Register 3-54
SIGNAL
DIS - Delay Until Interrupt Signal
3-65

SINGLE-PRECISION
Single-Precision Data 3-1
Single-Precision Floating-Point
2-13

SIZE
MAXSZ - Maximum Size of Assembly
4-42

SKIPPED
NOT ENOUGH CARDS TO BE SKIPPED 1-16

SOURCE
source program 2-1
SOURCE PROGRAM INPUT 1-3

SSA

SSA - Subtract Stored from A 3-38
SSCwW

SSCW OR SCW (SSCW SCw) 5-39
STA

STA - Store A 3-32
STAQ

STAQ - Store AQ 3-32
STATE

state of the processor and the

program 3-12

STATEMENT
Macro instruction statement 2-1
Program statements 2-1

STATUS 5-2, 5-29, 5-34
ACTIVE STATUS FORMAT 5-10
Actual Status Word Format 5-13
BINARY SYNCHRONIZATION STATUS
COMMON PERIPHERAL STATUS FORMAT

5-31

5-74
CONFIGURATION STATUS FORMAT 5-9,
5-19
IOC Fault Status Locations 5-84
IOM/CHANNEL STATUS 5-48
MPC DEVICE STATUS 5-47
QUEUE STATUS WORD (QSW) 5=56
Status Characters 5-36
STATUS WORD FORMAT 5-11, 5-51

STATUS WORD FORMATS 5-42
Status Words 5-67
TERMINATE STATUS WORD 5-57
STEX
STEX - Store External Register 3-49
STORE EXTERNAL FORMAT (STEX) 5-53

STI

STI - Store Indicator Register 3-34
STORAGE

ANSA - AND to Storage A 3-42

AOS - Add One to Storage 3-37

ASA - Add A to Storage 3-37

ERSA - EXCLUSIVE OR to Storage A
3-43

ORSA - OR to Storage A 3-42

SZN - Set Zero and Negative

Indicators from Storage 3-45
STORE
Data Movement - Store 3-23

SSA - Subtract Stored from A 3-38
STA - Store A 3-32
STAQ - Store AQ 3-32

STEX - Store.External Register 3-49
STI - Store Indicator Register 3-34
STORE EXTERNAL FORMAT (STEX) 5=53
STORE INSTRUCTIONS 3-32

STQ - Store Q 3-32

STXn - Store Xn 3-33

STZ - Store Zerq 3-33
TSY - Transfer and Store IC in Y

3-46
STQ
STQ - Store Q 3-32
STRUCTURE
LANGUAGE STRUCTURE 2-5
STXN
STXn - Store Xn 3-33
STZ
STZ - Store Zero 3-33
SUBFIELDS
ZERO - Generate One Word with Two
Subfields 4-42
SUBLEVEL

Interrupt Sublevel 3-11
Interrupt Sublevel Word 3-9

SUBPROGRAM
Length of the subprogram text
region 1-8
loading of the subprogram 1-9
Subprogram delimiter 1-2

SUBROUTINES
CALL - Call Subroutines 4-57
RETURN - Return--From Subroutines
4-61

SUBSYSTEM
PERIPHERAL SUBSYSTEM ADAPTER (PSA)
5-38

SUBTITLE
TTLS - Subtitle 4-11
SUBTRACT

SBA - Subtract from A 3-37

DDO1

SUBTRACT (cont)
SBAQ - Subtract from AQ 3-38
SBQ - Subtract from Q 3-38
SSA - Subtract Stored from A 3-38
SUBTRACT INSTRUCTIONS 3-37

SUBTRACTION 3-2
Arithmetic - Subtraction 3-23
BCD Subtraction 5-86

SUMMARY
PSA ERROR SUMMARY 5-44
Summary of Symbolic Card Format 2-5

SWITCH
ON/OFF Switch Type Control
Pseudo-Operation 4-4
PROCESSOR FAULT SWITCHES 5-5
TIMER AND SWITCH CHANNEL 5-73

SYMBOL
BFS - Block Followed by Symbol 4-36
BSS - Block Started by Symbol 4-36
CRSM ON/OFF - Created Symbols 4-53
EFFECTIVE ADDRESS AND MEMORY
LOCATION SYMBOLS 3-28
LNRSM (list nonreferenced symbols)

4-6

MARK - Specify Symbol in Location
Field 4-40

ORGCSM - Origin Created Symbols
4-53

OTHER PROCESSOR SYMBOLS 3-29

Program Symbols 2-5

REGISTER POSITIONS AND CONTENT
SYMBOLS 3-29

REGISTER SYMBOLS 3-29

SET - Symbol Redefinition 4-22

Symbol definition 4-1

SYMBOL REFERENCE TABLE OVERFLOW
1-16

SYMBOL TABLE OVERFLOW 1-16

SYMBOL-DEFINING PSEUDO-OPERATIONS
4-21

SYMDEF - Symbol Definition 4-23

SYMDEF SYMREF and Labeled Common
symbols 1-8

SYMREF - Symbol Reference 4-24

SYSTEM (BUILT-IN) SYMBOLS 4-62

Types of Program Symbols 2-6

SYMBOLIC

Reproduction of the symbolic card
1-13

SACI - Symbolic ASCII Information
4-32

Summary of Symbolic Card Format 2-5

SYMBOLIC CODING FORM 2-1, 2-2

Symbolic Reference Table 1-15

SYMDEF
EXECUTION NOT POSSIBLE NO SYMDEF
1-16
primary SYMDEF 1-9
secondary SYMDEF 1-9
SYMDEF - Symbol Definition 4-23
SYMDEF pseudo-operation 4-23

SYMDEF (cont)
SYMDEF SYMREF and Labeled Common
symbols 1-8
SYMDEF SYMREF Labeled Common 1-15

SYMREF 1-9, 2-6
SYMDEF SYMREF and Labeled Common
symbols 1-8
SYMDEF SYMREF Labeled Common 1-15
SYMREF - Symbol Reference 4-24
SYMREF pseudo-operation 4-24

SYMTAB 1-4

SYNCHRONIZATION
BINARY SYNCHRONIZATION STATUS 5-31

SYNCHRONOUS
BINARY SYNCHRONOUS CHANNEL (BSC)
5-58

SYNONYM
OPSYN - Operation Synonym 4-18

SYSTEM
Central System Control Word Formats
5-12, 5-22

Central System Interface 5-5, 5-15

Implementation of System Macro
Operations 4-55

LODM - Load System Macro Operations

4-55

NUMBER SYSTEM 3-2

SYSTEM (BUILT-IN) SYMBOLS 4-62

System Controller Port
Configurations 5-9

System Monitoring 5-69

SZN
SZN - Set Zero and Negative
Indicators from Storage 3-45

TABLE
Character Control Table 5-27
MACRO EXPANSION TABLE OVERFLOW 1-16
MACRO PROTOTYPE TABLE OVERFLOW 1-16
OPERATION TABLE OVERFLOW 1-16
SYMBOL REFERENCE TABLE OVERFLOW

1-16

SYMBOL TABLE OVERFLOW 1-16
Symbolic Reference Table 1-15

TCD
TCD - Punch Transfer Card 4-13
TCD pseudo-operation 4-13

TERMINATE
TERMINATE STATUS WORD 5-57

TERMS
Terms and Operators 2-7

TEXT
ABS - Output Absolute Text 4-12
Absolute Text Card 1-11
absolute text cards 1-11
column binary relocatable text card
1-10

i-22 DDO1

TEXT (cont)

FUL - Output Full Binary Text 4-12

Length of the subprogram text
region 1-8

LOC - Location of Output Text 4-20

Relocatable Text Card 1-10

TIME
Time of Assembly 1-7

TIMER
TIMER AND SWITCH CHANNEL 5-73

TIMER DURATION
"DEAD-MAN" TIMER DURATION PATCH

5-64
DATA RESPONSE TIMER DURATION PATCH
5-64
TITLE
TTL - Title 4-11
TTLDAT - Title Date 4-41
T™I
TMI - Transfer on Minus 3-46
Transfer on Minus (TMI) 3-13
TNC
TNC - Transfer on No Carry 3-47
Transfer on No Carry (TNC) 3-13
TNZ
TNZ - Transfer on Not Zero 3-46
Transfer on Not Zero (TNZ) 3-12
TOV
TOV - Transfer on Overflow 3-47
Transfer on Overflow (TOV) 3-13
TPL
TPL - Transfer on Plus 3-47
Transfer on Plus (TPL) 3-13
TRA
TRA - Transfer Unconditionally 3-45
TRANSFER
Data Transfer 5-67
TCD - Punch Transfer Card 4-13
TMI - Transfer on Minus 3-46
TNC - Transfer on No Carry 3-47
TNZ - Transfer on Not Zero 3-46
TOV - Transfer on Overflow 3-47
TPL - Transfer on Plus 3-47
TRA - Transfer Unconditionally 3-45
transfer card 1-11, 1-12
Transfer of Control 3-24
Transfer on Minus (TMI) 3-13
Transfer on No Carry (TNC) 3-13
Transfer on Not Zero (TNZ) 3-12
Transfer on Overflow (TOV) 3-13
Transfer on Plus (TPL) 3-13
Transfer on Zero (TZE) 3-12

TSY - Transfer and Store IC in Y
3-46

TZE - Transfer on Zero 3-46

i-23

TRANSLITERATION
Character Transliteration 5-90
TSY
forced TSY fault 3-7
TSY - Transfer and Store IC in Y
3-46

TTL

TTL - Title 4-11

TTL pseudo-operation 4-11
TTLDAT

TTLDAT - Title Date 4-41

TTLDAT pseudo-operation 4-41
TTLS

TTLS - Subtitle 4-11

TTLS pseudo-operation 4-11
TYPE

ON/OFF Switch Type Control

Pseudo-Operation 4-4
types of inputs 1-2
Types of Program Symbols 2-6

TYPICAL
TYPICAL DECK SETUPS 1-6

TZE
Transfer on Zero (TZE)
TZE - Transfer on Zero

3-12
3-46

USE
USE - Use Multiple Location
Counters 4-19
USE pseudo-operations 4-19
VARIABLE
Variable Field 2-3 .
Variable Field Literals 2-16
VFD - Variable Field Definition
4-29

VECTOR
indirect vector address
Interrupt Vector 3-11
Interrupt Vector location 3-9
Processor Fault Vectors 5-83

3-10

VFD
VFD - Variable Field Definition
4-29
VFD pseudo-operation 2-8, 4-29
WORD
Actual Status Word Format 5-13
ARG - Argument--Generate Zero
Operation Code Computer Word
Base Address Word 5-26, 5-38
CMA Control Words 5-65
Control Words 5-25, 5-32
IND - Generate One Word for
Indirect Addressing 4-43
INTERRUPT MULTIPLEX WORD (IMW)
Interrupt Sublevel Word 3-9
LIST POINTER WORD (LPW) 5-40
Mask Register Word 5-26

4-41

5-39

DDO1

WORD (cont)

PSA Word Formats 5-38

QUEUE STATUS WORD (QSW) 5-=56

SPECIAL WORD FORMAT
PSEUDO-OPERATIONS 4-40

STATUS WORD FORMAT 5-11, 5-51

STATUS WORD FORMATS 5-42

Status Words 5-67

TERMINATE STATUS WORD 5-57

word address 3-14

WORD ADDRESSING = BASIC LEVEL 3-16

WORD ADDRESSING - INDIRECT LEVEL
3-21 '

ZERO - Generate One Word with Two
Subfields 4-42

XN
ADCXn - Add Character Address to Xn
3-35

CAXn - Copy A into Xn 3-64

CMPXn - Compare with Xn 3-45

CXnA - Copy Xn into A 3-64

IACXn - Immediate Add Character
Address to Xn 3-50

LDXn - Load Xn 3-31

STXn - Store Xn 3-33

Y**
effective address (Y**) 3-15

ZERO

ARG - Argument--Generate Zero
Operation Code Computer Word 4-41

STZ - Store Zero 3-33

SZN - Set Zero and Negative
Indicators from Storage 3-45

TNZ - Transfer on Not Zero 3-46

Transfer on Not Zero (TNZ) 3-12

Transfer on Zero (TZE) 3-12

TZE - Transfer on Zero 3-46

ZERO - Generate One Word with Two
Subfields 4-42

Zero Indicator 3-12

ZERO pseudo=-operation 4-42

i-24 DDO1

—————)-——-—-——-————-——————-———-——-—————-—-——)—————-——-—-——————————————-——CUTALONGU' \)——-———-—

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

ORDERNO. | DDOL1, REV. O
TITLE | SERIES 60(LEVEL 66)/6000 DATANET 355/6600

MACRO ASSEMBLER PROGRAM DATED | DECEMBER 1975

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. |f you require a written reply, check here and furnish complete mailing address below.

FROM: NAME DATE

TITLE
COMPANY

ADDRESS

-
)
2z
o
-
<
'_
o)
)
|
I
|
|
|
=
| 3
be
l_o
f b
<
I o
-1
| ©
' w
FIRST CLASS |
PERMIT NO. 39531
WALTHAM, MA I
02154 |
|
I
Business Reply Mail I
Postage Stamp Not Necessary if Mailed in the United States :
Postage Will Be Paid By: - 1
HONEYWELL INFORMATION SYSTEMS |
200 SMITH STREET |
WALTHAM, MA 02154 I
|
|
|
I
I w
ATTENTION: PUBLICATIONS, MS 486 L2
l V)
| 2
s
<
o)
-
o
w

Honeywell

e o o o ——— — —— — —— — — — —

)

-

Honeywell

Honeywell Information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

16332, 2376, Printed in U.S.A. DDO1, Rev. 0

