GO078
TO: Multics Repository Listv
FROM: M. L. Goudy |
SUBJ: Inter im 1/0 Document

DATE: December 20, 1968

Because of rapid fluctuation in 1/0 design, several attempts to publish
a comprehensive document on /0 have failed. This document is an appro
mation of Multics'i/O as it was conceived in early 1968. The document
discusses concepts which have been deleted entirely (e.g., transaction
blocks), concepts which will not be implemented at least for some time
to come (e.g., reservation and resourcé management) , and concepts that
are undergoing redesign (e.g., the GIM). However, it is believed that
the document might have some value as a historical record and a source

ideas for future system design.

The following is an attempt to give the reader some informative tips

about current use of the document.

Section V sn reservation of devices will not be implemented for

some time, and it is likely that many of the concepts will change.

The concepts of ioname, iopath, attachment, and the 1/0 switch,
discussed in Sections VI and VI, are basic to understanding the

Multics 1/0 system.

Section IX discusses |/0 transactions. All these concepts have

been deleted from the sys{em.

The discussion of the GIM in Section Xllyis valid through 1968;
however, the GIM is being redesigned. The data bases discussed

will probably not change drastically.

The information in Section XI1l on the GIOC is a useful summary
of the GIOC and its control words, especially for programmers
who must write some sort of device interface module. It is not

expected that this information will change.

X1=

of

|/0 SYSTEM INTERMEDIATE

TABLE OF CONTENTS

|, PUrpoSe .« v o o o« o o o o o o o o o o o
1. 1/0 From the User's Viewpoint
I11. 1/0 From the System Point of View
IV. lInternal Structure of the 1/0 System . . .
V. Reservation of Devices ., . . « « ¢« « « « &
A. Relation of 1/0 and Reservation ., . .

DOCUMENT

B. The Reservation Procedure (Resource Management).

Vi. Attachment and Detachment of Devices

A, Attachment ., ., . ¢ ¢ ¢ ¢« ¢ ¢ o ¢ ¢ o o o @

B‘ DetaChment . . . L[] - . . .
VIl. Relations Structure of |/0 Attachment Modules

A. Function Description . « « ¢« « « ¢ « « o

BO The l opath . . [. [4 [L3 . . .
C. The 1/0 Switch « v v ¢« ¢ ¢« ¢ ¢ ¢ = &« &

~~ VIll. Internal Structure of the 1/0 System . . .

IX. 1/0 Transactions « « o o o « ¢ o o o ¢ o &«

General Statement on Transactions . « « .
Relative Pointer Use ., . . « ¢« « « « =«
The IS Header . « o ¢ ¢ ¢ o o o o o «

The Per—loname Base (PIB).

[

[}

PIB Extensions o o« o« o ¢ o o o o o o &

The Interprocess Communications Block

T O M Mm g O W >

Transaction Block Allocation

Transaction Block Holding

Chaining of Related Blocks

Outer Module Chaining Responsibilities

Calls to Set Transaction Block Items .

3

Transaction Block Segment Switching .

Buffer Discipline . . . « « « ¢« & « &

Example of Transaction Block Use . . .

.

v o =2 =T X o —
.

DSM Interface . &« ¢ ¢ ¢« o ¢ o o o o &«

.

.

.

.

-

The Transaction Block Segment

.

Introduction to Transaction Block Discipline

.

.

-

~

3 O O

11
17
1
14
14
16
16
16
18
19
21
25
26
26
28
30
31
34
38
38
39
39
40

X. Processing of Data Within the 1/0 System

Xl.

X,

Xiil,

A.

D.
E.
F.

A.
B.
C.

Data Representation

1.
2.
3.

Linear Representation . . .
Sectional Representation . .

Physical Representation . .

Logical Divisions of Data . . .

1.
2.

Linear and Sectional Frames

Random Frames

.

.

e o o & o o o o

.

.

.

.

e e o

e o o

¢ o © o & o o e ° o o o & o o

Data Delimiting . [2 - . L3 * e . . [4 [L . L4 . . L3 . .

1.
2.

Establishing Delimiters . . .

Finding Bounds of a Frame . .

Data ACCESS & o « o o o o o o o o

Reading and Writing Data

lopath Modifications
Functions of Outer 1/0 Modules . . .

Dsm . ., . .

e e o o o & & o o+ o+ o

DCM . . L] * Ld . L L3 .
File System Interface Module . .
Hardcore 1/0 (The GIM), . . . « « . .

GIM Functions . ¢« & ¢ ¢ ¢ ¢« & & «
DCM/GIM Interface « o« o « « & o
Status Information and the GIM
Hardcore 1/0 System Data Bases .

Static Storage . « ¢« « + .« &
Channel Assignment and Status
GIOC Mailbox Areas « « « .« &
GIOC DCW Areas « ¢ « « o « &
GIOC Data Area « & ¢ « « « &
Channel Copy Table «

e @ o e o & & o o o & & o o+ o o

General Information « « « « ¢ « &«

Channels and Control Words . . .

A.

B.

C.

D.
1.
2.
3.
dee
5.
6.

GI10C

A.

B.
1.
2.
3.
ha

C.

Types of Channels . . . « . .
Control Words . . « v « « « &
Direct and Indirect Channels
Control Word Functions

Channel
List Pointer Word (LPW)

Q0 oW

-

-

Connect Operand Word (COW). . .
Instruction Pointer Word (IPW).
Instruction Word (CIW).

e. Data Transfer Control Word

| /0 Hardware/Software Interface

- ii =

.

.

.

e e s o
s o o @

e e o o

s o o @&
e o ¢ o

e o o o

CATCST

(ocw) - - -

.

.

L4

.

.

.

.

45
45
45
46
46
47
48

48
48
48
49
49
50
60
60

60
61

62
62
62
65
66
66
66
66
67
67
68
68
68
70
70
7
71
72

72
72
73
73
73

77

|/0 SYSTEM

INTERMEDIATE DOCUMENT

|. PURPOSE
The 1/0 system contains the procedures by which processes communicate with external

devices.

[l. 1/0 FROM THE USER'S VIEWPOINT

When the user logs into the Multics system (via the command subsystem), the aspects
of getting information to and from peripheral and terminal devices are handled by
the 1/0 modules of the Multics system and by the 645 hardware. The user's view

of 1/0 is conditioned by the making of requests at the console to read,

write and otherwise manipulate files or data which have been given symbolic names.
The 1/0 system interprets these requests and transforms them from the symbolic
language level down to the bit-picking machine language and physical hardware

level.

Users of Multics whose |/0 is confined to a single console and whose programming
is confined to the manipulation of files are not concerned with the 1/0 system
directly. The interfaces of console/device-to-process are handled within Multics,
and the drum is not accessed through |/0. Users with needs requiring other | /0
devices (card readers, printers, magnetic tapes, etc.) will have direct interest
in the 1/0 system. For users of these devices, some information on requests to

read, write, and delete information from files on these devices is required.

[11. 1/0 FROM THE SYSTEM POINT OF VIEW

Systems programming also entails the use of logical concepts rather than physical

concepts. The systems programmer is generally cognizant of 1/0 in terms of symbolic
attach and detach calls to associate (and disassociate) symbolic names (called

ionames) with the names of specific devices.

The 1/0 system works in conjunction with the GIOC (Generalized Input Output Con-
troller) to effect the transfer of information to and from peripheral and terminal
devices to and from storage. A general illustration of the working relationship
between the 645 processor, storage, the G10C, and the peripheral and terminal
devices is given in Figure 1. The working relationship is significant because

the manner of data input/output transfer is markedly different from that of most
other computing systems. Instead of the central processing unit of the machine
accessing the data on the peripherals (as it does in most other machine designe),
a discrete unit of hardware, the GIOC, has access to the data on the peripheral

devices. The ramifications of this design are shown in Figure 8-1,

Of additional significance is the close coordination of hardware (the GIOC) and
software (the 1/0 system modules). Upon initial examination of Multics 1/0,

it is difficult to determine any interfaces between the user, the software, and

the hardware because |/0 appears to be a monolithic logical unit, when actually

1/0 consists of many modules which function as parts of the user's working process-
groups in Multics (and system process groups). For literary convenience, the

user aspects of 1/0, the discrete software modules of the 1/0 system and the
discrete units of hardware, are often discussed in an isolated manner. The reader
should always be aware that any portion of 1/0 about which he is reading functions

as a part of the whole system.

2

R AT SR A S e

Processor accesses
addresses in storage,
processes data in storage

and sets up transfer
645 PROCESSOR
devices and storage; but
it cannot access addresses
on devices.

Processor sends connect
instruction to the GIOC
and directs the placement
or transfer information
in the GIOC mail box area.

information between

CONNECT

DATA
INSTRUCT I ON

g

I'-_—7 STORAGE r—— -1
GIOC MAIL
| DQEQOQEEA | BOX AREA !
L .{T_ J —_—
l “Z__ VEMORY PORTS
]
Transfer of| ITransfer of

data is via data con-

GIOC data l Itrolled by

channels control words G10C
and through in GIOC

ports to Ichannels.

storage.

M

GIOC accesses addresses
on devices and transfers
data but does not process
data stored on devices.

— P Gm— G CSRS— Cw— Gw— —

RECORD

m— qmmme q—

=

| r'-FYPI CAL DEVICE

DATA AND COMMAND
CHANNELS TO AND
FROM DEVICES

l
—

Figure 1. Schematic of |/0 Processing

-3-

~—

V. INTERNAL STRUCTURE OF THE 1/0 SYSTEM

The Multics 1/0 system may be divided into two general categories, hardcore 1/0
and outer 1/0. This division is made on the basis of the protection rings which
the modules of the 1/0 system occupy. Hardcore /0 consists of the GIOC interface
module (GIM), which is located in the hardcore ring (ring 0) of the Multics system.
The outer 1/0 modules consist of the rest of the 1/0 system, and these modules are
in rings outside of the hardcore ring. The outer |/0 modules may be further
differentiated by the outer rings they are in and by the process group to which
they belong. The |/0 modules which interface with the GIM belong to the universal
device manager process group (UDMPG), and are in ring 1 (the administrative ring)
of the Multics system. The modules which interface most directly with the user
processes are a part of the user's process group and are in the applicable user
ring (ring 32 or greater). The 1/0 module which coordinates the interaction be-
tween all of the outer modules of the |/0 system, the 1/0 switch, is in both the
administrative ring with the UDMPG and the user ring, with the other |/0 outer
modules. Figure 2 shows the major portion of the I/0 system modules in sche-

matic form.

When a user at the console gives a command for a read or a write in the form:
write (namel,...) ,
the name used in the 1/0 command (namel) is identified by the 1/0 system as an
"ioname." This ioname is used by the |/0 switch (one of the outer |/0 modules)
to route calls within the 1/0 system. The general strategy of the /0 system
is to attach (associate) one ioname with another ioname, which is a symbolic
name for data or the name of a device. For any ioname, an associated ioname

is specified by each attachment. An iopath is a chain of ionames implied by a

’

©4NIONU3g /| 4O MOIA [BJBUSY * Z @und1qy

0/1 431no 0/1 3400a4vH JYYMAHYH
ﬁi . ’ a Jd R J
4n0d9 SS300Hd YIOYNYI
dNOY9 SS300Yd H3sN 301A3Q WSYIAINN
r - -~ [Y
[o0] e
-1¥ds1q | -unog
Sutu
H3IAN 19T fssouoe
43N3and s[1eo JOVHOLS
HOLIMS 0O/ 153nb3ay
(or dog HOLIM
ST1ed }no spuss) 0/ P VLS
P ’.
S3S53004d H3Isn _
0a) 3INAOW
Inaon W
| smowmwF<MHm 104.LNGO N9 0019
_ // 301030 401434
Y
_ 3 1NAOM
| _43H
L — m\o M_W_DQ
(ONIY Siy3sn) (ONIY 3AILYHLS IN INaY) (ON1H 3H00a4vH)
u 9Ny L 9NIY 0 9NIY
(((

RSSO

given chain of attachments followed by the GlM (the hardcore 1/0 module) or by
the file system interface module (another outer |/0 module). The establishment
of an iopath from the symbolic command level to the physical device level or the

file system is the object of the procedures within the /0 system.

The user's chief concern with /0 is to first reserve a device and/or the media
that goes with the device, then assign an ioname to the data stream, frame or
item to be processed by the 1/0 system, and then attach the ioname to an outer
module of the 1/0 system. The ioname may be attached to an outer 1/0 module

to perform strictly an input or output of the data designated by the ioname, such
as attaching an ioname to the tape DSM (Device Strategy Module) which would
eventually cause the data to be read or written from tape. On the other hand,
the ioname may be attached to an outer 1/0 module which will cause the data to
be processed in some manner such as attaching the ioname to a logical service

module to superimpose a logical record structure on an input stream of data.

V. RESERVATION OF DEVICES

A. RELATION OF |/0 AND RESERVATION

Almost any use of /0 requires advance reservation of devices. For those devices
that require advanced reservation (e.g., tape drives, printers), the user must
obtain advanced reservation before attempting to attach and run the device through
the facilities provided in the /0 system. These reservations are not provided

by the |/0 system, but are obtained from the Multics system supervisor resource
assignment module. Reservations are made through the resource management modules
of Multics. These modules function to handle the dedicated assignment of system
resources (devices, media, and time). While the resource management modules are
not intrinsic parts of the Multics supervisor, they are logically considered as

being a part of the supervisor.

7
-G=

—

Device types that require advance reservation are:
tape drives
line printers
card readers and punches
some typewriters
some communications lines

some directly referenced GIOC channels.

In addition to the type of devices reserved, media that are used on the devices,
such as tape reels, can be reserved. (Thus, devices and/or media are termed sys-
tem resources.) The resources most often reserved (dedicated) for exclusive use
by a user are detachable-type storage media, such as tape reels and off-line
devices (such as tape drives), because, characteristically, the random user
demand for these devices exceeds the availability of the devices. In addition,
resources which are normally shared may also be reserved. (For instance, a
percentage of the capacity of a processor or a teletype could be reserved for a

particular user).

B. THE RESERVATION PROCEDURE (RESOURCE MANAGEMENT)

Reservations are made and are released by calling the reserver module of resource
management with the call: reserve. When reserving a device, the user specifies
the device and the time during which the device is to be used. For instance, it
may be desired to have a tape drive and three tapes available between two and

three o'clock on a given date in order to run a sort. The user can call the |/0
system and attach and detach devices without affecting a reservation. For example,
detaching a tape does not release the reserved tape drive, and the tape detached
could be re-attached at a later time, within the time limit of the reservation

that was made for the tape. Reservations are released by calling the resource

assignment module of the supervisor, by reaching expiration of the time alloted
e

for the reservation, or by the detection of certain fault or error conditions.
The resource assignment module performs a protection function as well as a
device reservation function. Thus a user cannot reserve a device for which
he does not have authorized access. Figure 3 briefly outlines the functions
of resource assignment at time of reservation and at time of use of some
resource. |t does not show the return paths. However, the user is notified
whether or not he can reserve a device for a particular time, and is also

notified at time of use when the device is actually available.

VI, ATTACHMVENT AND DETACHVENT OF DEVICES

A, ATTACHMENT
To use a device once it has been reserved, the user issues some call that will
cause an attach call to be generated. Usually the call will be a read or a

write call, although in some cases the user himself will issue an attach call.

Attachment is the establishment by an attach call of an association between two
symbolic names used as arguments in the call. The first is the symbolic name

of the data to be processed (whether ir the form of a data stream, a data item,
or a frame of data), and the second is the symbolic name of an |/0 system module.
If the user is reading or writing data, the 1/0 system module named will be that
device strategy module (DSM) that handlez |/0 for the particular type of device
the user has reserved, e.g., a tape DSM for a tape drive. The symbolic name of
a data stream can be associated by an attach call with other | /O modules also.
For example, the user may wish to superimpose a logical record structure on an
input stream of data. To do so, he would attach the symbolic name of his data
stream to the 1/0 module called the logical record formatter. The symbolic

names for data and |/0 modules are called ionames.

USER

A person issuing a command
or a library routine issu-
ing a call.

!

b

'

Call to reserve

Call to use
(attach, read
write, etc.)

L

i
]
&
l
|
i

User Ring

1‘

RESERVER

On receipt of reserve,
checks reservation
files for availability
of device/media, calls
RAM if available.

v On receipt of request

to use, checks if res-

ervation 1s in order,
calls appropriate
hardcore module.

~—~ ~[Reservatio

RESOURCE ASSIGNMENT MODULE

On receipt of reserver call, ~
validates if user i1s privi-

leged to use the device/

media and calls appropriate

hardcore module

Administrative Ring

—— P

/ Registry

\\\\files
o |

Figure 3.

l

| /O DEV ICE ASSIGNMENT
MODULE

Called for tape drives,

printers, punches, and

other devices made avail-

able through the inter-

face to the GIOC.

MEDIA MANAGEMENT MODULE
Called for tape reels,
other devices that can

be dismounted, and dedi-

cated use of normally

shared devices available;

only through system
operator.

MODULE (to

GIOC INTERFACE

i GIOC ultimately)

! -

Resource Assignment

-9 -

i \ System /
\Operator,

e e

Hardcore Ring

When a user at the console gives a read or write command of the form:

read (namel,...) or write (narel,...)
the name used in the command is identified by the 1/0 system as the ioname of
the place from which data is read or into which it is written. The system then
generates an attach call of the form:

call attach(ionamel,type,ioname2,mode,status)
The ionamel argument of an attach call identifies the stream, frame or item of
data. The ioname2 argument is the outer | /O module to be associated with the
data designated in ionamel. The type argumert specifies the type of device, and
the mode argument specifies the media on the device or the selection of a number

of logical services to apply to the data.

An attach call causes an entry on the two ionames ‘o be placed in the 1/0 data
base known as the attach table, A general block diagram of initial 1 /0 system

actiorn when an attach call is received is chown in Figure 4.

USER | /O SWITCH
. " Reserver and modules
ATTA S
CH REQUEST | reque t, —P of Resource Assignment

(or a procedure | to attachx attach
on behalf of .
the user) tonames

ATTACHMENT ATTACH~

TABLE MENT
MATHTAINER TABLE
Figure 4 Initial 1/0 Action During Attachment

The 1/0 system establishes a chain of calle through the 1/0 system to the phy-

sical device that permits the requested |/0 to be performed. The chain is called

an iopath,

B. DETACHVENT
Detachment is the disassociation of the symbolic name of data and the symbolic
name of an 1/0 system module. Detachment occurs when:

1. The time for which a device was reserved expires.

2. Certain fault or error conditions occur that preclude continuation
of execution of the user's job.

3. A detach call is made by the user or by the |/0 system following

completion of the user's job.

Detachment does not necessarily release a reserved device. For example, a user
can issue a detach call and later re-atiach the device if the time for which the

device was reserved has not expired.

VIl. STRUCTURE AND RELATIONSHIP OF ATTACHMENT MODULES

A. * FUNCTION DESCRIPTION
When an ioname is used for the first time, it is "unknown," and therefore not in

the per process group attach table. An outer |/0O module (the not_founder) tempor-
arily appears as the first outer module of the iopath. It functions to make an
attach table entry for the "unknown ioname." While in the path, the not_founder
determines the next outer module to call (via the 1/0 switch) from the type argu-
ment in the attach call., The next outer module negotiates to have itself replaced,
or may splice other outer modules beforc or after itself in the iopath. Upon

return to the user, the basic iopath for the particular ioname has been estab-

lished, and a representation of the iopath is embedded in the attach table. A
unigue entry in the attach table correspends to each appearance of the 1/0

switch in the basic software path., There is only one entry per ioname. Each
entry associates an ioname with a unique outer module in the path. FEach outer

module "knows" the ioname associated with the next outer module in the path,

- 11 -

When the user issues an outer call, the |/0 switch uses the specified ioname to
reference the attach table. The |/0 switch forwards the call to the outer
module associated with the ioname. Oyter modules drive control along the soft-

ware path by issuing calls, which specify the ioname associated with the next

outer module in the path, to the 1/0 switch.

Along with the 1/0 switch and the not_founder, three other outer |/0 modules
function to provide the user with facilities to attach ionames and establish

an iopath., The ATM (attach table maintainer) services all requests to reference
and/or update the attach table; this involves special action when the services
of the not_founder are required. When an attempt is made to retrieve a pointer
to an entry point vector (EPV) associated with an ioname which is not contained
in the attach table, the ATM returns a pointer to the entry point vector for the
not founder, which allows the not_founder to create an attach table entry for
the ioname. Also, the ATM calls the type table maintainer (TTM) in order to

force linking of the not founder.

The TTM services all requests to reference and/or update the type table (TT),
which associates the type argument with the corresponding outer |1/0 module.
Figure 5 illustrates the internal I/0 system processing dur ing attachment for

the call:
call attach (henry,tape,reel432,ws)

- 12 -

10 Switch

call attach (henry,tape,

other than attach
! T
tATTACH TABLE!
* 1A INTA INER

outer calls

Entry

(EPV) for

E henry

reell32,ws) [attach
call for unlinked or
linked outer module]

lunlinked outer module]

Return Poin-+ No
ter to the

|
EPV for the

not_fourder

point vecto

For outer
calls other

than attach,
the answer

For attach,
find Attach
Table entry
for henry and
return EPV to
Attach Table

entry.

Uses pointer Calls TTH to TYPE TABLE, TTM notes |
to return lind | NOT_FOUNDER retrieve the MA INTA INER! that pointer]
to the — S{pointer to the (TTM) i to EPV is
nol_founder EPV for the null and
pnd forward tape DSM. calls EPVMK
call ;
_ ! oy
T places the (TTH) EPVNK con- |
NOT_FOUNDERIE—{}o 11 ST [YPe TYPE TABLERE— structs thel€—f EPVNK
MA INTA INER! EPV and re-
— turns a copy of —_— turns it to
it to not_founder the TTM
not_founder UATTACH TABLE ATM creates ané Inot_founder |
calls the at- , —>lattach table —>NOT_FOUNDER: A reissues ‘
fach table | MAINTA INER " lentry for the . | i luser attach
maintainer to l v !ioname,henry, | 1 jcall to 1/0]
create an at-- twhich conf,ains? »SWiJECh. |
tach table \a pointer to |
entry for the- | the EPV for |
ioname, henry. lthe tape_daenon ey
land returns to
jnot_founder.
1/0 switch uses poin- This time the T <_W %Switch calls|
ter returned by ATM ATM finds the ©ATM to re-
to retrieve the link entry for henry ATTACH trieve poin-
to the outer module ‘——C::3<——!and returns the<— TABLE <ter to EPV:
(in this case the — pointer to the MAINTAINER in Attach
Tape DSM), and calls IEPV (for the ———— Table ertry
the Tape DSM. Tape DSM) to for henry.
! lthe 1/0 switch
r_,h_,_iiﬂﬂ_m, .
. TAPE DSM To 1/0 modules in the
~ ! administrative and
~— L hardcore rings.
Figure 5. | /0 System Internal Processing of Attach and Other Outer 1/0 Calls

-13 -

B. THE [OPATH

By a series of attachments between the ioname of the user's stream, frame, or
item of data and the ionames of outer 1/0 modules (as they are needed), the /0
system establishes a path of calls between those modules of the /0 system that
are needed to perform the processing ard input/output requested for the particular
ioname., This path of attachments is called an iopnath. The iopath is determined
by the type and mode arguments of the attach call, and it can be subject te
variation. The 1/0 switch module appears recursively throughout an iopath and
gives calls to those |/0 modules needed to associate the ioname in the initial
attachment with other ionames which route the processing and/or transfer of

data in the manner prescribed by the user and uliimately associate the perulti-
mate ioname in the iopath with the icrame of a device strategy module (DSM) or
the 1oname of the file system interface module (FSIM)., (The functions of both

these outer modules are discussed later in this document.) A typical iopath is

illustrated in Figure 6 ,

C. THE /0 SWITCH
Whenever one |/0 module calls another 1/0 module (within the same ring), the
1/0 switch performs its function, which ic the routing of control from module

to module in the 1/0 system as the individuzl modules are required. Besjdes

the GIt, DGV, and DSM, the 1/0 system offers a number of logical services;
these services are implemented by other outer modules. Structurally, each
outer 1/0 module is a segment with an =ntry point corresponding to each éall
from other outer |/0 modules which is meaningful to the segment. When the |/0
swilch receives a call referencing an ioname, it references a data base known
as the per iorame segment (1S) to ascertain which |/0 module to call next and
repeats this process until all the necessary steps are taken to attach the
approbriate device with the ioname (which initiates the setup of DCW's by the

DCM, which in turn issues the DCW's to the GIM to perform |/0 data transfer).

USER

¢ call attach (henry, tape, reel 432, ws)

| /0 SWITCH
[LOGICAL (A logical service module)
' RECORD
' FORMATTER
| /0 SWITCH
' |
TAPE :
DSM
/0 SWITCH

TAPE
DCM

GIM

"To GI0C

Figure 6. A Typical lopath

- 15 -

In Figure 6 the /0 switch is shown in both the user ring and the administra-
tive ring. Since the /0 switch is used to route 1/0 calls from one module
to another in the establishment of an iopath, and since the |/0 switch is
used to interface to the user on calls to /0, the /0 switch is called

upon several times in any iopath.

VI1l. INTERNAL STRUCTURE OF THE 1/0 SYSTEM

The iopath established during device attachment threads from |/0 modules oper-
ating as part of the user's process group in the user ring to |/0 modules oper-
ating as part of the universal device manager process group (UDMPG) in the
Multice administrative ring and from there to the GIOC interface module (GIwm)
operating in the Multics hardcore ring. The GIM inferFaces with the peripheral
devices. Figure 2 on page 5 showed a highly simplified version of the

modules and their relationships.

X, 1/0 TRANSACTIONS

At the time an ioname is defined as a result of an attachment, the 1/0 switch
creates a per-ioname segment (1S) and establishes data bases within it, The

IS continues to exist until the outer module associated with the joname is
detached. The most significant components of the IS are the per-ioname base
(PIB), the transaction block, and the interprocess communication block. The
PIB is the principal data base of the outer module, which is reached via the
ioname attachment. The interprocess communication block is the common data
base for the attachment module, the DSM's request gueuer and the device manager
dispatcher. The latter two outer |1/0 modules function to permit communication
between 1/0 modules in different process-groups (and different rings) as is
discussed later in this chapter. The transaction blocks provide the basic
mechanism for maintaining the necessary history of 1/0 transactions to preserve

the relationship between these,

- 1{‘»,//1'7 -

For every outer call reaching an outer 1 /0 wodule, except the divert call,

the 1/0 switch allocates a transaction block within the transaction

block segment by calling a module known as the transaction block maintainer
(TBM). Transaction blocks are chained together and indices (pointers) des-
cribing this chain are stored in the PIB., The contents of transaction blocks
are accessible by calls provided by the TBM, Additional per transaction data
is kept in transaction block extensions (TBE's). These are allocated within an
area in the PIB by the outer module called to perform an /0 transaction. A
relative pointer to the TBE is kept in the corresponding transaction block.

The TBM provides for de-allocation of unwanted transaction blocks together with

their TBE's,

Fach outer module may create additional transaction block chains for internal
purposes. For example, the buffering of data being processed by the 1/0
system is implemented by such a chain. The outer module allocates (by a call
to the TBM) a transaction block to which the buffer is appended in the form of

a transaction block extension.

A. RELATIVE POINTER USE
Once an ioname is known to a user procesc-group, a procedure in any of the
processes in the group can issue an outer call directed at that ioname. Thus

an iopath is exercisable within any process in the group.

As a consequence, pointer information cannot be conveniently stored in the various
IS data bases and must be referred to by the use of relative pointers, which are
bit strings of length 18 and are easily connected to and from pointers by use

of the Multics procedure, relptr., Pointer variables which are not easily com-
puted by an outer module are provided by the switching complex which determines
and keeps the pointer variables for every process using an ioname. For
example, a pointer to the PIB itself would be determined by the |/0 switch,

- 18 -

The |S contains a number of separately-allocated data bases. All of lhese data
~~ bases are accessed as "based" structures. The data bases in the IS are:
1. Header; created and initialized by the switching complex.
2. Standard Per-loname Base (PIB); allocated by the switching complex.
3. Standard PIB Auxiliary Based Storage; allocated by the outer module,
L. PIB Extensions (PIBE's); allocated by the outer module.
5. Transaction Block Extensions 'TBE's); allocated by the outer module.
O, Interprocess Communication Block (1CB); allocated by the attachment

module in a Device Strategy Module (DSM)

A1l data bases allocated by *‘he outer module are allocated within an area

in the PIB, The header, PIB, the PIB's auxiliary based storage, and the ICB
have standard declarations which are given later in this section. Although
the PIB and TBE extensions are intended for outer-module-dependent data, a
portion of their declarations is standardized to enforce standard chaining of
these extensions. The standardized chaining of extensions permits an outside

procedure —- e.g., a dump routine -- to determine where all the data in the IS is.

B. THE IS HEADER

The IS header contains process-independent per-ioname data of interest primarily
to the 1/0 switch. In particular, an cuter module need not be concerned with
the header. The only exception to the latter statement occurs in a DSM in

which the attachment module and the reguest queuer use information in the header.

The header is created and initialized by the switching complex at the time the

IS is created. The declaration for the header follows:

dcl 1 ioseg based (p), /*per-ioname segment header=*/
2 flag,
3 delayed_detach bit (1), /*if ON, 10S\W deletes loname #/
3 restart bit (1), /*1f ON, 10S\ {ssues upstatex/
2 relp, /*relative pointersx/
3 pib bit (18), /*relp to PIBx/
3 jcb bit (18), /*relp to ICB=/
2 lock_list, ' /*lock=list for ioname node*/
3 n fixed bin, : /*size of key listx/
3 chan_keys (N), /*channel key list, n=N«/
4 proc bit (36), /*process locking or queued*/
4L event bit (36); /*queued process wake-up eventx/

The "delayed-detach" switch is used by the switching complex to implement
delayed deletion of the ioname and the 1S, The "restart" switch is used to
implement a part of the restart strategy. The relative pointer to the PIB is
used by the 1/0 switch to supply the outer module with a real pointer to the
PIB (see discussion below). The relative pointer to the ICB is used by the

attachment module and the request queuer in a DSM,

The "lock_list" is the standard Multice lock list used when calling the Locker.
It is used by the 1/0 switch to lock the iorame. When the switch receives an
outer call, it attempts to lock the attachment graph node corresponding to

the ioname by calling the Locker; an argument in the call is a pointer to

the lock list. The ioname remains locked until the switch is about to return

to the original caller, at which time the lock is released by another call to
the Locker. This ioname locking strategy prevents simultaneous use of an ioname
and the corresponding per-ioname segmer! of an iopath by procedures in more than

one process,
- 20 -

C. THE PER-IONAME BASE (P IB)

The PIB 1s the principal data base of ar outer module. The PIB is alloca:ed
and Initialized by the switching complex when the per-ioname segment (1S) is
created. The PIB 1is accessed as based storage by a pointer supplied by the
1/0 switch with every call. Additional per-ioname data is allocated by the

outer module in the form of PIB extensions (PIBE's), discussed later.

The pointer to the PIB (pibp) 1s supplied by the 1/0 switch to the outer rodule
as an additional last argument on every outer call routed to the outer module.

In addition, the |/0 switch initializes two groups of PIB items prior to rcuting
each call.

One group consists of all pointer items; the second consists of cer-

tain items that are copied from the caller's PIB. Per-call initializaticn is

discussed later. The contents of the standard PIB are chosen to meet the common

needs of a ma jority of outer modules. The PL/1 declaration is:

d

RPN ROONODNDNDNDNDNN

11 pib based (p),
sync_event bit (36),
error_event bit (36),
dtabpl ptr,
dtabp2 ptr,
dtabp3 ptr,
auxptr ptr,
ionamel char (32),
typename char (32),
loname2 char (32),
bmode bit (72),
next_ioname char (32),
nmore fixed bin,
elsize fixed bin,
readbit fixed bin,
writebit fixed bin,
lastbit fixed bin,
boundbit fixed bin,
nbrk fixed bin,
ndelim fixed bin,
relp,

/*standard PIBx/

/*for sync management#/

/x "/

/*driving table ptr 1, mode control=/
/*driving table ptr 2%/

/*driving table ptr 3%/
/*auxillary outer module ptr=/
/*ionamelw/

/*type namex/

/*ioname2x*/

/*mode bit string+*/

/*next jonamex/

/*number of additional next lonames*/
/*element sizex/ :
/*read pointer In bits»/

/*virite pointer In bits*/

/*last pointer In bits*/

/*bound pointer in bits*/

/*number of break delimiters»/
/*number of read delimiters»/
/*relative pointersx/

3 pibe bit (18), /*relp to PIB extension=/

3 more bit (18), /*relp to additional ionames=/
3 brk bit (18), /*relp to break listw»/

3 delim bit (18), /*relp to delimiter listw/

2 chain_base, . . o
3 tlindex bit (18), /*base of call transaction block chain»
3 t2index bit (18),

3 blindex bit (18), /*base of buffer chain*/

3 p2index bit (18), .)

3 alindex bit (18), /*base of aux transactlon‘block'chann*/
3 a2index bit (18),

2

joarca area ((MAX));

/*outer module allocation arcax/

- 21 -

The sync_event and the error_event are used for internal synchronization manage-
ment; modules not concerned with such matters can ignore these items except for
one requirement. These items, when present (not zero), must be passed along to
the next outer module. The mechanism for doing this consists of the module
adding its "pibp" as an extra argument on outer calls it issues. Upon receiving
an outer call with a "pibp) the !/0 switch copies these two items into the
callee's PIB before passing on the call. Thus outer modules must always in-
clude their "pibp" as an extra argument on every call issued to the next outer
module in the iopath. If the 1/0 switch does not receive a "pibp," it zeros
these items in the callee's PIB. Thus the 1/0 switch provides automatic for-

warding of these synchronization management items.

There are two exceptions to the rule that an outer module must include its
"pibp" in its calls. First, the module in the iopath that is the ultimate
recipient of these items (the DSM) does not forward them. Second, the "pibp"

must not be included on calls representing "incidental™ input/output, i.e., calls

issued to an ioname which is not a next ioname along the module's iopath.

The driving-table pointers and the auxiliary pointer are initialized by the

I/0 switch on every call, so that they are appropriate to the process in which

the call is being made. The driving table pointers point to the first word

of the segments containing the driving tables. The pointers are determined by
the switching complex from driving table names kept in the Type Table. This
mechanism is provided to permit outer modules to be table-driven where possible.
One kind of driving table used by all outer modules is the mode control structure;
dtabpl in the PIB is reserved for this table. The code conversion tables and

the code conversion module are good examples of the table-driven module

approach.
- 22 -

The auxiliary pointer, "auxptr," is used to reference an external segment known
only to the outer module. Such use of an external segment is permitted only in

approved cases. One case involves the use of the 1/0 registry files by the

DSM and the DCM, Another example of an external segment is the common data base
shared by DOM's which operate devices connected to shared channels. The File
System Interface Module (FSIM) uses auxptr to access the File System file.

Since the switching complex does not know the identity of the external segment,
it is up to the outer module to compute auxptr. Upon a return from the outer
module, the 1/0 switch saves the value of this pointer in a per-process entry

of the Attach Table. On subsequent calls to the module, the switch restores the
pointer to the value previously saved for that process. If upon return the

/0 switch notes that a restored auxptr has been modified by the outer module,
the values saved for the other processes are made null. |f no previous value
had ever been saved, a null pointer is used for the initial value. Outer modules
using auxptr should always test for a null pointer before the first use during a

call.

"ioname1", "typename", and "ioname2" correspond to the first three arguments of
the original attach call received by the outer module. Their values are assigned
by the outer module at attachment time. "bmode" is the mode string array returned

by the Mode Handler.

After the outer module determines by some algorithm what the ioname of the next
module in the iopath is, this ioname is stored in "next_ioname." When more than
one next ioname is involved (such as in the case of a broadcaster), the additional
ionames are kept in auxiliary based storage to be described below. The number of

additional ionames is kept in "nmore."

- 23 -

The current element size, measured in bits, is kept in "elsize." The various
"pointers," the read, write, last and bound pointers, are kept as bit counts,
The determination of these pointers as element counts is always accomplished

by dividing the bit counts by the current element size.

"nbrk" and "ndelim" are the current numbers of break and read delimiter elements
respectively. The actual strings of these elements are kept in auxiliary based

storage to be described below.

The relative pointer "pibe" points to the first PIB extension; "more," "brk," and
"delim" point to the auxiliary based storage for the additional ionames, the
break element string, and the read delimiter string, respectively. The declar-

ations for the auxiliary storage follow.

dcl brklist (nbrk) bit (elsize) based (p), /+*p related
"

. to relp.brk«/
delimlist (ndelim) bit (elsize) based (q), /*q related
" to relp.delimw/
more_lonaqes (nmore) char (32) based (r); /+*r related
[}

to relp.morex/
This auxiliary ctorage is allocated within "joarea™ by the outer module whenever
necessary. If any of this auxiliary storage is not needed, the corresponding

relative pointer should be zero.

The various transaction block chain base indices are discussed later in this

section,

All based storage allocated by the outer module is allocated within the PL/I

area, "ioarea,"

-2/ -

D, PIB EXTENSIONS

Per—ioname data not resident in the PIB are kept in what are known as PIB Ex-
tensions (PIBE's). There can be any number of PIBE's., Successive PIBE's are
reached by relative pointers kept in immediately-preceding PIBE's, Each PIBE

is required to contain an included measure of ite size. The standard declaration

for any PIBE follows:

dcl 1 pibe based (pn), /*standard PIBE forms/
2 relp, /*standard PIBE chainingw/
3 next bit (18), /*relp to next ?IBE*/
3 last bit (18), /*relp to last item in this structure=/
ces ; /*outer module's private dcls#/

The "next" is a relative pointer to the next PIBE in the chain., "last" is a
relative pointer to the last item in the PIBE structure, and is included to
permit size determination by outside procedures. The relative pointer to the
first PIBE is (relp.pibe) in the PIB. The last PIBE must have (relp.next) zero.
An outer module can avoid chasing a PIBE chain by keeping a copy of all PIBE

relative pointers in the first PIBE,

Examples of PIB and PIBE Use

The real pointers corresponding to the relative pointers kept for accessing |5
based storage must be computed each time a new call is made to the outer module.
The real pointers therefore exist only in automatic storage. For example, to
obtain the pointer p1 for use in accessing the first PIBE, one of the pointer
manipulation procedures of BY.14 is used:

p1 = ptr¥ptr(pibp,pibp->pib.relp.pibe);

The code to freshly allocate a second FIBE is:

allocate pibe in (pibp->pib.ioarea) set (p2);
pl->pibe.relp.next = ptr$rel(p2);

p2->pibe.relp.last = ptrirel(addr(p2=->pibe.last_item));
p2->pibe.relp.next = "0"b;

- 25 ~

The code to allocate a new list of break elements following a setdelim call is:
brkp = ptréptr(pibp,pibp->pib.relp.brk);
free brkp=>brklist;

allocate brklist in (pibp->pib.ioarea) set (brkp);
pibp->pib.relp.brk = ptrérel (brkp);

E. THE INTERPROCESS COMMUNICATION BLOCK
The Interprocess Communication Block (1CB) is a common data base for the attach-
ment module, the DSM's request queuer, and the device manager dispatcher. The

ICB is allocated by the attachment module.

F. INTRODUCTION TO TRANSACTION BLOCK DI SCIPLINE

The creation of Transaction Blocks (TB's) for outer calls (and for certain
buffering functions and for non-switched iopath-directed calls) together with
the ability to associate related blocks, is the basic mechanism for maintaining

the necessary history of individual transactions and for preserving the relation-

ships between these transactions.,

A transaction block is a short fixed-length structure containing mostly infor-
mation relating the block to other related blocks. The data in the block of
direct interest to an outer module is a status bit string, some flags, and a
relative pointer to a Transaction Block Extension (TBE). One such block is
allocated by the 1/0 switch (by a call to the Transaction Block Maintainer)

every time an outer call is made (except for the divert call); this block is

automatically chained into the chain of blocks corresponding to calls issued
to the same ioname. The base of this chain is anchored in the callee's PIB;
specifically, "tlindex" and "t2index" are actual indices into a transaction
block array and point to the oldest and newest ends of the chain, respectively.
Further, this chain essentially belongs to the callee; the only item in a block

of interest to the caller is the status bit string.

Additional per-transaction data is kept in TBE's allocated by the outer module.

The standard portion of the declaration of a TBE is exactly the same as that
- 26 -~

described earlier for a PIBE. Any number of TBE's may be chained; the relative

pointer to the first is kept in the parent TB,

Provision is made in the PIB for basing two additional TB chains. Modules retain-
ing user data between calls must use a standard buffer chain., The module allocates
(by a call to the Transaction Block Maintairer) a TB for every buffer needed; the
actual data is kept in a corresponding TBE. Buffering is discussed in more detail
later in this section. A third chain, called the auxiliary chain, is used by
modules making outgoing calls but having no outgoing switch node. The auxiliary
chain is used by DCl/'s to maintain the necessary per-transaction data for calls

to the GIOC Interface Module (GIM), and is used by the DSM's Request Queuer to

communicate with the Device Manager's [Driver.

In addition to {he chaining of the three "main" TB chains mentioned above, the
Transaction Block Maintainer (TBM) will, upon request, create secondary chains

of related blocks. The secondary chains are known as "down" chains and consist

of existing blocks in main chains. The base of 2 down chain is anchored in some
TB. A block can be included in the down chair based in some other block by a

call to the TBM, Typical usage is to irclude blocks for outgoing calls in the
down chains of blocks for corresponding incoming calls in such a way that status
may be easily updated. An example of such use ic given later. When buffer chains
are in use, the incoming TB's! down chains include the corresponding buffer blocks,

and each buffer block's down chain includes the corresponding outgoing TB's,

All the transaction blocks for a user are kept in a Transaction Block Segment (TRS).

A1l use of these blocks by outer modules is by calls to the Transaction Block

Maintainer (TBM),

- 27 -

The lifetime of a transaction block is controllable. A mechanism involving
several hold bits representing various interests is used to delay the otherwise
automatic deallocation of blocks. The holding and releasing of blocks is dis-

cussed later,

The Transaction Block Maintainer (TBM) services the allocation and deallocation
of Transaction Blocks (TB's), the chaining of related blocks, the chasing of

these chains, the storing and retrieving of the transaction status, outer module
flags, and the TBE relative pointer., It also services the setting and resetting

of the hold bits which control deallocation.

G. THE TRANSACTION BLOCK SEGMENT
The Transaction Block Segment (TBS) contains all the transaction blocks for a
user process-group and is the principal data base of the TBM, The declaration

for the TBS follows:

dcl 1 tbs based (p), /*transaction block segmentw/
2 lock_list, /#lock list for TBS»/
3 n fixed bin, /*size of key listw/
3 chan_keys (N), ~ /*channel key list, n=N=/
4L proc bit (306), /*process locking or quecued#*/
4 event bit (36), /*quecued process wake=-up eventw/
2 index, /*indices*/
3 -vacantl bit (18), /*head of vacant list*/
3 vacant?2 bit (13}, /*tail of vacant listw»/
2 orphanl bit (18), /*head of orphan lists/
3 orphan2 bit (18), /*tail of orphan listw/
3 last bit (18), /*highest block used»*/
2 tb (MAX), /*transaction blocksw/
3 status bit (144), /*outer call statusw/
3 hold bit (6), /*hold bl ts»/
3 tbm_flags bit (G6), /*flags for TBMx/
3 om_valid bit (6), /*outer module validation levels/
_ 28 -

3 flags bit (18), /xouter module flapgpusx/

3%hain_cnt bit (18), - /xchain inclusion count»/

3 therely bit (139, /xrelp to Tohk in per-ionane segmentw/
3 anl pic (L), /*aain cadin next o indes; tron x1w/

3 oxn?2 bit (L), JAein Caain nekt indexk; from x2x/

3 dnl bit (1), /*cown chuin next index; from dlx/

3 dn2 bit (iu), /xdown chaln next index; froin d2=/

5 di bic (17, /*xdownl index#/

3 d2 bit (leis /*down?2 indexx/

The "lock_1 st" i used ., the TBM to lock the TBS whenever necessary (by a call

to the Locker); tle TBM wai s for the TBS to become free. The transaction blocks
are memcers of a transac ion block array; when the TBM is requested to "allocate"
a block, i+ merely obtains a currently unused block from the vacant list. When
a block is deallocated, it is returned to the vacant list. '"vacant1" and
"vacant2" are the indices to the head and tail respectively of the vacant list.
"orphan1" and "orphan2" are the indices to the head and tail respectively of the
"orphan" list., The orphan list contains blocks which have been removed from
their originél main chains but which do not yet meet the full conditions for

deallocation; this mechanism is discussed later .,

Each transaction block contains a standard status bit string, a string of hold
bits, a string of flag bits private to the TBM, a string of flag bits usable by
the outer module, the outer module's validation level, a chain inclusion count,
a relative pointer to the transaction block extension, and indices of related
transactions. Most of these items are discussed in detail later. The
outer module's bit string (flags) is provided solely for the module's arbitrary
use; for example, it may be used to conveniently differentiate between useful
transaction categories. The TBM's bit string (tbm_flags) is used to indicate

whether a block is in a main chain, in the orphan list, or in the vacant list.

- 29 -

The outer module validation level (om_valid) is used by the TBM to control what

procedures can call to have certain items in the block set.

H. TRANSACTION BLOCK ALLOCATION

The following call to the TBM allocates a new block in a main chain:

cali tbm$allocate(chain_base_ptr,holdn,tbindex,cstatus);

dcl chain_baso_ptr ptr, /+hbase of main chainx/
hotdn fixed Lin, /+u0ld Lit Indicatorx/
tbindex bit (18), /*Th index of new blockw/
Cotaiun biv (L8); /~alloccte call statusw/

The chain base ptr is a pointer to a pair of chain base indices in the outer

module's F!", If the indices x1 and x2 point to the oldest and newest block
respectively in the x chain, the TBM allocates the new block in the x2 end of
the chain, Here "x" corresponds to the "t", "b", or "a" in the chain-base-
indices' names in the PIB, The index for the newly-allocated block is returned
in tbindex and can also be found in the location for x2. holdn permits the
caller to set the nth hold bit; if holdn is zero, the hold bits are initialized

to zero. See the discussion on holding later below.

Transaction blocks for outer calls are allocated by the 1/0 switch., When the
outer module receives control, it can find the index to the block corresponding

to the current call in (chain_base.t2index) in the PIB, However, the status bit
string is initialized by the |/0 switch and bits 127-144 of the status string

aleo contain the new TB index (bits 1-125 are initialized zero). A convention

of using the value of the TB index extracted from the status string removes the
necessity of coping with the effect of recursive entry upon the value of "t2index."
(Although the ioname is locked upon first entry, a recursive entry by the same
process is permitted,)

- 30 -

Transaction blocks for buffer or auxiliary chains are allocated by tbm$allocate

calls issued by the outer module itself.

When the TBM freshly allocates a block, it initializes a data base (om_valid)
to zero. Upon receipt of the first subsequent call which requires storing in-
formation in the block, the TBM stores the current validation level in om_valid.

Further such calls are fulfilled only if the caller's validation level is equal

to or less than that in om_valid.

. TRANSACTION BLOCK HOLDING

The "hold" bit string in a transaction block contains six hold bits called
hold1,...,hold6, Setting any of these bits non-zero prevents deallocation of
the block. At present, only hold1, hold2, and hold3 are assigned. With respect
to an ioname, hold1 is for the caller and hold2 is for the callee. In those
cases where a block is known to only one module (e.g., buffer blocks), hold2 is
used by that module. Hold bit hold3 is used by the 1/0 switch to guarantee a

caller a chance to set hold1l.

The caller may wish to hold certain blocks in order to later examine an updated
version of the status bit string., The status originally returned to a caller
contains the then current status in bits 1-126 and contains a transaction block
index in bits 127-144. During later calls, the callee updates the status of
earlier calls when appropriate and if their blocks still exist., Further, it is
the status string in the block which is updated, not the original caller's

status string. The following calls are used by the caller to set and reset holdi:

- 31 -

call hold(status, cstatus)

call release(status,cstatus)

del status bit (144), /*returned outer call status*/
cstatus bit (18); /*hold/release call status®/

The TB index ir ihe status argument is used by TBM to identify the correct block.
A releted TBM call is the following:

call getstatus(status,cstatus)
This call is used to replace an old status string by a new, possibly updated one.
The caller provides status equal to the status bit string of a previous transaction
which ic being held; the TBM uses the TB index provided in status to identify the
block and returns status equal to that currently in that block. The argument
declarations are the same as the previous call. The following calls permit the

callee (the outer module receiving the call) to set and reset the hold bits.

call tbmS$set_hold(tbindex,holdn,cstatus);

call tbmSresect_hold(tbindex,holdn,cstatus);

dcl tbindex bit (18), /* TB index =/ :
holdn fixed bin, /* hold bit indicator */
cstatus bit (18); /* call status =/ v

holdn is an integer from 1 to 6 indicating which hold bit is to be set or reset
in the block whose index is tbindex. |[f holdn is zero, neither call has any
eff'ect. |t may be noted that when holdn is one, these calls duplicate the

functions of the hold and release calls; the latter are designed to be safer and

more convenient for the caller to use. If the holdn argument of a tbm$allocate

call is zero, the TBM initializes the entire hold bit string to zero.

A block whose hold bits are all zero and whose chain inclusion count is zero is

a candidate for deallocation. When tbm$allocate is called, other blocks in the

- 32 -

concerned chain are considered for deallocation. When a block is deallocated,
its TBE's are freed and the blocks, if any, included in its down chain have

their chain inclusion count (see later below) reduced by one.

Once an outer module is finished with a call block and has had hold2 set to

zero, the block will continue to exist in the call chain until the full con-

ditions for deallocation are realized. Inasmuch as an outer module frequently

chases this call chain (see below), it would be convenient if only significant

blocks were present. The following call is provided to remove
nondeallocatable blocks:

call tbm$remove(chain_base_ptr,tbindex,cstatus) .

tbindex is the index of a block located in the main chain whose base indices

are pointed to by chain base ptr., The TBM undertakes the following steps:

(1) hold2 is set to zero; (2) the block is deallocated if deallocation con-
ditions are met; (3) if not, the TBE's are freed, the tberelp is set to zero, and
the block is removed from the main chain and placed in the orphan chain. Blocks
in the orphan chain can be expected to be eventually deallocated. Whenever an
orphan block has any hold bits reset or its chain inclusion count reduced, the

TBM considers deallocation.

When an outer module is detached, it is necessary to remove all the TB's in
main chains based in the module's PIB. Upon receiving a return from a detach
call, the 1/0 switch issues the following call on behalf of any such chain
whose base indices are not zero.

call tbm$delete_chain(chain_base_ptr,cstatus) .
The TBM performs the functions described for the tbm$remove call for each block

in the chain whose base indices are pointed to by chain base ptr.

- 33 -

J. THE CHAINING OF RELATED BLOCKS

Fach transaction block contains the indices of the next oldest and next newest
block in the same main chain; these are the xn1 and xn2 indices respectively in
the block declaration. The oldest block has xn1zero, and the newest block has
xn2 zero., The use of bidirectional next indices permits the main chain to be
chased in either direction beginning at any block. We speak, for example, of
the xn1 next index as pointing away from the x1 end of the chain or toward the
x2 end of the chain, where x1 and x2 are the chain base indices. The top row

of blocks in Figure 7 shows the chaining of blocks in a main chain.

A second kind of chaining which is used to associate related blocks is available
upon request. Suppose, for example, an incoming call to a module results in
three outgoing calls., The incoming call has a transaction block in the module's
call chain, and the outgoing calls have blocks in the next module's call chain.
It is convenient for future status updating to save the relationship between
these blocks. A mechanism is provided which permits threading the blocks for

the outgoing calls into a "down" chain based in the block for the incoming call.

The following call threads an existing block into another block's down chain:

call tbm$thread(tbindexl,tbindex2,cstatus);

dcl tbindexl bit (18), /* index of fB to be threaded »/

thindox?2 pit (18), /* index of Tb basinz the down chain
cstatus bit (18); /* threcad call status =/

- 34 -

tbindex1 is the index of the block to be threaded; the threading will result in
its dn1 or dn2 being set nonzero. tbindex2 is the index of the block in which
the down chain is or is to be based; the threading will affect the values of its
d2 and possibly its d1. Prior to the existence of a down chain based in a block,

both the d1 and d2 down indices are zero; when the down chain exists, d1 is the

“index of the oldest block threaded and d2 is the index of the newest one. If

there is only one block in the down chain, d1 = d2 in the base block, and dn1 = dn2
= 0 in the threaded block., The blocks in the down chain are threaded to each
other using the dn1 and dn2 down-chain-next indices; except for blocks at either
end of the down chain, dn1 is the index of the next oldest block threaded and dn2
is the index of the next newest block threaded. Except for the blocks at either
end of the down chain, a block can be in only one down chain. The block at the
d1 end of the chain has dn2 zero if it is in only that chain; if it is also at
the d2 end of another down chain, dn2 applies tc that chain. A similar situation
is true with respect to dn1 for a block at the d2 end of a down chain. A block
which is at the d2 end of one down chain and at the d1 end of a second down

chain can be in additional down chains provided it is the only block in those
chains. No confusion exists in the interpretation of dn1 and dn2, since the

down chains are chased by comparing successive dn1's with d2 (or dn2's with d1).
The chain inclusion count (chain_cnt in the TB) is increased by one every time

a block is threaded into another down chain.

The second row of blocks in Figure 7 shows a main chain whose blocks are included
in down chains based in blocks in the top row. Blocks B1 and B2 are included in
the down chain based in block A1; similarly, B2, B3, and B4 are included in the
down chain based in block A3, Block B2 is in three down chains, those based in

A1, A2, and A3.

- 35 -

2
~ l
X X1 Xn1 Xn1
1 TS — . o iy
e B AEEEE———— 1 A
Xn2 A1 Xn2 A2 Xn2 2

d1 d2 | | d1 d:l g

1 d2
1
XQ _
- iv iy l i
X& <XL——a <—>(£]—1-————h —>(-D'l-'——a #fn']
o2 < Xn2 X2 b= X
B1 fdnt o B2 N B3 . B -
:dEZ < dn2 | —n2 DI V2]

d1 d2 d1 d2
V)
XA!

_x__)l’ L_j L___,_ «—j’»x,ﬂ

1 Xn1 > Xn1 : 1Xp1 >)
Xn2 Xn2 Xn2 Xn2
O 3 S — | D ———— ;
JL—’ \M) n%—* —%n
C G2 C3 C4
Jdn2 dn2 dn2 : dn2

Figure 7. Example of Transaction Block Chaining

NOTES: * e

represents 0

- — — =
|
|

I zero index.

- 36 -

P~

An outer module does not need to be concerned with the effort of chasing mair
or down chains. The following call is provided for chasing both main and
chains:

call tbm$get_chain(tbindex, type,orig,cnt,listptr,cstatus.;

dcl tbindex bit (18); /*sece belowx/

type fixed bin, /*l=downl, 2=down2, 3=mainl, <=main2w*/
orig fixed bin, /*offset, sece belowr/
cnt fixed bin, /*size of return listw/

listptr ptr, /*ptr to listx/
1 list (ent), /*return listx/

2 tbindexl bit (18), /*TC indexx/

2 flags bit (18), /*outer module flags*/

2 status bit (1u4b4), /* transaction Statusx/

2 tberelp bit (18), ~/+TBE relpw/

(18); /*gcet_chain call statusx/

type = 1 or 2 tbindex is the TB index to the base block containing the
down chai ‘o be chased. The down chain is chased from either the d1 end or the
d? end, according to whether type is 1 or 2. For type = 3 or 4, tbindex is an
index of a block in a main chain which is to be chased from that point. The
main chais is chased from either the x1 end or the x2 end, according to whether
type is 3 or 4. orig is the offget from the basic block in numbers of blocks.
ent is tre nunber of blocks whose tbindex (tbindex1), flags, status bit siriug
(status), and TBE relp (tberelp) are wanted. A bit in cstatus indicates whether
or not there are additional blocks in the chain. |If orig = 1, the first block
whose data is returned is the first down or next main block; if orig = N
(greater than 1), the first data reported is from the Nth down or (next+N-1)th

main block; if orig = 0, the first data reported is from the base block itself.

The get-chain call is the only call provided for fetching items in a transaction

block. If data for only one block is wanted, an orig = 0 and a ¢nt = 1 are used.

- 37 -

—~

K. OUTER MODULE CHAINING RESPOPSIBILITIES

tatus

2]

For every outer call received by an outer module for which the returned
indicates incomplete status reporting (status bit 5 equal to zero), the module
must arrange for adequate holding and down-chain-inclusion of all other related

blocks required for future status updating.

L. CALLS TO SET TRANSACTION BLOCK ITEMS
The following calls permit an outer module to set the flags, the TBE relative

pointer, and the transaction status respectively in its transaction blocks:

call tbm$set_flags(tbindex,flags,cstatus);
call tbm$set_tbe(tbindex,tbeptr,cstatus);
call tbm$set_status(tbindex,status,cstatus);

dcl tbindex bit (18), - /*TB iIndex*/.

flags bit (18), /*outer module flags*/
tbeptr ptr, /*TBE pointer*/

status bit (l4k4), /xtransaction statusw/
cstatus bit (18); /*call statusw/

flags is a bit string.to be kept in the block for any use an outer modi:le may
desire. 1beptr is a pointer to the transacticn blocx exte~sion in the per-ioname
segment; the TBM stores the corresponding relative pointer. status is the trans-
action status bit string. When an outer moduie returns to the 1/0 switch, the
switch always calls the TBM to store the status parameter in the corresponding
block. Thus, the outer module itself need not do so; it uses the set_status

call only for updating old status strings.

- 38 -

M, TRANSACTION BLOCK SEGMENT SWITCHING
The following call is used by the Device Manager Process Driver and Dispatcher

to switch the TBS:

call tbmstbs(tbsp,event,cstatus);

" /*pointer to speciai TBS«/
), /*event name for locker*/
18); /*call statusw/

dcl tbsp ptr,
event bit (3?
it

cstatus bi

The TBM normally uses the TBS created for the process-group in which it is called.
The tbm$tbs call causes the TBM to use the segment pointed to by tbsp as a special
TBS. If tbsp is null, the TBM will revert to using the group's regular TBS. The
event is an event name to be used by the TBM in its calls to the Locker. When

operating using the special TBS, TBM calls to the Locker provide event as the

event to be signalled when the TBS is free; the TBM does not wait for the signal

but returns to its caller and indicates in cstatus that the TBS was not available,

N, BUFFER DISCIPLINE

Outer modules which need to hold user data between incoming calls must conform to
a buffering discipline. It should be recalled that only DSM's buffer

data to implement read-ahead and write-behind and that other modules are entitled
to keep only unavoidably read-ahead data. However, certain modules may need to
keep copies of processed output data as a precaution against an error occurring
prior to physical completion of the output. For example, a code conversion

module should keep processed output data until physical completion is indicated.

A data buffer takes the form of a transaction block extension of a block allocated

into the buffer chain based in the PIB., The outer module allocates a new block by

- 39 -

calling tbm$allocate with holdn = 2 to hold the block. When the buffer is no

longer needed, the block is released by calling tbm$reset hold with holdn = 2.

The block along with the buffer (TBE's) will eventually be deallocated auto-
matically. The declaration of the buffer TBE has the form of a standard TBE
(and PIBE).

The standard buffer discipline includes the following standard down chaining.

A1l buffer blocks whose TBE's hold data for a given incoming call are included

in the down chain of the transaction block for that call. The data transmission
involved in an outgoing call (to the next module) can be concerned with only a

part or all of one buffer. All the blocks for outgoing calls corresponding to

a buffer are included in the down chain of that buffer block. This is shown

in Figure % , if the top, middle, and bottom rows are considered to be incoming
call blocks, buffer blocks, and outgoing call blocks respectively. For example,
the TBE attached to block B2 contains data provided by incoming calls corresponding
to blocks A1, A2, and A3; this data was passed on with outgoing calls corresponding

to blocks C3 and C4.

This chaining enables straightforward status updating by starting with the module's
call chain and chasing down to the buffer chain and then down to the outgoing call
blocks. DSM's engaging in read-ahead create buffer blocks prior to the corresponding

read calls; under these circumstances the down chaining from the call chain is not

used,

EXAMPLES OF TBM USE

The examples included herein are intentionally concise to focus on the steps being

- 40 -

demonstrated. In particular, irrelevant but usually necessary intervening code

is simply omitted.

The following is an example of outer module code involved in receiving an outer
call, relaying it, holding, chaining the two call blocks, and returning; minimum

status handling is shown;

tbin = substr(in_status,127,18);

call write(pibp->pib.next_loname,...,statusl,pibp);
call hold(statusl,cstatus);

tbout = substr(statusl,127,18);

call tbm$thread(tbout,tbin,cstatus);
substr(in_status,1,126) = substr(statusl,1,126);
return; :

The following example shows the allocation of a buffer block, the threading of
the buffer block into the call block's down chain, and the allocation of the
TBE (buffer). Writing out the buffer and threading the outgoing call block into

the buffer block's down chain would be similar to the previous example.

tbin substr(in_status,127,18);

bebp addr(pibp=>pib.chain_base.blindex);

call tbm$allocate(becbp,2,tbx,cstatus);

call tbm$thread(tbx,tbin,cstatus);

/*compute any variable lengths for bufthew/
allocate buftbe in (pibp=>pib.iocarea) set (tbep);
call tbm$set_the(tbx,thep,cstatus);

/*copy user's data into buffer»/

The next example shows a general method of updating status. The following is a

declaration for two structure arrays to be used when calling tbm$get_chain:

dcl 1 mlist (N),

2 (tbx,flags) bit (18),
2 stotus bit (lub),

2 tberelp bit (18),

1 list (M),

2 (tbx,flags) bit (18),
2 status bit (144),

2 tberelp bit (18);

- 41 -

The first N blocks in the call chain are chased from the t1 end by issuing the

- following call:

call tbm$get_chain(pibp=>pib.chain_base.tlindex,3,0,N,
addr(mlist),cstatusl);

If there are less than N blocks in the chain, the redundant mlist(i) are set
to zero; cstatus indicates if there are more than N blocks., To chase the down

chain in the i-th block from the d1 end, the following call is issued:

call tbmsget_chain(mlist(I).tbx,l,l,M,addr(list),cstatusZ);

The list(j).status are examined to update mlist(i).status. Such updating for
arbitrary numbers of blocks in these chains is accomplished by using program
loops to repeat the calls when more than N and/or M blocks are present respec-
tively.

P. DSM_INTERFACE

— Typically, an iopath includes a DSM which calls a DCM which calls the GIM.
Synchronization between the user process and the devices
(e.g., read-ahead and write-behind) is implemented by the DSM. On the other
hand, the DCM performs device oriented and device dependent functions. The
functions which must straddle the boundary between the DSM and the DCM are the
queueing of calls to the DCM and the forwarding of calls to the DCM, A1l DSM
functions, except thé queueing and forwarding of calls, are incorporated in the
DSM which is a part of the user's working process-group. Calls to the DCM are
queued in a data base known as the per-ioname-segment (1S). This segment is a
per—ioname data base which contains pertinent information about 1/0 transactions
on that ioname to the transmission of information across the process boundary
between the user working process and the UDMPG; calls to the DCM from the DSM are
queued and updated by another 1/0 system module, the request queuer. The DSM's
per-ioname segment is the common data base between the user's working process

and the universal device manager process group. All calls between the DSM

- 42 -

(in the user ring) and the DCM (in ring 1) can only involve data in the IS.

The information, and space used by the DSM to record the progress of the request,
is placed in a transaction list in the IS, At this point, the list contains
the following information:

Per Transaction:

Status of transaction
Requests issued to carry out this transaction
Associated logical buffers (if any)
Per Device (a transaction may involve more than one device):
Status of device
Physical information
Read pointer
Write pointer
Element size

Next 1/0 name (if any)

When a transaction is completed, final status is reported. The user process

originating the request may ask to be informed of the completion.

As indicated, the DSM is concerned with read-ahead and write-behind buffering,
which results in two DSV functions. First is the transferring of data between
user workspace and the /0 buffers. Second is keeping the read buffer full and
the write buffer empty. The second function involves adding information to the

transaction list when transactions are complete.

- 43 -

The DSM uses information stored in the transaction list to determine if the in-
dicated task is a result of a specific request or the result of a read-ahead

or a write-behind strategy. If the former, the DSM updates the status of the
specific reguest and, if necescary, may 1nitiate or 'ipuate outstanding trans-
actions., This allows s large request to be broker into smaller tasks for the
DCM, As transactions are finished, more are initiated (either logically or

physically) until the original request is satisfied.

If the indication is of a task resulting from a read-ahead or a write-behind
strategy, the DSM updates the pointers to the buffers (which are used in the
PIB (per-ioname base) portion of the IS), and if buffer space permits, places
additional information in the transaction list. Filling and emptying of buffers

is not dependent on user calls to the |/0 system,

Finally, the forwarding of calls from the DCM (via the request queuer and the IS)
is performed by the dicpatcher and the driver, which are 1/0 modules in the
UDUPG, The more elaborate passing of information between the DSM and the DCM

is necessitated because the information must be passed across process boundaries
and across rings; therefore, interprocess communication and ring crossing and
protection must be taken into account. The overall effect of the DCM/DSM inter-

face procedures is the passing of requests for |/0 to the DCM from the DSM,

- 44 -

X. PROCESSING OF DATA WITHIN THE 1/0 SYSTEM

Besides supporting a variety of devices, the |/0 system offers a number of logical
services. These services are implemented by logical service modules, which are
outer modules of the |/0 system. An iopath may include calls to one or several
of these logical service modules. Many of these logical services involve the

representation and handling of data.

A. DATA REPRESENTATION
The 1/0 system logical service modules allow the user to specify his mode of
data representation which may be:

1. Linear

2. Sectional

3. Physical

1. Linear Representation

The basic representation for most users is linear. Every device and medium
supported by Multics |/0 can be used for linear data. In the linear data mode,
the input from a medium such as tape or cards is buffered by the /0 system to
appear as a steady stream of characters, words, or bits., For example, data read
from cards can be read 80 characters at a time, one character at a time, 119
characters at a time or at any set buffer length regardless of the physical

medium's limitation of 80 characters.

2. Sectional Representation
Sectional representation of data superimposes logical record structure on linear
representation. Logical records may be of arbitrary length and may not be

correlated with the physical structure of the external medium. For example,

- 45 -

/‘\

logical bits ranging from one bit to ten or more can be punched into cards and,
when read back as sectional data, can have the physical record suppressed and
logical divisions retained. Logical data may be further divided into hierarchical
groupings. The |/C cvstem provides for treating a single record as separable

into several independent sets of data.

3. Physical Representation

Data in physical form reflects the physical characteristics of the recording
medium. For example, card data in the physical mode occurs in records which are
all the sare length as on a card. The same data read from a typewriter console
arrives as a steady stream without record boundaries, Because of limitations
inherent in handling data in the physical mode, use of this mode should be

avoided wherever possible.

B. LOGICAL DIVISIONS OF DATA

In the data structures (physical, linear, sectional), external data is logically
divided into frames. Frames are further subdivided. |/0 operations such as read
and write manipulate data aggregates and media which are external to the read

and write procedures. A read call must specify explicitly or implicitly where
the data is to be read from; and, likewise, a write call must specify where the
data is to be put., In Multics, read and write calls specify exteinal data by a
two-component address. The first component is a data string specifying a frame
of data; this component may be referred to as the "framename." The second com-
ponent is the "item number." These terms are further explained in the ensuing

discussion.

1. Linear.and Sectional Frames

A frame of data is either linear or sectional. A linear frame is a single
sequence of bits. Its only characteristic is the fact that it is of a given
definite length. A linear frame has no intrinsic structure; however, a struc-
ture may be superimposed upon it to allow for easier handling of data within the
frame. This is done by dividing the frame into a convenient number of fixed-
length elements., An element size (in bits) is declared. 1/0 calls to linear
data specify how much data is to be read, written, etc., in terms of the number
of elements and the declared element size. Note that linear frames are fixed in

length and contain fixed-length elements.

A sectional frame is a collection of data units called records. Each record
has a number, which is a positive integer. Within the same frame, no two
records have the same number. A sectional frame may have a variable number of
variable length records. Sectional frames are also referred to as "logical
record frames." The word "item" is used to denote an element of a linear frame
or a record of a sectional frame. In the two-component eixternal data address
used in an /0 call, the second component is the item number. This item

number determines where within the frame the activity (such as reading or writ-
ing) should be done. The place to be read from or written to may be either
relative to the beginning of the frame (random accessing) or relative to the

current item number (sequential accessing).

Every item in a frame of data has an item number, which is a positive integer.
From the time a frame is attached to the time a frame is detached, the frame

has a current item number.

2. Random Frames
The logical division of data is the same for frames in random access; the method
of access is different. Frames are either random, linear, or sectional and

their structure is as pictured in Figure 8.

1 01010 1 1 LINEAR FRAVE

e —————— e e e

(A string of bits of length n)

(10001 01 1, LINEAR FRAVE DIVIDED INTO ELEMENTS
|
'REC1 (REC2 | SECTIONAL FRAME DIVIDED INTO RECORDS
. - - 4
Elements

and Records
are referred
to as |tems

Figure 8 Pictorial Representation of Frames, Elements Records and |tems

C. DATA DELIMITING

1. Establishing Delimiters .

The user can set a specific element (or character) within a frame of data as the
delimiter that defines the boundaries of the frame and the boundaries of items

within the frame. It is also possible to define elements within a frame as

ignore, erase, or kill indicators, These delimiters are set up by calls avail-

able to the user; in addition, the user may determine previous values of delimiters

set for a frame associated with a particular ioname. The calls that perform these

functions are setdelim and getdelim.

2. Finding Bounds of a Frame

Calls are also available to set a pointer to the bounds of a frame of data associ-

- 18 -

ated with a given ioname. This call is the set call. Conversely, a call, the
tell call, enables the user to find pointers to the bounds of a frame when the

pointers have been previously set by a set call,

D, DATA ACCESS

Random or sequential access is provided for both linear and sectional data.
Random access is provided only to data on random access files or to data in

file system files. Data on tape must be copied to a random access device before

random access 1s feasible,

E. READING AND WRITING DATA

Through logical services, there are a number of ways in which data can be read

or written, First the user can issue read/write calls to read a number

of elements in a given frame or write a number of elements into a given frame

which resides in a given work area. Further, the user can read and write in a
synchronous or asynchronous manner. (Synchronous means control is not returned

to the caller until reading, or writing, has been initiated or completed. Asynchro-
nous denotes that the user wishes to perform read-ahead or write-behind processing.)
The user can also issue calls to the 1/0 system to read and write records for
devices concerned with physical records such as card readers, printers and

punches. Housekeeping type calls enable the user to cause any unread or un-
written data in read-ahead/write-behind processing to be deleted or ignored.

In addition, any read or write request can be cancelled. The calls that provide

/ . . . N
rese read/write facilities are:

CALL

read/write

FUNCT | ON

read/write the specified number of elements

e ——

in a frame of data associated with the

given ioname.

PSS

readsync,;writesync When asynchronous mode is specified, perform
| read-ahead or write-behind processing. With
synchronous mode, reading or writing is in-

itiated or completed before control is re- w

turned to the caller.

|
1
. . . .)
readrec/vwwterec read and write records on unit record oriented;

devices or on magnetic tape.

|
|

figure 9 -Summary of Read/Write Calls

Further modifications of methods of reading and writing of data is possible with
respect to unique device characteristics. For instance, the 1/0 system can be
informed about the location of tab stops, or tab stops can be set whenever this
is a meaningful device attribute. Also the character of the printed output may be
specified for those devices that perform printing. Printed output is specified
in terms of:

1. total lines per page (effective page length)

2. total characters per line (effective page width)

3, number of lines of text per page (a function of text spacing and

length as opposed to effective page lenoth)
L. number of blank lines at the top of the page (origin of text)

5. number of characters to indent (left margin)

F. 1OPATH MODIF [CATIONS

The user can (1) discover information about the iopath created by the attachment
of an ioname; (2) change the iopath, either temporarily or permanently, or (3)
destroy the iopath. For example, it is possible to change the mode of an original

attachment to provide a new diverted iopath or to replace one iopath with a new
- 50 -

iopath. [t is also possible to suspend or resume current |/0 along a particular

iopath, or to restart 1/0 processing after a quit interrupt, By using a series
of trace calls, it is possible for a user to find all the |/0 module names to
which the 1/0 switch would call after a call for a given ioname. The permute tions
of iopath tracinz and modification lead one to conclude that there are at least as

rany waye of changine an iopath as there are positions in the Kama-Sutra.

A brief description of each call, its arguments and its functions, is contained in

Figures ¢ and 10. Generally, all calls are applicable to every outer |/0 module,

with exceptions due to peculiarities of each module.

For example, the tabs and

format czlls are applicable only where printing is involved; similarly, calls

to read or write are not meaningful where devices are write-only or read-only,

respectivelv.

CALL ARGUMENTS FUNCT ION

attach (ionamel,type, ioname2 ,mode,status) | Associates ionamel with a previ-
ously defined name or otherwise
known device specified by icname2.

detach Q1onawe1,io¢ame2,disposa1,statu5) Removes from the given ioname(s)

the association established by a
former attach call. The disposal
argument indicates how reserved
resources (e.g., tape drives and
tape reels) are to be treated

changemode

{ ioname,rode,status)

The mode describes characteristics
related to the attzchment. The
changemode call permits mode changes
for the given ioname. The following
1s a partial list of the mode
possibilities: readable; writeable;
appendable; random or sequential;

1f sequential, backspaceable or
forward only; physical or logical;
linear or sectional.

Figure 10. 1/0 Outer Calls

- 51 -

CALL

1

ARGUMENTS

FUNCT ION

getmode

(ioname,bmode,status)

i

Returns a terse coding (bmode) of
the mode of the attachment specified
for the ioname.

noattach

(ioname1,type,ioname2,mode,statusx
! call with the same 1oname(s) and

Used to prevent a subsequent attach

type from taking effect. This
permits the specified subsequent
call to be replaced by a different
attach call.

readsynch

(ioname,rsmode,limit,status)

For a given valid ioname which has
been properly attached, the readsync
call sets the synchronization mode
(rsmode) of subsequent read calls.
This mode is either synchronous or
asynchronous. Cynchrony means control
1s not returned to the caller until
the read request is physically
started or physically completed,
depending on the workapace synchro-
nization mode (see worksync below) .
Asynchrony means that read-ahead

is possible to the extent permitted
by the limit argument, which gives
the desired maximum number of ele-
ments to be read ahead. The rsmode
default is asynchronous.

writesync

(ioname,wsmode,limit,status)

Sets the write synchronization mode
(wsmode) for a valid ioname. As in
readsync, thic mode is synchronous

or asynchronous.with default synchronous.

worksync

(ioname,wkmode,status)

i

For a given ioname, the worksync call
sets the workspace synchronization
mode. Synchrony implies that control
is not returned to the user until

the 1/0 system no longer requires the
user's workspace (see read and write
below). Asynchrony implies initia-
tion of the call has taken place al-
though the workspace is still in use.
The default wkmode iz synchronous.

Figure 1C. /0 Outer Calls

- 52 =

.cont inued)

CALL

ARGUVENTS

FUNCT ION

read

(ioname, workssace,nelem,
nelemt,status

The read call attempts to read into the
specified workspace the number of ele-
ments (nelem) from the frame specified
by the given ioname. The number of
elements actually read is returned
(nelemt) . Reading begins with the
current item of the frame. Thus for

a linear frame reading begins with

the element pointed to by a read
pointer. Reading is then terminated
by the occurrence of a read delimiter
or by the reading of nelem elements,
whichever comes first. The read
pointer is moved to correspond to the
next element, often the element last
read. For a sectional frame (e.g.,
frame Y), reading begins with the

first element of the subframe (e.g.,. -
frame X) pointed to by the read pointer
for the current subframe (frame X).

In this case, reading is terminated by
the occurrence of the end of the sub-
frame, by the occurrence of a read
delimiter, or by the reading of nelem
elements, whichever happens first.

The current pointer for the frame(Y)
and the read pointer for the subframe
(X) are moved to correspond to the
first element of the next subframe (X').

write

(ioname,workspace,nelem,
nelemt,status)

The write call attempts to write from
the specified workspace, the requested
number of elements (nelem) onto the
frame specified by the ioname. The
number of elements actually written

is returned (nelemt). The behavior

of the write call with respect to the
write pointer is similar to that des-
cribed for the read call with respect
to the read pointer, except that there
is no write delimiter. Thus, writing
begins with the current item of a frame
and continues until nelem elements have
been written.

Figure 10. 1/0 Outer Calls (continued)

- 53 =

CALL

ARGUMENTS

FUNCT 10N

resetread (ioname,status)

éDeletes unused readahead data collected by
i the 1/0 system as a result of the read-

ahead associated with the ioname.

resetwrite (ioname,status)

Deletes unused write-behind data collected
by the 1/0 system as a result of the
wr ite-behind associated with the given ioname.

lowait

(ioname,oldstatus,status)

For an ioname whose workspace synchronization
mode is asynchronous, the iowait call defers
the return of control as if the workspace
synchronization were synchronous. This de-
ferred synchronization applies to the most
recent read or write call for a specified
previous call. The oldstatus argument is the
original status argument returned for the
particular previous call and is used to iden-
tify the previous call uniquely. If oldstatus
1s missing, the most recent read or write
call is implied.

abort

(ioname,oldstatus,status)

Cancels any physically incomplete read or
write. The argument oldstatus has the same
meaning as in the iowait call.

format

(ioname,epl,epw,tsl,
down, indent,status)

The format call is used to specify the charac-
teristics of printed output formatting for the
given ioname. The significance of the arguments
in this call which refer to printing are as
follows: epl - effective page length; epw -
effective page width; tsl - text spece length;
tsw - text space width; down- text space

origin in lines; indent - number of characters
to indent.

tabs

(ioname, tmode,hv,ntabs,

tablist,status)

Used to inform the 1/0 system of the location
of the tab stops on a device where this is a
meaningful concept. The meaning of the argu-
ments applicable to tabs is: tmode - indicates
whether the call is providing tab locations,
requesting that tabs be set, or requesting
that the tab locations be returned to the
caller; hv.- indicates whether horizontal or
vertical tabs .involved; ntabs - indicates the
number of tab stops; tablist - specifies each
tab stop.

Figure 10. /0 Outer Calls

(continued)

- 54 -

e e e e -

ARGUMENTS

FUNCTION

(ionamesrequest,argptr1,argptr2,

status

This call is used for communication
among 1/0 system modules; it may
also be used to set hardware device
modules. The order call issues a
request (request) to outer 1/0
modules., The third and fourth
arguments point to additional
request-dependent data; argptr
points to a data structure con-
taining forward-going arguments,
while argptr2 points to a structure

containing return arguments.

‘getsize

i

i

(ioname,elsize,status)

Returns the current element size
(elsize) associated with read and

write calls for the given ioname.

i

setsize

(ioname,elsize,status)

Sets the element size (elsize) for
subsequent read and write calls

for the given ioname.

setdelim

(ioname, wreaks,breaklist,
nreads,readlist,status)

Setdelim esfablishes elements which
delimit data read by subsequent linear
read calls with the given ioname.
Argument breaklist points to a list of
break characters (containing nbreaks
elements). Each element in breaklist
serves simultaneously as an interrupt
canonicalization and erase/kill delimi-
ter. Break characters are meaningful
only on character-oriented devices.
Argument readlist points to a list of
read delimiters (containing nreads
elements). The new delimiters estab-
lished by this call are in effect until

superseded by another setdelim call.

Figure 10. | /0 Outer Calls
| - 55 -

(cont inued)

CALL

1

ARGUMENTS

FUNCT 10N

getdelim

(ioname,nbreaks,breaklist,nreads, ;

readlist,status)

The getdelim call returns to the
caller the delimiters established
by the most recent setdelim call,
The arguments have precisely the
same meaning as those in the set-

delim call,

seek

(ioname,ptrnamel,ptrname2,offset,

i status)

sets the reference pointer speci-
fied by ptrnamel to the value of
the pointer specified by ptrname2
added to the value of the signed
offset (if the offset is present).
Possible values of ptrnamel and
ptrname2 are listed in the follow-
ing table:

TYPE OF 1/0 PTRNAME1

read
write
last
bound

PTRNAME2

read
write
first
last
bound

linear
frames

current
first
last
bound

current
last
bound

sectional
frames

physical currentrec currentrec

1/0 using last last

readrec and bound first

writerec bound
calls

The seek call is used to truncate
or set the bound of a frame, and

to set read and write pointers,

Figure 10. 1/0 Outer Calls

- 56 -

(continued)

CALL

ARGUMENTS

FUNCTION

tell

(ioname,ptrnamel,ptrname2,
offset,status)

returns the value of the pointer
specified by ptrnamel as an offset
with respect to ptrname2. The ar-
guments ptrnamel, ptrname2, offset
have the same meaning as in the
seek call, As an example, the
tell call may be used to obtain
the bound of a frame:

tell(ioname,bound,first,offset),

getstatus

(oldstatus,cstatus)

used to replace the old outer call
status, oldstatus, by a new (pos-
sibly updated) status using the
same argument. The status for

this call is cstatus, and has
nothing to do with oldstatus. The
getstatus call is not an outer call
but an inner call to the transaction
block maintainer. However, it may
be invoked by the user to obtain
the status of the transaction

uniquely implied by oldstatus,

upstate

(ioname, status)

invokes each module in the iopath
down to the DSM by means of another
upstate call. On return back up
the iopath, each module calls

getstatus to update its status.

hold

(oldstatus,cstatus)

sets the hold1 bit in the holdbit
string on. This is a bit string
in the transaction block; setting
any of these bits ON prevents de-
allocation of the block., The status
of the call is cstatus and is not

related to oldstatus.

Figure 10.

- 57 -

1/0 Outer Calls

(continued)

Y

CALL

ARGUMENTS

i

FUNCT ION

release

koldstatus,cstatus)

resets the hold1 bit set by the
hold call to OFF,

readrec

(ioname, reccount,workspace,
nelem,nelemt,status)

This call is intended solely for
devices concerned with physical
records such as card readers,
printers, and magnetic tapes.

It is accepted by the device con-
trol module for tape and the unit
record device control module. It
is also accepted by DSM's calling
these device control modules when
the device attachment mode contains
a P (physical). The argument
reccount indicates the number of
records that the readrec call rep-
resents. The call is similar to
the read call, except that nelem
and nelemt are arrays of element
counts, and workspace is an array
of pointers to the corresponding

workspace.

writerec

(ioname, reccount,workspace,

' nelem,nelemt,status)

|

similar to the readrec call: write-
rec provides means of writing physi-

cally oriented records,

localattach

|
Kioname1,type,ioname2,mode,
’status

identical to the attach call ex-
cept that the scope of the result-
ing attachment is specific to the
process issuing the attachment

rather than global to the process
group.

localnoattach(ioname1,type,ioname2,status)

identical to noattach except that
the scope of the subsequent attach-
ment to be prevented is local to

the process issuing the call.

Figure 10.

1/0 Outer Calls
- 58 =

{con*inued)

CALL

ARGUMENTS

FUNGCT1ON

divert

(ioname1,newioname,mode,status)

suespends any current /0 on the
attached device specified by
ionamel and allows immediate
initiation of new 1/0 on the
ioname cspecified in newioname.
If ionamel and newioname are

identical, ionamel is renamed.

revert

i (ioname1,mode,status)

reinstales the original attachment
suspended by the previous divert

call.

invert

(ioname,status)

destroys the original iopath for
the ¢iven ioname and destroys
subsequent diverted iopaths,
except for the most recently
diverted iopath. This call is
chiefly used internally by the

1/0 system.

restart

(ioname,status)

restarts input/output for the
given ioname after a quit. This
call is used mainly by the over-

seer,

trace

(ioname,modname,nextlist,status)

provides the module name (given by
the argument modname, e.g., twdsm)
to which the 1/0 switch would
switch as a result of a call to
the given ioname. It also pro-
vides the potential ionames which
could arise in the next call along
the iopath (nextlist).

sequences of trace calls, the

By using

iopath associated with an ioname

may be obtained.

Figure 10. 1/0 Outer Calls

- 59 -

(continued)

XI. FUNCTIONS OF OQUTER I/0 MODULES

~— A, DEVICE STRATEGY MODULES (DSM'S)
Many peripheral and/or terminal devices share common attributes and can
be grouped into classes. Each device strategy module (DSM) in the |/0
system is designed to function for a particular class of devices. For
example, the 1050, 2741, and TTY-37 are similar in some ways; therefore,
a device strategy module can be constructed for handling the features that
these devices have in common. The following types of device functional

characteristics may be collected into a device strategy module:

1) Queueing (/0 requests to a DOM,
2) Read-ahead and write-behind buffering.
3) Conversion of physical records to logical records and

vice versa.

— L) Keeping pointers to the next record or word, or both,
to be read or written.
A DSM exists for every device in the system and the DSM is part of the
the user's working process.
B. DEVICE CONTROL ¥ODULES (DCM'S)
Interfacing with the outer /0 modules (DSM) ard the hardcore 1/0 (GIW) are
a number of modules called device control modules (DCM's), all of which are a
part of the universal device manager process group and all of which are in
ring 1. The contrcl of a particular device is the function of ‘he ICM, and
there is onme DCM for each type of device attached tc the syster. The DCM
converte the device cap.chilities assured by the cther outer | /0 modules into
the aciual capabilities of the device and crea-es the lists of DCW's that are
passed to the GIM. Therefore, the systems programmer who writes the DCM for
—

a particular device rrust know its capabilities and is responsible for assuring

- 60 -

that the DCM sets up the proper DCW's within any list that the DCM may issue.
Since additions and changes are most likely to occur at the device control
level, (e.g., the addition of a new feature on the 1/0 device) DCM's are kept
as small and sinple as possible. In gereral, a DCM is no more complicated
that the Tunc*iors of *he controlled device require. The DCY (and a2lso other
outer 1/0 modules) are not concerned with the corrunication rath between

storage and the | /0 device; this is a function of the GIM.

C. FILE SYSTEM INTERFACE MODULE (FSIM)

The file system interface module is incorporated into the |/0 system to permit
the file system to be treated as if it were an /0 device. The /0 system can
read or write a file using the same logic as it does for reading or writing
from a device. Therefore, along with the GIM, the FSIM is a possible termina-
tion point for an iopath., If data storage requires more than one file, the file
system interface module of the 1/0 system designates a group of files to hold
the data. The important consideration for the user is that |/0 can handle a
file as if it were a device, thus making the files independent of the device
containing them; this concept also dovetails nicely with the file storage
hierarchy scheme where little-used files are on slow devices and frequently-

used files are on fast devices.

To use a file as a device, the following steps are taken:

a. Request for 1/0 action within a file system file.

b. 1/0 calls the file system for the file.

c. If the file is in core or on the drum, the file system satisfies the
request immediately and the file is available to the user to read and write
through 1/0.

d. If the file is on another medium (disc, tape, etc.) the file system must,
in turn, call 1/0 to make the file available.

e. When 1/0 makes the file available, the file can be read or written (as in

"c" above).

- 61 =

X11. HARDCORE 1/0 (GIm)

A. GIM FUNCTIONS

The 1/0 routines that are most directly concerned with the manipulation of the
hardware constitute the GIOC Interface Module (GIM). The GIM is the sole
interface between the GIOC and the 1/0 modules within the universal device
manager process group that are concerned with the operation of devices (DCM's).
The GIM is faced on one side with the hardware present in the GIOC and on the
other side with Multics processes which want to use the GIOC hardware to

control the amount and type of 1/0 activity. Figure 11 diagrams the operations

within the GIM.

The GIM has direct control over the facilities of the GIOC because it is the
GI that interprets the lists of DCW's that define 1/0 activities; creates
channel control information (such as the CIW, COW, and LPW); and places

these created control words, along with the DCW lists, in the proper location
in the GIOC mailbox area, or within the connect, list, or data channels of
the GIOC. Thus the main function includes the proper placement of the DCW's
and DCW lists and the creation of the primitive commands and pointers needed
to activate ard run the channels of the GIOC. The GIM also receives status
words from the GIOC, under direction of the SCW's. The systems programmer
can make calls to the GIM to determine status for the purposes of passing

this information back to the UDMPG and the user's working process.
B. DCM/GIM INTERFACE

The interface between the GIM and the DCM is a list of DCW's which is passed
to the GIM for each 1/0 transaction. The list interface to the GIM provides
a minimum of bother to the GIM user with regard to GIOC idiosyncracies of

absolute addresses, protection, appending, segmentation, etc. also, the list

- 62 -

USER WORK I NG | /0 Request
PROCESS GROUP (Initial or in Response USER RING

to Status Information)

y W Status

DEVICE MANAGER
PROCESS GROUP DEVICE
CONTROL
MODULE RING 1
CW List
(one per
1/0 requesk) 1*} Status
GIOC INTERFACE MODULE

HARDCORE RING

From DCW List and Con-
figuration Information,

determine control words
for GIOC

Procedure to
return
Status
GIOC DATA AND /

DCW AREA

(Buffers for data Status Interrupt

to be transferred Segment nterrup

under control of Handlers

DCW's)

mailbox A 4 v 4 ! Ti
manipu=howr s [LPW' s IPWrd Clwrd cowrd SCW's

lation
HARDWARE STORAGE
To GIOC Ports 4

HARDWARE l l '] I

Figure 11. Outline of GIOC and lts

Functions

- 63 -

interface allows flexibility in operating through the use of a list of DCW's
that can cause the device to perform only the necessary functions that are
needed to perform a particular /0 task, provided the necessary functions are

within the capabilities of the device.

Once the GIM receives a list of DCW's and is informed by the user where to
start in the list of DCW's, the GIM can create a list of LPW's for the list
channels in the GIOC. Also, the GIM determines, from the source of the call

for the 1/0, the type of device requested; i.e., the DCM that called the GIM

is unique to the type of device. The type of device determines which connect
channel within the GIM to use since there are two fast channels and one slow
one, and the slow channel is always used for TTY transmissions. After deter-
mining which connect channel to use, the GIM creates the appropriate pointer
(IPW) to the appropriate connect instruction (CIW) and creates the COW (connect
operand word). When the COW is executed, the channel connection is made and
the pertinent list and data channels are activated to transmit data to and/or
from storage and the device via the GIOC (under control of the DCW's in the

DCW 1ist which was passed from the DCM to the GIM). To activate each list of
DCW's, a single CIW is executed by the connect channel. The |PW queueing
facilities of the GIOC are not used and the connect channel is not allowed to
store status; rather, the GIM observes the connect channel mailbox to see if
the latest CIW has been executed. When it has been executed, a new |PW,
pointed to by a new CIW, can be placed in the connect channel. The channel can
then be reactivated. Because the connect channels are fast and because the

user requests to begin /0 are not queued but are looped in memory by the GIM

until they are serviced, the exhausting of an IPW in a connect channel does

- &l -

not generate an interrupt; instead, the connect channel is almost instantly

reactivated to service another list of DCW's, if one is waiting.

C. STATUS INFOCRMATION AND THE GIM
As stated previously, status words are passed back to the GIM through the
GIOC status channels under control of the SCW's, These status words are

queued within the GIM data area. If an interrupt is gererated (such as by the

receipt of an emergency or a termination status word), the GIM interrupt handler,

a hardcore supervisor module, responds to restore previous conditions and pass
interrupt status return information to the GIM which, when called, will pass
status information back to the device manager process (DCM) for the device
which caused the interrupt. (Subsequently, it is presumed that the status
information will be passed back to the user's working process for appropriate
response, which will probably be the generation of further calls to /0 for
retries, checking, or new 1/0, etc.) in addition, the user (i.e., the systems
programmer) can query status through calls to the GIM., One call:

get_cur_status
gives the current position of the pointer (LPW) to the list of DCW's, which
tells the user how far along the particular |/0 request has progressed. This
is the quickest and cheapest way of determining status, Another call for
status:

get_status
causes the status list to be serviced in its entirety. While the user "pays
something" to get this information, it may be desirable to keep the user's
status information from being overwritten, or it may be necessary to determine
the occurrence of some significant event, such as the completion of a read or

write of a block of data.

- 65 -

D. HARDCORE 1/0 SYSTEM DATA BASES
Data bases and structures within the GIM are divided into two categories,
system-wide data bases and per-device data bases. System-wide data bases are

used throughout the GIM as well as by the hard-core |/0.

1. Static Storage

Many system parameters relevant to GIOC operation throughout the GIM reside
in a static storage segment, hcio_stat_. These values are set at |/0 system
initialization time and are never altered except. for dynamic reconfiguration

(e.g., add a GIOC to the system) or system experimentation.

In addition, hcio_stat_ contains all the equivalences between synbolic errors
detected in the GIM (e.g., system or machine error) and the error code returned

to the user.

2. Channel Assignment and Status Table (CATCST)

The channel assignment portion of the CATCST contains information relating
each GIOC and device to the Multics configuration. The CAT serves as a general
index to most of the GIM data bases and devices and serves a fundamental role

in the operation of the GIM,

All status is kept in hardware queues until called for or overwritten. The
CST portion of the CATCST contains information about the hardware status queues

and about some hardware interlocks.

3. GIOC Mailbox Areas
The GIOC mailbox areas are the heart of the GIOC operation. It is within these
areas that the GIM reserves complete license for manipulation. The implementa-

tion of the GIM requires one distinct mailbox segment for each GIOC attached

- 66 -

in the Multics configuration. Initial implementation of the GIM has given

the name "gioc_mbxN" to these segments. N covers the range 1, 2, ..., "ngiocs."

~
Suitable declarations for the GIOC mailbox areas are shown below.
dcl 1 mailbox based(p),
2 scw(0: 3), /% the 4 status channels ¥/
3 scwa bit(36), /% word a */
3 scwb bit(36), /* word b, the active one %/
2 x(4) bit (72, /% L unused boxes */
2 cpw(0: 2) bit(72), /* connect channel pointer words *
2 x1(3) bit(72), /* 3 unused boxes */
2 data(7: 2047), /% data channels */
3 lpw bit(72), /* list pointer word */
3 dew bit(72), /% DCW mailbox */
4. GICC DCW Area
Since the GIOC does not have a counterpart to the 645 processor appending hard-
— ware, the DCW's necessary for driving the devices attached to a GIOC must re-
side in core in a manner reminiscent of absolute programs. That is, the DCW
area must be a wired-down segment that is either unpaged or paged contiguously.
The GIM is responsible for allocating and freeing space within the area so that
a user's DCW's may be placed in the area and released after they are no longer
needed.
5, GIOC Data Area
In the same spirit as the GIOC DCW area, a wired-down segment is needed for a
user's data buffer area. On all |/0 instructions involving writing, the user's
write buffer is first copied by the GIM into the GIOC data area. Subsequent 1/0
via the GIOC writes the data onto the appropriate device. Similarly, on calls
involving reading, the GIOC initially places the data in the GIOC data area.
Subsequent actions of the GIM copy the data into the user's buffer area. The
—~

GIOC Data and DCW areas are the same segment, gim_abs_seg.

- 67 -

6. Channel Copy Table
This table is a per-device table which gives information about DCW 1ists,
especially data areas allocated and user's buffers into which he wants real

data copied.

X111.GI0C
A. GEI'ERAL
The GIOC controls the data transfers between the 645 processor and the many
types of devices attached to the operating system. The GIOC hardware consists
of a controller and a combination of adapters to suit the 1/0 devices. All the

components of the GIOC can operate simultaneously.

The various types of adapters in the GIOC are independent units which can be
installed to fit the requirements of the peripherals and terminals. The
adapters contain one or more data channels which provide an interface between
the GIOC and the peripherals and/or terminals. The adapters also contain list

channels which provide information to direct the operation of the data channels.

The GIOC controller is connected with hardware interface ports to storage.

The controller receives information from either storage or from a device adapter
and responds to the information to direct the performance of the input/output
operation. The controller contains three connect channels which can activate
channels in any adapter. The controller provides access to storage for all the
channels in the GIOC. In addition, the controller stores the status of the

various 1/0 operations from the status channels in the GIOC status queues.

Figure "2 illustrates the organization of the GIOC, the channels associated

internally in the GIOC, and the control words handled by these channels.

- 68 -

GI0C MAILBOX OTHER STORAGE
SCWO LFWO DCWO IPWO CIWO COWO
: : : IPW, : :
?CW:~j L?mn DCWn IPW2 CIWn COWn
Ports to and from Storage
A B C E F G_# H

i |

:

Status Channels
(Contents = Storage Address

Eg”?ml GIOC CONTROLLER
gic
4 E‘ 7 q: 811 2111
Priority
Logic Connect Channels

(Contents = Storage Address of IPW)

of SCi) i

Adapter

Interface
3i v lzf Adapt Adapt
Additional channels to n apter apter
where n < 4095. Dat

List Channels C: a List Channels Data Channels
annels
LPW DCW LPW > DCW
Address M Address Address @M Address |

LPW

Address

>
»
> DCW LPW | LPw |
e Address Address jgp] Address

Figure 12 GIOC - Internal Organization

- 69 -

8. CHANNELS AND CONTROL WORDS
1. Types of Channels

A GIOC channel is a controlled path between a source and a destination through
which 1~formatior car flow. Four types of channels are used in the operation
of the 510C; these are: connect channels, status channels, data channels

and list channels (see Figure 11).

Connect channels control the transfer of instructions {in the form of Channel
Instruction Words) to data channels to start individual 1/0 operation. The
operating system arranges the Channel Instruction Words in a lict in storage.
A connect instruction issued by the operating systen (as a result of a read/
write call) initiates the operation of a connect channel in the GIOC. A con-
nect channel contains Channel Instruction Words which can activate any list

channel.

Status channels control the transfer of status information from any data chan-
nel, list channel, or connect channel to storage. The status channels arrange
the status words in sequential lists in storage. There are four standard status

channels; these status channels are part of the GIOC.

Data channels control data transfers between storage and peripheral devices

or terminals. There is one data channel for each peripheral substystem or
communication line connected to the GIOC. Each data channel provides the nec-
essary buffering and hardware to control the attached device. Because of the
diverse requirements for interfaces and for buffering, there are a number of
different types of data channels. All data channels are half duplex; two data
channels are required for full duplex operation. FEach data channel is a part
of a specific adapter within the GIOC. The number of data channels in the GI0C
is determined by the overall configuration and requirements of the per ipheral

and communication lines.

- 70 -

List channels obtain data control words for subsequent control and operation
of the data channels after they have been initialized. The operating system
arranges the data control words for each 1/0 operation in a sequential list in
storage. A list channel is associated correspondingly with each data channel.

All list channels are adapter channels.
2. Control Words

Each chanrel has one or more control words associated with it; the control
word directs the operations of a channel when information is being transferred
between the GIOC and storage. This control word may residg in a "mailbox",
which is a specific storage location. The mailbox, and consequently the
control words, are accessed by both the GIOC and the processor. A specific
type of control word is normally stored in the mailbox for each type of chan-

nel. These are:

CHANNEL TYPE CONTROL WORD TYPE

Connect Channel Instruction Pointer Word (IPW)*
List Channel List Pointer Word (LPW)

Data Channel Data Transfer Control Word (DCW)
Status Channel Status Control Word (SCW)

Additional control words are used by the GIOC but are not stored in the mail-
boxes; these are:

Connect Operand Word (COW)

Channel Instruction Word (CIW)

3. Direct and Indirect Channels

In preceding text, GIOC channels have been classified and described according

to type; the channels can also be classified as either indirect channels or

* The IPW is referred to as a Connect Channel Word (CCW) in other literature

about 1/0. This document uses the IPW terminology
- 71 -

direct channels in accordance with the place of residence of the control
word associated with the channel. All connect channels, status channels,
and list channels are indirect channels. All data channels are classified
as peripheral (which can be direct or indirect) or as communication (which

are indirect).

The control word for an indirect channel resides in a mailbox in storage. The
channels are called indirect because each channel addresses storage indirectly
through its mailbox. Indirect channels have sufficient capability to keep

communication lines or peripheral equipment, such as card readers, card punches

and prirters, operating at full speed.

The control word for a direct channel resides in the channel. These channels
are called direct channels because each channel addresses storage directly

by means of the control word residing in the channel itself. Only data chan-
nels can be direct channels. Because of high transfer rate capabilities,
direct channels are used for high-speed peripheral equipment, such as discs

and magnetic tapes.
4. Control Word Functions
a. Connect Operand Word (COW)

The connect operand word is the word referenced by the operand portion of
the connect instruction issued as the result of a read/write call in the
operating system. The GIOC controller interprets the COW to determine, first,
the value of the port number field (which must be placed in the COW previously
by the cperating system). This number determination causes the COW to be sent
through the specified storage port to the GIOC. The GIOC ‘also interprets
the COW to determine:

1. Which connect channel is to be activated.

- 72 -

2. Whether the GIOC should be in test mode or in normal mode of
operation (the mode is always normal except for hardware test and
diagnostic programs).

k. Instruction Pointer Word (IPW)

The mailbox for each of the three connect channels contains an IPW. The [PW
controls the transfer of channel instruction words to the adapter by providing

a pointer to a list of these channel instruction words.
c. Channel Instruction Word (CIW)

The CIW is the word referenced by the IPW. Since the CIW is interpreted by the
GIOC adapters, the format for the CIW varies according to whether it is to be
interpreted by a peripheral adapter or interpreted by a communication adapter.

A peripheral CIW specifies the operation code and device number; a communications
CIW must indicate which data channel is to respond to the data transfer instruc-

tion and give coded details as to how the data channel is to respond.
d. List Pointer Word (LPW)

The mailbox for each list channel contains an LPW. The LPW points to a list
of DCW's which are to be used by the associated data channel. <the LFW also

controls the transfer of these DCW's to the data channel (if it is a direct

data channel) or to the mailbox of the data channel (if it is an indirect

data channel).
es Data Transfer Control Word (DCW)

The control word that directs data transfer across the GIOC to and from sto-
rage and the devices is called the data transfer control word (DCW). Infor-
mation specified by the DCW includes the location ard size of the data area.
The number of DCW's used for an 1/0 operation may be 1, 2, ... n (where n =

up to 4096).

- 73 -

The DCW's for an |/0 operation are in contiguous storage locations, thus forming
a list. The DCW being used resides in the data channel mailbox. The LPW speci-
fies he location of the next DCW and how many more DCW's are fo be processed.
The |,0 cperation terminates when the LPW tally runs out, unless something

a:pers “< cause zn ea-lier termination.

The mailbox for each indirect data channel contains a DCW when that data channel
is involved in an |/0 operation. Direct data channels hold their own DCW's

and use the mailboxes only for the LPW's,

Come comm:nication line remote terminals have special needs for information on
the line, especialiy at connection time. Appropriate DCW's exist for these
special conditions, for example, a literal DCW for transmitting a specific bit
configuration repetitively. In this case, the DCW does not specify a storage

location but a bit configuration to be transmitted and the number of times to

transmit it.

The various types of DCW's for both direct and indirect channels are listed in

the charts in Figure 13 which summarizes all the control words used by the

G10C.

-7 -

Cortrol

T

-75 -

Function Location Used By - Remarks
~ Hord - — L R, N
COwW Gives value of': Placed in when {GIOC Con- " Referended by
1. Port between storage and| the connect in- troller. | operand por-
GIOC whizh is to be used.| struction is | tion of G4°
. Which ccr ect charnel to| transmitted 1o connect
activate { the GIOC. | instruction.
Whethe- Z1CC 1s to ke inj
test ¢ ~ormal mode. -
I S
[PW Points to CIW. Mailbox for a :Cornect
connect l'channel.
!
charnel.
Clw ‘Contains: Current one is ! GIOC pe- Referened by
(peri- Peripheral operation code. in mailbox for | ripheral IPW.
'pheral) Devi i a connect chan-{ adapters.
evice number. , !
nel. CIW's are
kept In a list.
CIw ' Indicates which data channel Mailbox for a | GIOC cor= | Also referenced
(commu- is to respord; gives coded connect municatiors; by IPW.
rnbftMnQ details as ic how data chan- | channel. adapters.
nel is to respond.
LPW Points to a list of DCW's; Mailbox for a | GIOC data
~— controls transfer of DCW's data channel. | channels
by pointing to next DCW by (both
counting the number of DCW's direct and 5
| remaining in the current indirect.) :
| list.
Normal Controls nor~al data transfer | Mailbox for Indirect DCW Type 000.
DCW | and sets certain special indirect data | data
modes of operation. channels. channels.
Control|Controls data transfer when it| Mailbox for Indirect DCW Type 001.
Charac-| is desired to detect the indirect data | data
ter DCW| receipt of a specific charac-| channels. channels.
ter or class of characters.
Tally |Controls data transfer when it| Mailbox for Indirect DCW Type 010.
Match is desired to provide special|{ indirect data | data
DCW indication that a specific channels. channels.
nurber of characters have
beer transferred.
;'ﬁansfériUsed % transfer corntrol from [Mailbox for Indirect DCW Type 011.
iDCW one DCW to another DCW. indirect data
channels. ! channels.
— Figure 13. Summary of Control Words Used by GIOC

‘Contr=l

o Function | Location Used by Remarks

Word ‘

Irstruc- llsed to issue instructions| Mailbox - Indirect DCW Type 100.

tion DCNlto data charnels at pre- for indi- data
Iplanned points in the data| rect channels.|

| itransfer seajuence. charnels.

Literal !Used to define a specific | Ma'ilbox Indirect | DCW Type 107.

|DCW {~haracter which 1s to be for data

« transmitied a :zpecified indirect | channels.
number of tires (including| channels. !
start and stop bits where
applicable.)

DCW (for|Directs normal transfer of | In the Direct Direct DCW lists are

direct |data, gives starting and direct data pointed to by an LPW

channels) termination information on| data channels{ word in the data chan-
data locations, etc. The | channel. nel mailbox.
DCW for direct channels
varies Iin information and
fcimat depending on the
nature of the attached
device.

SCW Controls the transfer of Status Status A corresponding type of]
status information (in the| channel channel.| status word is normally
form of status words) back| mailbox generated each timea
to storage where the sys- area. status event (change)

tem can make use of this
information and/or take
required |/0 action.

Y

i

occurs; these are:

- Terminate status for
peripheral data
channels.

- Terminate status for
communications data
channels.

- Exhaust status for

per ipheral data

channels.

Exhaust status for

communications data

channels.

Exhaust status for

connect channels.

External signal.

Internal sigral.

Emergency.

Figure 13. Surmary of Control Words Used by the GIOC (continued)

- 76 -

C. 1/0 HARDWARE/SOFTWARE INTERFACE

The hardware in the CI10C interacts closely with the scftware of the operating
system. The features of 1/0 data transfer (such zs indicating where the data

ic lecated, hcw much data is to be transferred, what devices are 1o be used,

ard hov ihe data ic ‘o be transferred) are built irto the GIOC hardware so

that the hardware can act, under the direction of control words, to alleviate

the user to the bother of specifying the numerous details of 1/0 operation to

the system. The GIOC handles a vast variety of device (in fact, every peripheral
or communication device in the Multics configuration with the exception of the

drum) . Thus, the GIOC presents a degree of symmetry in the interfaces between

the verious hardware devices and the software processes of the Multics system.

The general schere of performing an input/output cperation is as follows:
1) Control words (DCW's) are set up in memsry.

2) The operating system issues a connect instruction, as a result of
an 1/0 call.

3) The GIOC fetches the control information from s jtorage (i.e., the

mailbox area and the IPW) to ascertain what activity it should direct.

4) The data transfer takes place. Individual control words (DCW's) are

used to control each transaction.

5) When the data transfer is complete, the GIOC obtains or builds status

information from the channel and stores the status (using SCW's).

6) The memory module sends a signal to the processor, setting an interrupt

cell so that the |/0 device may be serviced.

- 77 -

