fe

MULTICS HASP SERVICE
AND UTILITY MANUAL

SUBJECT
Description of Multics HASP Workstation Facility

SPECIAL INSTRUCTIONS

Users of this document should be familiar with certain Multics tables and
master files. Refer to the Preface for a list of related documentation.

SOFTWARE SUPPORTED
Multics Software Release 10.2

ORDERNUMBER
GB60-00 October 1983

Honeywell

PREFACE

This manual is intended for system administrators, site support personnel, and
system operators. It contains information necessary for setting up a HASP workstation,
using the Multics system as the host or as a workstation simulator.

Section 1 is a brief introduction. Sections 2 and 3 contain configuration
information for communications and input/output, respectively.

Sections 4 and 5 deal with operation of the workstation; Section 5 contains the
daemon driver command descriptions.

Section 6 documents the hasp_host_ and hasp_workstation_ 1/0 modules.
Section 7 describes testing procedures.

Section 8 provides a short "checklist" in which the main points for setting up
your HASP facility are repeated.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

© Honeywell Information Systems Inc., 1983 File No.: 1LS3, 1US3 GB60-00

(13

o~

* Setting up HASP requires access to privileged system files and tables. You may
need to refer to the I/0 daemon tables and daemon driver information in the Mu/tics
Bulk 1/0, manual Order No. CC34. The Multics Administrator's Manual (MAM)
Communications, Order No. CC75, contains helpful information on the channel master
file. You should be familiar with the information in the Mu/tics Programmer’s
Reference, Order No. AG91, especially concerning the terminal type table. Finally,
some routine procedures mentioned are described fully in either the MAM-System,
Order No. AKS50, or the MAM-Project, Order No. AK51.

iii GB60-00

CONTENTS
Section 1 Introduction 1-1
Section 2 Administrative Setup - Communications 2-1
The FNP Core Image 2-1
FNP Hardware Requirements 2-2
Configuration Requirements 2-2
Definition of HASP Channels 2-3
Major Channel 2-3
Subchannels 2-4
Multiplexer Terminal Types . e e e e 2-5
Data Translation 2-8
FNP Space Requirements 2-9
Space Requirements in tty_buf 2-9
Subchannel and Multiplexer Channel Static Data

Requirements 2-10
Calculation of Static Storage in tty_buf 2-11
Dynamic Storage in tty_buf 2-11
HASP 1/0 Buffer Space 2-11
ACS Segmentso, 2-12
Section 3 Administrative Setup - I/O Daemon 3-1
I/O Daemon Table:.. 31
Workstation Structure - Multics as Host 3-1
Sample iod_tables Definition 3-2
Device Statement and Substatements 3-3

args Statement Keywords 3-4

Minor Device Substatements 3-4
minor_args Statement Keywords 3-4
Request_type Statement and Substatements . .. 3-5
Workstation Structure - Multics Simulating Workstation 3-5
Definition of a HASP Workstation Simulator 3-6
Sample iod_tables Definition 3-7
Device Statement and Substatements 3-8

args Statement Keywords 3-8

Minor Device Substatements 3-9
minor_args Statement Keywords 3-9
Request_type Statement and Substatements . .. 3-10

Request Type Info Segments 3-11
Syntax For The Request Type Info Source Segment 3-12
Example of a Request Type Info Source Segment . 3-14
Steps After Editing 1/0 Daemon Table 3-15
Section 4 Operating a HASP Workstation 4-1
Workstation Initialization 4-1
Simulator Initialization 4-2

iv GB60—-00

[}

"~

Section 5 Commands for Device/Drivers 5-1

auto_quele e e e e e e e e e 5-1
auto_start_delay 5-2
banner_bars 5-2
banner_type 5-3
cancel 5-3
Clean_pool uuv.u... 5-4
COPY vt i e e e e e e e e e e e e e e 5-4
ctiterm 5-4
defer 5-6
defer_time 5-6
B0 . e e e e e e e 5-7
halt 5-7
hasp_host_operators_console (hhoc) 5-8
help 5-9
hold 5-10
inactive_limit 5-10
Kill ... 5-11
logout 5-11
new_device 5-11
next e e e e e e e e e e e e e e e 5-12
paper_info 5-13
pause_time 5-14
print 5-14
prt_control 5-15
punch 5-16
pun_control 5-16
read_cards e 5-17
ready e 5-17
TECEIVE e e 5-18
reinit 5-18
release, 5-19
Teq Statls i .. e e e e e 5-19
request_type (rqt) 5-20
Testart e e e e e e e 5-20
Tunout_spacing 5-21
sample 5-22
sample_form 5-22
sample_hs 5-23
SAVE L L L e e e e e e e e e 5-23
sep_cards e e 5-24
single e, 5-25
] o 5-25
station 5-25
Status e e e e e e e e e 5-26
) 5-27
. 5-27
Section 6 I/OModules 0. ... 6-1
hasp_ host_ 6-1
hasp_workstation_ 6-10
get_device_type Control Order 6-16
Section 7 Test Mode 7-1

Setting Up the Test Directory 7-1

Manipulating Requests in the Test Queues 7-1

The Test Process v v v v vt v v v v v o 12

Setting Breakpoints 7-3

Sample exec_com File 7-3

Test Mode Commands 7-4

Section 8 Checklist v i i i ittt e et e e e e 8-1
Index e e e e e e e e e e e e e e e e e e i-1

vi GB60-00

(A3

SECTION 1

INTRODUCTION

The HASP (Houston Automatic Spooling Processor) communications protocol is
used primarily for remote-job-entry (RJE) tasks. The Multics system can be configured
to operate as a host system, communicating with a remote workstation. The remote
workstation is usually an RJE terminal with an operator’s console and one or more card
readers, line printers, and card punches. Alternatively, the Multics system can be
configured to simulate a workstation, communicating with a remote host system. Either
way, Multics users can request that job decks be transmitted to the host system for
execution and returned to the workstation for printing/punching or online perusal.

The HASP communications protocol is supported by the demultiplexing features of
the Multics Communication System. This mechanism allows each device of the remote
workstation, or each simulated device when Multics is the workstation, to be controlled
independently by separate processes. HASP channels, like all communications channels,
are defined in the Channel Master File (CMF). The Multics host or workstation
requires an entry in the CMF configuring a HASP multiplexer channel. Each device of
the workstation, whether Multics is the host or the workstation, also requires an entry
defining its channel (device channel) as a slave channel, a separate subchannel of the
HASP multiplexer channel.

A process using a device channel attaches that channel through either the
hasp_workstation_ 1/0 module (when Multics is the host) or the hasp_host_ 1/0
module (when Multics is the workstation). These I1/0 modules are described in
Section 6.

In order to use HASP and actually submit jobs from the workstation, you must
first make several decisions and perform the tasks necessary to support them. The bulk
of the work lies in modifying the CMF and 1/0 daemon table. The following sections
describe the necessary steps required in setting HASP up for use. Much of the
groundwork is the same, regardless of whether the Multics system is acting as host or
as workstation. Differences are described when the setup diverges.

1-2 GB60-00

A3

SECTION 2

ADMINISTRATIVE SETUP - COMMUNICATIONS

THE FNP CORE IMAGE

The Front-End Network Processor (FNP) software manages the physical communications
channels and the synchronous HASP protocol. Thus, support of the HASP communications
protocol requires that the proper software be loaded into the FNP supporting the
remote workstation terminal or remote host system. The first step is to bind the two
modules, bsc_tables and hasp_tables, into the core image before the FNP is loaded. The
bsc_tables module takes control of the HASP multiplexer channel when the FNP is told
to listen to it. As the HASP muitiplexer is loading, it notifies bsc_tables to use
hasp_tables to help with the line protocol.

Details for binding bsc_tables and hasp_tables into the core image are provided in
the MAM Communications, manual "FNP Core Images" in Section 6, and map355 and
bind_fnp command descriptions in Section 7. The following is a brief recapitulation of
the process.

If the source segments, bsc_tables.map355 and hasp_tables.map355 do not already
have object segments:

1 Produce an object segment for each via the map355 command.

2. Extract any other needed object segments for the FNP from the object
archives into the working directory. For the DN6678 series FNP with
more than 64K memory, the object archives are in the >ldd>mcs>object
directory. For any other FNP, the object archives are in >ldd>355>object.

3. Modify the bindfile to include the two HASP modules and use the
bind_fnp command to produce the core image segment to be loaded.

2-1 GB60-00

4, Copy this core image to the place in the storage hierarchy described by
the image pathname in the Channel Definition Table (CDT), or change
the specification of the core image pathname in the CMF’s FNP entry.

FNP Hardware Requirements ‘

HASP runs on any of the FNP models, DN355, DN6632, and DN6678. The only
special hardware requirement is a bisync board (not sync, as might be supposed for a
synchronous protocol). The option numbers for this hardware for the DN355 and
DN6632 are:

DCF6015 single channel bisync up to 9600 baud, over voice-grade lines

DCF6055 single channel broad band bisync, 9600 to 50000 baud, over
conditioned data lines (usually hardwired)

For the DN6678 series FNPs:
DCF6618 dual channel bisynch up to 9600 baud, over voice-grade lines

DCF6621 dual channel broad band bisync, 9600 to 72000 baud over
conditioned data lines

CONFIGURATION REQUIREMENTS

If you are using the Multics system as a host, the HASP situation is much like
that when Multics communicates with any other RJE station. The HASP protocol simply
allows separate process control of each workstation device by providing multiplexing and
demultiplexing of the data transmission. You must define the configuration of the
workstation: the number of card readers, line printers, and card punches. An operator’s
console must also be configured, although the central system operator must enter all
commands needed to control the I/0 daemons driving the devices.

The basic rules are:

° You must configure one operator’s console

° You can configure a maximum of eight card readers

. You can configure a combined total of eight line printers and card
punches

I~

If you are using Multics as the workstation, the device configuration rules are the
same; Multics simulates these devices. However, the simulated operator’s console is used
to establish the identity of the workstation with the remote host. It can subsequently
be used to control the operation of the workstation, request status on jobs executing on
the remote host, and examine the queues of output files waiting for transmission to
Multics. The Multics workstation configuration must additionally meet any requirements
of the remote host.

DEFINITION OF HASP CHANNELS

Whether Multics is acting as host or workstation, you need to define a HASP
multiplexer channel in the CMF. A sample excerpt from a CMF is shown below. The
comments show the correspondence between the multiplexer hierarchy defined in the
CMF and the workstation configuration.

name: a.h014; /* the workstation itself */
service: multiplexer;

multiplexer_type: hasp;

line_type: BSC;

baud: 4800;

terminal_type: HASP_WORKSTATION;

name: a.h014.opr; /* entry for operator’s console */
service: slave;

name: a.h014.rdr1-a.h014.rdr3; /+ entry for 3 card readers */
service: slave;

name: a.h014.prtl-a.h014.prtS; /* entry for 5 line printers */
service: slave;

name: a.h014.puni; /* entry for 1 card punch */
service: slave;

The above configuration defines a remote workstation with an operator’s console,
three card readers, five line printers, and a single card punch.

Major Channel

In the CMF, the specified name of the major channel (e.g., a.h014) is the unique
channel name of the form x.hNNN, where x is the FNP identifier, hN is the
high-speed line adaptor identifier (h0, hl, or h2) and NN is the two-digit channel
number identifying a subchannel of the specified HSLA.

2-3 GB60—-00

For the major channel, the service (multiplexer), multiplexer_type (hasp), and
line_type (BSC) must be specified exactly as shown. The baud statement specifies the
baud rate of the channel. Baud rate must be compatible with the FNP line adapter
type and can be: 2400, 4800, 7200, 9600, 19200, 40800, 50000, or 72000. The
terminal_type, whose name is arbitrarily chosen, is used to distinguish between a
connection to a remote workstation and one to a host and to specify options controlling
the connection. These options are specified in the Terminal Type File (TTF) where the
terminal type, only named here in the CMF multiplexer entry, is actually defined.
Since the standard Multics TTF contains no HASP multiplexer terminal types, you must
name and define your own. That is described below in "Multiplexer Terminal Types."
In this manual’s examples, the terminal_type names chosen indicate what Multics is
"talking to," i.e., Multics is acting as host system in the example above and "talking to"
a HASP workstation. This convention is followed wherever discretionary names are
allowed.

Subchannels

The names of the subchannels (a.h014.*) must be created according to the
following rules:

° An operator’s console must be included in every multiplexer. The console
is the subchannel whose final component name is "opr."

° A maximum of eight card readers are permitted. A card reader is a
subchannel whose final component name is of the form "rdrN", where N
is a single digit between one and eight.

° The combined number of line printers and card punches must not exceed
eight. For example, a multiplexer may have eight line printers and no
card punches, or three line printers and five card punches; however, a
multiplexer cannot have five line printers and five card punches. A line
printer is a subchannel whose final component name is of the form
"prtN", where N is a single digit between one and eight. A card punch
is a subchannel whose final component name is of the form "punN",
where N is also a digit between one and eight.

NOTE: Due to a restriction in the HASP communications protocol, a
multiplexer cannot contain a line printer and card punch whose device
addresses total nine. For example, "prt4" and "pun5" can not be
configured in the same multiplexer.

You must specify a service type of slave for every subchannel that
an I/0 daemon driver directly attaches.

2-4 GB60-00

The MAM-Communications manual gives a detailed description of the CMF.

Once you have made the required entries to the CMF:
1 Convert the CMF to the CDT via the cv_cmf command.
2. Install the resulting CDT via the install command.

If you edited the FNP entry’s image pathname in the CMF, this new CDT allows the
FNP to use the new core image the next time the FNP is loaded, either automatically
at system startup or by means of the load_mpx operator command.

MULTIPLEXER TERMINAL TYPES

All terminal types, including multiplexer terminal types, are defined in the TTF.
The following describes how to define the HASP multiplexer terminal type.

The Multics HASP support must distinguish between communicating with a
workstation and a host. Additionally, the software must also be aware of certain
characteristics of the communications channel (e.g., maximum message block length,
maximum negative acknowledgments).

The configuration information and specification of options for a HASP multiplexer
channel is supplied by using the value of the additional_info keyword of the
multiplexer channel’s terminal type. The additional_info value is formatted as a series
of parameter assignments, separated by spaces or commas. Each parameter assignment
has the following form:

<parameter_type>=<parameter_value>

A sample TTF entry for a multiplexer terminal type (named HASP_HOST here,
indicating Multics is simulating a workstation) might appear as follows:

terminal_type: HASP_HOST;
additional_info: 'type=host, block_size=512, signon_mode=no'';

The complete set of parameter types and values that can be specified for
additional_info is shown below (defaults are provided for all omitted parameters).

type:
value:
default:
meaning:

type:
value:
default:
meaning:

type:
value:
default:
meaning:

type:
value:
default:
meaning:

type:
value:
default:
meaning:

type
workstation or host

workstation

specifies whether this multiplexer is connected to a remote
workstation when Multics serves as host (type=workstation), or a
remote host when Multics simulates a workstation (type=host).

block_size
400 through 1017
400

specifies the maximum block size, in characters, used by Multics
for all messages transmitted on the multiplexer channel. When
Multics simulates a workstation, you must choose a block size
compatible with the host system’s requirements.

signon_mode

yes or no

no

when connecting to a remote host, specifies that Multics must
transmit a SIGNON control record to identify Multics to the
remote host before any data can be transmitted; this parameter is
ignored when connecting to a workstation. See "Definition of a
HASP Workstation Simulator” in Section 3.

multileave_mode

yes or no

yes

specifies that blocks transmitted by Multics can contain records
from more than one device. This parameter may need to be "no"
for communications with some workstations (e.g., the workstation
cannot accept a block containing records for two printers
simultaneously).

suspend_all_mode

yes or no

no

specifies that when Multics wishes to temporarily stop input for a
specific device (flow control), the system will instead request that
all input be suspended. This parameter may need to be "yes" for
communications with some workstations (e.g., an IBM System/370
running the HASP workstation simulation option of RSCS under
VM/370).

2-6 GB60-00

type:
value:
default:
meaning:

type:
value:

" default:
meaning;

type:
value:
default:
meaning:

type:
value:
default:
meaning:

type:
value:
default:
meaning:

rts_mode

yes or no

yes if type=host; no if type=workstation

specifies whether Multics requests permission (request to send)
from the remote host or workstation before transmitting data on
other than the operator’s console.

connect_timeout

1 through 60 or none

30

when connecting to a remote host, specifies the period (in
seconds) to attempt the initial connection sequence after the
physical connection is established; when connecting to a remote
workstation, specifies the period to wait for the initial connection
sequence after the physical connection is established. If the string
"none" is used, the multiplexer either awaits or sends the initial
connection sequence indefinitely as appropriate. It is recommended
that you specify "none" for a hardwired connection (no operator
intervention).

receive_timeout

1 through 60

3

specifies the period (in seconds) to wait for a message to be
received from the remote workstation/host before assuming that
the last block transmitted by Multics was lost and should be
retransmitted.

transmit_timeout

1 through 60

2

when connecting to a remote host, specifies the period (in
seconds) for the FNP to wait for a block from Multics to be
transmitted before automatically acknowledging the last block
received from the host; this parameter is ignored when connecting
to a remote workstation.

max_naks

5 through 100

10

specifies the maximum number of consecutive NAKs that can be
transmitted or received by the FNP on the communications
channel without an intervening block before aborting the connection.
You should set this higher for systems slow to acknowledge the
connection.

2-17 GB60-00

type: max_device_input_records

value: 3 through 30
default: 6
meaning: specifies the maximum number of records that the multiplexer

holds as .input for a subchannel before requesting the remote
system or workstation to suspend transmission for that subchannel.
For optimum operation, this parameter should be given a value
that is larger than the average number of records in an input
block as reported by channel_comm_meters for the multiplexer
channel.

Once you have made the required entries to the TTF:

1 Convert the TTF to the Terminal Type Table (TTT) via the cv_ttf
command.

2. Install the resulting TTT via the install command.

Data Translation

All data transmitted over a HASP subchannel must be translated to the character
set, normally EBCDIC, of the remote host or workstation and formatted according to
the rigid requirements of the HASP communications protocol.

These functions are performed by the hasp_host_ and hasp_workstation_ I/0
modules (described in Section 6). A terminal type can be specified in the attach
descriptions of these I/0O modules to define the remote host’s or workstation’s character
set. If one is specified, it must be a terminal type defined in the TTT with both an
input and output translation table for data conversion to/from ASCII and the remote
host system’s or workstation’s character set. You can use an already-defined terminal
type or define one yourself that meets this requirement and install it as described
above. If translating to/from EBCDIC, note that EBCDIC has no equivalents for "["
and "]". Different manufacturers use different characters to translate to and from these
characters. Therefore, take care with RJE and card input that uses active functions.
The Multics Programmer’'s Reference manual provides additional information for
defining terminal types.

If a terminal type is not to be specified, the remote host system’s or workstation’s
character set is assumed to be EBCDIC; standard Multics subroutines are used for data
conversion. Again, these may not handle "[" and "]" in a manner acceptable to the
remote host or workstation.

FNP SPACE REQUIREMENTS

For an FNP configured with 32K of memory, the bsc_tables and hasp_tables
modules require 2358 and 980 words, respectively. You should step through the
calculations given in "Multics Communications System Memory Configuration” of
MAM-Communications if necessary to determine whether you have sufficient space for
supporting HASP.

The formula for determining the memory required to support the HASP protocol
is number of echoplexed HASP channels multiplied by memory per channel. HASP
channels require 54 words in the software communications region, 42 words for the
terminal information block (TIB), 2 words for the TIB table entry, 32 words for the
TIB extension buffer, and 2 + block_size/2 for each HASP 1/0 buffer (where
block_size is specified by the TTF entry of the multiplexer and there are 2 words of
buffer overhead).

For a DN6670 configured with at least 64K of memory, the bsc_tables and
hasp_tables modules require 2440 and 986 words, respectively.

The same formula for determining memory to support the HASP protocol is used.
Memory needed per HASP channel is 34 words; you should multiply by the number of
echoplexed HASP channels. The size in words of one HASP I/0 buffer is 2 +
block_size/2 (where block_size is specified by the TTF entry of the multiplexer and
there are 2 words of buffer overhead). Again, see MAM-Communications if detailed
calculations and memory figure breakdown are required.

SPACE REQUIREMENTS IN TTY__BUF

The space used in tty_buf is occupied by various data bases that are used to
maintain proper control of the Multics communication management system.

Static space is allocated in tty_buf for output DCW lists for each FNP. This
occupies 128 words for each loaded FNP (8 DCW lists * 16 words per DCW list).

The logical channel table (LCT) is also maintained in tty_buf. Its size is
determined by the number of channels configured in the CMF. It is defined by the
structures in the Ict.incl.pll include file. There is a 16—word header at the beginning of
the LCT. Each channel (multiplexer or subchannel) requires a 32-word entry (LCTE).

2-9 ’ GB60-00

A physical channel block (PCB) is configured for each channel of each FNP
(names that match s.», including multiplexers, but not subchannels. of multiplexers),
eight words per channel.

A wired terminal control .b]ock (WTCB) of 20 words is allocated in tty_buf for
each subchannel.

1/0 buffers are dynamically created and deleted as needed. Each communications
protocol makes different demands on tty_buf space. (See "Dynamic Storage in tty_buf"
below.)

Subchannel and Multiplexer Channel Static Data Requirements

The HASP multiplexer type requires a data base defined by the "hmd" structure
in the hasp_mpx_data.incl.pll include file.

PCB 8
LCTE 32
HMD 56
Total 96 words

Each HASP subchannel of a HASP multiplexer requires a data base defined by the
"hste" structure in the hasp_mpx_data.incl.pll include file.

LCTE 32
HSTE 30
WTCB 20
Total 82 words

2-10 GB60-00

CALCULATION OF STATIC STORAGE IN TTY_BUF

The following chart outlines the required data needed to find out how much static
storage is required in tty_buf. The data is obtained from the CDT.

4) memory/ memory
type of channel number X channel = required
tty_buf header - 72
DCW lists 128
LCT header - 16
spare channel count in CDT 32
FNP subchannels 60
HASP multiplexers 96
HASP subchannels 82
Total

To get the total figure, other channels types must be taken into account. See
MAM-Communications for the details on them.

Dynamic Storage in tty__buf

It is difficult to predict what demands the users of a system will place on the
available I/0 buffer space in tty_buf. This has to be measured with system_comm_meters.
It has been found that tty_buf should not run more than 80% full to handle peak loads
best.

Delay queues are also dynamically allocated in tty_buf and can crash the system if
there is no room for them. These are transactions that the host is requesting the FNP
to perform. If there is no mailbox to put the transaction into, it is entered into the
delay queue for later processing.

HASP 110 BUFFER SPACE

Some comments can be made about the HASP protocol’s handling of its 1/0
buffer space in tty_buf. Only an actively operating line will require 1/O buffer space
in tty_buf. The following calculations should only be performed on the number of
channels expected to be active at any one time.

2-11 GB60-00

The size of HASP buffers in tty_buf is controlled by the block_size parameter in
the TTF entry of the multiplexer. An active HASP multiplexer will most likely have
three blocks in tty_buf: two for output and one for input.

HASP-10 = 3 * ttf_block_size

ACS SEGMENTS

You must create an ACS segment for each subchannel of the HASP multiplexer
channel. Once you have done so:

1. Give the daemon process that will attach that subchannel rw access to
the ACS.
2. Give the attaching process the dialok attribute in the Project Master File

(PMF). It is recommended that the process that attaches the simulated
operator's console not be registered on the SysDaemon project, since that
may confer undesirable access to too much of the system.

2-12 GB60-00

SECTION 3

ADMINISTRATIVE SETUP - 1/O DAEMON

1/0 DAEMON TABLE

A HASP workstation is composed of card readers, card punches, line printers, and
an operator’s console. Each device is configured as a separate subchannel of the
physical communications channel defined in the CMF as the HASP multiplexer channel.
Each device except the operator’s console is, in addition, configured as an I/O daemon
in the 1/0 daemon table. The I/O daemon table defines the devices and Request_types
to be used with the I/O daemons. The table is a source file that consists of a
sequence of statements and substatements defining and describing each device and
Request_type. The Bu/k //O manual provides a full description of the I/0 daemon
table, the iod_table_compiler and the create_daemon_queues commands; this section
presents only the definitions required for HASP operation.

The pathname of the source of the I/O daemon table is usually:

>daemon_dir_dir>io_daemon_dir>iod_tables.iodt

WORKSTATION STRUCTURE - MULTICS AS HOST

When Multics is the host system, the remote_driver_ I/0O daemon driver module
controls the remote workstation devices. You must:

° Define a major device with one minor device for each workstation
device in the system iod_tables.

Configure each device as a separate Type II I/O daemon (since the workstation
has no input device even though an operator’s console must be specified in the CMF).
A Type Il workstation is initialized on a dedicated communications line as a predefined
station. The workstation can be identified only by the line it dials into: no Line
statements are associated with Type II stations. Thus, the line substatement must specify
exactly the appropriate subchannel of the HASP multiplexed channel on which the
remote station will be connected. An args substatement must specify use of the
hasp_workstation_ terminal I/0 module. In each driver’s args substatement, the slave
parameter must be:

slave=no

Sample iod__tables Definition

The iod_tables entries for a remote workstation (Multics as host) with a card
reader, two line printers, and a card punch, follows.

Device: vax_rdrl;
line: a.h014.rdrl;
driver_module: remote_driver_;
args: "station= vax, slave= no, .
desc= -terminal hasp_workstation_ -comm hasp";
minor_device: rdrl;
default_type: vax_dummy:
minor_args: "dev=reader";
Device: vax_ptrl;
line: a.h014.prt1;
driver_module: remote_driver_;
args: "station= vax, slave= no,
desc= -terminal hasp_workstation_ —-comm hasp™;
minor_device: prtl;
default_type: vax_prt
minor_args: "dev= printer";
Device: vax_prt2
line: a.h014.prt2
driver_module: remote_driver_
args: "station= vax, slave= no,
desc= -terminal hasp_workstation_ -comm hasp™;
minor_device: prt2;
default_type: manuals;
minor_args: "dev= printer";

3-2 GB60-00

Device: vax_punl;

line: a.h014.punl
driver_module: . remote_driver_
args: "station= vax, slave= no,
desc= —terminal hasp_workstation_ —-comm hasp";
minor_device: : punl;
default_type: vax_pun
minor_args: "dev= punch;
Request_type: vax_dummy;
driver_userid: HASP.SysDaemon;
generic_type: none;
max_queues: 1;
device: vax_rdrl.rdrl
Request_type: vax_prt
driver_userid: HASP.SysDaemon;
generic_type: printer
device: vax_prtl.prtl
Request_type: manuals;
driver_userid: HASP.SysDaemon;
generic_type: printer
max_queues: 2;
device: vax_prt2.prt2
rqti_seg: manuals_info;
Request_type: vax_pun;
driver_userid: HASP.SysDaemon;
generic_type: punch;
device: vax_punl.punl;

DEVICE STATEMENT AND SUBSTATEMENTS
Device: <name>;
defines the name of a major device and denotes the beginning of a
device description. Any <name> can be chosen; it can be a maximum of
24 characters and cannot contain periods or spaces. (Our example names
indicate host system and type of device.)

line: <name>;
<name> must be the subchannel name of the HASP multiplexed channel
that corresponds to this device.

driver_module: <name>;
for HASP with Multics as host system, <name> must be remote_driver_.

3-3 GB60-00

ARGS SUBSTATEMENT KEYWORDS

The following keywords are those most likely to be needed in defining HASP
iod_tables entries:

station= <station_id>
allows the driver to accept a a non-blank station_id. The driver accepts
any device dialing in on this channel as this station_id without
authentication controls. All specified minor devices and default request
types are used. Normally, the value is the name of the Device (i.e., the
station name). This is used for a station without an input device or with
a dedicated communications line.

slave= <no>
This key is optional, since the default is "no." Only the Multics central
system operator can issue commands.

desc= <attach_description>
specifies the attach description used to attach the terminal/device 1/0
module. This keyword is required. The attach description must include
the "-terminal hasp_workstation_" and "-comm hasp" options; the "-tty"
option is provided automatically by the driver process.

MINOR DEVICE SUBSTATEMENTS

minor_device: <name>;
defines the name of a minor device and denotes the beginning of its
description. Any <name> can be chosen; it can be a maximum of 24
characters and cannot contain periods or spaces.

default_type: <name>;
defines the default request type for the associated minor device. The
<name> must be the same as that of a Request_type statement.

MINOR_ARGS SUBSTATEMENT KEYWORDS

dev = <minor_device_type>
specifies the device type of the minor device. This keyword is required
and must be reader, printer, or punch.

3-4 GB60-00

REQUEST TYPE STATEMENT AND SUBSTATEMENTS

Request_type: <name>;
defines the name of a request type and denotes the beginning of its
description. Any <name> can be chosen; it can be a maximum of 24
characters and cannot contain periods or spaces.

driver_userid: <access_name>;
defines the required person and project names for a driver of the
associated request type. If omitted, defaults to I0.SysDaemon.

generic_type: <name>;
defines the generic type of this request type. For HASP, <name> should
be printer, punch, or none (for the dummy request associated with a
card reader). If the generic type and request type names are the same,
the request type is the default for the generic type. This statement is
required for a Request_type statement.

max_queues: <N>;
defines the maximum number of queues, where N can be 1, 2, 3, or 4.
This substatement is optional.

device: <name>;
specifies a device that can be used to process requests of this request
type. The <name> must be of the form device_name.minor_device_name,
where the names are the same as that of a Device statement and its
minor_device substatement, respectively. Multiple device substatements
can be specified for a request type.

rqti_seg: <name>;
defines the name of the rqti segment to be used. This substatement is
optional; if omitted, the driver does not look in the rqti segment
directory for an rqti segment. For automatic printing without operator
intervention, set the auto_go parameter for the driver in the rqti
segment. See "Request Type Info Segments" below for more information.

WORKSTATION STRUCTURE - MULTICS SIMULATING WORKSTATION

When Multics is the workstation, the hasp_ws_sim_driver_ 1/0 daemon driver
module simulates the operation of a workstation’s card readers, line printers, and card
punches; the hasp_host_operators_console command simulates the console. A separate
process is used to simulate each device to permit all devices to operate asynchronously,
thus achieving maximum throughput over the communications line.

Card decks are transmitted from Multics through the simulated card readers to
the remote host system. These decks are normally jobs to be executed by the remote
system. On Multics, each card deck must be contained in a segment. A Multics user
requests that a deck be transmitted by issuing the enter_output_request (eor) command;
a separate request type is used for each remote system.

The remote system transmits output files to Multics through the simulated line
printers and card punches. By default, the simulator automatically issues printer or
punch requests for these files as appropriate. However, a site may choose to have these
output files placed into the system pool storage for subsequent retrieval by Multics
users via the copy_cards command. To use this option, the driver process must be
instructed to expect control records in each output file and the remote system must
include these Multics control records to indicate which Multics user owns the file.
Adding control records to an output file may involve modifications to the remote
computer’s operating system, the JCL of each job submitted for remote execution, the
programs executed by each job, or a combination of the above. User-supplied control
records required are ++IDENT and ++INPUT. (See the Mu/tics Programmer’s
Reference Manual for a description of the format of these control records. Specific
information is given under "Input and Output Facilities" and "Punched—Card Input
Output and Returned Output Control Records.")

Definition of a HASP Workstation Simulator
To define a workstation simulator, you must:

° Define a major device, with exactly one minor device, for each simulated device
except the operator’s console in the system iod_tables. Define a request type for
the submission of card decks in the system iod_tables.

) Determine if the remote system requires that a SIGNON control record be
transmitted to establish the identity of the workstation. The SIGNON record is
a special record defined by the HASP protocol to enable the host system to
establish the identity of the workstation. Many operating systems do not require
this control record, but validate the workstation in other ways. If a SIGNON
record is required, its exact content must be determined for use in the
hasp_host_ I/0 module attach description. When the hasp_host_operators_console
command is issued, also use the -signon control argument, which specifies the
text of the SIGNON control record. (When Multics is the host system, it
ignores any SIGNON record sent it by a workstation.)

3-6 GB60-00

) Determine . the printer channel stops used in output files returned from the
remote system and insure that the Multics request type(s) used to print those
files include the appropriate logical channel stops in their RQTI segments. (See
"Request Type Info Segments" below.) For example, many systems use channel
stop #1 to represent the top of a page; the RQTI segments should specify "Line
(1): 1, to insure correctly formatted output.

The major device definition must include a line substatement specifying the
subchannel of the simulated device; the "line: variable;" construct is not allowed.
Additionally, an args substatement must be included specifying a station ID and use of
the hasp_host_ terminal I/0O module.

The minor device specification must include a minor_args substatement that
specifies the type of device being simulated. Additional keywords can be used in this
statement as described below.

Sample iod__tables Definition

The iod_tables entries to simulate a HASP workstation with a card reader, two
line printers, and a card punch follows:

Device: cdc_rdrl; /* Card reader */

line:
driver_module:
args:

minor_device:
default_type:
minor_args:

Device:
line:
driver_module:
args:

minor_device:
default_type:
minor_args:

a.h014.rdrl;

hasp_ws_sim_driver_;

"station= CDC, desc= -terminal hasp_host_
—-comm hasp";

rdrl;

cdc_jobs;

"dev= reader_out";

cdc_prtl; /* Line printer #1 =/
a.h014.prtl;

hasp_ws_sim_driver_;

"station= CDC, desc= —terminal hasp_host_
-comm hasp";

prtl;

dummy;

"dev= printer_in, request_type= cdc_output";

3-7

GB60-00

Device:
line:
driver_module:
args:

minor_device:
default_type:
minor_args:

Device:
line:
driver_module:
args.

minor_device:
default_type:
minor_args:

Request_type:
generic_type
max_queues:
device:

Request_type:
generic_type:
max_queues:
device:
device:
device:

cdc_prt2; /* Line printer #2 */
a.h014.prt2;

hasp_ws_sim_driver_;

"station= CDC, desc= —terminal hasp_host_
—comm hasp";

pri2;

dummy;

"dev= printer_in, auto_queue= no";
cdc_punl; /* Card punch */
a.h014.punl;

hasp_ws_sim_driver_;

"station= CDC, desc= —terminal hasp_host_
-comm hasp";

punl;

dummy;

"dev= punch_in";

cdc_jobs; /* Request type for submitting */

punch; /+ card decks to remote CDC system */
1;
cdc_rdrl.rdrl;

dummy; /* Required by printers and */
none; /* punches to avoid errors from */
1; /* iod_tables_compiler */
cdc_prtl.prtl;
cdc_prt2.prt2;
cde_punl.punl;

DEVICE STATEMENT AND SUBSTATEMENTS
Device: <name>;

defines the name of a major device and denotes the beginning of a
device description. Any <name> can be chosen; it can be a maximum of
24 characters and cannot contain periods or spaces. (Our example names

indicate host system and type of device.)

line: <name>;
<name> must be the subchannel name of the HASP multiplexed channel
that corresponds to this simulated device.

driver_module: <name>;
For HASP with Multics simulating a workstation, <name> must be
hasp_ws_sim_driver_.

ARGS SUBSTATEMENT KEYWORDS

These define the characteristics of this device. The following are required for
HASP applications.

3-8 GB60-00

station= <station_id>
identifier placed on the head sheet or header cards of returned output
files when said files are printed/punched automatically. This keyword is
required; the same value should be used for all devices of a workstation
simulator.

desc= <attach_description>
specifies the attach description used to attach the terminal/device 1/0
module. This keyword is required. The attach description must include
the "-terminal hasp_host_" and "-comm hasp” options; the "-tty" option
is provided automatically by the driver process. If the remote system
requires a SIGNON record, the "-signon" option must be included for all
devices of the workstation.

MINOR DEVICE SUBSTATEMENTS

minor_device: <name>;
defines the name of a minor device and denotes the beginning of its
description. Any <name> can be chosen; it can be a maximum of 24
characters and cannot contain periods or spaces.

default_type: <name>;
defines the default request type for the associated minor device. The
<name> must be the same as that of a Request_type statement.

MINOR_ARGS SUBSTATEMENT KEYWORDS

dev= <device_type>
specifies the type of device being simulated by this driver process. This
keyword is required. The acceptable values for device_type are:

reader_out
simulates a card reader for sending card decks to the remote
system.

printer_in
simulates a line printer for receiving output files from the remote
system.

3-9 GB60-00

punch_in
simulates a card punch for receiving card decks from the remote
system.

auto_receive= <yes/no> .
specifies the mode of operation of this driver whenever communication is
established with the remote system. The possible choices are "yes" to
wait for output files from the remote system (especially useful with
hardwired connections), or "no" to listen for I/O daemon commands
from the operator.

This keyword cannot be given if "dev= reader_out" is specified. This
keyword is optional; the default value is "no" (listen for 1/O daemon
commands).

auto_queue= <yes/no>
specifies how output files received by this driver are handled. The
possible choices are "yes" to queue the files for local printing/punching,
or "no" to scan them for Multics control records and store them in
system pool storage for online perusal.

This keyword cannot be given if "dev= reader_out" is specified. This
keyword is optional; the default value is "yes" (automatically queue
output files).

request_type= <rqt_name>

rqt= <rqt_name>
specifies the Multics request type to be used for automatically printing
or punching output files. The request type specified must be of generic
type "printer” if "dev= printer_in" is specified or generic type "punch" if
"dev= punch_in" is specified; this keyword cannot be given if "dev=
reader_out" is specified. This keyword is optional; the default request
type used is the default specified for the appropriate generic type.

REQUEST TYPE STATEMENT AND SUBSTATEMENTS

Request_type: <name>;
defines the name of a request type and denotes the beginning of its
description. Any <name> can be chosen; it can be a maximum of 24
characters and cannot contain periods or spaces.

driver_userid: <access_name>;
defines the required person and project names for a driver of the
associated request type. If omitted, defaults to IO.SysDaemon.

3-10 " GB60-00

generic_type: <name>;
defines the generic type of this request type. If the generic type and
request type names are the same, the request type is the default for the
generic type. This statement is required for a Request_type statement.

max_queues: <N>;
defines the maximum number of queues, where N can be 1, 2, 3, or 4.
This substatement is optional.

‘device: <name>;
specifies a device that can be used to process requests of this request
type. The <name> must be the same as that of a Device Statement.
Multiple device substatements can be specified for a request type.

Tqti_seg: <name>;
defines the name of the rqti segment to be used. This substatement is
optional; if omitted, no driver looks in the rqti segment directory for an
rqti segment. For automatic printing without operator intervention, set
the auto_go parameter for the driver in the rqti segment. See below for
more information.

REQUEST TYPE INFO SEGMENTS

Each printer request type can have an optional request type info segment (rqti
segment) associated with it that defines the physical paper characteristics, the logical
VFU channel stops, and some additional driver control data. This is true whether
Multics is acting as host or simulating a workstation. Special forms should have a
specific request type and thus a separate set of channel stops. The channel stops are set
only during driver initialization and remain constant for all requests done by the driver.

In addition, a site may wish to use the request type feature to group requests that
use the same VFU tape, regardless of what preprinted form stock is needed for the
request. By using the "Aauto_print” driver mode, the operator can run requests
associated with a given VFU tape (request type) in sequence and change the form stock
on the printer to meet the needs of each request.

3-11 GB60-00

Printers that have firmware loadable VFC images are loaded by the driver during
driver initialization (the paper may have to be realigned by the operator). For printers
that use punched paper VFU tapes, the physical VFU tape for the request type must be
mounted on the printer at the time the driver is initialized. The driver indicates the
number of lines-per-page and the lines-per-inch switch setting that the operator should
use.

The size of the head and tail sheets is set automatically to the physical dimensions
of the paper as defined in the request type info segment.

The directory named >ddd>iod>rqt_info_segs must give sma access to the
administrator and s to all other users. The initial ACL for segments must be set to rw
for the administrator and r to all other users. AIM access, for those sites using the
access isolation mechanism, should be system_low (the default). This directory contains
all request type info segments. If a single segment describes the paper characteristics
for more than one request type, added names can be used in place of separate identical

segments.

Info segments are only required for printer request types that have the rqti_seg
substatement in the iod_tables. When no rqti segment is used, the defaults described
for the cv_prt_rqti command are used (see "Syntax for the Request Type Info Source
Segment” below). Create printer rqti segments via the cv_prt_rqti table conversion
command. A sample source file is shown in "Example of a Request Type Info Segment"
below. The contents of an rqti segment can be printed by the display_prt_rqti
command. This command formats its output so that when directed to a file, the file
can be used as input to the cv_prt_rqti command.

Syntax For The Request Type Info Source Segment

The request type info source segment contains keywords that define certain values
put into the request type info segment. The general syntax is of the form:

keyword: <value>;

where the keyword defines a parameter to be set, and the <value> defines what the
value of the parameter is.

The keywords and the values acceptable to the cv_prt_rqti command are listed
below. Those of special interest for HASP workstations are described in detail. More
information on the others is available in the Bu/k //O manual.

driver_attributes: [~]auto_go{, [*] meter} >:
establishes some operating parameters for the driver. There are two
values defined: auto_go and meter. Each value can be preceded by the
character "A" to negate the parameter. The driver_attributes keyword is
optional (the default is *auto_go, meter).

3-12 GB60—00

The auto_go value is used to make the central site or remote printer
driver request service from the coordinator immediately after initialization
without asking for a go command. For printers on Multics HASP
workstations, the auto_go value is particularly useful as a means of
starting or resuming the processing of print requests without operator
intervention.

The meter value is used to tell the driver to maintain internal metering
data about its operation. (Note: metering is done according to the driver
module design and not all driver modules implement metering.)

driver_wait_time: <number>;
value is a decimal number between 30 and 300; default is 30 seconds.

prt_control: [A]value{, [A]value...};
value is force_ctl_char; default is Aforce_ctl_char. A Multics workstation
cannot use force_ctl_char mode; it is honored only by the remote_driver_
driver module.

message: <"string">;
message character string must not be longer than 256 characters.

paper_length: <number>;
Value is a decimal number between 10 and 127; default is 66 lines.

paper_width: <number>;
Value is a decimal number between 1 and 136; default is 136 character
positions.

lines_per_inch: <6/8>;
The default is 6 lines.

3-13 GB60-00

line(<line_no>): <ch_1,ch_2,ch_3,....ch_n>;

NOTE:

end;

Example of a

the line keyword is optional. There can be one line keyword for each
line from 1 to the paper_length. The line keyword specifies which
logical VFU channels are defined to stop at <line_no>. There can be 1
to 16 channel stops for any given line, each ch_i is a number between 1
and 16.

For example:
line(20): 1,5,11; .

specifies that a slew to channels 1, 5, or 11 causes the printer to stop at
the beginning of line 20.

Line 1 is always defined as the form feed position. Typically the
operator positions line 1 at the fourth printable line on a page.

this keyword is required. The end keyword has no value. It specifies the
end of the request type info source segment.

Request Type Info Source Segment

/* SAMPLE SOURCE FILE FOR A PRINTER REQUEST TYPE INFO SEGMENT #/

/* Source file:

invoices.rqti */

/* Data segment: invoices */

/* The first two keywords apply to the header data only. =/

driver_attributes: Aauto_go; /* the default */
driver_wait_time: 30; /* number of seconds driver will */

prt_control:
/* Message to
message:

/* wait before asking coord again */

force_ctl_char;

the operator during driver initialization */

"For the invoices, use VFU tape number 12.
The form stock is in storage bins 22, 23, and 24.";

3-14 GB60-00

/* Physical Paper Info */

/* The form stock is only 80 print positions wide and

72 lines per page at 8 lines per inch */
paper_width: 80; " /+ default is 136 */
paper_length: 72; /* default is 66 */

lines_per_inch:

8; /* default is 6 */

/* Channel Stops */

/* The logical channel stops are defined as follows: */
line(1): 1; /#* channel 1 is top of form */
line(3): 4; /* chan 4 is the address line */
line(12): 7, /* chan 7 is the first entry line */
line(60): 7, /* and is also the bottom line */
end;

STEPS AFTER EDITING 1/0 DAEMON TABLE
Once you have edited the I/0O daemon table source:

1

Compile it via the iod_tables_compiler command. For convenience, store
the pre-compiled version in the same directory as the compiled version
with the name iod_tables.iodt.

Create the I/0 daemon queues via the create_daemon_queues command.

Register the 1/0 daemons in the PMF, if necessary; the initproc entry’s
pathname should be iod_overseer_ for each daemon, and the Avinitproc
and dialok attributes should be assigned for each. Convert the PMF to a
Project Definition Table (PDT) via the cv_pmf command and install the
new PDT via the install command.

Set up message coordinator routings to handle the HASP 1/0 daemon.
In order for the daemon to issue messages and receive commands, you
must create the input and output message segments, and establish the
message coordinator sources and virtual consoles. To create the input and
output message segments, use:

create >scl>(input_SOURCE_name output_SOURCE_name).message

Establish the message coordinator sources and virtual consoles via the
define and route commands. Usually the two commands are entered in
the system_start_up.ec filee HASP messages can be sent to an actual
terminal, a log file, or to both. To send messages to a terminal, you
must register a message coordinator channel for the terminal in the CMF
(see MAM-Communications) and issue an accept command in addition to
the define and route commands.

3-15 GB60-00

The define command defines the virtual console that will receive
messages from your HASP daemon. Its format is:

define VCONS TYPE DEST

where VCONS 1s the virtual console’s name, TYPE is tty, log, or sink;
and DEST is the destination. For example:

sc_command define iod tty b.h200

defines a virtual console named iod that forwards all output sent to it to
the terminal whose channel is b.h200. The sc_command is used to add
operator commands to an ec file.

The command line:
sc_command define iolog log iolog

defines a virtual console named iolog that forwards all output sent to it
to the log file named >scl>iolog.

The route command sends output from the HASP daemon to the
designated virtual console. You must issue a route command for the
user_i/o, error_i/o, and log_i/o streams of the drivers. The format is:

route SOURCE STREAM VCONS

where SOURCE is the name of the output source; STREAM is the name
of the stream carrying the output; VCONS is the name of the virtual
console to which output is to be routed. For example:

sc_command route cdc_prt user_i/o iod
sc_command route cdc_prt error_i/o *iod
sc_command route cdc_prt log_i/o iod
sc_command route cdc_prt user_i/o iolog
sc_command route cdc_prt error_i/o *iolog
sc_command route cdc_prt log_i/o iolog

In the above, output from the HASP daemon using the cdc_prt source is
routed to the two virtual consoles, iod (a terminal) and iolog (a log file)
defined in the previous examples. The asterisk before the virtual console
name for the error_i/o stream causes the terminal to issue an audible
alarm whenever error messages are issued.

3-16 GB60-00

SECTION 4

OPERATING A HASP WORKSTATION

WORKSTATION INITIALIZATION

The following describes the operation of a remote HASP workstation when Multics
is acting as the host system. To start a remote HASP workstation connected to a
Multics host:

° If necessary, issue the initializer "load_mpx" command described in the
MOH to cause the HASP multiplexer channel to wait for a connection.

° Login the I/0 coordinator process (if it's not done automatically at
system startup) usually from the initializer terminal via the:

login I0 SysDaemon <source_id>

command line. (See the Bu/k //O manual’s Section 3 for details.) Also,
specify the authorization, if necessary, when AIM is in use.

° Complete the physical connection to the remote workstation for dial-up
connections.
. Once the I0.SysDaemon is logged in, the system prints "Enter command:

coordinator or driver.” Issue the coordinator command (by typing
cordinator or the shortname coord). When the initialization is finished
("I/O coordinator initialized" message appears), the coordinator is at
command level and ready to accept drivers.

4-1 GB60-00

Login each of the driver processes for the workstation devices in the
same way you logged in the coordinator. The driver login identifier is
usually I0.SysDaemon. When the system prints "Enter command: coordinator
or driver" issue the driver command (by typing driver). The driver prints
its version number and then prints:

Enter command or device/request_type:

Type the name of a device or a command:

<device_name>b {<request_type>}
runs the given device

print_devices
prints device names and request types

logout
logs out the driver
After initialization is complete, the driver prints:

<device> driver ready at <time>
Enter command:

Enter any commands required to ready all the devices of the workstation.

Enter the go command to begin processing requests.

SIMULATOR INITIALIZATION

The following describes the operation of a HASP workstation when Multics is
simulating a workstation communicating with a remote host system. To start a HASP
workstation simulator:

If necessary, issue the initializer "load_mpx" command described in the
MOH to cause the HASP multiplexer channel to wait for a connection.

Login the process that is to run the simulated operator’s console of the
workstation, and issue the hasp_host_operators_console (hhoc) command
(described in Section 5) to wait for the connection to be completed. If
the remote system requires a SIGNON record as part of the connection
procedure, include the "-signon" option on the hhoc command line.

Complete the physical connection to the remote system for dial-up
connections.

4-2 GB60-00

When the process running the operator’s console prints the message
"Input:" indicating that the physical connection is established, perform
any logon sequence required to identify the workstation to the remote
system. The exact sequence used, if any, should be determined from the
remote system’s administrative staff.

Login each of the driver processes for the other simulated devices. The
sequence used to login a driver process is the same as that described
above in "Workstation Initialization".

On the terminal of the process running the operator’s console, issue any
commands to the remote system required to ready all the devices of the
workstation.

For each driver process running a simulated card reader, issue
commands:

ready
g0

These commands will start the transmission of card decks to the remote
system.

Issue the receive command for each driver process running a simulated
line printer or card punch. This command causes these drivers to wait
for output files to be sent by the remote system. As each output file is
received, it is processed according to the specifications given in the
minor_args substatement of the driver.

4-3 GB60-00

SECTION 5

COMMANDS FOR DEVICE/DRIVERS

This section describes the 1/0 daemon commands that can be used by the driver
processes. They are entered at the operator’s console; the hasp_host_operators_console
command allows simulation of the operators console for a Multics workstation. When
Multics serves as the workstation, the printer and punch simulators have only a subset
of these commands available. This subset is:

auto_queue receive
clean_pool reinit
hasp_host_operators_console release

help request_type
hold start
inactive_limit status

logout X
new_device

When Multics serves as host, you do not use the auto_queue, hasp_host_operators_console,
receive, Or request_type commands.

Name: auto__queue

The auto_queue command controls whether output files received by this driver are
automatically printed or punched locally, or scanned for Multics control records and
placed in system pool storage for online perusal.

Usage ‘
auto_queue <switch_value>

where:

switch_value
must be chosen from:

yes
automatically queue the files for printing/punching; do not scan
for control records.

no

scan the output files for Multics control records and store them
in system pool storage for online perusal; do not automatically
queue files for. printing/punching.

5-1 GB60-00

auto_start_delay banner_bars

Name: auto__start__delay

The auto_start_delay command displays or sets the length of time the driver waits
to issue the start command automaucally after receiving a quit s1gna1 An automatic
start is cancelled if command input is received.

Usage
auto_start_delay {N}

where N is the desired delay time in seconds. N must be at least 30 seconds. The
default delay time is 60 seconds. When no argument is given, the current delay time is
displayed.

Name: banner__bars

The banner_bars device-specific driver command is used by printer drivers to
establish how the separator bars at the bottom of the head sheet are to be printed.
Printers that can overstrike should use "double" (this is the default). Other printers
should use single.

Usage
banner_bars {minor_device} {arg}

where minor_device is a minor device name (as shown by the status command) and is
required if there is more than one printer minor device; arg can be one of the
following separator types:

double

overstrikes each separator line.
single

single strikes each separator line.
none

suppresses separator lines.
-print

if arg is not given, or if a single arg "-print", is given, the current
value is printed.

5-2 GB60-00

— banner_type

Name: banner__type

The banner_type device-specific driver command is used by printer drivers to
change the information printed on the front and back of each copy of a request.

Usage 4 :
banner_type {minor_device} {key}
where minor_device is a minor device name (as shown by the status command) and is

required if there is more than one printer minor device; key must be one of the
following:

standard
prints the normal head and tail sheets.
none
prints nothing except the separator bars, if required (according to the
banner_bars command).
brief
prints a short version of the head and tail sheets.
-print

if arg is not given, or if a single arg "-print", is given, the current
value is printed.

Name: cancel

The cancel command terminates the request that the driver is currently processing.
The request is not placed in the coordinator’s saved list and thus cannot be restarted
later. This command is only valid after a quit signal, or at request command level.

After completing the command, the driver looks for another request to process.
(In step mode, it returns to command level.)

Usage
cancel

cancel

5-3 GB60-00

clean_pool ctl_term

Name: clean__pool

The clean_pool device-specific driver command applies to drivers that can read
user card decks. It allows the operator to delete all segments in the system card pool
that have been there more than a specified number of days. This command is not
available for slave terminals.

Usage
clean_pool N

where N is the maximum length of time in days for segments to be retained in the
system card pool. All segments that have been in the card pool more than that number
of days are deleted. N must be a decimal number greater than zero.

Name: copy

The copy device-specific driver command sets the copy number of the next copy
of the current request to the value specified. This command is used only at request
command level.

Usage
copy N

where N is a decimal integer between 1 and the number of copies requested by the
user.

Name: ctl__term

The ctl_term command applies only to a control terminal (if attached). It allows
the operator to specify the format of printed output.

5-4 GB60-00

ctl_term ctl_term

One of the primary functions of the control terminal is to print information
about each request processed, to aid in separating the output, and to ensure proper
accountability of output generated by the driver. The site can use preprinted forms for
this purpose (see "Using Preprinted Accountability Forms on the Control Terminal" in
the Bu/k //0) manual. In this case, alignment of the data on the form is very
important. Generally a terminal that supports vertical tab and formfeed control
characters is used to ensure alignment. However, this command allows the operator to
request that the software simulate the action of formfeed control characters if the
terminal does not provide this hardware support.

Usage
ctl_term arg

where arg falls into one of two classes: general control or simulation control (some
arguments require an additional value to define the requested action):

general control

form_type STR
specifies the format program to be used to format the data printed
on the control terminal. If STR is "default”, the form_type is set to
the default format.

detach
discontinues the use of the control terminal. This argument is
restricted to the master terminal and is not reversible unless the reinit
command is given.

simulation control

simulate
sets the driver to simulate formfeeds by software. (This argument is
not reversible even by the reinit command.)

page_length N
sets the number of lines per logical page to N. This controls the
forward spacing needed to go to the top of the form.

aligned
indicates that the forms are aligned for the purpose of form feed
control. (A sample form can be printed by the sample_form
command.) '

5-5 GB60-00

defer defer_time

~

Name: defer

The defer command sends the current request back to its queue marked as
deferred. It is only issued from quit command level or request command level.

Usage '
defer

Notes

Requests are automatically deferred when the requested line length of the device
exceeds the physical line length, or when the estimated processing time of a request
exceeds the operator—defined limit (see the defer_time command below).

A deferred request is reprocessed when the driver is given the restart_q command
or when the cbordinator is next initialized.

Name: defer__time

The defer_time command sets or displays the current time limit for automatically -
deferring requests.

Usage
defer_time {minor_device} {N}

where:

1 minor_device
is the name of the minor device for which the time should be set or
displayed. It is optional for drivers that have only one minor device
(e.g., the central site printer). If specified, this argument must be the
first argument. .

sets a new defer time in minutes, with a precision of tenths (e.g., 1.5
is one minute, 30 seconds). A time of zero indicates that infinite time
is allowed. If N is not given, the current defer time and driver
output rate are displayed.

5-6 GB60-00

g0

Name: go

The go command makes the driver look for requests to process. If no requests
are currently available, the driver asks the coordinator for a request for each "ready"
device. These requests are processed as soon as they are provided by the coordinator.
(This command can not be used at request command level or immediately following a
quit signal.) :

Usage
go {N}

where N is the number of requests processed before the driver returns to command
level. If N is not specified, the driver continues to process requests and does not
return to command level until requested by the operator.

Name: halt

The halt command provides the reverse function of the ready command. It places
the device or each of the specified minor devices in the inactive state. The driver does
not ask the coordinator for any further requests for a halted device. However, the
coordinator may have already supplied a "pending request” for the halted device. In
this case, any pending request is processed immediately after the device has been halted
(except when the command has been issued following a quit signal).

Usage
halt devl ... dev_ {-control_arg}

where:

1. dev_
is the name of a device, or minor device in the case of a
multifunction device, that is to be placed in the inactive state. The
device names that can be used are those printed out by the status
command.

2. control_arg
can be =-all or -a to halt all devices. If the —all control argument is
used, no device names need be given. No control argument is required
if there is only one device for the driver. If there are. multiple
minor devices, the operator must specify the ones to be made inactive
or else must specify —all to halt all minor devices.

halt

hasp_host_operators_console hasp_host_operators_console

Name: hasp__host__operators__console, hhoc

The hasp_host_operators_console command simulates the operation of the operator’s
console of a HASP workstation. The operator’s console is used to identify a Multics
workstation to a remote system, to issue commands governing the operation of the
workstation, and to receive status information from the remote system.

Usage
hhoc tty_channel {control_args} {attach_arguments}

where:

1. tty_channel
is the name of the terminal channel to be attached as the operator’s
console. This channel must be configured as the console subchannel of
a HASP multiplexer channel (e.g., a.h014.0pr).

2. control_args
can be chosen from the following:

-signon STR
specifies that the remote host requires a SIGNON record to be
transmitted before data transmission can occur. STR is the text of the
control record; it may be up to 80 characters in length. Before
transmission it is translated to uppercase and the remote system’s
character set.
" =no_signon

specifies that the remote host does not require a SIGNON record.
(Default)

3. attach_arguments
are options acceptable to the hasp_host_ I/0O module. This command
supplies the —comm, -tty, and -device options automatically; these
options need not be given on the command line. (See Section 6 for a
description of the hasp_host_ 1/0 module.)

Notes

If the remote system requires a SIGNON, the -signon option should be supplied
on the command line specifying the exact SIGNON record to be transmitted. For
example, the command line:

hhoc a.h014.opr -signon "/+*SIGNON REMOTET7"

5-8 GB60-00

hasp_host_operators_console help

attaches the a.h0l4.opr channel as the operator’s console of a remote IBM system
expecting a connection from the workstation named REMOTET.

After attaching the channel specified on the command line, hasp_host_operators_console
prompts the user for terminal input with the string "Input:".

Input from the terminal is transmitted directly to the remote system unless the
line begins with the request character, an exclamation mark (!); lines beginning with the
request character are interpreted by this command. The valid requests are described
below.

Any text received from the remote system is displayed directly on the terminal
without any interpretation by hasp_host_operators_console.

HASP_HOST_OPERATORS_CONSOLE REQUESTS

The following requests are recognized by hasp_host_operators_console when given
at the beginning of a line of terminal input:

I.. <REST_OF_LINE>
the rest of the line is passed to the Multics command processor
for execution as ordinary commands.

L prints a message of the form:
hasp_host_operators_console N.N; connected to channel NAME.
where N.N is the current version of this program and NAME

identifies the channel connected as a console to the remote
system.

lquit causes the command to hangup the operator’s console channel and
return to Multics command level.

Name: help

The help command prints the name of each command that can be executed by the
driver. A short description of the arguments is provided with each command name. At
request command level, the list of commands is limited to those unique to that
command level.

Usage
help

5-9 GB60-00

hold inactive_limit

— ~
Name: hold
The hold command holds the driver at command level.
Usage ;
hold .
Notes .
When the hold command is issued from the master terminal, the slave terminal is
unable to issue any command that would cause the driver to leave command level until
the master terminal has issued a go command (or a start command following a quit
signal). This command should always be used following a quit signal if the automatic
start is to be canceled.
Name: inactive__limit
The inactive_limit command allows the I/O Daemon to log out automatically after
a specified period of inactivity.
o’
Usage
inactive_limit {N}
where N is the number of minutes of inactivity allowed. N can be from zero to 200
minutes. Zero indicates no automatic logout; this is the default. The current inactivity
limit is displayed if N is not given.
Notes
The inactivity time counter is reset when a request or command is received or a
quit is signalled, as well as when the driver processes a new request. A driver sitting at
command level is considered active.
An inactivity logout reinitializes a remote driver so that another station can log in
and use the line.
~

5-10 GB60-00

~

kill

new_device

Name: kill

The kill command terminates the request that the driver is currently processing.
The request is passed back to the coordinator and placed in the saved list where it can
be restarted if desired (within the limits of the coordinator save time).

After completing the command, the driver looks for another request to process.
(In step mode, it returns to command level.)

Usage
kill

Name: logout

The logout command terminates the driver process (like the standard Multics
logout command).

Usage
logout

Note

When the logout command is given from a remote station, the remote driver
reinitializes and gets ready to accept a new station.

Name: new__device
The new_device command terminates the current device. The driver then asks the
operator to enter a new "command or device/request_type."

The coordinator is notified of the termination of the current device and the
device is detached by the process. If a control terminal has been attached, it also is
detached.

The new_device command can only be issued from the master terminal.

5-11 GB60-00

new_device next

Usage
new_device

Name:' next

The next command specifies which request is to be taken from the queues next.
This allows the operator to specify priority requests and the order in which they are to
be run.

Usage
next —control_args

where the -user control argument is required and at least one other argument must be
chosen from among the request identifiers (~entry, —path, and -id).

-user Person_id.Project_id
specifies the submitter of the request by User_id. The full person and
project names must be given.

-entry STR, —-et STR
specifies the entryname of the request. Starnames are not allowed.
This control argument can not be used with the -path control
argument.

-id ID
specifies the match ID of the request.

-path path, —pn path
specifies the full pathname of the request. Relative pathnames and
starnames are not allowed. This control argument can not be used
with the —entry control argument.

—device STR, -dev STR
specifies which of the driver’s minor devices the command is to
affect. This control argument is optional for drivers with a single
minor device, but is required for drivers with multiple minor devices.
It serves to identify which request type the coordinator will search to
find the request.

-queue N, -q N
specifies that only queue N of the request type should be searched to
find a matching request. This argument is optional; if not given, all
queues are searched.

5-12 GB60-00

next paper_info

Note

All requests to be run by the next command are charged as though they came
from queue 1.

Requests chosen to run next are run after any restarted requests (see the restart
command in this section). :

This command can be given several times before a go command, to specify the
exact order that requests in the queues are processed.

Name: paper__info

The paper_info device-specific driver command defines the physical characteristics
of the paper as used by the printer software.

Usage
paper_info {minor_device} {-control_args}

where minor_device is a minor device name (as shown by the status command) and is
required if there is more than one printer minor device; control_args can be one or
more of the following:

-print
print the current values. If this is given, it must be the only control
arg.

-1 N
sets the line length to N, where N is a decimal integer from 10 to
200.

-pl N
sets the page length to N, where N is a decimal integer from 10 to
127.

-lpi N

sets the number of lines per inch to N, where N is either 6 or 8.

If no control arguments are given, the current values are printed.

5-13 GB60-00

paper_info print

Note

If the printer uses a firmware VFC image, a new image is loaded (which causes
the printer to go into an unsynchronized state). Otherwise, the operator is told to
mount a new VFU tape.

Name: pause__time

The pause_time device-specific driver command allows a remote device driver to
accept commands between requests by pausing a few seconds to allow the line to turn
around.

Usage
pause_time {N}

where N is the number of seconds that the driver must pause between requests. N
must be between 0 and 30 seconds. If N is not given, a value of 10 is assumed.

Name: print

The print device-specific driver command starts the actual printing of a file when
the driver is at request command level. This command is used by printer drivers only.

Usage
print {N}

where N is a decimal integer that identifies the page at which the driver starts printing.
If this argument is omitted, printing starts at the current page of the file.

Notes

A "+" or "-" preceding the page number indicates that the number is relative to
the current page.

If the starting page number is beyond the end of the file, an error message is
printed, and a new command is requested.

The print command causes a normal head sheet to be printed complete with
separator bars if needed. The head sheet is followed by the current page of the file.

5-14 GB60-00

~

prt_control prt_control

Name: prt__control

The prt_control device—spécific driver command sets the driver request processing
modes. Each key can be preceded by the circumflex character () to set the value to
off.

Usage
prt_control {minor_device} {args}

where minor_device is a minor device name (as shown by the status command) and is
required if there is more than one printer minor device; args can be one or more of
the following:

-print
if arg is not given, or if a single arg "-print" is given, the current
modes are printed.

auto_print, Aauto_print

This mode causes the driver to start printing each request as soon as
it is received from the coordinator (after a go command has been
given). This is the normal mode of operation. When auto_print is
turned off, the driver goes to request command level immediately
after printing the log message. This aillows the operator to align the
paper, change the paper, print sample pages, and issue all other
commands allowed at request command level (including the kill
command).

force_esc, Aforce_esc
This mode turns on the esc mode of the printer DIM during the
processing of each request. This mode must be on if the slew-to—channel
functions are to operate. Normally, the force_esc mode is set by data
in the request type info (rqti) segment.

force_nep, Aforce_nep
This mode sets the noendpage (nep) mode of the printer DIM during
the processing of each request, whether the user has requested that
mode or not. It is normally set from data in the rqti segment. This
mode is used for request types that require preprinted or preformatted
paper (e.g., gummed labels, invoice forms).

5-15 GB60-00

prt_control pun_control

~
force_ctl_char
This sets the ctl_char mode of the printer DIM during the processing
of each request, which allows an I/O daemon to send control
sequences directly to a remote printer instead of discarding the
characters or printing their octal equivalents. Setting this mode enables
users who prepare print files through Compose to activate special
printer features such as superscripting or multiple fonts. This mode is
honored only by the remote printer driver module, remote_driver_.
If no arguments are given, the current modes are printed.
Name: punch
The punch command is used by remote punch drivers at request command level to
proceed with the punching of the requested segment.
Usage
punch
~
Name: pun__control
The pun_control command is used by remote drivers at normal command level to
set the punch control modes. This command does not apply to the central site punch
driver.
Usage
pun_control {minor_device} {control_mode}
where:
1. minor_device
is the name of the punch minor device that the command is
addressing. This argument is optional if there in only one punch ,
minor device, but is required otherwise.
2. control_mode
specifies the modes to be set. The mode name can be preceded by
the character "A" to reset the mode. This argument is optional. If
not given, the current modes for the specified minor device are
printed. The following mode is currently defined:
~

5-16 GB60-00

~

pun_control

autopunch
this mode allows the driver to process punch requests continuously
without operator intervention. When this mode is off (ie.,
Aautopunch) the driver comes to request command level after
printing the log message and waits for the operator to give the
"punch” command before continuing.

-print
if control_mode is not given, or if a single argument "-print" is
given, the modes are printed.

Notes

The 7autopunch mode is normally used by a remote operator to allow the output
to be directed to a particular device based on information in the log message. Once the
proper device has been assigned, the operator must type "punch" for the driver to
continue with the user’s request.

Name: read__cards

The read_cards device—specific driver command applies to device drivers that can
read user card decks. It allows the operator to input card decks from a remote station
or local device. The control card format required is the same as that described under
"Reading User Card Decks" in the Bu/k //O manual.

Usage
. read_cards

Notes

The card codes that are accepted by various card readers may vary from one card
reader to another. The operator should be familiar with the card codes that should be
used with the card reader at the remote station

Name: ready

The ready command places the device and the specified minor devices in the
active or "ready" state. The driver only requests service from the coordinator for a
ready device. This command performs the reverse function of the halt command.

Usage
tready devl ... dev

{-control_arg}

ready

5-17 GB60-00

ready

where:

1 dev_
is the name of a device, or minor device in the case of a
multifunction device, that is to be placed in the ready state.

2. -control_arg

can be -all or —a to place all devices in the ready state. If the -all
control argument is used, no device names need be given. If there is
only one device, no control argument is required. In this case, the
ready command is executed automatically during driver initialization.
If there are multiple minor devices, the operator must specify the
ones to be made ready or else must specify —all to make all minor
devices ready.

Name: receive

The receive command causes the driver to wait for output files to be transmitted
from the remote system. A message is issued at the start and end of each file received.
If automatic queueing of output files is enabled for this simulated device, output files
are locally printed or punched after they have been successfully received; otherwise, the
output files are placed into system pool storage as specified by the ++IDENT control

- records that must be present in the files.

After use of the receive command, the driver only recognizes pending commands
while it is between output files. If it is necessary to execute a command while a file is
being received, a QUIT must be issued to the driver to bring the driver to QUIT
command level. The hold command can then cause the driver to remain at QUIT level;
the release command can abort receiving the file and return to normal command level;
and the start command can resume receiving the file.

Usage
receive

Name: reinit

The reinit command reinitializes the driver. The same device(s) and request type(s)
are used without requesting operator input. However, remote stations have to reissue the
station command and any new default request types. Also, if a control terminal is
attached to the driver, its attachment, form simulation mode, and form type are
retained over the reinitialization. Each device and request type is again requested from
the coordinator. '

reinit

5-18 GB60-00

reinit

req_status

" The reinit command to the driver is almost the same as the standard Multics
new_proc command.

Usage
reinit

Name: release

The release command returns the driver to normal command level. This command
is primarily used following a quit signal. If a request was in progress, it is started over
again.

Usage
release

Name: req__status

The req_status device-specific driver command gives the operator information
about the current request. This command can only be used at request command level.

Usage
req_status {-control_arg}

where control_arg, for printers only, can be -long or -lg to give the operator the
following information:

number of multisegment file components
number of characters in file

current page number

current copy number

current line count

current multisegment file component
char offset in current component

char offset from start of file

printer DIM modes

printer DIM position

If the control argument is omitted, only the first four items in the above list are
printed. In this case, the information looks like:

5-19 GB60-00

req_status restart

Request 10001: >print_files>invoices>Station_A.invoices
file components: 2, char count: 4732865
page no: 1006 current copy no: 2

There is no control_arg defined for punches. The following three items are
printed: .

current copy number

current request number

current pathname

In this case, the information looks like:

Request 20001 >punch_files>invoices>Station_A.invoices
current copy no: 2

Name: request__type, rqt

The request_type command is used to specify thé request type to be used for the
automatic queuing of output files received by this device.

Usage
rqt rqt_name

where rqt_name is the name of the request type to be used for automatic queuing. The
generic type of this request type must agree with the type of device being simulated
(e.g., "printer” for simulated line printers). This parameter is optional; the default value
is the request type specified in the iod_tables definition of this driver.

Name: restart

The restart command is used either to restart processing of the current request
after a device malfunction or to reprocess requests in the coordinator’s saved list.

Usage
restart {arg}

where arg can be one of the following:

restart runout_spacing

is the number of the request to be restarted. The coordinator searches
its saved list for a matching request. If found, the request is
reprocessed ahead of any other requests, including those from the
"next" command. If the request had been saved in the middle of a
copy (suspended), the request is restarted beginning at the top of the
following page; a punch request starts at the beginning of that copy.

2. -from N
specifies that all requests in the series beginning with request N are to
be restarted. This is an implicit save of all requests in the series.

When the restart command is issued directly after a quit signal, with no
arguments, the driver’s current request is restarted. For print requests, the current page
number, minus 5, and copy number are displayed and the driver goes to request
command level. For punch requests, the number of copies completed (if more than
one) is displayed and the operator is asked to note how many were good.

Notes

The user is charged for the requested number of copies only, regardless of how
many copies were produced by this command.

If the request number series of a restarted request is still active, the driver is
switched to another series. Each restarted request is assigned a new request number, and
any subsequent restart must be based on the new request number.

Name: runout__spacing

The runout_spacing device-specific driver command sets the number of lines to
advance the paper after requesting a command from a remote multifunction slave
terminal.

Usage
runout_spacing N

where N is the number of lines the driver advances the paper after requesting a
command from the slave. N can be from zero to 60.

Note

The runout spacing is normally set in the attach description from the iod_tables.
This command allows the operator to change the spacing so that driver command
requests can be seen clearly above the platen.

5-11 GB60-00

sample

sample_form

Name: sample

The sample device-specific driver command is used by printer drivers at request
command level to print a sample page of the file for paper alignment or to verify the
starting position in the file. The current position of a new request is always page 1.
The same page can be printed as often as needed.

Usage
sample {N}

where N is the page number that the driver prints. If N is omitted, the driver prints
the current page in the file.

If N is preceded by a "+" or "-", the number is relative to the current page of
the file. For example, "sample +3" skips forward three pages and prints the page;
"sample —-8" skips backward eight pages and prints the page. Similarly, "sample 500"
skips to page number 500 and prints it

If the page number specified is beyond the end of the file, an error message is
printed similar to:

End-of-File record encountered. EOF at page 2000, line 10.

Unable to skip to starting page.

Enter command(request):
and a new command is requested.

The sample command prints a page with separator bars as an aid to the operator
in indicating the sample pages so they can be discarded.

Name: sample__form

The sample_form device-specific driver command prints a sample of the data used
to record request processing on the control terminal. The primary function of this
command is to verify the alignment of the forms on the control terminal. The data is
formatted by the program that is called for each copy of each request. (See the
ctl_term command.)

5-22 GB60-00

sample_form save

Usage
sample_form

Notes

If form feed simulation is being used, the command checks to see if alignment
has been set. If not, it is set before the sample form is printed.

The sample_form command applies to all drivers that use a control terminal.

Name: sample__hs

The sample_hs device-specific driver command prints a sample head sheet to align
the paper before starting to print or after loading more paper. This command should
not be used in the middle of a request (e.g., after a quit) unless the request is restarted
using the restart command. Otherwise, the page restart feature of the printer driver is
placed out of synchronization.

Usage
sample_hs {minor_device}

where minor_device is a minor device name (as shown by the status command) and is
required if there is more than one printer minor device.

Name: save
The save command tells the coordinator that one or a series of requests are to be
retained beyond the normal holding time. The action is limited to requests in the

specified request number series. The save command allows requests to be saved for
possible restarting until the coordinator is logged out.

Usage
save {arg}

where arg can be one of the following:

5-23 GB60-00

save sep_cards

specifies the. request number in the coordinator’s saved list. The
coordinator searches its list of finished requests and marks the
matching request number as saved for later restarting. The request
remains in the saved list until the request is restarted by the restart
command or until the coordinator is next initialized.

2. ~from N
specifies that all requests in the series beginning with request N are
retained in the saved list.

If no argument is given, the current request is returned to the coordinator and
saved for later restarting. For printers, the request is processed to the bottom of the
next even page and a normal tail sheet is printed, showing a charge of zero. When the
request is later restarted, printing begins at the top of the next odd page.

Notes

Once a saved request is restarted, it is not saved any longer than the normal
retention time. The coordinator never deletes the user’s segment while the request is
being saved.

Name: sep__cards
The sep_cards command is used by a remote punch driver at normal command
level to control the punching of separator cards between each output deck. If separator
cards are not punched, the operator should run the driver in step mode (see the step
mode command) and remove the cards from the punch as each request is completed.

Usage
sep_card {minor_device} {arg}

where:

1. minor_device
is the name of the punch minor device being addressed. This
argument is optional if there is only one punch minor device, but is
required otherwise.

2. arg

can be one of the following:

standard
the standard separator cards are to be punched (default).

5-24 GB60-00

sep_cards station

none
no separator cards are to be punched.

-print
if arg is not given, or if a single arg "—-print", is given, the
current value is printed.

Name: single

The single device-specific driver command applies only to drivers that operate a
printer. It sets the single mode of the printer DIM so that formfeed and vertical tab
characters are treated as newline characters for the current request. It also cancels any
additional requested copies that have not been processed by the driver. The single
command is used after a quit to stop runaway paper feeding caused, for example, by
the printing of 2 non—-ASCII segment.

Usage
single

Name: start

The start command allows the driver to resume operations suspended at other than
the normal command level, e.g., after a quit signal. Its function is similar to the
standard Multics start command. The start command cannot be issued at normal
command level (see the go command).

After a quit signal, this is the only command that allows control to be returned
to the point of process interruption. The action of the hold command is reset when a
start command is issued.

Usage
start

Name: station

The station command is used by a driver to identify and validate a remote
station. This command is similar to the standard Multics login command.

5-25 GB60-00

station

status

Usage
station station_id {station_password}

where:

1 station_id
is the registered id of the station, as defined by the administrator.

2. station_password
is the registered password for the remote station.

Notes

The station’s identifier and password are registered in the PNT using the card
input password as the station password and are supplied by the administrator for each
station location.

If the remote station includes an operator’s terminal with keyboard and CRT or
printer, the station password can be omitted from the station command. The system
then requests the station password and either suppresses printing of the password or
masks it. This feature is particularly useful when a remote station is actually a
high—-quality letter printer (e.g., a Diablo 1640), where the printer is used both as the
slave console and as the actual output device.

Remote stations that have no input device do not have to give a station command.
However, these stations must use a dedicated phone line and have the station identifier
specified in the iod_tables as described earlier for Type II remote stations.

Name: status

The status command prints information about the current status of the driver.
The information provided is:

The 1/0 daemon driver version.

The device name and channel.

The request type (per minor device if more than one).

Whether a request is in progress and the request number.

The device status: ready, halted, or not attached. (If there are minor
devices, this is provided per minor device.)

Pending requests and their request numbers.

Whether step mode is set.

The names of any minor devices (to be used with the ready and
commands).

PN b

5-26 GB60-00

status

Usage
status {-control_arg}

where control_arg can be -long or -lg to print the status of inactive minor devices
(devices that cannot be made ready).

Name: step

The step command either sets (puts the driver into) or resets (takes the driver out
of) step mode. When in step mode, the driver returns to command level after
processing each request from the coordinator. When not in step mode, the driver
processes requests from the coordinator as soon as received without operator interaction.
Step mode is useful for checking the alignment of paper on the printer or other device
functions prior to allowing the driver to run continuously without operator interaction.

Usage
step {arg}
where arg can be "set” or "reset" to put the driver into or take the driver out of step

mode. If no argument is supplied, step mode is set. The driver is not in step mode
immediately after driver initialization.

Name: X
The x command allows drivers to execute an admin exec_com on a site-defined
basis.
Usage
x function {args}
where:

1. function
is a site—defined function name.

2. args .
are any arguments needed to implement function.

5-27 GB60-00

Notes :
When the user issues the x command, the driver constructs the command line:

-exec_com >ddd>idd>NAME function {args}
where function and args are as above; NAME is either <major_device>_admin.ec for
standard drivers or <station_id>_admin.ec for remote drivers. If NAME is not found,

the driver looks for the default of iod_admin.ec. Added names can be used to group
exec_coms into categories.

Drivers that run as IO.SysDaemon have a great deal of access to the storage
system. Administrators must be careful in choosing commands for the admin exec_coms
to avoid accidents or vandalism.

The Multics iod_command command can be used within an admin exec_com to
execute arbitrary 1/0 daemon commands. For example:
iod_command defer_time 30

in an admin exec_com changes the auto defer time limit for the current driver to 30
minutes. The iod_command command is described in the Bu/k //O manual.

5-28 GB60-00

SECTION 6

I/O MODULES

Name: hasp__host__

The hasp_host_ I/0 module simulates record—oriented I/0 to a single device of a
workstation while communicating with a host system using the HASP communications
protocol. See the "Notes" below for more detail.

Entry points in this module are not called directly by users; rather, the module is
accessed through the I/0 system.

This I/0 module must be attached to a subchannel of a communications channel
configured to use the HASP ring-0 multiplexer.

This I/0 module is designed primarily for use by the Multics I/O daemon.

Attach Description
hasp_host_ —control_args

where control arguments can be chosen from the following and are optional, with the
exception of —comm, —-tty, and —device:

-comm hasp
is required for compatibility with other I/0O modules used by the I/0
daemon.

-tty channel_name
specifies the communications channel to be attached. The channel
must be a subchannel of a HASP multiplexed channel (e.g., a.h014.prt3).

—device STR
specifies the type of device for this attachment. STR must be one of
"teleprinter”, "reader", "printer", or "punch". The type specified by
this control argument must match the type of device attached to the
channel name defined above.

6-1 GB60-00

hasp_host_

hasp_host__

-terminal_type STR, -ttp STR

is optional and is used to define the character set used by the remote
system. STR must be the name of a terminal type defined in the
site’s Terminal Type Table (TTT). See the section "Character Set
Specification” below for more information, including the default
character set used if this control argument is omitted.

-physical_line_length N, -pll N

-ebedic

Open Operation

is accepted for compatibility with other I/O modules used by the I/0
daemon, but is ignored by this I/0 module.

is accepted for compatibility with other 1/0 modules used by the 1/0
daemon, but is ignored by this I/0O module.

The hasp_host_ I/0 module supports the sequential_input, sequential_output, and
sequential_input_output opening modes.

Write Record Operation

The write_record entry converts the supplied data record from ASCII to the
remote system’s character set, performs data compression, and transmits the record to
the HASP multiplexer.

The format of the record supplied to this I/O module follows. This structure and
the referenced constants are contained in the terminal_io_record.incl.pll include file:

dcl 1 terminal_io_record aligned based,
2 version fixed binary,
2 device_type fixed binary,
2 slew_control,
3 slew_type fixed binary (18) unaligned unsigned,
3 slew_count fixed binary (18) unaligned unsigned,
2 flags,
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,
2 element_size fixed binary,
2 n_elements fixed binary (24),
2 data,
3 bits (terminal_io_record_n_elements refer

(terminal_io_record.n_elements))
bit (terminal_io_record_element_size refer
(terminal_io_record.element_size)) unaligned;

6-2 GB60-00

o’

/ hasp_host_ hasp_host_

where:

version '(Input)
is the current version of this structure. This version of the structure
is given by the value of the named constant terminal_io_record_version_1.

. device_type (Input)

is the type of device to which this record is to be written. The
acceptable values are TELEPRINTER_DEVICE and READER_DEVICE.

slew_control (Input)
is ignored by this 1/0 module as the HASP communications protocol
does not define slew operations for either the teleprinter or card
reader.

flags.binary (Input)
must be set to "0"b. (This 1I/0O module does not support binary data
transmission.)

flags.preslew (Input)
must be set to "0"b.

element_size (Input)

Y must be set to 9. (This I/0O module only supports transmission of

characters.)

n_elements (Input)
is the number of characters in the record to be written.

data.bits (Input)
is the actual data. This I/O module expects to be supplied ASCII
characters.

Read Record Operation

The read_record entry returns a single record from the device, basically
performing the inverse of the functions described for the write_record operation.
Additionally, for line printer attachments, the carriage control information in the record
. is converted into the appropriate slew information in the terminal_io_record.

The format of the record that this I/O module returns in the supplied buffer is
as follows. The structure and the referenced constants are contained in the terminal_io_record
include file:

dcl 1 terminal_io_record aligned based,
2 version fixed binary,
2 device_type fixed binary,
2 slew_control,
3 slew_type fixed binary (18) unaligned unsigned,

6-3 GB60-00

hasp_host_ hasp_host_

3 slew_count fixed binary (18) unaligned unsigned,
2 flags, .
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,
2 element_size fixed binary,
2 n_elements fixed binary (24),
2 data,
3 bits (terminal_io_record_n_elements refer
(terminal_io_record.n_elements))
bit (terminal_io_record_element_size refer
(terminal_io_record.element_size)) unaligned;

where:

version (Output)
is the current version of this structure. This version of the structure
is given by the value of the named constant terminal_io_record_version_1.

device_type (Output)
is the type of device from which this record was be read. Its possible
values are TELEPRINTER_DEVICE, PRINTER_DEVICE, or
PUNCH_DEVICE.

slew_control (Output)
if the input device is a line printer, this substructure is filled in with
the interpretation of the HASP carriage control record present in each
line printer record; otherwise, it is always set to the value specified
below.

slew_type (Output)
for a line printer, is set to the type of slew operation to be
performed before/after "printing” the data in the record and may be
either SLEW_BY_COUNT or SLEW_TO_CHANNEL. For a teleprinter
or punch it is set to SLEW_BY_COUNT. (The data returned is
processed by the caller of this I/O module; this processing is herein
termed the "printing" of the data.)

slew_count (Output)
for a line printer, is set to the value to be interpreted according to
slew_control.slew_type above. For a teleprinter or punch it is set to
1.

flags.binary (Output)
is always set to "0"b.

flags.preslew (Output)
for a line printer, is set to "1"b if the slew operation above is to be
performed before "printing” the data in the record, or is set to "0"b
if the slew operation is to be performed after "printing". For other
than the line printer, it is always set to "0"b.

6-4 GB60-00

hasp_host_ hasp_host_

element_size (Output)
is always set to 9.

n_elements (Output)
is set to the number of characters returned in the record.

data.bits (Output)
is the actual returned data. This I/0 module converts the data input
from the remote host to ASCIIL

Control Operation
This I/0 module supports the following control operations:

runout
ensures that all data has been transmitted to the HASP multiplexer from
where it is guaranteed to be transmitted to the terminal.

end_write_mode
ensures that all previously written data has been transmitted to the HASP
multiplexer and then writes an end-of-file record for the device.

read_status
determines whether or not there are any records waiting for a process to
read. The info_ptr should point to the following structure, which is
filled in by the call

dcl 1 info_structure aligned,
2 ev_chan fixed bin (71),
2 input_available bit (1);

where:
ev_chan (Output)
is the event channel used to signal the arrival of input.
input_available (Output)
indicates whether input is available:
"0"b no input
"1"b input
resetread
discards any pending input.
resetwrite

discards any unprocessed output.

6-5 GB60-00

hasp_host__ hasp_host_

hangup_proc
is used to specify.a procedure to be invoked when this attachment’s channel
is hung up. The info_ptr points to the following structure:

dcl 1 hangup_proc_info aligned,
2 procedure entry variable,
2 data_ptr pointer,
2 priority fixed binary;

where:
procedure (Input)
is the procedure to be invoked when the hangup occurs.
data_ptr (Input)
is a pointer to be supplied to the procedure.
priority (Input)
is the priority for the hangup event.
A detailed explanation of data_ptr and priority can be found in the
description of ipc_ in the Mul/tics Subroutines manual.
select_device
reset

are ignored rather than rejected for compatibility with other I/0O modules
used by the 1/0 daemon.

signon_record

no_signon_record
can only be issued on the operator’s console subchannel of the multiplexer.
These are described in the "SIGNON Processing" section.

Modes Operation

This module accepts the "non_edited” and "default” modes for compatibility with
other I/0 modules used by the I/0 daemon, but ignores them.

Character Set Specification

This 1I/0 module allows the specification of the character set used by the remote
system through the —terminal_type attach option.

If -terminal_type is given, the referenced terminal type must be defined in the
site’s TTT with both an input and output translation table. This module uses these
translation tables to convert data from the remote system to ASCII, and from ASCII to
the remote system’s character set.

6-6 ' GB60-00

~

Vam hasp_host_ hasp_host_

If -terminal_type is not given, the remote system is assumed to use EBCDIC as
its character set. In this case, the ascii_to_ebcdic_ subroutine converts data sent to the
system; the ebcdic_to_ascii_ subroutine converts data received from the remote system.
(See Multics Subroutine manual for a description of these translations.)

SIGNON Processing

Before communicating with certain remote systems, Multics must send the
SIGNON record. This specially formatted record identifies Multics to the remote
system.

For these systems, the Multics multiplexer must be configured to use "signon_mode".
Before data transmission is permitted, the signon_record control order must be issued
on an I/0 switch attached to the operator’s console subchannel of the multiplexer.

If the remote system does not expect a SIGNON record, the "no_signon_record"
control order can be used to validate that the multiplexer channel is properly
configured.

sign__on__record Control Order

Y This control order supplies a SIGNON record for transmission to the remote
system. The info_ptr must locate the following structure declared in the
hasp_signon_record_info.incl.pll include file:

dcl 1 signon_record_info aligned based,
2 version fixed binary,
2 pad Dbit (36),
2 event_channel fixed binary (71),
2 record character (80) unaligned;

where:

version
is the current version of this structure. It must have the value of the named
constant SIGNON_RECORD_INFO_VERSION_1.

pad

is reserved for future expansion and must be zero.

event_channel
is an event-wait channel whose use is described below.

record

is the actual text of the SIGNON record in ASCII. This I/0 module translates
the text to uppercase and the remote system’s character set.

6-7 GB60-00

hasp_host_ hasp_host_

o’
If the status code returned by this control order is zero, the calling program must
block on the above event-wait channel. When the wakeup arrives, the event message
indicates the success or failure of the control order. It has one of the following values
(found in the named include file):
- HASP_SIGNON_OK
indicates that the remote system has accepted the SIGNON record.
HASP_SIGNON_REJECTED
indicates that the remote system has rejected the record; the caller should
try again with a different record.
HASP_SIGNON_HANGUP
indicates that the remote system has rejected the record and disconnected
the multiplexer.
If the status code returned by the control order is error_table_$invalid_state, the
multiplexer is not configured to send a SIGNON record.
no__signon__record Control Order
This control order validates that the multiplexer is not configured to send a
SIGNON record to the remote system. This order does not accept an info structure.
~
If the returned status code is error_table_S$invalid_state, the multiplexer is
configured to send a SIGNON record, and a "signon_record” must be issued on this
subchannel.
get__device__type Control Order
This control order is recognized for HASP subchannels in addition to the control
orders defined in the description of the tty_ I/0 module in the Mu/tics Subroutines
manual. It is used exclusively by the hasp_workstation_ and hasp_host_ I/0 modules
and should not be invoked by user programs.
In the following description, the "info_ptr" field provides the declaration of the
item that the caller must supply to the HASP multiplexer software.
The get_device_type control order returns the type of device (operator’s console,
card reader, line printer, or card punch) connected to the subchannel.
info_ptr: fixed binary (35) (Output)
return codes:
0 the device type is supplied in the given field
error_table_S$undefined_order_request
this channel is not part of a HASP multiplexer.
~

6-8 GB60-00

hasp_host_ hasp_host_

The possible values returned by this control order are defined in the
hasp_device_data_incl.pll include file.

Notes

. As stated above, this I/0 module is used to simulate the operation of a single
device of a HASP workstation.

If the simulated device is a card reader, the caller supplies records to this module
that are then formatted and transmitted to the remote host. In other words, a card
reader attachment through this switch is an output—only attachment.

Similarly, this I/O module receives records from the remote host when the
simulated device is either a line printer or card punch. Thus, line printers and card
punches attached through this I/0 module are input—only devices.

Special I/0 daemon software is provided to allow Multics to simulate the
operations of a workstation in order to submit jobs to remote systems and receive those
jobs’ output print and punch files. This workstation simulator uses this I/O module for
communications with the remote host.

6-9 GB60-00

hasp_workstation_ hasp_workstation_

Name: hasp__workstation__
The hasp__workstation_. I/0 module performs record-oriented I/O to a single
device of a remote terminal that supports the HASP communications protocol.

“Entry points in this module are not called directly by users; rather, the module is
accessed through the I/0 system.

This module must be attached to a subchannel of a communications channel
configured to use the HASP ring-0 multiplexer.

The module is designed primarily for use by the Multics I/0 daemon. It expects
output for the operator’s console and line printers to have been properly formatted by
the prt_conv_ module.

Attach Description
hasp_workstation_ —control_args

where control arguments can be chosen from the following and are optional, with the

exception of —comm, —-tty, and -device:
—-comm hasp '

is required for compatibility with other I/0 modules used by the I/0

daemon.

~tty channel_name
specifies the communications channel to be attached. The channel
must be a subchannel of a HASP multiplexed channel (e.g., a.h014.prt3).

~device STR
specifies the type of device for this attachment. STR must be one of
"teleprinter”, "reader”, "printer”, or "punch". The type specified by
this control argument must match the type of device attached to the
channel name defined above.

—terminal_type STR, -ttp STR
is optional and is used to define the character set used by the remote
terminal. STR must be the name of a terminal type defined in the
site’s Terminal Type Table (TTT). See the section "Character Set
Specification” below for more information, including the default
character set used if this control argument is omitted.

-physical_line_length N, -pll N

is accepted for compatibility with other I1/0 modules used by the 1/0
daemon, but is ignored by this I/0 module.

6-10 GB60-00

hasp_workstation_ hasp_workstation_

—-ebedic
is accepted . for compatibility with other 1/0 modules used by the 170
daemon, but is ignored by this I/0 module.

-top_of_page STR
specifies the sequence of carriage control operations to be used to
move to the top of the next page. This control argument is only
permitted for a line printer. The format of STR is described in
"Carriage Control Specifications” below. (Default is "c1".)

-inside_page STR
specifies the sequence of carriage control operations to be used to
move to the top of the next inside page. An inside page is the page
on which the I/O daemon prints head sheets. This control argument
is only permitted for a line printer. The format of STR is described
in "Carriage Control Specifications” below. (Default is "c1".)

-outside_page STR .
specifies the sequence of carriage control operations to be used to
move to the top of the next outside page. An outside page is the
page on which the I/O daemon prints tail sheets. This control
argument is only permitted for a line printer. The format of STR is
described in "Carriage Control Specifications” below. (Default is "c1".)

-forms STR
specifies the type of forms to be used to print output directed
through this attachment. STR is an arbitrary string of, at most, 32
characters whose interpretation is site dependent. This control argument
is only permitted for a line printer. (Default is the null string.)

Open Operation

The hasp_workstation_ I/0 module supports the sequential_input, sequential_output,
and sequential_input_output opening modes.

Write Record Operation

The write_record entry converts the supplied data record from ASCII to the
remote terminal’s character set, converts the supplied slew control into the proper
carriage control sequences for line printer attachments, performs data compression, and
transmits the record to the HASP multiplexer.

The format of the record supplied to this I/O module follows. This structure and
the referenced constants are contained in the terminal_io_record include file:

dcl 1 terminal_io_record aligned based,
2 version fixed binary,
2 device_type fixed binary,
2 slew_control,

6-11 GB60-00

hasp_workstation_ hasp_workstation_

3 slew_type fixed binary (18) unaligned unsigned,
3 slew_count fixed binary (18) unaligned unsigned,
2 flags,
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,
2 element_size fixed binary,
2 n_elements fixed binary (24),
2 data,
3 bits (terminal_io_record_n_elements refer
(terminal_io_record.n_elements))
bit (terminal_io_record_element_size refer
(terminal_io_record.element_size)) unaligned;

where

version (Input
is the current version of this structure. This version of the structure
is given by the value of the named constant terminal_io_record_version_1.

device_type (Input)
is the type of device to which this record is to be written. The
acceptable values are TELEPRINTER_DEVICE, PRINTER_DEVICE, or
PUNCH_DEVICE.

slew_control (Input)
need only be supplied by the caller if device_type is PRINTER_DEVICE
and spemfm the slew operation to be performed after printing the
data in the record.

slew_type (Input)
specifies the type of slew operation. The possible values are
SLEW_BY_COUNT, SLEW_TO_TOP_OF_PAGE,
SLEW_TO_INSIDE_PAGE, SLEW_TO_OUTSIDE_PAGE, or
SLEW_TO_CHANNEL.

slew_count (Input)
is interpreted according to the value of slew_control.slew_type.

flags.binary (Input)
must be set to "0"b. (This I/O module does not support binary data
transmission.)

flags.preslew (Input)
must be set to "0"b. (This I/O module does not support slew
operations before printing the record’s data.)

element_size (Input)
must be set to 9. (This I/0 module only supports transmission of
characters.)

6-12 GB60-00

~ hasp_workstation_ hasp_workstation_

n_elements (Input)
is the number of characters in the record to be written.

data.bits (Input)
is the actual data. This I/0 module expects to be supplied ASCII
characters.

Read Record Operation

The read_record entry returns a single record from the device, basically
performing the inverse of the functions described for the write_record operation.

The format of the record this I/0 module returns in the supplied buffer
follows. This structure and the referenced constants are contained in the terminal_io_record
include file:

dcl 1 terminal_io_record aligned based,
2 version fixed binary,
2 device_type fixed binary,
2 slew_control,
3 slew_type fixed binary (18) unaligned unsigned,
3 slew_count fixed binary (18) unaligned unsigned,
—~ 2 flags,
3 binary bit (1) unaligned,
3 preslew bit (1) unaligned,
3 pad bit (34) unaligned,
2 element_size fixed binary,
2 n_elements fixed binary (24),
2 data,
3 bits (terminal_io_record_n_elements refer
(terminal_io_record.n_elements))
bit (terminal_io_record_element_size refer
(terminal_io_record.element_size)) unaligned;

where:
version (Output)
. is the current version of this structure. This version of the structure
is given by the value of the named constant terminal_io_record_version_1.
device_type (Output)

- is the type of device from which this record was read. Its possible
values are TELEPRINTER_DEVICE or READER_DEVICE.

slew_control.slew_type (Output)
is always set to SLEW_BY_COUNT.

slew_control.slew_count (Output)
is always set to 1.

6-13 GB60-00

hasp_workstation_ hasp_workstation_

flags.binary (Output)
is always set to "0"b.

flags.preslew (Output)
is always set to "0"b.

element_size (Output)
is always set to 9.

n_elements (Output)
is set to the number of characters returned in the record.

data.bits (Output)
is the actual returned data. This I/O module converts the data input
from the remote workstation to ASCII.

Control Operation
This 1/0 module supports the following control operations:

runout
ensures that all data has been transmitted to the HASP multiplexer from
where it is guaranteed to be transmitted to the terminal.

end_write_mode
ensures that all previously written data has been transmitted to the HASP
multiplexer and then writes an end-of-file record for the device.

read_status
determines whether or not there are any records waiting for a process to
read. The info_ptr should point to the following structure, which is
filled in by the call:

del 1 info_structure aligned,
2 ev_chan fixed bin (71),
2 input_available bit (1);

where:

ev_chan (Output)
is the event channel used to signal the arrival of input.

input_available (Output)
indicates whether input is available:
"0"b no input
"1"b input

resetread
flushes any pending input.

6-14 GB60-00

hasp_workstation_ hasp_workstation_

resetwrite
flushes any unprocessed output.

hangup:_proc
is used to specify a procedure to be invoked when this attachment’s
channel is hung up. The info_ptr points to the following structure:

dcl 1 hangup_proc_info aligned,
2 procedure entry variable,
2 data_ptr pointer,
2 priority fixed binary;

where:

procedure (Input)
is the procedure to be invoked when the hangup occurs.

data_ptr (Input)
is a pointer to be supplied to the procedure.

priority (Input)
is the priority for the hangup event.

A detailed explanation of data_ptr and priority can be found in the
description of ipc_ in the Mul/tics Subroutines manual.

select_device

reset
are ignored rather than rejected for compatibility with other 1/0
modules used by the I/0 daemon.

Modes Operation

This module accepts the "non_edited"” and "default" modes for compatibility with
other I/0 modules used by the I/O daemon, but ignores them.

Character Set Specification

This 1/0 module allows the specification of the character set used by the remote
workstation through the —terminal_type attach option.

If -terminal_type is given, the referenced terminal type must be defined in the
site’s TTT with both an input and output translation table. This module will use these
translation tables to convert data from or to the remote workstation from or to ASCII,
respectively.

6-15 GB60-00

hasp_workstation_ hasp_workstation_

If -terminal_type is not given, the remote system is assumed to use EBCDIC as
its character set. In this case, the subroutine ascii_to_ebcdic_ is used to convert data
sent to the workstation; the subroutine ebcdic_to_ascii_ is used to convert data received
from the remote system. (See Mul/tics Subroutines manual for a description of these
translations.)

Carriage Control Specifications

Multics I/0 daemon software uses three special slew operations —— skip to top of
the next page, skip to top of the next inside page, and skip to the top of the next
outside page. (An inside page is the type of page on which the 1/0 daemon would
print a head sheet; an outside page is the type on which it would print a tail sheet.)

By default, this I/0O module assumes that all of these slew operations can be
simulated on the remote workstation’s line printer by skipping to channel one.
However, through use of the -top_of_page, —inside_page, and -outside_page control
arguments, any sequence of carriage motions can be specified to simulate these slew
operations.

The format of this carriage control specification is:
Tn:Tn:Tn:...
where "n" is a numeric value and "T" represents how to interpret that numeric value.
"T" can be either "c", representing skip to channel "n", or "s", representing slew "n"
lines.
For example, the string:
c7:s5:c12

means skip to channel seven, space five lines, and finally skip to channel twelve.

get__device__type Control Order

This control order is recognized for HASP subchannels in addition to the control
orders defined in the description of the tty_ I/0 module in the Mu/tics Subroutines
manual. It is used exclusively by the hasp_workstation_ and hasp_host_ I/0 modules
and should not be invoked by user programs.

In the following description, the “info_ptr" field provides the declaration of the
item that the caller must supply to the HASP muiltiplexer software.

The get_device_type control order returns the type of device (operator’s console,
card reader, line printer, or card punch) connected to the subchannel.

6-16 GB60-00

hasp_workstation_

info_ptr: fixed binary (35) (Output)

return codes:
0

the deviée type is supplied in the given field

error_table_$undefined_order_request
this channel is not part of a HASP multiplexer.

“The possible

values returned by this control order

hasp_device_data_incl.pll include file.

6-17

hasp_workstation_

are defined

in the

GB60-00

SECTION 7

TEST MODE

SETTING UP THE TEST DIRECTORY

The test environment allows you to test the software and data base changes you
made to get your HASP system working. Set up a test directory with structure similar
to the >ddd>idd directory, giving test users sma access. Create an rqt_info_segs
directory there, too, containing all rqti segments you plan to use. If card input is to be
performed, create a card_pool directory in the test directory as well, assigning it
sufficient quota for the card input.

Create the iod_tables.iodt segment in the test directory, compiled via the
jod_tables_compiler command. If the driver is run from other than an 1O.SysDaemon
process (e.g., the process attaching the simulated operator’s console), each request type
used requires the following in iod_tables.iodt:

driver_userid: Person_id.Project_id;
accounting: nothing;

where Person_id.Project_id identifies the testing process. You must also create message
segment queues for the request types to be used during testing (via create_daemon_queues
command or the message segment commands).

Check that the testing process is using the TTT in which you have defined the
HASP multiplexer terminal type; that it has the dialok attribute in the PDT, and rw
access to the access control segments for the communications channels and card input
devices.

If the x command is to be used during testing, include an iod admin exec_com or
device admin exec_com in the test directory.

MANIPULATING REQUESTS IN THE TEST QUEUES

Since the test driver process will be using message segments in the test directory,
the dprint, dpunch, list_daemon_requests (Idr) and cancel_daemon_requests (cdr) commands
must be made aware of the test environment. This is done by calling special entries in
each command procedure and indicating the test directory (TEST_DIR in examples) as
follows:

dprint_$test TEST_DIR
ldr$test_ldr TEST_DIR
cdr$test_cdr TEST_DIR

Once this is done, the normal system printer/punch queues are no longer known to the
test process.

7-1 GB60-00

THE TEST PROCESS

A standard I/0 daemon process operates either as a coordinator or as a driver,
with only one coordinator operating on the system at any time. In test mode, a single
test process can perform the functions of both coordinator and driver; or, after one
interactive test process has become a coordinator, another interactive process can become
a driver. The second interactive process must use the same test directory as the first
process. The test processes acting as coordinator and driver are unknown to the
standard system I/0O daemon processes.

Experimental software should exist in either bound or loose form in the test
directory. If one component of a bound object segment is loose, then all components
must be loose. You may want to initiate each object segment first.

Start the test process by calling the test entry of the iod_overseer_ subroutine:
test_io_daemon —-dr TEST_DIR

When running the coordinator and driver in a single test process, the dialog from this
point looks like the following, with user responses preceded by an exclamation point (!):

Enter command: coordinator or driver
! coord

1/0 Coordinator Version: X.X

1/0 Coordinator initialized
! driver

170 Daemon Driver Version: X.X
Driver running in test mode.

Enter command or device/request type:

At this point the driver will accept a device name to run a printer, punch, or
remote workstation device.

Because the test entry was used, several commands are available to the user. One
of these is the debug command, which calls the system debug command. From within
the debug command, the user can use all the the debug command requests, including
".." 1o execute normal Multics commands.

Within the coordinator/driver test process there exist two pseudo processes stacked
above the original interactive process. the coordinator in the middle, and the driver on
top. Your console terminal communicates with the driver process after you have typed
in "driver" during initialization. If you issue the logout command, you log out only the
driver part of the test process; the console is then communicating with the coordinator

7-2 GB60-00

part of the test process. You can now start a new driver servicing the same or another
device defined in the test directory’s iod_tables. To terminate the test session, issue the
logout command again, and the coordinator part of the process logs out. You are now
back to normal Multics interactive command level.

Setting Breakpoints

You may wish to set breaks in the software to investigate a problem. Create and
initiate a copy of the desired segment in the test directory. If the segment normally
exists in a bound object segment, all components must exist and be initiated in the test
directory. At your option, the source can be copied into the test directory and
recompiled with the map and table options. This allows full use of either the probe or
the debug command to investigate the problem.

To set breaks with the debug command, enter debug, set the breaks, and then
bring up the test driver from within debug. This way the process transfers directly to
debug whenever a breakpoint is reached.

To set breaks with the probe command, enter probe, set the breaks, and
optionally bring up the test driver within probe. If the test driver is already initialized,
the debug command must be given in order to enter probe (via the debug request
"..probe") to manipulate breaks previously set up by probe, unless the process is stopped
at a probe break.

Some errors occurring before full driver initialization invoke debug automatically
while in test mode. The state of the process can be examined at this point. A ".q"
debug request performs the equivalent of a start command.

Test mode command level is indicated parenthetically in the command level
message as:

Enter command (iodd signal):

SAMPLE EXEC_COM FILE

The following is a sample of an exec_com that has proven useful in setting up
and running a test environment. When creating your own exec_com, remember to
replace TEST_DIR with the absolute pathname of the test directory.

&command_line off
&goto &ec_name

&label setup_environment

sa TEST_DIR>#** sma [user name]. [user project]

sa TEST_DIR>coord_dir>*+ rw [user name]. [user project]
sa TEST_DIR>coord_lock rw

sa TEST_DIR>iodc_data rw

7-3 GB60-00

mssa TEST_DIR>([segs *.ms]) adros [user name]. [user project]
& Initiate software in test directory at this point.

& set_ttt_path TEST_DIR>TTF.ttt

&quit

&label start_iod

&attach

test_io_daemon -dr TEST_DIR
~ coord

driver

&detach

&quit

&label use_test_queues

& Call the test entry of the daemon request commands.
dprint_$test TEST_DIR

ldr$test_ldr TEST_DIR

cdr$test_cdr TEST_DIR

&quit

&label use_system_queues
dprint_$test >ddd>idd
1dr$test_Idr >ddd>idd
cdr$test_cdr >ddd>idd
&quit

&label make_tables

& Compile the iod_tables and generate any missing message segments.
iodtc iod_tables

create_daemon_queues —dr TEST_DIR

&quit

TEST MODE COMMANDS

The following is a list of the test mode commands. They can be entered from
the console only. Complete command descriptions are available in Appendix D of the
Bulk 1/0 manual.

coord

command to the driver allows the coordinator part of the test process to come
to command level. Reactivate the driver via the start command.

debug
calls the system debug command for setting/resetting breakspoints, executing
interactive Multics commands, etc. Available from coordinator or driver command
levels.

driver
command to the coordinator creates the driver part of the user’s test process.

7-4 GB60-00

resume

return

command to the driver generates a program_interrupt signal. Useful for
returning to the debug command after one of its functions has been interrupted
by a quit signal.

command to the driver directs it to attempt recovery from iodd signal command
level, or return to normal command level from request or quit command level
(aborting any current request), as if it were not in test mode.

command to the driver logs out the driver without notifying the coordinator or
displaying any messages. This command to the coordinator is the same as the
logout command.

7-5 GB60-00

SECTION 8

CHECKLIST

The following list is a brief repetition of the basic steps for HASP setup. It also
includes some reminders about important details. The major items do not have to be
done exactly in the order presented.

° Bind bsc_tables and hasp_tables modules into core image before loading FNP:

1. Produce object segments for bsc_tables.map355 and hasp_tables.map355
via map355 command (if not already in object archive).

2. Extract FNP’s other object segments from archive into directory in
search list.

3. Modify bindfile and produce core image to be loaded via bind_fnp
command.

4, Store core image segment where core image pathname in CDT specifies,
by changing pathname in CMF or copying image to place already
specified in CMF.

° Decide workstation configuration:
1. Configure one operator’s console.
2. Configure a maximum of eight card readers.
3. Configure a maximum combined total of eight line printers and card
punches.

8-1 GB60-00

Edit Channel Master File:
1. Define HASP multiplexer channel with:

name: <CHANNEL_NAME>;

service: multiplexer;

multiplexer_type: hasp;

line_type: BSC;

terminal_type: <HASP_WS_NAME or HASP_H_NAME>;

2. Define operator’s console subchannel with:

name: <CHANNEL_NAME.opr>;
service: slave;

3. Define 0-8 card reader subchannels with:

name;: <CHANNEL_NAME.rdr1 {-CHANNEL_NAME.rdrN} >:
service: slave;

4 Define 0-8 line printers (combined total of printers and card punches
cannot exceed 8 and no sum of printer/punch addresses can equal 9)
with:

name: <CHANNEL_NAME.prtl {~-CHANNEL_NAME.prtN} >;
service: slave;

S. Define 0-8 card punches (combined total of punches and line printers
cannot exceed 8) with:

name: <CHANNEL_NAME.punl {-CHANNEL_NAME.punN} >;
service: slave;

6. Convert CMF to new CDT via cv_cmf command.

7. Install CDT via install command.

Edit Terminal Type File:

1. Supply terminal type name as given for HASP multiplexer channel
terminal_type:

terminal_type: <HASP_WS_NAME or HASP_H_NAME>;
additional_info: "<SEE_NEXT_ITEM>";

2. Supply additional_info parameters and values if you desire other than the
default values. Parameters of most interest to HASP users and their
defaults are:

type=workstation, block_size=400, signon_mode=no,
multipleave_mode=yes, suspend_all_mode=no,
rts_mode=no, connect_timeout=30,
receive_timeout=3, transmit_timeout=2, max_naks=10,
max_device_input_records=6

3. Define a new terminal type with suitable input and output translation
tables if you plan to specify the new one in the hasp_host_ or
hasp_workstation_ I/0 module attach description.

4. Convert TTF to new TTT via cv_ttf command.

5. Install TTT via install command

Create Access Control Segments for each subchannel. Set access to rw for the

attaching processes.

Edit Project Master File:

1. Register the processes that will attach each subchannel in the PMF;

process attaching a simulated operator’s console should not be registered
on the SysDaemon project.

2. Give processes that will attach each subchannel the dialok and Avinitproc
attributes. Give iod_overseer_ as the initproc pathname.

3. Convert PMF to new PDT via cv_pmf command.

4 Install PDT via install command.

Edit 1/0 daemon table:

la. When Multics is host, define a major device for each workstation device
with:

line: <SPECIFY EXACTLY DEVICE’S SUBCHANNEL>;
driver_module_: remote_driver_;
args: "station= <STATION_ID>, slave=no,

desc= —-term hasp_workstation_ —comm hasp";

8-3 GB60-00

1.b. When is Multics is simulating a workstation, define a major device for
each simulated device, except the operator’s console, with:

line: <SPECIFY EXACTLY DEVICE'S SUBCHANNEL>;

driver_module_: hasp_ws_sim_device_;

args: "station= <STATION_ID>, desc= —term hasp_host_
-comm hasp";

Include -signon in args substatement if SIGNON record is required.
Define one minor device for each major device with:
minor_args: "dev=<reader_out/printer_in/punch_in>";

Additional keywords are optional; however, if you use "request_type=" in
minor_args substatement, you must define the Request_type specified
with:

generic_type: <printer/punch>;

2. Define a request type info segment for each printer request type
specifies with the rqti_seg substatement; this is optional otherwise. Place
in >ddd>iod>rqt_info_segs directory with sma directory access for the
administrator, s access for other users. The segments should have rw
access for the administrator, r access for the users. Create printer rqti
segments via cv_prt_rqti command.

3. Compile 1/0 daemon table via iod_tables_compiler command.
4. Create the 1/0 daemon queues via the create_daemon_queues command.
5. Set up message coordinator routings. Create the input and output message

segments, then establish virtual consoles and message coordinator sources
via the define and route commands (usually in system_start_up.ec).

Load FNP, if necessary, via load_mpx command, and follow operating instructions
described in Section 4 to begin processing.

8-4 ’ GB60-00

INDEX

A baud rate 2-4
bisync board 2-2
access
ACS 2-12 block size 2-6

for testing 7-1
BSC line type 2-4
access control segment
see ACS bsc_tables 2-1

ACS 2-12, 8-3 buffer space 2-9

additional_info
TTF parameters 2-6 o

args substatement
Multics host 3-2, 3-4 cancel command 5-3
Multics workstation 3-7, 3-8

CDT 2-5
auto_go parameter 3-12
channel
auto_queue command 5-1 see multiplexer channel or
‘subchannel

auto_start_delay command 5-2
channel definition table
see CDT

channel master file
see CMF
banner_bars command 5-2
character
banner_type command 5-3 conversion 2-8
set 2-8

i-1 GB60-00

clean_pool command 5-4 commands (cont)

start 5-25

CMF 2-5, 8-2 station 5-25
defining multiplexer channel 2-3 status 5-26
example 2-3 step 5-27

x 5-27

commands 5-1
auto_queue 5-1 configuration 2-2, 8-1
auto_start_delay 5-2 '
banner_bars 5-2 control records 3-6
banner_type 5-3
cancel 5-3 copy command 5-4
clean_pool 5-4
copy 5-4 core image 2-1
ctl_term 5-4
defer 5-6 ctl_term command 5-4
defer_time 5-6
go 5-7
halt 5-7 D
hasp_host_operators_console 5-8
help 5-9
hold 5-10 daemon driver
inactive_limit 5-10 commands 5-1
kill 5-11 hasp_ws_sim_driver_ 3-5
logout 5-11 remote_driver_ 3-1
new_device 5-11
next 5-12 daemon table 3-1
paper_info 5-13 compiling 3-15
pause_time 5-14 example 3-2, 3-7
print 5-14 Multics host 3-3, 8-3
prt_control 5-15 Multics workstation 3-8, 8-4
punch 5-16
pun_control 5-16 debugging 7-2
ready 5-17
read cards 5-17 default_type substatement
receive 5-18 Multics host 3-4
reinit 5-18 Multics workstation 3-9
release 5-19
request_type 5-20 defer command 5-6
req_status 5-19
restart 5-20 defer_time command 5-6
runout_spacing 5-21
sample 5-22 define command 3-15
sample_form 5-22
sample_hs 5-23 device channel
save 5-23 see subchannel
sep_cards 5-24
single 5-25

i-2 GB60-00

Device statement hasp_host_operators_console command
Multics host 3-3 3-5, 5-8 :
Multics workstation 3-8

hasp_tables 2-1

device substatement
Multics host 3-5 hasp_workstation_ 6-10
Multics workstation 3-11

help command 5-9
driver module substatement
Multics host 3-3 hold command 5-10
Multics workstation 3-8

host
configuring Multics as 2-2
E daemon table 3-1

initializing 4-1

exec_com 7-1

example 7-3 I
F 1/0 daemon
see daemon
- FNP 2-1, 8-1 I1,/0 modules
hardware 2-2 hasp_host_ 6-1
loading 2-5 hasp_workstation 6-10

memory requirements 2-9
inactive_limit command 5-10
front-end network processor
see FNP initialization
Multics host 4-1
Multics workstation 4-2

G
K
generic_type substatement
Multics host 3-5
Multics workstation 3-11 keywords
args
go command 4-2, 4-3, 5-7 desc= 3-4, 3-9
slave= 3-4
station= 3-4, 3-9
H minor_args

auto_queue= 3-10
auto_receive= 3-10

halt command 5-7 desc= 3-4
dev= 3-4, 3-9
hasp_host_ 6-1 request_type= 3-10

i-3 GB60-00

keywords (cont) N
RQTI segment 3-12

kill command 5-11 new_device command 5-11

next command 5-12

L
' P
line substatement
Multics host 3-2, 3-3
Multics workstation 3-7, 3-8 paper_info command 5-13
login 4-1 parameters
additional_info 2-5
logout command 5-11 RQTI segment 3-12
pause_time command 5-14
M .
PMF 2-12, 8-3
registering daemons 3-15
major channel
see multiplexer channel print command 5-14
max_gqueues substatement printer
Multics host 3-5 channel stops 3-7

Multics workstation 3-11
project master file

message coordinator 3-15 see PMF 2-12

minor_args substatement prt_control command 5-15
Multics host 3-4¢
Multics workstation 3-9 punch command 5-16

minor device substatement pun_control command 4-3, 5-16

Multics host 3-4
Multics workstation 3-9
R
modes
terminal 2-6
ready command 4-3, 5-17
multiplexer channel 2-3

baud 2-4 read_cards command 5-17
line type 2-4

multiplexer_type 2-4 receive command 4-3, 5-18
name 2-4

service 2-4 reinit command 5-18

terminal_type 2-4

i-4 GB60-00

release command 5-19
request_type command 5-20
Request_type substatement
Multics host 3-5
Multics workstation 3-10
req_status command 5-19
restart command 5-20
route command 3-15
RQTI segment 3-7, 7-1
example 3-14
keywords 3-12

rqgti_seg substatement
see RQTI segments 3-5, 3-11

runout_spacing command 5-21

sample command 5-22
'sample_form command 5-22
sample_hs command 5-23
save command 5-23
sep_cards command 5-24
service

multiplexer 2-4

slave 2-4
signon 2-6, 3-7, 5-8, 6-7
simulated workstation 3-5

single command 5-25

start command 5-25

i-5

statements 3-8

args 3-2, 3-4,

default_type
Device 3-3,
driver_module
generic_type
line 3-2, 3-

max_queues 3-5
minor_args 3-4
3
3

minor_device
Request_type

3-7, 3-8
3-9
3-5, 3-8, 3-11
3-3
5, 3-11
3, 3 3-

station command 5-25

status command

step command 5

storage space
dynamic 2-11
FNP 2-9
static 2-9

subchannel

5-26

=27

line_type 2-4

name 2-4
service 2-4

substatements
see statement

terminal type
attach option

S

6-6, 6-15

characteristics

additional_

multiplexer
name 2-4
subchannels

terminal type f
see TTF

info 2-5
2-5

2-8

ile

terminal type table .

see TTT

GB60-00

testing 7-1
test mode commands 7-4

translation table 2-8
TTF 2-8, 8-2
example 2-5
multiplexer 2-5
subchannels 2-8

TTT 2-8

workstation 1-1
configuring Multics as 2-3
daemon table 3-5
initializing 4-2

X

X command 5-27

i-6 GB60-00

Yoo

<+

‘-

———- CUT ALONG LINE ——-

)__________._____

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

MULTICS HASP SERVICE
TITLE | AND UTILITY MANUAL

ERRORS IN PUBLICATION

ORDER NO.

DATED

GB60-00

OCTOBER 1983

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt oﬂall forms will be

D Your comments will be investigated by appropdate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME
" TITLE

COMPANY

pos

ADDRESS

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

«)

————————————jp————————— . CUT ALONG LINE
FOLD ALONG LI%E

(

- FOLD ALONG LINE

-

