| 1
4

HONEYWELL

MULIICS PASCAL
USER’S GUIDE

SOFTWARE

MULTICS PASCAL
USER’S GUIDE

SUBJECT

Description of the Multics Implementation of Pascal

SOFTWARE SUPPORTED
Multics Software Release 10.2

ORDER NUMBER
GB62-00 March 1984

Honeywell

PREFACE

This user’s guide describes Pascal on Multics. It describes the various Multics
extensions to standard Pascal and the few ways in which Multics Pascal deviates from
standard Pascal. It is intended as a user’s guide to the Multics implementation of
Pascal rather than a reference manual of the Pascal language. This manual does not
attempt to provide the reader with extensive knowledge of the Multics system. The
reader is referred to the Multics Programmer’s Reference Manual or Introduction to
Programming on Multics for details on programming in the Multics environment.

The software product identified as the Multics Pascal Compiler is the property
of the Centre Interuniversitaire de Calcul de Grenoble and the Institut National de
Recherche en Informatique et en Calcul. Authorship of the Multics Pascal Compiler is
attributed to the Centre Interuniversitaire de Calcul de Grenoble and the Centre de
Recherche en Informatique pour les Sciences Sociales — Grenoble.

Section 1 is an introduction to the manual.

Section 2 explains how to compile a Pascal program on Multics.

Section 3 details the Multics extensions to standard Pascal.

Section 4 describes the implementation of various Multics Pascal features.

Appendix A lists the Multics deviations from standard Pascal and includes a table
of Multics Pascal implementation restrictions.

Appendix B lists the French translation of Pascal reserved symbols.

Appendix C describes the Pascal commands.

The information and specifications in this document are subject to change without notice.‘ This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

©® Honeywell Information Systems Inc., 1984 : File No.: 1L23, 1U23 GB62-00

The following symbols are used in this manual:

e Braces {} indicate an optional argument entry.

o Lowercase letters enclosed in angle brackets <> indicate a symbolic
variable whose exact value you must supply.

The vertical bar (|) is used as an "or" conjunctor.

Each section/appendix of this document is structured according to the heading

hierarchy shown below. Each heading indicates the relative level of the text that
follows it.

LEVEL HEADING FORMAT
1 (highest) ALL CAPITAL LETTERS, BOLD TYPE FACE
2 Initial Capital Letters, Bold Type Face
3 ALL CAPITAL LETTERS, ITALICS TYPE FACE
4

Initial Capital Letters, Italics Type Face

iii GB62-00

CONTENTS

Section 1 Introduction e e 1-1
Section 2 Compiling and Executing a Pascal Program 2-1
Character Set and Identifiers 2-1
Pascal Commands 2-2
Compiling Interactive Programs 2-2
Formatting a Pascal Program 2-4
Section 3 Multics Pascal Extensions 3-1
Underscores in Identifiers 3-1
Assignment Between Character Strings of Different
Length 3-2
Dynamic Allocation Reset 3-2
Importing and Exporting Variables, Functions, and
Proceduresc.... 3-2
$Import Directive 3-3
$Export Directive, 3-4-
$Value Directive 3-5
$Include Directive 3-7
File Extensions 3-8
$Options Directive 3-8
Page Breaks in Listings 3-9
Listing Source Text 3-10
Debugging Checks 3-10
Conditional Compilation 3-10
Passing Arguments to a Pascal Program 3-11
logl) Function 0..... 3-11
Otherwise Extension in Case Statement 3-11
Maxreal and Minreal Constants 3-12
Integer Notation 3-12
Clock Function, Date Function, and Time Procedure .. 3-12
Sread and Swrite Functions 3-12
Section 4 Pascal in the Multics Environment 4-1
Using Pascal Files in the Multics Environment 4-1
Declaring Pascal Files 4-1
Use of The Standard File: Error (Extension) 4-2
Use of the Standard Files: Input and Qutput ... 4-2
Input and Output at the Terminal 4-2
Interactive Mode 4-6
Standard Input and Qutput to Multics Files 4-6
Initializing Pascal Files 4-7
Connecting Files From Command Level 4-7
Connecting Files From Within a Pascal Program
(extension)t 4-8
Opening a Pascal File 4-9

iv GB62-00

Closing a Pascal File (extension)
Random Access 1/0: fupdate, fput, fget
Communication With PL/1 Programs
Calling a Pascal Main Program
Calling a Pascal Exported Procedure or Function . .
Access to a Pascal Exported Variable
Access to PL/1 from Pascal

Parameter Lists
Initialization of Variables
Pascal Area Management
Program Header

Appendix A Multics Deviations from Standard Pascal

Index

Table 4-1.
Table 4-2.
Table A-1.

Implementation Restrictions of Multics Pascal Variables
and Identifiers

pascal e
pascal_area_status

pascal_create_area
pascal_delete_area
pascal_file_status
pascal_indent
pascal_reset_area\ uuuu...
pascal_set_prompt

..................................

Default Attach Descriptions of Pascal Files
Variable Equivalence
Range Boundaries of Variables and Procedures

Tables

GB62-00

SECTION 1
INTRODUCTION

» Multics Pascal is based on the standard ISO Pascal. In addition, extensions to

the standard make Multics Pascal a truly integrated part of the Multics programming
environment (see Section 3).

Pascal is a popular language because of its carefully chosen control structures and
powerful data structuring capabilities. Because of these, programs written in Pascal are
easy to read. Pascal is recommended for teaching introductory programming and
well-structured programming in general.

1-1 GB62-00

SECTION 2

COMPILING AND EXECUTING A PASCAL
PROGRAM

A Pascal source segment is compiled by issuing the "pascal” command. The
command line:

pascal progl

compiles a source segment named progl.pascal. The ".pascal" suffix is assumed by the
command and does not have to be specified. See Appendix C for a description of all
of the available compiler options.

CHARACTER SET AND IDENTIFIERS

Multics Pascal lets you use the full ASCII character set but there is no
difference in identifiers between uppercase characters and lowercase characters.
Variable and type names, program names, file names, and the names of all "imported”
and "exported” variables and procedures are converted to lowercase by the Pascal
compiler. The name used to run a Pascal program must be in lowercase (character
string constants and comments are not converted).

You can specify up to 32 characters for Pascal identifiers. Programs compiled in
"nonstandard” mode can use the underscore (_) character in identifiers.

In the Multics Pascal character set, the following symbols are equivalent:

is a synonym for <>
@ is a synonym for °

(* is a synonym for {
*) is a synonym for }

2-1 GB62-00

PASCAL COMMANDS

The following Pascal commands are available (for details, refer to Appendix C of

this manual).

Command Name

Command Description

pascal_area_status

pascal_create_area
pascal_delete_area

pascal_file_status

pascal_indent

pascal_reset_area

pascal_set_prompt

about the
location of a

Displays information
maximum size and
Pascal area.

Creates a Pascal area.
Deletes a Pascal area.

Displays the status of active

Pascal files.

Improves the readability of a
Pascal program by indenting it
according to standard conventions.
Frees the blocks
Pascal area.

allocated in a

Sets the Pascal prompt string.

COMPILING INTERACTIVE PROGRAMS

A pascal program that requires the user to enter input in response to a prompt

issued by the program is called an

"interactive program".

A program that accepts input from the keyboard must have a program heading

of the form:

program progname (input) ;

GB62-00

" fA program that directs output to the terminal must have a program heading of
the form:

program progname (output) ;

A program that accepts input from the keyboard and directs output to the
terminal must have a program heading of the form:

program progname (input,output) ;
The program heading can also specify other user files.

Interactive programs must be compiled with the -interactive (or —-int) control
argument. The format is:

pascal prog_name -interactive
For more information on interactive programs, refer to Section 4.

Example

The following simple interactive pascal program provides the square of a number
that the user specifies in response to a program prompt:

program square (input,output) ;
var
number:integer;
sqrvalue:integer;
begin
repeat
writeln('Enter a number:');
readln (number) ;
sqrvalue := numbersnumber;
writeln('square equals ',sqrvalue);
until number = 0
end.

Compile this interactive program, square, as follows:
pascal square -interactive
Execute the program by typing:

square

2-3 GB62-00

The program then prompts the user for input, as follows:

Enter a number:
712
square equals 144

FORMATTING A PASCAL PROGRAM

The pascal_indent command lets you enter your Pascal program without regard to
standard Pascal formatting conventions. Once you have created a source program,
invoke the pascal_indent command. This command formats the program, indenting
where necessary. Although adherence to a specific format is not required in a Pascal
program for it to compile successfully, proper formatting makes a Pascal program easy
to read and understand. If you use the "-highlight" control argument to the
pascal_indent command, all Pascal keywords are converted to uppercase for legibility.

Example

The following program, entitled div_mod, prints out the results of the d/v and
mod Pascal operators applied to two specified integer arguments. The program is
designed to be used as a Multics command: arguments are typed on the command
line, results are printed on user_outpui, and error messages are printed on
error_output.

Note the use of the argc and argv functions which are Multics extensions to
standard Pascal. Also note the use of the nonstandard sread function which is used to
convert arguments (character strings) to integers.

The text of the program is entered without regard to any formatting conventions:
program div_mod (output, error);

var

index, it,

n_args:integer; (*number of arguments%)

viarray[1..2] of integer; (*values of arguments#)

str:packed array[1..256] of char; (*buffer for argument strings¥)
err_in_args:boolean;

begin

(*process arguments)
err_in_args:=false;
n_args:=argc;

if n_args <> 2 then
err_in_args:=true
else

for it:=1 to 2 do

2-4 GB62-00

begin

argv(it,str);

index:=sread(str, 1, v[it]);

if index = -1 then err_in_args:=true;

end;

(*print resultsx)

if not err_in_args then

begin

if v[2] = 0 then

writeln('DIV: division by zero not allowed.')

else writeln(v[1], ' DIV ', v[2], '=', v[1ldiv v[2]);

if v[2]<= 0 then

writeln('MOD: negative or null right arg is not allowed."')
else writeln(v[1], 'MoOD', v[2], '=', v[1Imod v[2]);

end

else

writeln(error, 'div_mod: usage: div_mod <integer> <integer>');
end.

To format the above program, issue the pascal_indent command as follows:
pascal_indent div_mod -hl -com 55
The formatted program looks like this:

PROGRAM div_mod (output, error);

VAR
index, it,
n_args: integer; (* number of args *)
v: ARRAY [1..2] OF integer; (* values of args %)
str: PACKED ARRAY [1..256] OF char; (* buffer - arg strings%)
err_in_args: boolean;
BEGIN

(* process args %)
err_in_args := false;
n_args := argc;
IF n_args <> 2 THEN
err_in_args := true
ELSE
FOR it := 1 TO0 2 DO
BEGIN
argv (it, str);
index := sread (str, 1, v [it]);
IF index = -1 THEN err_in_args := true;
END;
(* print results %)

GB62-00

IF NOT err_in_args THEN
BEGIN
IF v [2] = O THEN
writeln ('DIV: division by zero not allowed.')
ELSE writeln (v [11, ' DIv ', v [2], '=', v [1] DIV v [2]);
IF v [2] <= O THEN
writeln ('MOD: negative or null right arg is not allowed.')
ELSE writeln (v [1], 'MoD', v [2], '=', v [1] MOD v [2]);
END
ELSE
writeln (error, 'div_mod: usage: div_mod <integer> <integer>');
END.

2-6 GB62-00

SECTION 3
MULTICS PASCAL EXTENSIONS

This section contains descriptions of the Multics extensions to the ISO Pascal
standard. These extensions are meant to augment the standard Pascal language and
make programming in Pascal on Multics easier and more versatile. The extensions
tailor standard Pascal to the Multics environment. The Multics extensions are not
mandatory and programs written using the standard features of Pascal can be run
without modification on Multics.

The Multics extensions to the Pascal standard include:

e Underscores in identifiers

e Assignment between character strings of different length
e Dynamic allocation reset

e Importing and Exporting Variables, Functions, and Procedures
e $value directive

e Sinclude directive

e File extensions

e Conditional compilation ($options)

e Arguments passed to a Pascal program

e /og10 function

e otherwise extension in case statement

o Predefined constants maxrea/ and minreal

e Octal, hexadecimal, and binary notation for integers

e Clock, date, and time functions

e sread and swrite functions
UNDERSCORES IN IDENTIFIERS

Multics Pascal allows the underscore () character as part of identifier names.
This is not allowed in standard Pascal.

3-1 GB62-00

ASSIGNMENT BETWEEN CHARACTER STRINGS OF DIFFERENT LENGTH

This option permits you to specify a character string array of a specific length
and then assign it the value of a shorter string. The target string is padded with
blanks. In standard Pascal, this operation is not allowed and assignment must involve
two strings of equal length.

Example

stringh : packed array [1..4] of char;

stringh := 'Ab'; (* stringk is padded on the right with blanks %)

DYNAMIC ALLOCATION RESET

Dynamic allocation reset (reset) deallocates the block pointed to by block_pointer
(as for the dispose statement) and deallocates a// the blocks allocated since the
allocation of this block.

As you make successive calls to alloc, it moves the "next-free" pointer logically
upwards. If you issue a reset, the pointer is returned to the value that it had just
before you did the alloc(foo) for which you are now doing a reset(foo). This allows
you to clean up all the allocs that you do in, say, a procedure invocation when you
are about to exit the procedure.

The syntax is:

<reset_area_statement> =
reset (<variable_access>)

where variable_access is a reference to a variable of pointer type.

Example

reset (block_pointer)

IMPORTING AND EXPORTING VARIABLES, FUNCTIONS, AND PROCEDURES

Pascal programs can call routines written in any Multics-supported language.
Pascal programs and programs written in languages other than Pascal can access Pascal
procedures and variables that have been defined in an $export section (see below).

3-2 GB62-00

.'I'he following two compiler directives let you import or export variables,
functions, or procedures from other Multics supported languages:

e Simport - import variables, functions, or procedures

e Sexport - export variables, functions, or procedures

The $import directive must appear before the $export directive and both must
appear immediately after the program header.

Table 4-2 list the data equivalences for importing or exporting PL/1 and
FORTRAN variables.

$Import Directive

The $import directive lets you import procedures and variables defined in any
Multics supported language.

To import procedures and variables defined in programs, define all external
procedure and variable names in the S$import directive immediately following the
program heading. Note that you must terminate the list of external names in the
$import directive with a §.

The syntax for the $import directive is:

<import_directive> =
Simport <imported_list> {;<imported_list>} §

<imported_list> =
<external_segment_description_string>: <identifier> {,<identifier>}
<external_entry_description_string>: <identifier>
<external_segment_description_string> =
' <segment_name> (<generator_name>) '
' <external_static> '
<external_entry_description_string> =
' <segment_name> $ <entry_name> '

Example

PROGRAM example;
Simport
'pl1_program (pl1)': procl, functl;
'fortran_program (fortran)': proc3;
'external_static': v1, v2, v3; (* allocated in external
static standard area %)
'pascal_program (pascal)': proc5, vk, v5;
'segment_xS$procedure_y (pl1)': proc_xy;
< 'static_data (cds)': v6, v7 $ (* allocated in a data segment
created by the cds command %)

3-3 GB62-00

You must declare imported names in the var section in the standard manner.
Procedures and functions in the $import section must be declared as external, where
external takes the place of the body of the procedure.

In the following example, declarations are made for the $import section described
above.

Example

var

vl, v2, v3, vk, v5, vb, v]: integer;
procedure procl; external;
function functl: real; external;
procedure proc3 (var i, j: integer); external;
procedure proch; external;
procedure proc_xy (var a: real); external;

$Export Directive

A Pascal program that wants to export (make public) procedures or variables for
another program (written in either Pascal or any other Multics supported language)
must use the nonstandard S$export directive. The $export section must appear
immediately after the $import section if there is one), otherwise specify it immediately
after the program heading.

The maximum size of internal (not imported or exported) globals in a Multics
Pascal program is 16384 words. The $export directive lets you export large arrays and
large variables.

The syntax for the $export directive is:

<export_directive> =
Sexport <identifier> {,<identifier>} $

where <identifier> is the name of an exported variable, function, or procedure.

Example
Sexport
proc6, v8, v9 §
var
vl, v2, v3, vk, v5, v6, v7, v8, v9: integer;
procedure procl; external;

function functl: real; external;
procedure proc3 (var i, j: integer); external;

3-4 GB62-00

procedure proch5; external;
procedure Proc_xy (var a: real); external;

procedure procé;
begin
end;

begin
end.

$VALUE DIRECTIVE

The $value compiler directive initializes the values of specified variables. After
the var section, and before procedure declarations, you can insert a $value section that
lets you initialize global variables declared in the preceding var section. The $value
section is not allowed for internal procedures.

Initializations declared in the $value section are performed the first time and
each additional time that the program segment is made known. If these variables are
modified, they keep their new value for subsequent executions, until the program
segment is terminated. For each execution, initialization must be done explicitly by
assignments within the program.

Reinitialization can be forced by terminating and re-initiating the segment.
Reinitialization is not performed for global variables.

The syntax for the $value section is:

<value_directive> =
Svalue <identifier> = <value> {;<identifier> = <value>} $

When using the $value section, observe the following rules:

e The variables must appear in the order of their declarations in the var
section.

e Use only single constants.

e The form N=*constant can be used to initialize an array or subarray of N
elements.

e Initialization of records is not allowed.

e Initialization of any packed data structure (other than packed array [i..j] of
char) is not allowed.

3-5 GB62-00

Example

program value (output);
var
i, j: integer;
t: array [1..3] of real;
ch: array [boolean, 1..3] of integer;
xx: packed array [1..23] of integer;
str: packed array [1..4] of char;

Svalue
i=3;
t= (2, 3.4, 5.002);
ch = (4 % 999, 888: DK
str = 'abed' $

begin
Jj o= 3;
writein (‘1 =', i)
writeln ('J =', j);
i =i+ 13
if i =5 then

for j := 1 to 3 do
write (ch [false, j], ch [true, j]);
end.

The above program can be compiled and executed as follows:
pascal demo -ns

PASCAL 8.00
r 10:19 1.240 157

demo

| = 3

J = 3

r 10:20 0.092 6

demo

| = 4

J = 3

999 999 999 888 999 7177

r 10:20 0.074 0O

(The run command causes temporary reinitialization. See the Commands and Active
Functions manual.)

3-6 GB62-00

run demo

| = 3
J = 3
r 10:20 0.419 42

demo

| = 5
J = 3
r 10:20 0.061 0

tmr demo
r 10:20 0.137 2

demo

| = 3

J = 3

r 10:20 0.081 2

demo

| = L

J = 3

999 999 999 888 999 177

r 10:20 0.083 0

SINCLUDE DIRECTIVE

You can insert stored portions of text in a program at compilation time by using
the $include compiler directive. Include files are particularly useful when the same set
of declarations is to be used in several programs. They ensure that the declarations
are identical in all programs.

Include files eliminate redundant work and reduce the likelihood of errors
whenever more than one program references the same structured data. Include files
can also be used to guarantee identical assumptions about naming conventions and
systems of encoded values. If an include file exists that describes a given data
structure, that include file should be used rather than creating a different one
describing the same structure.

The syntax of the $include directive is:

<include_directive> =
Sinclude ' <file_name> ' {,<begin_string>, <end_string>} $

<begin_string> = <include_file_delimiter>
<end_string> = <include_file_delimiter>
<include_file_delimiter> = <character_string> | *

where begin_string and end_string are either quoted character strings to specify starting
and ending positions within the included file, or * to indicate the beginning and end
of the file.

3-7 GB62-00

If begin_string is 'foo’, for example, the included portion of file_name begins
with the character immediately following the first occurrence of the literal string foo.
If end_string is bar, for example, the included portion of <file_name> ends with the
character immediately preceding the first occurrence of bar. These strings are NOT
interpreted- as qedx regular expressions. They are Pascal character strings, with the
standard interpretation of single quote (’); two consecutive single quotes (") inserts a
single quote.

The included file is named file_name.incl.pascal and is found via the translator
search list.

Occurrences of $include in the include file itself are expanded recursively.

Example 1

Sinclude 'foo' $
or:
Sinclude 'foo', % , *§

includes the entire file foo.incl.pascal

Example 2
Sinclude 'foo', 'AAA', * §

includes the file foo.incl.pascal from the first character following the first occurrence
of the string "AAA’ to the end.

Example 3
Sinclude 'foo', * , 'BBB' $

includes the file foo.incl.pascal from the beginning to immediately before the first
occurrence of the string BBB'.

FILE EXTENSIONS
Multics Pascal provides several facilities that let you connect to sequential files

or direct access files from within a Pascal program or from command level. For
details on file input and output, see Section 4.

$OPTIONS DIRECTIVE

The $options compiler directive accepts a variety of keywords that control the
format of the output compilation listing, the portion of the source that is compiled,
and the generation of debugging checks in the code as produced by pascal -debug.

3-8 GB62-00

The syntax for the $options directive is:
<options_directive> =
Soptions option_name = <option_value>
{;<option_name = <option_value>} $
<option_value> = true | false | {not} <switch_name>

where:

switch_name
is the identifier of a compilation switch that has been previously
. assigned a value by a compilation switch assignment directive or by the
—cond argument to the pascal command.

option_name
is one of the following:

listing
Determines whether source text appears in the listing. (default is
true)

debug

Determines whether generated code includes debugging checks.
(default is true)

page
Determines whether listing output skips to a new page.

compile
Determines the part of the source text subject to conditional
compilation. (default is true)
The syntax of the compilation switch assignment directive is:
<compilation_switch_assignment_directive> =
Soptions <switch> <switch_name> {:= <switch_value>}
{,<switch_name> {:= <switch_value>}} $
<switch_value> = true | false.
$options <switch> trace $

is equivalent to:

$options <switch> trace := false $

Page Breaks in Listings

The following directive causes the compilation listing to skip to a new page:

/ Soptions page $

3-9 GB62-00

Listing Source Text

The following directive controls whether subsequent source lines are written to
the compilation listing. The default is true:

$options listing = true $

g;;tions listing = false $
or Soptions listing = foo $

ggations listing = not foo $

Debugging Checks

The following directive controls whether special code is to be generated to cause
harmless faults for uninitialized pointers and to provide other safeguards against
program errors. These checks are the same ones that are generated by the -debug
control argument to the pascal command. The default value is true. All values for
debug are overridden by —debug or -no_debug on the command line:

Soptions debug = true $

or:

Soptions listing = false $
or:

Soptions debug = foo $

or:

Soptions debug = not foo $

Conditional Compilation

The following directive controls whether succeeding text is to be included in the
compilation. This feature allows a source segment to contain multiple versions of
program text, which are selected based on the values of switches as assigned by the
-cond control argument to the pascal command. The default value is true.

Soptions compile = true $
or:
Soptions compile = false $

or:

Soptions compile = foo $
or:

Soptions compile = not foo $

3-10 GB62-00

Example

The. follpw_ing sample conditional compilation program prints a terse message if
the compiler is invoked with "-cond brief true", otherwise it prints a longer message:

procedure print_not_found (name:packed array [a..b:integer] of char);
begin
Soptions switch brief := false $ (* default is not-brief %)
Soptions compile = brief $
writeln ('Not found: ', name);
Soptions compile = not brief $

writeln ('Unable to find program, check library for: ', name);
Soptions compile = true $
end;

PASSING ARGUMENTS TO A PASCAL PROGRAM
You are allowed to pass arguments to a Pascal program.

The predeclared function argc returns the number of arguments passed to the
main procedure by the command processor (similar to cu_$arg_count).

The predeclared procedure argv (<expression>, <parameter>) where <expression>
evaluates to an integer, returns in the character string <param> the <expression>’th
argument. Args are numbered from 1 to argc. (similar to cu_$arg_ptr).

A fatal error occurs if an argument list passed to the main procedure has no
descriptors or if the referenced argument is not a character string or does not exist.

LOG10 FUNCTION

The logl0 function returns the base 10 logarithm of a specified real argument.

Example

log_value := logl0 (expression);

OTHERWISE EXTENSION IN CASE STATEMENT
The case statement permits the use of the otherwise extension, as follows:
Standard syntax:
<case_statement> =
case <case_index> of

<case_list_element> {;<case_list_element>}
{;<otherwise_statement> {;<statement>}} {;} end.

3-11 GB62-00

Extended syntax:

<extended_case_statement> =
case <case_ index> of
<case_list element> {;<case_list_element>}
{;otherwise_statement {; ;<statement>}} {;} end.

MAXREAL AND MINREAL CONSTANTS

Maxreal and minreal are predefined constants in Multics Pascal. The maxrea/
constant contains the largest positive real number allowed in Multics Pascal, and
minreal contains the smallest nonnull real number allowed in Multics Pascal.

INTEGER NOTATION

Multics Pascal lets you define integers in octal, hexadecimal, and/or binary
notation. For example, J := 45; is equivalent to:

J = '2d'x; (hexadecimal)
J := '55'0; (octal)
J := '101101'b; (binary)

CLOCK FUNCTION, DATE FUNCTION, AND TIME PROCEDURE

The c/ock function returns virtual cpu process time in milliseconds.
The date procedure returns an 8-character date of the form MM/DD/YY.

The time procedure returns an 8-character time of day of the form HH:MM:SS.

Examples

var cpu_time: real;
date_string, time_string: packed array [1..8] of char;

cpu_time := clock;
date (date_string);
time (time_string);

SREAD AND SWRITE FUNCTIONS

The sread and swrite functions operate on strings in the same way that the
standard read and write operations manipulate file variables.

3-12 GB62-00

The syntax of the sread function is:

<sread_function_designator> =
sread (<string_variable_access>, <integer_expression>,
<variable_access> {,<variable_access>})

where:

string_variable_access

is a reference to a variable of string type (packed array of char9) from
which values are read.

integer_expression
is the integer value of the index of the first character to read from
the string.

variable_access
is a reference to a variable of type real, integer, or character that
receives the read value.

The returned value, of type integer, is the current index position in the string
after the operation is finished.

. Example
i := sread (string, index, foo, bar)
In this example, sread reads the values of the variables foo and bar from the
character string, starting at the position designated by index. When it is finished, "i"
is assigned the value of the index position of the next character in the string.
The syntax of the swrite function is:
<swrite_function_designator> =
swrite (<string_variable_access>, <integer_expression>,
<swrite_parameter> {,<swrite_parameter>})
: where:
string_variable_access
is a reference to a variable of string type (packed array of char) into
which the parameters are written.
integer_expression
is the integer value of the index of the first character to be written
into the string.
Yo

3-13 GB62-00

swrite_parameter ’
is any parameter allowed in the standard write statement, or a
parameter of the form:
string_variable: length: start
to specify a substring of the string_variable, where length and start are
integer expressions.

The returned value of type integer is the current index position in the string
after the operation is finished.

Example
The Pascal assignment:
i := swrite (s1, 10, s2:3:5)
is equivalent to the PL/1 assignment:
substr (s1, 10, 3) = substr (s2, 5, 3);

Note that the variable "i" contains the value 15 after the operation.

3-14 GB62-00

SECTION 4
PASCAL IN THE MULTICS ENVIRONMENT

Features specific to the Multics implementation of Pascal are discussed in this
section.

USING PASCAL FILES IN THE MULTICS ENVIRONMENT

The intent of this section is not to explain Pascal input and output (I/0)
procedures; a standard Pascal text can be used for this purpose. The intent is to
describe how to direct I/0O to and from Multics files. -

Declaring Pascal Files

Multics Pascal has three predefined files named input, output, and error. These
files must, when they are used, be named in the parameter list of the program
header. They should not be declared in the var section of the main program. They
have the following default attach descriptions:

/"\
Table 4-1. Default Attach Descriptions of Pascal Files
Pascal File Name 1/0 Switch Name Attachment
input pascal_input_ syn_ user_input
output pascal_output_ syn_ user_output
error pascal_error_ syn_ error_output
These files are, by default, open at the beginning of the program (reset (input),
rewrite (output), rewrite (error)).
All files other than the predefined files /input, output and error correspond to
I70 switches of the same name. The following three types of user-declared files are
supported:
e permanent files
e static files
o local files
I/

4-1 GB62-00

Permanent files are named in the parameter list of the program header and are
declared in the var section of the main program. Permanent files have no default
attach description and are not opened by default.

Static files are not named in the parameter list of the program header but are
declared in the var section of the main procedure. These files have a default attach
description that refers to a temporary segment allocated in the process directory at the
first invocation of the program, and which is preserved until the end of the process
(or "termination” of the program). Static files are not opened by default.

Local files are declared in the internal procedures of the program. They have a
default attach description that consists of a temporary segment allocated when the
procedure begins and freed when the procedure exits (return, release, nonlocal goto).
Local files are not opened by default.

If you are using a file that does not have an attach description by default, or
you do not want to use the default attachment, you must attach the file before
opening it (see "Connecting Files from Command Level").

Use of The Standard File: Error (Extension)

The standard file error is declared in the program header, as are the standard
files input and output. It is attached by default to the user terminal for the output
of error messages. For instance, your program can output results (output file) to a
Multics segment and continue to output error messages (error file) to the terminal.

The error file is an extension to the Pascal standard. To use it, your program
must be compiled with the "—full" (default) control argument to the pascal command.

Use of the Standard Files: Input and Output

Most interactive application programs accept data from the terminal and send
results to the terminal. The standard Pascal files /nput and output (declared in the
program header) are connected to the terminal by default and are automatically opened
at the beginning of the program. Novice Pascal users should read this section carefully
before trying to execute interactive programs.

INPUT AND OUTPUT AT THE TERMINAL

Terminal 1/0 is usually performed over the three predefined file variables /nput,
output, and error. Other file variables can be attached to the terminal by means of
the io_call command or the nonstandard fconnect statement (see Connecting Files
Within a Pascal Program).

4-2 GB62-00

To perform input and output on the terminal, use the standard Pascal 1/0
statements. Examples of their use with the predefined file variables input, output, and
error are given here:

get (input);
read a character into the file variable /nputA.

read (var_namel {, ..., var_nameN})
read variable values from /nput.

readin (var_namel {, ..., var_nameN})
read variable values from /nput and position to a new line.

- write (expressionl {, ..., expressionN})
write expression values into a buffer to be printed on output with the
next write/n to output.

write (error, expressionl {, ..., expressionN})

write expression values into a buffer to be printed on error with the
next write/n to error.

writeln (expressionl {, ..., expressionN})
print on "output” any output buffered for output followed by the
expression values followed by a newline character.

writeln (error, expressionl {, ..., expressionN})
Y print on "error" any output buffered for error followed by the
expression values followed by a newline character.

The following added statement is a Multics extension:

flush (file_name) ;
prints the contents of the output buffer for f//e_name (for example,
for output or error), which contains the results of any previous write
operations, without printing a newline. This statement is useful for
interactive applications, as in:

write ('Enter a number: ');
flush (output);
readin (number); (* reads on the same line as the question %)

The standard Pascal input procedures read and read/n accept information by
default from a Pascal text file called /nput. Pascal output procedures write and
write/n output by default to a Pascal text file called output. If you require the use
of these files, declare them in the program heading as shown below and do not
declare them in the var section.

4-3 GB62-00

Example

program test (input, output);

For Multics, /nput and output are connected to the switches user_input and
user_output which are by default normally connected to the user terminal. For
example, if the following program is compiled and run with no other action, an
integer is read from and then written back to the terminal.

Example

program test (input, output);
var
itinteger
begin
read (i);
write (i)
end.

When a Pascal program requires terminal input, it outputs a prompt to the
terminal to notify the user that input is required. The prompt is a question mark)
by default, but it can be changed with the pascal_set_prompt command (see
Appendix C).

Note that you must compile any programs using the standard file /nput (as well
as any program performing input from the terminal via any other text f ile) with the
-interactive control argument to the pascal command.

Before using Pascal files in an 1/0 statement, they must be initialized (see
Declaring and Initializing Pascal Files); /nput and output are initialized automatically
at the start of program execution and should not be explicitly initialized by the
program.

Items in write procedure lists are not output to the terminal until you issue a
subsequent write/n or the non-standard f/ush procedure or until the end of the
program is reached.

4-4 GB62-00

Example

The following example demonstrates the effects that write and write/n have on
output:

program testwrite (input, output);

var
itinteger

begin
write ('Enter integer: ');
read (i);

writeln ('Integer =', i)

end.

Compile the program with the -interactive control argument to the pascal
command as follows:

pascal testwrite -interactive

Execute the program as follows:

testwrite
76
Enter integer: Integer= 6

Note that the input prompt "Enter integer" appeared after the question mark. If
the write statement is changed to write/n and you recompile the program, the
following result is obtained:

testwrite
Enter integer:
76

Integer= 6

The write statement can be used with the f/ush statement as follows:

program testwrite (input, output);
var
itinteger
begin
write ('Enter integer: ');
flush;
read (i)
writeln ('Integer =', i)
end.

Note that in the above instance, the program must be compiled with -full (the
default) and -interactive.

4-5 GB62-00

INTERACTIVE MODE

If you do not compile with the -interactive argument, when you open an input
file (by reset) that is attached to the terminal, Pascal asks for the first line; it needs
the first character to set the correct values for the file variables eo/n, eof and fA
(file buffer) which are supposed to be valid after this operation. The program
prompts immediately at the terminal, asking for the first line, before -any other
execution takes place.

These automatic prompts are undesirable, however, in the case of a program that
prompts explicitly:

program square_root (input, output);
var number integer;

begin (* implicit reset (input), rewrite(output) %)
write ('Give me an integer: ');
flush (output);
readin (number) ;
writeln ('The square root is ', sqrt (number));
end.

When compiled in the default manner, this program produces the following
scenario:

square_root

? (first character requested by reset)
Give me an integer: 72
? (first character of new line requested by read/n)

The square root is: 1.41L42356237309505E+00

Interactive mode provides a way of suppressing the extra prompts. When a
program is compiled with the -interactive control argument, prompts on a file are
deferred until the first actual reference to the file (get, read, read/n, or reference to
the file window (file_name), eo/n, or eof). Therefore when compiled with —interactive,
the same program operates as follows:

square_root
Give me an integer: 72
The square root is 1.4142356237309505E+00

STANDARD INPUT AND OUTPUT TO MULTICS FILES

To divert input from or output to the terminal to a Multics segment, use the
io_call (io) command (see the Commands and Active Functions manual). For example,
to allow a program to accept input from a segment "test_data”, you must issue the
following io command before you run the program:

io attach pascal_input_ vfile_ test_data

4-6 GB62-00

where vfile_ is the name of a standard Multics I/0_module that controls file storage.

This establishes a connection between the Pascal file input and the segment
"test_data".

When you no longer require the data in test_data, break the connection between
input and the segment with the io command as follows:

io detach pascal_input_

When you run a program that takes data from the terminal, /nput is connected
automatically to the terminal but is not disconnected at the end of the program run.
You must explicitly disconnect it using the above io command before /nput can be
connected to a segment.

To divert output from the terminal to a segment, you must follow a similiar
procedure to that outlined above. For example, if you want the output from a
program to be diverted to a segment called "data_output”, issue the following
command line before running the program:

io attach pascal_output_ vfile_ data_output

When finished, detach the segment with:

io detach pascal_output_

INITIALIZING PASCAL FILES

Before any 1/0 procedures or functions can be used with a file, declared as
either text or file of ..., you have to initialize it. Initialization consists of:

e Connecting or attaching the file to a physical resource (a Multics segment, the
terminal, etc.)

e Opening the file in input mode via the Pascal reset statement, or in output
mode via the rewrite statement

The default files /nput and output do not have to be initialized with reset or
rewrite and are automatically initialized.

CONNECTING FILES FROM COMMAND LEVEL

You can connect files to segments or devices before running a program by using
the io_call command to attach an I/0 switch. The switch must have the same name
as the Pascal file and be specified in lowercase.

4-7 GB62-00

Example

The program below reads a set of integers from a Pascal file called filein,
writes their sum to the default file owtput, and terminates on a negative number.
Before the program can be run, you must attach the input file f//e/n with the io
command also shown below.

program readandsum (output, filein);

var
filein : text
number, sum : integer;
begin
sum := 03
number := 03
reset (filein);
repeat
sum := sum + number;
read (filein, number)
until number < O0j;
writeln ('Sum = ', sum)
end.

The following command line causes this program to take data from a segment called
"indata":

io attach filein vfile_ indata

Before the program can be run again, the switches fi/ein and output must be
detached.

CONNECTING FILES FROM WITHIN A PASCAL PROGRAM (EXTENSION)

Pascal files can also be connected to Multics segments by using the nonstandard
procedure fconnect which is a Multics extension to standard Pascal. Programs using
fconnect must be compiled with "-full” (the default).

The syntax of the fconnect procedure call is:

where:

<fconnect_procedure_statement> =

fconnect (<file_variable_access>, <attach_string>)

file_variable_access
is a reference to the file to be attached.

attach_string
is a character string containing a Multics attach description string. This
string specifies an I/0_module and any arguments required to define a
Multics segment or device. This string can contain references to active
functions.

4-8 GB62-00

Examples
fconnect (ttyin, 'syn_ user_input');
fconnect (output, 'vfile_ output_file');
fconnect (filef, 'vfile_ [pd]>foo.output');
The fconnect statement does the following:
e Closes the file if it was open.
e Detaches the file if it was attached.

e Attaches the file using the given attach description.

OPENING A PASCAL FILE

Once a file is attached, you must open it using the reset statement (for input)
or the rewrite statement (for output). If a file is not attached when either of these
statements is executed, the default attach description (if any; for example, syn_
user_input for /nput) is used to attach the file. If there is no default attach
description, an error occurs. If the file is already opened, it is closed and re-opened
with the same attachment.

CLOSING A PASCAL FILE (EXTENSION)

Pascal files are closed by default when the procedure where they are declared
becomes inactive (normal end, nonlocal goto into an outer procedure, stack release).
The nonstandard predefined procedure fc/ose lets you close a file before the end of

the program. The fclose statement is a Multics extension to standard Pascal and must
be compiled with -full.

The syntax of the fc/ose procedure call is:

<fclose_procedure_statement> =
fclose (<file_variable_access>)

where file_variable_access is a reference to the file to be closed.

Example

fclose (data_output)

4-9 GB62-00

RANDOM ACCESS 1/0: FUPDATE, FPUT, FGET

Multics Pascal lets you access random or direct access files with the following
nonstandard procedures:

e fupdate - opens a switch for direct update

e fput - transfers an item into the file buffer (analogous to the standard
procedure put)

o fget - transfers an item from the file (analogous to the standard procedure
get)

The syntax for the fupdate procedure call is:

<fupdate_procedure_statement> =
fupdate (<file_variable_access>)

where file_variable_access is a reference to the file to be opened in direct update
mode.

Example

fupdate (student_file)

The syntax for the fput procedure call is:

<fput_procedure_statement> =
fput (<file_variable_access>, <integer_expression>)

where:
file_variable_access
is a reference to a file previously opened in direct update mode.
integer_expression
specifies the number of records to be written.
Example

fput (student_file, student_nbr)

This statement causes the item in the file buffer to be output. Items are stored
in records and each record has a key that is the character string representation of the
integer record number. -

4-10° GB62-00

The syntax of the fget procedure call is:

<fget_procedure_statement> =
fget (<file_variable_access>, <integer_expression>)

where:

file_variable_access
is a reference to a file previously opened in direct update mode.

integer_expression
specifies the number of records to be read.

Example

fget (student_file, student_nbr)
The above fget statement inputs an item to the file buffer.

If you use these procedures, the files must be connected with the Pascal
fconnect procedure or io command as described earlier.
Example

The program below writes 100 records to a direct access file. Each record
contains an integer whose key value is the square of the key. The program reads the
record whose key is 50 and prints out its value.

program randomaccess (output, rfile);

var
rfile : file of integer;
i ¢ integer;
begin
fupdate(rfile);
for i := 1 to 100 do
begin
rfile™ := i%ij;
fput (rfile)
end;

fget(rfile, 50);
writeln(rfile®)
end.

COMMUNICATION WITH PL/1 PROGRAMS

Specifications given here for PL/1 can be extended to other languages such as
FORTRAN, wherever these languages are compatible with PL/1.

4-11 GB62-00

Calling a Pascal Main Program

The following example illustrates how to call a Pascal main program.

Example (PL/1)

dcl mainpascal entry options (variable);
call mainpascal;

to call a Pascal program declared as:

program mainpascal (...);

A parameter list can be transmitted, but this parameter list must have
descriptors; arguments can only be character strings. The last argument can be a fixed
bin(35) return code (refer to the argc, argv and stop extensions).

Example

At command level:

pascal_program argl arg2 name other string
In a PL/1 program:

dcl pascal_program entry options(variable);

dcl code fixed bin (35);

dcl name char (32);

dcl string char (168);

call pascal_program (argl, arg2, name, string);
or:

call pascal_program (argl, arg2, code);

if code ™= 0 then

ooooo

Calling a Pascal Exported Procedure or Function

The following examples illustrate how to call a Pascal exported procedure or
function.

4-12 GB62-00

Example 1 (PL/1)
dcl proclSentryl entry (fixed bin(35), float bin(63));
referring to:
program procl;
§é;port entryl §
procedure entryl (var i : integer, a : real);
Example 2
dcl func2Sentry2 entry (char (3)) returns (ptr);
for:
program func2 (...);
éé;port entry2, ... $
function entry2 (cs : packed array [1..3] of char) : ptrtype;

Access to a Pascal Exported Variable

The following example illustrates how to access Pascal exported variables.

Example

dcl pascal_program$num fixed bin(35) external static;
dcl pascal_program$string_ptr ext;
dcl string char (32) based (pascal_program$string_ptr);

referring to:
program pascal_program;

Sexport num, string_ptr$

var
num : integer;
string_ptr: “packed array[1..32] of char;
string: packed array[1..32] of char;

If the Pascal program above is compiled with the —private_storage or -ps control
argument, the variable is allocated in a segment named pascal_program instead of the
user free area. This method is used because the Pascal exported variable is not
necessarily the same as the PL/1 external variable with the same name.

Access to PL/1 from Pascal

The following examples illustrate how to call PL/1 programs from Pascal.

4-13 GB62-00

Example 1 (Pascal)

$import 'pliproc (p11)' : pliproc $§
procedure pliproc (var a, b : integer); external;

to call the PL/1 program:
plliproc : procedure (a, b);
dcl (a, b) fixed bin(35);
Example 2 (Pascal)

Simport 'plifonc (p11)' : plifunc $
function pllfunc : real; pll;

to call the PL/1 program:

procedure pllfunc returns (float bin(63));

CALLING THE MULTICS COMMAND PROCESSOR FROM PASCAL

The following example illustrates how to call the Multics command processor
from a Pascal program.

program multics_comm(input, error);

Simport
'eu_Scp (pl1)' : comm_processor $

const
max_len = 100;

type

line = packed array [1..max_len] of char;
comm_ptr = "~line;
line_len = 0..max_len;

var

comm_addr : comm_ptr;
comm_len : line_len;

error_code : integer;

procedure comm_processor

(p1 : comm_ptr; p2 : line_len; var p3 : integer); external;
begin

new (comm_addr) ;
comm_len := O;
while (not eoln) and (comm_len < max_len) do
begin
comm_len := comm_len + 1;
read (comm_addr” [comm_len]) ;
end;

4-14 GB62-00

if not eoln then
begin
writeln (error, 'command line too long (100 chars max) .');
while not eoln do get (input);
end
else

comm_processor (comm_addr, comm_len, error_code) ;
dispose (comm_addr) ;
end.

Compile the above program as follows:

pascal multics_comm

Execute the program as follows:
multics_comm
?1s [wd]l>multics_comm.%x
Segments = 2, Lengths = 2.

re 1 multics_comm
rw 1 multics_comm.pascal

r 15:28 0.671 76

PARAMETER LISTS

In general, Pascal procedures do not accept parameter lists including descriptors
and do not generate descriptors in procedure calls. For this reason, it is not possible
to call most of the PL/1 procedures declared with (*) descriptors or declared options
(variable). However, there is one exception: Pascal conformant arrays of type integer
or real can be passed to PL/1 procedures whose parameters are (*) arrays of

equivalent types.

4-15 GB62-00

Table 4-2.

Variable Equivalence

Pascal Fortran PL/1
integer integer fixed bin(35)
real double precision|float bin(63)
packed array[1..N] of char |character*N char (N)
boolean true integer = 1 fixed bin(35)=1
boolean false integer = 0 fixed bin(35)=0
integer -1 logical true
integer O logical false
pointer (nil) Not available pointer (null)
char Not available pascal_char
2 dum bit(27) unal,
2 ch char (1) unal,
packed array (*) char (1) unal
[a..b : integer] of char |Not available
array [a..b : integer; (%,%) float bin (63)
c..d : integer] of real
packed array Not available (*) fixed bin (35) unal
[a..b : integer] of
integer
record Not available char (n) varying;

length : 0...n;
string : packed array
[1...n] of char
end;

When calling a PL/I| program, a Pascal program should
pass only the string array portion (record.string),

not the entire record.

4-16

GB62-00

INITIALIZATION OF VARIABLES

In standard Pascal, uninitialized variables have an undefined value. Use of an
uninitialized variable results in an error. Multics Pascal does not flag variables to
show that they are unintitialized. Therefore, variables must be initialized explicitly.

For instance, use of an uninitialized local pointer can cause a fatal process error.
The pointer, initialized in the Multics stack, has usually been assigned a value by
another procedure. To avoid this problem, compile your programs with the -debug
control argument (the default). Debug mode initializes locals, internal globals and
allocated blocks to blanks (octal \040) (all bytes will have this value). External
(exported) globals are set to an initial value of zero (octal \000) by default (allocation
by Multics dynamic linker), but they will have an initial value of \040 if you compile
the program with the -ps arg (allocation in private data segment). Therefore, an
attempt to use an uninitialized pointer causes a nonfatal error. (Standard Multics error
message: ascii data where pointer expected).

If you compile your program with the -no_debug control argument which
slightly shortens the program’s execution time, locals will have no special initial value
(current stack value), globals and allocated blocks will have an initial value of zero.
PASCAL AREA MANAGEMENT

A Pascal area consists of one or more temporary segments where blocks are
allocated and deallocated by the Pascal new, dispose, and reset procedures. The

default size for a Pascal area is one segment (255 records). You can increase,
decrease, or reset the size using the pascal_reset_area command (see Appendix C.)

The Pascal procedure new (P) sets the pointer P to null if there is no more
room in the area for the requested allocation.

The Pascal procedure dispose (P) sets the pointer P to a null value.

PROGRAM HEADER
In Multics Pascal, as in most Pascal implementations, the program header

contains, and only contains, the names of files used by the program (see Declaring
Pascal Files above).

Example
program foo (input, filel, file2);

var filel, file2 : file of real;

4-17 GB62-00

DEBUGGING A PASCAL PROGRAM USING PROBE

The Multics probe command provides symbolic, interactive debugging facilities for
programs written in Pascal and other Multics supported programming languages. Its
features let you interrupt a running program at a particular statement, examine and
modify program variables in their initial state or during execution, examine the stack
of block invocations, and list portions of the source program. You can find a full
description of the probe interactive debugging facility in the Commands and Active
Functions manual. This subsection is not meant to teach you the use of probe; it
describes the information required to use probe in a Pascal environment.

Invoked on a Pascal program, probe understands all of the Pascal data types,
including enumerated types, typed pointers, sets, records, and user—defined types. Probe
understands the Pascal builtin functions chr, eof, eoln, false, nil, ord, and true.

Array indices are enclosed in brackets, for example a[i,j]. Cross-section ranges
are written with .., as in b([first..last]. Probe uses the asterisk (*) to refer to a
complete cross-section row as in a[*,3] or b[*]. References to record fields must
specify all levels; implicit level names are not allowed. For example, a.b.c.d cannot be
abbreviated as a.d as can sometimes be done with PL/1 structure elements.

Pointer values are written with circumflex (») as the up-arrow, for example p*
to indicate the value that p points to. String constants are enclosed in single quotes:
*This is a string’. The two boolean values are true and false.

4-18 GB62-00

APPENDIX A

MULTICS DEVIATIONS FROM STANDARD
PASCAL

Although Multics Pascal does adhere to the standard ISO Pascal, there are several
areas where Multics deviates from the standard. The following is a list of Multics
deviations from standard Pascal. The parenthetical reference numbers refer to the ISO
Pascal standard.

e The concept of an undefined variable is not implemented (i.e., the
compiler does not "flag" undefined variables); their use is not detected
as an error. The following undefined variables are not implemented:

uninitialized variables (6.2.3.5, 6.6.5.4.)

e the control variable of a for statement after the for statement
(6.8.3.9)

e the field of an inactive variant or an uninitialized field (6.4.3.3)
e the buffer variable after a put statement

e an undefined pointer after a call to dispose (has a null
value)(6.6.5.3)

e In a dispose, it is not an error if the pointer points to a variable that
is the actual variable of an active procedure or used with an active
with statement (6.6.5.3).

e In a dispose of the long form, it is generally not an error if the
parameters passed do not have the same value or are not of the same
number as in the corresponding new statement (only on the length is
checked).

e It is not an error to use in an expression, assign in a statement, or
pass as an actual parameter, a variable created by a new statement of
the long form (6.6.5.3).

e It is not an error to modify a selector of a variant when it has been
defined in a new statement of the long form (6.6.5.3).

A-1 GB62-00

!iach occurrence of an identifier is associated with the last declaration
in the current (or including) block until it is modified by another
declaration in the current block (6.2.2, 6.3, 6.4.1, 6.6.1).

A component of an array cannot be a fi/e (6.4.3.2).
A record cannot have a component of file type (6.4.3.3).

Using a component of a record that has not been initialized is not
detected as an error. Using a component of a record when the case
selector has an incorrect value is not detected as an error (6.4.3.3).

The maximum size of a set is 288 elements. For that reason, it is
impossible to define set_type = set of ordinal_type if the ordinal type
has more than 288 elements (6.4.3.4).

The compiler checks that there is at least one occurrence of the
assignment of the function in a function procedure, but it does not
check at execution time whether you return from the function without
giving it a value (6.6.2).

pack and unpack are not allowed on conformant arrays (6.6.3.7).

No error is detected if the current file position of a file 7 is altered
while the file’s buffer variable 74 is an actual variable parameter, or an
element of the record variable list of a with statement, or both (6.5.5).

(* ... %) is a comment, as well as { ... }. But (+ and {, *) and }
are not synonyms. A comment that begins with (* must end with #)
and a comment that begins with { must end with } (6.1.9).

Set overlapping is not always detected (6.4.5, 6.4.6, 6.7.2.4).

Modification of the selector field of a record when this record has
been allocated by a new statement of the long form (using the value of
this field) is not detected as an error.

No check is performed when a label is used (it must only have been
declared in the current block or in a containing block). For instance,
goto to a branch of an /f statement or a case statement from outside
zhis s)tatement or from another branch of this statement is not detected
6.8.1).

A selector field can be passed to a procedure (6.6.3.3).

An error is not detected if the control variable of a for statement is
modified in a procedure contained in the block (6.8.3.9).

An array of packed type can be passed as an actual parameter to a
variable conformant array. (6.6.3.7.3).

Two string constants of the same length can be passed as actual
parameters to variable conformant arrays of same schema (6.6.3.8).

A-2 GB62-00

IMPLEMENTATION RESTRICTIONS OF MULTICS PASCAL
VARIABLES AND IDENTIFIERS

The following table lists the range boundaries that apply to Multics Pascal
variables and identifiers:

Table A-1. Range Boundaries of Variables and Procedures

34359738367

maximum positive real (maxreal) = 1.70141183460469232e+38

maximum positive integer (maxint)

minimum positive real (minreal) = 1.46936793852785938e-39

maximum set range = 288

(For "set of x..y", x must be >=0 and y must be < 288.
For a set of enumerated type, the enumerated type cannot
have more than 288 elements.)

identifiers can have up to 32 chars

global internal variables (declared at main level and not
imported or exported) cannot occupy more than 16k words.

local variables (internal to procedures) cannot occupy
more than 16k words.

A-3 GB62-00

French translation of predeclared or reserved symbols

English

$export
$import
$include
$options
$value
abs

and
arctan
arge
argv
array
begin
boolean
case
char
chr
const
cos
dispose
div

do
downto
else

end

eof

eoln
error
exp
external
false
fappend
fclose
fconnect
fget

file

French

$exporte
$importe
$include
$options
$valeur
abs

et

arctan
nbarg
arg
tableau
debut
booleen
cas

car
carac
const
cos
liberer
div

faire

bas
sinon
fin

fdf

fdin
erreur
exp
externe
faux
allonger
fermer
connecter
fprendre
fichier

English

get
goto

if

in

input
integer
label
maxint
maxreal
minreal
mod
new

nil

not

odd

of

or

ord
otherwise
output
pack
packed
page
pred
procedure
program
put
read
readin
real
record
repeat
reset
rewrite
round

APPENDIX B

FRENCH TRANSLATION OF SYMBOLS

is as follows:

French

prendre
allera

si

dans
entree
entier
etiquette
entmax
reelmax
precision
mod
creer

nil

non
impair
de

ou

ord
autrement
sortie
tasser
paquet
page
pred
procedure
programme
mettre
lire
lireln
reel
article
repeter
relire
recrire
arrondi

GB62-00

English

flush
for
forward
fput
function
fupdate
stop
succ
swrite
text
then

to

true
trunc

French

vider
pour
plusloin
fmettre
fonction
fupdate
stop
succ
ecrirech
texte
alors
haut
vrai
tronc

B-2

English

set
setmax
sin

sqr
sqrt
sread
type
unpack
until
var
while
with
write
writeln

French

ensemble
ensmax
sin

carre
rac2
lirech

type
detasser

jusque
var

tantque
avec
ecrire
ecrireln

GB62-00

APPENDIX C
PASCAL COMMANDS

This appendix contains all of the available Pascal commands, namely:

pascal
pascal_area_status
pascal_create_area
pascal_delete_area
pascal_file_status
pascal_indent
pascal_reset_area
pascal_set_prompt

The online help facility also provides full documentation of the commands. To
use it, simply type "help" followed by the command name.

Name: pascal

SYNTAX AS A COMMAND

pascal path {-control_args}

FUNCTION

invokes the Pascal compiler, which compiles a source program written in Pascal and
produces a Multics executable object segment. If compilation errors are encountered,
error messages are printed on user_output.

ARGUMENTS

path
is the pathname of the source segment. The ".pascal" suffix is assumed.

CONTROL ARGUMENTS

—add_exportable_names, —aen
adds names of exported variables and procedures to the object segment.

C-1 GB62-00

pascal

-brief_map, -bfm
produces a compilation listing containing source, error messages, and a statement
map.

—brief_table, -bftb
generates a partial symbol table consisting of only a statement table that gives the
correspondence between source line numbers and object locations for use by
symbolic debuggers. The table appears in the symbol section of the object
segment. This control argument does not significantly increase the size of the
object segment.

—-conditional_execution VAR_NAME true/false, -cond VAR_NAME true/false
forces the value of the conditional compilation variable VAR_NAME to either
"true" or "false". This control argument overrides any assignments of VAR_NAME
in the text of the program. See Section 3 for a description of conditional
compilation.

—debug, -db
generates code to check for references outside of array bounds, invalid
assignments, values that are out of range, and a variety of other potential errors.
Also initializes program storage to blanks (\040) so that a reference through an
uninitialized pointer will cause a fault_tag_1 condition. (Default)

—english
assumes that Pascal reserved words are in English as opposed to French. (Default)

—erToT_messages, —em
prints error messages on user_output as well as including them in the listing
segment. (Default)

—french
accepts Pascal reserved words in French. Type "help pascal_french_keywords" for
the correspondence between French and English reserved words.

—full_extensions, —full
allows use of all nonstandard extensions defined for Multics Pascal. (Default)

—interactive, -int
allows text files to operate in interactive mode. On reset or read/n, get of next
character is deferred until the next reference to the file or to one of the
variables attached to the file, such as eof, eo/n and fi/le”. See Section 2 for a
description of interactive mode.

—-io_warnings, —iow
allows warnings to be printed by 1/O procedures called by the compiled program.
(Default)

—list
produces a compilation listing including source, error messages, map and cross—reference
of symbols, statement map, and generated code in symbolic ALM.

C-2 GB62-00

pascal

o/

pascal

-long_profile, -lpf
generates additional code that records the virtual CPU time and number of page
faults for each source statement. It is incompatible with the -profile control
argument. The profile command can handle both regular and long profiles. Use
of this feature adds considerable CPU overhead to heavily executed code. The
extra CPU time is subtracted out so that it does not appear in the report printed
by the profile command.

-map
produces a compilation listing including source, error messages, map and cross—reference
of symbols, and statement map.

-no_debug
does not generate code to test for references outside of array bounds, values out
of range, or other errors, nor does it initialize storage to blanks.

-NO_error_messages, —nem
does not print error messages on user_output. They are still included in the
listing segment.

-no_interactive, -nint
does not allow text files to operate in interactive mode. (Default)

-no_io_warnings, —niow
- does not print 1/0 warnings if a nonfatal error occurs in I/O procedures called
by this program.

-no_list
does not produce a compilation listing. (Default)

-no_long_profile, —nlpf
does not generate additional code to record the virtual CPU time and number of
page faults for each source segment. (Default)

—-no_private_storage, —-nps
causes exported variables to be allocated dynamically in external static. (Default)

-no_profile, —npf
does not generate code to meter the execution of source statements. (Default)

-no_relocatable, —nonrelocatable, —nric

generates an object segment that cannot be bound, and saves 10%-20% compilation
time.

-no_table, —ntb
does not generate a symbol table in the object segment.

—-page_length N, -pl N
specifies a page length for the listing segment. The default is 59 lines.

pascal

C-3 GB62-00

pascal pascal

-private_storage, —ps
allocates all exported variables in a segment in the process directory named
progname.defs, where progname is the entryname of the path argument, without
the .pascal suffix. This segment is created if it does not exist.

-profile, —pf
generates additional code to meter the execution of individual statements. Each
statement in the object program contains an additional instruction to increment an
internal counter associated with that statement. After a program has been
executed, the profile command can be used to print the execution counts.

-relocatable, -rlc
generates an object segment that can be bound. (Default)

-sol_extensions, -sol
allows only French SOL extensions to be used. Type "help pascal_extensions" for
a list of SOL extensions.

—standard
allows only (ISO) standard Pascal to be used. The default is —full_extensions.

-table, -tb
generates a full symbol table for use by symbolic debuggers. The symbol table is
part of the symbol section of the object segment and consists of two parts: a
statement table that gives the correspondence between source line numbers and
object locations, and an identifier table containing information about every

identifier actually referenced by the source program. This control argument usually
causes the object segment to be significantly longer. (Default)

NOTES
If incompatible control arguments are specified, the rightmost one is used.

Multics Pascal is case-insensitive. All identifier names are mapped to lowercase in the
program and in the program’s symbol table. As a result, the Pascal program header:

program: Foo;
produces a segment entry point with the name "foo".
NOTES ON LISTING

The Pascal compilation listing contains the following sections in the order shown:

1. Header: gives the full pathname of the source segment, the Multics site
indentification, date and time of compilation, and the compiler
indentification.

2. Source: with lines numbered sequentially. In include files, file number

precedes the line number.

C-4 GB62-00

pascal_area_status

3. Error messages (if any).

4. Storage requirements for the object segment.

S. List of source files used.

6. Complete map and cross-reference for symbols declared and used,
symbols declared and never used, and symbols declared by default.

7. Displacement for fields given in octal (bytes), locations for variables
given in octal (words), and sizes given in octal (bytes).

8. "DEF:" followed by the number of the line where the symbol is
defined. "REF:" followed by the number of the line(s) where the
symbol is referenced. A star (*) is printed for each reference where
the variable or field is set or passed by reference ("var" parameter) to
a subroutine.

9. Statement map: gives the octal location of the first instruction of each

statement of the source program.

Name: pascal__area__status

SYNTAX AS A COMMAND
pascal_area_status {names} {-control_args}
FUNCTION

Displays and sets attributes of specified Pascal areas. These areas are temporary
segments. Allocation is performed by the Pascal new statement, deallocation by the
the dispose and reset statements.

ARGUMENTS

names
are relative pathnames of Pascal object segments that have their own private areas.

(See the pascal_create_area command.)
CONTROL ARGUMENTS

-all, -a
operates on all private Pascal areas as well as on the default Pascal area.

-brief, -bf
does not print a dump of each allocated block. (Default)

C-5 GB62-00

pascal_area_status pascal_area_status

—default
specifies the default area used by Pascal to allocate storage.

—dump
prints a comprehensive, unformatted dump of the area(s). This control argument

is intended for use by the maintainers of the Pascal compiler and related
software.

-long, -lg
prints a dump of each allocated block.

-no_dump
does not print a comprehensive dump as printed by -dump. (Default)

-no_status, -nst ‘
does not print status information.

-no_trace
does not print the address and length of each block. (Default)

—status, -st
prints the maximum size, the size of the allocated blocks, and the maximum
number of blocks.

—trace
prints the address and length of each block.

NOTES
Names and control arguments can be present in any order.

If no areas are specified, —default is assumed. If no actions are specified, —status is
assumed.

If more than one of -list, —dump or -long_dump is specified, only the last one is

performed. In addition, if more than one action is specified, the operations are
performed in the following order:

-status -trace -long -dump

C-6 GB62-00

pascal_create_area pascal_create_area

Name: pascal__create__area
SYNTAX AS A COMMAND

pascal_create_area names {-control_args}
FUNCTION

creates temporary, private areas in the process directory for the specified Pascal object
segments. All new operations executed by these object segments will use the associated
private areas.

ARGUMENTS

names
are the relative pathnames of Pascal object segments which are to have their own
private areas. An error occurs for each object segment for which a private area
has already been created.

CONTROL ARGUMENTS

-brief, -bf
suppresses the error message that is printed when the private area for a specified
program already exists.

-long, -lg
allows the error message that is printed when the private area for a specified
program already exists. (Default)

-size N
sets the maximum size of each area to N pages. The default size is 225 records.

NOTES

By default, the Pascal new operation uses the default Pascal area in the process
directory. This area, and any that are created, can be examined using the
pascal_area_status command.

C-7 GB62-00

pascal_delete_area pascal_file_status

Name: pascal__delete__area

SYNTAX AS A COMMAND

pascal_delete_area names {-control_args}

FUNCT/ION

deletes the private areas associated with the specified Pascal object segments.

ARGUMENTS

names
are the relative pathnames of Pascal object segments whose private areas are to be
deleted.

CONTROL ARGUMENTS

-brief, -bf
suppresses the message that is printed when a specified program is active on the
Multics stack.

-long, -lg

ailows the message that is printed when a specified program is active on the
stack. (Default)

Name: pascal__file__status
SYNTAX AS A COMMAND
pascal_file_status
FUNCT/ION

displays information on the status of all standard Pascal files currently in use and all
files of active Pascal procedures in the Multics stack.

C-8 GB62-00

pascal_indent pascal_indent

Name: pascal__indent

SYNTAX AS A COMMAND

pascal_indent old_path {new_path} {-control_args}
FUNCTION

indents a Pascal source program according to a standard set of conventions described
below.

ARGUMENTS

old_path
is the pathname of the source segment to be indented. The .pascal suffix is
assumed.

new_path
is the optional pathname of the indented result. The .pascal suffix is assumed. If
this argument is omitted, the indented copy replaces the original segment.
However, if errors -are detected in the source, a temporary indented copy is
created instead and its pathname is printed in an error message.

CONTROL ARGUMENTS

-brief, -bf
suppresses warning messages for invalid or non-Pascal characters found outside a
string or comment. Errors corresponding to suppressed messages do not prevent
the original source segment from being replaced.

-comment N, -cmt N
indents comments at column number N. Comments are lined up at this column
unless they occur at the beginning of a line and are preceded by a blank line.
The default column for comments is 61.

-french

assumes that the source program is written in French. See Appendix B for a list
of French keywords.

-highlight, -hl
translates reserved symbols of the Pascal language to lowercase if —up is specified,
uppercase otherwise so that they stand out from the rest of the text.

-indent N, -in N
indents each level an additional N spaces. The default number of spaces is 3.

-lmargin N, -Im N

sets the left margin for top-level program statements after the Nth column. The
default for N is 10.

C-9 GB62-00

pascal_indent pascal_reset_area

-long, -lg
allows warning messages for invalid or non-Pascal characters.

-lower_case, -lc
translates all uppercase letters outside of strings and comments to lowercase.

-no_highlight, -nhl
does not translate Pascal reserved symbols to the opposite case (upper or lower)
from the rest of the text.

-upper_case, -uc
translates all lowercase letters outside of strings and comments to uppercase.

NOTES ON INDENTING STYLE

Multiple spaces are replaced by single spaces, except inside strings and for non-leading
spaces and tabs in comments. Trailing spaces and tabs are removed from all lines
before indenting. Spaces are inserted before left parentheses, brackets and braces and
removed after them. Spaces are inserted after right parentheses, brackets and braces
and removed before them. Spaces are inserted around the constructs =, A=, <>, <=,
>=, :=, ;, :, and operators in expressions.

Parentheses, brackets and braces must balance. Also, begin, case, and repeat keywords
must balance with their corresponding end statements. The same is true of repeat and
until constructs.

Name: pascal__reset__area

SYNTAX AS A COMMAND

pascal_reset_area {names} {-control_args}

FUNCTION

frees all blocks in the specified areas.

ARGUMENTS

names
are relative pathnames of Pascal object segments that have their own private areas.
(See the pascal_create_area command.) If no names are specified, the default
Pascal area is reset.

CONTROL ARGUMENTS

-size N

sets thc maximum size of each specified area to N records after resetting the
area. The default size is 255 records.

C-10 GB62-00

pascal_set_prompt pascal_set_prompt

Name: pascal__set__prompt

SYNTAX AS A COMMAND

pascal_set_prompt {string} {-control_args}
FUNCTION

sets the prompt string used by Pascal programs in interactive mode. Type "help
pascal_terminal_io" for a description of interactive mode.

ARGUMENTS

string
specifies the prompt string.

CONTROL ARGUMENTS

-no_prompt, -npmt
causes there to be nothing printed for a prompt.

NOTES

If no arguments are specified, the default prompt "?" is restored.

C-11 GB62-00

INDEX

access

random access i/o 4-10
area

Pascal area management 4-17
ARGC

ARGC function 3-11
arguments

passing arguments to a

Pascal program 3-11

boundaries
range boundaries of
variables and
procedures A-3

calling
calling a Pascal exported
procedure or function
4-12

calling (cont)
calling a Pascal main
program 4-12

case

case statement 3-11
character

Pascal character set 2-1
character string

character strings of

different lengths 3-2

clock

clock function 3-12
closing

closing a Pascal file 4-9
list of
io_call 4-2, 4-6
pascal 2-2, C-1
pascal_area_status
pascal_ create _area
pascal_ delete . _area
pascal_files T2-2
pascal_file_status
pascal_indent C-9
pascal_reset_area C-10
pascal set_prompt C-11
pascal_set prompt_char
probe ~4-18

commands,

(@] (?OO
[o 0] @oJo;m

2-2

GB62-00

communication
communication with pl/1
programs 4-11

compilation
conditional compilation
3-10

compiling
compiling a Pascal program
2-1
compiling interactive
programs 2-2

conditional compilation 3-10

constants
maxreal 3-12
minreal 3-12

date
date function 3-12

debugging
debugging checks 3-10
debugging using probe 4-18

deviations
Multics deviation from
standard Pascal A-1

directives, list of

Sexport 3-4
Simport 3-3
$include -

3-7
Soptions 3-8
Svalue 3-5
reset 3-2

dynamic allocation reset 3-2

executing
executing a Pascal program
2-1

export
sexport directive 3-4
Sexport procedure 4-12
access to a Pascal exported
variable 4-13
calling an exported
procedure 4-12

exporting
exporting variables,
functions, and
procedures 3-2

extensions
file extensions 3-8
Multics Pascal extensions
3-1

fclose
fclose statement 4-9

fconnect
fconnect statement 4-8

fget
fget statement 4-10

file
file extensions 3-8
include file 3-7

files
closing a Pascal file 4-9
connecting files from
command level 4-7
connecting files from within
a Pascal program 4-8
declaring Pascal files 4-1

GB62-00

files (cont)
error 4-1
i/o to Multics files 4-6
input 4-1
local 4-2
opening a Pascal file 4-9
output 4-1
permanent 4-2
static 4-2
use of error file 4-2
using Pascal files with
Multics 4-1

flush
flush statement 4-4

format

formatting a Pascal program
2-4

fput
fput statement 4-10
function
calling an exported function
4-12

functions
importing and exporting 3-2

functions, list of

ARGC 3-11
clock 3-12
date 3-12
loglo 3-11
sread 3-12
swrite 3-12
time 3-12
fupdate

fupdate statement 4-10

global variables
initializing global
variables 3-5

i-3

global variables (cont)
maximum size of global
variables 3-4

header

program header 4-17

i/o
at the terminal 4-2
i/o to Multics files 4-6
io_call command 4-2
random access 4-10

identifiers
Pascal identifiers 2-1
underscores in identifiers
3-1

import
Simport directive 3-3
Simport procedure 4-13

importing
importing variables,
functions, and
procedures 3-2

include
Sinclude directive 3-7
include file 3-7

initializing
initializing global
variables 3-5

input
input from the terminal 2-2
integer notation 3-12

interactive mode 4-5

GB62-00

interactive programs P
compiling interactive
programs 2-2
packed data structure
io_call initialization of packed
io_call command 4-6 data structure 3-5

page breaks

L listing page breaks 3-9
parameter
listing parameter lists 4-15
listing page breaks 3-9
listing source text 3-10 pascal

pascal command 2-2, C-1
local files 4-2
pascal_area_status

loglo0 pascal_area_status command
logl0 function 3-11 C-5
pascal_create_area
M pascal_create_area command
c-7
maxreal pascal_delete_area
maxreal constant 3-12 pascal_delete_area command
c-8
minreal
minreal constant 3-12 pascal_files
pascal_files command 2-2
o pascal_file_status
pascal_file_status command
Cc-8
opening
opening a Pascal file 4-9 pascal_indent
pascal_indent command 2-2,
options 2-4, C-9

soptions directive 3-8
pascal_reset_area

otherwise ' pascal_reset_area command
otherwise extension 3-11 C-10
output pascal_set_prompt
output to the terminal 2-3 pascal_set_prompt command
Cc-11

i-4 GB62-00

pascal_set_prompt_char
pascal_set_prompt_char
command 2-2

permanent files 4-2

probe
debugging using probe 4-18
procedures
importing and exporting 3-2
range boundaries A-3

R

random access
random access i/o 4-10
range
range boundaries of
variables and
procedures A-3

read
read statement 4-3

readln
readln statement 4-3

records
initialization of records
3-5
reset
dynamic allocation reset
3-2

source text
listing source text 3-10
sread

sread function 3-12

statements, list of

case 3-11
fclose 4-9
fconnect 4-8
fget 4-10
flush 4-4
fput 4-10
fupdate 4-10
read 4-3
readln 4-3
write 4-3
writeln 4-3

static files
static
files 4-2

string
character strings of
different lengths 3-2

swrite
swrite function 3-12
symbols
equivalent symbols 2-1
French translation of
symbols B-1

time

time function 3-12

underscore
underscores in identifiers
3-1

GB62-00

value
$value directive 3-5

varaibles
initialization of variables
4-17
range boundaries A-3

variable
access to a Pascal exported
variable 4-13

variables
importing and exporting 3-2
initializing global
variables 3-5
maximum size of internal
global 3-4
variable equivalence 4-16

W

write
write statement 4-3

writeln
writeln statement 4-3

i-6

GB62-00

),_____

—_———————————— —— — —— ——- CUT ALONG LINE -

)

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form
W

ORDERNO. | GB62-00

niTLe | MULTICS PASCAL USER’S GUIDE

DATED | MARCH 1984

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

[> Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME DATE
TITLE

COMPANY
ADDRESS

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

CUT ALONG LINE(—-_——————

[

FOLD ALONG L™NE

(

L}

FOLD ALONG LINE

_____...______:__—___A.______._____.__

,(

Together, we can find the answers.
Honeywell

Honeywell Information Systems
U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo
Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

40215, 584, Printed in U.S.A. GB62-00

