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CHAPTER I 

SEGMENTATION AND ADDRESS FORMATION IN THE GE 645 

1. 1 INTRODUCTION 

Multics is a computer and programming system environment which is 

new in concept, large in scope, and unique in its implementation relative to 

its predecessor systems. Where does one begin to describe it? One should 

start with a high-altitude overview so as to see the whole of Multics. One 

such overview has already been written, and is entitled A New Remote­

Accessed Man-Machine System. It contains reprints of papers on the Multics 

system which were presented at the Fall Joint Computer Conference, Las 

Vegas, Nevada, on November 30, 1965. No doubt, as Multics becomes a 

working reality, more up-to-date "top-down11 descriptions will appear.t It is 

presumed that the reader of this guide has already read the above-mentioned 

overview. 

Computer specialists who read introductions of this sort are quick to 

grasp the aims and objectives of Multics, but some others may be slow to 

comprehend how it works. They then find a need to dig into the details, 

attempting to reach an ultimate understanding of the system by starting from 

the inside core and working outward toward a grasp of the whole. 

What constitutes the "inside" of Multics? Until it is understood better, 

there will probably be differing opinions. Rather than speculate, we have 

chosen to begin by looking at some of the new features of the GE 645, es­

pecially address formation. The purpose is to show how these new hardware 

features are related to, and permit the effective implementation of, the new 

software concepts of Multics; chiefly that of process segmentation. 

G0029 was used as the prime technical reference for address formation 

and segmentation hardware in the GE 645. * Much more is covered in G0029 

which is of lesser interest to a Multics subsystem writer. You can use two 

approaches depending on the availability of the reference document: 

t As of May 1967 the extensive' overview "Multics Operating System" prepared 
by GE' s Cambridge Information Systems Laboratory has become available but 
limited at least initially in its distribution to those affiliated with Project MAC. 

* Since this chapter was written, a new more complete GE reference docu­
ment, M50EB00107, entitled En ineerin ProductS ecification GE-645 
Prototype Processor, became available; dated November 8, 19 
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1) If you have already dug into G0029, you will find the Figures and 

Tables of this first Guide chapter are helpful summaries, and can 

ignore the text portion of the chapter; 

2) You can use the first chapter as a Primer on segmentation and 

addressing, and at least temporarily avoid the need to reference 

the G0029 document. 

1. 2 SOME DEFINITIONS AND CONCEPTS 

1. 2. 1 Processor 

A computer processing unit like the CPU of the IBM 7094. 

1. 2. 2 Process (Lay definition) >:< 

A set of related procedures and data undergoing execution and manipula­

tion, respectively, by one of possibly several processors of a computer. 

1. 2. 3 Segments 

A segment of a process is a collection of information important enough 

to be given a name. Segments are, generally speaking, blocks of code 

( d ) bl k f d t . . . f t 2 1 8 d . . proce ures or oc s o a a rang1ng 1n s1ze rom zero o war s 1n un1ts 

of 2 10 . The segments of a process may be located in dis contiguous sections 

of core memory and still function effectively as a unit. 

Each segment can be allowed to grow or shrink during execution of the process. 

A record of its size is kept in the "descriptor word" associated with the 

segment. 

1. 2. 3. 1 Page 

Unseen by the user, hardware mechanisms exist for subdividing 

a segment into smaller units called pages, each of which may be located in 

smaller, discontiguous blocks of core memory. All pages of a segment are 

of the same size and are either 64 words or 1024 words, at the option of the 

;;, Dennis and Van Horn (MAC-TR-23) give the following technical definition: 
11 A process is a locus of control within an instruction sequence. That is, 
a process is that abstract entity which moves through the instructions of a 
procedure as the procedure is executed by a processor. 11 
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supervisor. If a segment is so subdivided, it is said to be "paged". Every 

segment which a user will have any control over will be paged. 

1. 2. 3. 2 Page Table 

For each paged segment, the supervisor creates a table called a~ 

table which, when stored in core memory, will contain pointers to the individual 

pages of the segment that are also currently stored in memory. 

1. 2. 4 Descriptor Segment 

A table of some of the facts concerning the segments of a given process, 

one entry per segment. (See Figures 1-1, 1-2; pages 1-9, 1-10.) Specifically 

1) the location of the page table for the segment; 

2) the access rights for use of the segment. 

1. 2. 5 Descriptor Word 

A single entry (36 bits) in the descriptor segment. Each entry contains 

a pointer to the page table of the segment, if the segment is known to be 

residing in core memory. Otherwise, an indication of the segment's absence 

from core is provided in the entry. Also contained in the entry is the size 

(or maximum allowable size) of the segment and a "descriptor" field. 

1. 2. 6 Descriptor Field 

This field is sometimes referred to as the access control field. Bits in 

this field are set by the supervisor and interpreted by the hardware. (See 

Table 1-1, but only for details.) A segment exists in one of five classes 

defined by one subfield (bits 33-35). Another subfield defines the access 

rights to the segment of a currently executing segment; i.e .• who may read 

and who may write in the segment. In the event the segment is not in core, 

the subfield defines the desired trap (hardware fault) to the supervisor. 

Other bits relate to details of the segment's further subdivision into pages­

the level of detail that is curtained off from the eye of the user. 

1. 2. 7 Supervisor 

A collection of segments made part of each user process which perform 

various process management service functions. Thus, certain supervisor 
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segments are responsible for core allocation, others are used for searching 

secondary storage for needed segments and still others are used for the 

construction, loading and maintaining of segment or page descriptor words. 

Some supervisor segments operate in slave mode and others operate in 

master mode. 

l. 2. 8 Mode of Execution -Master/Slave 

There are two modes of execution, Master and Slave. A Procedure seg­

ment is classified as either master or slave by a bit set in its segment 

descriptor word. When the processor is executing in a master procedure 

segment, any one of the entire repertoire of 645 instructions may be executed. 

When the processor is executing in a slave procedure segment, certain 

instructions are "off-limits". An attempt to execute one of these will cause a 

hardware fault which in turn causes a trap to one of the supervisory segments 

of the process. 

l. 2. 9 Segment Class 

There are five classes for a segment (A-000, B-001, C -010, D-Oll, 

E-100). 

l. 2. 9. l Missing Segment (A-000) 

Segment is missing; i.e., is not now resident in core memory. Attempted 

access of any word in this segment will automatically cause a fault; one of 

eight types depending on the kind of access problem that was encountered. 

(Bits 30-32 of the descriptor are used for indicating the kind of fault.) 

l. 2. 9. 2 Data Segment (B-001) 

Segment is data (it may be read or written on only according to the setting 

of write and read permit bits (30 and 31) of the descriptor field). It may 

never be executed, i. e. , information from this segment cannot be fetched 

during the instruction cycle of the 645. 

l. 2. 9. 3 Ordinary Slave Mode Procedure Segment (C-010) 

Segment is a procedure, garden variety. It's called ordinary slave 0S. 

Is the kind that any user can write. It may contain data. That is, modifica­

tions may be made to this procedure by the same or other procedures. See 

BD. 7. 02 for details on how to set up call, save and return sequences. 
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A procedure segment that is not modified in any way as a result of being 

executed is called a pure procedure. All others are regarded as impure. 

1. 2. 9. 4 Execute-Only Procedure Segment (D-Oll) 

Segment is another kind of procedure that operates in slave mode but 

it's restricted to an ordinary user in the sense that a slave mode procedure 

can only transfer to it via the very first word of the segment, i.e. , word 

zero. We call such a procedure an execute-only procedure, E0. It's 

restricted in order that it can decide whether the caller was a valid caller, 

i.e. , to control the access to this procedure. A fault will occur if an attempt 

is made by any procedure which is operating in slave mode to transfer into 

any part (other than word zero) of the E0 procedure. Moreover, no part of 

this segment may be read as data by another procedure that operates in 

slave mode. Any user can write one of these procedures, but the call, save 

and return sequences are slightly different. See BD. 7. 03 for details. 

An E0 procedure, in spite of its misleading name, can make self refer­

ences, i. e. , read itself and modify itself, i. e. , it may be impure. 

Writing impure either E0 or 0S procedures is not recommended, since 

a single copy of an impure procedure cannot effectively be shared by two or 

more processes. 

1. 2. 9. 5 ~aster Procedure Segment (E-100) 

Segment is a master procedure. Meaning, it operates in master rather 

than slave mode, and hence can execute the "privileged" instructions. A 

master procedure can also transfer into Et'> segments at points other than 

the top, i.e. , word zero. If a slave mode procedure wants to transfer 

control to a master procedure, the master procedure will appear to the 

slave as an E¢). That is, a slave calling on a master must call "at the top". 

1. 2.10 Segment Naming and Segment Numbering (Notation) 

Multics has adopted a standard notation to refer to the name of (i.e., 

symbolic reference to) a segment and to its number (i.e., to the position of 

its descriptor word within the descriptor segment- see Figure 1- 2). 
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Example: if the segment is the cosine routine. The segment name might 

be referred to as <cosine> and its number is referred to as cosine#. In general 

< seg > means that the name of the segment is seg 

and 

seg# means the number of the segment whose name is < seg > 

l. 2. ll Named Locations and Numeric Locations Internal to a Segment 

Multics has adopted a standard notation to refer to an "internal address" 

i.e., to an address relative to the word zero of the segment. If the location 

is known symbolically, e. g., via a name in the location field of the assembly­

language coding, then this name is indicated by enclosing the name in brackets. 

Thus in <cosine>, if there is an instruction named "loop" then this name is 

referred to as (loop] and the symbol "<cosine> l [loop] " means location 

named "loop" within the segment named "cosine". 

The vertical bar always separates the segment name or segment number 

from the local, or internal name. 

Example: 

< k > l [ kloc] 

means location "kloc" within segment 11 k". 

To distinguish the internal symbol from its value, we simply remove the 

brackets when we want to speak of the value as signed to that symbol. Thus if 

(kloc] were assigned the value 52 within <k>, and if k# were 16, then 

k# l kloc 

would mean: position 52 from the top of segment number 16. This pair of 

numbers determines the core memory address of < k > l [ kloc] during 

execution, once we determine the address of 

k# 1 o 
which is the address of word zero of< k >. We note that the address of k# l 0 

is stored as a pointer in the 16th word of the descriptor segment. See Figure 

1-2 for details. 

1. 2. 12 Core Address 

A full memory address is 24 bits. In forming this address for a fetch or 

store of a word, or of a pair of adjacent even-odd words, the GE 645 employs 
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address components, which are stored as ,.!i-bit fields (or less). To form a 

24-bit core address, a left shift of 6-bit positions is performed on the value. 

copied from the pointer in the descriptor word. If, for example, the pointer 

has the value x, then the core block to which it points is located at X x 26. In 

Figure 1-2 and in succeeding representations of descriptor words, the pointer 

field is represented by the symbol AB. 

l. 2. 13 Address Bounds Field of the Descriptor 

Each descriptor word (See Figure 1-2) contains an 8-bit field called NB 

(bits 19-26). This field reflects the size of the segment, measured in blocks 
t 

of 2 words. NB is also the number of words in the segment's page table. 

Each time a memory address is made to a position within a segment, < k >, 

say at <k>l kloc, the value of NB is automatically employed by the hardware 

as a bounds check to be sure that <k>l kloc lies within <k>. 

If the size of the segment in words is size, then NB = size/2t. Bit 27 of 

the descriptor word determines t. 

t = 10 if bit 27 = 0, i.e., page size is 1024 words 

t = 6 if bit 27 = 1, i.e., page size is 64 words 

This means that a segment is allocated space in blocks of l 024 words (2 1 0) if 
. 8+10 18 b1t 27 = 0. Such a segment can never exceed 2 = 2 words even if core 

memory should grow beyond 2 18• Otherwise, if bit 27 of the descriptor 

word= 1, the segment is allocated space in blocks of 64 words, in which case,. 
8+ 6 14 such a segment can never exceed 2 = 2 words.>:< 

1. 2. 14 Descriptor Base Register (dbr) 

A 29-bit register (one per processor). This register has only two fields 

of interest to us. They are called "addr" and "bd" in all the figures that 

depict the contents of the dbr. We pay no attention to the field marked "desc". t 

* Some hardware changes are being planned for the GE 645 which will make 
it possible for a segment whose page size is 64 words to have up to 212 pages, 
i.e., up to 2 18 words. I don't know how such a planned change will affect 
the interpretation of the address bounds field. 

t This is a 2-bit field that gives information as to whether and how the 
descriptor segment, pointed at by addr, is subdivided into pages. We will 
never, as users have any control over these bits. This is a supervisory 
function of a process called the core manager (BG.6). 
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addr is a pointer to the head of the descriptor segment for the process that is 

currently running on the processor to which this dbr belongs. 

bd is a bounds value. It gives the size of the descriptor segment measured in 

blocks of 2 v descriptor words. v = 10 or 6 in value depending on whether bit 

27 of the dbr is set to 0 or 1 respectively. If the addressing mechanism 

(described in Figure 1-2} is ever used to access a word in the descriptor seg­

ment that lies beyond addr + bd x 2 v then an automatic fault will be detected 

and control would be transferred to a master mode supervisory procedure 

segment. (Remember that the supervisory procedures are automatically 

made a part of every user process.) 

1. 2. 15 Two or More Processes in Core Memory 

In principle, a number of different processes may cohabit memory. (See 

Figure 1-3.) To switch a processor from process 1, say, to process 2, all 

that is required is to save the contents of the dbr (i.e. (dbr)), and replace 

with the addr, bd, and desc fields appropriate to process 2. In simple terms, 

just make the dbr point at a different descriptor segment. 

In actual fact, process switching in Multics is somewhat more compli­

cated. Those interested can read the details in the Traffic Controller sections 

of MSPM. See for example BJ. 5. 

1. 2. 16 Common Segments 

Note in Figure 1-3 that two processes (residing in memory at the same time) 

can share common data or procedure segments (and their respective page tables). 

In fact, in Multics this is definitely the rule. Every process has certain key 

segrnents which are master supervisory procedures provided by the system. 

Some are called "hard core" and "administrative" routines. Certain of these 

procedures are automatically made part of every Multics user process. These 

are generally the lowest numbered segments in the process. Moreover, a few 

of the segments which are employed for process switching are given the same 

numbers respectively in each process (like segments <a>, and < c >). Other 

segments may be common, but they need not be numbered identically in each 

process. 
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I 
I 

The process has a number of segments called (symbolically) "A", "C", 
"B", ••. , "T", "D". This is the order in which pointers to these segments 
happen to be listed in the process descriptor segment. Note that the current 
contents of the descriptor base register (dbr) points to the head of the 
descriptor segment. The dbr is explained in 1. 2. 14. 

Each segment should, strictly speaking, be diagrammed with the detail 
shown for segment A. That is, first the page table and then the individual 
pages. To simplify our figures, we will ordinarily avoid such detail and 
hope it will be inferred from the simplified, single block pictures we shall 
use as illustrated for segments C, B, etc. 

Figure 1-l. Showing a Process Resident in Core Memory 
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Note: See 1. 2, 10 and 1. 2. 11 for an explanation of the segment 

naming and numbering notation used in this diagram. 

Figure 1-2. System of Pointers to Locate the Core 
Address of<k>l [kloc] , 
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TABLE 1-1. 

Descriptor Field of the Segment Descriptor Word 

Bit position- 27 28 29 30 31 32 33 34 35 

DIRECTED FAULT 0- 7 SEGMENT CLASS 
if segment class A A= segment missing 

Page Paging 1\ I WRITE MASTER otherwise (see bits 30-32) 

(block) for PERMIT ACCESS bit 32 B = data 

size segment 
NOT 

0 MM = 0 unused and C = procedure slave MM = 
1024 = 0 yes = 0 v USE\ 

only only bits 30 & 31 D = procedure execute only 
I 

64 = 1 no = 1 Slave = 1 Slave = 1 as shown E = procedure master 

• 

Note: Binary coding is used for the SEGMENT CLASS subfield 

(bits 33-35) of the segment descriptor word; i.e., A = 000, 

B = 0 0 1 , C = 0 1 0, D = 0 11 , and E = 1 0 1. Binary coding is 
' 

also used for the directed faults (bits 30-32). More details 

on segment classes B, C, D, and E, and on write and 

access permit bits, can be found in G0029, pages 38-41. 
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Note: 

Process 1: consists of segments called <a>, < c >, < d >, ..• , < t >, 
< d > in the order listed in the descriptor segment. 

Process 2: consists of segments called<a>, <c>, <f>, <t>, ... , 
< g >, in the order listed in the descriptor segment. 

Both processes share certain segments in common. Thus, seg­
ment <a> and < c > are identically numbered 1 and 2, respectively, 
in each process. But segment <t>, which is also a common 
segment, has a different number in each process. 

By the number of a segment in a process we simply mean: 

A segment has the number k if it is pointed 
to by the kth word of the descriptor segment 
for the given process. 

Figure 1-3. Showing Two Processes Resident in Memory 
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1. 3 CORE ADDRESS FORMATION 

We will now see how core addresses are formed for purposes of fetching 

instructions and data during the execution of a user's process. 

Conceptually, every memory reference is to a particular location within 

a particular segment. This is sometimes referred to as "two dimensional" 

addressing, because one dimension may be thought of as the segment number, 

an offset within the descriptor segment which determines the desired segment, 

and another dimension is the offset within the desired segment. We shall 

sometimes speak of these as the first and second dimensions, respectively. 

More often they will be referred to as the external base and internal base or 

address. 

1. 3. 1 Fetching Instructions 

In a familiar computer like the IBM 7094, addressing is one dimensional. 

The instruction counter, IC, holds the absolute location of the instruction to 

be fetched. In the GE 645, the IC merely holds the value of the second 

dimension, i.e., the relative location within the desired procedure segment. 

The value for the first dimension is the segment number for the currently 

executing procedure. This number points to the desired descriptor word, 

which in turn contains the pointer AB to word zero of the desired segment. 

Construction of the actual core address that is finally referenced is as follows: 

core address for the fetched instruction= address of desired segment+ (IC) 

If a procedure segment is executing a sequence of instructions that lie 

entirely within the segment, the value AB remains stationary. Only the IC 

changes in value, increasing by one for sequentially executed instructions, or 

replaced by new values in the case of a successful transfer instruction to 

some arbitrary point within the same segment. 

How, then, is AB established? If we are talking about segment <k>, then 

clearly some register could be designated to serve as a pointer to the proper 

descriptor word that holds AB for < k >. 
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In the GE 645, a special 18-bit register has been provided for this purpose, 

and it's called the "pbr" or procedure base register. The value k# must be 

established and held in the pbr as long as procedure < k > is executing. Figure 

1-4 gives an illustration of this instruction address determination. In this and 

subsequent figures the first dimension of the address is referred to as the 

"effective pointer", a term used in G0029. 

1. 3. 2 Fetching or Storing Data 

Most procedures in Multics will be pure, so the data associated with the 

procedure are almost certain to be located in some other segment of the same 

process. Hence, to form the address of a word in the data segment, it's 

necessary to point within the descriptor segment to a different descriptor word 

than the one currently pointed at by the pbr. If we are going to hold a value in 

the pbr as an "instruction" pointer for a series of instruction fetch cycles, 

we'll need another register for use as a data pointer during a series of execute 

(data fetch) cycles. In this way the computer can alternate between instruction 

and execute cycles without having repeatedly to shift pointer values to the 

appropriate segment descriptor word. The special 18-bit register used in the 

GE 645 for the execute cycle address formation is the "tbr", or temporary 

base register. On each execute cycle the tbr holds the value for the first 

dimension of the two-dimensional data address. 

Figure 1-S illustrates the partial determination of the core address for a 

data word located symbolically at 

< d >I [ dloc] 

In this figure we show how the address of <d> is determined (although we 

have not yet shown how we got the value to put in the tbr). It remains now to 

show how the relative location within < d > i.e., dloc is determined. G0029 

calls this second dimension the "effective internal address". 

1. 3. 3 Computing the Effective Internal Address 

We have seen how the address of data segment <d> has been determined. 

Now the question is, how is the effective internal address, dloc, (i.e., the 

address within <d>) determined? We shall have to approach the full explana­

tion to this question in stages. 
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----..--------,0 ----

f 1----~· 
1--------t 1 

~tc. 

The actual core address is AB x 26 + kloc. AB is found by setting a 
pointer value, k#, in the pbr. The (dbr) points at the base of the 
descriptor segment and the (pbr) provides the necessary offset to get at 
AB. . 

Figure 1-4. Address Formation to Fetch ::! Instruction at <k> I [ kloc] 
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~--------------~ 
cL ... 

tbr points at the dih descriptor word which in turn points at <d>. 

Figure 1-5. Partial Address Formation During an Execute 
. Cycle to Obtain a Data Word at <d> I [ dloc] 
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There are two characteristic formats for a GE 645 instruction as shown 

in Figure 1-6. Instructions of type 1 are recognized by virtue of bit position 

29 = 1, while instructions of type 0 are recognized by a 0 in bit 29. 

Type 0 instructions are used for referencing data or instructions within 

the segment currently being executed, while type 1 instructions may reference 

data or instructions in any segment. Because there appears to be something 

inherently more general about type 1 instructions (and for no other reason) we 

shall discuss these first, and treat type 0 instructions later (in Section 1. 3. 8). 

For a type 1 instruction, the effective internal address is made up of 

three components. The three fields y_, ~and segment~ of the instruction, 

either directly or indirectly determine these components. 

The address field y_ is a signed 14-bit quantity, i.e., address ranges over 

±2 14 values. 

The~ field. There is a fairly complicated six-bit tag field. Some 

details can be found in Table 1-2. For the present we can make the following 

simplification: 

1. three of these bits designate one of the 8 index registers (0-7); 

2. two bits specify the type of indirect addressing, if any, for this 

instruction. 

The segment~ field points to one of 8 so-called "address base registers". 

1. 3. 4 The Eight Address Base Registers 

There are eight address base registers (abr 1s). Any one of these may, in 

principle at least, be pointed at by the segment tag of a type 1 instruction. 

Historically, the purpose of the address base register was to be a convenient 

place to store effective pointers, i.e., segment numbers of data or procedure 

segments other than the one currently executing. As the hardware developed 

further another possible use was developed for these registers, namely as a 

convenient place to store the internal effective address or a component of it. 

The designers then decided to permit each abr to serve either purpose, that 

is to say it was allowed either to hold the effective pointer to a descriptor 

word, in which case it would be referred to as an "external base" or to hold 
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Figure 1-6. Formats of Typical GE 645 Instructions 
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TABLE 1-2 

Tag Field Details for Indexing and Indirect Addressing 

30 31 32 33 34 35 

I I II 1 I I I I 
I· l I~ 

:I 
t i m 

td 

There are two main subfields which are described in detail in the GE 

625/635 Reference Manual, p. II-24 through II-26. Additional details may 

e found in G0012, pages 16-19. 

m 

provided bit 32 = 1, designates index register i in bits 33-35. 

designates the type of indirect addressing, if any. Several types of 

indirect addressing are available, however, only one is of 

immediate interest. 

t 6 35 Parlance Interpretation m 

00 R-type no indirect addressing 

01 RI-type multi-level indexed indirect 
addressing 

11 IR { not discussed in this Guide. 
10 IT See reference documents for 

details. 
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a component of the effective internal address, in which case it would be 

called an ''internal base". As an internal base the abr can act like a second 

index register, but if so, it must also point to another abr holding an exter­

nal base. Each abr has 24 bits, sufficient to hold both an 18 bit address 

field and a control field with which to identify the function of the first field 

as external or internal. This is illustrated in Figure 1-7. 

There is an interesting capability for pairing the abr 1s. If bit 21 is a 

"0", then bits 0-17 serve as an internal base. It serves as the so-called 

"p" component of the effective internal address. Moreover, three other bits 

in the same register (bits 18-20) are interpreted as a pointer to another abr 

whose bits 0-17 are then taken as the external base or effective pointer. 

In short, by properly setting the control bits in the abr, the segment 

tag of a type 1 instruction can point not to one, but to a pair of abr's. The 

first will contain a component of the internal address and the second will 

contain the effective pointer. 

In Multics operation, the eight registers are paired by presetting the 

control bits ( 18 - 21) in the registers so that they may always act effectively 

as 4 pairs of base registers (18 bits per register), as shown in Figure 1-8. 

To address a particular pair of these registers in a type 1 instruction, one 

needs to give as the segment tag the address of the internal base>:<, i.e., 

0, 2, 4, or 6. 

We are now ready to complete our unfinished explanation of how to 

determine the core address for the data word< d> I [ dloc ] . The internal 

effective address, dloc, in this case is formed from three components y, 

(i), and p 

dloc = y + ( i) + p 

>:< In writing instructions in a Multics assembly language, we use standard 
two-letter names in place of the numeric values. These are: 

ap for address base register 0 
bp for address base register 2 
lp for address base register 4 
sp for address base register 6 
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0-- .. 

b. 

a. as an external base 

':\)u,·,r~(' t. 

<'-"' o1~eV' be-~~ 

tQ.cysi<Zv- w~ose. 

'oit 2.1 :: 1. 

as a component of the effective internal 

address with a pointer to an external base 

Figure 1-7. Two Ways for an Address Base 
Register to Function 
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(For more details on bits 18-23 in each register, see Table 1-3.) 

Figure 1-8. Multics Standard Pairing of the Eight 
Address Base Registers 
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TABLE 1-3 

Normal Control Field of the Address Base Registers 

Bit No. 18 19 20 21 22 23 

Register Specifies register Intern == 0 Multics which is external Extern = 1 
Lock':' Remarks 

Name Number if this one is internal Base 

ap 0 I 0 I 0 1 I 0 0 c~~td 'J internal 

ab 1 [~ Not Used ~ 1 0 l~s~tdJ external 

bp 2 I 0 I 1 1 I 0 0 c~~td:J internal 

bb 3 [Not Used _J 1 0 C'~s~tdJ external 

£p 4 I 1 I 0 1 I 0 0 c~s:tdj internal 

.tb 5 C Not Used _J 1 0 c~~tdJ external 

sp 6 I I I 1 1 I 0 0 [).:tdj internal 

sb 7 [Not Used ::1 1 1 c~:tdJ external 

~:~Lock Base = 0 means this register may be loaded in slave mode. All 
abr' s except sb are set = 0 by the Multics supervisor 

Lock Base = 1 means this register is locked against change in slave 
mode. This means a user will never be able to destroy 
the current value in sb. 

To alter any of the control field bits in an abr requires a privileged 
(Master Mode only) instruction, so the user will never be able to alter 
these bits. 
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where 

(i) is the contents of the index register pointed at by the tag field of 

the instruction, 

p is contents of the internal base address register pointed at by the 

segment tag field of the instruction. 

Moreover, since the internal base register is coupled to an external 

base register, the contents of the coupled external base serves as the value, 

d#, destined to be copied into the tbr. All this is illustrated in Figure 1-9. 

Before we attempt to summarize our discussions to this point, we offer 

one further pictorial technique to help us in the condensation of future 

diagrams. We shall in the future depict and name the group of 8 base 

address registers as shown in Figure 1-10. 

and 

The array representation of the 8 registers suggests that 

( 1) each row is a coupled base pair. 

(2) the register in column 1 is the internal base or p-type and the reg­

ister in column 2 is the external base or b-type. 

The Multics names given to the 4 pairs are: 

a for ~rgument list pointer, 

b for general base, 

I. for .!j.nkage segment pointer, 

s for ~tack segment pointer. 

Some preliminary motivation for these names is attempted in Section 

1. 3. 5. You can skip over this for the present if you want to get on with the 

details of address formation. 

1. 3. 5 Address Formation Strategy 

A typical process will involve a large number of segments. Many of 

these segments, as you will see, when you read other MSPM documents, 

are part of the system supervisor. Entries for these segments are auto­

matically added to each process descriptor segment. Apart from these, 

each process will generally have one or more procedure segments, one or 
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The~ is assumed to indicate direct addressing rather than indirect 
addressing and points to index register i. The value of the segment tag 
is j where j = 0, 2, 4, or 6 in normal Multics operation. The current 
value of the coupled base register j + 1 is assumed to have been preset 
to equal d#. 

Figure 1-9. Showing Effective Internal Address Formation 
from a Type 1- Instruction 
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The four coupled registers or "base pairs" are: 

Commonly Used 
Numbers Multics Notation 

0,1 ab ..... ap 

2, 3 bb- bp 

4, 5 lb -lp 

6,7 sb ..... sp 

Figure 1-10. Eight Base Registers 
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more data segments, a stack segment and a linkage segment for each pro­

cedure segment. Letts suppose the process involves a typical MAD job. 

There would be a procedure segment for the main program, one for each 

separately compiled subprogram, and perhaps one for each library program. 

Suppose the MAD compiler is written to structure object code in such a 

way that variables local to each of the MAD procedures (and for that matter 

possibly those in PROGRAM COMMON as well) are allocated storage in a 

single data segment. Letts suppose the name of this segment is <stat_>, 

for static storage. 

A process will also refer to other data banks such as publicly available 

tables of read-only data, or perhaps an input buffer or an output buffer area. 

Such data areas, because they might have different access controls associ­

ated with them, will normally be stored in independent data segments. 

Each time one procedure calls on another (including recursively called 

procedures) data and machine conditions such as contents of index registers 

must be saved. These are stored in the segment, <stack>. The planned 

use of <stack> is described in the BD. 7 and BD. 9 sections of MSPM and is 

thoroughly discussed in Chapter 3 of this Guide. 

The linkage segment contains certain vital symbolic data, descriptive 

information, pointers, and instructions which are needed for the linking of 

procedures in each process. More will be said about the linkage segment 

in Chapter 2 of this Guide ( in connection with the commentary on the 'BD. 7 

sections of MSPM). Most of the data segments (other than <stack>) that a 

procedure needs to refer to are referenced indirectly via special intersegment 

pointers placed in the linkage segment. These pointers are called "its" or 

"itb" pairs and are discussed in Section 1. 3. 9. Basically they permit forma. 

tion of a final effective address for the desired data element without further 

need of the base address pairs. 

The tentative conclusion we can make here is that a typical process, 

grinding away on a processor under the plan for the Multics system, will 

find itself making direct references to data and instructions from a 

relatively small number of different segments over relatively large time 

spans. 
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The segments are: 

( l) One or more independent data segments. 

(2) The procedure segment currently being executed. 

(3) The linkage segment for the procedure currently being executed. 

(4) The one stack segment for the process containing the perishable 

data of the process. 

Now we begin to see how the paired address base registers are typically 

employed. By controlling their contents, pointers may be set to 4 different 

entries in the descriptor segment besides the currently executing procedure 

segment which is pointed at by the pbr. During the execution of one pro­

cedure, the frequency with which it will be necessary to reset any of these 

4 paired "base" pointers may be low. 

1. 3. 6 Summarizing Direct Address Formation 

We now summarize all of our discussions so far on address formations. 

Note the following points: 

(1) To fetch an instruction (instruction cycle), the (pbr) becomes the 

effective pointer. From this we obtain the address of the desired 

procedure segment. To this is added the (ic). 

(2) To fetch a data word (execute cycle of a type 1 instruction), we 

illustrate with Figure 1-ll(a). The effective pointer to the required 

descriptor word is obtained from the (tbr). The value of the tbr 

is copied from the current contents of one of the base registers ab, 

bb, P. b or sb, depending on the value of the segment tag in the 

current instruction, being 0, 2, 4, or 6 respectively. The effective 

internal address, hereafter called Y 1 , is formed as 

Y' = y + (i) + p 

where p is the current contents of ap, bp, P.p, or sp, according as 

the segment tag has the value 0, 2, 4, or 6 respectively. 

(3) The dashed line indicating actual data flow from the tbr to the pbr 

will be explained in the following discuss ion. 
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(For simplicity we imagine that segment <k> is not paged. This would 

be reflected in the fact that bit 28 of the descriptor word for <k> = 1.) 

Figure 1-11 (a). Address Formation in the Execute 
Cycle of Type 1 Instructions 
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l. 3. 7 Transferring Control to Another Procedure Segment 

We consider here how a transfer instruction to a another procedure 

segment using a type l instruction is accomplished. If a new procedure 

segment is to be executed, there must be a new setting for the pbr so that 

hereafter it points to the new procedure segment. Let us consider what 

happens when procedure segment <a> executes any successful transfer 

instruction (of type 1). The effective address of a tra type instruction in 

most contemporary computers like the IBM 7094 simply replaces the value 

currently in the ic. In the GE 645, two things happen. (1) the effective 

internal address Y' = y + (i) + p replaces the contents of the ic, and, 

(2) at the same time the effective pointer, b, which is brought to the tbr, 

is then copied into the pbr. In other words 

( l) ic ,.._. y + ( i) + p 

and 

(2a) tbr ...- b 

(2b) pbr ...- b 

Now then, if b points to the descriptor word for <a>, a tra within the 

~ segment will be achieved. But, if b points to a different descriptor 

word, say for segment< t >, then the transfer to< t > is automatically 

achieved, because t#, which is really what b amounts to, will have been 

placed in the pbr. 

The next instruction executed will then be fetched from< t > at location 

of word zero of< t > + (ic), by virtue of having altered the contents of the 

pbr. 

l. 3. 8 Address Formation for Type 0 Instructions 

Any time an executing procedure segment attempts to make a self 

reference, formation of the data address can be greatly simplified, since 

the effective pointer is already known to be in the pbr. To make it possible 
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for the computer to recognize this simple case, we use a type 0 instruction~:e. 

When such an instruction is being analyzed for execution, recognition is 

made by virtue of bit 2 9 = 0. 

The effective pointer is copied into the tbr from the pbr, i.e., 

tbr - (pbr) 

The effective internal address is made up of only two components. 

(You should look back at Figure 1-6). The two components are y and (i), 

where y is the 18 bit address (bits 0-1 7) of the instruction. 

Y' = y + (i). 

This type of address formation is shown in Figure 1-ll(b). 

If the type 0 instruction is a transfer instruction, the the net effect is: 

(1) ic - y + ( i) 

and 

(2) no change in the contents of pbr. 

1. 3. 9 Multi-Level Indirect Addressing (RI type) and Its Restrictions 

The basic form of indirect addressing in the GE 645 is inherited from 

the GE-635 circuitry. This is indirect addressing via the type RI tag, which 

* If you were coding in a symbolic assembly language, the distinction 
between a type 1 and a type 0 instruction would be purely syntactical. 
For example, in the epl bsa assembly language, the variable field for a 
type 1 instruction always begins with a segment name or abr name, 
followed by a vertical bar. For a type 0 instruction, this component is 
missing. 

Thus, 

Ida bp /6 

is automatically recognized by the assembler as type 1 instruction. It means: 
load the accumulator with the data word located from a segment whose effec­
tive pointer is bb and effective internal address is 6 + bp. 

The instruction Ida 6, on the other hand, is recognized by the assembler 
as a type 0 instruction. It means load the accumulator with the data word 
found in location 6 of this procedure segment. 
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(For simplicity we imagine that segment <a> is not paged. This 

would be reflected in the fact bit 28 of the descriptor word for <a>= 1.) 

Figure 1-ll(b). Address Formation in the Execute 
Cycle of Type',. 0 Instructions 
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is sometimes called multi-level indexed indirect addressing. This is very 

similar to that of the IBM 7094 except indirect referencing continues to any 

number of levels instead of halting after two memory references. However, 

when a data word or transfer address is being fetched via a chain of one or 

more indirect words, the core address of each new indirect word, as well 

as the final effective address, is determined in essentially the same fashion 

as given in Figure 1-11 (b). 

In particular, only two fields of each indirect word are brought out of 

memory to be examined. These are the address field, y (bit 0-1 7), and the 

modifier field (bits 30-35). To form the intended two-dimensional address 

that's coded in this indirect word, the effective pointer held in the tbr 

remains unchanged from its preceding value. The effective internal address 

is 

""' y = y + (i) 

In other words, the address formation for the coding in an indirect word is 

handled much like that of a type 0 instruction in spite of the fact that the 

originating instruction might have been a type 1 instruction. The net effect 

is that no matter how many indexed indirect addresses are formed in one 

chain, the second ·and all succeeding addresses are treated as belonging to 

the segment pointed at by the first address in the chain. For example, 

if the originating instruction has an RI tag, and if its external base points to 

segment< b >, then the effective pointer for the next indirect word (and all 

others, if more than one) in the chain will remain internal to < b >. 
Figure 1-12 illustrates the two possible cases which can arise. 

For fully general intersegment programming, it would be ideal if the 

indirect addressing mechanism at our disposal were such that we could 

cross from one segment to another as we go from one indirect word to the 

next. This capability is provided in GE 645 hardware as described in the 

next paragraphs. 
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The notation "tra x, *"and "lda <b>j [x], *", etc., is GE 645 

assembly language (EPLBSA) notation. See G0012, or BE 7. 04 for more 

details. 

Figure 1-12. Two Cases of Multi-Level Intra-Segment 
Indirect Addressing (RI Type) 
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l. 3. 10 Indirect Word Pairs or Generalized Addresses 

This hardware facility allows us to initiate indirect addressing from 

say seg <a> and arrive at segment< b >to find a special pair of indirect 

words (called either an "its" or an "itb" pair) whose content designates the 

core address for a point within an arbitrary segment. Recognition of its or 

itb pairs comes about as follows: 

When the address of an indirect word is~ the computer always fetches 

a pair of words (much like the 7094). Whenever a pair of indirect words are 

fetched the modifier bits of the first word (bits 30-35) are examined for the 

possibility of the its type modifier (octal 43) or the itb type (octal 41). 

Understanding the role of the its pair will be critically important to most 

subsystems writers. Occasional but important use will also be found for 

itb pair. Details of the its or itb pair will be described shortly. The essen­

tial point is that such a pair designates for the 645 an arbitrary segment and 

an internal address for that segment. The word pair may also indicate 

further indirection. In short, use of an its pair allows us to "travel" from 

one segment, through a second one, to a third segment, say < c >, and so on. 

This feature is illustrated schematically in Figure l-13(a). As special case, 

an its or itb pair can refer to the containing segment as suggested in 

Figure l-13(b). 

If the fetched indirect word or word pair is not an its or itb type, but 

does suggest further indirect addressing, then such addressing continues 

within the segment established from the preceding fetch. This is illustrated 

in Figures l-14(a) and (b). 

l. 3. 11 Details of its and itb Pairs 

When the hardware has recognized one of these pairs, the format is then 

interpreted as shown in Figure 1-15. There are 4 fields of interest in each 

its or itb pair. 

The second field of the first word is a six-bit identification code (bits 

30-35). When this field has the octal value of 43 (its) or the octal value 41 

(itb), the computer recognizes the containing word as the first word of an 

indirect word pair. 
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(a} Use of its or itb pairs. 

<&> <c.> 

(b) Illustrating how its or itb pairs may 
refer to the same segment. The its 
pair marked A is an example. 

Figure 1-13. Multi-Level Inter segment Indirect Addressing 
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(a) Indirection may continue inside a third segment to the desired target 
without further use of its or itb pairs. 

<b> ~c> .c:d> 

(b) It is quite permissible to keep the intersegment chain going if each 
its or itb pair points to an ordinary indirect word of the RI type. 
One of these can then point to another its or itb within the same 
segment. This its or itb could then allow a leap out to still another 
segment, etc. 

Figure 1-14. Continuing the Indirect Intersegment Chain 
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Figure 1-15. Format of its and itb Indirect Word Pairs 
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The second field of the second word is the standard GE 635/645 modifier 

or tag field (bits 30-35) as exhibited in Table 1-2. In the examples for this 

field we show an index register and, if indirect, a "':~" following the register 

number. The full range of possible modifiers are available (see G0012, 

pages 16-19). 

The first field of the second word is the 18-bit internal address within 

the desired segment that is designated in the first word. 

The first field in the first word is either the effective pointer to the 

desired segment (for an its pair}, or the external base register number which 

has been preset to hold the effective pointer to the desired segment (for an 

itb pair}. 

Figure 1-16 illustrates how address formation continues for an indirect 

its word pair. Figure 1-17 shows address formation for an itb word pair. 

By way of summary we list below five types of address formation that 

have been discussed to this point. 

~ Illustration 

(!) Instruction cycle Figure 1-4 

Execute cycle 

® Type 1 instruction Figure 1-ll(a} 

® Type 0 instruction Figure 1-ll(b} 

Indirect word Eair 

@ its Figure 1-16 

® itb Figure 1-17 

Figure 1-18 is an attempt to create a composite view of three of these, 

G), @, and G), in order to see in one frame how each of the important 

registers plays its role. It may be worthwhile for the reader to superimpose 

the details of types@ and {2) also. Different colors are recommended. 

1-39 



+(.t) 

L. 

~'l"'~'t<k"'> 
C!l"-Dca.r.i-.J ... ~ ... t"') 

1· r~=--- ~~" j ""\ 

-rY' ---===-
~ ---

,. 
~----

tJ8 ltz. t 
Wv'\c~ 

I ----- ----
~- _t 

11'1.. .......... 1)11.0 (..1~~ 

T ·- ·---- . - ----------

~. ·-- ------------

J i 

~~ -·r~h, 
IV' • 

~J,.z~. l. . 

~.tz.i 

Figure 1-16. Address Formation for its Pairs 

1-40 

I 

) 
~ 



l 
! 
I 
j 

t 
+'l' 

.._____..:..__t._J~-----

Figure 1-17. Address Formation for itb Pairs 

1-41 



~..::=---fit 
·~-·---

--~------

T~----~ 

( 1) instruction cycle 

(2) execute cycle - type 1 instruction 

(4) execute cycle - its pair 

\ 

Figure 1-18. Composite view of Three Types of Address Formation 
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l. 4 SPECIAL INSTRUCTIONS TO MANIPULATE ADDRESS BASE REGISTERS 

Easy mg.nipulation of the contents of the eight address base registers 

in the GE 645 has thus far been implied. Here we enumerate some of the 

powerful instructions that are available to a subsystems writer to do the job. 

The most important ones are the eap and stp instructions. 

Symbol 

( 1) eapi 

Instruction 

effective address to pair i 

i = 0, 2, 4, or 6 

This very important instruction sets a pair of base registers specified 

by 1. In Multics assembly language you actually use one of four symbolic 

op codes: 

eapap instead of eapO, 

eapbp instead of eap2, 

eap.tp instead of eap4, 

or eapsp instead of eap6, 

The internal base is set from the effective internal address of the 

instruction (i.e., Y' = y + (i) + p). The external base is set from the effec­

tive pointer of the instruction. 

The eapi instructions are especially useful in developing efficient code 

for the innermost loops of highly repetitive computations where one wishes 

to avoid indirect addressing. This concept will be further explored in the 

chapter on intersegment linking. 

Symbol 

(2) stpi 

Instruction 

store pair, meaning, store the contents of the ith 

pair of registers (p and b) into a pair 

of memory words beginning at the speci­

fied core address which must be an even 

address. The format of the stored pair 

is: 

0 ~ 
Y (even} 

Y + 1 (odd} l: I 0 
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In a Multics assembly language, you actually use one of four symbolic 

op codes: 

stpap instead of stpO, 

stpbp instead of stp2, 

stplp instead of stp4, 

or stpsp instead of stp6. 

These two instructions are generally used in pairs. For example, 

to store and later restore the current values of the ab ...... ap pair, you might 

write in assembly language: 

stpap hold+ 6, 4 

eapap hold+ 6, 4* 

Many examples of the use of these instructions will be found in the MSPM 

BD. 7. sections. See especially the~ sequence inBD 7. 02. Also Chapter 3, p. 9. 

Symbol 

(3) lbri 

( 4) sbri 

(5) eabi 

(6) adbi 

(7) ldb 

( 8) stb 

Instruction action 

load base register i 
from specified core address 

store base register i 
into specified core address 

{ 
I 

i = 0(1)7 

effective internal address !2 base register..!. the effective 
internal address of this instruction is assigned to address 
base register i 

add to base reg i from the specified address which is the 
e££ectiV"ein.ternal address; i.e., from y + (i) + p. In 
slave mode i may be any register except sb 

in master mode load '!!._1_§ base registers from 8 successive 
memory words beginning at a specified core address which 
is(=Omodulo8). Inslavemode,load7baseregisters, i.e., 
all but sbfrom 7 successive memory words beginning at the 
specified core address. 

store all 8 base registers into 8 successive memory words 
beginnrng-ataSpecified core address which is(= 0 modulo 8) 

The stb and ldb instructions are especially useful in call and return 

sequences because contents of the 8 bases along with the contents of the 

8 index registers and other machine conditions (the (pbr) and the indicators) 

must be saved and restored in transferring to and returning from another 

procedure segment. These data are saved in a special segment given the 

standard name <stack>. Each process is automatically supplied by the 

supervisor with a unique <stack> segment. 

1-44 



A user is free to store the contents of all address base registers and is 

free to alter all but the sb base register, as previously suggested in 

Table 1-3. Only the supervisor needs to be able to set the sb register. 

1. 5 NOTES ON PAGING IN THE GE 645 

As mentioned earlier, segments are in fact always paged, that is, 

further subdivided into divisions called pages. The pages are stored in 

small blocks of memory, 64 words or 1024 words, wherever room can 

be found, by a supervisory routine called the Core Manager (see BG. 6). 

Neither the user nor the subsystems writer has control over the 

details of paging although he can give advice to the supervisor. In nor­

mal programming, even at the assembly language level he will not be con­

cerned with paging. Moreover, there is no way that a user can detect 

paging. 

In spite of this preamble on why paging need not be paid attention to, 

no red-blooded assembly language programmer will remain uncurious 

forever. Some details on the paging hardware may be found in G0029, 

especially pages 10-16. For the reader that must look, some figures are 

offered here which may help to picture address formation for a paged seg­

ment. These are Figures 1-19, 1-20, and 1-21, which are roughly the 

counterparts of Figures 1-ll(a), 1-16, and 1-18, respectively. 

Inspecting the latter figures, a segment descriptor word, or sdw, is now 

seen to point, not at word zero of the segment, but at word~ of the~ 

table for that segment. 

Each word of the page table serves as a page "descriptor word" or 

pdw, in the following sense: 

1. If the associated page has been loaded in memory the pdw 

contains a pointer, A , to word zero of the page. 
p 

2. If the page is not present in memory, bits are set in the descriptor 

field of the pdw to indicate that the page is missing. 

3. Access rights and use bits are also stored in the descriptor field. 
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Key to new notation: 

P means page number 

W means word number within the page 

Ap is address (times z- 6 ) of the page 

Figure 1-19. Address Formation for Type 1 Instructions 
(Paged mode) 
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Figure 1-20. Address Formation for its Pairs (Paged mode) 
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(1) instruction cycle 

(2) execute cycle - type 1 instruction 

(4) execute cycle - its pair 

Figure 1-21. Composite View of Address Formation (Paged mode) 
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The detailed use of the page table and its control information is a 

supervisory function and should not concern us. But the net effect is 

important. In particular, only those pages of a segment that are actually 

required during execution will be loaded. If a page is missing when ref­

erenced, a missing page fault will occur which will invoke a supervisory 

program that will create the missing page or load it from secondary 

storage. 

In Figure 1-19 we see that the effective internal address, when formed, 

is split into two parts. The high order part serves as the~ number, 

i.e., as an offset, P, within the page table. The low order part serves 

as the word number within the page, i.e., the offset W. 

In Figure 1-20 we see how the internal component of the its pair is 

also split into the two parts P and W. Finally, in the composite, 

Figure 1-21, we note that the (ic) is also split the same way. 

1. 6 NOTES ON THE ASSOCIATIVE MEMORY ADDRESSING FACILITY 

The elaborate address formation schemes thus far discussed or (in the 

case of paging) alluded to, are implemented efficiently in the hardware with 

the aid of a small Associative Memory (AM). This is a memory of z words, 

59 bits each. The larger z, the more efficient the scheme. At present 

z = 16 in the Multics hardware. The operational details of the associative 

memory to speed up the address formation (and bounds checking) operations 

is, like paging, something that subsystems writers will never need to know 

about. Nevertheless, because it's new (and because it's complicated and 

a small challenge to understand) a red-blooded programmer will at one time 

or another take up the mountain climber's rallying cry- "Because it's 

there!" -and make the assault. 

To help satisfy the too-early and too-curious, we shall first summarize 

the important concepts and then present some of the details using several 

figures and a very brief verbal description. Additional details may be 

found in G0029, pages 25-28. 

Every reference to core memory ordinarily requires the use of a 

pointer AB (in the segment descriptor word) or Ap (in the page descriptor 
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word) or both. Each time one of these descriptor words is needed, a copy 

is stored in the associative memory. Stored with each sdw or pdw will be 

the associated segment number. Naturally, since the AM is small, each 

new descriptor word that is entered calls for the discarding, by destructive. 

read-in, of one already-resident descriptor word. A "fifo" (iirst-in-

_iirst-£_ut) discipline is employed in deciding which word is discarded. 

(We shall describe how this is done momentarily.) 

Suppose we now imagine the AM filled with an assortment of segment 

and page descriptor words and their associated segment numbers. Address 

formation in the GE 645 now takes on a "new look". Each time a value of 

AB or Ap is needed, it is searched for in the associative memory using the 

effective pointer as the "input value". If found in the AM, then the respective 

memory cycles necessary to fetch these pointer values from the descriptor 

segment, or page table can be saved. 

Basically, there are two possible "hits" that can occur in the search of 

the AM. Either the desired Ap is found or just the AB is found. If neither 

value is found address formation as described in earlier sections of this 

chapter apply. That is, the necessary memory cycles must be taken to 

fetch first AB and then Ap. If just AB is found, then at least one cycle is 

saved because the page number portion, P, of the internal effective address 

will already be available. The pair (P, AB) then determines the core 

address for the desired page table word holding A . If A is found in the 
p p 

AM, then two memory cycles can be saved. The A value can be paired 
p 

with the word number portion of the effective internal address, W, which 

will have been simultaneously developed. The pair (W, A ) then deter-
p 

mines the desired core address which is really the principal target of the 

programmer's request. 

Figure 1-22, suggests in a simplified way the functional value of the 

associative memory. The AM is searched once (one pass) when a 

segment in which a core address is being formed is not paged. The AM 
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Figure 1-22. Functional Overview of the Associative Memory 
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is searched at least once when the segment is paged. We have called this 

more elaborate search the two-pass case.>!< 

Figure 1-23 shows the format of the 59-bit words in the AM. 

Figure 1-24 is a logic flow chart to show the how of the two-pass 

search of the AM. This figure and the discussion in the next section make 

reference· to Figures 1-25 and l-26. The latter two figures are the counter­

parts of Figures 1-18 and l-21, respectively. 

1. 6. l A "Walk" through the Associative Memory 

In the following discussion, column numbers refer to those in Figure 

1-23 and box numbers refer to the flow chart in Figure 1-24. 

Pass 1: Locate an entry which satisfies these two conditions (box l): 

( l) Contents of Col 2 is a l 

(2) Contents of Col 3 matches the given effective pointer. 

A failure signifies that no pertinent descriptor word resides in the AM. 

Route 2_ (Figure 1-26) must therefore be taken. That is, the required 

descriptor words must be fetched either from the descriptor segment alone. 

(if the fetched descriptor word indicates no paging) or from both the descrip­

tor segment and from the page table (if the fetched segment descriptor word 

shows the segment to be paged). Each fetched descriptor word is then 

inserted in the associative memory. 

l. 6. 2 Inserting Descriptor Words into the Associative Memory 

We digress momentarily to explain the rules for inserting descriptor 

words into the associative memory. Each inserted descriptor word 

replaces the one word whose usage value in Column 1 equals zero. Bits of 

the inserted descriptor word are placed into Columns (fields) 6, 5,· and 7. 

>!< Strictly speaking, in certain cases, up to three passes of the AM might 
have to be made before the GE 645 finds Ap or "abandons" the search. You 
will detect this third pass from a study Figure 1-24. Nevertheless, we 
prefer to call this a two-pass scheme in recognition of the fact that at least 
two passes are required before Ap can be determined, 
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Figure 1-23. Format of the 16 Associative Memory Entries 
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Figure 1-24. Detailed Flow Chart Showing Associative Memory Action 
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This shows two routes to the block 
address of segment< k >. Route 1 
through associative memory (Fig­
ure l-22), and Route 2 through the 
descriptor segment mechanism. 

Figure 1-25. Composite View of Three Types of Address Formation 
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We show two primary routes to the 
block address of page c of segment 
< k >. Route 1 is through the 2-stage 
associative memory mechanism. 
Route 3 is through the descriptor 
segment mechanism. Route 2 is an 
intermediate route; i.e., via the 1-
stage associative memory to the page 
table for segment< k >. 

Figure 1-26. Composite View of Three Types of Address Formation 
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The base bit (column 4) is set to 1 if an sdw (a segment descriptor word) 

is being inserted, and is set to 0 if a pdw (E.age descriptor ~ord) is being 

added. The empty/ full bit (col 2) is set to 1, and column 3 is set to the 

segment number associated with the inserted descriptor word. Lastly, 

the usage value for this word (column 2) is set to 15, and the usage value 

of every other word in the associative memory is decreased by 1. This 

last ritual guarantees the AM's fifo discipline. That is to say, each new 

insertion is made at the expense of the oldest resident. 

A success (in pass 1) causes a "readout" of the information in 

columns 4, 5, 6 and 7 of the matching entry. The descriptor word just 

found may be an entry for another page of the same segment; it may be for 

the pdw we want, it may be the sdw for the referenced segment. The first 

step to resolve this three-way ambiguity is to decide whether the matched 

entry is an sdw or a pdw by checking the value of the column 4 readout 

(box 3). If a pdw has been found, we know the segment under consideration 

must be paged, so we now "gamble" and make a second search of the AM 

looking for the desired page table word (box 8). We'll pursue this thread 

at the paragraph marked Pass 2. If on the other hand an sdw was found, 

we've definitely made progress because we know that the column 6 readout 

is AB for the referenced segment. So we set a flag to indicate this 

success (box 4). 

Next we check to see if the descriptor bits of the discovered sdw indi­

cate that the segment is paged (box 5). A no means success (box 6). 

We've found in~ pass the desired value of AB which locates the desired 

non-paged segment. We now follow Route 1 of Figure 1-25. A ~means 

the segment is paged, so another search of the associative memory should 

be made in hope of finding the desired pdw (box 8). 

Pass 2: For this search we input both the effective pointer and the page 

number P. We try for a match on columns 2, 3, 4 and 5. That is we look 

for an entry that is "full" (column 2 = 1), that represents a pdw (column 

4 = 0), and that has the desired segment number (column 3) and page number 

(column 5). 
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Success on this second search means the desired page address A 
. p 

is the column 6 readout (box 10). We now follow Route 1 of Figure 1-26. 

Failure on this second search search prompts us to check if the 

"segment is present" flag was set earlier (box 11). 

If~' the column 6 readout in the first search was the desired AB 

for the referenced (paged) segment. We follow Route 2 of Figure 1-26. 

If~· it means that our first pass success resulted from the discovery 

of the wrong pdw for the right segment. Furthermore, our failure in the 

second pass means that the right pdw does not now reside in the associative 

memory. We now make a final search this time looking only for a match 

on a "full" entry that has its base bit (column 4) equal to 1, signifying that 

we will this time restrict the search to sdw's only. The input for this search 

(box 12) is the effective pointer to be matched by the contents of column 3. 

If no match is found after these three passes we throw in the towel. We 

must follow Route 3, Figure 1-26. If a success, it means we've found AB 

as the readout of column 6 and we can now follow Route 2, Figure 1-26. 
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