
M0090 -1

A GUIDE TO MULTICS

FOR

SUBSYSTEM WRITERS

Chapter III

Inter-Procedure Communication

Elliott I. Organick

Draft No. 5

February 1968

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

-- -- ----~-----

TABLE OF CONTENTS

Section

LIST OF ILLUSTRATIONS

LIST OF TABLES

III INTER-PROCEDURE COMMUNICATION

3. 1 Introduction

3. 2 The Process Stack

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3. 10

3. 11

3. 12

The Call Sequence

The Save Sequence

Return Sequences

The Normal Return Sequence

Basic Storage Structure for an Argument List

Putting its Pair Pointers into an Argument List

Storage Structures for Different Types of Data

Function Name Arguments, Ordinary Case

Function Name Arguments, Special Case

Communication to and from Execute-Only Procedures

iii

-J
-~-

Page _.).

iv

iv

3-1

3-2

3-3
" ..

3-9

3-13 -

3-14

3-15

3-17

3-19

3-25

3-28

3-34

~'

•

LIST OF ILL UST RAT IONS

Figure

3-1 Layout of a Typical Stack Frame

3-2 Showing Development of< stack> During a Chain of Calls

3-3 Appearance of Stack Frame When Executing in <beta>

3-4 Saving Index Registers, A, Q, E, and TR Registers
upon Execution of: sreg sp 18

3-5 Handling Interrupts Before and After 5th Instruction
of the Save Sequence

3-6 Basic Storage Structure of an Argument List

3-7 Calling on External Procedure Whose Name (q) has
been Passed as an Argument

3-8 Calling an Internal Procedure Whose Name (q) has
been Pas sed as an Argument

3-9 Structure for an Argument List

Table

3-1

3-2

LIST OF TABLES

Types of Arguments and their Storage Structures -System­
wide Standards

Types of Arguments and their Storage Structures -PL/I
Standards Only

iv

-
Page

3-4

3-5

3-6

3-8

3-12

3-16

3-26

3-26

3-32

3-21

3-23

------- ---

CHAPTER III

INTER-PROCEDURE COMMUNICATION

3. 1 INTRODUCTION

Call, save, and return sequences are short sequences of instructions

whose execution constitutes the standard way for one procedure segment to

communicate with (i.e., transfer to, pass information to, and return from)

another procedure segment ..

The instructions in these sequences involve the management of the so­

called "process stack," a special segment used by all procedures of a given

process. Executing the standard call, save and return sequences also insures

that all pure procedures are automatically recursive (and also sharable), a

deliberately planned by-product. Nonstandard methods of communication,

whose use in special cases may improve efficiency, are by no means ruled

out in Multics. They may be used by the advanced subsystem writer when

appropriate. t The successful execution of any process depends upon flawless

management of the stack; hence (independent) translators, including as sem­

blers, that produce target code, are responsible for automatically generating

call, save and return sequences. As a result the ordinary user is liberated

from what might otherwise be an awesome task. In addition to user procedures,

essentially all others, including those of the supervisor, the public library, and

commands employ the same intercommunication sequences. A subsystem

writer who is going to produce an independent translator must become thor­

oughly familiar with details of this chapter, and of all pertinent MSPM refer­

ences. The prime reference at this time is BD. 7. 02. Secondary references

are BD. 7. 03 and BD. 9. However, it would seem that any subsystem

tA process may contain one or more groups of related procedure segments,
so designed by a subsystem writer that intragroup communication is achieved
without the standard call, save and return sequences. While executing within
a group, short cuts can result in improved efficiency. At some point how­
ever, such a group of segments must interface with system-designed pro­
cedures, and here the method of communication must be standard.

3-1

-~

writer would need to become somewhat familiar with the process stack, its

role and its management.

This chapter begins with a discussion of the process stack and the call,

save and normal return sequences for ordinary slave procedures. Argument

lists, their structure and creation are then treated. There is a brief summary

of the storage structures for several types of arguments and a separate dis­

dus sion for function name arguments. Argument lists for calls to internal

procedures are considered next. We postpone talk about generation of argu­

ment lists for calls on procedures ·in outer protection rings (outward calls,

BD. 9). Chapter 4 will discuss protection rings. A few remarks concerning

execute only procedures conclude this chapter

3. 2 THE PROCESS STACK

The key to understanding the effectiveness of call, save and return se­

quences is to first understand the concept of the stack segment. There is a

stack segment created for each process. t Each time one segment transfers

or returns control to another segment, a frame of data consisting of key in­

formation, such as index register contents, A and Q register contents, base

register contents and other pointers, are either saved in the stack segment or

retrieved or released from it. Moreover, while a procedure segment < b > is

in execution, space for all its temporary storage is allocated in the stack seg­

ment. When < b > returns to the program which called it, this temporary

storage is automatically released by adjusting the stack pointer. The stack

is used as a pushdown store by carefully maintaining a current stack pointer.

This pointer is kept in the sb- sp base pair. The sb holds the effective

pointer, i.e., to word zero of the stack segment, and the sp holds the relative

position within the stack segment (current pointer) of word zero for the latest

frame of data added to the stack.

fStrictly speaking, as will be seen when we discuss BD. 9, there is actually a
stack segment created for every "ring of protection" within the process.
The notion of rings and multiple stacks and descriptor segments is purposely
delayed until Chapter 4.

3-2

Figure 3-l shows the layout of a typical stack frame. Each frame con­

sists of a header (32 words) and a body. The header for the current frame on

the stack is used to save the contents of registers and pointers, etc., which

are meaningful to the currently executing procedure at the time it prepares to

call on another procedure. The six words shown as not used should be con-

sidered as reserved for use of future system services. The body of the frame

is of variable length and provides the temporary storage required by the cur­

rently executing procedure. For PL/I procedures, for example, space for

all variables having the automatic attribute is allocated in the body of a stack

framet as soon as execution of the procedure commences.

Normallyf the amount of space required for the body of the frame will be

determined by the compiler or assembler. Therefore, at the time the frame

is created, all the space required for the body can be allocated at one time.

Allocation is in units of 8 words so that the immediately following frame

header will begin at an internal address that's congruent to zero (mod 8).

Figure 3-2 suggests how the <stack> grows frame by frame as execution

moves from <alpha> to <beta>, then to <gamma>.

Figure 3-3 gives a closer look at the frame developed for and during exe­

cution in <beta>. We find it convenient to think of the frame header as con­

sisting of seven items, so marked in the figure. Each header item is marked

in its upper right corner to denote which sequence, i.e., ~all or ~ave, is re­

sponsible for placing the item in the header. (The item numbers used in Figure

3-3 are used repeatedly in subsequent discussions.)

3. 3 THE CALL SEQUENCE

Whenever we wish to transfer from one procedure to the next we would

issue what amounts to a standard marco call. For example, the call macro

in eplbsa has the form:
call entrypoint (arglist)

fAlso, the "specifiers and dope" for some types of based controlled variables
are kept in the stack frame. See BP. 4. 00 for more details.

fExceptions arise when the stack frame must be extended during execution of
the procedure, as discussed in Section 3-4.

3-3

j
j
j
1

p
a

b

J
sp-tD

8

16

18

20

22

24

26

28

32

>

n(:>32)

<stack>

~
other stack frames

save base register contents
here (before transferring

to another procedure)

save index register, A, Q, E, and TR
register contents here (before

transferring to another procedure)

last sp backward pointer
(to preceding frame)

next sp forward pointer
(to next frame)

point of return in calling
procedure

used only by execute-only procedure

- --====
not used -- -save pointer to argument list

here before transferring - ~
not used -- -

temporary
storage

required for
executing

the procedure

32-word
header

stack
frame

>

IJ 0
Figure 3-1. Layout of a Typical Stack Frame.

3-4

a

b

<stack>

1----h-e_ad_e_r_~\ stack frame for <alpha>

body)

<stack>

header

body

header

body

<stack>

(a) <alpha> is being executed

stack frame for <alpha>

stack frame for <beta>

(b) <beta> is being executed
after a call from <alpha>

1---h-e_ad_e_r_--l~ stack frame for <alpha>

body j
header }

+-------1 stack frame for <beta>

body

header

body

stack frame for <gamma>

(c) <gamma> is being executed
after a co II from <beta>

Figure 3-2. Showing Development of <stack>During a Chain of Calls.

3-5

p b

a

b
1-----+---i

{3.1ink#

Stack is called from <alpha> and

is in preparation for a call on

<gamma> .

?

sp -tD
a

sp 13-t{)

CD
---+8

®

-
0) 16

0 18

Q) 20

®22

24

0 26

28

--
32

spy-+D

<stack>

~

<

.......,

save ~
contents of 8 abr's
at time of transfer
to <gamma>

save LL
contents of 8 index
registers, A, Q, E, and TR
registers at time of
transfer to <gamma>
See Fig. 3-4 for detai Is

spa for procedure which LL
called on<beta>

spy (fi lied in when this [j_
frame is created)

point of return within <beta> L£._
when calling on <gommo>

used by EO procedures
l..f..._

-- not used --(do not use) -- --save LL
pointer to argument list
(actual args) for call on <beta>

----- not used --(do not use) -- --temporary
storage

while <..-
executing in

<beta>

....__ -"'------

stack
frame
created
for
<beta>

Figure 3-3. Appearance of Stack Frame When Executing in <beta>

3-6

Here entrypoint is the entry point of the procedure being called (any type

of address may be used for entrypoint), and arglist is the location of the argu­

ment list. (Any type of address may be used for arglist, but we shall assume

throughout this chapter that argument lists are always kept in the stack.)

For example, if eplbsa encounters:

call< gamma> I [entry2] (sp I arglist)
'-----....,... -'~

entrypoint arglist

in processing the code for <beta>, then the expanded sequence will be:

1 stb sp I 0

2 sreg spl8

3 eapap sp I arglist

4 stcd spl20

5 tra <gamma> I [entry2]

I
I
I
I
I
I
I
I
I
I
I

save contents of the 8 abr's in
sp+O thru sp+7. Item 1.

save contents of the 8 index registers,
A, Q, E and TR registers in sp+8 thru
sp+l5. Item 2. See Figure 3-4.

place the pointer to the argument list
in ab-ap for use by <gamma>. The
argument list is kept in temporary
storage.

save the point of return to <beta> i.e.,
(ic)+2, and (pbr), and (indicators) in
sp+20 and sp+21. Item 5.

transfer to called procedure (via the
mechanism described in Fig. 2-13).

The first, second and fourth instructions store items l, 2, and 5 in the

frame header. t If we ever return to <beta> and at some later time issue a

new call, possibly to some other procedure, new values for items 1, 2, and

5 would be stored in this header.

Item 5 has the format of an its pair

1 18--28 f9-- 351

(pbr) 0 its

(ic)+2 (indicators) 0

tin the more elaborate call sequence for execute-only procedures there are
also instructions to store Item 6. See BD. 7. 03 for such details.

3-7

<stack>

index registers

0 sp/3+8 XR0 XR 1

XR2 XR3
2

+10
3 XR4 XR5

4 XR6 XR7
5

+12 A
6

7 Q

E 0

TR

A-re ister

Q-register

9 bits

TR (timer register)

24 bits

Figure 3-4. Saving Index Registers, A, Q, E, and TR
Registers upon Execution of: sreg sp j8.

3-8

item 2

The tra instruction of the call sequence will be assembled as

The symbol "k" represents an offset within <beta. link>. The ft2 pair at

this location is converted by the linker (as explained in Section 2. 9) to the its

pair:
k gamma. link# 0 its

dist 0 0

The pair of instructions found at gamma. link# I dist, you will recall, is

for the purpose of (1) loading gamma. link# into the lb base register (and

normally a zero into lp) and (2) transferring (via another its pair) to

gamma# I entry2. If you have forgotten how this mechanism works, you should

review the diagrams given in Figure 2-13.

3. 4 THE SAVE SEQUENCE

The purpose of the save sequence is to (1) generate a new stack frame of

32 or more words for the just-called procedure, and (2) supply values for

items 3, 4, and 7 in the header of the newly formed frame.

Before we explain the details of the save sequence we make the following

general observation. If we continue following the example of< beta> calling

on< gamma> (as we shall here), the items 3, 4 and 7 about to be established

will be those of the <gamma> frame. To see how the corresponding items

would have been established in the <beta> frame given in Figure 3-3 we would

have to shift the reference point of our example to that of <alpha> calling on

<beta>. We prefer instead to continue the "walk" through one complete call,

save and return cycle that starts with call.

The save sequence for <gamma> is actually stored in two parts. Part 1

consists of the eaplp, aos, tra, arg guadrupletf and the link, which are kept

in <gamma. link>: t
dist: eaplp

aos
tra
arg

tThis is the way it's viewed in the MSPM (BD. 7. 02)

'" . -···, lC

2,ic
link2-, >:<ic>:<
0

tEffective 2/12/68 the eaplp, tra pair is replaced by the quadruplet shown here, which includes
a usage counter to keep track of the number of times an entry has been used. The aos instruc­
tion adds one to the location immediatelt following the tra instruction, (Drafts 2 and 3 of
Chapter 2 do not show this usage counter.

3-9

link2:
gamma# 0 its

entry2 0 0

The effect is to establish the lb~lp pair for pointing to <gamma. link>, and

transferring to <gamma>. Part 2 is kept in< gamma> proper, beginning at

entry2. This part has the job of creating the new stack frame of size tnew

and storing item 7 (the argument list pointer) into it. A new stack frame is

said to be created when

(a) the new frame contains a backward pointer item (3).

(b) the new frame contains a forward pointer to the next frame (item 4).

(c) the sb~sp pair is reset to point to the beginning of the new frame.

A crucial Multics requirement is that during the course of executing instruc­

tions to create a new frame, there must never be an instant when the beginning

of the next frame (i.e. , the frame beyond the last fully created one) is

undecidable. The reason is simple: The Multics supervisor uses the same

stack to store the stateword of this process (i.e., register contents, etc.) in

the event of a hardware system interrupt. If such an interrupt occurs during

creation of a new stack frame there must be a completely safe way to identify

the beginning of the next frame for use in handling the interrupt. The handler

always locates safe-to-use storage at a point in the stack beginning at 32 words

beyond the beginning of this frame.

The save sequence instructions of Part 2, shown immediately below, are

especially designed to meet this objective.

1. entry2: eapbp

2. stpsp

3. eapbp

sp!18,>:c

bp !16

bp !tnew

Save item 4 of the current frame
temporarily in bb~ bp. That is to say,
let bp temporarily become the stack
pointer for the new frame.

Store current sp value, i.e., sp {3
as item 3 of the new frame

Create item 4 for the new frame in
bb~ bp by adding tnew to what is
already in bb~ bp (item 4 is a
pointer to the frame following the
one currently being created).

3-10

4. stpbp bpl18-tnew

5. eabsp bpl-tnew

6. stpap spl26

. I Store item 4 for new frame in

I position 18 of new frame. (It's
stored in spy+tnew+ 18-tnew or

1 spy+18).

I
I
I
I
I

Form new stack pointer, i.e., spy
in sb.- sp, by setting the sp part
of sb--sp to point to the beginning
of the frame for gamma (i.e., the
bp part of bb-- bp minus the length
of the new frame).

Save item 7. I. e., save the argu­
ment list pointer left in ab--ap
by <beta>.

Note that at any given instant the frame pointed at by the sb--bp pair is

the last fully created frame. Upon completion of the fifth instruction in the

sequence (eabsp bpl-tnew) the new frame has been fully created. Interrupts

occurring any time before or after this instant are treated as shown in Fig­

ure 3-5.

The particular instructions used in this sequence depends on the size,

tnew, of the frame being created. The value of tnew t can ordinarily be

determined by the assembler or compiler.

tThe maximum value that can be used for tnew in the type 1 instructions of the
save sequence is z 14 . If a frame having a size in excess of z14 words is to
be allocated, two additional instructions may be generated at the end of the
sequence:

eabbp bpi excess I add excess to copy of item 4 and
I .

stpbp spl18 1 store as revised value for item 4.

I
This works if excess is itself~ z14 A somewhat slower-to-execute sequence
would be needed in building frames whose length ranges up to z18 words. One
such sequence might be:

adbbp excess,du

stpbp spl18

I type 0 instruction: add excess
1 to current contents of bp. The

I du, or direct upper modifier,

I indicates the value of excess is
in the address field of this

I instruction.

I .
1 store as revised value for item 4.

3-11

interrupt handler
wi II use space
beginning here for
storing state word 1

<stack>

item 4
32-word

+32

Case (a) If interrupt occurs before 5th
instruction of save sequence

toew y -f•ome

sp
y

stack#

interrupt handler
wi II use space
beginning here for
storing state word 1

etc.

Case (b)

item 4

If interrupt occurs after execution

32-word
header

header
or next frame

of 5th instruction of the save sequence

Figure 3-5. Handling Interrupts Before and After 5th
Instruction of the Save Sequence

3-12

y-frame

In short, upon completion of the save sequence in <gamma> we've set the

sb-sp to point to the beginning of the new frame of tnew words. Item 3 (sp+ 16)

has been set to point backward to the beginning of the preceding frame for

<beta>. Item 4 points forward to the beginning of the next frame, and item 7

holds a copy of the pointer to the argument list of the call to <gamma>. If,

during execution in <gamma>, additional amounts of temporary stack storage

are required, more space may be allocated to the frame simply by altering

item 4. :f.

The instructions:

eapbp

eabbp

stpbp

would do the job.

sp\18, *
bp\ extra

sp\18

I
I
I
I
I
I
I
I

get current value in item 4.

increment by extra (which should
be a number that's congruent to
0 (mod 8) and$214.

store new value of item 4.

Also, by way of summary, the following is the condition of the abr's

upon completion of the save sequence in< gamma>.

p b

a sp13+arglist stack#

b spy +tnew stack#

1 0 (normally) gamma. link#

s spy stack#

3. 5 RETURN SEQUENCES

There are two types of return sequences which can be executed, the

normal or standard return to the point of call and an abnormal return, i.e.,

a return to a program point within an arbitrary procedure which point has

been supplied as an argument. We shall discuss only the normal return here.

-~

I-To give you some idea where stack extension might be used, you should note
that in the original EP L implementation, temporary arrays that are adjustable
are allocated space (when their space requirements become known) as exten­
sion of the current stack frame.

3-13

A subsystems writer should ordinarily implement or employ abnormal returns t

only where necessary, i.e. , only where the extra overhead is justified.

3. 6 THE NORMAL RETURN SEQUENCE

If you've followed what is required in the call and save sequence, the

normal return sequence is quite simple to understand. All that's needed for

<gamma> to return to <beta> is to

call,

(1) reload the base registers and index registers, etc., (all but the
TR register) whose values were saved in the <beta> frame during
<beta>' s call on <gamma> and

(2) restore the ic and pbr (and indicators) registers to the values tucked
away as item 5 in <beta>'s frame.

Only three GE 645 instructions are actually required. The eplbsa macro

return

expands to:

ldb spll6,>:' reload 8 base registers

lreg spl8 reload 8 index registers,
A, Q, and E registers

rtcd spl20 "restore control word double"

The first of these instructions loads the 8 base registers from the location

pointed to by the contents of spll6, which is item 3 of the <gamma> frame.

Item 3 is the backward pointer to the top of the <beta> frame. The net effect

is to reload the base registers stored in the <beta> frame. As a consequence,

the sb -sp pair will now point to the beginning of the <beta> frame instead of

the <gamma> frame.

The second instruction in the return sequence will reload all 8 index

registers and the A, Q, and E registers using the direct address:

spl8

since sb -sp now holds the desired pointer. Finally, the third instruction

tThese are handled by calls to the un~inder, a supervisory routine described
in BD.9.05 and discussed fully in Chapter 5.

3-14

e
I

I

rtcd spl20

recovers all other machine conditions, i.e., (ic)+2, (pbr) and (indicators)

which were safe-stored as item 5 in the <beta> frame at the time <beta>

called <gamma>. The effect of the rtcd instruction, a very fancy transfer

instruction, is to resume execution at a place two words beyond the stcd

instruction in the calling sequence to <gamma>.

3. 7 BASIC STORAGE STRUCTURE FOR AN ARGUMENT LIST

All compilers and assemblers operating in the Multics environment must

produce lists of calling arguments that fall into certain standard patterns.

Every operating system requires such standard patterns. In the familiar

batch operating system on conventional computers, the argument list is

usually supplied as a set of pointers or values immediately following the

transfer and save (ic) instructions (e. g., TSX in the IBM 7094). The Multics

argument list, however, may be stored in an arbitrary location, but is gen­

erally kept in the stack in order to keep the procedure pure and to guarantee

that it is recursive. t Moreover, the list consists only of pointers. No actual

values are stored in the list.

Figure 3-6 shows the "basic" storage structure used for an argument

list. f. It consists of a two-word header, followed by a body composed of n

its pair pointers. The length of the body, 2 X n words, is given in the header

whose address is spl arglist.

Each its pair can point independently, either directly or indirectly to a

corresponding argument. The its pair normally has a zero modifier, i.e.,

direct, when the argument is local to the calling procedure. Indirect modi­

fiers, ~<, are useful when the argument is externally defined as will be ex­

plained in a later paragraph.

tAn argument list must be generated and stored in the stack if at least one
of the datum values it points to must be kept in the stack. This means that
several copies of the argument list, each pointing to different ''generations"
of arguments, can be stacked at the same time. By a datum value we mean
for example, a variable, label or procedure entry point.

1oThis form must be embellished in one of two ways to achieve "special effects."
One of the embellished forms is discus sed in Section 3. 11, the other in Chap­
ter 4.

3-15

<stack>

~ ~

sp 1 arg I ist+O 2*n 0

0 0 } header •

2 s # 0 its 1
body is a
I ist of n

al 0 ml
pointers to the
n arguments

s #
0 its 2

in the ca II 4

a2 0 m2

6 s #
3

0 its

a3 0 m3

. . .
2*n s # 0 its

n

a 0 m
n n

This structure is for a call to an n-argument procedure segment.

are modifiers which are normally 0 but which may be * (indirect).

Them.
1

' .

Figure 3-6. Basic Storage Structure of an Argument List.

3-16

3. 8 PUTTING ITS PAIR POINTERS INTO AN ARGUMENT LIST

The creation of its pairs for an argument list and the insertion of them

in the list requires one of several coding technique, depending on the kind of

argument in the call. Three kinds are recog"ilized here:

(a) argument is locally defined within the calling procedure

(b) argument is a parameter of the procedure, i.e. , pas sed
along as an argument by a procedure which called the
currently executing procedure

(c) argument is an external symbol

The different coding techniques are alluded to in BD. 7. 02 under Notes and

Comments. In the remainder of this section we give a small amount of elab­

oration. Feel free to skip over these details during the first reading. Prob­

ably even more detail is needed for subsystem writers who will be writing

compilers or assemblers.

We shall sketch how each of the three kinds of argument pointers might

be formed by basing our examples on the following hypothetical situation. We

imagine source code which shows <a> calling on < b> which in turn calls on< c>.

We then focus on the job of the compiler which must construct the code to gen­

erate an argument list for a call within < b> on < c>. We further suppose in

all instances that this list is to be located at sp I arglistb. Let the ith argument

in the call on < c> be given the name xb.

(a) xb is locally defined within < b> and hence its value resides in the
I

stack frame associated with , say at some offset xxb from word zero of

the frame. This offset is computable by the compiler. Suitable code to ere-

ate and store the desired its pair pointer in this case would be:

eapbp splxxb form address of argument

stpbp sp I arglistb+Z>:<i
.th . .

store as 1 1ts pau in arglistb

(b) xb is a parameter, h .th say t e J parameter of < b>. In calling on

we know that the procedure <a> has provided an argument list with an its pair

pointer to this jth argument. Suitable code to form the ith its pair pointer for

xb would be:

ldaq ap!Z*j

staq sp I arglistb+Z>:<i

3-17

The ldaq instruction lifts the its pair "bodily" out of the argument list supplied

by< a> and puts it into the argument list being constructed at sp I arglistb.

Notice that it would be a mistake to use code such as:

stpbp s pI arglistb+2':'i

because this instruction pair would store a pointer to the pointer in< a>'s

arglist, i.e., the its pair:

(ab) 0 its

arglista+2':'j 0 0

where (ab) means the contents of the ab base register.

(c) the ith argument is an external symbol. In this case, the its pair

which must be created and put in the argument list includes a segment number

and an external symbol, values for which are not known to the compiler at

the time it's generating the code that creates this argument list.

For example, suppose the ith argument is to be <data> I [x]. Source

code like:

eapbp <data> I [x]

stpbp sp I arglistb+2':'i

would, when executed, certainly create the desired its pair, but in so doing

would force an ft2 fault to the Linker which must determine data# and x. This

is because the generated code will be of the form:

eapbp lp I k, ':'

stpbp spl arglistb+2':'i

The trouble with this approach is it forces linking at too early a stage.

After all, we don't really know if the called program< c> will ever use this

argument. So, why link to it during the process of calling < c>? If < c> never

uses this argument the early linking could be a costly strategy.

A way to postpone this early linking, is to create an indirect its pair

pointer for the argument list.

3-18

Coding which could be generated to do the job might look like:

eapbp lpl k

stpbp s PI arglistb+2 >!<i

lda 16,dl

or sa spl arglistb+2>!<i+l

I
I

form address of the ft2 pair
for <data> j [x] in base pair

I store the address (i. e. , lb llp+k)
I as an its pair

put an indirect code, which is
decimal 16, into lower part of
accumulator. dl means "direct

I
I I lower"

I
I

or the accumulator to storage
to form an indirect modifier in
the second word of the its pair

An its pointer will then be constructed of the form:

sp I arglistb+2>!<i (lb) its

(lp)+k

where (lb) and (lp) represent the contents of the lb and lp base registers at
the time the eapbp instruction is executed. For a more complete discussion
on how to handle such arguments, see BB. 2. 02.

3. 9 STORAGE STRUCTURES FOR DIFFERENT TYPES OF DATA

Thus far we have been discussing lists of pointers to the arguments of a

procedure, but we haven't been paying attention to what the arguments them­

selves look like. Some types of arguments, e. g., integer and real variables

are sufficiently simple that their data values are pointed to directly by the

pointers in the argument list. Other data types are sufficiently complex in

structure that the argument pointers don't point to data values but, alas, to

pointers which are part of the storage structure of the individual arguments.

The subsystem writer must, of course, keep this in mind in instances where

code is being constructed to fetch or store data values via argument list

pointers.

At least some of the procedures of every subsystem must interface with

Multics system modules. Arguments pas sed to or from a subsystem procedure

and a Multics system module are restricted in type to a subset of PL/I data types. t

tit may surprise you to learn that, although most of the Multics system is
written in PL/1, the data types used are a restricted subset within that
language. For motivation and full discussion of this point, see BB. 2.

3-19

Only the following types of arguments may be passed:

(a) All scalars:

arithmetic

strings

labels

pointers

{
integer
real
complex

{ bit
character

(including procedure entry points)

(b) Any one-dimensional array of the above.

Standardized storage representations (structures) have been established for

each of these types and are given in section BB. 2. 02 of the MSPM. We provide

here a convenient summary of these storage structures. These are the items

in Table 3-1. In each case, the graphic form~ denotes the item of

the argument pointed to by the pointer in the argument list. Shaded boxes

denote parts of the argument containing actual data values. Unshaded boxes

denote pointers or "dope.''

Shown in Table 3-2 are the storage structure conventions established for

the remaining data types within PL/I. More details on these latter items can

be found in the MSPM documents which relate more directly to PL/I (i.e., .
BD. 1, B00 56, BP. 2. 01, and BP. 2. 02).

Table 3-2 items should also be of interest to the subsystem writer, but

for somewhat different reasons. Thus a subsystem writer who is developing a

new language processor, e.g. , MAD or ALGOL, may benefit by seeing the

way n(?:2) -dimensional arrays are structured in the Multics PL/I. While

these are perhaps not the best or only methods for representing such data

types, two things are worth considering seriously:

(l) These structures are tested and have proven practicable.

(2) Multics will eventually provide an extensive library of subroutines
written in PL/I. A subsystem writer who chooses PL/I storage
structures can have the automatic by-product of being able to have
his subsystem interface easily with (i.e. , call directly on) a grow­
ing library supported by the Multics staff and the PL/I community.
Enough said.

3-20

TABLE 3-1

Types of Arguments and their Storage Structures - System- Wide Standards

Type
No.t

2

3

4

7

8

9

11

10

12

13

14

Argument Type

Non-string Scalars

Single-word integer

Double-word integer

Single-word floating-point

Double -word floating -point

Single-word floating-point
Complex

Double -word floating -point
Complex

String Scalars

Non-varying bit strings

Non-varying character strings

Varying bit strings

Varying character strings

Program Control Data

Absolute pointer

Relative pointer

Storage Structure

I
,~
~even
I~ ~odd

,~

~~-even

I ~•- even (real part)
-.....J ~ (imaginary part)

I .
I
I
I
I
I
I
I

p

t-----1} 2 words

one or
more
words as
required

I
I

Same as 9, 11 above except add another
its pair to the sp.,.cifier to point to free
storage. See BB. 2.02

1 ~ I'~' I Po161~ I I external internal
type I

I~

type

t Numbering here is same as symbol type number (BD. 1, p. 10) used as a code

in the segment symbol table.

3-21

TABLE 3-1 (continued)

Types of Arguments and their Storage Structures -System- Wide Standards

Type
No.

15 Label

16 Entry

Argument Type

same storage
structure

One-Dimensional Arrays

17-24 of scalars, types 1-8,
and 13-16

25,27 of scalars (non varying
strings), types 9 and 11

26,28 of scalars (varying strings),
types 1 0 and 1 2

program point in
< x. link>

~tack pointerl

not now used

6 words

one
contig­
uous
block

of
storage

See BB. 2. 02 for
more details which
will reveal its full
generality .•.. id is
a nine-bit code that
describes the type of
the structure and size
of the elementary data

item

7w~

one
contig­
uous
block
of
storage

See BB. 2. 02 for
more details which
reveal its full generality ...

See details BB. 2. 02

to the stack frame that defines the generation of temporary storage appropriate
to the program point.

3-22

TABLE 3-2

Types of Arguments and their Storage Structures - PL/1 Standards Only.

Type
No.t

17-24

25
27

Argument Type

Higher-dimensional Arrays

of scalars of types 1-8

of non-varying string
scalars

bit strings
character strings

of varying strings
26 bit strings
27 character strings

(same as 25 and 27, except
we add one more its pair
to the specifier which points
to free storage)

t See footnote to Table 3-1

3-23

Storage Structure

Dope

one
contig­
uous
block of
storage

3m+ 3 words,
where m = number
of dimensions in the
array (See BP. 2. 02).

one
contig­
uous
block of
storage

3m+ 4 words,
where m = number
of dimensions in the
array (See BP. 2. 02).

TABLE 3-2 (Continued)

Types of Arguments and their Storage Structures - PL/I Standards Only.

Type
No. Argument Type

Structures

Arrays of Structures

Storage Structure

specifier

Dope

See BP. 2. 02.

3-24

one
contig­
uous
block of
storage

3 + n words,
where n :: number
of substructures
See details,
BP. 2. 02.

dopes for up to
n substructures
that may have dope

3. 10 FUNCTION NAME ARGUMENTS, ORDINARY CASE

A procedure< p> may call on another procedure< r>, passing to it an

argument that is a procedure entry. Suppose the argument passed to

< r> is the procedure entry < q> I [entry3], in a call equivalent to

call < r> I [entry] (arglist 1).

In this case the argument list contains a pointer to the entry datum which

has a pointer to < q> I [entry3]. Some time later, while executing in < r>, we

can have a call on< q>, by referring to a parameter, say t, that corresponds

to < q>. Such a call might have the appearance:

call t (arglist2)

where t is declared to be the dummy procedure name, and the arguments,

x, y, and z are recognized as external symbols for (say floating point) vari­

ables located in the segment <data>. A corresponding sketch is shown in

Figure 3-7 using PL/I terminology.

The argument list generated in the call to < r> will have the appearance:

arglist 1 2 0

0 0

(sb) 0 its

(sp)+arg 0 0

The argument its elf we suppose is located at sp I arg. It has the format:

entry datum

spjarg+O q. link# 0 its

entrypair 0 0

I
I
I ---------+--- -t- ----

I I
I I I

-------- _.L. -- _L- ---
I I

! l

3-25

'
-...

normally zero
(used only for
internal functions)

unspecified error
check information

p: procedure;

call r(q);

r: procedure(t);

de l(data$x ,data$y,
data$z) float;

}
call t(data$x,data$y,

data$z);

r procedure (a,b,c};l

Figure 3-7. Calling an External Procedure Whose Name (q)

has been Passed as an Argument.

p: procedure;

de I w fixed binary (17)
J automatic

call r(q);

r
q: procedure(a ,b ,c);

I '

r: procedure(t);

de l(data$x ,data$y,
data$z) float;

f
call t(data$x ,data$y,

data$z);

Figure 3-8. Calling an Internal Procedure Whose Name (q)

has been Passed as an Argument.

3-26

The first its pair points to an offset within< q. link> at which we can

expect to find the quadruplet

entrypair: eaplp
aos
tra
arg

-':', ic
2, ic
link-':', ic':'
0

whose execution basically results in the transfer to < q> \ [entry3] . Ordinarily

the second pair of words in the entry datum is zero. In certain cases, how­

ever, as explained below, it will be used for holding a stack pointer value. The

third pair, is to be used for as yet unspecified error checking information.

To generate the call on the dummy t while executing in < r>, the last

instruction in the call sequence might be preceded by the instruction:

eapbp ap\2,':'

to put the address of the function name argument in b~p. The standard call

sequence would follow, ending with the instruction:

tra bp\ 0

which would cause the transfer to the address found in the first its pair of

the function name argument, i.e. , ultimately to the desired entry point in

<q>.

The argument list that goes with this call on < q> would appear as:

arglist2+0 6 0

0 0

data# 0 its

X 0 0

data# 0 its

y 0 0

data# 0 its

z 0 0

3-27

3. 11 FUNCTION NAME ARGUMENTS, SPECIAL CASE

Suppose again the procedure < p> calls on < r>, pas sing to it as an argu­

ment an entry point in q. But this time, suppose q is a procedure that's in­

ternally defined within< p>. Figure 3-8 illustrates this case using PL/I

terminology. We will imagine that the entry point is located at q+entry3

within< p>. Because q is an internal procedure, it may, whenever it is

executed, require data values which have been allocated temporary storage

in a stack frame created earlier by the containing procedure < p>. Somehow

q will have to know how to reach this stack frame. This section explains the

Multics conventions which are designed to aid subsystems writers in solving

communications problems of this type. Such problems, of course, will occur

in subsystems which permit the embedding and or the nesting of internal pro­

cedures or blocks within procedure segments.

To continue with our example, suppose then, < p> calls < r> with a call

equivalent to

call < r> I [entry 1] (ar glist l)

The argument list at arglistl looks just like the one we showed in the preceding

discussion. However, the argument itself must now include a stack pointer

value for reasons we shall be developing in the next paragraphs. Thus, our

argument at sp I arg would now appear as:

entry datum

sp arg+O p. link# 0 its

entrypair 0 0

(sb) 0 its

(sp) 0 0

._ __________ -----

Each call sequence that sends control from< p> to < r> must be immedi­

ately preceded by code that creates an argument in the above form.

3-28

------------------------··

The first its pair points to the entry instructions within < p. link> whose

execution would result in a transfer to < p> I q+entry3. (sb) and (sp) refer to

values of the sb.-sp base pair extant immediately prior to the call. Code to

generate the first two of these its pair could be:

I
1 form the address p. link# I entrypair eapbp lp I entrypair

I
1 store as the first its pair in
1 the function name argument.

stpbp splarg

stpsp splarg+Z
I
1 store stack pointer value as the
1 second its pair.

Proceeding further with our example of Figure 3-8, we now suppose

that, while executing in < r> at some point, we wish to execute a call on q

via reference to the corresponding parameter t, e.g.,

call t (arglist2)

Here again, t is the dummy procedure name. The arguments x, y and z

happen to be externally defined within <data>.

Once the call sequence in < r> to p# I q+entry3 has been completed it

must be possible for the computation of q(x, y, z) to proceed successfully.

But suppose that while executing in q it becomes necessary to refer to a pre­

viously stacked data value such as w that was assigned during prior execution

in< p>. Remember that the compiler does not and cannot furnish addresses

that are relative to the beginning of the stack segment. It only furnishes ad­

dresses relative to the beginning of a stack frame. Therefore, q must know

the stack frame pointer that was in use at the time < p> called < r>. Note

this is the pointer that would be made a part of the function name argument

to be ''passed" to< r>. Obviously<' r> itself has no need for this stack pointer,

but notice that when < r> calls on q, < r> can pass this pointer back to q as an

argument. In a sense, the stack pointer must make a "roundtrip" from < p>

to< r> and back to< p>. We now see why a function name argument (entry

datum) that refers to an internal procedure is designed to include the current

stack pointer value.

In just a moment we will examine the structural form of the argument

list that must be used in calling on q. Before doing so, we might digress

3-29

here to ask several questions: What sort of call sequence should be used in

calling an internal procedure? Should the standard call sequence be used? In

any case, how should execution proceed in an internal procedure like q once

it is called? Should there be a save sequence executed to create a separate

stack frame for execution of q? Anyone writing a compiler for a language

that has an ALGOL-like block structure, e. g., one which permits the nesting

of internal procedures and/or PL/I-like begin blocks, must provide his own

answers to these questions.

Mechanisms have been developed by the EPL compiler writers for dealing

with these problems. They are well documented in MSPM. Other compiler

writers may choose to adopt these techniques. If so, they will find the notes

in BN. 5. 01 very helpful. They should keep in mind, however, that the imple­

mentation described there is regarded by its developers as somewhat clumsy

and subject to improvement.

The notes in BN. 5. 01 suggest one mechanism for handling the general

problem which arises when the called procedure or block may be nested at any

depth within a containing external procedure. The bookkeeping becomes

more complicated, because successful execution of the called procedure may

require knowledge of a (different) stack pointer for each of the "containing"

procedures or blocks. That is to say, a mechanism is developed for knowing,

when executing within a procedure or block that is nested at level i, where to

find stacked data that was generated by containing procedures or blocks at

various "shallower" levels k < i. In the EPL implementation, begin blocks

are treated indistinguishably from internal procedures. To enter a block one

issues a standard call sequence, as if it were a procedure. Once called, the

internal procedure executes the standard save sequence to create its own

stack frame. Among other things that can be stored in this frame is the

(set of) stack pointer(s) to the frame(s) for any outer level procedures that the

called procedure needs to refer to. This set of stack pointers is referred to

as the "display."

The cost associated with a call to a nested procedure or block in the cur­

rent EPL mechanism unfortunately increases with increase in the depth of

nesting. This objection is serious enough that work is progressing on im­

proved techniques which would have the virtue that calling costs are indepen­

dent of nesting depth.

2-30

We are now ready to discuss the structure of the argument list that is

used for calling on an internal procedure. This Multics "standard" takes

the form of a simple embellishment to the structure of an ordinary argument

list. The extended form is shown in Figure 3-9.

In our particular example we see that the PL/I statement

call t (data !lx_, data $y, data $z);

corresponds at assembly level to

call t(arglist2)

with an associated argument list which would look like:

arglist2+0 6 2

0 0

+2 data# 0 its

X 0 0

+4 data# 0 its

y 0 0

+6 data# 0 its

z 0 0

(sb) 0 its

(sp) 0 0

In point of fact, eplbsa does not automatically generate the code to

construct the argument list in the expansion of the call macro, although an

assembler with a more advanced macro capability could be expected to do so.

This means that any compiler designed to generate eplbsa code as output

must bear the full responsibility for generating code to form the argument

list before generating the call macro.

If we were to imagine the use of a more advanced assembler, then

conceivably, a source statement like

callt(<data>j[x], <data>j[y], <data> I [z])

3-31

2*n 2

0 0

s #
1

0

a #
1

0

s #
2 0

a #
2

0

. . .
s #

0 n

a 0
n

sb value 0

sb value 0

its

m1

its

m2

its

m
n

its

0

-~ a 5
g

t
h

n argument
pointers

t
} stack value for last generati

___...-of storage associated with th
procedure being called

on
e

This structure is used when calling on ann-argument internal procedure whose

name was previously pas sed as an argument.

Figure 3-9. Structure for an Argument List.

3-32

could be recognized. The assembler would then generate:

(l) the code to form the complete argument list

(2) the call sequence

Such an assembler would have to automatically recognize that t is a

dummy that representing an internal procedure in order that it (the assembler)

could know to generate code to form the n + 1st its pair of the argument list.

A sophisticated assembler could recognize that t is an internal procedure as

follows:

Since tis a parameter, the assembler must generate code which, when

executed, determines if the entry point that corresponds to t is internal or

external. If external there is of course no need to add the n + 1st pointer.

The distinction can be achieved by inspecting the second its pair in the entry

datum. If it is zero, the entry must be external because otherwise this pair

would hold a stack pointer. Code like the following would, if genera ted, per­

form this discrimination during execution, and add the its pair as needed, etc.

eapbp

ldaq bpl2

tze skip

staq spl arglist2+2>!<n+2

skip:

establish pointer to function name
arg, assuming it is the ith argument.

pick up (sb), (sp) from second its
pair of this arg.

bypasst

store stack pointer value as n + 1st
argument in call on q

} adjust word zero of
argument list

trn the GE 645, execution of the ldaq instruction causes the zero indicator to
be turned on when the loaded double word is zero.

3-33

Once inside the called internal procedure, any reference to a local

(automatic) variable in the containing procedure < p> must be accomplished

via the stack pointer argument. In our particular example, a reference to

the variable w by the procedure q might be coded something like:

eapbp ap \8, ':'

lda bp\ w

3. 12 COMMUNICATION TO AND FROM EXECUTE-ONLY PROCEDURES

Communication to or from execute-only (E0) procedures justifies separate

discussion. The communication process for such procedures is necessarily

more complex. Special code must automatically be generated within E() pro­

cedures and in their linkage segments which will control access to them and

at the same time allow flexibility in their use and still permit them to be pure,

and hence sharable. Thus: Although any call on an E(} procedure must begin

execution at word zero, so that the call can be examined for some sort of

validity, we still want to allow such procedures to effectively have multiple

entries. Moreover, although any return to an E(} calling procedure must

actually resume execution at word zero, again, for validation purposes, we

still want to permit the writer of the E0 procedure to effectively imply or

specify any program point for a normal or alternate return.

You should have little difficulty appreciating the communication objectives

and problems, which are clearly set forth in BD. 7. 03. The solutions, in the

form of more elaborate call and save sequences are also outlined in BD. 7. 03

although they are perhaps not quite so easy to understand.

Suffice to say that all these special sequences are supposed to be auto­

matically generated by the Multics PL /I compiler and by at least one of the

macro assemblers provided in the Multics public library. If you are writing

your own target-code producing assembler or compiler and if you want it to

be capable of generating E0 procedures, you will find it essential to gain a

grasp of all the details in BD. 7. 03. Hopefully, this chapter has prepared you

for the challenge.

3-34

l
j

e.

