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CHAPTER III 

INTER-PROCEDURE COMMUNICATION 

3. 1 INTRODUCTION 

Call, save, and return sequences are short sequences of instructions 

whose execution constitutes the standard way for one procedure segment to 

communicate with (i.e., transfer to, pass information to, and return from) 

another procedure segment .. 

The instructions in these sequences involve the management of the so­

called "process stack," a special segment used by all procedures of a given 

process. Executing the standard call, save and return sequences also insures 

that all pure procedures are automatically recursive (and also sharable), a 

deliberately planned by-product. Nonstandard methods of communication, 

whose use in special cases may improve efficiency, are by no means ruled 

out in Multics. They may be used by the advanced subsystem writer when 

appropriate. t The successful execution of any process depends upon flawless 

management of the stack; hence (independent) translators, including as sem­

blers, that produce target code, are responsible for automatically generating 

call, save and return sequences. As a result the ordinary user is liberated 

from what might otherwise be an awesome task. In addition to user procedures, 

essentially all others, including those of the supervisor, the public library, and 

commands employ the same intercommunication sequences. A subsystem 

writer who is going to produce an independent translator must become thor­

oughly familiar with details of this chapter, and of all pertinent MSPM refer­

ences. The prime reference at this time is BD. 7. 02. Secondary references 

are BD. 7. 03 and BD. 9. However, it would seem that any subsystem 

tA process may contain one or more groups of related procedure segments, 
so designed by a subsystem writer that intragroup communication is achieved 
without the standard call, save and return sequences. While executing within 
a group, short cuts can result in improved efficiency. At some point how­
ever, such a group of segments must interface with system-designed pro­
cedures, and here the method of communication must be standard. 
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writer would need to become somewhat familiar with the process stack, its 

role and its management. 

This chapter begins with a discussion of the process stack and the call, 

save and normal return sequences for ordinary slave procedures. Argument 

lists, their structure and creation are then treated. There is a brief summary 

of the storage structures for several types of arguments and a separate dis­

dus sion for function name arguments. Argument lists for calls to internal 

procedures are considered next. We postpone talk about generation of argu­

ment lists for calls on procedures ·in outer protection rings (outward calls, 

BD. 9 ). Chapter 4 will discuss protection rings. A few remarks concerning 

execute only procedures conclude this chapter 

3. 2 THE PROCESS STACK 

The key to understanding the effectiveness of call, save and return se­

quences is to first understand the concept of the stack segment. There is a 

stack segment created for each process. t Each time one segment transfers 

or returns control to another segment, a frame of data consisting of key in­

formation, such as index register contents, A and Q register contents, base 

register contents and other pointers, are either saved in the stack segment or 

retrieved or released from it. Moreover, while a procedure segment < b > is 

in execution, space for all its temporary storage is allocated in the stack seg­

ment. When < b > returns to the program which called it, this temporary 

storage is automatically released by adjusting the stack pointer. The stack 

is used as a pushdown store by carefully maintaining a current stack pointer. 

This pointer is kept in the sb- sp base pair. The sb holds the effective 

pointer, i.e., to word zero of the stack segment, and the sp holds the relative 

position within the stack segment (current pointer) of word zero for the latest 

frame of data added to the stack. 

fStrictly speaking, as will be seen when we discuss BD. 9, there is actually a 
stack segment created for every "ring of protection" within the process. 
The notion of rings and multiple stacks and descriptor segments is purposely 
delayed until Chapter 4. 
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Figure 3-l shows the layout of a typical stack frame. Each frame con­

sists of a header (32 words) and a body. The header for the current frame on 

the stack is used to save the contents of registers and pointers, etc., which 

are meaningful to the currently executing procedure at the time it prepares to 

call on another procedure. The six words shown as not used should be con-

sidered as reserved for use of future system services. The body of the frame 

is of variable length and provides the temporary storage required by the cur­

rently executing procedure. For PL/I procedures, for example, space for 

all variables having the automatic attribute is allocated in the body of a stack 

framet as soon as execution of the procedure commences. 

Normallyf the amount of space required for the body of the frame will be 

determined by the compiler or assembler. Therefore, at the time the frame 

is created, all the space required for the body can be allocated at one time. 

Allocation is in units of 8 words so that the immediately following frame 

header will begin at an internal address that's congruent to zero (mod 8). 

Figure 3-2 suggests how the <stack> grows frame by frame as execution 

moves from <alpha> to <beta>, then to <gamma>. 

Figure 3-3 gives a closer look at the frame developed for and during exe­

cution in <beta>. We find it convenient to think of the frame header as con­

sisting of seven items, so marked in the figure. Each header item is marked 

in its upper right corner to denote which sequence, i.e., ~all or ~ave, is re­

sponsible for placing the item in the header. (The item numbers used in Figure 

3-3 are used repeatedly in subsequent discussions.) 

3. 3 THE CALL SEQUENCE 

Whenever we wish to transfer from one procedure to the next we would 

issue what amounts to a standard marco call. For example, the call macro 

in eplbsa has the form: 
call entrypoint ( arglist) 

fAlso, the "specifiers and dope" for some types of based controlled variables 
are kept in the stack frame. See BP. 4. 00 for more details. 

fExceptions arise when the stack frame must be extended during execution of 
the procedure, as discussed in Section 3-4. 
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Figure 3-1. Layout of a Typical Stack Frame. 
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Figure 3-2. Showing Development of <stack>During a Chain of Calls. 
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Here entrypoint is the entry point of the procedure being called (any type 

of address may be used for entrypoint), and arglist is the location of the argu­

ment list. (Any type of address may be used for arglist, but we shall assume 

throughout this chapter that argument lists are always kept in the stack.) 

For example, if eplbsa encounters: 

call< gamma> I [ entry2] (sp I arglist) 
'-----....,... -'~ 

entrypoint arglist 

in processing the code for <beta>, then the expanded sequence will be: 

1 stb sp I 0 

2 sreg spl8 

3 eapap sp I arglist 

4 stcd spl20 

5 tra <gamma> I [ entry2] 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

save contents of the 8 abr's in 
sp+O thru sp+7. Item 1. 

save contents of the 8 index registers, 
A, Q, E and TR registers in sp+8 thru 
sp+l5. Item 2. See Figure 3-4. 

place the pointer to the argument list 
in ab-ap for use by <gamma>. The 
argument list is kept in temporary 
storage. 

save the point of return to <beta> i.e., 
(ic)+2, and (pbr), and (indicators) in 
sp+20 and sp+21. Item 5. 

transfer to called procedure (via the 
mechanism described in Fig. 2-13). 

The first, second and fourth instructions store items l, 2, and 5 in the 

frame header. t If we ever return to <beta> and at some later time issue a 

new call, possibly to some other procedure, new values for items 1, 2, and 

5 would be stored in this header. 

Item 5 has the format of an its pair 

1 18--28 f9-- 351 

(pbr) 0 its 

(ic)+2 (indicators) 0 

tin the more elaborate call sequence for execute-only procedures there are 
also instructions to store Item 6. See BD. 7. 03 for such details. 
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index registers 

0 sp/3+8 XR0 XR 1 

XR2 XR3 
2 
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Figure 3-4. Saving Index Registers, A, Q, E, and TR 
Registers upon Execution of: sreg sp j8. 
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The tra instruction of the call sequence will be assembled as 

The symbol "k" represents an offset within <beta. link>. The ft2 pair at 

this location is converted by the linker (as explained in Section 2. 9) to the its 

pair: 
k gamma. link# 0 its 

dist 0 0 

The pair of instructions found at gamma. link# I dist, you will recall, is 

for the purpose of ( 1) loading gamma. link# into the lb base register (and 

normally a zero into lp) and (2) transferring (via another its pair) to 

gamma# I entry2. If you have forgotten how this mechanism works, you should 

review the diagrams given in Figure 2-13. 

3. 4 THE SAVE SEQUENCE 

The purpose of the save sequence is to ( 1) generate a new stack frame of 

32 or more words for the just-called procedure, and (2) supply values for 

items 3, 4, and 7 in the header of the newly formed frame. 

Before we explain the details of the save sequence we make the following 

general observation. If we continue following the example of< beta> calling 

on< gamma> (as we shall here), the items 3, 4 and 7 about to be established 

will be those of the <gamma> frame. To see how the corresponding items 

would have been established in the <beta> frame given in Figure 3-3 we would 

have to shift the reference point of our example to that of <alpha> calling on 

<beta>. We prefer instead to continue the "walk" through one complete call, 

save and return cycle that starts with call. 

The save sequence for <gamma> is actually stored in two parts. Part 1 

consists of the eaplp, aos, tra, arg guadrupletf and the link, which are kept 

in <gamma. link>: t 
dist: eaplp 

aos 
tra 
arg 

tThis is the way it's viewed in the MSPM (BD. 7. 02) 

'" . -···, lC 

2,ic 
link2-, >:<ic>:< 
0 

tEffective 2/12/68 the eaplp, tra pair is replaced by the quadruplet shown here, which includes 
a usage counter to keep track of the number of times an entry has been used. The aos instruc­
tion adds one to the location immediatelt following the tra instruction, (Drafts 2 and 3 of 
Chapter 2 do not show this usage counter. 
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link2: 
gamma# 0 its 

entry2 0 0 

The effect is to establish the lb~lp pair for pointing to <gamma. link>, and 

transferring to <gamma>. Part 2 is kept in< gamma> proper, beginning at 

entry2. This part has the job of creating the new stack frame of size tnew 

and storing item 7 (the argument list pointer) into it. A new stack frame is 

said to be created when 

(a) the new frame contains a backward pointer item (3). 

(b) the new frame contains a forward pointer to the next frame (item 4). 

(c) the sb~sp pair is reset to point to the beginning of the new frame. 

A crucial Multics requirement is that during the course of executing instruc­

tions to create a new frame, there must never be an instant when the beginning 

of the next frame (i.e. , the frame beyond the last fully created one) is 

undecidable. The reason is simple: The Multics supervisor uses the same 

stack to store the stateword of this process (i.e., register contents, etc.) in 

the event of a hardware system interrupt. If such an interrupt occurs during 

creation of a new stack frame there must be a completely safe way to identify 

the beginning of the next frame for use in handling the interrupt. The handler 

always locates safe-to-use storage at a point in the stack beginning at 32 words 

beyond the beginning of this frame. 

The save sequence instructions of Part 2, shown immediately below, are 

especially designed to meet this objective. 

1. entry2: eapbp 

2. stpsp 

3. eapbp 

sp!18,>:c 

bp !16 

bp !tnew 

Save item 4 of the current frame 
temporarily in bb~ bp. That is to say, 
let bp temporarily become the stack 
pointer for the new frame. 

Store current sp value, i.e., sp {3 
as item 3 of the new frame 

Create item 4 for the new frame in 
bb~ bp by adding tnew to what is 
already in bb~ bp (item 4 is a 
pointer to the frame following the 
one currently being created). 
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4. stpbp bpl18-tnew 

5. eabsp bpl-tnew 

6. stpap spl26 

. I Store item 4 for new frame in 

I position 18 of new frame. (It's 
stored in spy+tnew+ 18-tnew or 

1 spy+18). 

I 
I 
I 
I 
I 

Form new stack pointer, i.e., spy 
in sb.- sp, by setting the sp part 
of sb--sp to point to the beginning 
of the frame for gamma (i.e., the 
bp part of bb-- bp minus the length 
of the new frame). 

Save item 7. I. e., save the argu­
ment list pointer left in ab--ap 
by <beta>. 

Note that at any given instant the frame pointed at by the sb--bp pair is 

the last fully created frame. Upon completion of the fifth instruction in the 

sequence (eabsp bpl-tnew) the new frame has been fully created. Interrupts 

occurring any time before or after this instant are treated as shown in Fig­

ure 3-5. 

The particular instructions used in this sequence depends on the size, 

tnew, of the frame being created. The value of tnew t can ordinarily be 

determined by the assembler or compiler. 

tThe maximum value that can be used for tnew in the type 1 instructions of the 
save sequence is z 14 . If a frame having a size in excess of z14 words is to 
be allocated, two additional instructions may be generated at the end of the 
sequence: 

eabbp bpi excess I add excess to copy of item 4 and 
I . 

stpbp spl18 1 store as revised value for item 4. 

I 
This works if excess is itself~ z14 A somewhat slower-to-execute sequence 
would be needed in building frames whose length ranges up to z18 words. One 
such sequence might be: 

adbbp excess,du 

stpbp spl18 

I type 0 instruction: add excess 
1 to current contents of bp. The 

I du, or direct upper modifier, 

I indicates the value of excess is 
in the address field of this 

I instruction. 

I . 
1 store as revised value for item 4. 
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interrupt handler 
wi II use space 
beginning here for 
storing state word 1 

<stack> 

item 4 
32-word 

+32 

Case (a) If interrupt occurs before 5th 
instruction of save sequence 

toew y -f•ome 

--------------------------------

sp 
y 

stack# 

interrupt handler 
wi II use space 
beginning here for 
storing state word 1 

etc. 

Case (b) 

item 4 

If interrupt occurs after execution 

32-word 
header 

header 
or next frame 

of 5th instruction of the save sequence 

Figure 3-5. Handling Interrupts Before and After 5th 
Instruction of the Save Sequence 
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In short, upon completion of the save sequence in <gamma> we've set the 

sb-sp to point to the beginning of the new frame of tnew words. Item 3 (sp+ 16) 

has been set to point backward to the beginning of the preceding frame for 

<beta>. Item 4 points forward to the beginning of the next frame, and item 7 

holds a copy of the pointer to the argument list of the call to <gamma>. If, 

during execution in <gamma>, additional amounts of temporary stack storage 

are required, more space may be allocated to the frame simply by altering 

item 4. :f. 

The instructions: 

eapbp 

eabbp 

stpbp 

would do the job. 

sp\18, * 
bp\ extra 

sp\18 

I 
I 
I 
I 
I 
I 
I 
I 

get current value in item 4. 

increment by extra (which should 
be a number that's congruent to 
0 (mod 8) and$214. 

store new value of item 4. 

Also, by way of summary, the following is the condition of the abr's 

upon completion of the save sequence in< gamma>. 

p b 

a sp13+arglist stack# 

b spy +tnew stack# 

1 0 (normally) gamma. link# 

s spy stack# 

3. 5 RETURN SEQUENCES 

There are two types of return sequences which can be executed, the 

normal or standard return to the point of call and an abnormal return, i.e., 

a return to a program point within an arbitrary procedure which point has 

been supplied as an argument. We shall discuss only the normal return here. 

-~ 

I-To give you some idea where stack extension might be used, you should note 
that in the original EP L implementation, temporary arrays that are adjustable 
are allocated space (when their space requirements become known) as exten­
sion of the current stack frame. 
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A subsystems writer should ordinarily implement or employ abnormal returns t 

only where necessary, i.e. , only where the extra overhead is justified. 

3. 6 THE NORMAL RETURN SEQUENCE 

If you've followed what is required in the call and save sequence, the 

normal return sequence is quite simple to understand. All that's needed for 

<gamma> to return to <beta> is to 

call, 

(1) reload the base registers and index registers, etc., (all but the 
TR register) whose values were saved in the <beta> frame during 
<beta>' s call on <gamma> and 

(2) restore the ic and pbr (and indicators) registers to the values tucked 
away as item 5 in <beta>'s frame. 

Only three GE 645 instructions are actually required. The eplbsa macro 

return 

expands to: 

ldb spll6,>:' reload 8 base registers 

lreg spl8 reload 8 index registers, 
A, Q, and E registers 

rtcd spl20 "restore control word double" 

The first of these instructions loads the 8 base registers from the location 

pointed to by the contents of spll6, which is item 3 of the <gamma> frame. 

Item 3 is the backward pointer to the top of the <beta> frame. The net effect 

is to reload the base registers stored in the <beta> frame. As a consequence, 

the sb -sp pair will now point to the beginning of the <beta> frame instead of 

the <gamma> frame. 

The second instruction in the return sequence will reload all 8 index 

registers and the A, Q, and E registers using the direct address: 

spl8 

since sb -sp now holds the desired pointer. Finally, the third instruction 

tThese are handled by calls to the un~inder, a supervisory routine described 
in BD.9.05 and discussed fully in Chapter 5. 
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e 
I 

I 

rtcd spl20 

recovers all other machine conditions, i.e., (ic)+2, (pbr) and (indicators) 

which were safe-stored as item 5 in the <beta> frame at the time <beta> 

called <gamma>. The effect of the rtcd instruction, a very fancy transfer 

instruction, is to resume execution at a place two words beyond the stcd 

instruction in the calling sequence to <gamma>. 

3. 7 BASIC STORAGE STRUCTURE FOR AN ARGUMENT LIST 

All compilers and assemblers operating in the Multics environment must 

produce lists of calling arguments that fall into certain standard patterns. 

Every operating system requires such standard patterns. In the familiar 

batch operating system on conventional computers, the argument list is 

usually supplied as a set of pointers or values immediately following the 

transfer and save (ic) instructions (e. g., TSX in the IBM 7094). The Multics 

argument list, however, may be stored in an arbitrary location, but is gen­

erally kept in the stack in order to keep the procedure pure and to guarantee 

that it is recursive. t Moreover, the list consists only of pointers. No actual 

values are stored in the list. 

Figure 3-6 shows the "basic" storage structure used for an argument 

list. f. It consists of a two-word header, followed by a body composed of n 

its pair pointers. The length of the body, 2 X n words, is given in the header 

whose address is spl arglist. 

Each its pair can point independently, either directly or indirectly to a 

corresponding argument. The its pair normally has a zero modifier, i.e., 

direct, when the argument is local to the calling procedure. Indirect modi­

fiers, ~<, are useful when the argument is externally defined as will be ex­

plained in a later paragraph. 

tAn argument list must be generated and stored in the stack if at least one 
of the datum values it points to must be kept in the stack. This means that 
several copies of the argument list, each pointing to different ''generations" 
of arguments, can be stacked at the same time. By a datum value we mean 
for example, a variable, label or procedure entry point. 

1oThis form must be embellished in one of two ways to achieve "special effects." 
One of the embellished forms is discus sed in Section 3. 11, the other in Chap­
ter 4. 
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<stack> 

~ ~ 

sp 1 arg I ist+O 2*n 0 

0 0 } header • 

2 s # 0 its 1 
body is a 
I ist of n 

al 0 ml 
pointers to the 
n arguments 

s # 
0 its 2 

in the ca II 4 

a2 0 m2 

6 s # 
3 

0 its 

a3 0 m3 

. . . 
2*n s # 0 its 

n 

a 0 m 
n n 

This structure is for a call to an n-argument procedure segment. 

are modifiers which are normally 0 but which may be * (indirect). 

Them. 
1 

' . 

Figure 3-6. Basic Storage Structure of an Argument List. 
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3. 8 PUTTING ITS PAIR POINTERS INTO AN ARGUMENT LIST 

The creation of its pairs for an argument list and the insertion of them 

in the list requires one of several coding technique, depending on the kind of 

argument in the call. Three kinds are recog"ilized here: 

(a) argument is locally defined within the calling procedure 

(b) argument is a parameter of the procedure, i.e. , pas sed 
along as an argument by a procedure which called the 
currently executing procedure 

(c) argument is an external symbol 

The different coding techniques are alluded to in BD. 7. 02 under Notes and 

Comments. In the remainder of this section we give a small amount of elab­

oration. Feel free to skip over these details during the first reading. Prob­

ably even more detail is needed for subsystem writers who will be writing 

compilers or assemblers. 

We shall sketch how each of the three kinds of argument pointers might 

be formed by basing our examples on the following hypothetical situation. We 

imagine source code which shows <a> calling on < b> which in turn calls on< c>. 

We then focus on the job of the compiler which must construct the code to gen­

erate an argument list for a call within < b> on < c>. We further suppose in 

all instances that this list is to be located at sp I arglistb. Let the ith argument 

in the call on < c> be given the name xb. 

(a) xb is locally defined within < b> and hence its value resides in the 
I 

stack frame associated with <b>, say at some offset xxb from word zero of 

the frame. This offset is computable by the compiler. Suitable code to ere-

ate and store the desired its pair pointer in this case would be: 

eapbp splxxb form address of argument 

stpbp sp I arglistb+Z>:<i 
.th . . 

store as 1 1ts pau in arglistb 

(b) xb is a parameter, h .th say t e J parameter of < b>. In calling on <b> 

we know that the procedure <a> has provided an argument list with an its pair 

pointer to this jth argument. Suitable code to form the ith its pair pointer for 

xb would be: 

ldaq ap!Z*j 

staq sp I arglistb+Z>:<i 
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The ldaq instruction lifts the its pair "bodily" out of the argument list supplied 

by< a> and puts it into the argument list being constructed at sp I arglistb. 

Notice that it would be a mistake to use code such as: 

stpbp s pI arglistb+2':'i 

because this instruction pair would store a pointer to the pointer in< a>'s 

arglist, i.e., the its pair: 

(ab) 0 its 

arglista+2':'j 0 0 

where (ab) means the contents of the ab base register. 

(c) the ith argument is an external symbol. In this case, the its pair 

which must be created and put in the argument list includes a segment number 

and an external symbol, values for which are not known to the compiler at 

the time it's generating the code that creates this argument list. 

For example, suppose the ith argument is to be <data> I [ x]. Source 

code like: 

eapbp <data> I [ x] 

stpbp sp I arglistb+2':'i 

would, when executed, certainly create the desired its pair, but in so doing 

would force an ft2 fault to the Linker which must determine data# and x. This 

is because the generated code will be of the form: 

eapbp lp I k, ':' 

stpbp spl arglistb+2':'i 

The trouble with this approach is it forces linking at too early a stage. 

After all, we don't really know if the called program< c> will ever use this 

argument. So, why link to it during the process of calling < c>? If < c> never 

uses this argument the early linking could be a costly strategy. 

A way to postpone this early linking, is to create an indirect its pair 

pointer for the argument list. 
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Coding which could be generated to do the job might look like: 

eapbp lpl k 

stpbp s PI arglistb+2 >!<i 

lda 16,dl 

or sa spl arglistb+2>!<i+l 

I 
I 

form address of the ft2 pair 
for <data> j [ x] in base pair 

I store the address (i. e. , lb llp+k) 
I as an its pair 

put an indirect code, which is 
decimal 16, into lower part of 
accumulator. dl means "direct 

I 
I I lower" 

I 
I 

or the accumulator to storage 
to form an indirect modifier in 
the second word of the its pair 

An its pointer will then be constructed of the form: 

sp I arglistb+2>!<i (lb) its 

(lp)+k 

where (lb) and (lp) represent the contents of the lb and lp base registers at 
the time the eapbp instruction is executed. For a more complete discussion 
on how to handle such arguments, see BB. 2. 02. 

3. 9 STORAGE STRUCTURES FOR DIFFERENT TYPES OF DATA 

Thus far we have been discussing lists of pointers to the arguments of a 

procedure, but we haven't been paying attention to what the arguments them­

selves look like. Some types of arguments, e. g., integer and real variables 

are sufficiently simple that their data values are pointed to directly by the 

pointers in the argument list. Other data types are sufficiently complex in 

structure that the argument pointers don't point to data values but, alas, to 

pointers which are part of the storage structure of the individual arguments. 

The subsystem writer must, of course, keep this in mind in instances where 

code is being constructed to fetch or store data values via argument list 

pointers. 

At least some of the procedures of every subsystem must interface with 

Multics system modules. Arguments pas sed to or from a subsystem procedure 

and a Multics system module are restricted in type to a subset of PL/I data types. t 

tit may surprise you to learn that, although most of the Multics system is 
written in PL/1, the data types used are a restricted subset within that 
language. For motivation and full discussion of this point, see BB. 2. 
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Only the following types of arguments may be passed: 

(a) All scalars: 

arithmetic 

strings 

labels 

pointers 

{
integer 
real 
complex 

{ bit 
character 

(including procedure entry points) 

(b) Any one-dimensional array of the above. 

Standardized storage representations (structures) have been established for 

each of these types and are given in section BB. 2. 02 of the MSPM. We provide 

here a convenient summary of these storage structures. These are the items 

in Table 3-1. In each case, the graphic form~ denotes the item of 

the argument pointed to by the pointer in the argument list. Shaded boxes 

denote parts of the argument containing actual data values. Unshaded boxes 

denote pointers or "dope.'' 

Shown in Table 3-2 are the storage structure conventions established for 

the remaining data types within PL/I. More details on these latter items can 

be found in the MSPM documents which relate more directly to PL/I (i.e., . 
BD. 1, B00 56, BP. 2. 01, and BP. 2. 02). 

Table 3-2 items should also be of interest to the subsystem writer, but 

for somewhat different reasons. Thus a subsystem writer who is developing a 

new language processor, e.g. , MAD or ALGOL, may benefit by seeing the 

way n( ?:2) -dimensional arrays are structured in the Multics PL/I. While 

these are perhaps not the best or only methods for representing such data 

types, two things are worth considering seriously: 

( l) These structures are tested and have proven practicable. 

(2) Multics will eventually provide an extensive library of subroutines 
written in PL/I. A subsystem writer who chooses PL/I storage 
structures can have the automatic by-product of being able to have 
his subsystem interface easily with (i.e. , call directly on) a grow­
ing library supported by the Multics staff and the PL/I community. 
Enough said. 
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TABLE 3-1 

Types of Arguments and their Storage Structures - System- Wide Standards 

Type 
No.t 

2 

3 

4 

7 

8 

9 

11 

10 

12 

13 

14 

Argument Type 

Non-string Scalars 

Single-word integer 

Double-word integer 

Single-word floating-point 

Double -word floating -point 

Single-word floating-point 
Complex 

Double -word floating -point 
Complex 

String Scalars 

Non-varying bit strings 

Non-varying character strings 

Varying bit strings 

Varying character strings 

Program Control Data 

Absolute pointer 

Relative pointer 

Storage Structure 

I 
,~ 
~even 
I~ ~odd 

,~ 

~~-even 

I ~•- even (real part) 
-.....J ~ (imaginary part) 

I . 
I 
I 
I 
I 
I 
I 
I 

p 

t-----1} 2 words 

one or 
more 
words as 
required 

I 
I 

Same as 9, 11 above except add another 
its pair to the sp.,.cifier to point to free 
storage. See BB. 2.02 

1 ~ I'~' I Po161~ I I external internal 
type I 

I~ 

type 

t Numbering here is same as symbol type number (BD. 1, p. 10) used as a code 

in the segment symbol table. 
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TABLE 3-1 (continued) 

Types of Arguments and their Storage Structures -System- Wide Standards 

Type 
No. 

15 Label 

16 Entry 

Argument Type 

same storage 
structure 

One-Dimensional Arrays 

17-24 of scalars, types 1-8, 
and 13-16 

25,27 of scalars (non varying 
strings), types 9 and 11 

26,28 of scalars (varying strings), 
types 1 0 and 1 2 

program point in 
< x. link> 

~tack pointerl 

not now used 

6 words 

one 
contig­
uous 
block 

of 
storage 

See BB. 2. 02 for 
more details which 
will reveal its full 
generality .•.. id is 
a nine-bit code that 
describes the type of 
the structure and size 
of the elementary data 

item 

7w~ 

one 
contig­
uous 
block 
of 
storage 

See BB. 2. 02 for 
more details which 
reveal its full generality ... 

See details BB. 2. 02 

to the stack frame that defines the generation of temporary storage appropriate 
to the program point. 
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TABLE 3-2 

Types of Arguments and their Storage Structures - PL/1 Standards Only. 

Type 
No.t 

17-24 

25 
27 

Argument Type 

Higher-dimensional Arrays 

of scalars of types 1-8 

of non-varying string 
scalars 

bit strings 
character strings 

of varying strings 
26 bit strings 
27 character strings 

(same as 25 and 27, except 
we add one more its pair 
to the specifier which points 
to free storage) 

t See footnote to Table 3-1 
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Storage Structure 

Dope 

one 
contig­
uous 
block of 
storage 

3m+ 3 words, 
where m = number 
of dimensions in the 
array (See BP. 2. 02). 

one 
contig­
uous 
block of 
storage 

3m+ 4 words, 
where m = number 
of dimensions in the 
array (See BP. 2. 02). 



TABLE 3-2 (Continued) 

Types of Arguments and their Storage Structures - PL/I Standards Only. 

Type 
No. Argument Type 

Structures 

Arrays of Structures 

Storage Structure 

specifier 

Dope 

See BP. 2. 02. 
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one 
contig­
uous 
block of 
storage 

3 + n words, 
where n :: number 
of substructures 
See details, 
BP. 2. 02. 

dopes for up to 
n substructures 
that may have dope 



3. 10 FUNCTION NAME ARGUMENTS, ORDINARY CASE 

A procedure< p> may call on another procedure< r>, passing to it an 

argument that is a procedure entry. Suppose the argument passed to 

< r> is the procedure entry < q> I [ entry3], in a call equivalent to 

call < r> I [entry] ( arglist 1). 

In this case the argument list contains a pointer to the entry datum which 

has a pointer to < q> I [ entry3]. Some time later, while executing in < r>, we 

can have a call on< q>, by referring to a parameter, say t, that corresponds 

to < q>. Such a call might have the appearance: 

call t (arglist2) 

where t is declared to be the dummy procedure name, and the arguments, 

x, y, and z are recognized as external symbols for (say floating point) vari­

ables located in the segment <data>. A corresponding sketch is shown in 

Figure 3-7 using PL/I terminology. 

The argument list generated in the call to < r> will have the appearance: 

arglist 1 2 0 

0 0 

( sb) 0 its 

( sp)+arg 0 0 

The argument its elf we suppose is located at sp I arg. It has the format: 

entry datum 

spjarg+O q. link# 0 its 

entrypair 0 0 

I 
I 
I ---------+--- -t- ----

I I 
I I I 

-------- _.L. -- _L- ---
I I 

! l 
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normally zero 
(used only for 
internal functions) 

unspecified error 
check information 



p: procedure; 

call r(q); 

r: procedure(t); 

de l(data$x ,data$y, 
data$z) float; 

} 
call t(data$x,data$y, 

data$z); 

r procedure (a,b,c};l 

Figure 3-7. Calling an External Procedure Whose Name (q) 

has been Passed as an Argument. 

p: procedure; 

de I w fixed binary ( 17) 
J automatic 

call r(q); 

r 
q: procedure( a ,b ,c); 

I ' 

r: procedure(t); 

de l(data$x ,data$y, 
data$z) float; 

f 
call t(data$x ,data$y, 

data$z); 

Figure 3-8. Calling an Internal Procedure Whose Name (q) 

has been Passed as an Argument. 
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The first its pair points to an offset within< q. link> at which we can 

expect to find the quadruplet 

entrypair: eaplp 
aos 
tra 
arg 

-':', ic 
2, ic 
link-':', ic':' 
0 

whose execution basically results in the transfer to < q> \ [ entry3] . Ordinarily 

the second pair of words in the entry datum is zero. In certain cases, how­

ever, as explained below, it will be used for holding a stack pointer value. The 

third pair, is to be used for as yet unspecified error checking information. 

To generate the call on the dummy t while executing in < r>, the last 

instruction in the call sequence might be preceded by the instruction: 

eapbp ap\2,':' 

to put the address of the function name argument in b~p. The standard call 

sequence would follow, ending with the instruction: 

tra bp\ 0 

which would cause the transfer to the address found in the first its pair of 

the function name argument, i.e. , ultimately to the desired entry point in 

<q>. 

The argument list that goes with this call on < q> would appear as: 

arglist2+0 6 0 

0 0 

data# 0 its 

X 0 0 

data# 0 its 

y 0 0 

data# 0 its 

z 0 0 
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3. 11 FUNCTION NAME ARGUMENTS, SPECIAL CASE 

Suppose again the procedure < p> calls on < r>, pas sing to it as an argu­

ment an entry point in q. But this time, suppose q is a procedure that's in­

ternally defined within< p>. Figure 3-8 illustrates this case using PL/I 

terminology. We will imagine that the entry point is located at q+entry3 

within< p>. Because q is an internal procedure, it may, whenever it is 

executed, require data values which have been allocated temporary storage 

in a stack frame created earlier by the containing procedure < p>. Somehow 

q will have to know how to reach this stack frame. This section explains the 

Multics conventions which are designed to aid subsystems writers in solving 

communications problems of this type. Such problems, of course, will occur 

in subsystems which permit the embedding and or the nesting of internal pro­

cedures or blocks within procedure segments. 

To continue with our example, suppose then, < p> calls < r> with a call 

equivalent to 

call < r> I [entry 1] ( ar glist l) 

The argument list at arglistl looks just like the one we showed in the preceding 

discussion. However, the argument itself must now include a stack pointer 

value for reasons we shall be developing in the next paragraphs. Thus, our 

argument at sp I arg would now appear as: 

entry datum 

sp arg+O p. link# 0 its 

entrypair 0 0 

( sb) 0 its 

( sp) 0 0 

._ __________ -----

Each call sequence that sends control from< p> to < r> must be immedi­

ately preceded by code that creates an argument in the above form. 
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------------------------·· 

The first its pair points to the entry instructions within < p. link> whose 

execution would result in a transfer to < p> I q+entry3. ( sb) and ( sp) refer to 

values of the sb.-sp base pair extant immediately prior to the call. Code to 

generate the first two of these its pair could be: 

I 
1 form the address p. link# I entrypair eapbp lp I entrypair 

I 
1 store as the first its pair in 
1 the function name argument. 

stpbp splarg 

stpsp splarg+Z 
I 
1 store stack pointer value as the 
1 second its pair. 

Proceeding further with our example of Figure 3-8, we now suppose 

that, while executing in < r> at some point, we wish to execute a call on q 

via reference to the corresponding parameter t, e.g., 

call t (arglist2) 

Here again, t is the dummy procedure name. The arguments x, y and z 

happen to be externally defined within <data>. 

Once the call sequence in < r> to p# I q+entry3 has been completed it 

must be possible for the computation of q(x, y, z) to proceed successfully. 

But suppose that while executing in q it becomes necessary to refer to a pre­

viously stacked data value such as w that was assigned during prior execution 

in< p>. Remember that the compiler does not and cannot furnish addresses 

that are relative to the beginning of the stack segment. It only furnishes ad­

dresses relative to the beginning of a stack frame. Therefore, q must know 

the stack frame pointer that was in use at the time < p> called < r>. Note 

this is the pointer that would be made a part of the function name argument 

to be ''passed" to< r>. Obviously<' r> itself has no need for this stack pointer, 

but notice that when < r> calls on q, < r> can pass this pointer back to q as an 

argument. In a sense, the stack pointer must make a "roundtrip" from < p> 

to< r> and back to< p>. We now see why a function name argument (entry 

datum) that refers to an internal procedure is designed to include the current 

stack pointer value. 

In just a moment we will examine the structural form of the argument 

list that must be used in calling on q. Before doing so, we might digress 
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here to ask several questions: What sort of call sequence should be used in 

calling an internal procedure? Should the standard call sequence be used? In 

any case, how should execution proceed in an internal procedure like q once 

it is called? Should there be a save sequence executed to create a separate 

stack frame for execution of q? Anyone writing a compiler for a language 

that has an ALGOL-like block structure, e. g., one which permits the nesting 

of internal procedures and/or PL/I-like begin blocks, must provide his own 

answers to these questions. 

Mechanisms have been developed by the EPL compiler writers for dealing 

with these problems. They are well documented in MSPM. Other compiler 

writers may choose to adopt these techniques. If so, they will find the notes 

in BN. 5. 01 very helpful. They should keep in mind, however, that the imple­

mentation described there is regarded by its developers as somewhat clumsy 

and subject to improvement. 

The notes in BN. 5. 01 suggest one mechanism for handling the general 

problem which arises when the called procedure or block may be nested at any 

depth within a containing external procedure. The bookkeeping becomes 

more complicated, because successful execution of the called procedure may 

require knowledge of a (different) stack pointer for each of the "containing" 

procedures or blocks. That is to say, a mechanism is developed for knowing, 

when executing within a procedure or block that is nested at level i, where to 

find stacked data that was generated by containing procedures or blocks at 

various "shallower" levels k < i. In the EPL implementation, begin blocks 

are treated indistinguishably from internal procedures. To enter a block one 

issues a standard call sequence, as if it were a procedure. Once called, the 

internal procedure executes the standard save sequence to create its own 

stack frame. Among other things that can be stored in this frame is the 

(set of) stack pointer(s) to the frame(s) for any outer level procedures that the 

called procedure needs to refer to. This set of stack pointers is referred to 

as the "display." 

The cost associated with a call to a nested procedure or block in the cur­

rent EPL mechanism unfortunately increases with increase in the depth of 

nesting. This objection is serious enough that work is progressing on im­

proved techniques which would have the virtue that calling costs are indepen­

dent of nesting depth. 
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We are now ready to discuss the structure of the argument list that is 

used for calling on an internal procedure. This Multics "standard" takes 

the form of a simple embellishment to the structure of an ordinary argument 

list. The extended form is shown in Figure 3-9. 

In our particular example we see that the PL/I statement 

call t (data !lx_, data $y, data $z); 

corresponds at assembly level to 

call t(arglist2) 

with an associated argument list which would look like: 

arglist2+0 6 2 

0 0 

+2 data# 0 its 

X 0 0 

+4 data# 0 its 

y 0 0 

+6 data# 0 its 

z 0 0 

(sb) 0 its 

(sp) 0 0 

In point of fact, eplbsa does not automatically generate the code to 

construct the argument list in the expansion of the call macro, although an 

assembler with a more advanced macro capability could be expected to do so. 

This means that any compiler designed to generate eplbsa code as output 

must bear the full responsibility for generating code to form the argument 

list before generating the call macro. 

If we were to imagine the use of a more advanced assembler, then 

conceivably, a source statement like 

callt(<data>j[x], <data>j[ y], <data> I [z]) 
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2*n 2 

0 0 

s # 
1 

0 

a # 
1 

0 

s # 
2 0 

a # 
2 

0 

. . . 
s # 

0 n 

a 0 
n 

sb value 0 

sb value 0 

its 

m1 

its 

m2 

its 

m 
n 

its 

0 

-~ a 5 
g 

t 
h 

n argument 
pointers 

t 
} stack value for last generati 

___...-of storage associated with th 
procedure being called 

on 
e 

This structure is used when calling on ann-argument internal procedure whose 

name was previously pas sed as an argument. 

Figure 3-9. Structure for an Argument List. 
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could be recognized. The assembler would then generate: 

( l) the code to form the complete argument list 

(2) the call sequence 

Such an assembler would have to automatically recognize that t is a 

dummy that representing an internal procedure in order that it (the assembler) 

could know to generate code to form the n + 1st its pair of the argument list. 

A sophisticated assembler could recognize that t is an internal procedure as 

follows: 

Since tis a parameter, the assembler must generate code which, when 

executed, determines if the entry point that corresponds to t is internal or 

external. If external there is of course no need to add the n + 1st pointer. 

The distinction can be achieved by inspecting the second its pair in the entry 

datum. If it is zero, the entry must be external because otherwise this pair 

would hold a stack pointer. Code like the following would, if genera ted, per­

form this discrimination during execution, and add the its pair as needed, etc. 

eapbp 

ldaq bpl2 

tze skip 

staq spl arglist2+2>!<n+2 

skip: 

establish pointer to function name 
arg, assuming it is the ith argument. 

pick up (sb), (sp) from second its 
pair of this arg. 

bypasst 

store stack pointer value as n + 1st 
argument in call on q 

} adjust word zero of 
argument list 

trn the GE 645, execution of the ldaq instruction causes the zero indicator to 
be turned on when the loaded double word is zero. 
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Once inside the called internal procedure, any reference to a local 

(automatic) variable in the containing procedure < p> must be accomplished 

via the stack pointer argument. In our particular example, a reference to 

the variable w by the procedure q might be coded something like: 

eapbp ap \8, ':' 

lda bp\ w 

3. 12 COMMUNICATION TO AND FROM EXECUTE-ONLY PROCEDURES 

Communication to or from execute-only (E0) procedures justifies separate 

discussion. The communication process for such procedures is necessarily 

more complex. Special code must automatically be generated within E() pro­

cedures and in their linkage segments which will control access to them and 

at the same time allow flexibility in their use and still permit them to be pure, 

and hence sharable. Thus: Although any call on an E(} procedure must begin 

execution at word zero, so that the call can be examined for some sort of 

validity, we still want to allow such procedures to effectively have multiple 

entries. Moreover, although any return to an E(} calling procedure must 

actually resume execution at word zero, again, for validation purposes, we 

still want to permit the writer of the E0 procedure to effectively imply or 

specify any program point for a normal or alternate return. 

You should have little difficulty appreciating the communication objectives 

and problems, which are clearly set forth in BD. 7. 03. The solutions, in the 

form of more elaborate call and save sequences are also outlined in BD. 7. 03 

although they are perhaps not quite so easy to understand. 

Suffice to say that all these special sequences are supposed to be auto­

matically generated by the Multics PL /I compiler and by at least one of the 

macro assemblers provided in the Multics public library. If you are writing 

your own target-code producing assembler or compiler and if you want it to 

be capable of generating E0 procedures, you will find it essential to gain a 

grasp of all the details in BD. 7. 03. Hopefully, this chapter has prepared you 

for the challenge. 
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