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CHAPTER IV 

ACCESS CONTROL AND PROTECTION 

4. 1 INTRODUCTION 

In this chapter and its successor we want to review our picture of interprocedure 

communication with a more realistic orientation. We want to understand this com­

munication as one going on in the multi-access environment of Multics where differ­

ent processes, undoubtedly involving a number of different users, co-exist each with 

separate objectives (and skills}. The users often compete for the computer's re­

sources. They "play" against each other in one way or another fair or foul. Fair 

play, as in a management decision game with several players, is to be encouraged. 

Foul play, as for instance one user inadvertantly or deliberately destroying the data 

or procedures of another user, or of the system itself, is to be more than merely 

minimized, discouraged or outlawed. It is to be prevented in toto! Multics is de­

signed so that a large measure of fair play can be achieved by cooperating users while 

at the same time every type of foul play that can be anticipated is prevented. 

This ambitious design objective is actually achieved inspite of the fact that en­

couraging fair play - i.e., permitted cooperation between users - almost inevita­

bly invites accidents, i.e., suggests chances for damaging interaction between users 

or between a user and the supervisor - or so it would seem. A primary goal of 

Chapter 4 and, to some extent, Chapters 5, 6, and 7 is to explain how these two ob­

jectives are, in fact, achieved. Secondarily, we hope the reader of this chapter 

will gain confidence that Multics will indeed protect him from the inept practice or 

foul play of others who share the computer with him. He will also see that to a sig­

nificant extent Multics can help to protect the user from himself as well. 

4.1. 1 Compartmentalization - General Concepts 

One natural question a subsystem designer might ask is: How does a large pro­

cess ever get debugged? What helpful provisions are there in Multics to effectively 

isolate (and insulate) procedure and data segments (or groups of them from one an­

other}? Could one, in principle at least test isolated parts and be sure that when 

tested parts are put together, undesirable interaction of the parts can be avoided or 
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at least controlled? This principle of compartmentalization probably goes back to 

the early days of debugging which, in turn, certainly dates with the first computers.':' 

Even on these simple, stand-alone computers where a user literally "owned" 

the entire machine while in execution, ideas of protection began to emerge. To in­

crease the reliability of a program, ways were sought to safeguard data areas; pro­

cedures (subroutines) were invented to subdivide large programs and attempts were 

made to limit the scope of procedures so that no one procedure will be allowed to ac­

cess any more data than needed. Near the beginning, interpreters were invented as 

one of the software schemes to help achieve these measures of protection. Much 

later, hardware innovations provided alternative possibilities. 

When batch monitor operating systems were introduced there were new problems 

of protection. Without benefit of hands -on control a sophisticated user had all the 

more reason to design large processes in a compartmentalized manner to achieve in­

ternal protection of his programs and data. But, in addition, as a consideration to 

other users in the batch, both ahead of him (on the output tape) and behind him the 

isolation of the "supervisor" became critically important. In the batch system an 

executing process could be thought of as having two distinct domains: the super­

visory programs and their data bases (S) and the user programs and their data 

bases (U). To act as a "protected supervisor" in any meaningful sense, it was es­

sential that certain procedures in S have access to the programs and data of U. On 

the other hand, it became apparent that programs of U should be allowed no direct 

access to data inS and should be capable of only certain kinds of controlled access 

(e. g., "trapped" calls to the I/O supervisor) to certain of the programs in s. 

The latter distinction accords with the idea that only supervisory programs may 

execute I/0 and other privileged instructions. Hardware developments have made 

it possible to facilitate this distinction. In many computer operating systems operat­

ing under batch monitors, "master mode", which permits execution of the full in­

struction repertoire, is reserved for supervisory programs. A user program can 

effect a transit into the master mode only by temporarily giving up direct control, 

such as by executing an instruction that traps his program to a master mode fault 

handler. 

*Professor Maurice Wilkes, of Cambridge University, reports that his laboratory 
"discovered" debugging the first day the EDSAC became operational while attempt­
ing to execute a simple program for generating a table of prime numbers. 
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Given this type of protection of S and givenS's greater freedom to interact with 

U, we see that 

(a) if S malfunctions, it can destroy both S and U, 

(b) if U malfunctions, at worst it can only destroy U, leaving S free to load 
and execute tasks for other users, e. g., for U 1, u 2 , etc. 

When we now consider an environment like Multics where we have a collection 

of user domains, U 1, u2 , ••• , Un, and a common supervisor, S, all our earlier 

incentives for isolating key compartments of a process remain. The consequences 

of not having adequate protection of S, however, are much worse. We must bear in 

mind that process l consists of U 1 and S; process 2 consists of u2 and S, etc. Any 

time supervisory procedures in S are executing, they are maintaining data bases in 

S that pertain to the entire group of active user processes. If these tables are in­

advertantly or deliberately tampered with by U 1 (executing in process l) or u2 
(executing in process 2), etc., not only would S be damaged, but one or more other 

user processes are likely to be defeated at the same time. (Destruction of processes 

can now occur en masse rather than, as typical in the batch system, merely invok­

ing a delay in use of the system by users waiting in the queue.) 

There are of course new kinds of problems that need to be considered in a multi­

programmed environment which were less serious in the batch system. One of these 

is the matter of privacy or, more generally speaking, control over the "sharing" of 

segments. If a general mechanism is to be provided for allowing two or more running 

processes to share the same segments, there must also be a complementary capa­

bility for preventing certain segments of one user's process from being shared, 

peeked at, or written in by procedures of another process. Thus to insure the U 1 

cannot interact with u 2 , e. g., by "peeking", we must rely on a carefully conceived 

scheme of access control for each segment used in each process. Moreover, the 

actuating of these access controls must be a function confined to the supervisory 

procedures in S, using data bases in S. 

One begins to see how really critical the design of a "foolproof", "vandal proof", 

and "burglar proof" protection mechanism is, if any large general purpose multi­

user, multi-programmed environment is to endure. The Multics design for access 

control and protection is intended to be "airtight". In this chapter we hope to de­

scribe a major part of this plan. 
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4. 1. 2 Compartmentalization - as Achieved in Multics 

In Multics compartmentalization is achieved through two primary mechanisms, 

one supplementing the other. 

(a) Per-segment access control. 

This is a means of denoting and controlling the type of access to a particu­
lar shared segment which may be accorded to an individual user. A seg­
ment may be shared by two or more processes, but the person who creates 
the segment and who "grants" permission for its shared use is able to 
specify the type of access accorded to each grantee. 

By giving to each file's author the privilege of listing the users who shall 
have access to it, a user is able to safeguard the information he creates 
and files away for future use. It is true that Multics permits the coexist­
ence of many processes, each of which competes for the system's physical 
resources and employs the same file system hierarchy. Nevertheless, 
sharp divisions may be maintained between the processes with respect to 
the information each may acquire in its address space and how such in­
formation may be used. Furthermore, the control rests where it may be 
most meaningfully exercised -with the user. Per-segment access con­
trol may therefore be viewed as a form of inter-process protection. Con­
cepts of access control are introduced in Section 4-2. ':' 

(b) Concentric rings of protection. 

The ring mechanism, by contrast, offers intra-process protection of seg­
ments. The concentric ring concept is essentially a generalization of the 
S and U (supervisor and user) domains. The segments of any one process 
are associated with a set of generally two, but possibly more, concentric 
rings. If a process has only two concentric rings, then the inner ring 
corresponds to S and the outer ring to U. But, provision has been built 
into the Multics design so that the subsystem writer may add {as justified) 
additional rings. In such applications, segments of the subsystem would 
be associated with the most appropriate ring {category) vis -a-vis privilege 
and protection. In this way a designer, say when developing a teacher­
student subsystem, may establish one or more extra "lines of defense". 
These can result in increased protection of the key parts of the subsystem 
{e. g., teacher-written programs) from damage or misuse by other users 
of the subsystem {e. g., student-written programs). 

Basically, a procedure which is assigned the category of ring E. is privileged 

during its execution to call {or to reference) any procedure {or data) segment in ring 

r or in any ring peripheral, i.e., "outside of" ring r. Conversely, a procedure of 

ring r is prevented from referencing data segments in a more "privileged", i.e., 

"inner" ring and is permitted call access to more privileged procedures only through 

specially controlled entry points called "gates". 

~:c 

Section 4-2 should not be regarded as a complete treatment of access control. 
Additional material is given in Chapter 6. 
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The Controlled entry via gates is into procedures that may reside in any one of 

several inner rings. This amounts to a software-augmented generalization of the 

call trapping capability that is employed in conventional batch monitor systems. In 

these systems the caller traps, when permitted to do so, to procedures that have 

full privilege (master mode). In Multics, the caller can in effect trap into procedures 

that have intermediate degrees of privilege, as deemed appropriate by the subsystem 

designer. 

The set of supervisory segments, when viewed as a subsystem can, in principle, 

also benefit through subdivision into rings. Two rings were originally thought to be 

desirable; the first was variously referred to as ring 0 or the hardcore ring; the 

second, ring 1, was also called the administrative ring.':' Experience in checking 

out the earliest versions of Multics indicated, however, that the cost (both in space 

and time) for maintaining two supervisory rings using existing hardware was not 

justified. As currently implemented, the Multics supervisor resides essentially in 

one ring (ring 0). A small portion of the ring 0 segments must in fact remain resi­

dent in core at all time. Such segments are referred to as "wired down" and their 

absolute addresses in memory are known to other ring 0 procedures. The logical 

structure to support a multi-ring supervisor has been carefully retained. So, a 

multi-ring supervisor can be readily employed whenever hardware improvements. 

allow it to be justified. For this reason our discussions in this chapter will retain 

a generality, wherever appropriate, that presumes the existence of a multi-ring 

supervisor. 

Here we summarize the motivation for multiple rings for supervisor and/or 

user: 

By sub setting the segments of a process into rings and by effectively controlling 

interactions and communication between segments of different rings (supervisory-

or user-like), Multics provides the potential to isolate trouble and limit damage in 

the system. Different rings, in a way, may be equated to different levels of damage. 

Greater damage to the total system operation would, in general, result from a mal­

function of or damage to a segment, the closer its ring is to the hard core or "nerve 

center" of the system. Conversely, damage that occurs to a segment in an outlying 

':'Generally speaking, ring 0 segments were those most crucial to the operation of 
Multics. In this category fell certain key tables and vital procedures which, for 
instance, govern the multiplexing of the core memory, of the processors, and of 
other key resources among the processes. Ring 1 segments were, generally speak­
ing, those more numerous and less vital supervisory segments which might more 
readily be debugged while the system would be in full operation. 
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user ring, would affect only the user's process or at worst those of other users who 

happen to share the affected non-supervisory segments. One would correctly intuit 

that there are significant overhead costs incurred in implementing rings and the im­

plied controls. For instance, extra execution time required to cross from one ring 

to another during a procedure call or a normal return is of the order of several 

milliseconds. (This is the cost using the current GE 645 hardware together with 

the software described in this Chapter.) The notes in Sections 4. 2 and 4. 3 will pro­

vide insight into the costs involved, so that you will be able to assess the tradeoffs 

among subsystem designs employing alternative ring structures. One type of "ring" 

overhead is alluded to in the next two paragraphs. 

4. 1. 3 Alteration of the Process Stack Model 

The process stack model which we developed in Chapter 3 must undergo an ex­

tension to be compatible with the concept of a process that is subdivided in the two­

or more-ring sense. We can no longer continue to think of a single (common) stack 

that can be employed by (i.e., be read-write accessible to) all procedures in one 

process. For, were this the case, the hoped-for isolation between rings would be 

easily circumvented. Any (offending) procedure could copy information from the 

stack or possibly destroy information (including instructions) in it which was stored 

there by supervisory ("superior" in the inner-ring sense) procedures. Security and 

protection of information vital to the functioning of a supervisory procedure would 

thereby be nullified. The Multics solution is to give procedures in each ring of a 

process a separate stack segment. Of course, all legal communication between 

procedures of different rings then becomes clerically (though not necessarily con­

ceptually) more complicated than first described in Chapter 3. 

Readers can hopefully gain a full overview of all these new ideas by reading 

Sections 4. 2 and optionally proceed to 4. 3 for still further details. Protection prob­

lems also arise in connection with other types of interprocedure communication, 

specifically condition handling and abnormal returns. A discussion of these prob­

lems and the solutions to these as developed in Multics, is the subject of Chapter 5. 

The MSPM documentation on which· most of this "protection" material is based comes 

from the BD. 9XX sections of the MSPM and from Graham.'~ 

':'"Protection in an Information Processing Utility" by R. M. Graham, 
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 365-369 
(an excellent overview) 
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4. 2 ACCESS CONTROL AND RING BRACKET PROTECTION 

In this section we provide some basic details on the two types of isolation tech­

niques, access control and ring brackets':' which, in proper combination, are funda­

mental to the system of protection and to the controlled sharing of data and procedures 

in Multics. 

We have already suggested why segments within a process should be subdivided 

into rings and why, for each ring there should be a separate stack segment. It is 

proper to remark here that ring compartmentalization is carried out with some hard­

ware aid. Multics exploits special GE 645 fault-detection hardware to detect and trap 

a process whenever it attempts to make a cross-ring reference requiring interven­

tion of supervisory software. Without some direct hardware support a ring isolation 

scheme could be achieved only by execution in a fully interpretive mode, a prohibi­

tively expensive alternative. 

Before we can proceed further with the details of the ring mechanism, it is nee­

essary to acquire a clear understanding of the perhaps more fundamental, per-segment 

access control provisions of the basic file system. 

4. 2. 1 Per-Segment Access Control t 

What follows assumes you have, at sometime in the past, read one of the several 

available Multics overviews on the basic file system and, in particular, the directory 

structure of the file system hierarchy. f A review of these topics may not be nec­

essary now. We will assume that you have a general knowledge of the file structure: 

':'The notion of a ring bracket to be developed in this section is a slight extension of 
the ring concept already introduced. 

tPrincipal MSPM references on which the discussion of access control is based are: 
BG. 0 Overview of the Basic File System, and 
BG. 9 Access Control. 

Auxiliary documents are: 
BG. 3 Segment Control 
BG. 7 Directory Data Base 
BG. 8 Directory Control 
BX. 8 File System Commands 

f As of July, 1967 either the paper by R. C. Daley and P. G. Neumann, pp. 223-227, 
"A General Purpose File System for Secondary Storage," (Proceedings of the 1965 
Fall Joint Computer Conference) or the most recent account, pp. 5-16 through 5-39 
of the Multics Operation System, May 196 7 (Cambridge Information Systems 
Laboratory of G E). 
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{l) that it consists of a tree of directory and nondirectory files; (2) that among 

other things, a directory contains a set of entries called branches, teach of which 

points directly to and describes a file in some detail: either a directory file, i, e,, 

another directory, or a nondirectory file, i, e., referring to a block of data or to a 

procedure. Branches carry unique identification and they are in one-to-one corre­

spondence with the files in secondary storage; (3) that a nondirectory file is simply 

the way we refer to data or procedure segments kept in secondary storage; we think 

of them as files on secondary storage in the context of the file system, but as seg­

ments when we refer to them in any way as part of a particular process; and (4) file 

descriptions (branches} are specified either explicitly or by default rules at the time 

a segment is created. Each branch includes a "permission list" which names each 

user who is to have access to the file and which specifies the types of permitted ac­

cess for each listed user. Of course, the creator of a file is automatically listed 

as a permitted user in the file's branch. 

Figure 4-1 is a schematic of the directory structure, At the time he acquires 

"user status", each user has assigned to him a uniquely-named "user directory" 

whose file branch is located in a system-maintained directory called "user_ 

directory_directory." Once a user begins executing processes in his own name, he 

may create new files and add these to the Multics tree. The new files will normally 

have their corresponding branches in the user's user directory. A user is free to 

create either non-directory or directory files. The ability to add directories implies 

that a user if he chooses, can add to the overall system hierarchy a subtree of 

arbitrary depth whose root is his own user directory. 

The creation of a file takes place when a process calls for the creation of a new 

segment whose name and other descriptions correspond to the desired file. In the 

course of creating the segment, the Basic File System establishes the segment as a 

file by constructing and attaching a file branch in the appropriate directory. Sub­

sequent to its creation, writing into the segment amounts to adding information to 

the file. 

A process will frequently make indirect attempts to access an existing file usual­

ly by making symbolic reference to it via link faults. The Basic File System (BFS) 

which is involved in response to the Linker's request, will attempt to "register" the 

wanted file as a segment of the faulting process. Registering the file amounts to 

fAnother type of entry called a link is discussed in Chapter 6. 
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Each directory contains a set of "branches" (which point 
either to other directory files or to non-directory files}. 

Figure 4-1. Schematic of Directory Structure of the File System 
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associating with it a segment number and obtaining the information that is needed 

to form the appropriate segment description word (SDW). In the process, the BFS 

will first answer the following question. Does the process associated with the fault­

ing procedure have any business at all making this reference, i.e., is any access 

at all to this segment by this process to be permitted? 

To find the answer, supervisor modules will locate and then examine the particu­

lar directory':' that holds the branch pointing to the desired file - i.e., to the file 

whose attempted acquisition as a segment caused the fault. The "access control in­

formation" found in this branch 1s "permission list" provides the answer. 

First we consider the consequence of a no answer. In this event the desired seg­

ment is discovered to be strictly off limits to the current user. In the handling of an 

ft2 link fault to such a segment, the Linker module would "learn" the no-access news 

from the appropriate ring 0 module in charge. The Linker then gives up its attempt 

to establish the desired link, and transmits its failure to the Fault Interceptor.':":' 

The latter will now signal its failure to achieve the desired link so that, at least in 

some subsystems, corrective action may possibly be taken by the user. (We 1ll dis­

cuss the technical meaning of signalling in Chapter 5.) 

If the answer is yes, then the file may be used as a segment in the requesting 

process. Other information in the directory spells out the kind of access that is to 

be permitted. 

4. 2. 2 Some Details on Access Control Information 

Now, to the details of access control information. We begin by looking at a s che­

matic of the data structure for a directory, Figure 4-2. A directory (for our pur­

poses here) is thought of chiefly as a list of pointers to branches. Each branch is, 

in turn, conceptually divided into two parts, a permission list, hereafter called an 

access control list (ACL) and a block of other information specific to the data of the 

branch, e. g., where the file is located in secondary storage, its size, etc. A sche­

matic of these lists is displayed in part (b) of Figure 4-2. The actual storage 

structure is given in BG. 7. 

':'The mechanics of searching and locating the desired directory is examined in 
Chapter 6. 

':":'For a refresher on the role of the Fault Interceptor, refer back to Section 2. 6. 5 
of the Guide. The design of this module is detailed in MSPM BK. 3. Inspection of 
these details should be postponed until after study of Chapter 5. 
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{b) 

-------~ ~---~~~~}other brancheo, etc, 

L harry> 

AC L - access control list for a 
particular branch 

{a) Partial view of data structure for a directory. 

user i dent 

mode of access{R,E,W, A) 

ring bracket {rl, r2, r3) 

(user ident 

mode of access {R,E, W,A) 

ring bracket (rl, r2, r3) 

<:1 etc. 

Data structure of an access control list for an individual 
branch {ACL). 

Figure 4-2. Schematic of Directory Data Structure 
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Associated with each listed user or class name,':' is information that denotes 

the mode of access, i.e., read and/or write, etc., and a ring bracket. The latter 

identifies the ring(s) from which the specified access mode is permitted. Access 

control information may be altered only by the process(es) which enjoys write ac­

cess privilege in the directory which contains the branch to the file in question. 

Normally, this process is the one which has responsibility for creating the segment. 

A subsystem writer, ssw, will typically designate his own user directory as the 

one to hold branches for segments which he would let others have access to. Sub­

sequently, only processes executed by ssw (or by his proxy) would have the write 

access mode necessary to alter branches to such segments. 

Strictly speaking, a name on an access control list in a branch is what is called 

a "user id". When a user logs in, the process that is created for him, and any 

others which may be subsequently spawned for him during the same console session, 

are registered under a common user_id. The user id is a concatenation of several 

components, including the user's name and his project number. 

If a user is to have any access at all to a given file (segment), his user id or a 

class name that includes the user_id must appear in an entry in the appropriate 

branch's ACL. A search will be initiated at the request of the Linker in behalf of a 

given process with user_id as one of the arguments. 

Specifically, if the search for the segment, say <tom> leads to the branch 

pictured in part (a) of Figure 4-2, then access will be permitted if and only if an 

acceptable match can be made between user_id and a corresponding user identifica­

tion in an entry of the ACL for <tom>. 

Usage Attributes 

Codes defining the modes of access are found in the matched ACL entry. These 

code~, called usage attributes, determine the kind of access to be permitted this 

user. A module of the Basic File System called Segment Control will employ this in­

formation in setting the descriptor field when preparing the descriptor word for the 

segment being acquired. Segment Control is invoked in an appropriate manner when 

its services are needed, e. g., by the Linker. 

There are four usage attributes, each coded as on-off switch. The switches are 

named R (for Read), E (for Execute), W (for Write), and A (for ~pend). Table 4-1 

':'Access control lists either name individual users (user id) or classes of users. 
The coding schemes for naming classes of users is explained in BX. 8. 00. 
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gives the on interpretation of the REWA switches in the typical case where the 

branch refers to a non-directory file {as opposed to a directory file),':' These four 

attributes define the so-called effective mode of the segment, 

TABLE 4-l 

On Interpretation for the Four Usage Attributes in Non-directory Files 

Attribute Type of Segment Implied Type of Permission 

Read Data or Procedure Can read the contents 

Execute Procedure Can execute as a 
procedure 

Write Normally data, occasionally Can truncate or re-
procedure write existing con-

tents {without in-
creasing the length) 

Append Data Can add to the segment 
without changing its 
current contents 
{Should be accompa-
nied by the Write 
attribute) t 

-·-
'''Interpretation of the switches for a directory file is discussed in BX. 8. Briefly: 
The read attribute must be on if a user wishes to examine the contents of a particu­
lar branch, e, g., to see if he is on the ACL for that branch and if so the type of 
access he has been granted, 

The execute attribute must be on if a user wishes to search a directory to 
locate a particular named branch and if found to use the file to which it points, 

The write attribute must be .£!!if a user wishes to alter a branch, e, g., 
change access control list information, or to delete the branch entirely {and its 
corresponding file), 

The append attribute must be.£!! if a user wishes to add a new branch to the 
directory {without altering existing branches), 

t Ideally the concept of the A attribute for a data or procedure segment should be 
fully independent of the other attributes, Thus, to be meaningful, an A attribute 
should carry with it an implied write privilege in the section of the segment that 
is appended, The GE 645 has no hardware to support this independence, As a 
result the A attribute by itself does not carry with it any write permission. For 
this reason, if the A attribute is given to a user of a segment, he should also be 
given the W attribute as well, Of course, this means that write permission is 
then given for the entire segment, not just for the append portion, 
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The important observation to make here, if you are a subsystem writer, is that 

two or more users may have entries on the same ACL with different effective modes. 

This can lead to a situation where, for example, the same unique copy of a data seg­

ment is acquired by two processes (active at the same time). One process is given 

read and write privileges to the segment, while the other is given only read privileges. 

This capability for the sharing of segments means it will be possible for certain key 

data and procedure segments of a subsystem to be under development (full access) 

by a subsystem writer while continuing to permit users of this system the appropri­

ate, but limited access to such segments (e. g., Read only for the data and Read, 

Execute for the procedure segments). 

Notice, also, that a user can have more than one process because he can have 

one project number, and/or more than one user id under the same project number. 

This means he has the possibility of giving one of his files, say segment< a>, differ­

ent effective modes for his different processes (or project numbers), thus offering 

the possibility where necessary of a user "protecting himself from himself". 

Recall from Chapter 1, that the G E 645 address formation hardware has been 

especially designed to permit this 11 simultaneous" multi-type use of a segment. Ac­

cess to a segment is not a function of the physical location of the segment in core, 

but is a function of the descriptor bits set in the segment descriptor word (SDW) of 

the particular requesting process. These bits are, of course, independent of the 

segment's location. Moreover, two or more active processes may share a segment 

in core. Each process would have an SDW pointing at the page table for this shared 

segment, and each of these SDW's may be set with the same or different descriptor 

bits. 

In summary, ACL entries may be added, deleted or altered by any user who is 

privileged to write in the directory containing the branch to a given file. Thus, the 

subsystem writer who constructs a particular file will be able to select the set of 

valid users for each of his files and the type of access to be accorded each. The 

calls to the Basic File System for performing these ACL operations are described 

in BG. 9 and the corresponding commands are described in BX. 8 and BY. 12. 

4. 2. 3 Rings and Ring Brackets 

The ring bracket found in each ACL entry defines the ring or bracket or rings to 

which the segment will belong in the process acquiring it. We initiate our discussion 
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by considering the simple case where, for purposes of access, a segment is associ­

ated with a single ring, deferring discussion of the perhaps more general case where 

a bracket of rings is involved. 

Figure 4-3 reviews the ring concept for grouping the segments of a process, 

suggesting the idea of a set of concentric rings, each ring being identified by anum­

ber, beginning with 0. Each segment of a process, da.ta or procedure, can now be 

characterized by a ring number. The numbers 0 through 3, shown in Figure 4-3, 

are suggestive only. Multics, in fact, provides for a maximum of 64 rings, up to 

32 rings for characterizing systems programs, e. g., central supervisor (ring 0}, 

administrative segments (ring l ), etc., and up to 32 rings available for use in 

characterizing user -provided subsystems and other user programs and data, i.e., 

rings 32 through 63. 

Warning: 

The fact that up to 32 rings are available to user-designed subsystems is hard­

ly to be construed as an urgent invitation to use them. The use of each additional 

ring in a subsystem of course adds to the cost of programming and execution. On the 

other hand, the multi-ring capability is available when it is needed. 

4. 2. 3. l An Important Note 

In the initial implementation of Multics, an attempt to maximize performance 

has resulted in an expedient consisting of the following simplification: 

All supervisory segments reside in ring 0. A number of library routines de­

signed to make the supervisor easier to use are placed in ring l. In addition, user 

segments, which would ordinarily reside in ring 32 (the first user ring) are placed 

in ring 1. (Ring 32 will thus be empty.) If additional user rings are needed, they 

may be added, beginning with ring 33. Typically, the segments of a process will 

be divided between two rings, 0 and l, with user segments sharing equal privilege 

with the ring I library routines. In the remainder of this chapter, we treat the ring 

system as it is eventually intended to be used, namely: user segments reside in 

rings 2: 32. 

4. 2. 3. 2 Student-Teacher Subsystem Example 

When more than one user ring is needed, two rings will usually suffice. As an 

example, a student -teacher subsystem, such as the one mentioned in Section 4. 1. 2, 

would probably require no more than two rings. 
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Subsystem 
level 2 

User A segment 
at level 3 

Figure 4-3. Thinking of Segment Groups Corresponding to a Set 
of Concentric Rings 
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----~- ---------------. 

A number of teacher-student schemes can be devised. Here is one relatively 

simple kind which might be used for grading of student-prepared procedures. Let 

us suppose teacher X has as signed the students in his Math class the task of pro­

gramming a certain subroutine called< sub_stu_id>, where stu id is any unique 

character string mutually agreed to by teacher and student. 

Imagine that prior to the due date for this homework assignment, each student 

will have placed a tested version of< sub_stu_id> in X's user directory, ready to be 

graded. After the due date X 1s grading program would systematically execute calls 

to each of the various< sub_stu_id> 1s found in X 1s user directory. The teacher 

program would somehow compare observed performance, e. g., computed results, 

run time, etc., with certain pre-established norms as a means of evaluating the 

student's work. 

If< sub_stu_id> and the teacher's grading program belong to the same ring, 

there is no foolproof way to prevent the student's procedure from damaging the 

teacher's segments. In this situation, a clever student might be able to help him­

self to an A! Thus, upon being called, <sub _stu_id> might be so written to inspect 

the stack frame of the caller {the teacher) and from this information figure out a 

way to call on the caller, i.e., study the teacher's grading program, and determine 

what the right answer should be • 

Here, is one of several ways to prevent this invasion of the teacher's privacy. 

We assume that teacher X has previously "paved the way" for each student in the 

class to move his < sub_stu_id> to X's user directory. To get his homework graded, 

each student will move his own tested version of< sub_stu_id> into X's user directory 

on or before the due date. Before grading each< sub_stu_id>, now in X 1s own 

directory, the teacher's program makes two crucial alterations to the branch for 

each student's < sub_stu_id>, via the setacl command. {The teacher can do this, 

since he has write access to his own directory.) 

{l) 

{2) 

In every ACL entry he deletes write access {so that neither the student 
author nor any "friend" of his can sneak in a change to the program after 
the due date and before the work is graded). 

X creates an ACL entry for himself {teacher id) with Read, Execute access 
rights and - here is the crucial point - with the number 33as the ring 
numbe1· for this segment. When the teacher program later executes 
< sub_stu_id> in performing the grading, it will execute as a ring 33 pro­
cedure. In this way< sub_stu_id> would not be able to gain illegal control 
of or inspect the teacher's segments. 
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Here are two details omitted in the foregoing description: 

(1) The teacher "paves the way" for the student to move his< sub stu id> by 
using the file system command: - -

make branch (See BX. 8. 05 for details.) 

(2) The student moves his files when he chooses to by using the file system 
command: 

move branch (See BX. 8. 12 for details.) 

The two steps above must occur in sequence. Unless the teacher has created a 

properly named branch for each< sub_stu_id>, (which, incidentally, he can do) a 

student may find he cannot successfully execute the move branch command. 

4.2.4 A Guide to the Ring Assignment of Segments 

Two general principles should be kept in mind when deciding on the appropriate 

ring(s) for the key segments of a process: 

(1) The Need to Know 

A procedure< a> should have access to only those procedures and data segments 

necessary for <a> to do its task. Moreover, <a> should only have the mode of access 

to these same segments that is actually required (e. g., read, but not write, read­

write, but not append, etc.). Graham's paper draws the excellent analogy with a 

military system of clearance. The higher the clearance (lower the ring number) the 

more documents one may have access to - and the fewer the number of individuals 

(segments) who are to be afforded such clearance. 
I 

(2) Degrees of Likely Damage 

If the segments of a subsystem can be effectively segregated according to the 

damage which may be wrought when these segments are misused, there may be good 

reason for compartmentalizing the segments into two or more rings. Those seg­

ments whose misuse is likely to cause the greatest damage would be accorded the 

lower ring numbers. The advantage gained by placing a procedure in an inner ring 

is easily nullified however, if insufficient care is given to the coding of it. A pro­

cedure which can cause extensive damage when improperly called can accomplish 

comparable damage if it malfunctions of "its own accord". For this reason we 

sometimes speak about inner-ring procedures as needing to be more trustworthy. 

As a matter of fact, they aren't going to be more trustworthy simply by as signing 

them a low ring number. Below is an attempt to explain what we do mean by 
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trustworthiness. In one subsystem we are given two procedures, < a32> ':' in ring 32 

and< b33> in ring 33. The likelihood that the more trustworthy< a32> will misbe­

have by improperly calling a procedure in ring 33 is less than the likelihood that 

< b33> will improperly call on a procedure in ring 32. If damage does result from 

an improper call, we prefer it happen in an outer ring where the damage segments 

will affect the fortunes of fewer users or user groups. 

By the same reasoning a more trustworthy low ring number procedure is less 

likely to misuse a given data segment to which it makes reference (read, write or 

append) than will a higher ring numbered procedure. The lower the ring number 

of a referenced data segment, the more universal is the damage likely to be when 

it is misused. 

For the benefit of those who might be designing a multi-ring subsystem, our 

discussion thus far can be summarized by three rules (essentially axioms) that are 

enforced by the system. We preface these rules with the following remark: 

We shall often speak of a procedure as "residing in ring j", or as "executing 

in ring j". What we have in mind is the notion that every executing process has a 

state variable known as the current ring number. Conceivably, this variable could 

be implemented as a special hardward register. If, for instance, the procedure 

< s33> were to transfer control (call or return) to <t32>, we picture the "ring 

register" that holds the current ring number as being updated from 33 to 32. Prior 

to the transfer< s33> resides (or executes) in ring 33. After the transfer, <t32> 

resides in ring 32. 

Rule l. A procedure "residing" in ring number j should have the liberty to call 

any procedure segment residing in ring number j or in any ring num­

ber greater than j. The same procedure should also be permitted to 

make references to data segments (Read, Write or Append), as per­

mitted by the effective mode of the particular data segment, provided 

the ring number of the data segment is j_~ greater. t The data and 

procedure segments in rings j, j + l, ••• etc., are said to be the do­

main of access for a procedure segment in ring j. 

*By this unofficial naming scheme we hope to simplify our discussions. By append­
ing "32" to "a" we hope unambiguously to suggest"< a> in ring 32". 

t The damage caused by misuse of a data segment becomes more localized the higher 
the ring number of that data segment. Note, if a procedure can be trusted to use a 
data segment in its own ring j, it can certainly be allowed to make references to data 
segments in rings higher than j. 
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Rule 2. 

Rule 3. 

A procedure residing in ring j should either be denied the privilege of 

calling a procedure in a ring numbered i less than j (inward call), or 

else this access should be limited, i.e., controlled in some careful 

way. 

The same procedure residing in ring j should~ be given access to 

data segments having ring numbers less than j. 

4. 2. 5 Ways to Recognize Attempted Ring-Crossing 

If the ring model is to be implemented, it must be possible to detect and con­

trol each ring crossing that represents an inward call. In Section 4. 3 we'll see that 

other types of legal ring crossings must also be detected and controlled, e. g., out­

ward calls, to make inner arguments accessible to called procedures in outer rings, 

inward returns from outward calls, for similar reasons, and even outward returns. 

From a design point of view we would like all of this detection mechanism to 

occur "under the surface. 11 At least the unsophisticated user should not need to be 

aware of the mechanism which causes the combined hardware and supervisory soft­

ware intervention at ring eros sings. Certainly no special coding should be required 

when he, for example, executes a call to a system or subsystem procedure which 

happens to reside in an inner ring. 

Ways could possibly be found by software alone to check for ring crossings on 

all calls and returns. Thus, the system could operate entirely in the interpretive 

mode. We are forced to reject this plan as being too expensive as a general solu­

tion. Alternatively, we could expand the standard call and return sequences by 

introducing additional ring-related arguments. This would prove costly enough in 

execution time overhead. But, how would we prevent other, strictly illegal inter-

ring references by software alone? 

The use of special hardware facilities which could detect all cross ring activi­

ties as faults and which would then trap to a special supervisory routine, is the only 

feasible approach. This is the approach used in Multics. The routine to which 

trapping is accomplished is called the Gatekeeper (MSPM document BD. 9. 01). 

4. 2. 6 Two Hardware Approaches Have Been Designed 

Using current GE 645 hardware, the protection mechanism is achieved by hav­

ing the supervisor maintain separate copies of the descriptor segment for each ring 

used. The per-ring descriptor segments differ only in the access control bits of 
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corresponding segment descriptor words. If we were to look, say, at the descriptor 

segment for ring j, we would see that special fault-inducing access control bits are 

preset {by the basic file system) in SDW's that point to segments of other rings 

k "f j. One type of fault "detects" cross-ring references to procedure and data seg­

ments of inner rings. Another type of fault detects references to procedures resid­

ing in outer rings. 

A more efficient scheme has been proposed for a future implementation of 

Multics wherein the need for multiple copies of the descriptor segment would be 

eliminated. The proposal depends on altering the GE 645 hardware in the following 

way: First, a six-bit ring register would be added on each processor to the set of 

registers referred to as the "machine conditions". The ring register would at all 

times hold the ring number for the currently executing procedure segment. Next, 

the format of the segment descriptor word {SDW) would then be revised to include 

ring number identification for the segment coded in the SDW. A new type of hardware 

faulting would occur when the address formation mechanism, upon reaching the SDW, 

detects certain kinds of ring crossing based on a comparison between the contents 

of the ring register and the coded ring number in the SDW. 

Section 4. 3 gives a more detailed explanation of ring-crossing detection. The 

discussion is based entirely on current hardware. 

4. 2. 7 Access and Call Brackets - Motivation 

The simple ring model so far described is fine for protection, but it is, in fact, 

too good! The model implies that every segment of a process be associated with a 

single and fixed ring number. Two consequences of this simplicity turn out to be 

too restrictive. In order to circumvent each of these restrictions, when necessary, 

the Multics ring model has been made a bit more complicated. 

4. 2. 7. l The First Restriction 

Consider a service routine which would be made available for use by ordinary 

user and supervisor alike. Suppose a single ring number is as signed to this routine. 

It would appear that either the supervisor or the user would invoke a ring-crossing 

fault* in calling this service routine, even if we were considering a two-ring model. 

':'strictly speaking it is also possible to avoid these ring crossings by making multiple 
copies of each service routine one copy assigned to each ring in which a call to that 
routine is made. This approach has not been taken in Multics. 
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Now, whatever overhead is involved in executing this ring eros sing (and we shall 

see these details in Section 4. 3) seems unnecessary. A service routine (or at least 

~service routines) can certainly be designed to take calls from segments in a 

wide class of rings because it can be written as a pure procedure, i.e., with Write 

access to it prohibited. Hence, there is no reason why such a routine should be 

subject to damage or should cause any damage during its normal use. Extension 

of the model to three or more rings only strengthens the argument. It would, there­

fore, seem worthwhile if use of such service routines could be 11 exempt 11 from the 

ring-crossing overhead. The solution arrived at in Multics is to let each segment 

be optionally characterized by an access bracket instead of a single ring. The 

bracket then constitutes a band of rings such that when a reference is made to one 

of these segments (data or procedure) from a procedure whose ring number is 

within the access bracket, no ring eros sing faults are invoked; (manifesting the 

fact that no protection is needed}. A procedure called in this way is said to execute 

i!;: the ring of ~ caller. All EPL library routines are of this type, for example. 

4. 2. 7. 2 The Second Restriction 

It's easy enough to prevent outright any outer-ring procedure from calling any 

inner ring procedure since a ring eros sing will be induced in the attempt and the 

fault handler can then declare the caller 11 guilty11 • The real challenge is to provide 

a suitable screening methodology so that some inward crossings can be regarded as 

legal, possibly subject to some further checks, while other inward crossing attempts 

can be rejected as truly illegal. This type of control, for example, is found nee­

essary in the design of the Multics supervisor. Thus, certain modules of the basic 

file system that 11 reside 11 in ring 0 are designed to be called either by other ring 0 

routines (with safety assured} or by certain routines in ring 1. However, calls from 

procedures in rings higher than 1 are considered unsafe and must be rejected. To 

achieve this level of control over inward calls in Multics, it is possible to associ­

ate with any procedure, when needed, a call bracket, representing a band of rings 

immediately outside the access bracket. The call bracket of a segment <a> would 

identify the rings from which a calling procedure < b> is permitted to call <a> via 

an inward ring-crossing. If <b> executes in a ring outside the call bracket, the 

fault handler rejects the call as illegal. If < b> executes in a ring within the call 

bracket, the fault handler will consider the call to be potentially OK and will then, 

before accepting the call as legal, perform a further check to be sure the target 

address is a specially declared entry point in< a>, called a gate. The concept of 

gates will be discus sed in Section 4. 3. 
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Figure 4-4 summarizes the forgoing ring bracket concepts. The hypothetical 

case is considered for a target procedure <a> whose access bracket is rings 32, 33 

and whose call bracket is rings 34, 35. 

4. 2. 7. 3 Access Bracket - Details 

In place of a single ring, k, any data or procedure segment may be optionally 

characterized by the band of rings from k to P., where 0 :::: k:::: P. :::: 63. The band is 

represented by the pair (k, £), and is called the access bracket. Ring crossing 

faults occur only when the ring of the executing procedure lies outside the access 

bracket of the target segment. The intended access discipline (a) for procedure 

targets, and (b) for data targets, is spelled out below and summarized in Table 4-2. 

For this discussion we picture some procedure, whose ring number is r, is mak­

ing an attempted reference to a target segment. We speak of the referencing pro­

cedure as executing in ring r. 

,,, 

(a) For target procedure segments characterized by the access bracket 

(k, £), and having no call bracket the following is to be true: 

( 1) A referencing procedure executing in a ring r :::: P. has what we can 
call "ring access" to the target. This means that actual access is 
governed by the effective mode of the particular target. Cross­
ring (outward) faults are induced and detected in these instances 
only when r < k. 

(2) Access to the target is completely denied to any procedure whose 
ring number lies outside the access bracket of the target, i.e., 
has ring number r > P.. Segment faults>:< are detected in all instances 
where r > P.. 

(b) For target data segments having an access bracket (k, £), the interpre­

tation is quite different: 

( 1) A referencing procedure executing in a ring r :::: k will have access 
to the target governed entirely by the target's effective mode. No 
ring eros sing faults will be induced during an outward data refer­
ence from a ring r < k. 

(2) Procedures referencing the target from rings k + 1, k + 2, ••• , P. - 1, 
P. will have access restricted. No writing in this segment will be 
allowed by the executing procedure even if the W bit in the effective 
mode is on. 

,,,The significance of this type of fault (directed fault 3) will be discussed later. 
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Figure 4-4. Access to a Procedure Target< a> 

e 

target is 
inaccessible 
if calling 
procedure 
executes in 
one of these 

e 



Key: 

(3) Procedures attempting to make data reference to the target from 
rings J. + 1, J. + 2, ••• , 63 will be denied all access. Segment faults 
are detected in all instances where r > J.. For example, if <data> 
has the access bracket (35, 38), and if the effective mode for< data> 
is R, W, (i.e., read and write), procedures executing in rings ::::= 35 
will be permitted to read and write in <data>, procedures executing 
in rings 36, 37, and 38 will be permitted read only privileges in 
<data>, while all access to <data> will be denied to any procedure 
executing in rings 39 through 63. 

TABLE 4-2 

Access Discipline for Procedure and Data Targets 

Referencing procedure executes in ring r 

Target has effective mode = REWA 

access bracket= (k, £) 

Target Type r < k r = k r > J. 

Procedure 

Data 

REWA 
(but ring 
crossing 
fault is 
induced) 

REWA 

4. 2. 7. 4 Call Brackets - Details 

REWA 

REWA 

REWA 

RE)VA 
(write access 
denied) 

ttVIA 
(all access denied. 
segment fault is 
induced) 

ttvtr A 
(all access denied. 
segment fault is 
induced) 

A call bracket may be added to the access bracket in characterizing any pro­

cedure (but not a data) segment. If the pair (k, J.) is the access bracket, then the 

additional call bracket is, for economy of coding, characterized by a third number, 

m, such that 1 < m ::::= 63. The call bracket is then the band of one or more rings 

from J. + 1 tom, inclusive. Ring-crossing faults occur whenever the ring of the 

executing procedure is within the call bracket of the target, and segment faults oc­

cur when the ring of the executing procedure, r, exceeds m, i.e., lies outside the 

call bracket. 
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The intended access discipline here is as follows: As before, target data or 

procedure segments are accessible (without induced ring-crossing faults) to any 

procedures or data segments whose ring number lies within the access bracket. 

Target data segments are entirely inaccessible to procedures whose ring numbers 

are greater than the access bracket. Access to target procedure segments may be 

permitted if the referencing procedure's ring number lies in the target's call 

bracket, i.e., if J. < r ::'Sm. Permission is granted in such cases only if the entry 

point has been established as a gate for inward calls. Gates are specially declared. 

When the segment's author declares a given entry point to be a gate, the compiler 

or assembler would then provide an entry in the linkage section having a non­

standard but recognizable format. The Gatekeeper which handles the wall cross­

ing fault for this case determines whether the faulting procedure has, in fact, been 

aimed at a gate of the target procedure by examining the format of the entry point. 

The storage structure of gates is detailed in Section 4. 3. 6. 

4. 2. 7. 5 Ring Brackets - Examples 

A ring bracket* is recorded in the branch for each segment. It consists of a 3-

tuple of numbers. The form of the three tuple depends on ring characterization 

for the segment as shown below: 

Ring Characterization Form of the 3-tuEle 

(a) Single ring of access, r. (r, r, r) 

(b) An access bracket (k, J. ) • but no (k, J., J.) 
call bracket. 

(c) An access bracket (k, 1) and a (k, 1. m) 
call bracket (1 + l, m). 

(d) A single ring of access r and a (r, r, m) 
call bracket (r + 1, m). 

Some typical uses of ring brackets for system routines are illustrated in Table 4-3. 

The examples should help you see how ring brackets would be used in characterizing 

user-created segments. 

~'The ring bracket is copied from the ACL entry in the file branch at the time the 
segment is first acquired by the process and subsequently kept in a more accessible 
per-process table called the KST (known segment table). 
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Item 

2 

3 

4 

TABLE 4-3 

Examples of Ring Brackets used in the System 

Ring Bracket 

0, 63, 63 

0,1,63 

1,1,63 

0. 0. l 

Interpretation 

Every procedure has access to 
this segment without im·oking a 
ring eros sing fault (target ex­
ecutes in ring of its caller). 

Procedures in rings 0 and l can 
call without intervention. Pro­
cedures in rings 2 through 63 
can call via inward ring-crossing 
fault, but des ired entry point 
must be a gate. 

A ring l ':' procedure that may be 
called, as in item 2 above from 
rings 2 through 63. 

A ring 0 routine. Inward calls 
are permitted from ring l via 
ring eros sing fault, etc. Calls 
from rings 2 through 63 are 
rejected. 

Figure 4-5 gives pictorial interpretation for two additional ring brackets 

(1, l, l) and (0, l, 1). What is the ring bracket characterization for (the rather 

exotic case of)< a> in Figure 4-4 ? Answer: (32, 33, 35). 

':'A point of possible interest is that ring 0 routines may not execute outward calls. 
Hence if the target has a protection list (1, l, 63), a ring 0 routine cannot call it 
directly. 
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Target is 
accessible 
no ring crossing 
fault if called 
or referenced from 
this ring. 

(a) ring bracket is (1, 1, 1) 

Target procedure is 
accessible with no ring 
crossing fault from seg­
ments in rings 0 or l. 

(b) ring bracket is ( 0, 1) 

Data or procedure 
targets are inaccessible 
if referencing or 
calling procedure is 
in one of these rings. 

4 5 

Figure 4-5. Access to a target procedure or Data Segment 
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4. 3 MONITORING AND CONTROLLING RING CROSSINGS FOR NORMAL CALLS 
AND RETURNS 

We are now ready to see how ring access control has been implemented in 

Multics. First, we amplify three important implementation concepts. (l) A process 

can have, if necessary, up to 64 rings; user rings are numbered 32 through 63. 

(2) For each ring in which a process executes there is actually a separate descriptor 

segment. Ring 0 supervisory routines create and maintain these segments as needed.,;, 

The per-ring descriptor segments differ only in the way fault-inducing bit patterns 

are placed in the descriptors. The bit patterns are set so as to trap during address 

formation on all inward data references and on all inward or outward procedure refer­

ences. (3) There is also a separate stack segment, called< stack_n>, created for 

each ring in which the process executes. Here, n is one of the integers 0 through 63 

(or, strictly speaking, 00, 01, ••• , 63). Supervisory routines are responsible for 

creating these stack segments, t but once created they are to be treated as ordinary 

data segments. 

4. 3. l Function of the Individual Descriptor Segment 

To see how the individual descriptor segments serve in the role of ring-crossing 

detectors we shall discuss a (hypothetical) process in miniature suggested by Figure 

4-6. There are four ordinary data segments <dO>, <dl>, <d32> and <d33> and four 

procedure segments < pO>, < pl>, < p32>, and < p33>, one of each in the four utilized 

rings, 0, 1, 32, and 33. Also shown are the four stack segments which, in matters 

of protection, are to be considered as ordinary data segments. We do not show the 

four descriptor segments because these are not directly accessible to the user. The 

use of two user rings is purely for illustrative purposes and is not to be construed as 

typical. 

Figure 4-7 is a detailed view of access control bits 30-35 for one of the descriptor 

segments (ring 32), showing how they could be coded in each SDW so as to detect ring 

eros sings.f Dashed lines emanating from the SDW's indicate ring crossings that are 

detected, causing traps to the Fault Interceptor module. Inward crossings, e. g., 

:::~ 

Chapter 6 gives an elaboration adequate for initial needs of the subsystems writer. 
Of course, subsystem and user procedures for ring i > 0 will be allowed no direct 
access to any descriptor segment. 

tDetails of the stack segment creation may be found in BD. 9. 01. 

T For a refresher on the hardware characteristics first review pertinent parts of 
Chapter 1 of this Guide, especially Table 1-1. 
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..::d32> <p32> 

<"stack 32> 

<"d33> 

<stack 33> 

Figure 4-6. A Process in Miniature (in four rings) 

line (D to an inner ring procedure, < pO>, or line@ to an inner ring data segment, 

< dl>, cause directed faults. t Outward crossings to procedures, e. g., line number 

G) to an outer-ring procedure< p33>, are detected by attempt-to-execute-data faults. 

To achieve this type of fault, bits 33-35 for <p33> are preset to suggest data. Sub-· 

sequent attempts to execute an instruction fetch will then cause a fault that 

forces control to the Fault Interceptor. Outward crossings to data segments are de­

liberately not detected, e. g., lines(±) and@ to the outer ring data segment< d33> 

and < stack_33>, respectively. 

fstrictly speaking, two types of directed faults are used. More about the distinction 
between these is given later in this section. 
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-----

8-

tbr 

Ring 32 
Descriptor Segment 

-- 30 31 32 33 34 35 

Key 

000 directed 
fault (segment 
missing) 

001 data 

010 ordinary slave 
procedure 

CORE MEMORY 

Consult Table l-1 for a refresher on the significance of 
descriptor bits 30-35. 

Figure 4-7. Using the Descriptor Segment as a Ring Crossing Detector 
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Figure 4-8 shows all four descriptor segments of the process ordered by ring 

number. Bit details of the descriptor fields in the SDW' s are now replaced by sche­

matic markings. Note, that the order in which the segments are listed in each de­

scriptor segment of the process must be the same, in order that each segment retains 

the s arne segment number from ring to ring. The particular ordering of the segments 

within the descriptor segment is, however, of little concern to us. Postpone until 

Chapter 6 any curiosity you may develop as to how and when these access control bit­

fields are preset in the various descriptor segments; such knowledge is not needed 

now. 

This is a good time to observe why, for simplicity, we have chosen not to dis­

play SDW' s for the procedures' linkage segments in the above example. Recall that 

entry points to procedures are kept in the corresponding linkage segment. If there 

is to be a change of rings in a procedure call, the ring crossing must be accomplished 

while executing the transfer instruction used to reach the target's linkage segment 

(entry point). For this reason, the ring bracket for a linkage segment is always 

identical with its corresponding "text" segment. Subsequent transfer from the link­

age segment to the target pure procedure would never cause a ring crossing. We see, 

the ref ore, that Figure 4-8 could have been made to appear more realistic, but not too 

much more illuminating, if we had included SDW' s for the linkage segments. They 

would be given schematic markings identical with those of their corresponding pro­

cedure segments. 

An actual crossing over from one ring to another will take place only if a master 

mode supervisory routine (ring 0) is called to execute the privileged instructions 

necessary to "switch" descriptor segments, i.e., alter the contents of the descriptor 

base register (dbr) to point it at the descriptor segment of the target ring. Responsi­

bility for calling this dbr -switching routine rests with the Gatekeeper. This is the 

module described in Section 4. 3. 2 which takes charge as a result of all attempted 

ring crossings. 

There is no possibility that a user can either write his own master mode routine 

to switch dbr values or manage to somehow gain direct access to the routine that 

does the dbr switching and thereby circumvent the Gatekeeper. Below we state why: 

Recall, mastermode is characterized by a bit that is set in the SDW for that 

procedure. Mastermode routines must be ring 0 because the BFS module (Segment 

Control) which is responsible for setting SDW words will set the mastermode bit ON 

for ring 0 procedures only. Moreover, no user is able to create files which have 
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ring brackets that include ring 0. This is because the request to set an ACL entry, 

which is aimed at the Access Control module of the BFS, is screened. The lowest 

ring bracket value which can be posted by a user is the ring number from which his 

request to set an ACL entry is is sued. This value is always greater than zero. 

4. 3. 1. 1 Ring Complexity of Subsystems 

It is hard to say how often a subsystem will be designed to execute in more than 

one user ring. When such subsystems are designed, it is a safe bet that most seg­

ments written for the user rings will be characterized by single-ring ring brackets. 

Rarely will access and call brackets be employed and even more rarely will compli­

cated patterns of access and call brackets be used. Since this facility is available, 

however, there will always be some subsystem designers who, if only to satisfy 

curiosity, will want to understand how more exotically-protected segments might 

function in a Multics subsystem. The next two sub-sections are dedicated to these 

avid readers. Others may wish to skip directly to the Gatekeeper. 

4. 3. 1. 2>:, Determining the Ring of Execution for a Segment whose Ring Bracket 
contains an Access Bracket 

A good question to ask is: In which of the rings within a segment's access bracket 

will a particular segment execute when it is called? There are three cases to be con­

sidered. We shall assume <a> is the calling procedure now executing in ring r, and 

that < b> is to be the called or target procedure whose ring bracket is (k, 1., m) such 

that 0 :::s k < 1. < m :::s 63. 

Case {l) 

Case (2) 

Case (3) 

k :::S r :::S 1.. {The ring of the calling procedure lies within the access 

bracket of the target procedure.) < b> will execute in ring r. No ring 

eros sing fault will be triggered. 

r < k. (Outward fault. The ring of the faulting procedure is less than k.) 

<b> will execute in ring k, the innermost ring of the target's access 

bracket. The design rationale for this choice is necessarily arbitrary: 

Pick the ring "nearest to the caller". 

1. < r ~ m. (Inward fault. The ring of the faulting procedure lies within 

the call bracket of < b>. < b> will execute in ring !:._, the outermost ring 

of the target's access bracket.) (Of course, the desired entry point must 

*This section may be skipped over during a first reading without loss of continuity. 
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also be found to have the format of a gate.) The design rationale for 

this choice is again: Pick the ring nearest the caller, because it is also 

the ring that will involve the least risk. 

If used properly, access brackets may increase the flexibility and efficiency of 

an otherwise complicated multi-ring subsystem, i.e., avoiding the overhead of ring 

crossing faults where protection measures are no longer needed. However, there 

are some pitfalls. If access brackets are not chosen to be functionally meaningful, 

superfluous ring crossing faults can occur. Thus, the unwise subsystem designer 

could, in practice, select a set of straddling rather than coinciding access brackets 

for procedures that must communicate with one another. The superfluous fault which 

can occur in such instances is an inward fault and, if unexpected, the supervisor 

would have no choice but to abort the process. 

The following case will illustrate what happens when the access bracket facility 

is improperly (nonsensically) applied. The case is for an elaborate subsystem hav­

ing segments with ring brackets shown below: 

Segment Ring Bracket 

<super> ( 32) 

<a> (33' 34, 36)} 
<b> (34, 35, 36) 

<slave> (36) 

Figure 4-9 schematically illustrates the SDW's for each of these four segments in the 

descriptor segments for rings 32 through 36. (The descriptor key for this figure is 

an expansion of the one given in Figure 4-8. The significance of the new symbol 

(~) is explained in a subsequent paragraph.) 

Now, consider four "case histories" shown in Figure 4-10 using Figure 4-9 and 

the above ring brackets as a reference. Each case is a possible chain of two calls 

among the segments. 

In case histories (l) and (3) we see calls from <a> to< b>. An outward fault oc­

curs in the first history because <a> happens to be executing in ring 33 rather than 

34. A similar situation arises in comparing case histories (2) and (4) where calls 

from< b> to< a> occur. In the latter history an inward fault occurs because < b> 

happens to be executing in ring 35 and not 34. If the subsystem designer has failed 

to anticipate this event by declaring the proper entry point in <a> as a gate, the re­

sulting fault can actually be fatal to the process. 
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<.super::> 
.<:a'> 

<b:;> 
<slave> 

ring 32 ring 33 ring 34 ring 35 ring 36 

. 
"" . ~ 

. . 
~ ~ . 

. 
. 

~ . ·~ J· . . ,.. 

. 
4~ . . .. 

p ¢= ~ ~ ~ 

-+ p p +- +-
+ -+ p p +-
-+ -+ -+ ~ p 

Descriptor Key: I ~ I Inward, (directed fault 2) 

~ Inward, all access denied (directed fault 3} 

I + I Outward (attempt-to-execute-date) fault 

I ,p I Procedure 

I D I Data 

Access bracket for <a> is (33, 34) and for <b> it is (34, 35) 

Figure 4-9. Illustrating Segment Descriptor Words for Segments 
Having Access Brackets 
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Case History Ring number Ring number Governing't Comment 
of caller of target descriptor 

( 1 ) ..:.super,. 32~ I > I 

~ 
fault 

33 
..:.a> 33~ I , I superfluous 

t fault 
34 

<h> 

(2) <super> 
32----------- ~ 

! fault 
34 

£b'? 34~ 
! IT] 

34 
.ca> 

(3) <slave> 36~ I< I 

! fault 
34 

.ca> 34~ 
! D:J 

34 
<b> 

( 4) .:slave> 36~ I• I 

! fault 
35 

... b "> 
35-----------

I< I 

l fault superfluous 
34 and possibly 

..::a> disastrous 

t Means the descriptor of the target in the descriptor segment for the ring of the caller. 

Cases I and 4 show calls between segments whose access brackets 
straddle one another. 

Figure 4-10. Cases of Superfluous Ring Crossing Faults 
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4. 3. l. 3':' More Details in the Interpretation of Directed Fault 3 (All Access Denied) 

There are, in fact, two types of directed fault codes used to represent attempted 

inward crossings, directed fault 2 and directed fault 3. The former, when detected, 

corresponds to a possibly valid inward call or inward return, as from a procedure 

whose ring number is within the target's call bracket. The latter, when detected, is 

interpreted by the Fault Interceptor to mean all access denied. This type of inward 

eros sing, by being handled via a separate fault, can be rejected out-of -hand. The 

overhead of incurring the Gatekeeper's services to interpret this illegality is thereby 

avoided. In Figure 4-9 we introduce the special symbol I<! l to mean directed fault 

3 (i.e., all access denied}, henceforth letting the symbol! < l mean, specifically 

directed fault 2. 

The Basic File System also sees to it that all-access-denied fault codes are pre­

set in the SDW's of all data segments in higher ring numbered descriptor segments. 

For illustrative purposes such bit coding was employed in Figure 4-7 to represent 

the SDW'sfor <dO>, <stack_O>, <dl>, and <stack_l>. Also, in that Figure we chose 

to code the SDW for< pO> as all-access-denied (directed fault 3) while for< pl> we 

coded a directed fault 2. 

4. 3. 2 Management Control over Inter-ring Crossing (The Gatekeeper) 

The Fault Interceptor calls a special ring 0 module, called the Gatekeeper, to 

exercise positive control over all inter-ring calls and returns. An understanding of 

the Gatekeeper's role and of some of the detailed steps which it carries out or over­

sees is an ultimate necessity for the sophisticated subsystem writer. We shall at­

tempt to describe most of the important points about the Gatekeeper's tasks, but will 

not always explain them in the order they are carried out. We are more concerned 

with motivating and explaining the issues of "Gatekeeping." Succeeding subsections 

are divided arbitrarily into a discussion of problems faced by the Gatekeeper and 

how they are solved. 

To make its tasks easier the Gatekeeper first determines which of five types of 

inter-ring accesses ("wall crossings") is being attempted. The five categories are: 

(a) Inward calls, 

(b) Outward returns, 

':'This section may be skipped out during a first reading without loss of continuity. 
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(c) Outward calls, 

(d) Inward returns, 

(e) Other access attempts (illegal). 

The five-way resolution is relatively simple to achieve. The details are given 

below: 

(l) Inward versus outward ring-crossing attempts are actually distinguished by 
the Fault Interceptor. Depending upon the type of fault (directed Fault 2 or 
attempt-to-execute data), the control is directed to one of two appropriate 
entries into the Gatekeeper, one for inward attempts, one for outward 
attempts. 

(2) Calls versus returns are distinguished by examining the faulting instruction 
to see if it was a tra (call) or an rtcd (return). If neither, it is an illegal 
request and the Gatekeeper returns an error code to its caller, the Fault 
Interceptor. If the faulting instruction (on an inward crossing) is a tra, 
but if after checking the target's linkage section, the Gatekeeper sees the 
entry is not a gate, another error code is returned to the Fault Interceptor.':' 

4. 3. 2.1 Outward Versus Inward Calls - (Motivation) 

It may have occurred to you to wonder if both inward and outward calls are equal­

ly useful in subsystem design. (There were none allowed, for instance, in CTSS, 

although a user could always call in to the supervisor.) As we shall see later, out­

ward calls that carry argument lists generally incur a higher overhead, because call­

ing arguments must be copied into the target ring. For this reason subsystem de­

signers may wish to minimize their use of outward calls. 

There is one type of relatively inexpensive outward call which is likely to prove 

very useful in the design of multi-ring subsystems. This is an argumentless call to 

an input responder routine which an ordinary user would make to "enter" to a sub­

system. We picture here that a subsystem "X" has a special outer-ring (say ring 33) 

procedure segment known as < X_listener>. Whenever, after login, the user wishes 

to issue a series of commands in the language of subsystem X, he first issues an 

outward call to ring 33. (We are presuming that the user's process executes in 

ring 32 following login.) < X_listener> now functions as an input loop to accept sub­

sequent commands. After interpreting each of these commands, < X_listener> is sues 

appropriate (inward) calls to other modules of subsystem X. Since all the sensitive 

modules are in inner rings, there is no danger that the user can misuse or abuse the 

privileged segments of X. 

':'Remember, the Gatekeeper is spared from having to examine inward calls from a 
procedure that is executing "outside" the target's call bracket or, if the target pro­
cedure has no call bracket, from outside the access (or single-ring) bracket. 
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Another possible use of outward calls arises in cases like the teacher- student 

subsystem that was suggested earlier in Section 4. 2. 3. In this type of system the 

teacher in his grading process acquires and executes a student-written procedure, 

making sure before executing the student's procedure to "give it" a higher ring num­

ber than the teacher's segments. The call to the student's procedure then becomes 

an outward call. 

4. 3. 2. 2 Gatekeeper - After Determining Type of Valid Wall Crossing 

The Gatekeeper performs several tasks in handling outward calls, and inward 

returns, etc., which guarantee the safe handling of information pas sed to or from 

inner-ring procedures from or to those in outer rings. For example, in handling 

an inward return for a faulting procedure< p>, it is necessary to be sure that the 

return location specified by< p> 1s rtcd instruction is in fact, the one supplied by the 

inner-ring procedure that called< p>. Without this check, the outer ring could, in 

the disguise of a return, force an entry at any point in any inner-ring procedure, 

thereby defeating the protection mechanism. The technique used by the Gatekeeper 

to forestall such disasters is to save a copy of the return location at the time of the 

outward call to< p>, in a special ring-0 data base which is inaccessible to< p>. 

Later, the Gatekeeper will insist on a match between the safe-stored return location 

and the one used by < p> in its faulting rtcd instruction. If no match, the inward 

return will be declared invalid by returning a suitable error code to the Fault 

Interceptor. 

We give one final example to see the kind of business the Gatekeeper is involved 

in before we proceed to the details at the bookkeeping level: During an outward call, 

the argument list and the individual arguments may very well be found in data seg­

ments accessible to the caller, but not to the target procedure. What to do? 

In keeping with the Multics protection philosophy, any procedure of an inner 

ring, say 32, is free, and at its own risk, to copy data that is accessible to it into a 

data segment of any outer ring. Therefore, in an outward call, if argument lists 

and/or arguments are used that belong to an inner ring, but accessible to the fault­

ing procedure, it should be perfectly OK to allow the copying of these into an outer­

ring segment, putting the arguments "within reach" of the target segment. 
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Now, when a user writes a procedure <a> that calls on some procedure< b>, 

he should not, in general, have to know in advance whether < b> will be in an outer 

ring or, for that matter, in an inner ring. So, as a matter of design philosophy, 

the writer of< a> cannot and will not be asked to code the task of copying the argu­

ment values to the target ring. Instead, the Gatekeeper takes care of this chore, 

relieving the programmer of this nasty responsibility for argument management. 

The Gatekeeper gets a helper (a procedure in ring 0) called < arg_pull> to do the 

copying. 

< Arg_pull>, in order to do its job properly, expects an argument list especial­

ly embellished with pointers to data descriptions. I. e., it cannot properly copy data 

without knowing its format. Further details on the required format':' of these argu­

ment lists will be given in Section 4. 3. 5. 

The Gatekeeper, also, performs the important function of validating arguments 

for inward and outward calls. It sees to it that every argument list element and 

every argument involved in such calls is indeed accessible to the faulting procedure. 

The basic principle that is followed here is: If a procedure, by virtue of its execut­

ing ring number, is not privileged to access a piece of data directly, that procedure 

should not be permitted to circumvent this restriction by getting help from another 

procedure which would behave either (a) as an unwitting accomplice (target of an 

inward call) or (b) as a deliberate accomplice (target of an outward call). Remember, 

the faulting procedure is ordinarily free to designate anything at all (any virtual 

address) as an argument pointer. 

4. 3. 2. 3 On Inward Calls 

A calling procedure could in theory specify argument pointers to data objects 

for which the caller does not have ring access, but to which the target procedure 

does have ring access. We see that an effort must be made to check all argument 

pointers passed "inwardly" to validate that the caller actually had ring access to each 

of the arguments that has been pas sed, lest the target procedure act as an unwitting 

accomplice. 

>:.:: 
The principal reference is BD. 9. 02, Figure 1. 

4-41 



4. 3. 2. 4 On Outward Calls 

A calling procedure could in theory also specify argument pointers to data ob­

jects for which the caller does not have ring access. Something must be done to 

prevent< arg_pull> from unwittingly copying these data objects over into the outer 

ring segment that would be accessible to the less privileged target procedure acting 

as a deliberate accomplice. An effort must be made to validate all argument 

pointers.':' In this case, the validation must be done before calling < arg_pull>. 

4. 3. 3 Stack Management in the Multi-ring Environment 

In this section, we consider what must be involved when creating the stack frame 

as a result of a call to an arbitrary segment in our multi-ring environment. Let us 

imagine a call to< gamma> has been executed. Further assume that< gamma> is to 

execute in ring k. Ordinarily, as we recall from Chapter 3, <gamma>' s first duty 

is to execute a save sequence so as to add a new frame to its stack segment, which 

in this case would be< stack_k>. In addition to "creating" the frame we are reminded 

there is also the matter of storing in this frame the argument list pointer passed to 

<gamma> by the calling procedure (call it< beta>). Also there is the linking of the 

frame to its predecessor frame, and the resetting of the stack pointer, sp. All is 

well and relatively simple when< beta> itself belongs to ring k. 

Are any new clerical problems introduced in creating the stack frame for 

<gamma> when the calling procedure <beta> is in ring j =1= k? Plenty! Fortunately 

they are all handled for us by the Gatekeeper. We now look at some of these prob­

lems and how they are solved by the Gatekeeper. 

':'The validating technique in the case of either inward or outward calls is essentially 
the same. For each argument pointer in the argument list the following steps are 
taken: 

1. Determine the ring brackets for the segments defined by the argument 
pointer. Ring brackets are kept in a ring 0 data base called the Known 
Segment Table. From the ring brackets, determine s, the highest ring 
number in the access bracket. 

2. Compare s with the ring number, t, of the faulting procedure. If t::::; s, 
the argument pointer is valid and is invalid otherwise. 

The ring number t is remembered for use in the above test as a special parameter 
known as the validation level. Further explanation of validation levels is given in 
Section 4. 3. 4. ---
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4. 3. 3. 1 The Housekeeping Problem in Getting Ready to Produce the Frame for 
<Gamma> 

The stack frame which <gamma> is to create must be placed in <stack_ k>. The 

problem is - how is the segment number for < stack_ k> determined and what is the 

proper offset for the <gamma> frame? Getting stack_k# is complicated by the fact 

that< stack_k> may not yet be known (i.e., no entry in the KST). After all, stack 

segments are no different from any others. They are acquired and/or created only 

as needed. If no procedure in ring k has ever been called, <stack k> will be un-

known. 

A special pointer scheme is employed by the Gatekeeper in keeping track of seg­

ment numbers for stack segments and of offsets into them for "next" frames. The 

details, which be of only peripheral interest to a subsystem designer, are given in 

the remainder of this paragraph and in Figure 4-11. A one-per-process, ring-0 

data base called the process definitions segment, <pdf>, contains a block for 64 its 

pair pointers to the stack segments. The Gatekeeper will find stack k# at location 

<pdf> I [stacks J + 2>:<k, 

unless of course < stack_ k> is unknown, which is indicated in the block by a null 

pointer. The Gatekeeper then creates the desired stack segment and initiates the 

pointer. The address for the last used frame in< stack k> is then seen to be 

<pdf> I [stacks] + 2>!<k, '~ 

The forward pointer at +18 in this frame then gives the desired location for the next 

frame (e.g., lines G),@, and G) in Figure 4-11. 

The format of a new-born stack segment is shown in Figure 4-12. It is endowed 

with an 8-word header followed by an essentially empty 32-word frame. This frame's 

back pointer (at< stack_k>l 8 + 16) is null to denote the bottom of the stack. Its for­

ward pointer (at< stack_k>l 8 + 18) is set initially to stack_k# 18 + 32 for starting 

the forward thread. 

Upon creation, the first word pair in the stack is set to point to the empty frame 

which in this case acts as a pseudo last-used frame. The Gatekeeper updates the 

first pair as one of its housekeeping duties each time it supervises departure from 

ring k to some other ring. 

The third and fourth words in < stack k> hold the invocation number and the 

validation level about which we will have more to say shortly. 
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<stack 0> 

first 
thru 

its 
() 

~ pn'.!§e~x~t~t o~l~a~s~t====l 

last frame 

+4 

+ 126 

<pdf> 

pointer to 
<stack 0> 

pointer to 
-'stack 1 7 

pointer to 
< stack_33? 

ring 0 

2 

63 

"stack l > 

first 
thru 
next to last 

last frarne 
used 

(forward 
pointer) 

segment 

.:cstack 33-> 

':'If pointer is marked null, 
it means that no stack for 
this ring has yet been 
created. See Appendix A, 
BD. 9. 01 for details on 
stack creation. 

The Gatekeeper creates stack segments as needed and places pointers 
to the head of each one beginning at <pdf> I [stacks]. 

Figure 4-il. <pdf> is a One-per-process Ring 0 Data Base 
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<stack k> 

8- word 
header 

First frame is essentially 
empty. Its back pointer is 
null to denote the ''bottom'' 
of the stack. Its forward 
pointer starts the forward 
thread. 

Figure 4-12. Format of a Newly Created Stack Segment 

4. 3. 3. 2 The Stack Switching Problem 

The Gatekeeper has now located the place in the new stack where the about-to­

be- called procedure, <gamma>, is to create its stack frame. But, more bookkeep­

ing problems remain. The normal return sequence in< gamma>, 

ldb 

lreg 

rtcd 

spll6,>:< 

spl8 

spl 20 

reload 8 base registers 

reload 8 index registers, etc. 

return 
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should function properly, independent of cross-ring considerations.':' 

The first instruction 

is supposed to reload the base registers (all but sb) from the stack frame of 

< gamma> 1 s caller. Assuming we are using the standard save sequence dictates 

that the predecessor frame must be found in the same stack segment. (This prede­

cessor is pointed to from 

sp 116 

which is the back pointer of the current <gamma> frame.) But, if< gamma> has 

been called by <beta> from another ring j, the stack frame in question actually re­

sides in< stack _j>, an entirely different segment. To resolve this apparent con­

flict, the Multics solution is to place a special copy of< beta> 1s header in< stack_k> 

immediately ahead of the frame for <gamma>. The copy of the <beta> frame header 

is ordinarily referred to as the "dummy" frame. 

The Gatekeeper has the responsibility for producing this dummy frame, which 

serves a number of useful purposes. Figures 4-13 and 4-14 picture this activity. 

In Figure 4-13 we show the copying of the <beta> frame header from < stack _j> to 

< stack_k>. We also indicate that the Gatekeeper resets the its pair at< stack_j>l 0. 

(Dashed line G) to point to the <beta> frame replaced by line ®.) The new value 

in< stack_j> I 0 will be needed by the Gatekeeper whenever, at some future point in 

time, an inter-ring procedure call is made into ring j. 

In Figures 4-14 and 4-15 we show what the Gatekeeper must do to the dummy 

frame before it is "usable". 

Shaded portions of the dummy frame indicate the neccessary modifica­

tions: 

(a) At newsp + 28 store an its pair pointing to the original stack frame for 
<beta>, located at stack _j# I sp f3" This pointer is called the eros s_-ring 
pointer. 

':'<Gamma>'s compiler will not know <gamma>'s ring number as this could be dif­
ferent for each process sharing <gamma>. Moreover, the compiler will not know 
the ring of< gamma>' s caller. 
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Figure 4-13. Making the Dummy Frame for <beta> in the Stack for the 
Ring of the Called Procedure 
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+ 22 

.cstack k> 

ed in EO 
dures only 

+ 24 not used 

+ 30 not used 

last frame used 

this copy of the 
argument list is the 
one that is validated. 

the dummy 
frame for 
<beta? 
ready to 
go on an 
inward call 

Note the last portion where the copied argument list has been safe stored 
for purposes of validation. 

Figure 4-14. Dummy Frame for <beta> in< stack k> after being 
Modified for an Inward Call -
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(Same as Figure 4-14 except for copies of arguments in the call on 
<gamma>. 

Figure 4-15. Dummy Frame for <beta> in< stack_k> after being 
Modified for an Outward Call 
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·'· 

(b) At newsp l3 + 16 place a cross-ring flag (i.e., a l in the op code position) 

to mark this frame as a dummy. 

The cross ring flag and the cross ring pointer are vital to the success of 
the condition handling and unwinding mechanisms to be described in 
Chapter 5. 

Other details of a housekeeping nature are: 

(c) The dummy frame is chained to the preceding frame in< stack_ k> by adjust­
ing the backward pointer. 

(d) The forward pointer is reset so it points to the beginning of the next frame 
which is to be used by< gamma>. 

(e) The stack bases saved in newsp l3 + 6 and newspl3 + 7, which refer to the old 

stack frame in <stack _j>, are reset to point at newspl3 in <stack_ k>. This 

is done in order that the instruction pair 

ldb 

lreg 

sp 116, ':' 

spl8 

be executable in some meaningful and consistent sense, especially for out­
ward returns. We must bear in mind that an ldb instruction cannot reset 
the locked sb base register.':' 

On inward returns the effect of the two restore instructions is overriden by 
similar instructions performed by the Gatekeeper. 

Multics cannot (and the Gatekeeper does not) trust an inward-returning 
procedure to properly carry out the restoration of bases and registers for 
its inner-ring caller. When the 

rtcd sp 120 

is executed, it faults, of course, to the Gatekeeper - which takes no 
chances. The Gatekeeper repeats the restoration of the bases and registers, 
this time using the stack pointer for the original< beta> frame in< stack_j> 
where the integrity of the saved information cannot be questioned. The 
pointer to the frame in< stack_j> is itself safe stored in a special segment 
(the so-called "return stackn, < rtn_stk>) about which we will say more later. 

(f) On inward calls there is a special (and subtle) type of protection violation 
that must be prevented. It concerns the possibility of deliberate or acci­
dental changes to argument pointers after they have been validated by the 
Gatekeeper mechanism, but before they have been used by the target pro­
cedure. For instance, such violations can arise if and when two cooperat­
ing processes have agreed to read-write share the outer-ring segment 
stack that holds the calling procedure's argument list. To prevent such 
postvalidation tampering, the Gatekeeper first duplicates the calling argu­
ment list in the dummy frame at sp13 132 (in the inner ring stack segment) 

···see Chapter l, Section 1. 4, for a review of the ldb instruction. 
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and then validates from the copied argument list. Spl3 118 will, of course, 

have been appropriately set to point to sp , taking into account the length y 
of the copied argument list. The base pair ab-ap will be adjusted in the 
saved copy of the machine conditions for the faulting procedure, so that 
when the call is completed the arglist pointer in the new frame for <gamma> 
placed at spy I 26 will point back to sp13 1 32. The dummy frame is now 

ready for use in inward calls (Figure 4-14). 

(g) On outward calls the Gatekeeper, after validating the original argument list 
found in the caller's stack frame, then calls < arg pull>, as mentioned in 
the preceding section, to prepare a revised argument list that contains 
pointers to copies of the arguments. Spl3 will, of course, have been 

appropriately set to point at spy taking into account the extension of the 

dummy frame for< beta> to include the new arglist and the argument copies. 
These items are placed in the dummy frame at sp13 1 32. The ab-- ap base 

pair will be adjusted in the saved copy of the machine conditions for the 
faulting procedure, so that when the call is completed the arglist pointer 
in the new frame for< gamma> (placed at sp13 j26) will point back to sp13 1 32. 

The dummy frame is now ready for use in outward calls (Figure 4-15).':' 

In reviewing all these dummy-frame details, notice that the dummy is tied to 

other frames in two ways: 

(a) to the preceding and succeeding frames in its stack (sp 116 and sp 118). The 
back pointer is primarily for use by system-supplied debugging tools (and 
for use by the Unwinder mechanism discussed in Chapter 5), and 

(b) to the original copy of the frame in< stack_j> via the cross-ring pointer at 
sp 128. 

4. 3. 3. 3 Saving Vital Cross-ring Data on the Return Stack(< rtn_stk>) 

The Gatekeeper keeps a protected record of each inter-ring call in a special, 

one-per-process data segment in ring 0. It is called <rtn stk>. 

The following four items are stored in< rtn stk> as a consequence of each inter­

ring call: 

(a) 

(b) 

(c) 

The ring number of the faulting procedure. This value is taken from an em­
bellished copy of the faulting procedure 1 s machine conditions. 

The validation level of the faulting procedure (explained in Section 4. 3.4). 

Pointer to the faulting procedure 1 s stack frame i.e., a protected duplicate 
of the eros s:-ring pointer. 

':'Additional details are shown in Figure 4-20. 
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{d) Pointer to the normal return location in the faulting procedure, i.e., a 
protected copy of the value given in the faulting procedure 1 s stack frame 
at sp 120. 

Figure 4-16 shows the overall and detailed structure of< rtn stk>. A relative 

pointer to the top entry of< rtn_stk>, called the invocation number is updated after 

each new entry is stacked or removed {popped). 

Each entry consists of six words. The first word of each entry holds a back 

pointer to the preceding entry. The next five words hold the four saved items. 

After completing this entry in < rtn _ stk>, a copy of the new invocation number 

is stored in the target ring 1 s stack segment at <stack _t> I 2 and a copy of the saved 

validation level is stored in <stack _t> I 3. 

By reading the invocation number in a given stack segment, < stack_s>, ring-0 

system routines {not user routines) are able to locate the corresponding entry in 

< rtn stk>. This entry provides a "trail" back to the procedure {its ring number, 

and its stack frame) which caused the crossing into ring s. The condition handling 

routines and the unwinding mechanism (for abnormal returns) depend on the invoca­

tion number for tracing portions of the past history of a process. 

The invocation number is also potentially useful to ordinary users as a means 

of recording when things happen {i.e., with respect to ring crossing history). Thus, 

a user, executing in ring t could associate with a certain stored block of data a copy 

of the current invocation number {call it curinv) found at <stack t> I 2. At any later 

time, the block of data can be identified by the associated value of curinv as to when 

it was stored. 

4. 3. 4 Validation Levels and How They are Used 

The validation level is the ring number for the segment on whose behalf the call 

on the ring_t segment is being made. It often arises that a user procedure will make 

an inward call to a "supervisory" module which, in turn, will call another procedure 

(either in the same ring or in an even lower ring) to perform some vital function on 

behalf of the user. The target supervisory procedure at the end of this "chain" may 

need to know the ring number (importance level) of the original caller in order to 

perform its task properly. In this way, the DC>!< routine in ring 0 will know the im-­

portance of the party it is serving and will not be outwitted into "thinking" it is serv­

ing a ring -0 procedure - its immediate caller -when in reality it may be serving 

a user in ring 32 or greater. It is seen, therefore, that proper use of validation 

levels is a means of increasing protection where needed. 
>!<D1rectory Control 
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entry#2 

entry #m 
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back pointer 

(b) Structure of 
on entry 

Figure 4-16. Overall and Detail Format of< rtn stk> 
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When crossing to a target ring, t, the validation level is always stored in 

< stack_t> j3. The value assigned to this location is a copy of the one in the stack of 
I 

the faulting procedure. (The Gatekeeper does this copying.) In this way, if there 

has been a chain of two or more inward calls in reaching ring t, the validation level 

that is set in <stack _t> j3 will normally reflect the ring number of the procedure that 

initiates this chain of ring crossings. The called procedure in ring t is then free to 

interrogate < stack _t> I 3 as required. 

It should be kept in mind, that once execution passes to a target ring, t, any 

procedure executing in that ring is privileged to read or write the contents of 

<stack t> I 3. The Gatekeeper will not however indiscriminately copy validation 

level values. If the current value in< stack_t>j3 is lower than the ring number, 

say r, for a faulting procedure, the value passed to the target ring will be r. In this 

way, it will not be possible to trick the inner ring target into believing its caller has 

a validation level that is less than its ring number. 

The algorithm used by the Gatekeeper for setting these values is displayed in 

Figure 4-17. On calls, outward or inward, the validation level associated with the 

faulting ring is saved in< rtn_stk>, and a copy of this saved value, possibly altered 

in a way described below, replaces the current value of the validation level in the 

stack of the target ring. On inward calls if v , the validation level for the calling 
r 

ring r, is for any reason lower than r, then r, rather than v , is the value passed 
r 

to< stack s>. On outward calls if v is less than s, the target ring number, the 
- ---- r 

value s is passed to< stack_s>. On returns, inward or outward, the most recently 

saved value simply replaces the current value in the target ring's stack segment. 

In the remainder of this section we give an example aimed at motivating sub­

system applications of validation levels. 

Example 

Here, we illustrate a case where it is expedient to check the ring of the caller 

to determine the nature of the service to be rendered. 

We imagine a school records subsystem which operates in four rings 35, 34, 

33, and 32, as shown in Figure 4-18. 

All personnel and student records are kept in data segments of ring 32. The 

ring-32 procedure< get_rec>, called from outer rings, retrieves desired information 

from any of these data files according to the arguments it is furnished and according 

to the validation level at< stack_32> j3. 
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Key: Vi, i = 0(1 }63 means the 
variable whose value is 
the validation level for 
ring i. Vi is located at 
<.stack_i>l 3. Saving 
means storing in the 
<rtn_stk;> entry. 

Figure 4-17. Gatekeeper's Algorithm for Saving and Pas sing, and 
for Restoring Validation Levels during Ring Crossings 
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Figure 4-18. School Records Retrieval Subsystem 
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Thus, the validation level found at sb I 3 describes the "authority" of the caller. 

A call from ring 33 or lower is adequate for any request for data, be it from< adm_ 

rec>, < fac_rec>, or <stu rec>. However, a request from ring 34 for < adm _rec> 

data or from ring 35 for< fac rec> or< adm rec> data must be rejected by< get_rec>. 

4. 3. 5 Outward -call Argument Lists 

It is possible to design many subsystems which never employ outward calls. 

Certainly, this would be the case for a subsystem whose segments reside entirely 

in ring 32. If the subsystem you are designing is in this category, you can skip the 

remainder of this Chapter in good conscience. If not, two cases are of interest: 

(a) The subsystem itself is to be coded using outward calls, but the subsystem 
user is to be so controlled, e. g., by limiting his procedures and data to 
the outermost ring so that he cannot execute outward calls. 

(b) The subsystem procedures as well as the user procedures, with the latter 
no longer restricted to the outermost ring, can execute outward calls. 

Some important implications follow in each case: 

Case (a) The subsystem must be coded in a source language whose compiler can 

recognize outward calls. This recognition is necessary so that the 

compiler can generate argument lists which are properly embellished 

with pointers to descriptions of the corresponding arguments. 

The Multics PL/I and EPL compilers, for example, provide this recognition 

capability. It is achieved through use of the so-called "callback" option.'~ This 

amounts to a declaration which can be made in any external procedure <a>. In the 

callback option the programmer lists all procedures, e. g., < xl>, < x2>, etc., a call 

to which is to be regarded as an outward call. The form of the option is: 

callback (xl, x2, etc.) 

It should be easy to see why, in one way or another, the language processor 

must be supplied this type of information. Were this not so, the processor would 

have no way of knowing how procedures, whose names appear in the program, relate 

to one another vis -a-vis rings. If you write your subsystem in any other language or 

languages, be sure the processors are equipped with this facility. Assuming you 

don't have to be involved in building this type of software facility, there is no more 

you need to know. However, if it is your problem to do this job, then read "case (b)". 

>::: 
Primary reference is BP. 0. 02. The options attribute is part of the (first) procedure 

statement of every PL/I external procedure. 

4-57 



Case (b) The language the user codes in need not be the same as the language(s) 

used for coding the subsystem. If this is the case, and if the user­

coded procedures may be written with outward calls, then you must 

make sure that the processor which handles user codes also has the 

same capability for recognizing outward calls and for generating suit­

able argument lists. 

Figure 4-19 shows the format of the argument list which must be supplied in 

each n-argument outward call. There are 2 x n additional words to be supplied, con­

sisting on nits pair pointers to the argument descriptions. By consulting the data 

descriptions for the arguments, < arg_pull>, when called by the Gatekeeper, is able 

to decide how to copy each argument into the target procedure 1 s stack. 

We now illustrate what< arg_pull> does in specific instances, imagining in 

Figure 4-20 that the procedure< beta> makes an outward call to< proc_hi_ring> with 

two arguments; ~· an integer, and name, a non-varying character string. The copied 

block of information is placed at the tail end of the dummy frame made for <beta> in 

the stack segment for the ring (t) of< proc_hi_ring>. (See also Figure 4-15.) 

The copying work of< arg_pull> though conceptually simple, has its share of 

clerical complications.>!< Here we give a simplified two-step description of the as­

pects which subsystem writers should know. 

4. 3. 5. 1 Copying the Argument List 

Note, in our example of Figure 4-20, that each argument pointer in the copied 

list is now modified to point down in< stack _t> to its respective argument datum (or 

to its specifier, t if it has one). 

>!<Full details can be found in BD. 9. 02. The task is sufficiently complicated that in 
the initial implementation varying string arguments or arrays of same (because they 
involve the use of Free Storage) may not be passed on outward calls. 

t Specifiers were first described in Table 3-1. (Types of arguments and their 
structures.) If a refresher is needed, reference this table. 
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Arg 2 
pointer 

0 

0 

0 

Appears here only if 
indicated by 2 in the 
right half of the 
first word. See 
Fig. 3-9 for are­
fresher. 

Figure 4-19. Format for an Argument List for Use in an Outward Call 
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Lstack t> 

new s P.B + 3 2 + 0 

M-z-Argument list 

beta: procedure options 
callback (proc hi ring); 
del x fixed binary (17) 

name character (11); 

call proc_ hi_ ring (x, name); 

Argument data 

This information is deposited at the end of the dummy frame created for the 
faulting procedure. Crosshatched areas represent exact copies placed there 
by < arg_pull>. 

Figure 4-20. Appearance of the copied Argument List and 
copied Arguments placed by < arg_pull> 
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The pointers to the data descriptions are copied exactly as they were in the 

calling argument list.':' 

4. 3. 5. 2 Copying the Arguments 

Each data description provides < arg_pull> with the information it needs to copy 

the associated argument. Figure 4-21 shows the Multics standard format for an 

argument description. 

The data type code in the description determines if the argument has a specifier 

and dope. In copying arguments which have specifiers, the dope and datum parts 

are copied exactly. The specifiers, of course, are new. They must be constructed 

"on the spot", to point to the dope and datum copies. This is suggested in Figure 4-20 

where only the eros s hatched sections represent exact copies; the rest are newly 

created for the purpose. Arguments which can be copied by < arg_pull> are restricted, 

at least in the initial Multics, to scalars and one-dimensional arrays of scalars, 

i.e., to data types given in Table 3-1. 

4. 3. 5. 3 Recopying of Return Arguments on the Inward Return 

On an outward call to procedure < p>, there may be (copied) arguments whose 

values are altered during execution of < p>. During the inward return the Gatekeeper 

must see to it that the possibly new values for these return or "output" arguments 

replace the original values pointed to in the original copy of the argument list. Out­

put arguments can be recognized by examination of the I/O code (bits 18 and 19) of 

the argument description, as indicated in Figure 4-21. To deal with these arguments, 

if any, the Gatekeeper calls another ring 0 procedure, < arg_push>. This procedure 

searches down the data descriptions found in the original argument list t for arguments 

'·'rhere (in the target ring), copied pointers are likely to be of no direct use to the 
target procedure because they will, in general, point to a data segment in an inner 
ring, i.e., to <x. symbol> where <x> is the calling procedure. However, if the 
target procedure subsequently wishes to pass any of these arguments to another 
procedure with an even higher ring number, < arg_pull> must again be invoked by 
the Gatekeeper. The copied p. 1 s are now used in constructing the argument list for 
this second outward call. 1 

tIt is not the one in the stack of the now faulting procedure executing the return, but 
the one pointed to in the stack for the inner ring target procedure. It is not safe to 
use the argument list in the outer ring stack because this may have been altered by 
< p> or by any of its "dynamic descendents" that had access to this stack. 
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Fig. 4-21 

0-----------------17 20-------------------35 

I datatype I I/0 ~ 
Key: Data ~ is an integer code for the type of arument 

The different system standard types and their codes 
were given in Table 3-1. 

I/ 0 is a 2- bit code giving the input/ output nature 
of the argument. 

I/ 0 Code 

0 0 
0 1 
1 0 

System-wide Interpretation 

I/ 0 nature unknown 
input only 
input and output (requires callback) 

Figure 4-21. Multics Standard Format for an Argument Description 
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indicated to be of the output type (code 10). For each of these the datum (but not 

specifier or dope if any) are copied from their positions in the outer ring stack to 

their original positions wherever they may be. 

A review of the foregoing on the copying and recopying of arguments has re­

vealed one reason why a subsystem should provide argument descriptions in standard 

form, namely: It is a necessity if the subsystem is to interface with the Gatekeeper 

for processing outward calls and inward returns. Other Multics service modules 

including certain useful debugging facilities,':' will also require access to argument 

descriptions in the same standard form. 

Normally, the compiler or assembler used to generate code in the subsystem 

will have the responsibility for generating descriptions for all arguments employed 

in an outward call. Data descriptions for declared variables or for declared para­

meters (dummy variables) are usually placed in the segment symbol table produced 

by the compiler or assembler. Hence, a pointer to this data description can always 

be generated by the compiler when needed in the construction of an outward-call argu­

ment list. The fact is that in EPL-generated symbol tables, the data descriptions 

are compatible with, but are more elaborate in structure than the Multics standard 

given in Figure 4-21. The important requirement is fulfilled, however, that the first 

20 bits of an EPL -generated data description has the standard interpretation. More 

details on EPL-coded data descriptions can be found in BD.1. 

4. 3. 6 Gates 

In the description of the linkage section given in Chapter 2 of this guide, no men­

tion was made of gates because we then had no way of properly motivating them. We 

correct this omission here. As mentioned in Section 4. 2. 3, a gate has the form c£ 

a special entry in the linkage section. By way of review, an ordinary entry is found 

in the linkage section of a target procedure. It consists of a quadruplet whose form 

is: 

eaplp -':', ic 

aos 2, ic 

tra 

arg 0 

where linq is the offset to the link (pointer) to the program point in the target. 

':'see BX.10, Interactive Debugging Aids, for more details. 

4-63 



A gate is a quintuple, the last four words of which are identical with the above 

form. The first word is a no-op instruction whose address field is the location, with­

in the same linkage block, which contains additional information describing the gate. 

The form of the no-op instruction is: 

nop gate _info, du 

I 
When the Gatekeeper is processing an inward call, the address of the faulting 

instruction should point to this no-op. Figure 4-22 shows the kind of additional in-

formation (at gate_info) which the Gatekeeper would then have available for handling 

this attempted inward call. Inspection of the gate information will lead the reader to 

some interesting inferences: 

Normally, one would want the Gatekeeper to validate all arguments being passed 

on an inward call. Whoever writes a translator which generates gates in a linkage 

section can provide users of this translator with an option to ignore this Gatekebper 1 s 

service on inward calls. A user who takes the option to ignore argument validation 

will eliminate overhead, but will risk damage in the target's domain of access. 

Whether or not the n arguments are to be validated, the next [ n ; 1 ] words
1 

pro­

vide special 18-bit descriptions. A one in the leading bit position of a description 

indicates a return argument. Such an argument may be used in situ by the targ~t 

procedure, because it is (presumed to be) located in the domain of access of the 

caller. Arguments so coded will not be copied, thus avoiding the copying overhead. 

If the leading bit of the 18-bit description is zero, the interpretation is that the argu­

ment is to be called by value (i.e., no value is to be returned for this argument). 

The Gatekeeper will ask< arg_push> to make and place a copy of arguments so de­

scribed in the target procedure's stack frame. 

4. 3. 6. 1 Gate Segments 

The 6-bit field in gate-info that is marked ''cb'' (highest ring number in the 

£all £racket), is always examined by the Gatekeeper when handling inward calls. cb 

is interpreted as the effective upper bound for the target's call bracket in the event 

the value of cb is less than the value given in the ring brackets of the segment that 

contains the gate itself. The cb field may be set arbitrarily (0 :::: cb :::: 63) by explicit 
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gate_ info 

argument type 

form of special 18-bit 
argument description 

0 

linkage section 

gate_ info 
_,:..: ic ' 

2 
linq _,:, 

0 

... 

Key: 

nop 

eaplp 

aos 
tra 
arg 

n 

d2 

cb = 

g = 

n= 

v = 

du 

ic 

ic r··· (or door1 
ic'~ entry 

0 

[ n; 1] words 

outermost ring of the call 
bracket (used when g = 1 ). 
1 if this entry is a gate. 
2 if this entry is a door. 
(See Chapter 5 for explana­
tion of doors). 
number of arguments for 
this entry. 
0 if arguments are not to 
be validated by the Gate-
keeper. 
1 if arguments are to be 
validated. --

r = l this argument is a re­
turn value (ok to use in 
situ). 
0 no value is allowed to be 
returned for this argument 
(call by value). 

Figure 4-22. Format of Gate (and Door) Information 
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coding.>:< A small value of cb (smaller than the outer ring of the call bracket of the 

target) serves as additional screening of inward calls. 

Most subsystem designers will find few occasions to exploit this extra screen­

ing capability for inward calls. When used, it will probably be for the purpose of 

reducing the linkage segments that are needed in a multi-ring subsystem. The idea 

would be to concentrate into one linkage segment a collection of gates for different 

procedures in the same ring. Such a collection, will hereafter be called a "gate 

segment''. t 

A gate segment, when properly constructed, would serve as a funnel for access 

into an arbitrary collection of privileged procedures, e. g., in the hardcore ring. 

The gate segment itself has fixed ring brackets in the executing process, i.e., 

(r 1, r 2 , r 3 ) whose values are given in the file branch for this segment. However, 

any of the cb values found in the gate segment may be less than r 3• 

In the Multics supervisor, for example, ring-0 segment named <hcs_> serves 

as a gate segment to minimize the number of linkage segments needed for ring-0 

procedures. The ring brackets for <hcs_? are (0, 0, 32). This segment contains 

gates to all other procedures in ring-0 which are callable from outside ring 0. The 

gates for some hardcore procedures have cb = 1, while for others, cb = 32. The 

Gatekeeper will reject any user call from ring 32 to a user procedure whose gate 

has cb = 1 (even though the faulting segment's ring is not outside the call bracket 

for <hcs_> itself and even though the desired entry point is a gate). 

4. 3. 6. 2 Doors 

The last remark we wish to make is for the benefit of readers who referred to 

this subsection from Chapter 5. If the data at gate-info is for a door instead of a 

gate, there will be no arguments involved, because this entry is being used for con­

trol of an abnormal return, not for a call. Hence, n = 0 and the gate information 

consists of only one word. The gate information in this case serves primarily to 

identify the entry as a door (thus, making gates and doors mutually exclusive). 

':'Eventually source languages like EPLBSA will be expanded so a programmer may 
declare an entry point to be a gate. Such a declaration would be expected to result in 
the generation of gate information in the format shown in Figure 4-22. When declar­
ing a gate, one would specify the value of cb or accept a default value which would 
probably be 63, a value which would produce no screening effect at all. 

tThis segment would function something like the familiar "transfer vector" used in 
programs that are loaded in conventional batch operating systems. 
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