
" ... ,. --

A GUIDE TO MULTICS

FOR

SUBSYSTEM WRITERS

Chapter IV

Access Control and Protection

Elliott I. Organick

Draft No. 4

January 1969

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

M0106

TABLE OF CONTENTS

Section

LIST OF ILLUSTRATIONS

LIST OF TABLES

IV ACCESS CONTROL AND PROTECTION

4. 1 Introduction

4.2

4. 3

4. 1. 1

4. 1. 2

4. 1. 3

Compartmentalization - General Concepts

Compartmentalization - as Achieved in Multics

Alteration of the Process Stack Model

Access Control and Ring Bracket Protection

4. 2. 1

4. 2.2

4.2. 3

4. 2.4

4. 2. 5

4. 2.6

4. 2. 7

Per-Segment Access Control

Some Details on Access Control Information

Rings and Ring Brackets

4. 2. 3. 1 An Important Note

4. 2. 3. 2 Student-Teacher Subsystem Example

A Guide to the Ring Assignment of Segments

Ways to Recognize .Attempted Ring-Crossing

Two Hardware Approaches Have Been Designed

Access and Call Brackets -Motivation

4. 2. 7. 1 The First Restriction

4. 2. 7. 2 The Second Restriction

4. 2. 7. 3 Access Bracket - Details

4. 2. 7. 4 Call Brackets - Details

4. 2. 7. 5 Ring Brackets - Examples

Monitoring and Controlling Ring Crossings for
Normal Calls and Returns

4. 3. 1

4. 3. 2

Function of the Individual Descriptor Segment

4. 3. 1. 1 Ring Complexity of Subsystems

4. 3. 1. 2 Determining the Ring of Execution
for a Segment whose Ring Bracket
Contains an Access Bracket

4. 3. 1. 3 More Details in the Interpretation of
Directed Fault 3 (All Access Denied)

Management Control over Inter-ring Crossing
(The Gatekeeper)

iii

Page

v

v

4-1

4-1

4-4

4-6

4-7

4-7

4-10

4-14

4-15

4-15

4-18

4-20

4-20

4-21

4-21

4-22

4-23

4-25

4-26

4-29

4-29

4-34

4-34

4-38

4-38

Section

4. 3. 3

4. 3. 4

4. 3. 5

4. 3.6

TABLE OF CONTENTS (CONT)

4. 3. 2. 1 Outward Versus Inward Calls -
(Motivation)

4. 3. 2. 2 Gatekeeper - After Determining Type
of Valid Wall Crossing

4. 3. 2. 3 On Inward Calls

4. 3. 2. 4 On Outward Calls

Stack Management in the Multi-ring Environment

4. 3. 3. 1 The Housekeeping Problem in Getting
Ready to Produce the Frame for <Gamma>

4. 3. 3. 2 The Stack Switching Problem

4. 3. 3. 3 Saving Vital Cross- ring Data on the
Return Stack (<rtn _stk>)

Validation Levels and How They are Used

Outward-call Argument Lists

4. 3. 5. 1 Copying the Argument List

4. 3. 5. 2

4. 3. 5. 3

Gates

Copying the Arguments

Recopying of Return Arguments on the
Inward Return

4. 3. 6. 1 Gate Segments

4. 3. 6. 2 Doors

iv

4-39

4-40

4-41

4-42

4-42

4-43

4-45

4-51

4-52

4-57

4-58

4-61

4-61

4-63

4-64

4-66

Figure

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

Table

4-1

4-2

4-3

TABLE OF CONTENTS (CONT}

LIST OF ILLUSTRATIONS

Schematic of Directory Structure of the File System

Schematic of Directory Data Structure

Thinking of Segment Groups Corresponding to a set
of Concentric Rings

Access to a Procedure Target <a>

Access to a <target> Procedure or Data Segment

A Process in Miniature (in four rings)

Using the Descriptor Segment as a Ring Crossing Detector

Showing all four Descriptor Segments

Illustrating Segment Descriptor Words for Segments
Having Access Brackets

Cases of Superfluous Ring Crossing Faults

<pdf> is a One-per-process Ring 0 Data Base

Format of a Newly Created Stack Segment

Making the Dummy Frame for <beta> in the Stack for
the Ring of the Called Procedure

Dummy Frame for <beta> in <stack k> after being modified
for an Inward Call -

Dummy Frame for <beta> in <stack k> after being modified
for an Outward Call -

Overall and Detail Format of <rtn stk>

Gatekeeper's Algorithm for Saving and Passing, and for
Restoring Validation Levels during Ring Crossings

School Records Retrieval Subsystem

Format for an Argument List for use in an Outward Call

Appearance of the Copied Argument List and Copied
Arguments placed by <arg_pull>

Multics Standard Format for an Argument Description

Format of Gate (and Door) Information

LIST OF TABLES

On Interpretation for the Four Usage Attributes in
Non-directory Files

Access Discipline for Procedure and Data Targets

Examples of Ring Brackets Used in the System

v

4-9

4-11

4-16

4-24

4-28

4-30

4-31

4-33

4-36

4-37

4-44

4-45

4-47

4-48

4-49

4-53

4-55

4-56

4-59

4-60

4-62

4-65

Page

4-13

4-25

4-27

CHAPTER IV

ACCESS CONTROL AND PROTECTION

4. 1 INTRODUCTION

In this chapter and its successor we want to review our picture of interprocedure

communication with a more realistic orientation. We want to understand this com­

munication as one going on in the multi-access environment of Multics where differ­

ent processes, undoubtedly involving a number of different users, co-exist each with

separate objectives (and skills}. The users often compete for the computer's re­

sources. They "play" against each other in one way or another fair or foul. Fair

play, as in a management decision game with several players, is to be encouraged.

Foul play, as for instance one user inadvertantly or deliberately destroying the data

or procedures of another user, or of the system itself, is to be more than merely

minimized, discouraged or outlawed. It is to be prevented in toto! Multics is de­

signed so that a large measure of fair play can be achieved by cooperating users while

at the same time every type of foul play that can be anticipated is prevented.

This ambitious design objective is actually achieved inspite of the fact that en­

couraging fair play - i.e., permitted cooperation between users - almost inevita­

bly invites accidents, i.e., suggests chances for damaging interaction between users

or between a user and the supervisor - or so it would seem. A primary goal of

Chapter 4 and, to some extent, Chapters 5, 6, and 7 is to explain how these two ob­

jectives are, in fact, achieved. Secondarily, we hope the reader of this chapter

will gain confidence that Multics will indeed protect him from the inept practice or

foul play of others who share the computer with him. He will also see that to a sig­

nificant extent Multics can help to protect the user from himself as well.

4.1. 1 Compartmentalization - General Concepts

One natural question a subsystem designer might ask is: How does a large pro­

cess ever get debugged? What helpful provisions are there in Multics to effectively

isolate (and insulate) procedure and data segments (or groups of them from one an­

other}? Could one, in principle at least test isolated parts and be sure that when

tested parts are put together, undesirable interaction of the parts can be avoided or

4-1

at least controlled? This principle of compartmentalization probably goes back to

the early days of debugging which, in turn, certainly dates with the first computers.':'

Even on these simple, stand-alone computers where a user literally "owned"

the entire machine while in execution, ideas of protection began to emerge. To in­

crease the reliability of a program, ways were sought to safeguard data areas; pro­

cedures (subroutines) were invented to subdivide large programs and attempts were

made to limit the scope of procedures so that no one procedure will be allowed to ac­

cess any more data than needed. Near the beginning, interpreters were invented as

one of the software schemes to help achieve these measures of protection. Much

later, hardware innovations provided alternative possibilities.

When batch monitor operating systems were introduced there were new problems

of protection. Without benefit of hands -on control a sophisticated user had all the

more reason to design large processes in a compartmentalized manner to achieve in­

ternal protection of his programs and data. But, in addition, as a consideration to

other users in the batch, both ahead of him (on the output tape) and behind him the

isolation of the "supervisor" became critically important. In the batch system an

executing process could be thought of as having two distinct domains: the super­

visory programs and their data bases (S) and the user programs and their data

bases (U). To act as a "protected supervisor" in any meaningful sense, it was es­

sential that certain procedures in S have access to the programs and data of U. On

the other hand, it became apparent that programs of U should be allowed no direct

access to data inS and should be capable of only certain kinds of controlled access

(e. g., "trapped" calls to the I/O supervisor) to certain of the programs in s.

The latter distinction accords with the idea that only supervisory programs may

execute I/0 and other privileged instructions. Hardware developments have made

it possible to facilitate this distinction. In many computer operating systems operat­

ing under batch monitors, "master mode", which permits execution of the full in­

struction repertoire, is reserved for supervisory programs. A user program can

effect a transit into the master mode only by temporarily giving up direct control,

such as by executing an instruction that traps his program to a master mode fault

handler.

*Professor Maurice Wilkes, of Cambridge University, reports that his laboratory
"discovered" debugging the first day the EDSAC became operational while attempt­
ing to execute a simple program for generating a table of prime numbers.

4-2

Given this type of protection of S and givenS's greater freedom to interact with

U, we see that

(a) if S malfunctions, it can destroy both S and U,

(b) if U malfunctions, at worst it can only destroy U, leaving S free to load
and execute tasks for other users, e. g., for U 1, u 2 , etc.

When we now consider an environment like Multics where we have a collection

of user domains, U 1, u2 , ••• , Un, and a common supervisor, S, all our earlier

incentives for isolating key compartments of a process remain. The consequences

of not having adequate protection of S, however, are much worse. We must bear in

mind that process l consists of U 1 and S; process 2 consists of u2 and S, etc. Any

time supervisory procedures in S are executing, they are maintaining data bases in

S that pertain to the entire group of active user processes. If these tables are in­

advertantly or deliberately tampered with by U 1 (executing in process l) or u2
(executing in process 2), etc., not only would S be damaged, but one or more other

user processes are likely to be defeated at the same time. (Destruction of processes

can now occur en masse rather than, as typical in the batch system, merely invok­

ing a delay in use of the system by users waiting in the queue.)

There are of course new kinds of problems that need to be considered in a multi­

programmed environment which were less serious in the batch system. One of these

is the matter of privacy or, more generally speaking, control over the "sharing" of

segments. If a general mechanism is to be provided for allowing two or more running

processes to share the same segments, there must also be a complementary capa­

bility for preventing certain segments of one user's process from being shared,

peeked at, or written in by procedures of another process. Thus to insure the U 1

cannot interact with u 2 , e. g., by "peeking", we must rely on a carefully conceived

scheme of access control for each segment used in each process. Moreover, the

actuating of these access controls must be a function confined to the supervisory

procedures in S, using data bases in S.

One begins to see how really critical the design of a "foolproof", "vandal proof",

and "burglar proof" protection mechanism is, if any large general purpose multi­

user, multi-programmed environment is to endure. The Multics design for access

control and protection is intended to be "airtight". In this chapter we hope to de­

scribe a major part of this plan.

4-3

4. 1. 2 Compartmentalization - as Achieved in Multics

In Multics compartmentalization is achieved through two primary mechanisms,

one supplementing the other.

(a) Per-segment access control.

This is a means of denoting and controlling the type of access to a particu­
lar shared segment which may be accorded to an individual user. A seg­
ment may be shared by two or more processes, but the person who creates
the segment and who "grants" permission for its shared use is able to
specify the type of access accorded to each grantee.

By giving to each file's author the privilege of listing the users who shall
have access to it, a user is able to safeguard the information he creates
and files away for future use. It is true that Multics permits the coexist­
ence of many processes, each of which competes for the system's physical
resources and employs the same file system hierarchy. Nevertheless,
sharp divisions may be maintained between the processes with respect to
the information each may acquire in its address space and how such in­
formation may be used. Furthermore, the control rests where it may be
most meaningfully exercised -with the user. Per-segment access con­
trol may therefore be viewed as a form of inter-process protection. Con­
cepts of access control are introduced in Section 4-2. ':'

(b) Concentric rings of protection.

The ring mechanism, by contrast, offers intra-process protection of seg­
ments. The concentric ring concept is essentially a generalization of the
S and U (supervisor and user) domains. The segments of any one process
are associated with a set of generally two, but possibly more, concentric
rings. If a process has only two concentric rings, then the inner ring
corresponds to S and the outer ring to U. But, provision has been built
into the Multics design so that the subsystem writer may add {as justified)
additional rings. In such applications, segments of the subsystem would
be associated with the most appropriate ring {category) vis -a-vis privilege
and protection. In this way a designer, say when developing a teacher­
student subsystem, may establish one or more extra "lines of defense".
These can result in increased protection of the key parts of the subsystem
{e. g., teacher-written programs) from damage or misuse by other users
of the subsystem {e. g., student-written programs).

Basically, a procedure which is assigned the category of ring E. is privileged

during its execution to call {or to reference) any procedure {or data) segment in ring

r or in any ring peripheral, i.e., "outside of" ring r. Conversely, a procedure of

ring r is prevented from referencing data segments in a more "privileged", i.e.,

"inner" ring and is permitted call access to more privileged procedures only through

specially controlled entry points called "gates".

~:c

Section 4-2 should not be regarded as a complete treatment of access control.
Additional material is given in Chapter 6.

4-4

The Controlled entry via gates is into procedures that may reside in any one of

several inner rings. This amounts to a software-augmented generalization of the

call trapping capability that is employed in conventional batch monitor systems. In

these systems the caller traps, when permitted to do so, to procedures that have

full privilege (master mode). In Multics, the caller can in effect trap into procedures

that have intermediate degrees of privilege, as deemed appropriate by the subsystem

designer.

The set of supervisory segments, when viewed as a subsystem can, in principle,

also benefit through subdivision into rings. Two rings were originally thought to be

desirable; the first was variously referred to as ring 0 or the hardcore ring; the

second, ring 1, was also called the administrative ring.':' Experience in checking

out the earliest versions of Multics indicated, however, that the cost (both in space

and time) for maintaining two supervisory rings using existing hardware was not

justified. As currently implemented, the Multics supervisor resides essentially in

one ring (ring 0). A small portion of the ring 0 segments must in fact remain resi­

dent in core at all time. Such segments are referred to as "wired down" and their

absolute addresses in memory are known to other ring 0 procedures. The logical

structure to support a multi-ring supervisor has been carefully retained. So, a

multi-ring supervisor can be readily employed whenever hardware improvements.

allow it to be justified. For this reason our discussions in this chapter will retain

a generality, wherever appropriate, that presumes the existence of a multi-ring

supervisor.

Here we summarize the motivation for multiple rings for supervisor and/or

user:

By sub setting the segments of a process into rings and by effectively controlling

interactions and communication between segments of different rings (supervisory-

or user-like), Multics provides the potential to isolate trouble and limit damage in

the system. Different rings, in a way, may be equated to different levels of damage.

Greater damage to the total system operation would, in general, result from a mal­

function of or damage to a segment, the closer its ring is to the hard core or "nerve

center" of the system. Conversely, damage that occurs to a segment in an outlying

':'Generally speaking, ring 0 segments were those most crucial to the operation of
Multics. In this category fell certain key tables and vital procedures which, for
instance, govern the multiplexing of the core memory, of the processors, and of
other key resources among the processes. Ring 1 segments were, generally speak­
ing, those more numerous and less vital supervisory segments which might more
readily be debugged while the system would be in full operation.

4-5

user ring, would affect only the user's process or at worst those of other users who

happen to share the affected non-supervisory segments. One would correctly intuit

that there are significant overhead costs incurred in implementing rings and the im­

plied controls. For instance, extra execution time required to cross from one ring

to another during a procedure call or a normal return is of the order of several

milliseconds. (This is the cost using the current GE 645 hardware together with

the software described in this Chapter.) The notes in Sections 4. 2 and 4. 3 will pro­

vide insight into the costs involved, so that you will be able to assess the tradeoffs

among subsystem designs employing alternative ring structures. One type of "ring"

overhead is alluded to in the next two paragraphs.

4. 1. 3 Alteration of the Process Stack Model

The process stack model which we developed in Chapter 3 must undergo an ex­

tension to be compatible with the concept of a process that is subdivided in the two­

or more-ring sense. We can no longer continue to think of a single (common) stack

that can be employed by (i.e., be read-write accessible to) all procedures in one

process. For, were this the case, the hoped-for isolation between rings would be

easily circumvented. Any (offending) procedure could copy information from the

stack or possibly destroy information (including instructions) in it which was stored

there by supervisory ("superior" in the inner-ring sense) procedures. Security and

protection of information vital to the functioning of a supervisory procedure would

thereby be nullified. The Multics solution is to give procedures in each ring of a

process a separate stack segment. Of course, all legal communication between

procedures of different rings then becomes clerically (though not necessarily con­

ceptually) more complicated than first described in Chapter 3.

Readers can hopefully gain a full overview of all these new ideas by reading

Sections 4. 2 and optionally proceed to 4. 3 for still further details. Protection prob­

lems also arise in connection with other types of interprocedure communication,

specifically condition handling and abnormal returns. A discussion of these prob­

lems and the solutions to these as developed in Multics, is the subject of Chapter 5.

The MSPM documentation on which· most of this "protection" material is based comes

from the BD. 9XX sections of the MSPM and from Graham.'~

':'"Protection in an Information Processing Utility" by R. M. Graham,
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 365-369
(an excellent overview)

4-6

4. 2 ACCESS CONTROL AND RING BRACKET PROTECTION

In this section we provide some basic details on the two types of isolation tech­

niques, access control and ring brackets':' which, in proper combination, are funda­

mental to the system of protection and to the controlled sharing of data and procedures

in Multics.

We have already suggested why segments within a process should be subdivided

into rings and why, for each ring there should be a separate stack segment. It is

proper to remark here that ring compartmentalization is carried out with some hard­

ware aid. Multics exploits special GE 645 fault-detection hardware to detect and trap

a process whenever it attempts to make a cross-ring reference requiring interven­

tion of supervisory software. Without some direct hardware support a ring isolation

scheme could be achieved only by execution in a fully interpretive mode, a prohibi­

tively expensive alternative.

Before we can proceed further with the details of the ring mechanism, it is nee­

essary to acquire a clear understanding of the perhaps more fundamental, per-segment

access control provisions of the basic file system.

4. 2. 1 Per-Segment Access Control t

What follows assumes you have, at sometime in the past, read one of the several

available Multics overviews on the basic file system and, in particular, the directory

structure of the file system hierarchy. f A review of these topics may not be nec­

essary now. We will assume that you have a general knowledge of the file structure:

':'The notion of a ring bracket to be developed in this section is a slight extension of
the ring concept already introduced.

tPrincipal MSPM references on which the discussion of access control is based are:
BG. 0 Overview of the Basic File System, and
BG. 9 Access Control.

Auxiliary documents are:
BG. 3 Segment Control
BG. 7 Directory Data Base
BG. 8 Directory Control
BX. 8 File System Commands

f As of July, 1967 either the paper by R. C. Daley and P. G. Neumann, pp. 223-227,
"A General Purpose File System for Secondary Storage," (Proceedings of the 1965
Fall Joint Computer Conference) or the most recent account, pp. 5-16 through 5-39
of the Multics Operation System, May 196 7 (Cambridge Information Systems
Laboratory of G E).

4-7

{l) that it consists of a tree of directory and nondirectory files; (2) that among

other things, a directory contains a set of entries called branches, teach of which

points directly to and describes a file in some detail: either a directory file, i, e,,

another directory, or a nondirectory file, i, e., referring to a block of data or to a

procedure. Branches carry unique identification and they are in one-to-one corre­

spondence with the files in secondary storage; (3) that a nondirectory file is simply

the way we refer to data or procedure segments kept in secondary storage; we think

of them as files on secondary storage in the context of the file system, but as seg­

ments when we refer to them in any way as part of a particular process; and (4) file

descriptions (branches} are specified either explicitly or by default rules at the time

a segment is created. Each branch includes a "permission list" which names each

user who is to have access to the file and which specifies the types of permitted ac­

cess for each listed user. Of course, the creator of a file is automatically listed

as a permitted user in the file's branch.

Figure 4-1 is a schematic of the directory structure, At the time he acquires

"user status", each user has assigned to him a uniquely-named "user directory"

whose file branch is located in a system-maintained directory called "user_

directory_directory." Once a user begins executing processes in his own name, he

may create new files and add these to the Multics tree. The new files will normally

have their corresponding branches in the user's user directory. A user is free to

create either non-directory or directory files. The ability to add directories implies

that a user if he chooses, can add to the overall system hierarchy a subtree of

arbitrary depth whose root is his own user directory.

The creation of a file takes place when a process calls for the creation of a new

segment whose name and other descriptions correspond to the desired file. In the

course of creating the segment, the Basic File System establishes the segment as a

file by constructing and attaching a file branch in the appropriate directory. Sub­

sequent to its creation, writing into the segment amounts to adding information to

the file.

A process will frequently make indirect attempts to access an existing file usual­

ly by making symbolic reference to it via link faults. The Basic File System (BFS)

which is involved in response to the Linker's request, will attempt to "register" the

wanted file as a segment of the faulting process. Registering the file amounts to

fAnother type of entry called a link is discussed in Chapter 6.

4-8

Key directory
(small black

~ • .~ square represent
individual
branches

~ non-directory

Each directory contains a set of "branches" (which point
either to other directory files or to non-directory files}.

Figure 4-1. Schematic of Directory Structure of the File System

4-9

associating with it a segment number and obtaining the information that is needed

to form the appropriate segment description word (SDW). In the process, the BFS

will first answer the following question. Does the process associated with the fault­

ing procedure have any business at all making this reference, i.e., is any access

at all to this segment by this process to be permitted?

To find the answer, supervisor modules will locate and then examine the particu­

lar directory':' that holds the branch pointing to the desired file - i.e., to the file

whose attempted acquisition as a segment caused the fault. The "access control in­

formation" found in this branch 1s "permission list" provides the answer.

First we consider the consequence of a no answer. In this event the desired seg­

ment is discovered to be strictly off limits to the current user. In the handling of an

ft2 link fault to such a segment, the Linker module would "learn" the no-access news

from the appropriate ring 0 module in charge. The Linker then gives up its attempt

to establish the desired link, and transmits its failure to the Fault Interceptor.':":'

The latter will now signal its failure to achieve the desired link so that, at least in

some subsystems, corrective action may possibly be taken by the user. (We 1ll dis­

cuss the technical meaning of signalling in Chapter 5.)

If the answer is yes, then the file may be used as a segment in the requesting

process. Other information in the directory spells out the kind of access that is to

be permitted.

4. 2. 2 Some Details on Access Control Information

Now, to the details of access control information. We begin by looking at a s che­

matic of the data structure for a directory, Figure 4-2. A directory (for our pur­

poses here) is thought of chiefly as a list of pointers to branches. Each branch is,

in turn, conceptually divided into two parts, a permission list, hereafter called an

access control list (ACL) and a block of other information specific to the data of the

branch, e. g., where the file is located in secondary storage, its size, etc. A sche­

matic of these lists is displayed in part (b) of Figure 4-2. The actual storage

structure is given in BG. 7.

':'The mechanics of searching and locating the desired directory is examined in
Chapter 6.

':":'For a refresher on the role of the Fault Interceptor, refer back to Section 2. 6. 5
of the Guide. The design of this module is detailed in MSPM BK. 3. Inspection of
these details should be postponed until after study of Chapter 5.

4-10

{b)

-------~ ~---~~~~}other brancheo, etc,

L harry>

AC L - access control list for a
particular branch

{a) Partial view of data structure for a directory.

user i dent

mode of access{R,E,W, A)

ring bracket {rl, r2, r3)

(user ident

mode of access {R,E, W,A)

ring bracket (rl, r2, r3)

<:1 etc.

Data structure of an access control list for an individual
branch {ACL).

Figure 4-2. Schematic of Directory Data Structure

4-ll

Associated with each listed user or class name,':' is information that denotes

the mode of access, i.e., read and/or write, etc., and a ring bracket. The latter

identifies the ring(s) from which the specified access mode is permitted. Access

control information may be altered only by the process(es) which enjoys write ac­

cess privilege in the directory which contains the branch to the file in question.

Normally, this process is the one which has responsibility for creating the segment.

A subsystem writer, ssw, will typically designate his own user directory as the

one to hold branches for segments which he would let others have access to. Sub­

sequently, only processes executed by ssw (or by his proxy) would have the write

access mode necessary to alter branches to such segments.

Strictly speaking, a name on an access control list in a branch is what is called

a "user id". When a user logs in, the process that is created for him, and any

others which may be subsequently spawned for him during the same console session,

are registered under a common user_id. The user id is a concatenation of several

components, including the user's name and his project number.

If a user is to have any access at all to a given file (segment), his user id or a

class name that includes the user_id must appear in an entry in the appropriate

branch's ACL. A search will be initiated at the request of the Linker in behalf of a

given process with user_id as one of the arguments.

Specifically, if the search for the segment, say <tom> leads to the branch

pictured in part (a) of Figure 4-2, then access will be permitted if and only if an

acceptable match can be made between user_id and a corresponding user identifica­

tion in an entry of the ACL for <tom>.

Usage Attributes

Codes defining the modes of access are found in the matched ACL entry. These

code~, called usage attributes, determine the kind of access to be permitted this

user. A module of the Basic File System called Segment Control will employ this in­

formation in setting the descriptor field when preparing the descriptor word for the

segment being acquired. Segment Control is invoked in an appropriate manner when

its services are needed, e. g., by the Linker.

There are four usage attributes, each coded as on-off switch. The switches are

named R (for Read), E (for Execute), W (for Write), and A (for ~pend). Table 4-1

':'Access control lists either name individual users (user id) or classes of users.
The coding schemes for naming classes of users is explained in BX. 8. 00.

4-12

gives the on interpretation of the REWA switches in the typical case where the

branch refers to a non-directory file {as opposed to a directory file),':' These four

attributes define the so-called effective mode of the segment,

TABLE 4-l

On Interpretation for the Four Usage Attributes in Non-directory Files

Attribute Type of Segment Implied Type of Permission

Read Data or Procedure Can read the contents

Execute Procedure Can execute as a
procedure

Write Normally data, occasionally Can truncate or re-
procedure write existing con-

tents {without in-
creasing the length)

Append Data Can add to the segment
without changing its
current contents
{Should be accompa-
nied by the Write
attribute) t

-·-
'''Interpretation of the switches for a directory file is discussed in BX. 8. Briefly:
The read attribute must be on if a user wishes to examine the contents of a particu­
lar branch, e, g., to see if he is on the ACL for that branch and if so the type of
access he has been granted,

The execute attribute must be on if a user wishes to search a directory to
locate a particular named branch and if found to use the file to which it points,

The write attribute must be .£!!if a user wishes to alter a branch, e, g.,
change access control list information, or to delete the branch entirely {and its
corresponding file),

The append attribute must be.£!! if a user wishes to add a new branch to the
directory {without altering existing branches),

t Ideally the concept of the A attribute for a data or procedure segment should be
fully independent of the other attributes, Thus, to be meaningful, an A attribute
should carry with it an implied write privilege in the section of the segment that
is appended, The GE 645 has no hardware to support this independence, As a
result the A attribute by itself does not carry with it any write permission. For
this reason, if the A attribute is given to a user of a segment, he should also be
given the W attribute as well, Of course, this means that write permission is
then given for the entire segment, not just for the append portion,

4-13

The important observation to make here, if you are a subsystem writer, is that

two or more users may have entries on the same ACL with different effective modes.

This can lead to a situation where, for example, the same unique copy of a data seg­

ment is acquired by two processes (active at the same time). One process is given

read and write privileges to the segment, while the other is given only read privileges.

This capability for the sharing of segments means it will be possible for certain key

data and procedure segments of a subsystem to be under development (full access)

by a subsystem writer while continuing to permit users of this system the appropri­

ate, but limited access to such segments (e. g., Read only for the data and Read,

Execute for the procedure segments).

Notice, also, that a user can have more than one process because he can have

one project number, and/or more than one user id under the same project number.

This means he has the possibility of giving one of his files, say segment< a>, differ­

ent effective modes for his different processes (or project numbers), thus offering

the possibility where necessary of a user "protecting himself from himself".

Recall from Chapter 1, that the G E 645 address formation hardware has been

especially designed to permit this 11 simultaneous" multi-type use of a segment. Ac­

cess to a segment is not a function of the physical location of the segment in core,

but is a function of the descriptor bits set in the segment descriptor word (SDW) of

the particular requesting process. These bits are, of course, independent of the

segment's location. Moreover, two or more active processes may share a segment

in core. Each process would have an SDW pointing at the page table for this shared

segment, and each of these SDW's may be set with the same or different descriptor

bits.

In summary, ACL entries may be added, deleted or altered by any user who is

privileged to write in the directory containing the branch to a given file. Thus, the

subsystem writer who constructs a particular file will be able to select the set of

valid users for each of his files and the type of access to be accorded each. The

calls to the Basic File System for performing these ACL operations are described

in BG. 9 and the corresponding commands are described in BX. 8 and BY. 12.

4. 2. 3 Rings and Ring Brackets

The ring bracket found in each ACL entry defines the ring or bracket or rings to

which the segment will belong in the process acquiring it. We initiate our discussion

4-14

by considering the simple case where, for purposes of access, a segment is associ­

ated with a single ring, deferring discussion of the perhaps more general case where

a bracket of rings is involved.

Figure 4-3 reviews the ring concept for grouping the segments of a process,

suggesting the idea of a set of concentric rings, each ring being identified by anum­

ber, beginning with 0. Each segment of a process, da.ta or procedure, can now be

characterized by a ring number. The numbers 0 through 3, shown in Figure 4-3,

are suggestive only. Multics, in fact, provides for a maximum of 64 rings, up to

32 rings for characterizing systems programs, e. g., central supervisor (ring 0},

administrative segments (ring l), etc., and up to 32 rings available for use in

characterizing user -provided subsystems and other user programs and data, i.e.,

rings 32 through 63.

Warning:

The fact that up to 32 rings are available to user-designed subsystems is hard­

ly to be construed as an urgent invitation to use them. The use of each additional

ring in a subsystem of course adds to the cost of programming and execution. On the

other hand, the multi-ring capability is available when it is needed.

4. 2. 3. l An Important Note

In the initial implementation of Multics, an attempt to maximize performance

has resulted in an expedient consisting of the following simplification:

All supervisory segments reside in ring 0. A number of library routines de­

signed to make the supervisor easier to use are placed in ring l. In addition, user

segments, which would ordinarily reside in ring 32 (the first user ring) are placed

in ring 1. (Ring 32 will thus be empty.) If additional user rings are needed, they

may be added, beginning with ring 33. Typically, the segments of a process will

be divided between two rings, 0 and l, with user segments sharing equal privilege

with the ring I library routines. In the remainder of this chapter, we treat the ring

system as it is eventually intended to be used, namely: user segments reside in

rings 2: 32.

4. 2. 3. 2 Student-Teacher Subsystem Example

When more than one user ring is needed, two rings will usually suffice. As an

example, a student -teacher subsystem, such as the one mentioned in Section 4. 1. 2,

would probably require no more than two rings.

4-15

Subsystem
level 2

User A segment
at level 3

Figure 4-3. Thinking of Segment Groups Corresponding to a Set
of Concentric Rings

4-16

----~- ---------------.

A number of teacher-student schemes can be devised. Here is one relatively

simple kind which might be used for grading of student-prepared procedures. Let

us suppose teacher X has as signed the students in his Math class the task of pro­

gramming a certain subroutine called< sub_stu_id>, where stu id is any unique

character string mutually agreed to by teacher and student.

Imagine that prior to the due date for this homework assignment, each student

will have placed a tested version of< sub_stu_id> in X's user directory, ready to be

graded. After the due date X 1s grading program would systematically execute calls

to each of the various< sub_stu_id> 1s found in X 1s user directory. The teacher

program would somehow compare observed performance, e. g., computed results,

run time, etc., with certain pre-established norms as a means of evaluating the

student's work.

If< sub_stu_id> and the teacher's grading program belong to the same ring,

there is no foolproof way to prevent the student's procedure from damaging the

teacher's segments. In this situation, a clever student might be able to help him­

self to an A! Thus, upon being called, <sub _stu_id> might be so written to inspect

the stack frame of the caller {the teacher) and from this information figure out a

way to call on the caller, i.e., study the teacher's grading program, and determine

what the right answer should be •

Here, is one of several ways to prevent this invasion of the teacher's privacy.

We assume that teacher X has previously "paved the way" for each student in the

class to move his < sub_stu_id> to X's user directory. To get his homework graded,

each student will move his own tested version of< sub_stu_id> into X's user directory

on or before the due date. Before grading each< sub_stu_id>, now in X 1s own

directory, the teacher's program makes two crucial alterations to the branch for

each student's < sub_stu_id>, via the setacl command. {The teacher can do this,

since he has write access to his own directory.)

{l)

{2)

In every ACL entry he deletes write access {so that neither the student
author nor any "friend" of his can sneak in a change to the program after
the due date and before the work is graded).

X creates an ACL entry for himself {teacher id) with Read, Execute access
rights and - here is the crucial point - with the number 33as the ring
numbe1· for this segment. When the teacher program later executes
< sub_stu_id> in performing the grading, it will execute as a ring 33 pro­
cedure. In this way< sub_stu_id> would not be able to gain illegal control
of or inspect the teacher's segments.

4-17

Here are two details omitted in the foregoing description:

(1) The teacher "paves the way" for the student to move his< sub stu id> by
using the file system command: - -

make branch (See BX. 8. 05 for details.)

(2) The student moves his files when he chooses to by using the file system
command:

move branch (See BX. 8. 12 for details.)

The two steps above must occur in sequence. Unless the teacher has created a

properly named branch for each< sub_stu_id>, (which, incidentally, he can do) a

student may find he cannot successfully execute the move branch command.

4.2.4 A Guide to the Ring Assignment of Segments

Two general principles should be kept in mind when deciding on the appropriate

ring(s) for the key segments of a process:

(1) The Need to Know

A procedure< a> should have access to only those procedures and data segments

necessary for <a> to do its task. Moreover, <a> should only have the mode of access

to these same segments that is actually required (e. g., read, but not write, read­

write, but not append, etc.). Graham's paper draws the excellent analogy with a

military system of clearance. The higher the clearance (lower the ring number) the

more documents one may have access to - and the fewer the number of individuals

(segments) who are to be afforded such clearance.
I

(2) Degrees of Likely Damage

If the segments of a subsystem can be effectively segregated according to the

damage which may be wrought when these segments are misused, there may be good

reason for compartmentalizing the segments into two or more rings. Those seg­

ments whose misuse is likely to cause the greatest damage would be accorded the

lower ring numbers. The advantage gained by placing a procedure in an inner ring

is easily nullified however, if insufficient care is given to the coding of it. A pro­

cedure which can cause extensive damage when improperly called can accomplish

comparable damage if it malfunctions of "its own accord". For this reason we

sometimes speak about inner-ring procedures as needing to be more trustworthy.

As a matter of fact, they aren't going to be more trustworthy simply by as signing

them a low ring number. Below is an attempt to explain what we do mean by

4-18

trustworthiness. In one subsystem we are given two procedures, < a32> ':' in ring 32

and< b33> in ring 33. The likelihood that the more trustworthy< a32> will misbe­

have by improperly calling a procedure in ring 33 is less than the likelihood that

< b33> will improperly call on a procedure in ring 32. If damage does result from

an improper call, we prefer it happen in an outer ring where the damage segments

will affect the fortunes of fewer users or user groups.

By the same reasoning a more trustworthy low ring number procedure is less

likely to misuse a given data segment to which it makes reference (read, write or

append) than will a higher ring numbered procedure. The lower the ring number

of a referenced data segment, the more universal is the damage likely to be when

it is misused.

For the benefit of those who might be designing a multi-ring subsystem, our

discussion thus far can be summarized by three rules (essentially axioms) that are

enforced by the system. We preface these rules with the following remark:

We shall often speak of a procedure as "residing in ring j", or as "executing

in ring j". What we have in mind is the notion that every executing process has a

state variable known as the current ring number. Conceivably, this variable could

be implemented as a special hardward register. If, for instance, the procedure

< s33> were to transfer control (call or return) to <t32>, we picture the "ring

register" that holds the current ring number as being updated from 33 to 32. Prior

to the transfer< s33> resides (or executes) in ring 33. After the transfer, <t32>

resides in ring 32.

Rule l. A procedure "residing" in ring number j should have the liberty to call

any procedure segment residing in ring number j or in any ring num­

ber greater than j. The same procedure should also be permitted to

make references to data segments (Read, Write or Append), as per­

mitted by the effective mode of the particular data segment, provided

the ring number of the data segment is j_~ greater. t The data and

procedure segments in rings j, j + l, ••• etc., are said to be the do­

main of access for a procedure segment in ring j.

*By this unofficial naming scheme we hope to simplify our discussions. By append­
ing "32" to "a" we hope unambiguously to suggest"< a> in ring 32".

t The damage caused by misuse of a data segment becomes more localized the higher
the ring number of that data segment. Note, if a procedure can be trusted to use a
data segment in its own ring j, it can certainly be allowed to make references to data
segments in rings higher than j.

4-19

Rule 2.

Rule 3.

A procedure residing in ring j should either be denied the privilege of

calling a procedure in a ring numbered i less than j (inward call), or

else this access should be limited, i.e., controlled in some careful

way.

The same procedure residing in ring j should~ be given access to

data segments having ring numbers less than j.

4. 2. 5 Ways to Recognize Attempted Ring-Crossing

If the ring model is to be implemented, it must be possible to detect and con­

trol each ring crossing that represents an inward call. In Section 4. 3 we'll see that

other types of legal ring crossings must also be detected and controlled, e. g., out­

ward calls, to make inner arguments accessible to called procedures in outer rings,

inward returns from outward calls, for similar reasons, and even outward returns.

From a design point of view we would like all of this detection mechanism to

occur "under the surface. 11 At least the unsophisticated user should not need to be

aware of the mechanism which causes the combined hardware and supervisory soft­

ware intervention at ring eros sings. Certainly no special coding should be required

when he, for example, executes a call to a system or subsystem procedure which

happens to reside in an inner ring.

Ways could possibly be found by software alone to check for ring crossings on

all calls and returns. Thus, the system could operate entirely in the interpretive

mode. We are forced to reject this plan as being too expensive as a general solu­

tion. Alternatively, we could expand the standard call and return sequences by

introducing additional ring-related arguments. This would prove costly enough in

execution time overhead. But, how would we prevent other, strictly illegal inter-

ring references by software alone?

The use of special hardware facilities which could detect all cross ring activi­

ties as faults and which would then trap to a special supervisory routine, is the only

feasible approach. This is the approach used in Multics. The routine to which

trapping is accomplished is called the Gatekeeper (MSPM document BD. 9. 01).

4. 2. 6 Two Hardware Approaches Have Been Designed

Using current GE 645 hardware, the protection mechanism is achieved by hav­

ing the supervisor maintain separate copies of the descriptor segment for each ring

used. The per-ring descriptor segments differ only in the access control bits of

4-20

corresponding segment descriptor words. If we were to look, say, at the descriptor

segment for ring j, we would see that special fault-inducing access control bits are

preset {by the basic file system) in SDW's that point to segments of other rings

k "f j. One type of fault "detects" cross-ring references to procedure and data seg­

ments of inner rings. Another type of fault detects references to procedures resid­

ing in outer rings.

A more efficient scheme has been proposed for a future implementation of

Multics wherein the need for multiple copies of the descriptor segment would be

eliminated. The proposal depends on altering the GE 645 hardware in the following

way: First, a six-bit ring register would be added on each processor to the set of

registers referred to as the "machine conditions". The ring register would at all

times hold the ring number for the currently executing procedure segment. Next,

the format of the segment descriptor word {SDW) would then be revised to include

ring number identification for the segment coded in the SDW. A new type of hardware

faulting would occur when the address formation mechanism, upon reaching the SDW,

detects certain kinds of ring crossing based on a comparison between the contents

of the ring register and the coded ring number in the SDW.

Section 4. 3 gives a more detailed explanation of ring-crossing detection. The

discussion is based entirely on current hardware.

4. 2. 7 Access and Call Brackets - Motivation

The simple ring model so far described is fine for protection, but it is, in fact,

too good! The model implies that every segment of a process be associated with a

single and fixed ring number. Two consequences of this simplicity turn out to be

too restrictive. In order to circumvent each of these restrictions, when necessary,

the Multics ring model has been made a bit more complicated.

4. 2. 7. l The First Restriction

Consider a service routine which would be made available for use by ordinary

user and supervisor alike. Suppose a single ring number is as signed to this routine.

It would appear that either the supervisor or the user would invoke a ring-crossing

fault* in calling this service routine, even if we were considering a two-ring model.

':'strictly speaking it is also possible to avoid these ring crossings by making multiple
copies of each service routine one copy assigned to each ring in which a call to that
routine is made. This approach has not been taken in Multics.

4-21

Now, whatever overhead is involved in executing this ring eros sing (and we shall

see these details in Section 4. 3) seems unnecessary. A service routine (or at least

~service routines) can certainly be designed to take calls from segments in a

wide class of rings because it can be written as a pure procedure, i.e., with Write

access to it prohibited. Hence, there is no reason why such a routine should be

subject to damage or should cause any damage during its normal use. Extension

of the model to three or more rings only strengthens the argument. It would, there­

fore, seem worthwhile if use of such service routines could be 11 exempt 11 from the

ring-crossing overhead. The solution arrived at in Multics is to let each segment

be optionally characterized by an access bracket instead of a single ring. The

bracket then constitutes a band of rings such that when a reference is made to one

of these segments (data or procedure) from a procedure whose ring number is

within the access bracket, no ring eros sing faults are invoked; (manifesting the

fact that no protection is needed}. A procedure called in this way is said to execute

i!;: the ring of ~ caller. All EPL library routines are of this type, for example.

4. 2. 7. 2 The Second Restriction

It's easy enough to prevent outright any outer-ring procedure from calling any

inner ring procedure since a ring eros sing will be induced in the attempt and the

fault handler can then declare the caller 11 guilty11 • The real challenge is to provide

a suitable screening methodology so that some inward crossings can be regarded as

legal, possibly subject to some further checks, while other inward crossing attempts

can be rejected as truly illegal. This type of control, for example, is found nee­

essary in the design of the Multics supervisor. Thus, certain modules of the basic

file system that 11 reside 11 in ring 0 are designed to be called either by other ring 0

routines (with safety assured} or by certain routines in ring 1. However, calls from

procedures in rings higher than 1 are considered unsafe and must be rejected. To

achieve this level of control over inward calls in Multics, it is possible to associ­

ate with any procedure, when needed, a call bracket, representing a band of rings

immediately outside the access bracket. The call bracket of a segment <a> would

identify the rings from which a calling procedure < b> is permitted to call <a> via

an inward ring-crossing. If executes in a ring outside the call bracket, the

fault handler rejects the call as illegal. If < b> executes in a ring within the call

bracket, the fault handler will consider the call to be potentially OK and will then,

before accepting the call as legal, perform a further check to be sure the target

address is a specially declared entry point in< a>, called a gate. The concept of

gates will be discus sed in Section 4. 3.

4-22

Figure 4-4 summarizes the forgoing ring bracket concepts. The hypothetical

case is considered for a target procedure <a> whose access bracket is rings 32, 33

and whose call bracket is rings 34, 35.

4. 2. 7. 3 Access Bracket - Details

In place of a single ring, k, any data or procedure segment may be optionally

characterized by the band of rings from k to P., where 0 :::: k:::: P. :::: 63. The band is

represented by the pair (k, £), and is called the access bracket. Ring crossing

faults occur only when the ring of the executing procedure lies outside the access

bracket of the target segment. The intended access discipline (a) for procedure

targets, and (b) for data targets, is spelled out below and summarized in Table 4-2.

For this discussion we picture some procedure, whose ring number is r, is mak­

ing an attempted reference to a target segment. We speak of the referencing pro­

cedure as executing in ring r.

,,,

(a) For target procedure segments characterized by the access bracket

(k, £), and having no call bracket the following is to be true:

(1) A referencing procedure executing in a ring r :::: P. has what we can
call "ring access" to the target. This means that actual access is
governed by the effective mode of the particular target. Cross­
ring (outward) faults are induced and detected in these instances
only when r < k.

(2) Access to the target is completely denied to any procedure whose
ring number lies outside the access bracket of the target, i.e.,
has ring number r > P.. Segment faults>:< are detected in all instances
where r > P..

(b) For target data segments having an access bracket (k, £), the interpre­

tation is quite different:

(1) A referencing procedure executing in a ring r :::: k will have access
to the target governed entirely by the target's effective mode. No
ring eros sing faults will be induced during an outward data refer­
ence from a ring r < k.

(2) Procedures referencing the target from rings k + 1, k + 2, ••• , P. - 1,
P. will have access restricted. No writing in this segment will be
allowed by the executing procedure even if the W bit in the effective
mode is on.

,,,The significance of this type of fault (directed fault 3) will be discussed later.

4-23

"'" I
N

"'"

e,

Procedure target
is accessible by
out ward call from
one of these rings
but causes a ring
crossing fault.

A procedure
target is
accessible
with no ring
crossing fault
if called from
one of these

from one of
these rings
provided a
valid gate
is used as
the entry
point.

Figure 4-4. Access to a Procedure Target< a>

e

target is
inaccessible
if calling
procedure
executes in
one of these

e

Key:

(3) Procedures attempting to make data reference to the target from
rings J. + 1, J. + 2, ••• , 63 will be denied all access. Segment faults
are detected in all instances where r > J.. For example, if <data>
has the access bracket (35, 38), and if the effective mode for< data>
is R, W, (i.e., read and write), procedures executing in rings ::::= 35
will be permitted to read and write in <data>, procedures executing
in rings 36, 37, and 38 will be permitted read only privileges in
<data>, while all access to <data> will be denied to any procedure
executing in rings 39 through 63.

TABLE 4-2

Access Discipline for Procedure and Data Targets

Referencing procedure executes in ring r

Target has effective mode = REWA

access bracket= (k, £)

Target Type r < k r = k r > J.

Procedure

Data

REWA
(but ring
crossing
fault is
induced)

REWA

4. 2. 7. 4 Call Brackets - Details

REWA

REWA

REWA

RE)VA
(write access
denied)

ttVIA
(all access denied.
segment fault is
induced)

ttvtr A
(all access denied.
segment fault is
induced)

A call bracket may be added to the access bracket in characterizing any pro­

cedure (but not a data) segment. If the pair (k, J.) is the access bracket, then the

additional call bracket is, for economy of coding, characterized by a third number,

m, such that 1 < m ::::= 63. The call bracket is then the band of one or more rings

from J. + 1 tom, inclusive. Ring-crossing faults occur whenever the ring of the

executing procedure is within the call bracket of the target, and segment faults oc­

cur when the ring of the executing procedure, r, exceeds m, i.e., lies outside the

call bracket.

4-25

The intended access discipline here is as follows: As before, target data or

procedure segments are accessible (without induced ring-crossing faults) to any

procedures or data segments whose ring number lies within the access bracket.

Target data segments are entirely inaccessible to procedures whose ring numbers

are greater than the access bracket. Access to target procedure segments may be

permitted if the referencing procedure's ring number lies in the target's call

bracket, i.e., if J. < r ::'Sm. Permission is granted in such cases only if the entry

point has been established as a gate for inward calls. Gates are specially declared.

When the segment's author declares a given entry point to be a gate, the compiler

or assembler would then provide an entry in the linkage section having a non­

standard but recognizable format. The Gatekeeper which handles the wall cross­

ing fault for this case determines whether the faulting procedure has, in fact, been

aimed at a gate of the target procedure by examining the format of the entry point.

The storage structure of gates is detailed in Section 4. 3. 6.

4. 2. 7. 5 Ring Brackets - Examples

A ring bracket* is recorded in the branch for each segment. It consists of a 3-

tuple of numbers. The form of the three tuple depends on ring characterization

for the segment as shown below:

Ring Characterization Form of the 3-tuEle

(a) Single ring of access, r. (r, r, r)

(b) An access bracket (k, J.) • but no (k, J., J.)
call bracket.

(c) An access bracket (k, 1) and a (k, 1. m)
call bracket (1 + l, m).

(d) A single ring of access r and a (r, r, m)
call bracket (r + 1, m).

Some typical uses of ring brackets for system routines are illustrated in Table 4-3.

The examples should help you see how ring brackets would be used in characterizing

user-created segments.

~'The ring bracket is copied from the ACL entry in the file branch at the time the
segment is first acquired by the process and subsequently kept in a more accessible
per-process table called the KST (known segment table).

4-26

Item

2

3

4

TABLE 4-3

Examples of Ring Brackets used in the System

Ring Bracket

0, 63, 63

0,1,63

1,1,63

0. 0. l

Interpretation

Every procedure has access to
this segment without im·oking a
ring eros sing fault (target ex­
ecutes in ring of its caller).

Procedures in rings 0 and l can
call without intervention. Pro­
cedures in rings 2 through 63
can call via inward ring-crossing
fault, but des ired entry point
must be a gate.

A ring l ':' procedure that may be
called, as in item 2 above from
rings 2 through 63.

A ring 0 routine. Inward calls
are permitted from ring l via
ring eros sing fault, etc. Calls
from rings 2 through 63 are
rejected.

Figure 4-5 gives pictorial interpretation for two additional ring brackets

(1, l, l) and (0, l, 1). What is the ring bracket characterization for (the rather

exotic case of)< a> in Figure 4-4 ? Answer: (32, 33, 35).

':'A point of possible interest is that ring 0 routines may not execute outward calls.
Hence if the target has a protection list (1, l, 63), a ring 0 routine cannot call it
directly.

4-27

Target is
accessible
no ring crossing
fault if called
or referenced from
this ring.

(a) ring bracket is (1, 1, 1)

Target procedure is
accessible with no ring
crossing fault from seg­
ments in rings 0 or l.

(b) ring bracket is (0, 1)

Data or procedure
targets are inaccessible
if referencing or
calling procedure is
in one of these rings.

4 5

Figure 4-5. Access to a target procedure or Data Segment

4-28

63

63

4. 3 MONITORING AND CONTROLLING RING CROSSINGS FOR NORMAL CALLS
AND RETURNS

We are now ready to see how ring access control has been implemented in

Multics. First, we amplify three important implementation concepts. (l) A process

can have, if necessary, up to 64 rings; user rings are numbered 32 through 63.

(2) For each ring in which a process executes there is actually a separate descriptor

segment. Ring 0 supervisory routines create and maintain these segments as needed.,;,

The per-ring descriptor segments differ only in the way fault-inducing bit patterns

are placed in the descriptors. The bit patterns are set so as to trap during address

formation on all inward data references and on all inward or outward procedure refer­

ences. (3) There is also a separate stack segment, called< stack_n>, created for

each ring in which the process executes. Here, n is one of the integers 0 through 63

(or, strictly speaking, 00, 01, ••• , 63). Supervisory routines are responsible for

creating these stack segments, t but once created they are to be treated as ordinary

data segments.

4. 3. l Function of the Individual Descriptor Segment

To see how the individual descriptor segments serve in the role of ring-crossing

detectors we shall discuss a (hypothetical) process in miniature suggested by Figure

4-6. There are four ordinary data segments <dO>, <dl>, <d32> and <d33> and four

procedure segments < pO>, < pl>, < p32>, and < p33>, one of each in the four utilized

rings, 0, 1, 32, and 33. Also shown are the four stack segments which, in matters

of protection, are to be considered as ordinary data segments. We do not show the

four descriptor segments because these are not directly accessible to the user. The

use of two user rings is purely for illustrative purposes and is not to be construed as

typical.

Figure 4-7 is a detailed view of access control bits 30-35 for one of the descriptor

segments (ring 32), showing how they could be coded in each SDW so as to detect ring

eros sings.f Dashed lines emanating from the SDW's indicate ring crossings that are

detected, causing traps to the Fault Interceptor module. Inward crossings, e. g.,

:::~

Chapter 6 gives an elaboration adequate for initial needs of the subsystems writer.
Of course, subsystem and user procedures for ring i > 0 will be allowed no direct
access to any descriptor segment.

tDetails of the stack segment creation may be found in BD. 9. 01.

T For a refresher on the hardware characteristics first review pertinent parts of
Chapter 1 of this Guide, especially Table 1-1.

4-29

..::d32> <p32>

<"stack 32>

<"d33>

<stack 33>

Figure 4-6. A Process in Miniature (in four rings)

line (D to an inner ring procedure, < pO>, or line@ to an inner ring data segment,

< dl>, cause directed faults. t Outward crossings to procedures, e. g., line number

G) to an outer-ring procedure< p33>, are detected by attempt-to-execute-data faults.

To achieve this type of fault, bits 33-35 for <p33> are preset to suggest data. Sub-·

sequent attempts to execute an instruction fetch will then cause a fault that

forces control to the Fault Interceptor. Outward crossings to data segments are de­

liberately not detected, e. g., lines(±) and@ to the outer ring data segment< d33>

and < stack_33>, respectively.

fstrictly speaking, two types of directed faults are used. More about the distinction
between these is given later in this section.

4-30

8-

tbr

Ring 32
Descriptor Segment

-- 30 31 32 33 34 35

Key

000 directed
fault (segment
missing)

001 data

010 ordinary slave
procedure

CORE MEMORY

Consult Table l-1 for a refresher on the significance of
descriptor bits 30-35.

Figure 4-7. Using the Descriptor Segment as a Ring Crossing Detector

4-31

Figure 4-8 shows all four descriptor segments of the process ordered by ring

number. Bit details of the descriptor fields in the SDW' s are now replaced by sche­

matic markings. Note, that the order in which the segments are listed in each de­

scriptor segment of the process must be the same, in order that each segment retains

the s arne segment number from ring to ring. The particular ordering of the segments

within the descriptor segment is, however, of little concern to us. Postpone until

Chapter 6 any curiosity you may develop as to how and when these access control bit­

fields are preset in the various descriptor segments; such knowledge is not needed

now.

This is a good time to observe why, for simplicity, we have chosen not to dis­

play SDW' s for the procedures' linkage segments in the above example. Recall that

entry points to procedures are kept in the corresponding linkage segment. If there

is to be a change of rings in a procedure call, the ring crossing must be accomplished

while executing the transfer instruction used to reach the target's linkage segment

(entry point). For this reason, the ring bracket for a linkage segment is always

identical with its corresponding "text" segment. Subsequent transfer from the link­

age segment to the target pure procedure would never cause a ring crossing. We see,

the ref ore, that Figure 4-8 could have been made to appear more realistic, but not too

much more illuminating, if we had included SDW' s for the linkage segments. They

would be given schematic markings identical with those of their corresponding pro­

cedure segments.

An actual crossing over from one ring to another will take place only if a master

mode supervisory routine (ring 0) is called to execute the privileged instructions

necessary to "switch" descriptor segments, i.e., alter the contents of the descriptor

base register (dbr) to point it at the descriptor segment of the target ring. Responsi­

bility for calling this dbr -switching routine rests with the Gatekeeper. This is the

module described in Section 4. 3. 2 which takes charge as a result of all attempted

ring crossings.

There is no possibility that a user can either write his own master mode routine

to switch dbr values or manage to somehow gain direct access to the routine that

does the dbr switching and thereby circumvent the Gatekeeper. Below we state why:

Recall, mastermode is characterized by a bit that is set in the SDW for that

procedure. Mastermode routines must be ring 0 because the BFS module (Segment

Control) which is responsible for setting SDW words will set the mastermode bit ON

for ring 0 procedures only. Moreover, no user is able to create files which have

4-32

e

<do'>
<po>

<stack 0>
.cdl>

< pl>
<stack 1.,.

<d32>
<p32>

cstack 32>
<d33">

<p33>
~ "stack 33>
I -
w
w

Descriptor Segment
for Ring .Q

n
p

D ____,
D

-..
D

D -
D

D -L

··~
_I D

descriptor Key:

Descriptor Segment
for Ring.!_

r --
----=1
D I
p

D
D

'AA

~

D-
.~ -

D --L

... J n ___,
~ -- _ _j

e

~) inward (directed faults)

Descriptor Segment
for Ring 32

-~ --.A ---
'-

D
p

D
D

-
D

---'V"

I -I outward (attempt-to-execute-data) fault

~]

I D I

procedure

data

Figure 4-H. Showing all four Dt!Scriptor ~t,gnwnts

e

Descriptor Segment
for Ring 1.2

D '
p !

D I

ring brackets that include ring 0. This is because the request to set an ACL entry,

which is aimed at the Access Control module of the BFS, is screened. The lowest

ring bracket value which can be posted by a user is the ring number from which his

request to set an ACL entry is is sued. This value is always greater than zero.

4. 3. 1. 1 Ring Complexity of Subsystems

It is hard to say how often a subsystem will be designed to execute in more than

one user ring. When such subsystems are designed, it is a safe bet that most seg­

ments written for the user rings will be characterized by single-ring ring brackets.

Rarely will access and call brackets be employed and even more rarely will compli­

cated patterns of access and call brackets be used. Since this facility is available,

however, there will always be some subsystem designers who, if only to satisfy

curiosity, will want to understand how more exotically-protected segments might

function in a Multics subsystem. The next two sub-sections are dedicated to these

avid readers. Others may wish to skip directly to the Gatekeeper.

4. 3. 1. 2>:, Determining the Ring of Execution for a Segment whose Ring Bracket
contains an Access Bracket

A good question to ask is: In which of the rings within a segment's access bracket

will a particular segment execute when it is called? There are three cases to be con­

sidered. We shall assume <a> is the calling procedure now executing in ring r, and

that < b> is to be the called or target procedure whose ring bracket is (k, 1., m) such

that 0 :::s k < 1. < m :::s 63.

Case {l)

Case (2)

Case (3)

k :::S r :::S 1.. {The ring of the calling procedure lies within the access

bracket of the target procedure.) < b> will execute in ring r. No ring

eros sing fault will be triggered.

r < k. (Outward fault. The ring of the faulting procedure is less than k.)

 will execute in ring k, the innermost ring of the target's access

bracket. The design rationale for this choice is necessarily arbitrary:

Pick the ring "nearest to the caller".

1. < r ~ m. (Inward fault. The ring of the faulting procedure lies within

the call bracket of < b>. < b> will execute in ring !:._, the outermost ring

of the target's access bracket.) (Of course, the desired entry point must

*This section may be skipped over during a first reading without loss of continuity.

4-34

also be found to have the format of a gate.) The design rationale for

this choice is again: Pick the ring nearest the caller, because it is also

the ring that will involve the least risk.

If used properly, access brackets may increase the flexibility and efficiency of

an otherwise complicated multi-ring subsystem, i.e., avoiding the overhead of ring

crossing faults where protection measures are no longer needed. However, there

are some pitfalls. If access brackets are not chosen to be functionally meaningful,

superfluous ring crossing faults can occur. Thus, the unwise subsystem designer

could, in practice, select a set of straddling rather than coinciding access brackets

for procedures that must communicate with one another. The superfluous fault which

can occur in such instances is an inward fault and, if unexpected, the supervisor

would have no choice but to abort the process.

The following case will illustrate what happens when the access bracket facility

is improperly (nonsensically) applied. The case is for an elaborate subsystem hav­

ing segments with ring brackets shown below:

Segment Ring Bracket

<super> (32)

<a> (33' 34, 36)}
 (34, 35, 36)

<slave> (36)

Figure 4-9 schematically illustrates the SDW's for each of these four segments in the

descriptor segments for rings 32 through 36. (The descriptor key for this figure is

an expansion of the one given in Figure 4-8. The significance of the new symbol

(~) is explained in a subsequent paragraph.)

Now, consider four "case histories" shown in Figure 4-10 using Figure 4-9 and

the above ring brackets as a reference. Each case is a possible chain of two calls

among the segments.

In case histories (l) and (3) we see calls from <a> to< b>. An outward fault oc­

curs in the first history because <a> happens to be executing in ring 33 rather than

34. A similar situation arises in comparing case histories (2) and (4) where calls

from< b> to< a> occur. In the latter history an inward fault occurs because < b>

happens to be executing in ring 35 and not 34. If the subsystem designer has failed

to anticipate this event by declaring the proper entry point in <a> as a gate, the re­

sulting fault can actually be fatal to the process.

4-35

<.super::>
.<:a'>

<b:;>
<slave>

ring 32 ring 33 ring 34 ring 35 ring 36

.
"" . ~

. .
~ ~ .

.
.

~ . ·~ J· . . ,..

.
4~

p ¢= ~ ~ ~

-+ p p +- +-
+ -+ p p +-
-+ -+ -+ ~ p

Descriptor Key: I ~ I Inward, (directed fault 2)

~ Inward, all access denied (directed fault 3}

I + I Outward (attempt-to-execute-date) fault

I ,p I Procedure

I D I Data

Access bracket for <a> is (33, 34) and for it is (34, 35)

Figure 4-9. Illustrating Segment Descriptor Words for Segments
Having Access Brackets

4-36

Case History Ring number Ring number Governing't Comment
of caller of target descriptor

(1) ..:.super,. 32~ I > I

~
fault

33
..:.a> 33~ I , I superfluous

t fault
34

<h>

(2) <super>
32----------- ~

! fault
34

£b'? 34~
! IT]

34
.ca>

(3) <slave> 36~ I< I

! fault
34

.ca> 34~
! D:J

34

(4) .:slave> 36~ I• I

! fault
35

... b ">
35-----------

I< I

l fault superfluous
34 and possibly

..::a> disastrous

t Means the descriptor of the target in the descriptor segment for the ring of the caller.

Cases I and 4 show calls between segments whose access brackets
straddle one another.

Figure 4-10. Cases of Superfluous Ring Crossing Faults

4-37

4. 3. l. 3':' More Details in the Interpretation of Directed Fault 3 (All Access Denied)

There are, in fact, two types of directed fault codes used to represent attempted

inward crossings, directed fault 2 and directed fault 3. The former, when detected,

corresponds to a possibly valid inward call or inward return, as from a procedure

whose ring number is within the target's call bracket. The latter, when detected, is

interpreted by the Fault Interceptor to mean all access denied. This type of inward

eros sing, by being handled via a separate fault, can be rejected out-of -hand. The

overhead of incurring the Gatekeeper's services to interpret this illegality is thereby

avoided. In Figure 4-9 we introduce the special symbol I<! l to mean directed fault

3 (i.e., all access denied}, henceforth letting the symbol! < l mean, specifically

directed fault 2.

The Basic File System also sees to it that all-access-denied fault codes are pre­

set in the SDW's of all data segments in higher ring numbered descriptor segments.

For illustrative purposes such bit coding was employed in Figure 4-7 to represent

the SDW'sfor <dO>, <stack_O>, <dl>, and <stack_l>. Also, in that Figure we chose

to code the SDW for< pO> as all-access-denied (directed fault 3) while for< pl> we

coded a directed fault 2.

4. 3. 2 Management Control over Inter-ring Crossing (The Gatekeeper)

The Fault Interceptor calls a special ring 0 module, called the Gatekeeper, to

exercise positive control over all inter-ring calls and returns. An understanding of

the Gatekeeper's role and of some of the detailed steps which it carries out or over­

sees is an ultimate necessity for the sophisticated subsystem writer. We shall at­

tempt to describe most of the important points about the Gatekeeper's tasks, but will

not always explain them in the order they are carried out. We are more concerned

with motivating and explaining the issues of "Gatekeeping." Succeeding subsections

are divided arbitrarily into a discussion of problems faced by the Gatekeeper and

how they are solved.

To make its tasks easier the Gatekeeper first determines which of five types of

inter-ring accesses ("wall crossings") is being attempted. The five categories are:

(a) Inward calls,

(b) Outward returns,

':'This section may be skipped out during a first reading without loss of continuity.

4-38

(c) Outward calls,

(d) Inward returns,

(e) Other access attempts (illegal).

The five-way resolution is relatively simple to achieve. The details are given

below:

(l) Inward versus outward ring-crossing attempts are actually distinguished by
the Fault Interceptor. Depending upon the type of fault (directed Fault 2 or
attempt-to-execute data), the control is directed to one of two appropriate
entries into the Gatekeeper, one for inward attempts, one for outward
attempts.

(2) Calls versus returns are distinguished by examining the faulting instruction
to see if it was a tra (call) or an rtcd (return). If neither, it is an illegal
request and the Gatekeeper returns an error code to its caller, the Fault
Interceptor. If the faulting instruction (on an inward crossing) is a tra,
but if after checking the target's linkage section, the Gatekeeper sees the
entry is not a gate, another error code is returned to the Fault Interceptor.':'

4. 3. 2.1 Outward Versus Inward Calls - (Motivation)

It may have occurred to you to wonder if both inward and outward calls are equal­

ly useful in subsystem design. (There were none allowed, for instance, in CTSS,

although a user could always call in to the supervisor.) As we shall see later, out­

ward calls that carry argument lists generally incur a higher overhead, because call­

ing arguments must be copied into the target ring. For this reason subsystem de­

signers may wish to minimize their use of outward calls.

There is one type of relatively inexpensive outward call which is likely to prove

very useful in the design of multi-ring subsystems. This is an argumentless call to

an input responder routine which an ordinary user would make to "enter" to a sub­

system. We picture here that a subsystem "X" has a special outer-ring (say ring 33)

procedure segment known as < X_listener>. Whenever, after login, the user wishes

to issue a series of commands in the language of subsystem X, he first issues an

outward call to ring 33. (We are presuming that the user's process executes in

ring 32 following login.) < X_listener> now functions as an input loop to accept sub­

sequent commands. After interpreting each of these commands, < X_listener> is sues

appropriate (inward) calls to other modules of subsystem X. Since all the sensitive

modules are in inner rings, there is no danger that the user can misuse or abuse the

privileged segments of X.

':'Remember, the Gatekeeper is spared from having to examine inward calls from a
procedure that is executing "outside" the target's call bracket or, if the target pro­
cedure has no call bracket, from outside the access (or single-ring) bracket.

4-39

Another possible use of outward calls arises in cases like the teacher- student

subsystem that was suggested earlier in Section 4. 2. 3. In this type of system the

teacher in his grading process acquires and executes a student-written procedure,

making sure before executing the student's procedure to "give it" a higher ring num­

ber than the teacher's segments. The call to the student's procedure then becomes

an outward call.

4. 3. 2. 2 Gatekeeper - After Determining Type of Valid Wall Crossing

The Gatekeeper performs several tasks in handling outward calls, and inward

returns, etc., which guarantee the safe handling of information pas sed to or from

inner-ring procedures from or to those in outer rings. For example, in handling

an inward return for a faulting procedure< p>, it is necessary to be sure that the

return location specified by< p> 1s rtcd instruction is in fact, the one supplied by the

inner-ring procedure that called< p>. Without this check, the outer ring could, in

the disguise of a return, force an entry at any point in any inner-ring procedure,

thereby defeating the protection mechanism. The technique used by the Gatekeeper

to forestall such disasters is to save a copy of the return location at the time of the

outward call to< p>, in a special ring-0 data base which is inaccessible to< p>.

Later, the Gatekeeper will insist on a match between the safe-stored return location

and the one used by < p> in its faulting rtcd instruction. If no match, the inward

return will be declared invalid by returning a suitable error code to the Fault

Interceptor.

We give one final example to see the kind of business the Gatekeeper is involved

in before we proceed to the details at the bookkeeping level: During an outward call,

the argument list and the individual arguments may very well be found in data seg­

ments accessible to the caller, but not to the target procedure. What to do?

In keeping with the Multics protection philosophy, any procedure of an inner

ring, say 32, is free, and at its own risk, to copy data that is accessible to it into a

data segment of any outer ring. Therefore, in an outward call, if argument lists

and/or arguments are used that belong to an inner ring, but accessible to the fault­

ing procedure, it should be perfectly OK to allow the copying of these into an outer­

ring segment, putting the arguments "within reach" of the target segment.

4-40

Now, when a user writes a procedure <a> that calls on some procedure< b>,

he should not, in general, have to know in advance whether < b> will be in an outer

ring or, for that matter, in an inner ring. So, as a matter of design philosophy,

the writer of< a> cannot and will not be asked to code the task of copying the argu­

ment values to the target ring. Instead, the Gatekeeper takes care of this chore,

relieving the programmer of this nasty responsibility for argument management.

The Gatekeeper gets a helper (a procedure in ring 0) called < arg_pull> to do the

copying.

< Arg_pull>, in order to do its job properly, expects an argument list especial­

ly embellished with pointers to data descriptions. I. e., it cannot properly copy data

without knowing its format. Further details on the required format':' of these argu­

ment lists will be given in Section 4. 3. 5.

The Gatekeeper, also, performs the important function of validating arguments

for inward and outward calls. It sees to it that every argument list element and

every argument involved in such calls is indeed accessible to the faulting procedure.

The basic principle that is followed here is: If a procedure, by virtue of its execut­

ing ring number, is not privileged to access a piece of data directly, that procedure

should not be permitted to circumvent this restriction by getting help from another

procedure which would behave either (a) as an unwitting accomplice (target of an

inward call) or (b) as a deliberate accomplice (target of an outward call). Remember,

the faulting procedure is ordinarily free to designate anything at all (any virtual

address) as an argument pointer.

4. 3. 2. 3 On Inward Calls

A calling procedure could in theory specify argument pointers to data objects

for which the caller does not have ring access, but to which the target procedure

does have ring access. We see that an effort must be made to check all argument

pointers passed "inwardly" to validate that the caller actually had ring access to each

of the arguments that has been pas sed, lest the target procedure act as an unwitting

accomplice.

>:.::
The principal reference is BD. 9. 02, Figure 1.

4-41

4. 3. 2. 4 On Outward Calls

A calling procedure could in theory also specify argument pointers to data ob­

jects for which the caller does not have ring access. Something must be done to

prevent< arg_pull> from unwittingly copying these data objects over into the outer

ring segment that would be accessible to the less privileged target procedure acting

as a deliberate accomplice. An effort must be made to validate all argument

pointers.':' In this case, the validation must be done before calling < arg_pull>.

4. 3. 3 Stack Management in the Multi-ring Environment

In this section, we consider what must be involved when creating the stack frame

as a result of a call to an arbitrary segment in our multi-ring environment. Let us

imagine a call to< gamma> has been executed. Further assume that< gamma> is to

execute in ring k. Ordinarily, as we recall from Chapter 3, <gamma>' s first duty

is to execute a save sequence so as to add a new frame to its stack segment, which

in this case would be< stack_k>. In addition to "creating" the frame we are reminded

there is also the matter of storing in this frame the argument list pointer passed to

<gamma> by the calling procedure (call it< beta>). Also there is the linking of the

frame to its predecessor frame, and the resetting of the stack pointer, sp. All is

well and relatively simple when< beta> itself belongs to ring k.

Are any new clerical problems introduced in creating the stack frame for

<gamma> when the calling procedure <beta> is in ring j =1= k? Plenty! Fortunately

they are all handled for us by the Gatekeeper. We now look at some of these prob­

lems and how they are solved by the Gatekeeper.

':'The validating technique in the case of either inward or outward calls is essentially
the same. For each argument pointer in the argument list the following steps are
taken:

1. Determine the ring brackets for the segments defined by the argument
pointer. Ring brackets are kept in a ring 0 data base called the Known
Segment Table. From the ring brackets, determine s, the highest ring
number in the access bracket.

2. Compare s with the ring number, t, of the faulting procedure. If t::::; s,
the argument pointer is valid and is invalid otherwise.

The ring number t is remembered for use in the above test as a special parameter
known as the validation level. Further explanation of validation levels is given in
Section 4. 3. 4. ---

4-42

4. 3. 3. 1 The Housekeeping Problem in Getting Ready to Produce the Frame for
<Gamma>

The stack frame which <gamma> is to create must be placed in <stack_ k>. The

problem is - how is the segment number for < stack_ k> determined and what is the

proper offset for the <gamma> frame? Getting stack_k# is complicated by the fact

that< stack_k> may not yet be known (i.e., no entry in the KST). After all, stack

segments are no different from any others. They are acquired and/or created only

as needed. If no procedure in ring k has ever been called, <stack k> will be un-

known.

A special pointer scheme is employed by the Gatekeeper in keeping track of seg­

ment numbers for stack segments and of offsets into them for "next" frames. The

details, which be of only peripheral interest to a subsystem designer, are given in

the remainder of this paragraph and in Figure 4-11. A one-per-process, ring-0

data base called the process definitions segment, <pdf>, contains a block for 64 its

pair pointers to the stack segments. The Gatekeeper will find stack k# at location

<pdf> I [stacks J + 2>:<k,

unless of course < stack_ k> is unknown, which is indicated in the block by a null

pointer. The Gatekeeper then creates the desired stack segment and initiates the

pointer. The address for the last used frame in< stack k> is then seen to be

<pdf> I [stacks] + 2>!<k, '~

The forward pointer at +18 in this frame then gives the desired location for the next

frame (e.g., lines G),@, and G) in Figure 4-11.

The format of a new-born stack segment is shown in Figure 4-12. It is endowed

with an 8-word header followed by an essentially empty 32-word frame. This frame's

back pointer (at< stack_k>l 8 + 16) is null to denote the bottom of the stack. Its for­

ward pointer (at< stack_k>l 8 + 18) is set initially to stack_k# 18 + 32 for starting

the forward thread.

Upon creation, the first word pair in the stack is set to point to the empty frame

which in this case acts as a pseudo last-used frame. The Gatekeeper updates the

first pair as one of its housekeeping duties each time it supervises departure from

ring k to some other ring.

The third and fourth words in < stack k> hold the invocation number and the

validation level about which we will have more to say shortly.

4-43

<stack 0>

first
thru

its
()

~ pn'.!§e~x~t~t o~l~a~s~t====l

last frame

+4

+ 126

<pdf>

pointer to
<stack 0>

pointer to
-'stack 1 7

pointer to
< stack_33?

ring 0

2

63

"stack l >

first
thru
next to last

last frarne
used

(forward
pointer)

segment

.:cstack 33->

':'If pointer is marked null,
it means that no stack for
this ring has yet been
created. See Appendix A,
BD. 9. 01 for details on
stack creation.

The Gatekeeper creates stack segments as needed and places pointers
to the head of each one beginning at <pdf> I [stacks].

Figure 4-il. <pdf> is a One-per-process Ring 0 Data Base

4-44

I

I

<stack k>

8- word
header

First frame is essentially
empty. Its back pointer is
null to denote the ''bottom''
of the stack. Its forward
pointer starts the forward
thread.

Figure 4-12. Format of a Newly Created Stack Segment

4. 3. 3. 2 The Stack Switching Problem

The Gatekeeper has now located the place in the new stack where the about-to­

be- called procedure, <gamma>, is to create its stack frame. But, more bookkeep­

ing problems remain. The normal return sequence in< gamma>,

ldb

lreg

rtcd

spll6,>:<

spl8

spl 20

reload 8 base registers

reload 8 index registers, etc.

return

4-45

should function properly, independent of cross-ring considerations.':'

The first instruction

is supposed to reload the base registers (all but sb) from the stack frame of

< gamma> 1 s caller. Assuming we are using the standard save sequence dictates

that the predecessor frame must be found in the same stack segment. (This prede­

cessor is pointed to from

sp 116

which is the back pointer of the current <gamma> frame.) But, if< gamma> has

been called by <beta> from another ring j, the stack frame in question actually re­

sides in< stack _j>, an entirely different segment. To resolve this apparent con­

flict, the Multics solution is to place a special copy of< beta> 1s header in< stack_k>

immediately ahead of the frame for <gamma>. The copy of the <beta> frame header

is ordinarily referred to as the "dummy" frame.

The Gatekeeper has the responsibility for producing this dummy frame, which

serves a number of useful purposes. Figures 4-13 and 4-14 picture this activity.

In Figure 4-13 we show the copying of the <beta> frame header from < stack _j> to

< stack_k>. We also indicate that the Gatekeeper resets the its pair at< stack_j>l 0.

(Dashed line G) to point to the <beta> frame replaced by line ®.) The new value

in< stack_j> I 0 will be needed by the Gatekeeper whenever, at some future point in

time, an inter-ring procedure call is made into ring j.

In Figures 4-14 and 4-15 we show what the Gatekeeper must do to the dummy

frame before it is "usable".

Shaded portions of the dummy frame indicate the neccessary modifica­

tions:

(a) At newsp + 28 store an its pair pointing to the original stack frame for
<beta>, located at stack _j# I sp f3" This pointer is called the eros s_-ring
pointer.

':'<Gamma>'s compiler will not know <gamma>'s ring number as this could be dif­
ferent for each process sharing <gamma>. Moreover, the compiler will not know
the ring of< gamma>' s caller.

4-46

..:.stack_j? <.stack k 7

0
I
I
1 sp.c+ 0 t-----------t

+ 16

+18

8 bases and
8 registers, itc

0
0
0

0 0

+ 20 return address

+ 22 used in EO
procedures

+ 24

Gatekeeper
copies
32-word
frame header
to
.::stack k:>

+18

+18

+ 20

dummy

frame

+ 261------

+ 281------

+ 30 t-------

SP1 + 0

Figure 4-13. Making the Dummy Frame for <beta> in the Stack for the
Ring of the Called Procedure

4-47

last
used
frame

I

+ 22

.cstack k>

ed in EO
dures only

+ 24 not used

+ 30 not used

last frame used

this copy of the
argument list is the
one that is validated.

the dummy
frame for
<beta?
ready to
go on an
inward call

Note the last portion where the copied argument list has been safe stored
for purposes of validation.

Figure 4-14. Dummy Frame for <beta> in< stack k> after being
Modified for an Inward Call -

4-48

<Stack_k>

6
base

last frame used

I

the dummy
frame for
£beta>
ready to
go on an
outward
call

(Same as Figure 4-14 except for copies of arguments in the call on
<gamma>.

Figure 4-15. Dummy Frame for <beta> in< stack_k> after being
Modified for an Outward Call

4-49

·'·

(b) At newsp l3 + 16 place a cross-ring flag (i.e., a l in the op code position)

to mark this frame as a dummy.

The cross ring flag and the cross ring pointer are vital to the success of
the condition handling and unwinding mechanisms to be described in
Chapter 5.

Other details of a housekeeping nature are:

(c) The dummy frame is chained to the preceding frame in< stack_ k> by adjust­
ing the backward pointer.

(d) The forward pointer is reset so it points to the beginning of the next frame
which is to be used by< gamma>.

(e) The stack bases saved in newsp l3 + 6 and newspl3 + 7, which refer to the old

stack frame in <stack _j>, are reset to point at newspl3 in <stack_ k>. This

is done in order that the instruction pair

ldb

lreg

sp 116, ':'

spl8

be executable in some meaningful and consistent sense, especially for out­
ward returns. We must bear in mind that an ldb instruction cannot reset
the locked sb base register.':'

On inward returns the effect of the two restore instructions is overriden by
similar instructions performed by the Gatekeeper.

Multics cannot (and the Gatekeeper does not) trust an inward-returning
procedure to properly carry out the restoration of bases and registers for
its inner-ring caller. When the

rtcd sp 120

is executed, it faults, of course, to the Gatekeeper - which takes no
chances. The Gatekeeper repeats the restoration of the bases and registers,
this time using the stack pointer for the original< beta> frame in< stack_j>
where the integrity of the saved information cannot be questioned. The
pointer to the frame in< stack_j> is itself safe stored in a special segment
(the so-called "return stackn, < rtn_stk>) about which we will say more later.

(f) On inward calls there is a special (and subtle) type of protection violation
that must be prevented. It concerns the possibility of deliberate or acci­
dental changes to argument pointers after they have been validated by the
Gatekeeper mechanism, but before they have been used by the target pro­
cedure. For instance, such violations can arise if and when two cooperat­
ing processes have agreed to read-write share the outer-ring segment
stack that holds the calling procedure's argument list. To prevent such
postvalidation tampering, the Gatekeeper first duplicates the calling argu­
ment list in the dummy frame at sp13 132 (in the inner ring stack segment)

···see Chapter l, Section 1. 4, for a review of the ldb instruction.

4-50

,-------- ----

and then validates from the copied argument list. Spl3 118 will, of course,

have been appropriately set to point to sp , taking into account the length y
of the copied argument list. The base pair ab-ap will be adjusted in the
saved copy of the machine conditions for the faulting procedure, so that
when the call is completed the arglist pointer in the new frame for <gamma>
placed at spy I 26 will point back to sp13 1 32. The dummy frame is now

ready for use in inward calls (Figure 4-14).

(g) On outward calls the Gatekeeper, after validating the original argument list
found in the caller's stack frame, then calls < arg pull>, as mentioned in
the preceding section, to prepare a revised argument list that contains
pointers to copies of the arguments. Spl3 will, of course, have been

appropriately set to point at spy taking into account the extension of the

dummy frame for< beta> to include the new arglist and the argument copies.
These items are placed in the dummy frame at sp13 1 32. The ab-- ap base

pair will be adjusted in the saved copy of the machine conditions for the
faulting procedure, so that when the call is completed the arglist pointer
in the new frame for< gamma> (placed at sp13 j26) will point back to sp13 1 32.

The dummy frame is now ready for use in outward calls (Figure 4-15).':'

In reviewing all these dummy-frame details, notice that the dummy is tied to

other frames in two ways:

(a) to the preceding and succeeding frames in its stack (sp 116 and sp 118). The
back pointer is primarily for use by system-supplied debugging tools (and
for use by the Unwinder mechanism discussed in Chapter 5), and

(b) to the original copy of the frame in< stack_j> via the cross-ring pointer at
sp 128.

4. 3. 3. 3 Saving Vital Cross-ring Data on the Return Stack(< rtn_stk>)

The Gatekeeper keeps a protected record of each inter-ring call in a special,

one-per-process data segment in ring 0. It is called <rtn stk>.

The following four items are stored in< rtn stk> as a consequence of each inter­

ring call:

(a)

(b)

(c)

The ring number of the faulting procedure. This value is taken from an em­
bellished copy of the faulting procedure 1 s machine conditions.

The validation level of the faulting procedure (explained in Section 4. 3.4).

Pointer to the faulting procedure 1 s stack frame i.e., a protected duplicate
of the eros s:-ring pointer.

':'Additional details are shown in Figure 4-20.

4-51

{d) Pointer to the normal return location in the faulting procedure, i.e., a
protected copy of the value given in the faulting procedure 1 s stack frame
at sp 120.

Figure 4-16 shows the overall and detailed structure of< rtn stk>. A relative

pointer to the top entry of< rtn_stk>, called the invocation number is updated after

each new entry is stacked or removed {popped).

Each entry consists of six words. The first word of each entry holds a back

pointer to the preceding entry. The next five words hold the four saved items.

After completing this entry in < rtn _ stk>, a copy of the new invocation number

is stored in the target ring 1 s stack segment at <stack _t> I 2 and a copy of the saved

validation level is stored in <stack _t> I 3.

By reading the invocation number in a given stack segment, < stack_s>, ring-0

system routines {not user routines) are able to locate the corresponding entry in

< rtn stk>. This entry provides a "trail" back to the procedure {its ring number,

and its stack frame) which caused the crossing into ring s. The condition handling

routines and the unwinding mechanism (for abnormal returns) depend on the invoca­

tion number for tracing portions of the past history of a process.

The invocation number is also potentially useful to ordinary users as a means

of recording when things happen {i.e., with respect to ring crossing history). Thus,

a user, executing in ring t could associate with a certain stored block of data a copy

of the current invocation number {call it curinv) found at <stack t> I 2. At any later

time, the block of data can be identified by the associated value of curinv as to when

it was stored.

4. 3. 4 Validation Levels and How They are Used

The validation level is the ring number for the segment on whose behalf the call

on the ring_t segment is being made. It often arises that a user procedure will make

an inward call to a "supervisory" module which, in turn, will call another procedure

(either in the same ring or in an even lower ring) to perform some vital function on

behalf of the user. The target supervisory procedure at the end of this "chain" may

need to know the ring number (importance level) of the original caller in order to

perform its task properly. In this way, the DC>!< routine in ring 0 will know the im-­

portance of the party it is serving and will not be outwitted into "thinking" it is serv­

ing a ring -0 procedure - its immediate caller -when in reality it may be serving

a user in ring 32 or greater. It is seen, therefore, that proper use of validation

levels is a means of increasing protection where needed.
>!<D1rectory Control

4-52

< rtn stk7

entry #1

entry#2

entry #m

(a) overall structure

6 words

6 words

l

6 words

l

back pointer

(b) Structure of
on entry

Figure 4-16. Overall and Detail Format of< rtn stk>

4-53

When crossing to a target ring, t, the validation level is always stored in

< stack_t> j3. The value assigned to this location is a copy of the one in the stack of
I

the faulting procedure. (The Gatekeeper does this copying.) In this way, if there

has been a chain of two or more inward calls in reaching ring t, the validation level

that is set in <stack _t> j3 will normally reflect the ring number of the procedure that

initiates this chain of ring crossings. The called procedure in ring t is then free to

interrogate < stack _t> I 3 as required.

It should be kept in mind, that once execution passes to a target ring, t, any

procedure executing in that ring is privileged to read or write the contents of

<stack t> I 3. The Gatekeeper will not however indiscriminately copy validation

level values. If the current value in< stack_t>j3 is lower than the ring number,

say r, for a faulting procedure, the value passed to the target ring will be r. In this

way, it will not be possible to trick the inner ring target into believing its caller has

a validation level that is less than its ring number.

The algorithm used by the Gatekeeper for setting these values is displayed in

Figure 4-17. On calls, outward or inward, the validation level associated with the

faulting ring is saved in< rtn_stk>, and a copy of this saved value, possibly altered

in a way described below, replaces the current value of the validation level in the

stack of the target ring. On inward calls if v , the validation level for the calling
r

ring r, is for any reason lower than r, then r, rather than v , is the value passed
r

to< stack s>. On outward calls if v is less than s, the target ring number, the
- ---- r

value s is passed to< stack_s>. On returns, inward or outward, the most recently

saved value simply replaces the current value in the target ring's stack segment.

In the remainder of this section we give an example aimed at motivating sub­

system applications of validation levels.

Example

Here, we illustrate a case where it is expedient to check the ring of the caller

to determine the nature of the service to be rendered.

We imagine a school records subsystem which operates in four rings 35, 34,

33, and 32, as shown in Figure 4-18.

All personnel and student records are kept in data segments of ring 32. The

ring-32 procedure< get_rec>, called from outer rings, retrieves desired information

from any of these data files according to the arguments it is furnished and according

to the validation level at< stack_32> j3.

4-54

V .,_value saved
r on last

.crtn stk'>
entry

(a) inward call (b) outward call (c) restoring a
validation level

Saving and passing a validation level, v.
1

from ring!. to ring.!

on a normal return
to ring!.

Key: Vi, i = 0(1 }63 means the
variable whose value is
the validation level for
ring i. Vi is located at
<.stack_i>l 3. Saving
means storing in the
<rtn_stk;> entry.

Figure 4-17. Gatekeeper's Algorithm for Saving and Pas sing, and
for Restoring Validation Levels during Ring Crossings

4-55

ring 33

~vice _prexy~

~all get_ rec (type, ident);

\
\

\
\

ring 34

.-:: admin">

all get_ rec (type, ident);

ring 35

Lfac staff '7'

--- -~

" ' " " ~
\

\

\

I

I

.......

I

I
\

I

'

I

I

\

I
I

I

\

\

~--------------------------.1
It

call get rec (type, ident); . -

ring 32

~ adm rec?'

administrative
records

~fac rec>

faculty
records

~stu rec>

student
records

~get_ rec>

Figure 4-18. School Records Retrieval Subsystem

4-56

-

Thus, the validation level found at sb I 3 describes the "authority" of the caller.

A call from ring 33 or lower is adequate for any request for data, be it from< adm_

rec>, < fac_rec>, or <stu rec>. However, a request from ring 34 for < adm _rec>

data or from ring 35 for< fac rec> or< adm rec> data must be rejected by< get_rec>.

4. 3. 5 Outward -call Argument Lists

It is possible to design many subsystems which never employ outward calls.

Certainly, this would be the case for a subsystem whose segments reside entirely

in ring 32. If the subsystem you are designing is in this category, you can skip the

remainder of this Chapter in good conscience. If not, two cases are of interest:

(a) The subsystem itself is to be coded using outward calls, but the subsystem
user is to be so controlled, e. g., by limiting his procedures and data to
the outermost ring so that he cannot execute outward calls.

(b) The subsystem procedures as well as the user procedures, with the latter
no longer restricted to the outermost ring, can execute outward calls.

Some important implications follow in each case:

Case (a) The subsystem must be coded in a source language whose compiler can

recognize outward calls. This recognition is necessary so that the

compiler can generate argument lists which are properly embellished

with pointers to descriptions of the corresponding arguments.

The Multics PL/I and EPL compilers, for example, provide this recognition

capability. It is achieved through use of the so-called "callback" option.'~ This

amounts to a declaration which can be made in any external procedure <a>. In the

callback option the programmer lists all procedures, e. g., < xl>, < x2>, etc., a call

to which is to be regarded as an outward call. The form of the option is:

callback (xl, x2, etc.)

It should be easy to see why, in one way or another, the language processor

must be supplied this type of information. Were this not so, the processor would

have no way of knowing how procedures, whose names appear in the program, relate

to one another vis -a-vis rings. If you write your subsystem in any other language or

languages, be sure the processors are equipped with this facility. Assuming you

don't have to be involved in building this type of software facility, there is no more

you need to know. However, if it is your problem to do this job, then read "case (b)".

>:::
Primary reference is BP. 0. 02. The options attribute is part of the (first) procedure

statement of every PL/I external procedure.

4-57

Case (b) The language the user codes in need not be the same as the language(s)

used for coding the subsystem. If this is the case, and if the user­

coded procedures may be written with outward calls, then you must

make sure that the processor which handles user codes also has the

same capability for recognizing outward calls and for generating suit­

able argument lists.

Figure 4-19 shows the format of the argument list which must be supplied in

each n-argument outward call. There are 2 x n additional words to be supplied, con­

sisting on nits pair pointers to the argument descriptions. By consulting the data

descriptions for the arguments, < arg_pull>, when called by the Gatekeeper, is able

to decide how to copy each argument into the target procedure 1 s stack.

We now illustrate what< arg_pull> does in specific instances, imagining in

Figure 4-20 that the procedure< beta> makes an outward call to< proc_hi_ring> with

two arguments; ~· an integer, and name, a non-varying character string. The copied

block of information is placed at the tail end of the dummy frame made for <beta> in

the stack segment for the ring (t) of< proc_hi_ring>. (See also Figure 4-15.)

The copying work of< arg_pull> though conceptually simple, has its share of

clerical complications.>!< Here we give a simplified two-step description of the as­

pects which subsystem writers should know.

4. 3. 5. 1 Copying the Argument List

Note, in our example of Figure 4-20, that each argument pointer in the copied

list is now modified to point down in< stack _t> to its respective argument datum (or

to its specifier, t if it has one).

>!<Full details can be found in BD. 9. 02. The task is sufficiently complicated that in
the initial implementation varying string arguments or arrays of same (because they
involve the use of Free Storage) may not be passed on outward calls.

t Specifiers were first described in Table 3-1. (Types of arguments and their
structures.) If a refresher is needed, reference this table.

4-58

Arg 2
pointer

0

0

0

Appears here only if
indicated by 2 in the
right half of the
first word. See
Fig. 3-9 for are­
fresher.

Figure 4-19. Format for an Argument List for Use in an Outward Call

4-59

Lstack t>

new s P.B + 3 2 + 0

M-z-Argument list

beta: procedure options
callback (proc hi ring);
del x fixed binary (17)

name character (11);

call proc_ hi_ ring (x, name);

Argument data

This information is deposited at the end of the dummy frame created for the
faulting procedure. Crosshatched areas represent exact copies placed there
by < arg_pull>.

Figure 4-20. Appearance of the copied Argument List and
copied Arguments placed by < arg_pull>

4-60

The pointers to the data descriptions are copied exactly as they were in the

calling argument list.':'

4. 3. 5. 2 Copying the Arguments

Each data description provides < arg_pull> with the information it needs to copy

the associated argument. Figure 4-21 shows the Multics standard format for an

argument description.

The data type code in the description determines if the argument has a specifier

and dope. In copying arguments which have specifiers, the dope and datum parts

are copied exactly. The specifiers, of course, are new. They must be constructed

"on the spot", to point to the dope and datum copies. This is suggested in Figure 4-20

where only the eros s hatched sections represent exact copies; the rest are newly

created for the purpose. Arguments which can be copied by < arg_pull> are restricted,

at least in the initial Multics, to scalars and one-dimensional arrays of scalars,

i.e., to data types given in Table 3-1.

4. 3. 5. 3 Recopying of Return Arguments on the Inward Return

On an outward call to procedure < p>, there may be (copied) arguments whose

values are altered during execution of < p>. During the inward return the Gatekeeper

must see to it that the possibly new values for these return or "output" arguments

replace the original values pointed to in the original copy of the argument list. Out­

put arguments can be recognized by examination of the I/O code (bits 18 and 19) of

the argument description, as indicated in Figure 4-21. To deal with these arguments,

if any, the Gatekeeper calls another ring 0 procedure, < arg_push>. This procedure

searches down the data descriptions found in the original argument list t for arguments

'·'rhere (in the target ring), copied pointers are likely to be of no direct use to the
target procedure because they will, in general, point to a data segment in an inner
ring, i.e., to <x. symbol> where <x> is the calling procedure. However, if the
target procedure subsequently wishes to pass any of these arguments to another
procedure with an even higher ring number, < arg_pull> must again be invoked by
the Gatekeeper. The copied p. 1 s are now used in constructing the argument list for
this second outward call. 1

tIt is not the one in the stack of the now faulting procedure executing the return, but
the one pointed to in the stack for the inner ring target procedure. It is not safe to
use the argument list in the outer ring stack because this may have been altered by
< p> or by any of its "dynamic descendents" that had access to this stack.

4-61

Fig. 4-21

0-----------------17 20-------------------35

I datatype I I/0 ~
Key: Data ~ is an integer code for the type of arument

The different system standard types and their codes
were given in Table 3-1.

I/ 0 is a 2- bit code giving the input/ output nature
of the argument.

I/ 0 Code

0 0
0 1
1 0

System-wide Interpretation

I/ 0 nature unknown
input only
input and output (requires callback)

Figure 4-21. Multics Standard Format for an Argument Description

4-62

•

•

indicated to be of the output type (code 10). For each of these the datum (but not

specifier or dope if any) are copied from their positions in the outer ring stack to

their original positions wherever they may be.

A review of the foregoing on the copying and recopying of arguments has re­

vealed one reason why a subsystem should provide argument descriptions in standard

form, namely: It is a necessity if the subsystem is to interface with the Gatekeeper

for processing outward calls and inward returns. Other Multics service modules

including certain useful debugging facilities,':' will also require access to argument

descriptions in the same standard form.

Normally, the compiler or assembler used to generate code in the subsystem

will have the responsibility for generating descriptions for all arguments employed

in an outward call. Data descriptions for declared variables or for declared para­

meters (dummy variables) are usually placed in the segment symbol table produced

by the compiler or assembler. Hence, a pointer to this data description can always

be generated by the compiler when needed in the construction of an outward-call argu­

ment list. The fact is that in EPL-generated symbol tables, the data descriptions

are compatible with, but are more elaborate in structure than the Multics standard

given in Figure 4-21. The important requirement is fulfilled, however, that the first

20 bits of an EPL -generated data description has the standard interpretation. More

details on EPL-coded data descriptions can be found in BD.1.

4. 3. 6 Gates

In the description of the linkage section given in Chapter 2 of this guide, no men­

tion was made of gates because we then had no way of properly motivating them. We

correct this omission here. As mentioned in Section 4. 2. 3, a gate has the form c£

a special entry in the linkage section. By way of review, an ordinary entry is found

in the linkage section of a target procedure. It consists of a quadruplet whose form

is:

eaplp -':', ic

aos 2, ic

tra

arg 0

where linq is the offset to the link (pointer) to the program point in the target.

':'see BX.10, Interactive Debugging Aids, for more details.

4-63

A gate is a quintuple, the last four words of which are identical with the above

form. The first word is a no-op instruction whose address field is the location, with­

in the same linkage block, which contains additional information describing the gate.

The form of the no-op instruction is:

nop gate _info, du

I
When the Gatekeeper is processing an inward call, the address of the faulting

instruction should point to this no-op. Figure 4-22 shows the kind of additional in-

formation (at gate_info) which the Gatekeeper would then have available for handling

this attempted inward call. Inspection of the gate information will lead the reader to

some interesting inferences:

Normally, one would want the Gatekeeper to validate all arguments being passed

on an inward call. Whoever writes a translator which generates gates in a linkage

section can provide users of this translator with an option to ignore this Gatekebper 1 s

service on inward calls. A user who takes the option to ignore argument validation

will eliminate overhead, but will risk damage in the target's domain of access.

Whether or not the n arguments are to be validated, the next [n ; 1] words
1

pro­

vide special 18-bit descriptions. A one in the leading bit position of a description

indicates a return argument. Such an argument may be used in situ by the targ~t

procedure, because it is (presumed to be) located in the domain of access of the

caller. Arguments so coded will not be copied, thus avoiding the copying overhead.

If the leading bit of the 18-bit description is zero, the interpretation is that the argu­

ment is to be called by value (i.e., no value is to be returned for this argument).

The Gatekeeper will ask< arg_push> to make and place a copy of arguments so de­

scribed in the target procedure's stack frame.

4. 3. 6. 1 Gate Segments

The 6-bit field in gate-info that is marked ''cb'' (highest ring number in the

£all £racket), is always examined by the Gatekeeper when handling inward calls. cb

is interpreted as the effective upper bound for the target's call bracket in the event

the value of cb is less than the value given in the ring brackets of the segment that

contains the gate itself. The cb field may be set arbitrarily (0 :::: cb :::: 63) by explicit

4-64

gate_ info

argument type

form of special 18-bit
argument description

0

linkage section

gate_ info
_,:..: ic '

2
linq _,:,

0

...

Key:

nop

eaplp

aos
tra
arg

n

d2

cb =

g =

n=

v =

du

ic

ic r··· (or door1
ic'~ entry

0

[n; 1] words

outermost ring of the call
bracket (used when g = 1).
1 if this entry is a gate.
2 if this entry is a door.
(See Chapter 5 for explana­
tion of doors).
number of arguments for
this entry.
0 if arguments are not to
be validated by the Gate-
keeper.
1 if arguments are to be
validated. --

r = l this argument is a re­
turn value (ok to use in
situ).
0 no value is allowed to be
returned for this argument
(call by value).

Figure 4-22. Format of Gate (and Door) Information

4-65

coding.>:< A small value of cb (smaller than the outer ring of the call bracket of the

target) serves as additional screening of inward calls.

Most subsystem designers will find few occasions to exploit this extra screen­

ing capability for inward calls. When used, it will probably be for the purpose of

reducing the linkage segments that are needed in a multi-ring subsystem. The idea

would be to concentrate into one linkage segment a collection of gates for different

procedures in the same ring. Such a collection, will hereafter be called a "gate

segment''. t

A gate segment, when properly constructed, would serve as a funnel for access

into an arbitrary collection of privileged procedures, e. g., in the hardcore ring.

The gate segment itself has fixed ring brackets in the executing process, i.e.,

(r 1, r 2 , r 3) whose values are given in the file branch for this segment. However,

any of the cb values found in the gate segment may be less than r 3•

In the Multics supervisor, for example, ring-0 segment named <hcs_> serves

as a gate segment to minimize the number of linkage segments needed for ring-0

procedures. The ring brackets for <hcs_? are (0, 0, 32). This segment contains

gates to all other procedures in ring-0 which are callable from outside ring 0. The

gates for some hardcore procedures have cb = 1, while for others, cb = 32. The

Gatekeeper will reject any user call from ring 32 to a user procedure whose gate

has cb = 1 (even though the faulting segment's ring is not outside the call bracket

for <hcs_> itself and even though the desired entry point is a gate).

4. 3. 6. 2 Doors

The last remark we wish to make is for the benefit of readers who referred to

this subsection from Chapter 5. If the data at gate-info is for a door instead of a

gate, there will be no arguments involved, because this entry is being used for con­

trol of an abnormal return, not for a call. Hence, n = 0 and the gate information

consists of only one word. The gate information in this case serves primarily to

identify the entry as a door (thus, making gates and doors mutually exclusive).

':'Eventually source languages like EPLBSA will be expanded so a programmer may
declare an entry point to be a gate. Such a declaration would be expected to result in
the generation of gate information in the format shown in Figure 4-22. When declar­
ing a gate, one would specify the value of cb or accept a default value which would
probably be 63, a value which would produce no screening effect at all.

tThis segment would function something like the familiar "transfer vector" used in
programs that are loaded in conventional batch operating systems.

4-66

•

•

