
M0107

A GUIDE TO MULTICS

FOR

SUBSYSTEM WRITERS

CHAPTER V

Condition Handling and Abnormal Returns

Elliott I. Organick

Draft No. 3

February, 1969

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

...

TABLE OF CONTENTS

Section

LIST OF ILLUSTRATIONS

LIST OF TABLES

v CONDITION HANDLING AND ABNORMAL RETURNS

5. 1 Introduction

5. 1. 1 Signalling Conditions in a Multi- Ring Environment

5.1. 2 Abnormal Returns

5. 2 Condition Handling - Details

5. 2. 1 Details of the Current Implementation

5. 2. 1. 1 Popping Handlers

5. 2. 1. 2 Signalling (Initial Implementation)

5. 2. 1. 3 Establishing Default Handlers -
User-Defined Conditions

5. 2.1.4 Default Handlers -System-Defined

Page

iv

iv

5-l

5-1

5-6

5-9

5-11

5-12

5-14

5-14

5-15

Conditions 5 -15

5.2.2 Multi-ring Generalization (for future implementation) 5-16

5. 2. 2. 1 Some Case Studies

5. 2. 2. 2 Invoking the Handler Procedure

5. 2. 2. 3 Ring Brackets for< condition>,
<reversion>, and <signal>

5. 3 Abnormal Returns - Additional Discussion

5. 3. 1 General Concepts

5. 3. 2 The Unwinder Details

5. 3. 2. 1 Validation of the Abnormal Return

5. 3. 2. 2 Handling Unfinished Business

iii

5-23

5-31

5-34

5-34

5-34

5-38

5-38

5-41

Figure

5-l

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

Table

5-l

5-2

5-3

LIST OF ILLUSTRATIONS

Schematic of the Storage Structure for a Signals
Segment and Its Companion Linkage Segment

The Trap-before-definition Feature in an In-symbol
Table Definition for System-defined Conditions

A Trace through Seven Ring Crossings Employing
Invocation Numbers b through h

Details for a Signals Segment and Its Companion
Linkage Segment

Storage Structure for a Signals Vector Segment

Stacked Condition Handlers

Mechanism Used to Invoke an Active Handler

Distinguishing Between Calls G) , Normal Returns €J ,
and Abnormal Returns @

A Picture of < stack t >

Chain of Calls <a>~~<c> and Abnormal
Return to <a >I [f]

Stack Frames and Handlers Reverted After Successful
Return from Call to < Unwinder >

Chain of Calls and Abnormal Return Coded in EPL

LIST OF TABLES

Summary of Cases Illustrating <Signal > 1 s Search for an
Active Handler

Class Codes and their Interpretation during Search for an
Active Handler

Details of Ring-by-Ring Search

iv

5-13

5-17

5-18

5-20

5-21

5-22

5-33

5-35

5-39

5-44

5-45

5-46

Page

5-24

5-28

5-29

CHAPTER V

CONDITION HANDLING AND ABNORMAL RETURNS

5. 1 INTRODUCTION

Besides ordinary calls and returns, there are two other types of interprocedure

(and possibly inter-ring) transfers which the user may wish to make and for which

Multics lends system support:

(1) To execute a "signalled condition".

(2) To execute an abnormal return.

In this section we shall introduce the problems and issues involved in the implementa­

tion of each of these. With the motivation hopefully provided here, the reader may

wish to read either or both of the remaining two sections of this chapter to see the de­

tails. As implemented in Multics, abnormal returns are executed with the aid of the

condition handling mechanisms, so Section 5. 3 cannot be effectively read independent­

ly of Section 5. 2. "Condition handling" is a technical term in programming that is now

well recognized as a result of the widely published specifications for PL/ I. The term

refers to an activity in which the user names in his program a hardware or a software

condition and either explicitly or implicitly identifies (or supplies) code to be executed

when the stated condition is detected at some later point in time (i.e. , during execu­

tion of subsequent program steps). The remainder of this section discusses the perti­

nent PL/ I concepts (and language specifications) that deal with condition handling.

Persons already familiar with this aspect of PL/ I may skip over this material.

In every programming system environment there exists a priori a class of system­

defined conditions which can arise during execution that will fault the process. Some

of these conditions are recognized (detected) by the hardware, while others are recog­

nized during execution of system- supplied software. Examples of occurrences in this

class might be accumulator overflow, zero divide, exceeding a subscript range, and

attempts to perform illegal type conversions. Conditions like these are of the sort

that are hardly ever completely avoided and hence are in the category of always­

possible-though-always-unexpected. In PL/ I, syntax is specified to handle occur­

rences of these conditions, providing the programmer a measure of choice of action

and hence control over his program's fate. At the same time the machinery is uni­

versal enough in structure so that a uniform approach is possible for the handling of

a wide range of condition types.

5-l

A set of a dozen or so "built-in", or system-defined conditions is enumerated in

the PL/I specifications.':' With each of these conditions there is associated a standard

system action. This "standard" action is executed only in the default case, i.e., in

the event the PL/I programmer fails to supply any other code for execution when a par­

ticular condition has been detected.

Subsystem designers are expected to recognize conditions which are not on the

"built-in" list. Hence, additional machinery is provided so that the PL/I programmer

can name other conditions and of course specify the actions which are to be taken

when these conditions occur. Unlike the first category of system-defined or "built-in"

conditions, this new category of programmer-defined conditions will not be automati­

cally detected. Consequently, PL/I provides the subsystem programmer with the

linguistic constructs which allow his subsystem to behave as a condition detector as

well.

More specifically, three types of statements have been provided in PL/I:

ON statements

REVERT statements

SIGNAL statements

Purpose
To designate a condition and the associated code
which is to be executed when that condition is
detected.

To undo the effect of a previously executed ON
statement that refers to the same condition that
is named in the REVERT statement.

To indicate occurrence of a built-in or programmer­
defined condition.

A more complete explanation of these statements follows:

ON Statements

These identify a system-or programmer-defined condition and designate the corre­

sponding code which is to be executed whenever that condition is detected. The gener­

al syntactical form of this statement is:

':'For a complete list of these see Appendix 3, "IBM System 360 Operating System,
PL/I Language Specification", Form C28-6571.

5-2

ON <designation of the condition':'> <action specification>

where <action specification> may be null, a simple PL/I statement, or a block of

code.

For example:

ON OVERFLOW BEGIN;

designation
of the

condition

END;

DECLARE SUM STATIC INITIAL (O)

SUM = SUM + l;

IF SUM > 100 THEN

CALL OVERR;

action specification

The action specification may be thought of as a "handler" for the specified condition.

This is because execution of an ON statement has the effect of setting up its action

specification as a body of code to be invoked later, as if it were invoked as a procedure.

The execution of an ON statement can be said to establish a handler for the named

condition. Execution of a subsequent statement that results in the detection of the

named condition will cause an interruption of the main program sequence and the invo­

cation of the established handler.

A natural question to ask is: What is the program scope in which a given estab­

lished handler is said to be active i.e., how long does an established handler remain

in effect? The answer is - up to but not beyond the point in time where the thread of

control exits normally from the block in which the handler was established. This rule

means that after executing an ON statement establishing a handler (which we will refer

to as) Y for a condition named ''X'', the thread of control may pass through numerous

other procedures (as a result of CALL or GO TO statements) before exiting from

block B. All this time the handler Y would remain in effect. A handler is said to re­

main in effect or govern while executing in all the "dynamic descendents" of the block

in which it (the handler) was established.

·'· .,.The condition is designated by its name and, if programmer-defined, is indicated
as such syntactically by placing the name in parentheses and prefixing it with the
word CONDITION. Thus,

ON CONDITION (UNEXPECTED_DELAY) CALL PROCA

designation of condition action spec.

5-3

I

There are two ways, however, to over-rule the effect of a handler Y. One may

either temporarily replace Y with alternative code, say YY, or one may instantly

nullify Y. A handler Y may be temporarily replaced if another ON statement for

the same condition is interposed in the execution, If the second ON statement

designates some other code (which we shall call) YY as the handler for "X", then

YY is established and will remain in effect until YY 1 s scope termination is reached,

Termination occurs when a normal exit is taken from the block in which the handler

was established,':' The implied effect of "adding on" one handler after another for

the same condition and in the same dynamic sequence, amounts to "stacking"

handlers in a last-in, first-out discipline, To simply nullify the "rule'' of a

currently-effective handler, Y, one uses the REVERT statement.

The REVERT Statement

This names a condition (system- or programmer-defined) whose currently

governing handler is to be nullified (i, e,, popped from the current stack of handlers

for "X").

REVERT X;

exemplifies the simple syntax of the REVERT statement, After executing such

a statement, the previously established handler (or a system-defined default

handler in case there are no more left on the stack) will be invoked if there is a

subsequent detection of condition "X".

The SIGNAL Statement

This allows a programmer to indicate the occurrence of a condition that is

named in this statement and thereby to cause its governing handler to be invoked,

After execution of the indirectly designated handler, control will (normally) return

to the statement immediately following the SIGNAL statement, It should be noted

that the ON statement which established the currently effective handler for a condi­

tion "X" need not, and normally would not, appear in the same procedure(s) that

contains the invoking SIGNAL statement,

Although any system-defined condition may be 11 signalled" with this type of

statement it should be emphasized that executing a SIGNAL statement is the only

way a programmer-defined condition handler can ever be invoked, Of course,

':'Notice that if both Y and YY are established in the same block, then the scope
of both handlers will terminate simultaneously upon exit from the block,

5-4

executing a SIGNAL statement does not alter the scope of the invoked handler, That

is, there is no restriction on the number of times a statement like:

SIGNAL X;

may be executed to invoke the cur rent handler for "X",

Signalling via the SIGNAL statement offers the programmer an attractive way

to invoke a subroutine without actually having to specify its name, letting its

designation be determined dynamically, as determined by the ON statement most

recently executed. Whether this technique is practical depends on the particular

machinery that is developed for the implementation of the ON, REVERT, and

SIGNAL statements. As we shall see when we consider in detail the machinery

developed for this purpose in the Multics environment, the overhead is high.

Signalling activities are normally too costly to use except for special situations.

These might arise when a program's complexity is already so great that the in­

troduction of additional machinery for explicit invocation of specified actions

(handlers) would add disproportionately to the debugging problems of the program­

mer. To make our point somewhat more specific, we sketch the following example:

Let a procedure <a> call< b> after first establishing the handler Y for

condition "X". Let us further suppose it is appropriate or convenient for the test

of occurrence (detection) of "X" to be accomplished in < b>. It is then natural to

let < b> invoke the handler for "X" simply by executing the statement

SIGNAL X;

Executing this statement may, however, prove to be relatively costly. (One

measure of this cost is the execution time required for invoked system routines

to locate the desired handler,) If this is the case, a less expensive way can

usually be arranged, simply by adding an additional argument (error code) in the

call from <a> to < b>. If this done, < b> can be coded to detect the condition,

set the error code parameter appropriately, and return. It is then < a> 1 s

responsibility, upon receiving a return from < b> to test error code (before doing

anything else) and to invoke Y (e. g., by a subroutine call) before proceeding with

with other taks. Note that < a> knows what handler to invoke even though < b>

may not.

5-5

5. 1. I Signalling Conditions in a Multi-Ring Environment

With special system-provided procedures, Multics makes it easy to provide

condition handling in any process, regardless of the coding language that is used.

These system procedures are:

< condition>

<reversion>

<signal>

They can be used by anyone to accomplish what can be achieved in PL/I with ON, RE­

VERT, and SIGNAL statements. (It is no coincidence that the EPL and PL/I compilers

generate calls to <condition> , <reversion> and <signal> in translating such state­

ments.)

If we are going to gain a more sophisticated view of the condition handling machin­

ery in Multics (present and future), it will be necessary to consider how it couples or

should couple with the ring structure. To elaborate on this thought, we will do well

first to walk through some of the steps of condition handling in the context of the Multic s

ring structure. (For this purpose we need no longer assume that PL/I is the program­

ming language being used.)

Let us suppose a procedure < P >is executing in ring e. This procedure may

enable':' a condition named "x" simply by calling< condition> and designating the name

of the condition, "x", and a handler, call it< procl >as arguments. The handler is a

block of code in the form of an internal or external procedure. Also, let the ring num­

ber of< procl > be h (for _!::andler).

After enabling condition x in this way, < P >, or any of its dynamic descendants is

free to signal condition x. The need to issue the signal may be recognized in two

basically different ways. Hardware faults may induce this recognition. In this case,

a fault interceptor module can issue the signal for condition x. Alternatively, simple

tests of state variables may be programmed by the user such that affirmative results

are tantamount to event recognition. In this case, the procedure then executing, which

shall be called the signaller, can execute the call to <signal>, naming "x" as an argu­

ment.

Signaller may be written either by the subsystem designer as a utility routine or

it may be written by an ordinary user. (It makes little difference.) We shall assume

that< signaller> executes in ring s.

':'Here we shall be using the phrase enabling a condition to mean what in PL/I terminology is
expressed as establishing a condition. In PL/I there exists additional mechanisms to enable
or to disable a previously established condition. We shall not be concerned with this extra
level of control in condition handling. Hopefully, therefore, confusion may be avoided.

5-6

From the foregoing ''exercise" we see that up to three different rings may be in­

volved. These are e (for enabler), h (for the handler), and s (for the signaller). A

basic question to be answered is: Should a condition enabled in ring e be "signallable"

from s if s-#e? A no answer would be tantamount to making calls to <signal> and to

<condition> within one ring independent of those in all other rings. A yes answer

amounts to saying that a condition enabled in one ring may be signalled from any other

ring. This in turn implies existence of a mechanism for remembering in what ring

the corresponding condition was enabled. It also implies that the same handler < p >

can behave differently, depending on the ring from which< p >has been invoked.':'

Arguments may be offered for both approaches. The first approach (s=e only) has

the advantage of simplicity in implementation. It implies a minimum of execution over­

head in invoking the intended handler. But it also implies that a programmer must

know the rings in which his procedures will be executing when calls to< condition>

and to< signal> are made, (i.e., he must be conscious of at least some ring crossings).

This requirement is not in complete harmony with one Multics objective for the ring

structure, namely to provide a compartmentalization "service" that requires no direct

programmer involvement.

The second approach (s possibly# e), clearly implies the complement of the afore­

mentioned advantage and disadvantage, that is, more expensive signalling, but freedom

to remain oblivious to ring crossings. In addition, however, there is one more impor­

tant advantage. It is as follows: By permitting s#e, we assure for instance that con­

ditions enabled while a process executes in a user ring may be signalled from a super­

visory ring (and vice versa). This provision, for example, allows a supervisor, that

has intervened as a result of a user-incurred fault, to signal a system-defined condi­

tion which has been enabled in a user ring. In short, the system must be able to find

a handler (which itself may be in any ring) that is established by user or by supervisor.

Ideally, this capability should be replicated for the case of user-developed subsystems

having two or more rings. Thus, an outer ring of such a subsystem would likewise be

'~To see why this is so, let the ring brackets of the handler < p > for condition "x" be (u v w)
Now, any signaller from ring s that has ring access to < p > will be able to invoke it, F'ro:n '
?ur study .of Chapter 4 we know that <p> would then execute in a ring, r, that lies somewhere
1n closed 1nterval (u, v), depending on s, Suppose the enabled condition "x" is signalled more
than once, and from k different rings, say, s 1 , .. , , sk (k > 1), The corresponding rings, rk,

in which < P > will then execute, may not all be identical, (That is, a handler invoked from dif _
ferent rings, and having an access bracket (u, v) such that u < v, may execute in different rings,)
Although we may not have mentioned this previously, it is true that for reasons of protection a
p~oc~dure .< p > is supplied with a separate copy of its linkage segment, < p, link> , for ever;
rmg m wh1ch < p > executes and hence may behave differently when executed, This somewhat
surprising fact and its interesting implications are dealt with in Chapter 6, There we will show
that a snapped link, generated by the Linker for the same symbolic reference, may depend on
the ring of the link-faulting procedure.

5-7

able to establish handlers that can be invoked (explicitly, in this case) when an inner

ring procedure executes a call to <signal> . This is just another expression of the

Multics design philosophy that the interface between user and supervisory procedures

function in the same way and using the same conventions as for an interface between

different user-written procedures. In the initial implementation of Multics, the

former, less general approach is taken. The more general approach has been studied

carefully, however. A well thought out scheme has been proposed for achieving the

general signalling mechanism which includes simpler schemes as subsets. It is too

early to say if the general case will finally be implemented, or how. The scheme is

described in Section 5. 2. 2. ':'

Some interesting problems arise:

(a) What ring relationships between h (handler) and s (signaller) should
govern on whether or not the signalTing procedure should be given
access to the designated handler, <procl>? The answer is that the
controls which permit the signaller to call the handler apply here.
E. g., s must be less than or equal to the outer ring of the call brac­
ket for <procl>, and if within <procl>' s call bracket the desired en­
try point must also be a gate.

(b) In any process the condition x may be enabled more than once be­
fore it is signalled. Each enabling of condition x, even if from the
same ring, may designate a different handler. Moreover, the hand­
ler may possibly be located in different rings. In addition to the
question raised in (a), we must now add the question: which of the
handlers is the one which should be asked to respond to the signal­
ler (i.e. , to which handler do we want control transferred}? The
one we want shall be referred to as the currently active handler.
Ordinarily, the answer is: the one designated when x was last en­
abled. But, whichever is the active one, how does the supervisory
system go about locating it? Is a stacking scheme used? (The an­
swer is yes.) If one pictures that signals pertain only to conditions
enabled in the same ring, then it is easy to visualize how one might
implement all three of the primitives, <condition>, <reversion>, and
<signal>. A call of the form:

call condition (11x", <pr oc >) ;

when executed in ring e, might cause a pointer (i.e., entry datum)
to< proc> to be pushed onto the top of a stack named 11x" for ring e.
A call of the form:

call reversion ("x");

'!'A complete design has been given in BD. 9. 04. dated 12/15/67.

5-8

in the same ring, e, would then cause the topmost element to be popped
from the same stack. Finally, a call of the form

call signal ("x");

also executed in ring e, would cause the issuance of a call to the pro­
cedure whose entry datum is the topmost element on stack "x" {of
ring e).

But what of the more general case if it were implemented in Multics?
Here, signalling is not restricted to the ring in which the matching
condition handler was enabled. What selection or searching process
would be used to locate the desired handler? Would the programmer
also have the option to restrict the search for an enabled handler so
that it may be invoked only when the condition is signalled from speci­
fied rings? (The answer is yes.) How about reversion? Will the pop­
ing that is performed remain limited to the stack for 11 x 11 in the ring of
<reversion> 1 s caller? (The answer is yes.)

(c) What practice is followed for the case where a procedure signals a
condition that has never been enabled, or if enabled, has since been
fully disabled (reverted)? In this regard it 1 s important to be aware
of the two kinds of conditions recognized in Multics.

(1) system defined

(2) programmer defined

It must be arranged somehow that the system behaves as if every
system-defined condition is always enabled, each with a system­
defined "default handler", i.e., one which will be invoked in case the
user fails to impose one or more handlers of his own. It is not at all
obvious how transfers to these default handlers are always assured
in default situations.

A somewhat different mechanism must be devised for guaran­
teeing default handling of programmer-defined conditions, in such
a way that the user still has an opportumty to interact effectively
with his process, a prime objective or interactive processing.

The purpose of Section 5. 2 is to explain the Multics solutions to the problems

just raised.

5. 1. 2 Abnormal Returns

If, instead of transferring back to the point of call in the calling procedure, one

attempts to execute a return to any other point in that procedure or in any other pre­

viously called procedure, we refer to this as an abnormal return. The corresponding

PL/ I terminology is "non-local go to 11 • Imagine, for instance, that <a> calls

5-9

calls <c > . . . etc., calls <t >. In principle it is possible to pass a label argument,

say lab, from <a>, via via <c >, etc., to <t >. While executing, <t > can then

return to lab in <a>. The fact that this is a commonplace facility in :MAD and in

FORTRAN IV may give you the impression that no problems are presented here, No­

thing could be further from the truth. Severe problems can be encountered in the

proper handling of these returns when executing programs written in a more compre­

hensive language like PL/I and/or in a multi-ring environment, as the following intro­

ductory discussion hopes to show.

In the course of returning abnormally to <a> there is a matter of resetting the

stack pointer to the target procedure's stack frame and recovering all the saved regis­

ter values and the (indicators). This can be done relatively easily if all procedures

<a> through <t > in the chain are in the same ring. •:• Returning to the earlier stack

frame of <a>, which implies resetting the stack pointer, has the effect of recovering

the storage allocated in the stack for variables of type "automatic" hsed in , <c >,

etc.

Unfortunately, there are several remaining recovery problems:

(1) There is a storage management problem which arises whenever a
procedure allocates temporary (e. g. , automatic) storage space in
segments other than a stack segment. Usually, a procedure that al­
locates such space should also free it before executing a normal re­
turn. However, if such a procedure is bypassed during an abnormal
return, there may be no opportunity to execute the code that recovers
this allocated space.

(2)

Even if the user makes no explicit effort to allocate temporary var­
iables in this way, the supervisor, or the compiler he is using may
do so. Two examples are:

(a) The Multics standard way for handling all automatic varying
strings. I

(b) The EPL way for handling arrays of automatic varying strings.
In both cases space selected for such data is taken from a free stor­
age segment called< free >· t Resetting the stack pointer for the
abnormal return will not-of itself accomplish the re~overy of space
that was allocated for such variables.

I
During execution of the intermediate procedures (, <C >, ••• ,
<t >) various conditions may have been enabled. As we have already

*A 11 standard" abnormal return sequence can be devised and in fact was once proposed
for use in these situations - but later discarded.

tThe details can be found in BP. 2. 02 and BB. 2 sections of the MSPM.

5-10

suggested, each enabling of a condition amounts to the stacking of a
pointer to a desired procedure or "handler". These pointers would
be popped off such stacks prior to executing a normal return. When
an abnormal return to< a> is executed, unwanted pointers should be
popped from whatever stacks they have been put on. If these pointers
were held in the stack frames, reversion of these handlers might be
automatic. In fact, however, the pointers are kept in a special seg­
ment or segments. An extra effort is therefore required in popping
these entries from their respective stacks during abnormal returns.
Details will be given in Section 5. 3.

(3) All these problems are made more complicated when the procedures
and the stacks that are involved in the chain we intend to bypass re­
side in different rings. To perform an abnormal return, it is really
necessary in fact to march backward through the chain of about-to-
be bypassed procedures, one-by-one. During this backward march
we must perform on each procedure the necessary "cleanup" oper­
ations, i.e. , returning allocated space to free storage and popping
pointers to condition handlers. This slow retreat, called "unwinding",
is in fact what must happen when a userwishes to make what, from
his source level language, seems like a nifty "end-run".

Because of the decision to permit unwinding across rings, the unwinding process

is not only slow, but, for protection reasons, cannot in general be entrusted to any but

a ring 0 supervisory procedure. (Abnormal returns are never executed from ring 0,

and user-written routines which execute abnormal returns cannot be allowed unsuper­

vised freedom to bypass ring 0 routines.) A special system procedure called the

Unwinder is therefore provided. This procedure interfaces with the Gatekeeper and

with the condition handling procedures to carry out its task. Moreover, it is legislated

that whenever a user wishes to perform an abnormal return he does so by a call to the

Unwinder. In some situations, a user will invoke the Unwinder mechanism without

being conscious of it. For example, compilers like the EPL compiler will generate

calls to the Unwinder when translating non-local go to statements.

5. 2 CONDITION HANDLING - DETAILS

The first part of this section reviews the plan for condition handling, roughly as

it is now implemented in Multics. This is the scheme which limits signalling to the

ring in which the intended handler has been enabled. The second part of this section

considers the more general mechanisms which make signalling from other rings feas­

ible. Some knowledge of the general mechanism is needed to appreciate the abnormal

return discussions in Section 5. 3.

5-11

Each process is provided a specially designed data base for use in condition hand­

ling. It consists of a series of segments, one for each ring r, other than zero, of the

executing process (r = 1, 2, • • • , 63). To conform with the MSPM terminology in

BD. 9. 04, we shall call these, <signals _r > ':' where r is a two-digit character string

representation of the integers, i.e., "01", 11 02", etc.

Pointers to condition handlers are saved in the various <signals _r > segments in

entries that are threaded as push down lists. Several lists may be kept in a single

<signals _r > segment, one for each distinctly named condition,

5. 2. 1 Details of the Current Implementation

Each call to <condition> has the effect of stacking a pointer to a handler. If a

procedure <p>, executing in rings, calls <condition>, e, g.,

call condition (11 condname 11 , proc);

the effect is to stack a pointer to the handler (<proc >) for a condition named

"condname", in <signals _s >. The pointer, which is a six-word entry datum together

with certain other information form a stack entry that is threaded with other entries e
for conditions having the same name.

As a further aid in visualizing how stacking of entries for handlers are dealt with,

Figure 5-1 presents a schematic view of the storage structure for <signals _32 > and

for its linkage segment based on the design given in BD. 9. 04 of the MSPM. t

By virtue of its special design, a signals segment can hold stacks for an arbitrary

number of distinctly named conditions, Each stack consists of a "headword 11 and a

threaded list of 10-word entries. The headword points to the most recently stacked

entry. Each entry is back-threaded to its predecessor (if it has one). Space for the

stacked entries is drawn as required from a free storage area within the signals

segment.

*rn the interim implementation of Multics that is in current use, there is actually only one ring
outside ring 0, namely, ring 1, Hence, only one segment is involved as the data base for condi­
tion handling, It is called < cstk > , No MSPM documentation as yet describes < cstk > • Our
approach in this discussion is to imagine the replication of < cs.tk > over the signalling domain
that would include all rings 1 through 63, and to picture the data base as having the structure
originally designed for it in BD, 9. 04,

tThe initial implementation in actual fact uses a somewhat simpler storage structure in which
the need for a linkage segment is eliminated, The structure presented in Figure 5-1 was
chosen because it contains the same conceptual characteristics needed to illustrate the cur­
rent implementation and also conforms with the design for the more general condition handling
scheme which is outlined later in this section,

5-12

(s ignals_32 .1 ink).

standard S-word

block header

an in-symbol table
entry whose name = "k"
and whose value =
pointer to head"word
for "k"

an in-symbol table
entry whose name =

and whose value
pointer to head word
"z"

~ signals_32 >

free storage ptr
headword for condi­

tion "k"

10-word entry

holding entry datum

to handler for "k"

headword for condi­
tion "z''

10-word entry
holding an entry

datum to handler
for "z"

10-word entry
holding an entry
datum to handler
for "z"

free

There are two conditions which have been enabled,
"k" and "z". Two entries have been stacked for
"z" and only one for "k".

Figure 5-1. Schematic of the Storage Structure for a Signals
Segment and Its Companion Linkage Segment

5-13

--~ 'back '\
pointer to
previous
entry in
stack for (""

"z..)
~r"-"

The linkage segment contains in-symbol table entries, one for each named con­

dition. Each entry in this table is basically a name-value pair. The value is inter­

preted as the offset in the corresponding signals segment of the headword for the

stack that is associated with the name. The in-symbol table is searched on each call

to <condition>, <reversion> or <signal> to locate the top most element of the approp­

riate stack.

Thinking in terms of ring 32, for instance, in-symbol table entries for system­

defined conditions are always preset in <signals _32. link> by the system. Those for

programmer-defined conditions are added as needed. That is, upon calling

<condition> with a new name, a search of <signals _32. link> reveals a need to add a

new entry. Each "first" call to <condition> also causes a new headword to be set up

in <signals 32 >. Of course, each call to condition, including first calls, also results

in the addition of a 10-word entry to its appropriate stack.

5, 2. 1. 1 Popping Handlers

Each call to <reversion> has the effect of popping the top "handler" from a

given stack. For example, the procedure <p > in ring s may, just before returning to

its caller, execute a call like

call reversion (11 condname 11);

The effect would be to remove the top (most recently added) entry from the stack in

<signals _s > that is associated with 11 condname". The system automatically supplies

stack entries to "default handlers" for system-defined conditions so that, should the

condition be detected prior to the ~having established a handler for it, there will

be a guaranteed system-defined response. The user may, by a suitable library sub­

routine call, stack an entry to a default handler for a user-defined condition. Such

stack entries, whether for system-defined or for user-defined conditions, are special­

ly marked so they can be recognized, Once placed on the stack, they cannot be re­

verted, even though a call to <reversion> requests its removal. Later subsections

elaborate on the subject of default handlers.

5, 2. 1. 2 Signalling (Initial Implementation)

The chief purpose of saving a condition handler is to use it when and if proper

notice is later given to do so. A call to <signal> is the act of serving this notice. For

example, during execution of a procedure in ring s, we shall picture a call to <signal>

of the form:

5-14

call signal ("condname", return_jlag':', arglist_pointer);

The effect will be to invoke the handler whose entry datum is found in the topmost

frame of the stack for condname, as found in <signals _s >. If this handler is the pro­

cedure named <proc >, then arglist_pointer is passed along to <proc > as an argument.

It is expected that the signal handling machinery just described will serve

most needs of the typical user. The characteristic here is that handlers are stacked

in and signalled from the same ring. Moreover, it may also be typical that the pro­

cedure identified as the intended handler will also be found in ring 32 (especially if it

is a programmer-defined condition). In these situations locating and invoking the de­

sired handler will be a relatively simple task. No protection problems will arise and

hence there will be no intervention of the Gatekeeper, System overhead to perform the

required services will therefore be kept to a minimum.

5. 2. 1. 3 Establishing Default Handlers - User-Defined Conditions

A user is free to establish a default handler for any of his programmer-defined

conditions by a call to a "sister" primitive of <condition> named <set default>.

(The basic MSPM reference is again BD. 9. 04.)

For example, executing the PL/I statement:

call set_ default ("list_empty", refill);

while a process executes in ring k, will have the effect of stacking a default handler

for the condition named 11 list_empty 11 in <signals _k >. This handler points to the pro­

cedure named refill. <Set_default> performs a service almost identical to that of

<condition> in establishing the desired (default) handler. The only thing special

about a call to <set_default > is that the stacked entry for this handler is specially

marked to indicate that the entry corresponds to a default handler. <Reversion> will

ignore a request to pop such an entry. Likewise, the Unwinder will not be able to

revert this handler when and if called, The Unwinder 1 s practice of reverting handlers

is explained in Section 5. 3.

5. 2, 1. 4 Default Handlers - System-Defined Conditions

System-defined conditions are treated in a fashion which guarantees that a de­

fault handler will always be provided, (To simplify further explanation we shall

~:~ If the procedure calling <signal> wishes to permit a return from <proc >, the value
of return flag must be set to 1 for the call and 0 otherwise. An attempt to execute
a normal-return from <proc > when return flag is set to 0 will be interpreted by
<signal> as a request to abort the process-:-

5-15

employ the generic condition name, "sys _cond".) Default handlers are provided on

an as-needed basis. Thus, the default handler for "sys_cond" would be established

in ring k only when the first reference is made to "sys _ cond" in this ring during a

call on <condition> or on <signal>.

For those interested in the details (the curious only), here is how it will be done.

An in-symbol definition for every system-defined condition will be preset in

< signals_k • link> when (and if) this segment is created. Each such definition carries

a trap pointer which we referred to in Chapter 2 as a trap-before-definition pointer.

You can review this feature by a glance at Figure 5-2. Whenever called, <condition>

(or <signals>) must find the offset within <signals_k> that holds the headword for

the desired condition stack. To determine this offset <condition> (or <signal>) will

call a useful library routine known as < generate_ptr >. ':' This routine will search

<signals_k. link> for the preset definition that holds this offset i.e. value. Upon

finding this definition, < generate_ptr> will note that the trap pointer is set (i.e., is

non-null) and will then construct and execute a call to the special system-supplied

trap routine whose name and arglist_pointer are designated via the trap pointer. The

trap routine is designed to cause an entry to the desired default handler to be stacked

in <signals_ k > via a call to < set_ default>. Upon return from the trap routine

<generate_ptr >remembers to reset the trap-pointer (to zero), so any subsequent

call to <condition> (or to <signal>) that references "sys_cond" cannot cause another

default handler to be stacked in ring k. (Note, by setting different trap-before­

definition pointers there is provision here such that system-defined conditions may

invoke different default handlers in different rings. At present there is no specific

application of this opportunity.)

5. 2. 2 Multi-ring Generalization (for future implementation)

The foregoing scheme for implementing condition handling gave us a brief picture

of the basic plan for stacking and unstacking handlers, and for signalling conditions

within a single ring. To picture the complicated cases which may be permitted to

occur in a multi-ring environment we need a suitable model for ensuing discourse.

We set the stage for such a model by presenting Figure 5-3. This figure attempts to

show a snapshot of several stack segments and of < rtn_stk >for a hypothetical multi­

ring process after a series of cross-ring calls has occurred (with no intervening

returns). The procedures involved are assumed to reside in rings 33, 32, and 1.

':'Defined in BY 13. 02.

5-16

forward ptr
to next def.

value

8 s

c

d

trap pointer

y s

0 n

pointer to
link for entry

pointer to link

for arglist ptr

Figure 5-2. The Trap-before-definition Feature in an In-symbol
Table Definition for System -defined Conditions

The trace can be seen to begin while executing procedures whose stack frames are

in the group marked @ in< stack _33>. Upon entering ring 33 for execution of these

procedures, the invocation number'~ a was saved in< stack_33> 12 and a correspond­

ing six-word entry of return information marked M was threaded onto the return

stack at< rtn_stk>l a. A "wall-crossing" call to a procedure in ring 32 then causes

the invocation number b to be assigned to< stack_32>12 and the entry marked &
added to< rtn_stk>. Note the eros s -ring flag is shown marked ITJ in the dummy

(first) stack frame of the group marked ~to be found in< stack_32>.

Control flows on from ring to ring, first to ring 1, then back to ring 32, etc.

Each eros sing into a ring numbered j updates the invocation number at <stack _j> 12.

This is suggested in Figure 5-3 by showing older invocation values crossed out. The

return information in each entry of< rtn_stk> is suggested schematically by the dashed

(red) arrows from some of the entries (&_ , ~, Lb,, and &) pointing to the re­

spective stack frames of the procedures issuing the cross-ring calls.

*The invocation number concept was first described in Chapter 4 in connection with
the description of< rtn_stk>, (Section 4. 3. 3).

5-17

lJ1

......
00

invocation
number

........

I

0 -

<stack 33>

--~-

......

< stack 32>

1-~-d--

f
dummy OJ

l ·- ~

--
8

I
dummy [I} It

0 -

<stack l>

t-¢'_¢'_g_

~ ~-~ OJ

II~ dummy
......... bt

d~! 'C~

~- e r- - -.... f
~ dummy_ill h

t 1----- --!L

'

- -----,
........ ~ -- 8

----"""""
....-:-

~// 8
" ·-- /

tL

,..,...

I I
I 18
\ \

" \ l ,.,.....-- ;-~dummy IT] ~
\

'
--~ "_ ', \

/ _,..

/
/

/
0)~~

.....

.,

\\ ---,_~ -- ~
..... -------- ----......... _ ------ --- -------- -- - -

__,._

-------- ---------
/

/

History

\
I

/

< rtn stk >
(in ring 0)

&
&
&
&
&
&
&
&

Ring crossing Invocation number

e

Lower case letters for invocation numbers
are intended to represent distinct ascending
order integer values.

Notation: &signifises the < rtn stk>
entry whose invocation
number is (i.e., stored at)~.

Figure 5-3. A Trace through Seven Ring Crossings Employing

e:

33 -32 b
32- l c

l -32 d
32- l e

1 -33 f
33- l g

1 -33 h

Invocation Numbers b through h

I
J

e

We are now ready to look at details of the signal vector segments using specific

examples based on Figure 5-3. While the invocation number was equal to b we sup­

pose a ring-32 procedure executes:

call condition ("z", procl);

Later, while again executing in ring 32, this time when the invocation number has

the valued we imagine that another call on< condition> is executed:

call condition ("z", proc32);

Figure 5-4 gives a somewhat detailed view of< signals _32> and of< signals _32.link>

upon completion of this second call. Close inspection of this figure is warranted.

Again we see how 10-word entry for condition "z" form a singly-threaded push-down

list. The null back pointer in the bottom element is denoted by jV . The detailed

format of a 10 -word entry may be surmised from examination of the exploded view

for the bottom entry. The invocation number saved here is a copy of the current in­

vocation number taken from< stack_32> 12 at the time< condition> places the entry

in< signal_32>. We shall call this copy the ~aved !_nvocation ~umber, or sin. The

stack pointer saved in words 3 and 4 of the entry correspond to the pointer for the

procedure which called< condition>. This pointer is also used by the Unwinder pro­

cedure in its cleanup operation, an activity described in Section 5. 3. The remaining

six words constitute a standard entry datum for the procedure to be called when and

if the< signal> procedure determines that this entry is for the currently active handler.

The figure also gives the format details for a typical in-symbol table entry or

"definition": There is one such definition in< signals_n.link> for each push-down list

of handlers in <signals_ n>. Each definition gives the name of the condition and a

pointer to the headword of the push-down list in the corresponding signals segment.

One feature of the definition, the class code, is of special interest to the sub­

system writer in connection with signalling. This feature will be discussed in

due course.

Figure 5-5 elaborates by showing how handlers for several different conditions,

e. g., "W", "T", and "X" would be stacked in< signals_l> and referred to from its

linkage segment. A pointer to this free storage is maintained at word zero of the

same segment.

Figure S-6 is a composite view showing snapshots of the< stack_n>, < signals_n>,

and< signals_n.link> segments for the hypothetical process case history we began

developing in Figure 5-3.

5-19

<signals _32>

free storage
area

previous entry ptr
saved invocation
no, = b

2
-

(sp)
(sb)
procl #
entry
(sb)

{sp)proc

----- ---· ----- -----

<single _32. link>

Format of a single 10-word
entry

standard 8-word
block header

Explanation

1. Previous entry ptr is null if in the first entry of a stack.

2. Saved invocation number (sin used by <signal>. (This
number is zero for a default handler).

3. Pointer to stack frame for procedure which invoked
<condition>, causing this entry to be created. (Used
by the Unwinder). This pointer is zero for a default
handler.

4. Entry datum for the handler. The stack pointer is used
when the bandler is an internal procedure. (See Chapter
3, pp3-28.)

Figure 5-4. Details for a Signals Segment and its companion Linkage Segment

5-20

' l

\
\

\

/

I
/ /
j/
''

(signals_l.link)

standard 8-word

block header

I
I

I
!
I

I ,
j

Z:signals_l /

':-\ --1:-..:.f:.:r:.:e:.:e~s:..;t:.:o:..:r:..:a:J;g:>.:e::__jp"--t:.:r:,__ . (/1 ;

l---"h:..:e:..:a-'-'d'-'w'-'o'-'r'-'d'-"-'f:..:o:.cr:......;W-'--Y

:.£1
entry datum for W

headword for T

~·

entry datum for T
0'

headword for X
I ..
I \EJ ""' ' X '
I
I
I

entry datum for
I/

~~------------------,/

l

datum for X

_1--------------------.//

datum for T

free storage
area

i
/

I

\

Also given are the associated linkage segment showing
stacks for handlers of several different conditions. Each
stack is pointed to by a different definition in the linkage
segment.

Figure 5-5. Storage Structure for a Signals Vector Segment

5-21

Ul
I
N
N

(S.I¥J,.,.3~,k\t.,.

h...o-~

II)(..''

"y··

e

L))\"'-<!,._ -33>

,(. }(1-c.

G11-_~~----­{t _- ti} -=---
G> ----

<: S"'{Y'.J..P- 32.~

G)

®

< ~,J_,_ n.t,.:.J,_>

t'.ll C'- t.~ JA

<c:f.-<ut>.- ~2 ~

~ (J...

r~ ~ ~~~ _- ~
\

(- I'J_
--- --=
-------1
~

<..c.... 'a"'"..l,_ 2.. ">

~ <IL~_illt> \

I
I
i

r~B
lv ! ~ _J>

l ~, .' \L~ .. '--1--J t - I

\
\ !

' I ~/

)<

Conditions are named 11 T 11 , 11X 11 , 11 Y 11 , and "W" in different rings.

Figure 5-6. Stacked Condition Handlers

e e

The new display shows the stacked handlers for ''X'' and ''Y'' in ring 33 as well

as those previously illustrated in more detail in Figures 5-4 and 5-5.

With this composite illustration we call attention to the fact that handlers for

the same condition may be stacked in more than one signals vector as a result of

calling <condition> from different rings. Notice, that handlers for "X" now appear

in signals vectors for both rings 33 and 1.

5. 2. 2. l Some Case Studies

We have now set the stage for considering various problems that <signal> must

solve in locating the active handler. A set of illustrative case studies of graded

complexity will be considered in this subsection. The discussion of each case shows

how< signal> would accomplish its task. The bases for these cases and the principle

or resolution employed by< signal> are summarized in Table 5-l. Probably, only a

quick scan of this material is all that is justified on a first reading of this chapter.

In each of the cases below it is assumed that the signalling procedure calls

<signal> while the former is executing in ring s. The current invocation number

stored in< stack_s>l2 (and also at< rtn_stk>IO) shall be called curinv. All cases

refer to Figure 5-6.

Case 1 - Simplest and most frequent - Active handler is topmost on its stack in the

same ring as the signalling procedure.

s :: 33

curinv :: f

The call to signal is:

call signal (I'Y", rtn_flg, ·arglist_ptr);

Upon being called, <signal> searches the definitions in<signals_s.link>, i.e.,

< signals_32.link> for a match on "Y", which it will indeed find in this case. The

value associated with "Y" is used to locate the top entry for Yin< signals_33>. Upon

comparing the value of the saved invocation number with cu~inv, a match ([] :: f) is

found. The entry datum for the active handler is found in this matched entry, and

<signal> then sets up a call to this handler. The details of the calling procedure need

not be of concern to most readers, but are briefly described in Section 5. 2. 2. 2 for

the sake of completeness.

5-23

TABLE 5-l

Summary of Cases Illustrating <Signal>' s Search for an Active Handler

Active Handler Determined
by< Signal>

Signalled Saved Invocation
Case s Curinv Condition Ring Number (sin) Remarks

1 33 f "Y" 33 f ------
2 33 a "Y" 33 a One superfluous en-

try is popped to reach
the entry for the ac-
tive handler

3 33 f "X"
a None found (search for Search of other sig-

"unclaimed- signal'' nals segments denied
handler).

b 33 a Assumes permissive
class codes in
< signals _i.link> per-
mit a full search
(see Table 5-3).

4 1 g "Z" 32 d Assuming permis-
sive class codes in
< signals_ i. link>

5 33 f "Z" 32 d Assuming permis-
sive class codes in
<signals _i.link>

These five cases are based on the illustration in Figure 5-6, and are discussed in the

text.

Case 2 - A variation on Case 1 - a superfluous entry must be popped off the stack

in reaching the entry for the active handler - (an unusual case).

s = 33

curinv =a

The call to signal is again

call signal ("Y", rtn_flg, arglist_ptr);

5-24

Upon being called, <signal> would, as in Case 1, successfully find a definition

for "Y" in< signals_33.link>, but this time the saved invocation number of the top

entry in the Y stack of< signals 33>, [[], exceeds curinv. <Signal> perfunctorily

pops this entry because the appearance of such an entry is regarded as a program­

mer goof (i.e., a failure to revert or pop an entry before returning from a procedure

that stacked it). Using the backpointer in the popped entry for Y, <signal> then in­

spects the next entry in the stack for Y. Here a match is found between the sin, ~,

and curinv, thus identifying the active handler. The setup for the call on the proper

procedure follows normal procedures mentioned in Case 1.

Case 3 - Entry for an active handler is not found in the signals segment for the ring

of the signalling procedure.

s = 33

curinv = f
The call to signal is:

call signal ("X", rtn_flg, arglist_ptr);

Upon being called, <signal> will locate the definition for "X" in< signals_33.link>

which points to an entry (in< signals_33>) for which the sin,

~ < curinv

In any one signals segment, the saved invocation numbers in a stack for a given

condition must be in descending order from the top of the stack. The relation

~ < curinv = true

then implies there can be no handler for X in <signals _33> for which

m = curinv.

The search of< signals_33> for a currently active handler, therefore, fails. Is there

any use to look elsewhere? lt1 s possible that a handler for X was established in some

other ring for some prior invocation number. This might have occurred, for example,

while executing in the ring immediately prior to crossing over to 33 while the invo­

cation number was ~· or in the "preceding" ring while the invocation number was £,
etc. If so, a historical search of previous ring crossings and the corresponding sig­

nals segments might well turn up such a handler. However, freedom to "backtrack"

through ring history may not always be the kind of search behavior we want< signal>

to exercise. It is intended that the subsystem designer can, in fact, determine

whether such search privilege is to be denied. This would be achieved by assigning

5-25

special values for the class code in the definition for "X" placed in< signals _33.link>.

Class code values can be set in the definition when one uses the library subroutine

link_change (see BY, 13, 03)':'

The various class codes and their significance in the control of< signal>'s ability to

search for handlers will be discussed below. Depending upon the class code that

<signal> finds in the in-symbol table definition for "X", two main possibilities arise:

Case 3a - Obtaining a default handler defined in the ring of the signaller.

The search of other signals segments is denied, A default handler will then be

needed. Default handlers, incidentally, are recognized by virtue of their correspond­

ing stack entries having a saved invocation number equal to zero. The stack for X in

<signals _33> will therefore be searched backwards from its current top until an entry

is found whose sin is zero,

As we have already seen in an earlier discussion, if X is a system-defined condi­

tion, there will always be a stacked default handler, If, on the other hand, X is a

programmer-defined condition, it is entirely possible the programmer has failed to

supply such a handler--perhaps through error, In such cases, <signal> after failing

to find the default handler, then begins a search for the current handler of a system­

defined condition known as "unclaimed_signal", A handler (at the very least a default

handler) will always be found for this condition,

Case 3b - Searching for an active handler in signals segments of other rings.

The search of other signals segments is permitted. The retrace of ring crossings

then proceeds in the following fashion: Examine the top (most recent) entry in < rtn_ stk>.

This entry holds the predecessor and also the prior invocation number (pin) in the form

of a backpointer. (For a refresher, see Figure 4-16.) In our example, Figure 5-6,

the predecessor ring would be 1, and the prior invocation number would be e,

<Signals_l.link> would then be searched for a definition for "X". If found, the associ­

ated class code would be consulted before search of< signals_l> would be permitted

to proceed, Then a scan of stack "X" in< signals_l> would be made in search of an

entry whose saved invocation number is e, matching the value for what is now regard­

ed as the prior invocation number, (In short, an active handler is found when sin

matches pir.,) If the search of < signals _1 > fails, the search may be continued in a

like manner after consulting the next entry in< rtn_stk>,

':'Link_change has not been actually written and placed in the system library at the
time this chapter was written,

5-26

For proper perspective, it 1s important to keep in mind that class codes are never

consulted if the active handler is discovered during the first examination of the handler

stack in <signals_ s>. Class codes are consulted only under the following circum-

stances;

(1) After failure to find the active handler in< signals_s> when first examined,

(2) Prior to examining the stack of handlers in each signals segment (including
a repeat attempt to look at< signals_s> during the backtracking operations.

Table 5-2 lists the various class codes and explains how each class code would be

interpreted by< signal>. For example, if the class code for "X" were 13 or 14,

search of< signals_1> would be denied and, in fact, the search would be terminated

immediately. Moreover, if this were the case, the default handler would then be

sought from< signals _s>, i.e., from< signals _33>.

If the class code were 12, then examination of< signals_1> would be denied, but

the search would be permitted to continue to other signals segments by continuing the

retrace of ring eros sings in the manner just described.

Other class codes would also be interpreted as permission to search< signals 1>.

In this example, such permission would not result in finding the active handlers in

<signals_!>, but it would lead to the popping of the two handlers whose sins, [gJ ,
exceed the current invocation value. Popping is justified because [ill exceeds e, the

invocation number that was current while control was last in ring 1.

We can also make one other observation from a study of Table 5-2: Case 3a will

occur only when the class code found in <signals s .link> is 11, 12, or 13. Case 3b

can occur when the class code in <signals_ s. link> is any other value.

We should now have enough familiarity with the signal searching rules to see how

the Case 3b search would terminate under a variety of possibilities for class code

values in the various< signals_i.link> segments. Thus, if all class codes were= 0,

the active handler for X would eventually be found to be the one marked 0 in

< signals_33>, as a result of retracing back through five< rtn_stk> entries until the

one marked M which identifies ring 33 is found as the predecessor and a as the prior

invocation number.

This ring-by-ring search is summarized in Table 5-3.

5-27

TABLE 5-2

Class Codes and their Interpretation during Search for an Active Handler

Class Code
Value

0

11

12

13

14

Others

Interpretation

No search constraints. 0. K. to search through the stack in
this signals segment and to proceed~ if necessary, to the next
signals segment as determined by a retrace of ring crossings.

May search the stack in this signals segment. If active handler
is not found here, terminate the search by taking the default
handler indicated in this segment. If no default handler
(programmer-defined condition only) is found, return to
<signals _s> and begin a search for the currently active handler
of "unclaimed_signal".

Do not search in this signals segment, but proceed to search in
signals segments of other rings by retrace of ring crossings.
(Note: If this is the signaller's signals segment (<signal s>),
we've already looked here once before beginning the retracing
process.)

Do not search in this signals segment. Terminate the search,
immediately. Employ the default handler indicated in the signals
segment of signaller's ring s. If no default handler is found
there (programmer-defined condition only), begin a search for
the active handler of "unclaimed_signal." Note if this code
were found in< signals s.link>, the search would be limited to
<signals s> exclusively. Default handler would, if needed, al­
ways be taken from< signals s>.

Identical to 13 with one exception. If 14 has not been found in
<signal s.link>, and if the active handler is not located after
searching in< signals s>, permission to begin the ring-to-ring
retrace is granted. However, search will terminate immedi­
ately with same effect as a code = 13 if this code 14 is ever
again encountered.

For signal searching purposes other class code values are inter­
preted as if they were code 0, i.e., no constraints.

5-28

I

\}1

I

N
--0

e e

TABLE 5-3

Details of Ring- by- Ring Search

Ring i whose Associated Assumed class Effect Designation
< signals _i> invocation code for "X" in (see of referenced
is being number <signals _i. link> key < rtn stk>
considered below) entry

33 (= s) f (curinv) 0 l ffi
1 e 0 l' 2 i~

32 d 0 3 A.\
1 c 0 1 ~

32 b 0 3 £
33 a 0 4

KEY: l Entry for an active handler is not found.

2 Entries marked [iJ are popped because g > curinv =e.

3 "X" not found in< signals _i.link>. Proceed with retracing.

4 Entry for active handler is found, i.e., curinv = ~ •

e

Saved values in
designated
< rtn _stk> entry

predecessor prior
ring invocation
number number (pin)

l e

32 d

l c

32 b

33 a

Other possible class code values for "X" in< signals_33.1ink> and/or< signals_l.link>

could determine a different active handler for X. As an exercise, you could verify

the results given below for the stated combination of class code values assumed to be

associated with "X".

Class code values in
< signals_33.link> < signals_l.link>

0 12

12 12

0 11

13 0

14 13

Active handler

Active handler is the one marked ~ in
<signals 33>. (Note however <signals l>
will not be examined, so the handlers
marked [iJ will not be popped.)

Active handler will not be found upon first
search of< signals 33>. Thereafter,
<signals 33> (and also< signals l>) will
be skipped over during retrace through
< rtn stk>. When all entries in < rtn stk>
have been used up in the retrace procedure,
the search will be declared a failure and a
search for X's default handler in
<signals 33> will be made. If no default
handler fOr X is present in< signals 33>
(this is the case illustrated in Figure 5-6),
a search for the "unclaimed signal" active
handler will then be made. -

Entries marked [iJ in< signals_l> are
popped. Failure to find active handler
upon first inspection of< signals l> termi­
nates the search. A default handler is then
looked for in < signals l >. If not found,
search is begun for "unclaimed signal"
active handler. -

Active handler will not be found on first
examination of< signals 33>. Retrace per­
mission will then be refused, forcing a
search of< signal 33> for a default handler
(and eventually for "unclaimed signal"
handler). -

Same net effect as preceding example.
Active handler will not be found on first
examination of< signals 33>. Permission
to retrace will then be granted but upon
retracing to examine< signals_l> a code
13 will be encountered, terminating the
search and forcing the use of default
handler in< signals_33> etc.

5-30

Case 4

s = 1

curinv = g

The call to signal is:

call signal ("Z", rtn_flg, arglist_ptr);

Upon being called, <signal> searches< signal_l.link> without success. No definition

for 11 Z" can be found there. Assuming the class code for 11 Z 11 in the various

<signals _1.link>s permit inspection of the respective< signals _i> segments, then

<signal> will discover the currently active handler to be the one whose entry is

marked [ill in< signals 32>. This discovery will be made after retracing through the

< rtn stk> entries marked ffi, and~ , and getting a match between sin = @] and

pin(= d). (Of course, if the class code for "Z" in< signals_32.link> is 12, 13, or

14, the search would be terminated for one reason or another without ever identifying

the entry marked [ill as representing the active handler. A default handler for X

would be sought in< signals_l>.)

Case 5

s = 33

curinv = f
The call to signal is:

call signal ("Z", rtn_flg, arglist_ptr);

This case is very similar to that of Case 4. The entry marked [ill in< signals 32>

may be discovered to represent the currently active handler, provided search of

< signals_32> is permitted by the class code for "Z" found in< signals_32.link>. How­

ever, if search permission is not granted, a default handler must be sought from the

ring of the signaller which, in this case, is ring 33. Further comparison of Cases 4

and 5 is given in the next discussion.

5. 2. 2. 2 Invoking the Handler Procedure

We have now seen two cases where an entry for a handler stacked in one ring

(ring 32) is discovered as the active handler for a condition signalled from another

ring (ring 1 in Case 4 or ring 33 in Case 5). Recall that in Cases 1, 2, and 3 we con­

sidered mainly situations where the active (or default) handlers were found in the

same ring as the signallers. In either situation, there is a further possibility that

5-31

the handler itself resides in still another ring. In short, a signalling procedure,

<signaller>, in ring s may have the effect of involving a handler, < p> in ring h via

a condition stack entry in the enabling ring e. Because

s fequal

!not equal
and

I equal
e

/not equal
h

none, one, or two ring changes may be involved in signalling a given condition and

invoking the desired handler.

Of course, every such call on< p> should be covered by existing Gatekeeper

protection mechanisms. Thus, if< signaller> were calling< p> directly, with

arglist_ptr as an argument, we would expect to obtain Gatekeeper intervention as

needed. We expect no less protection in the case where< p> is invoked "indirectly"

by <signaller>. In addition, we want also to as sure that < p> is callable from the

ring, e, in which it was established as a handler. The principle here is that a pro­

cedure< E> should not be allowed to force more privileged procedures to use a

handler which< E> itself is not privileged to invoke directly.

These controls are partly achieved by forcing< p> to be called from ring e with

the aid of a special"helper" segment in ring e named< signals_helper_e>, as sug­

gested in Figure 5-7. When < p> is called from the enabling ring e in this way, and

when this ring differs from the ring of< p>, i.e., e 'f h, the ordinary Gatekeeper

intervention can be counted on to guarantee that no invalid ring eros sing is being

attempted here. We will also see how the Gatekeeper can be counted on to validate

the arglist_ptr being passed to< p> from< signaller>.

< P> should always be called from the enabling ring e, even when s 'f e. Here

is how this subtle but necessary bit of control is assured. Once having located the

active handler, <signal> issues a call to< signals_helper_e> (in ring e), passing to

it as arguments the entry datum for the active handler and the arglist_pointer para­

meter. This call on< signals_helper_e> forces a desired intervention by the Gate­

keeper when s 'f e. The intervention is desired to validate the arglist_ptr. The inter­

vention is guaranteed because: (a) The ring bracket for< signals> is (1, 63, 63),

which means <signal> always executes in the ring of its caller, and (b) the ring

5-32

I

ring s

)
ring e .ring h

<p>:

<signaller>:) <s1igna1s e>:

l
I

; ---l]1 \
c. all signal ("?"

~- , rtn-flg,!
arglist _ptr); ~ ' \

IAJ entry
points p,

[

to

\

\

. ·--------···-"'-·-~---

~<signal>: <signal_helper_ e>: I
I

I
c.all signal call p (arglist -

pt r);

Key:

helper -e (k,
arglist_ptr);

G means the Gatekeeper intervenes and validates arglist_ptr
during the permissible ring crossing from s toe (s 1 e).
(Signal '>'s ring'bracket is (1, 63, 63) while
Lsignal_helper_ e >' s ring bracket is (e, ~. 63).

means the Gatekeeper intervenes again, this time to pro­
tect against a possibly illegal ring crossing from ring
e to ring h .

Figure 5-7. Mechanism used to Invoke an Active Handler

5-33

I

bracket for< signals_helper_e> is (e, e, 63), which means< signal> may call its

helper from any ring. (The next subsection will show how< signal> gets the help it

needs to search in and/or modify signals segments of other rings.)

5. 2. 2. 3 Ring Brackets for <condition>, <reversion>, and< signal>

These three system primitives will in general be called from procedures in any

user ring and from any administrative ring (except ring 0). Moreover, no ring cross­

ing overhead will be incurred when one of these primitives is called, because the

ring bracket for< condition>, <reversion> and< signal> are each (1, 63, 63). Since

the access bracket is (1, 63), each of these primitives executes, when called, in the

ring of its caller.>:<

Ring privileges reguired during signal search

When, during its search, <signal> fails to find the active handler in< signals s>

then, class codes permitting, signals segments in other rings must be searched.

Search of a< signals_i> segment implies both read and write privileges. Suppose

some of these signals segments may be in rings r such that s > r. How can< signal>,

executing in ring s, make read or write data references to segments in inner rings?

In the Multics solution detailed in BD 9. 04, you would see that< signal> in fact calls

on a special auxiliary routine named< signal_search>. It is this routine that continues

the search when other signals segments must be inspected. <Signal_ search> is a

special ring 1 procedure whose call bracket is (2, 63). Naturally, if s ::f 1, then a ring

crossing will occur when <signal> calls to or gets a return from< signal_search>,

causing Gatekeeper intervention. Thus, at most one pair of ring crossings (call and

return) will be involved in the typical use of <Signal> for finding an active handler.

5. 3 ABNORMAL RETURNS - ADDITIONAL DISCUSSION

5. 3. 1 General Concepts

This section is intended to provide background concepts that will lead to a fuller

appreciation of the Unwinder. A procedure may have one or more entry points

and none, one or more abnormal return points. Here we review the distinction be­

tween an entry point and an abnormal return point. Figure 5-8 will help develop both

the differences and similarities.

'we will see in Chapter 6 that for such a procedure a separate copy of its linkage
segment will be maintained in the process for each ring in which the procedure is
called.

5-34

\Jl
I
w
\Jl

e

§fi!f·

SPa+O

Spa+ arlist_ptr 1

Sp,B+ 0

Sp,B + arlist_ptr 2

Spy-+ 0 --

<a>

call l[h](argl~st_ptr 1)

-I

• • •
call <c>l[i](arglist_ptr 2~

return

• • •

<C>

• • .•
tmi * + 2
tra (label datum for "f'

• • •

<stack_r> ----------------~M~---------------------
argument list for

label datum for label "f' call to

oop,o!hbcl """m fm J.bol '~' }
argument list for
call to <c>

stack frame
used while
executing in <a>

stack frame
used while
executing in

Labels g, h, and i are entry
points in <a>, , and "'c>,
respectively. Label f is an
abnormal return point. A label
datum (six words, including
spa) is passed along to "b> which
in turn passes a copy of it to
<c>, as suggested in the associ­
ated stack frames pictured for
<a> and . It is assumed that
<a>, , and <c> execute in
ring r.

Figure 5-8. Distinguishing Between Calls 0, Normal Returns § , and Abnormal Returns 8

e

Even though, from a user's point of view, entry and abnormal return points ap­

pear syntactically similar, and in fact may even have identical storage representa­

tions, there is a distinct functional difference. The difference has to do with the

availability of needed information when control passes to one of these points of a

procedure. When entered via a call, a procedure should at that instant require no

information other than what it is capable of developing and what is passed to it in the

form of an argument list. Under these circumstances a procedure can and always

does begin functioning with a new stack frame. On the other hand, when control

passes to a procedure via an abnormal return point, execution resumes. This im­

plies that certain information necessary to this resumption of effort may have been

previously accumulated, probably in its then current stack frame. Therefore, re­

sumption at an abnormal return point in the general case clearly forces the need to

recover this stack frame, i.e., reset the stack pointer to this frame. The clerical

details involved in resetting stack conditions, and in recovery of space for all allo­

cated temporary data in the intervening procedures, are numerous. Even if all pro­

cedures in the chain of calls being bypassed (including the two procedures at the end

points of the chain) have executed in only one ring, the complexity is sufficient to

justify a system-provided Unwinder service. If we consider the more general case

where procedures in the call chain may have executed in different rings, the clerical

complexity is not only compounded, but protection issues dictate that a ring -0 Un­

winder is required.'~ In the current implementation of the Unwinder, the more

limited "single-ring service" is all that is provided. Our discussions in this section

are based on the current design for the more general multi-ring service. The gen­

eral service is justified on the grounds that the Multics user should not be forced to

be conscious of ring crossings in planning an abnormal return. In many instances, a

user may not even know about ring crossings in the path of the abnormal return. The

next paragraphs will indicate more specifically some of the complexities that are

involved.

Let s be the ring of< a> and let us assume that the pointer to the desired frame

in< stack_s> is part of the label datum used for generating the abnormal return in

a statement of the form:

tra label datum

(We can normally assume that the value of label_datum has been passed along the

call chain as an argument.) One might then imagine the abnormal return to < a> can

':'The principal MSPM reference is BD. 9. 05.

5-36

be achieved by executing some kind of return sequence that includes the appropriate

adjustment of the stack pointer at <stack _s >I 2 and the base address registers.

Adjustment of <stack _s> j 2 would have the virtue of recovering space in <stack s>

for frames of ring-s procedures that are bypassed in this return.

The label datum that defines the abnormal return is not necessarily "authentic",

however. Suppose, for instance, the stack pointer in the label datum has been in­

advertantly altered by the user and no longer corresponds to the beginning of any

stack frame in< stack s > (let alone to the frame that was intended). Clearly,

chaos would result if an attempted abnormal return were allowed to proceed using

an incorrect stack pointer. To check the given stack pointer for validity will involve,

at the very least: 1) a search through the back pointers in the stack frames (at spjl8)

for one that matches the given stack pointer, and 2) provisions for error returns in

case the search fails to turn up a "good 11 match.

Even if all goes well, however, two very undesirable side effects must be con­

sidered. These would occur if any rings were crossed in the chain of calls from

<a> to the point where the abnormal return was invoked, Specifically, suppose the

chain is: < a> calls < b > calls < c >, and suppose each call involves a ring cross­

ing. At< c > we imagine the abnormal return is invoked by executing a statement

like

tra (label_datum for "f 11)

as suggested in Figure 5-8,

Side effect No. 1. Suppose we fail to pop the top two frames in < rtn stk> while

executing this return. What will be the consequence the next time a normal re­

turn is executed that involves leaving ring s to reach an antecedent of <a> ?

For example, suppose <a> was originally reached at <a > I [g J. via a call from

ring r. In attempting to oversee the normal return from <:a> , the Gatekeeper

expects to find a validating return address in the top frame of < rtn stk> . This

address will not be found, because the frame in question is now buried below the

top of< rtn_stk>. This failure causes the Gatekeeper to signal an unrecoverable

error. The difficulty could be avoided only in very special situations where one

could guarantee that all of <a> 1 s antecedents are in ring s.

Side effect No. 2, What about the other stack segments that hold frames for

bypassed procedures? If we fail to pop these frames while executing the abnormal

return, then space involved becomes unreclaimable,

5-37

Figure 5-9 suggests why the frame for < b >, pictured in <stack _t >, and any

other frames that may have been stacked during the last "visit" to ring t (cross

hatched), can never be reclaimed, The pointer at <stack_t> J[z]will not have

been altered. Thus, after the abnormal return to <a>, any future visit to ring t

will force the adding ~of additional stack frames beginning at the place marked

"next". As a matter of fact, since we have also failed to pop the appropriate

frames in< rtn_stk>, all space thus far used in< stack t> would be unreclaimable,

5. 3. 2 The Unwinder Details

The Unwinder mechanism is provided to perform two principal classes of

service:

(1) To validate or screen an attempted abnormal return and, if valid,

(2) To perform various clerical tasks, including those motivated in the
preceding subsection, which might otherwise be left undone when
normal returns are bypassed,

In subsequent subsections we elaborate on these points,

5. 3. 2, 1 Validation of the Abnormal Return

For this discussion we again employ as an example the case where< a> calls

< b > calls < c>, with< c > attempting to execute an abnormal return to <a> J [f].

There are two crucial reasons for validating this abnormal return.

(1) The ring access rules which were developed for entry points also
apply to abnormal return points. Thus if s, t, and u are the ring
numbers of <a>, < b >, and <c > respectively, and if u lies outside
the call bracket of <a> an abnormal return from < c> to <a> should
be illegal, The Unwinder should be (and is) held responsible for
making these ring access determinations.'~

(2) Having determined that< c> has ring access to <a>, and in the event
< c > 1 s ring lies within the call bracket of< a>, it is also necessary
to verify that [f] is, in fact, an anticipated reentry point.

If< a> has been coded in a higher level language like EPL or EPLBSA, then

every such location will be so declared. These declared reentry points are re­

ferred to as doors, In declaring that [f] is a permitted abnormal return point,

i. e. , a door, it is assumed that the author of <a> is anticipating inward returns

::,~

The Unwinder, in fact, calls a ring-0 procedure named < get_ring > (see BG. 3. 01}
for the help in accomplishing this check.

5-38

<stack t>

fram.e for < b>

(bypassed by

abnormal return)

Unreclaimable space by

Side effect # 1:

failure to pop top frames

in< rtn stk>

Unreclaimable space by

Side effect #2:

failure to adjust

< stack t> I 2 during ab­

normal return

Figure 5-9. A Picture of< stack t >

5-39

at [f] and has presumably programmed accordingly. If [f] is not named a door,

the Unwinder should presume that an inward return to this point is not anticipated

and cannot be risked, i.e., is likely to result in undesirable, even chaotic be­

havior.

Such a design philosophy is essential for the protection of supervisor routines

that expect abnormal returns. Extending this concept to user-constructed sub­

systems implies that every abnormal return point designed to take control from

an outer-ring procedure must be marked or declared by its author in the source

code.

From such declarations the translators can generate doors in the linkage

section in the form of specially formatted entry points. The format for a door is

similar to that of a gate. Refer to Figure 4-23.1

< Unwinder > will treat the word pointed to in the no-op instruction of the entry

as ~information, rather than as gate information. Only the first bits of this

word are of interest to the < unwinder >, bits 6 and 7, called the "g" field. A value

of g = 2 identifies this entry as a door.

Some of the processors within the Multics system e. g., EPL) will provide':' for

establishing doors at the users' request.

[
Here will follow in some future revision of this]
document an example of such a declaration to be
used in EPL.

Some of the same processors will also interpret all non-local go to statements

as abnormal returns. The generated code in each such instance is a call to the Un­

winder. Thus the EPL statement:

go to a$£;

will result in generated code equivalent to

call unwinder (a$£);

A subsystem writer who codes in a programming language that does not have

this feature must, of course, "manually" call <unwinder> when executing an ab­

abnormal return.

:.,~

Not yet implemented in EPL as of 1/1/69.

5-40

For this reason it is worthwhile to explain briefly the protection provided

in Multics in case a programmer fails to employ < unwinder > when attempting

to execute an abnormal return. The design concept here is this: Only if the

abnormal return is to an inner ring procedure is system intervention mandatory.

This intervention will prevent a user from damaging either more sensitive pro­

cedures within a subsystem or the supervisor itself. Each user should be given

the freedom to do what he wants to (or thinks he can do correctly at his own risk,

to avoid the unnecessary system overhead) with procedures in rings he has full

control over. With this philosophy in mind we see that an abnormal return, ex­

ecuted without the aid of < unwinder >, can be regarded more or less as a dis­

guised call. If an inward eros sing is attempted, the Gatekeeper should and would

in fact intervene. Of course, the Gatekeeper would then properly interpret this

transfer as an inward call. We are reminded that every inward call must be veri­

fied by determining that it is a gate (g = l in gate_info). If a valid abnormal return

point is properly declared as a door, (g = 2), the Gatekeeper which is in search of

a gate, will necessarily recognize the discrepancy and sound the alarm. It should

now be clear why in the Multics design gates and doors are necessarily mutually

exclusive.

5. 3. 2. 2 Handling Unfinished Business

< Unwinder > takes full responsibility for reverting the stack frames of bypassed

procedures. It also reverts frames in< rtn_stk> when and if ring crossing(s) have

been involved. The reversion is achieved by tracing backward through the chain of

stack frames that correspond to the pending returns. The backward search ends

when a stack frame is reached whose address matches that given in the return label

which has been pas sed to < unwinder> as the argument. < Unwinder >, because

it is in ring 0, is able to consult the top frame of< rtn_stk> when a dummy frame,

indicating a ring crossing, is encountered. Each stack frame or< rtn stk> frame

is reverted as it is passsed over in this scan for the matching stack address.

Cleanup Concepts

Are there other types of temporary data storage besides stack frames which

also should be reverted when normal returns are bypassed? Indeed there are--in

some subsystems, as we shall see later in this subsection. Multics must be pre­

pared to serve such subsystems. < Unwinder > is endowed with a built-in capacity

5-41

of supervising the recovery of such other temporary storage when and if the sub­

systems programmer wishes this service to be performed. This type of activity

is referred to in MSPM as "cleanup".

In subsystems that are coded in EPL, for instance, two kinds of temporary

data (i.e., recoverable storage} are subject to cleanup. These are:

(1) Reversion of unwanted condition handlers, and

(2) Recovery of automatic storage for data types that must be kept on free
storage lists outside the customary stack frame (e. g., arrays of varying
strings whose datum portions are kept in a special free storage segment
called <free_>.)

Other types of recoverable data may arise and be recognized in the particular

subsystem you design. What follows in the next paragraphs is a brief outline of the

general cleanup mechanism that has been embedded within <unwinder>.

Cleanup activity is regarded as a special task to be invoked, when needed, in

connection with any (or with each) pending return that's being bypassed in the

course of the unwinding process.

Each cleanup task is invoked as if it were a signalled condition.

The Unwinder has, in other words, been designed to behave as if it has been

signalled to perform the requisite cleanup task, if any, on behalf of each bypassed

procedure. To implement this signalling analogy, a handler for each cleanup activity

is stacked in the format of a bonafide condition handler under the condition name

"cleanup11 • This word, incidentally, is specially reserved by Multics for this par­

ticular use. The user is allowed to stack and revert handlers for "cleanup", via

calls to <condition> and <reversion>, but he may not signal "cleanup", i.e.,

<signal> will reject a call of the form:

call signal ("cleanup", etc. 1, etc. 2) ;

As each stack frame is about to be reverted, < unwinder > first consults the

corresponding< signals_i> segment for a "cleanup" handler having a matching

invocation number and stack pointer. (In this search < unwinder > performs a

task quite similar to that of <signal>.} If no such handler is found the stack

frame now being considered is reverted and the unwinding process continues.

If an appropriate "cleanup" handler is found, unwinder generates and

executes a call to the designated cleanup procedure before reverting the stack

5-42

frame. The job that a properly written cleanup procedure must then accomplish

is:

(l) Via calls to< reversion>, revert all as yet unreverted ha,1dlers
that were stacked while executing the procedure being bypassed.
Also, revert this particular cleanup handler.

(2) Free all space occupied by "automatic" data that was previously
allocated to free storage lists.

Who writes the cleanup procedures?

From the above discussion we can see that writing and using cleanup procedures

can become a pretty tricky business. Their main function of course is to prevent

undue growth of "dead" storage in a process. A user may write his own cleanup

routines and establish them as condition handlers - as many as he wishes. On the

other hand, writing cleanup procedures and seeing to it they become condition

handlers (by calls to <condition>), and then later reverting them in the event the

abnormal return never gets executed, is the sort of mechanical programming we

would normally want compilers or assemblers to generate for us wherever possible.

EPL, fortunately, is one of those compilers that offers some of these cleanup ser­

vices. However, even with EPL, the user, when programming abnormal returns,

is expected to program his own cleanup routines for freeing up space that has been

previously reserved by "allocate" statements. We shall elaborate momentarily on

the services offered by the EPL compiler.

First, we summarize the various reversion steps of < unwinder >, and the re­

version accomplished as a result of cleanup handlers. These are pictured schema­

tically in Figure 5-ll for the abnormal return situation depicted in Figure 5-10.

We again consider the abnormal return from <c> to <a>, bypassing .

The EPL-like coding displayed in Figure 5-10 shows the stacking of cleanup handlers

during execution in < b > and in < c >. The case also presupposes other calls to

<condition > during execution of <a >, < b > and < c > for the conditions named 11 X 11

and 11 Y11 , as shown. For simplicity we imagine first that all these procedures re­

side in the same ring (32).

Figure 5-12 is provided to suggest, by contrast with Figure 5-10, the nature of

the cleanup service offered by the EPL compiler. Figure 5-12 gives an itemized

list of the "free services" generated by EPL. It will be noted that no explicit refer­

ence to cleanup procedures or even to < unwinder > is required when writing code

5-43

\J1
I

>!>­
>!>-

e

<a> < b > (lab I) <c> (lab 2)

~ I
call condition

I

call condition
("cleanup'', cb);

•I call condition ("cleanup", cc);

call b (a$f); I j
call condition (''Y", bl); call condition ("Y", cl);

call reversion ("X");

call c(lab_l);

l

call reversion ("Y");

• I call reversion
("cleanup");

return;

call unwinder (lab_Z);

call reversion ("Y");

•I call reversion
("cleanup'');

return;

The abnormal return bypasses calls to< reversion> (shown below dashed
lines in< b > and < c>, which would be executed if normal returns were taken.
The coding in this figure shows explicit EPL - like calls to <condition>,
<reversion> and < unwinder > using a compiler that does not offer special
cleanup service. The programmer would also be required to supply the
cleanup procedures referred to as cb in and cc in <c>. Figure 5-12
shows the same case coded in EPL, where starred calls in< b> and in< c >
are no longer needed.

Figure 5-10. Chain of Calls <a>~< b >~ < c > and Abnormal Return to< a> I [f]

e e

I

I
I

I
I
I
\
I
\
\

<stack 32>- <signals 32>

<signals_32.11nk>

"cleanup"

"X"

"Y"

Key: ~_~ reverted by the <unwinder>

~~ reverted by cleanup procedure

~ reverted by cleanup procedure .

Figure 5-11. Stack Frames and Handlers Reverted
After Successful Return from Call to
< Unwinder>

5-45

cb

cc

<a> < b > (lab_l) < c > (lab_2)

{
call condition

("X", al); \
call condition

("Y", bl);

l
call condition

("Y", cl);

call b (a$f); l {
go to lab_2;

~
call c (lab_l);

~ l
call reversion ("X");
return:

call reversion ("Y");
return;

call reversion
return;

Note:

(a) No specific call to establish handlers for "cleanup"
are needed. These are generated by EPL and placed
in the so-called prologue of the target code. The pro­
logue is called as an internal procedure.

(b) No need to supply the cleanup procedures themselves.
EPL generates these.

(c) No need to call the < unwinder > explicitly. The
statement:

go to lab _2;

generates the call to the < unwinder >.

(d) No need to revert the ''cleanup" handler immediately
prior to the normal returns in < b > and < c> • EP L
takes care of this by placing a suitable call to
< reversion> in the so-called epilogue of the target
code. See BP. 3. 00 for more details.

(e) If ON statements are used in place of calls to< condition>,
even more service is provided by the EPL compiler. It
will then automatically generate the calls to <reversion>
immediately prior to the return statements.

Figure 5-12. Chain of Calls and Abnormal Return Coded in EPL

5-46

for inter-related procedures that include abnormal returns. The techniques

employed by the EPL compiler to achieve this service for the EPL programmer

are described in BP. 3. 00. Briefly, EPL generates the required calls to <condition>

and to < reversion> for "cleanup" as required, i.e., for any procedure for which

cleanup may be needed. It also generates and embeds the requisite cleanup pro­

cedure as an internal function. This function is referred to as the "epilogue" of

the target code. The epilogue is ordinarily executed immediately prior to executing

a normal return.

The clerical details performed by < unwinder > when it traverses a chain of

calls that include ring crossings is more complicated than we have suggested in

Figure 5-11. However the basic principal of frame-by-frame inspection, reversion,

etc., is the same and, even more importantly, the net effect is the same. The de­

tails can be investigated in BD. 9. 05 by the stalwart. Whether you make this investi­

gation or not, you should now be well convinced that a subsystem may be designed

within Multics using or permitting others to employ abnormal returns, but the

overhead for their oft-repeated use could prove to be prohibitive. Use of abnormal

returns is in fact being avoided wherever possible in the implementation of Multics

itself (Code value parameters are being used in place of statement label parameters).

Old MAD or FORTRAN lovers who are accustomed to using statement label

parameters for abnormal returns should also be forewarned. Thus, if a compiler

for MAD were to be implemented for use in Multics which accepted statement label

arguments, one might well caution MAD programmers to restrict or to avoid use

of abnormal returns, even if the compiler were to provide cleanup services similar

to those now provided by EPL.

5-47

