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CHAPTER V 

CONDITION HANDLING AND ABNORMAL RETURNS 

5. 1 INTRODUCTION 

Besides ordinary calls and returns, there are two other types of interprocedure 

(and possibly inter-ring) transfers which the user may wish to make and for which 

Multics lends system support: 

( 1) To execute a "signalled condition". 

(2) To execute an abnormal return. 

In this section we shall introduce the problems and issues involved in the implementa­

tion of each of these. With the motivation hopefully provided here, the reader may 

wish to read either or both of the remaining two sections of this chapter to see the de­

tails. As implemented in Multics, abnormal returns are executed with the aid of the 

condition handling mechanisms, so Section 5. 3 cannot be effectively read independent­

ly of Section 5. 2. "Condition handling" is a technical term in programming that is now 

well recognized as a result of the widely published specifications for PL/ I. The term 

refers to an activity in which the user names in his program a hardware or a software 

condition and either explicitly or implicitly identifies (or supplies) code to be executed 

when the stated condition is detected at some later point in time (i.e. , during execu­

tion of subsequent program steps). The remainder of this section discusses the perti­

nent PL/ I concepts (and language specifications) that deal with condition handling. 

Persons already familiar with this aspect of PL/ I may skip over this material. 

In every programming system environment there exists a priori a class of system­

defined conditions which can arise during execution that will fault the process. Some 

of these conditions are recognized (detected) by the hardware, while others are recog­

nized during execution of system- supplied software. Examples of occurrences in this 

class might be accumulator overflow, zero divide, exceeding a subscript range, and 

attempts to perform illegal type conversions. Conditions like these are of the sort 

that are hardly ever completely avoided and hence are in the category of always­

possible-though-always-unexpected. In PL/ I, syntax is specified to handle occur­

rences of these conditions, providing the programmer a measure of choice of action 

and hence control over his program's fate. At the same time the machinery is uni­

versal enough in structure so that a uniform approach is possible for the handling of 

a wide range of condition types. 
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A set of a dozen or so "built-in", or system-defined conditions is enumerated in 

the PL/I specifications.':' With each of these conditions there is associated a standard 

system action. This "standard" action is executed only in the default case, i.e., in 

the event the PL/I programmer fails to supply any other code for execution when a par­

ticular condition has been detected. 

Subsystem designers are expected to recognize conditions which are not on the 

"built-in" list. Hence, additional machinery is provided so that the PL/I programmer 

can name other conditions and of course specify the actions which are to be taken 

when these conditions occur. Unlike the first category of system-defined or "built-in" 

conditions, this new category of programmer-defined conditions will not be automati­

cally detected. Consequently, PL/I provides the subsystem programmer with the 

linguistic constructs which allow his subsystem to behave as a condition detector as 

well. 

More specifically, three types of statements have been provided in PL/I: 

ON statements 

REVERT statements 

SIGNAL statements 

Purpose 
To designate a condition and the associated code 
which is to be executed when that condition is 
detected. 

To undo the effect of a previously executed ON 
statement that refers to the same condition that 
is named in the REVERT statement. 

To indicate occurrence of a built-in or programmer­
defined condition. 

A more complete explanation of these statements follows: 

ON Statements 

These identify a system-or programmer-defined condition and designate the corre­

sponding code which is to be executed whenever that condition is detected. The gener­

al syntactical form of this statement is: 

':'For a complete list of these see Appendix 3, "IBM System 360 Operating System, 
PL/I Language Specification", Form C28-6571. 
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ON <designation of the condition':'> <action specification> 

where <action specification> may be null, a simple PL/I statement, or a block of 

code. 

For example: 

ON OVERFLOW BEGIN; 

designation 
of the 

condition 

END; 

DECLARE SUM STATIC INITIAL (O) 

SUM = SUM + l; 

IF SUM > 100 THEN 

CALL OVERR; 

action specification 

The action specification may be thought of as a "handler" for the specified condition. 

This is because execution of an ON statement has the effect of setting up its action 

specification as a body of code to be invoked later, as if it were invoked as a procedure. 

The execution of an ON statement can be said to establish a handler for the named 

condition. Execution of a subsequent statement that results in the detection of the 

named condition will cause an interruption of the main program sequence and the invo­

cation of the established handler. 

A natural question to ask is: What is the program scope in which a given estab­

lished handler is said to be active i.e., how long does an established handler remain 

in effect? The answer is - up to but not beyond the point in time where the thread of 

control exits normally from the block in which the handler was established. This rule 

means that after executing an ON statement establishing a handler (which we will refer 

to as) Y for a condition named ''X'', the thread of control may pass through numerous 

other procedures (as a result of CALL or GO TO statements) before exiting from 

block B. All this time the handler Y would remain in effect. A handler is said to re­

main in effect or govern while executing in all the "dynamic descendents" of the block 

in which it (the handler) was established. 

·'· .,.The condition is designated by its name and, if programmer-defined, is indicated 
as such syntactically by placing the name in parentheses and prefixing it with the 
word CONDITION. Thus, 

ON CONDITION (UNEXPECTED_DELAY) CALL PROCA 

designation of condition action spec. 

5-3 
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There are two ways, however, to over-rule the effect of a handler Y. One may 

either temporarily replace Y with alternative code, say YY, or one may instantly 

nullify Y. A handler Y may be temporarily replaced if another ON statement for 

the same condition is interposed in the execution, If the second ON statement 

designates some other code (which we shall call) YY as the handler for "X", then 

YY is established and will remain in effect until YY 1 s scope termination is reached, 

Termination occurs when a normal exit is taken from the block in which the handler 

was established,':' The implied effect of "adding on" one handler after another for 

the same condition and in the same dynamic sequence, amounts to "stacking" 

handlers in a last-in, first-out discipline, To simply nullify the "rule'' of a 

currently-effective handler, Y, one uses the REVERT statement. 

The REVERT Statement 

This names a condition (system- or programmer-defined) whose currently 

governing handler is to be nullified (i, e,, popped from the current stack of handlers 

for "X"). 

REVERT X; 

exemplifies the simple syntax of the REVERT statement, After executing such 

a statement, the previously established handler (or a system-defined default 

handler in case there are no more left on the stack) will be invoked if there is a 

subsequent detection of condition "X". 

The SIGNAL Statement 

This allows a programmer to indicate the occurrence of a condition that is 

named in this statement and thereby to cause its governing handler to be invoked, 

After execution of the indirectly designated handler, control will (normally) return 

to the statement immediately following the SIGNAL statement, It should be noted 

that the ON statement which established the currently effective handler for a condi­

tion "X" need not, and normally would not, appear in the same procedure(s) that 

contains the invoking SIGNAL statement, 

Although any system-defined condition may be 11 signalled" with this type of 

statement it should be emphasized that executing a SIGNAL statement is the only 

way a programmer-defined condition handler can ever be invoked, Of course, 

':'Notice that if both Y and YY are established in the same block, then the scope 
of both handlers will terminate simultaneously upon exit from the block, 
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executing a SIGNAL statement does not alter the scope of the invoked handler, That 

is, there is no restriction on the number of times a statement like: 

SIGNAL X; 

may be executed to invoke the cur rent handler for "X", 

Signalling via the SIGNAL statement offers the programmer an attractive way 

to invoke a subroutine without actually having to specify its name, letting its 

designation be determined dynamically, as determined by the ON statement most 

recently executed. Whether this technique is practical depends on the particular 

machinery that is developed for the implementation of the ON, REVERT, and 

SIGNAL statements. As we shall see when we consider in detail the machinery 

developed for this purpose in the Multics environment, the overhead is high. 

Signalling activities are normally too costly to use except for special situations. 

These might arise when a program's complexity is already so great that the in­

troduction of additional machinery for explicit invocation of specified actions 

(handlers) would add disproportionately to the debugging problems of the program­

mer. To make our point somewhat more specific, we sketch the following example: 

Let a procedure <a> call< b> after first establishing the handler Y for 

condition "X". Let us further suppose it is appropriate or convenient for the test 

of occurrence (detection) of "X" to be accomplished in < b>. It is then natural to 

let < b> invoke the handler for "X" simply by executing the statement 

SIGNAL X; 

Executing this statement may, however, prove to be relatively costly. (One 

measure of this cost is the execution time required for invoked system routines 

to locate the desired handler,) If this is the case, a less expensive way can 

usually be arranged, simply by adding an additional argument (error code) in the 

call from <a> to < b>. If this done, < b> can be coded to detect the condition, 

set the error code parameter appropriately, and return. It is then < a> 1 s 

responsibility, upon receiving a return from < b> to test error code (before doing 

anything else) and to invoke Y (e. g., by a subroutine call) before proceeding with 

with other taks. Note that < a> knows what handler to invoke even though < b> 

may not. 
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5. 1. I Signalling Conditions in a Multi-Ring Environment 

With special system-provided procedures, Multics makes it easy to provide 

condition handling in any process, regardless of the coding language that is used. 

These system procedures are: 

< condition> 

<reversion> 

<signal> 

They can be used by anyone to accomplish what can be achieved in PL/I with ON, RE­

VERT, and SIGNAL statements. (It is no coincidence that the EPL and PL/I compilers 

generate calls to <condition> , <reversion> and <signal> in translating such state­

ments.) 

If we are going to gain a more sophisticated view of the condition handling machin­

ery in Multics (present and future), it will be necessary to consider how it couples or 

should couple with the ring structure. To elaborate on this thought, we will do well 

first to walk through some of the steps of condition handling in the context of the Multic s 

ring structure. (For this purpose we need no longer assume that PL/I is the program­

ming language being used.) 

Let us suppose a procedure < P >is executing in ring e. This procedure may 

enable':' a condition named "x" simply by calling< condition> and designating the name 

of the condition, "x", and a handler, call it< procl >as arguments. The handler is a 

block of code in the form of an internal or external procedure. Also, let the ring num­

ber of< procl > be h (for _!::andler). 

After enabling condition x in this way, < P >, or any of its dynamic descendants is 

free to signal condition x. The need to issue the signal may be recognized in two 

basically different ways. Hardware faults may induce this recognition. In this case, 

a fault interceptor module can issue the signal for condition x. Alternatively, simple 

tests of state variables may be programmed by the user such that affirmative results 

are tantamount to event recognition. In this case, the procedure then executing, which 

shall be called the signaller, can execute the call to <signal>, naming "x" as an argu­

ment. 

Signaller may be written either by the subsystem designer as a utility routine or 

it may be written by an ordinary user. (It makes little difference.) We shall assume 

that< signaller> executes in ring s. 

':'Here we shall be using the phrase enabling a condition to mean what in PL/I terminology is 
expressed as establishing a condition. In PL/I there exists additional mechanisms to enable 
or to disable a previously established condition. We shall not be concerned with this extra 
level of control in condition handling. Hopefully, therefore, confusion may be avoided. 
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From the foregoing ''exercise" we see that up to three different rings may be in­

volved. These are e (for enabler), h (for the handler), and s (for the signaller). A 

basic question to be answered is: Should a condition enabled in ring e be "signallable" 

from s if s-#e? A no answer would be tantamount to making calls to <signal> and to 

<condition> within one ring independent of those in all other rings. A yes answer 

amounts to saying that a condition enabled in one ring may be signalled from any other 

ring. This in turn implies existence of a mechanism for remembering in what ring 

the corresponding condition was enabled. It also implies that the same handler < p > 

can behave differently, depending on the ring from which< p >has been invoked.':' 

Arguments may be offered for both approaches. The first approach (s=e only) has 

the advantage of simplicity in implementation. It implies a minimum of execution over­

head in invoking the intended handler. But it also implies that a programmer must 

know the rings in which his procedures will be executing when calls to< condition> 

and to< signal> are made, (i.e., he must be conscious of at least some ring crossings). 

This requirement is not in complete harmony with one Multics objective for the ring 

structure, namely to provide a compartmentalization "service" that requires no direct 

programmer involvement. 

The second approach (s possibly# e), clearly implies the complement of the afore­

mentioned advantage and disadvantage, that is, more expensive signalling, but freedom 

to remain oblivious to ring crossings. In addition, however, there is one more impor­

tant advantage. It is as follows: By permitting s#e, we assure for instance that con­

ditions enabled while a process executes in a user ring may be signalled from a super­

visory ring (and vice versa). This provision, for example, allows a supervisor, that 

has intervened as a result of a user-incurred fault, to signal a system-defined condi­

tion which has been enabled in a user ring. In short, the system must be able to find 

a handler (which itself may be in any ring) that is established by user or by supervisor. 

Ideally, this capability should be replicated for the case of user-developed subsystems 

having two or more rings. Thus, an outer ring of such a subsystem would likewise be 

'~To see why this is so, let the ring brackets of the handler < p > for condition "x" be (u v w) 
Now, any signaller from ring s that has ring access to < p > will be able to invoke it, F'ro:n ' 
?ur study .of Chapter 4 we know that <p> would then execute in a ring, r, that lies somewhere 
1n closed 1nterval (u, v), depending on s, Suppose the enabled condition "x" is signalled more 
than once, and from k different rings, say, s 1 , .. , , sk (k > 1), The corresponding rings, rk, 

in which < P > will then execute, may not all be identical, (That is, a handler invoked from dif _ 
ferent rings, and having an access bracket (u, v) such that u < v, may execute in different rings,) 
Although we may not have mentioned this previously, it is true that for reasons of protection a 
p~oc~dure .< p > is supplied with a separate copy of its linkage segment, < p, link> , for ever; 
rmg m wh1ch < p > executes and hence may behave differently when executed, This somewhat 
surprising fact and its interesting implications are dealt with in Chapter 6, There we will show 
that a snapped link, generated by the Linker for the same symbolic reference, may depend on 
the ring of the link-faulting procedure. 
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able to establish handlers that can be invoked (explicitly, in this case) when an inner 

ring procedure executes a call to <signal> . This is just another expression of the 

Multics design philosophy that the interface between user and supervisory procedures 

function in the same way and using the same conventions as for an interface between 

different user-written procedures. In the initial implementation of Multics, the 

former, less general approach is taken. The more general approach has been studied 

carefully, however. A well thought out scheme has been proposed for achieving the 

general signalling mechanism which includes simpler schemes as subsets. It is too 

early to say if the general case will finally be implemented, or how. The scheme is 

described in Section 5. 2. 2. ':' 

Some interesting problems arise: 

(a) What ring relationships between h (handler) and s (signaller) should 
govern on whether or not the signalTing procedure should be given 
access to the designated handler, <procl>? The answer is that the 
controls which permit the signaller to call the handler apply here. 
E. g., s must be less than or equal to the outer ring of the call brac­
ket for <procl>, and if within <procl>' s call bracket the desired en­
try point must also be a gate. 

(b) In any process the condition x may be enabled more than once be­
fore it is signalled. Each enabling of condition x, even if from the 
same ring, may designate a different handler. Moreover, the hand­
ler may possibly be located in different rings. In addition to the 
question raised in (a), we must now add the question: which of the 
handlers is the one which should be asked to respond to the signal­
ler (i.e. , to which handler do we want control transferred}? The 
one we want shall be referred to as the currently active handler. 
Ordinarily, the answer is: the one designated when x was last en­
abled. But, whichever is the active one, how does the supervisory 
system go about locating it? Is a stacking scheme used? (The an­
swer is yes.) If one pictures that signals pertain only to conditions 
enabled in the same ring, then it is easy to visualize how one might 
implement all three of the primitives, <condition>, <reversion>, and 
<signal>. A call of the form: 

call condition ( 11x", <pr oc > ) ; 

when executed in ring e, might cause a pointer (i.e., entry datum) 
to< proc> to be pushed onto the top of a stack named 11x" for ring e. 
A call of the form: 

call reversion ( "x"); 

'!'A complete design has been given in BD. 9. 04. dated 12/15/67. 
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in the same ring, e, would then cause the topmost element to be popped 
from the same stack. Finally, a call of the form 

call signal ("x"); 

also executed in ring e, would cause the issuance of a call to the pro­
cedure whose entry datum is the topmost element on stack "x" {of 
ring e). 

But what of the more general case if it were implemented in Multics? 
Here, signalling is not restricted to the ring in which the matching 
condition handler was enabled. What selection or searching process 
would be used to locate the desired handler? Would the programmer 
also have the option to restrict the search for an enabled handler so 
that it may be invoked only when the condition is signalled from speci­
fied rings? (The answer is yes.) How about reversion? Will the pop­
ing that is performed remain limited to the stack for 11 x 11 in the ring of 
<reversion> 1 s caller? (The answer is yes.) 

(c) What practice is followed for the case where a procedure signals a 
condition that has never been enabled, or if enabled, has since been 
fully disabled (reverted)? In this regard it 1 s important to be aware 
of the two kinds of conditions recognized in Multics. 

(1) system defined 

(2) programmer defined 

It must be arranged somehow that the system behaves as if every 
system-defined condition is always enabled, each with a system­
defined "default handler", i.e., one which will be invoked in case the 
user fails to impose one or more handlers of his own. It is not at all 
obvious how transfers to these default handlers are always assured 
in default situations. 

A somewhat different mechanism must be devised for guaran­
teeing default handling of programmer-defined conditions, in such 
a way that the user still has an opportumty to interact effectively 
with his process, a prime objective or interactive processing. 

The purpose of Section 5. 2 is to explain the Multics solutions to the problems 

just raised. 

5. 1. 2 Abnormal Returns 

If, instead of transferring back to the point of call in the calling procedure, one 

attempts to execute a return to any other point in that procedure or in any other pre­

viously called procedure, we refer to this as an abnormal return. The corresponding 

PL/ I terminology is "non-local go to 11 • Imagine, for instance, that <a> calls <b > 
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calls <c > . . . etc., calls <t >. In principle it is possible to pass a label argument, 

say lab, from <a>, via <b > via <c >, etc., to <t >. While executing, <t > can then 

return to lab in <a>. The fact that this is a commonplace facility in :MAD and in 

FORTRAN IV may give you the impression that no problems are presented here, No­

thing could be further from the truth. Severe problems can be encountered in the 

proper handling of these returns when executing programs written in a more compre­

hensive language like PL/I and/or in a multi-ring environment, as the following intro­

ductory discussion hopes to show. 

In the course of returning abnormally to <a> there is a matter of resetting the 

stack pointer to the target procedure's stack frame and recovering all the saved regis­

ter values and the (indicators). This can be done relatively easily if all procedures 

<a> through <t > in the chain are in the same ring. •:• Returning to the earlier stack 

frame of <a>, which implies resetting the stack pointer, has the effect of recovering 

the storage allocated in the stack for variables of type "automatic" hsed in <b >, <c >, 

etc. 

Unfortunately, there are several remaining recovery problems: 

(1) There is a storage management problem which arises whenever a 
procedure allocates temporary (e. g. , automatic) storage space in 
segments other than a stack segment. Usually, a procedure that al­
locates such space should also free it before executing a normal re­
turn. However, if such a procedure is bypassed during an abnormal 
return, there may be no opportunity to execute the code that recovers 
this allocated space. 

(2) 

Even if the user makes no explicit effort to allocate temporary var­
iables in this way, the supervisor, or the compiler he is using may 
do so. Two examples are: 

(a) The Multics standard way for handling all automatic varying 
strings. I 

(b) The EPL way for handling arrays of automatic varying strings. 
In both cases space selected for such data is taken from a free stor­
age segment called< free >· t Resetting the stack pointer for the 
abnormal return will not-of itself accomplish the re~overy of space 
that was allocated for such variables. 

I 
During execution of the intermediate procedures (<b >, <C >, ••• , 
<t >) various conditions may have been enabled. As we have already 

*A 11 standard" abnormal return sequence can be devised and in fact was once proposed 
for use in these situations - but later discarded. 

tThe details can be found in BP. 2. 02 and BB. 2 sections of the MSPM. 
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suggested, each enabling of a condition amounts to the stacking of a 
pointer to a desired procedure or "handler". These pointers would 
be popped off such stacks prior to executing a normal return. When 
an abnormal return to< a> is executed, unwanted pointers should be 
popped from whatever stacks they have been put on. If these pointers 
were held in the stack frames, reversion of these handlers might be 
automatic. In fact, however, the pointers are kept in a special seg­
ment or segments. An extra effort is therefore required in popping 
these entries from their respective stacks during abnormal returns. 
Details will be given in Section 5. 3. 

(3) All these problems are made more complicated when the procedures 
and the stacks that are involved in the chain we intend to bypass re­
side in different rings. To perform an abnormal return, it is really 
necessary in fact to march backward through the chain of about-to-
be bypassed procedures, one-by-one. During this backward march 
we must perform on each procedure the necessary "cleanup" oper­
ations, i.e. , returning allocated space to free storage and popping 
pointers to condition handlers. This slow retreat, called "unwinding", 
is in fact what must happen when a userwishes to make what, from 
his source level language, seems like a nifty "end-run". 

Because of the decision to permit unwinding across rings, the unwinding process 

is not only slow, but, for protection reasons, cannot in general be entrusted to any but 

a ring 0 supervisory procedure. (Abnormal returns are never executed from ring 0, 

and user-written routines which execute abnormal returns cannot be allowed unsuper­

vised freedom to bypass ring 0 routines.) A special system procedure called the 

Unwinder is therefore provided. This procedure interfaces with the Gatekeeper and 

with the condition handling procedures to carry out its task. Moreover, it is legislated 

that whenever a user wishes to perform an abnormal return he does so by a call to the 

Unwinder. In some situations, a user will invoke the Unwinder mechanism without 

being conscious of it. For example, compilers like the EPL compiler will generate 

calls to the Unwinder when translating non-local go to statements. 

5. 2 CONDITION HANDLING - DETAILS 

The first part of this section reviews the plan for condition handling, roughly as 

it is now implemented in Multics. This is the scheme which limits signalling to the 

ring in which the intended handler has been enabled. The second part of this section 

considers the more general mechanisms which make signalling from other rings feas­

ible. Some knowledge of the general mechanism is needed to appreciate the abnormal 

return discussions in Section 5. 3. 

5-11 



Each process is provided a specially designed data base for use in condition hand­

ling. It consists of a series of segments, one for each ring r, other than zero, of the 

executing process (r = 1, 2, • • • , 63). To conform with the MSPM terminology in 

BD. 9. 04, we shall call these, <signals _r > ':' where r is a two-digit character string 

representation of the integers, i.e., "01", 11 02", etc. 

Pointers to condition handlers are saved in the various <signals _r > segments in 

entries that are threaded as push down lists. Several lists may be kept in a single 

<signals _r > segment, one for each distinctly named condition, 

5. 2. 1 Details of the Current Implementation 

Each call to <condition> has the effect of stacking a pointer to a handler. If a 

procedure <p>, executing in rings, calls <condition>, e, g., 

call condition (11 condname 11 , proc); 

the effect is to stack a pointer to the handler (<proc >) for a condition named 

"condname", in <signals _s >. The pointer, which is a six-word entry datum together 

with certain other information form a stack entry that is threaded with other entries e 
for conditions having the same name. 

As a further aid in visualizing how stacking of entries for handlers are dealt with, 

Figure 5-1 presents a schematic view of the storage structure for <signals _32 > and 

for its linkage segment based on the design given in BD. 9. 04 of the MSPM. t 

By virtue of its special design, a signals segment can hold stacks for an arbitrary 

number of distinctly named conditions, Each stack consists of a "headword 11 and a 

threaded list of 10-word entries. The headword points to the most recently stacked 

entry. Each entry is back-threaded to its predecessor (if it has one). Space for the 

stacked entries is drawn as required from a free storage area within the signals 

segment. 

*rn the interim implementation of Multics that is in current use, there is actually only one ring 
outside ring 0, namely, ring 1, Hence, only one segment is involved as the data base for condi­
tion handling, It is called < cstk > , No MSPM documentation as yet describes < cstk > • Our 
approach in this discussion is to imagine the replication of < cs.tk > over the signalling domain 
that would include all rings 1 through 63, and to picture the data base as having the structure 
originally designed for it in BD, 9. 04, 

tThe initial implementation in actual fact uses a somewhat simpler storage structure in which 
the need for a linkage segment is eliminated, The structure presented in Figure 5-1 was 
chosen because it contains the same conceptual characteristics needed to illustrate the cur­
rent implementation and also conforms with the design for the more general condition handling 
scheme which is outlined later in this section, 
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Figure 5-1. Schematic of the Storage Structure for a Signals 
Segment and Its Companion Linkage Segment 
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The linkage segment contains in-symbol table entries, one for each named con­

dition. Each entry in this table is basically a name-value pair. The value is inter­

preted as the offset in the corresponding signals segment of the headword for the 

stack that is associated with the name. The in-symbol table is searched on each call 

to <condition>, <reversion> or <signal> to locate the top most element of the approp­

riate stack. 

Thinking in terms of ring 32, for instance, in-symbol table entries for system­

defined conditions are always preset in <signals _32. link> by the system. Those for 

programmer-defined conditions are added as needed. That is, upon calling 

<condition> with a new name, a search of <signals _32. link> reveals a need to add a 

new entry. Each "first" call to <condition> also causes a new headword to be set up 

in <signals 32 >. Of course, each call to condition, including first calls, also results 

in the addition of a 10-word entry to its appropriate stack. 

5, 2. 1. 1 Popping Handlers 

Each call to <reversion> has the effect of popping the top "handler" from a 

given stack. For example, the procedure <p > in ring s may, just before returning to 

its caller, execute a call like 

call reversion (11 condname 11 ); 

The effect would be to remove the top (most recently added) entry from the stack in 

<signals _s > that is associated with 11 condname". The system automatically supplies 

stack entries to "default handlers" for system-defined conditions so that, should the 

condition be detected prior to the ~having established a handler for it, there will 

be a guaranteed system-defined response. The user may, by a suitable library sub­

routine call, stack an entry to a default handler for a user-defined condition. Such 

stack entries, whether for system-defined or for user-defined conditions, are special­

ly marked so they can be recognized, Once placed on the stack, they cannot be re­

verted, even though a call to <reversion> requests its removal. Later subsections 

elaborate on the subject of default handlers. 

5, 2. 1. 2 Signalling (Initial Implementation) 

The chief purpose of saving a condition handler is to use it when and if proper 

notice is later given to do so. A call to <signal> is the act of serving this notice. For 

example, during execution of a procedure in ring s, we shall picture a call to <signal> 

of the form: 
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call signal ("condname", return_jlag':', arglist_pointer); 

The effect will be to invoke the handler whose entry datum is found in the topmost 

frame of the stack for condname, as found in <signals _s >. If this handler is the pro­

cedure named <proc >, then arglist_pointer is passed along to <proc > as an argument. 

It is expected that the signal handling machinery just described will serve 

most needs of the typical user. The characteristic here is that handlers are stacked 

in and signalled from the same ring. Moreover, it may also be typical that the pro­

cedure identified as the intended handler will also be found in ring 32 (especially if it 

is a programmer-defined condition). In these situations locating and invoking the de­

sired handler will be a relatively simple task. No protection problems will arise and 

hence there will be no intervention of the Gatekeeper, System overhead to perform the 

required services will therefore be kept to a minimum. 

5. 2. 1. 3 Establishing Default Handlers - User-Defined Conditions 

A user is free to establish a default handler for any of his programmer-defined 

conditions by a call to a "sister" primitive of <condition> named <set default>. 

(The basic MSPM reference is again BD. 9. 04.) 

For example, executing the PL/I statement: 

call set_ default ("list_empty", refill); 

while a process executes in ring k, will have the effect of stacking a default handler 

for the condition named 11 list_empty 11 in <signals _k >. This handler points to the pro­

cedure named refill. <Set_default> performs a service almost identical to that of 

<condition> in establishing the desired (default) handler. The only thing special 

about a call to <set_default > is that the stacked entry for this handler is specially 

marked to indicate that the entry corresponds to a default handler. <Reversion> will 

ignore a request to pop such an entry. Likewise, the Unwinder will not be able to 

revert this handler when and if called, The Unwinder 1 s practice of reverting handlers 

is explained in Section 5. 3. 

5. 2, 1. 4 Default Handlers - System-Defined Conditions 

System-defined conditions are treated in a fashion which guarantees that a de­

fault handler will always be provided, (To simplify further explanation we shall 

~:~ If the procedure calling <signal> wishes to permit a return from <proc >, the value 
of return flag must be set to 1 for the call and 0 otherwise. An attempt to execute 
a normal-return from <proc > when return flag is set to 0 will be interpreted by 
<signal> as a request to abort the process-:-
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employ the generic condition name, "sys _cond".) Default handlers are provided on 

an as-needed basis. Thus, the default handler for "sys_cond" would be established 

in ring k only when the first reference is made to "sys _ cond" in this ring during a 

call on <condition> or on <signal>. 

For those interested in the details (the curious only), here is how it will be done. 

An in-symbol definition for every system-defined condition will be preset in 

< signals_k • link> when (and if) this segment is created. Each such definition carries 

a trap pointer which we referred to in Chapter 2 as a trap-before-definition pointer. 

You can review this feature by a glance at Figure 5-2. Whenever called, <condition> 

(or <signals>) must find the offset within <signals_k> that holds the headword for 

the desired condition stack. To determine this offset <condition> (or <signal> ) will 

call a useful library routine known as < generate_ptr >. ':' This routine will search 

<signals_k. link> for the preset definition that holds this offset i.e. value. Upon 

finding this definition, < generate_ptr> will note that the trap pointer is set (i.e., is 

non-null) and will then construct and execute a call to the special system-supplied 

trap routine whose name and arglist_pointer are designated via the trap pointer. The 

trap routine is designed to cause an entry to the desired default handler to be stacked 

in <signals_ k > via a call to < set_ default>. Upon return from the trap routine 

<generate_ptr >remembers to reset the trap-pointer (to zero), so any subsequent 

call to <condition> (or to <signal>) that references "sys_cond" cannot cause another 

default handler to be stacked in ring k. (Note, by setting different trap-before­

definition pointers there is provision here such that system-defined conditions may 

invoke different default handlers in different rings. At present there is no specific 

application of this opportunity.) 

5. 2. 2 Multi-ring Generalization (for future implementation) 

The foregoing scheme for implementing condition handling gave us a brief picture 

of the basic plan for stacking and unstacking handlers, and for signalling conditions 

within a single ring. To picture the complicated cases which may be permitted to 

occur in a multi-ring environment we need a suitable model for ensuing discourse. 

We set the stage for such a model by presenting Figure 5-3. This figure attempts to 

show a snapshot of several stack segments and of < rtn_stk >for a hypothetical multi­

ring process after a series of cross-ring calls has occurred (with no intervening 

returns). The procedures involved are assumed to reside in rings 33, 32, and 1. 

':'Defined in BY 13. 02. 
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Figure 5-2. The Trap-before-definition Feature in an In-symbol 
Table Definition for System -defined Conditions 

The trace can be seen to begin while executing procedures whose stack frames are 

in the group marked @ in< stack _33>. Upon entering ring 33 for execution of these 

procedures, the invocation number'~ a was saved in< stack_33> 12 and a correspond­

ing six-word entry of return information marked M was threaded onto the return 

stack at< rtn_stk>l a. A "wall-crossing" call to a procedure in ring 32 then causes 

the invocation number b to be assigned to< stack_32>12 and the entry marked & 
added to< rtn_stk>. Note the eros s -ring flag is shown marked ITJ in the dummy 

(first) stack frame of the group marked ~to be found in< stack_32>. 

Control flows on from ring to ring, first to ring 1, then back to ring 32, etc. 

Each eros sing into a ring numbered j updates the invocation number at <stack _j> 12. 

This is suggested in Figure 5-3 by showing older invocation values crossed out. The 

return information in each entry of< rtn_stk> is suggested schematically by the dashed 

(red) arrows from some of the entries ( &_ , ~, Lb,, and & ) pointing to the re­

spective stack frames of the procedures issuing the cross-ring calls. 

*The invocation number concept was first described in Chapter 4 in connection with 
the description of< rtn_stk>, (Section 4. 3. 3). 
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We are now ready to look at details of the signal vector segments using specific 

examples based on Figure 5-3. While the invocation number was equal to b we sup­

pose a ring-32 procedure executes: 

call condition ("z", procl); 

Later, while again executing in ring 32, this time when the invocation number has 

the valued we imagine that another call on< condition> is executed: 

call condition ("z", proc32); 

Figure 5-4 gives a somewhat detailed view of< signals _32> and of< signals _32.link> 

upon completion of this second call. Close inspection of this figure is warranted. 

Again we see how 10-word entry for condition "z" form a singly-threaded push-down 

list. The null back pointer in the bottom element is denoted by jV . The detailed 

format of a 10 -word entry may be surmised from examination of the exploded view 

for the bottom entry. The invocation number saved here is a copy of the current in­

vocation number taken from< stack_32> 12 at the time< condition> places the entry 

in< signal_32>. We shall call this copy the ~aved !_nvocation ~umber, or sin. The 

stack pointer saved in words 3 and 4 of the entry correspond to the pointer for the 

procedure which called< condition>. This pointer is also used by the Unwinder pro­

cedure in its cleanup operation, an activity described in Section 5. 3. The remaining 

six words constitute a standard entry datum for the procedure to be called when and 

if the< signal> procedure determines that this entry is for the currently active handler. 

The figure also gives the format details for a typical in-symbol table entry or 

"definition": There is one such definition in< signals_n.link> for each push-down list 

of handlers in <signals_ n>. Each definition gives the name of the condition and a 

pointer to the headword of the push-down list in the corresponding signals segment. 

One feature of the definition, the class code, is of special interest to the sub­

system writer in connection with signalling. This feature will be discussed in 

due course. 

Figure 5-5 elaborates by showing how handlers for several different conditions, 

e. g., "W", "T", and "X" would be stacked in< signals_l> and referred to from its 

linkage segment. A pointer to this free storage is maintained at word zero of the 

same segment. 

Figure S-6 is a composite view showing snapshots of the< stack_n>, < signals_n>, 

and< signals_n.link> segments for the hypothetical process case history we began 

developing in Figure 5-3. 
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Figure 5-4. Details for a Signals Segment and its companion Linkage Segment 
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Figure 5-5. Storage Structure for a Signals Vector Segment 
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The new display shows the stacked handlers for ''X'' and ''Y'' in ring 33 as well 

as those previously illustrated in more detail in Figures 5-4 and 5-5. 

With this composite illustration we call attention to the fact that handlers for 

the same condition may be stacked in more than one signals vector as a result of 

calling <condition> from different rings. Notice, that handlers for "X" now appear 

in signals vectors for both rings 33 and 1. 

5. 2. 2. l Some Case Studies 

We have now set the stage for considering various problems that <signal> must 

solve in locating the active handler. A set of illustrative case studies of graded 

complexity will be considered in this subsection. The discussion of each case shows 

how< signal> would accomplish its task. The bases for these cases and the principle 

or resolution employed by< signal> are summarized in Table 5-l. Probably, only a 

quick scan of this material is all that is justified on a first reading of this chapter. 

In each of the cases below it is assumed that the signalling procedure calls 

<signal> while the former is executing in ring s. The current invocation number 

stored in< stack_s>l2 (and also at< rtn_stk>IO) shall be called curinv. All cases 

refer to Figure 5-6. 

Case 1 - Simplest and most frequent - Active handler is topmost on its stack in the 

same ring as the signalling procedure. 

s :: 33 

curinv :: f 

The call to signal is: 

call signal (I'Y", rtn_flg, ·arglist_ptr); 

Upon being called, <signal> searches the definitions in<signals_s.link>, i.e., 

< signals_32.link> for a match on "Y", which it will indeed find in this case. The 

value associated with "Y" is used to locate the top entry for Yin< signals_33>. Upon 

comparing the value of the saved invocation number with cu~inv, a match ( [] :: f) is 

found. The entry datum for the active handler is found in this matched entry, and 

<signal> then sets up a call to this handler. The details of the calling procedure need 

not be of concern to most readers, but are briefly described in Section 5. 2. 2. 2 for 

the sake of completeness. 
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TABLE 5-l 

Summary of Cases Illustrating <Signal>' s Search for an Active Handler 

Active Handler Determined 
by< Signal> 

Signalled Saved Invocation 
Case s Curinv Condition Ring Number (sin) Remarks 

1 33 f "Y" 33 f ------
2 33 a "Y" 33 a One superfluous en-

try is popped to reach 
the entry for the ac-
tive handler 

3 33 f "X" 
a None found (search for Search of other sig-

"unclaimed- signal'' nals segments denied 
handler). 

b 33 a Assumes permissive 
class codes in 
< signals _i.link> per-
mit a full search 
(see Table 5-3). 

4 1 g "Z" 32 d Assuming permis-
sive class codes in 
< signals_ i. link> 

5 33 f "Z" 32 d Assuming permis-
sive class codes in 
<signals _i.link> 

These five cases are based on the illustration in Figure 5-6, and are discussed in the 

text. 

Case 2 - A variation on Case 1 - a superfluous entry must be popped off the stack 

in reaching the entry for the active handler - (an unusual case). 

s = 33 

curinv =a 

The call to signal is again 

call signal ("Y", rtn_flg, arglist_ptr); 
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Upon being called, <signal> would, as in Case 1, successfully find a definition 

for "Y" in< signals_33.link>, but this time the saved invocation number of the top 

entry in the Y stack of< signals 33>, [[], exceeds curinv. <Signal> perfunctorily 

pops this entry because the appearance of such an entry is regarded as a program­

mer goof (i.e., a failure to revert or pop an entry before returning from a procedure 

that stacked it). Using the backpointer in the popped entry for Y, <signal> then in­

spects the next entry in the stack for Y. Here a match is found between the sin, ~, 

and curinv, thus identifying the active handler. The setup for the call on the proper 

procedure follows normal procedures mentioned in Case 1. 

Case 3 - Entry for an active handler is not found in the signals segment for the ring 

of the signalling procedure. 

s = 33 

curinv = f 
The call to signal is: 

call signal ("X", rtn_flg, arglist_ptr); 

Upon being called, <signal> will locate the definition for "X" in< signals_33.link> 

which points to an entry (in< signals_33>) for which the sin, 

~ < curinv 

In any one signals segment, the saved invocation numbers in a stack for a given 

condition must be in descending order from the top of the stack. The relation 

~ < curinv = true 

then implies there can be no handler for X in <signals _33> for which 

m = curinv. 

The search of< signals_33> for a currently active handler, therefore, fails. Is there 

any use to look elsewhere? lt1 s possible that a handler for X was established in some 

other ring for some prior invocation number. This might have occurred, for example, 

while executing in the ring immediately prior to crossing over to 33 while the invo­

cation number was ~· or in the "preceding" ring while the invocation number was £, 
etc. If so, a historical search of previous ring crossings and the corresponding sig­

nals segments might well turn up such a handler. However, freedom to "backtrack" 

through ring history may not always be the kind of search behavior we want< signal> 

to exercise. It is intended that the subsystem designer can, in fact, determine 

whether such search privilege is to be denied. This would be achieved by assigning 

5-25 



special values for the class code in the definition for "X" placed in< signals _33.link>. 

Class code values can be set in the definition when one uses the library subroutine 

link_change (see BY, 13, 03)':' 

The various class codes and their significance in the control of< signal>'s ability to 

search for handlers will be discussed below. Depending upon the class code that 

<signal> finds in the in-symbol table definition for "X", two main possibilities arise: 

Case 3a - Obtaining a default handler defined in the ring of the signaller. 

The search of other signals segments is denied, A default handler will then be 

needed. Default handlers, incidentally, are recognized by virtue of their correspond­

ing stack entries having a saved invocation number equal to zero. The stack for X in 

<signals _33> will therefore be searched backwards from its current top until an entry 

is found whose sin is zero, 

As we have already seen in an earlier discussion, if X is a system-defined condi­

tion, there will always be a stacked default handler, If, on the other hand, X is a 

programmer-defined condition, it is entirely possible the programmer has failed to 

supply such a handler--perhaps through error, In such cases, <signal> after failing 

to find the default handler, then begins a search for the current handler of a system­

defined condition known as "unclaimed_signal", A handler (at the very least a default 

handler) will always be found for this condition, 

Case 3b - Searching for an active handler in signals segments of other rings. 

The search of other signals segments is permitted. The retrace of ring crossings 

then proceeds in the following fashion: Examine the top (most recent) entry in < rtn_ stk>. 

This entry holds the predecessor and also the prior invocation number (pin) in the form 

of a backpointer. (For a refresher, see Figure 4-16.) In our example, Figure 5-6, 

the predecessor ring would be 1, and the prior invocation number would be e, 

<Signals_l.link> would then be searched for a definition for "X". If found, the associ­

ated class code would be consulted before search of< signals_l> would be permitted 

to proceed, Then a scan of stack "X" in< signals_l> would be made in search of an 

entry whose saved invocation number is e, matching the value for what is now regard­

ed as the prior invocation number, (In short, an active handler is found when sin 

matches pir., ) If the search of < signals _1 > fails, the search may be continued in a 

like manner after consulting the next entry in< rtn_stk>, 

':'Link_change has not been actually written and placed in the system library at the 
time this chapter was written, 
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For proper perspective, it 1s important to keep in mind that class codes are never 

consulted if the active handler is discovered during the first examination of the handler 

stack in <signals_ s>. Class codes are consulted only under the following circum-

stances; 

(1) After failure to find the active handler in< signals_s> when first examined, 

(2) Prior to examining the stack of handlers in each signals segment (including 
a repeat attempt to look at< signals_s> during the backtracking operations. 

Table 5-2 lists the various class codes and explains how each class code would be 

interpreted by< signal>. For example, if the class code for "X" were 13 or 14, 

search of< signals_1> would be denied and, in fact, the search would be terminated 

immediately. Moreover, if this were the case, the default handler would then be 

sought from< signals _s>, i.e., from< signals _33>. 

If the class code were 12, then examination of< signals_1> would be denied, but 

the search would be permitted to continue to other signals segments by continuing the 

retrace of ring eros sings in the manner just described. 

Other class codes would also be interpreted as permission to search< signals 1>. 

In this example, such permission would not result in finding the active handlers in 

<signals_!>, but it would lead to the popping of the two handlers whose sins, [gJ , 
exceed the current invocation value. Popping is justified because [ill exceeds e, the 

invocation number that was current while control was last in ring 1. 

We can also make one other observation from a study of Table 5-2: Case 3a will 

occur only when the class code found in <signals s .link> is 11, 12, or 13. Case 3b 

can occur when the class code in <signals_ s. link> is any other value. 

We should now have enough familiarity with the signal searching rules to see how 

the Case 3b search would terminate under a variety of possibilities for class code 

values in the various< signals_i.link> segments. Thus, if all class codes were= 0, 

the active handler for X would eventually be found to be the one marked 0 in 

< signals_33>, as a result of retracing back through five< rtn_stk> entries until the 

one marked M which identifies ring 33 is found as the predecessor and a as the prior 

invocation number. 

This ring-by-ring search is summarized in Table 5-3. 
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TABLE 5-2 

Class Codes and their Interpretation during Search for an Active Handler 

Class Code 
Value 

0 

11 

12 

13 

14 

Others 

Interpretation 

No search constraints. 0. K. to search through the stack in 
this signals segment and to proceed~ if necessary, to the next 
signals segment as determined by a retrace of ring crossings. 

May search the stack in this signals segment. If active handler 
is not found here, terminate the search by taking the default 
handler indicated in this segment. If no default handler 
(programmer-defined condition only) is found, return to 
<signals _s> and begin a search for the currently active handler 
of "unclaimed_signal". 

Do not search in this signals segment, but proceed to search in 
signals segments of other rings by retrace of ring crossings. 
(Note: If this is the signaller's signals segment (<signal s>), 
we've already looked here once before beginning the retracing 
process.) 

Do not search in this signals segment. Terminate the search, 
immediately. Employ the default handler indicated in the signals 
segment of signaller's ring s. If no default handler is found 
there (programmer-defined condition only), begin a search for 
the active handler of "unclaimed_signal." Note if this code 
were found in< signals s.link>, the search would be limited to 
<signals s> exclusively. Default handler would, if needed, al­
ways be taken from< signals s>. 

Identical to 13 with one exception. If 14 has not been found in 
<signal s.link>, and if the active handler is not located after 
searching in< signals s>, permission to begin the ring-to-ring 
retrace is granted. However, search will terminate immedi­
ately with same effect as a code = 13 if this code 14 is ever 
again encountered. 

For signal searching purposes other class code values are inter­
preted as if they were code 0, i.e., no constraints. 
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TABLE 5-3 

Details of Ring- by- Ring Search 

Ring i whose Associated Assumed class Effect Designation 
< signals _i> invocation code for "X" in (see of referenced 
is being number <signals _i. link> key < rtn stk> 
considered below) entry 

33 (= s) f (curinv) 0 l ffi 
1 e 0 l' 2 i~ 

32 d 0 3 A.\ 
1 c 0 1 ~ 

32 b 0 3 £ 
33 a 0 4 

KEY: l Entry for an active handler is not found. 

2 Entries marked [iJ are popped because g > curinv =e. 

3 "X" not found in< signals _i.link>. Proceed with retracing. 

4 Entry for active handler is found, i.e., curinv = ~ • 

e 

Saved values in 
designated 
< rtn _stk> entry 

predecessor prior 
ring invocation 
number number (pin) 

l e 

32 d 

l c 

32 b 

33 a 



Other possible class code values for "X" in< signals_33.1ink> and/or< signals_l.link> 

could determine a different active handler for X. As an exercise, you could verify 

the results given below for the stated combination of class code values assumed to be 

associated with "X". 

Class code values in 
< signals_33.link> < signals_l.link> 

0 12 

12 12 

0 11 

13 0 

14 13 

Active handler 

Active handler is the one marked ~ in 
<signals 33>. (Note however <signals l> 
will not be examined, so the handlers 
marked [iJ will not be popped. ) 

Active handler will not be found upon first 
search of< signals 33>. Thereafter, 
<signals 33> (and also< signals l>) will 
be skipped over during retrace through 
< rtn stk>. When all entries in < rtn stk> 
have been used up in the retrace procedure, 
the search will be declared a failure and a 
search for X's default handler in 
<signals 33> will be made. If no default 
handler fOr X is present in< signals 33> 
(this is the case illustrated in Figure 5-6), 
a search for the "unclaimed signal" active 
handler will then be made. -

Entries marked [iJ in< signals_l> are 
popped. Failure to find active handler 
upon first inspection of< signals l> termi­
nates the search. A default handler is then 
looked for in < signals l >. If not found, 
search is begun for "unclaimed signal" 
active handler. -

Active handler will not be found on first 
examination of< signals 33>. Retrace per­
mission will then be refused, forcing a 
search of< signal 33> for a default handler 
(and eventually for "unclaimed signal" 
handler). -

Same net effect as preceding example. 
Active handler will not be found on first 
examination of< signals 33>. Permission 
to retrace will then be granted but upon 
retracing to examine< signals_l> a code 
13 will be encountered, terminating the 
search and forcing the use of default 
handler in< signals_33> etc. 
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Case 4 

s = 1 

curinv = g 

The call to signal is: 

call signal ("Z", rtn_flg, arglist_ptr); 

Upon being called, <signal> searches< signal_l.link> without success. No definition 

for 11 Z" can be found there. Assuming the class code for 11 Z 11 in the various 

<signals _1.link>s permit inspection of the respective< signals _i> segments, then 

<signal> will discover the currently active handler to be the one whose entry is 

marked [ill in< signals 32>. This discovery will be made after retracing through the 

< rtn stk> entries marked ffi, and~ , and getting a match between sin = @] and 

pin(= d). (Of course, if the class code for "Z" in< signals_32.link> is 12, 13, or 

14, the search would be terminated for one reason or another without ever identifying 

the entry marked [ill as representing the active handler. A default handler for X 

would be sought in< signals_l>.) 

Case 5 

s = 33 

curinv = f 
The call to signal is: 

call signal ("Z", rtn_flg, arglist_ptr); 

This case is very similar to that of Case 4. The entry marked [ill in< signals 32> 

may be discovered to represent the currently active handler, provided search of 

< signals_32> is permitted by the class code for "Z" found in< signals_32.link>. How­

ever, if search permission is not granted, a default handler must be sought from the 

ring of the signaller which, in this case, is ring 33. Further comparison of Cases 4 

and 5 is given in the next discussion. 

5. 2. 2. 2 Invoking the Handler Procedure 

We have now seen two cases where an entry for a handler stacked in one ring 

(ring 32) is discovered as the active handler for a condition signalled from another 

ring (ring 1 in Case 4 or ring 33 in Case 5). Recall that in Cases 1, 2, and 3 we con­

sidered mainly situations where the active (or default) handlers were found in the 

same ring as the signallers. In either situation, there is a further possibility that 
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the handler itself resides in still another ring. In short, a signalling procedure, 

<signaller>, in ring s may have the effect of involving a handler, < p> in ring h via 

a condition stack entry in the enabling ring e. Because 

s fequal 

!not equal 
and 

I equal 
e 

/not equal 
h 

none, one, or two ring changes may be involved in signalling a given condition and 

invoking the desired handler. 

Of course, every such call on< p> should be covered by existing Gatekeeper 

protection mechanisms. Thus, if< signaller> were calling< p> directly, with 

arglist_ptr as an argument, we would expect to obtain Gatekeeper intervention as 

needed. We expect no less protection in the case where< p> is invoked "indirectly" 

by <signaller>. In addition, we want also to as sure that < p> is callable from the 

ring, e, in which it was established as a handler. The principle here is that a pro­

cedure< E> should not be allowed to force more privileged procedures to use a 

handler which< E> itself is not privileged to invoke directly. 

These controls are partly achieved by forcing< p> to be called from ring e with 

the aid of a special"helper" segment in ring e named< signals_helper_e>, as sug­

gested in Figure 5-7. When < p> is called from the enabling ring e in this way, and 

when this ring differs from the ring of< p>, i.e., e 'f h, the ordinary Gatekeeper 

intervention can be counted on to guarantee that no invalid ring eros sing is being 

attempted here. We will also see how the Gatekeeper can be counted on to validate 

the arglist_ptr being passed to< p> from< signaller>. 

< P> should always be called from the enabling ring e, even when s 'f e. Here 

is how this subtle but necessary bit of control is assured. Once having located the 

active handler, <signal> issues a call to< signals_helper_e> (in ring e), passing to 

it as arguments the entry datum for the active handler and the arglist_pointer para­

meter. This call on< signals_helper_e> forces a desired intervention by the Gate­

keeper when s 'f e. The intervention is desired to validate the arglist_ptr. The inter­

vention is guaranteed because: (a) The ring bracket for< signals> is (1, 63, 63), 

which means <signal> always executes in the ring of its caller, and (b) the ring 
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c. all signal ("?" 

~- , rtn-flg,! 
arglist _ptr); ~ ' \ 

------------

IAJ entry 
points p, 

[ 

to 
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\ 

. ·--------···-"'-·-~---

~<signal>: <signal_helper_ e>: I 
I 

I 
c.all signal call p (arglist -

pt r); 

Key: 

helper -e (k, 
arglist_ptr); 

G means the Gatekeeper intervenes and validates arglist_ptr 
during the permissible ring crossing from s toe (s 1 e). 
(Signal '>'s ring'bracket is (1, 63, 63) while 
Lsignal_helper_ e >' s ring bracket is (e, ~. 63). 

means the Gatekeeper intervenes again, this time to pro­
tect against a possibly illegal ring crossing from ring 
e to ring h . 

Figure 5-7. Mechanism used to Invoke an Active Handler 
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bracket for< signals_helper_e> is (e, e, 63), which means< signal> may call its 

helper from any ring. (The next subsection will show how< signal> gets the help it 

needs to search in and/or modify signals segments of other rings.) 

5. 2. 2. 3 Ring Brackets for <condition>, <reversion>, and< signal> 

These three system primitives will in general be called from procedures in any 

user ring and from any administrative ring (except ring 0). Moreover, no ring cross­

ing overhead will be incurred when one of these primitives is called, because the 

ring bracket for< condition>, <reversion> and< signal> are each (1, 63, 63). Since 

the access bracket is (1, 63), each of these primitives executes, when called, in the 

ring of its caller.>:< 

Ring privileges reguired during signal search 

When, during its search, <signal> fails to find the active handler in< signals s> 

then, class codes permitting, signals segments in other rings must be searched. 

Search of a< signals_i> segment implies both read and write privileges. Suppose 

some of these signals segments may be in rings r such that s > r. How can< signal>, 

executing in ring s, make read or write data references to segments in inner rings? 

In the Multics solution detailed in BD 9. 04, you would see that< signal> in fact calls 

on a special auxiliary routine named< signal_search>. It is this routine that continues 

the search when other signals segments must be inspected. <Signal_ search> is a 

special ring 1 procedure whose call bracket is (2, 63). Naturally, if s ::f 1, then a ring 

crossing will occur when <signal> calls to or gets a return from< signal_search>, 

causing Gatekeeper intervention. Thus, at most one pair of ring crossings (call and 

return) will be involved in the typical use of <Signal> for finding an active handler. 

5. 3 ABNORMAL RETURNS - ADDITIONAL DISCUSSION 

5. 3. 1 General Concepts 

This section is intended to provide background concepts that will lead to a fuller 

appreciation of the Unwinder. A procedure may have one or more entry points 

and none, one or more abnormal return points. Here we review the distinction be­

tween an entry point and an abnormal return point. Figure 5-8 will help develop both 

the differences and similarities. 

'we will see in Chapter 6 that for such a procedure a separate copy of its linkage 
segment will be maintained in the process for each ring in which the procedure is 
called. 
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• • • 
call <c>l[i](arglist_ptr 2~ 

return 

• • • 

<C> 

• • .• 
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tra (label datum for "f' 

• • • 

<stack_r> ----------------~M~---------------------
argument list for 

label datum for label "f' call to <b> 

oop,o!hbcl """m fm J.bol '~' } 
argument list for 
call to <c> 

--------

stack frame 
used while 
executing in <a> 

stack frame 
used while 
executing in <b> 

Labels g, h, and i are entry 
points in <a>, <b>, and "'c>, 
respectively. Label f is an 
abnormal return point. A label 
datum (six words, including 
spa) is passed along to "b> which 
in turn passes a copy of it to 
<c>, as suggested in the associ­
ated stack frames pictured for 
<a> and <b>. It is assumed that 
<a>, <b>, and <c> execute in 
ring r. 

Figure 5-8. Distinguishing Between Calls 0, Normal Returns § , and Abnormal Returns 8 
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Even though, from a user's point of view, entry and abnormal return points ap­

pear syntactically similar, and in fact may even have identical storage representa­

tions, there is a distinct functional difference. The difference has to do with the 

availability of needed information when control passes to one of these points of a 

procedure. When entered via a call, a procedure should at that instant require no 

information other than what it is capable of developing and what is passed to it in the 

form of an argument list. Under these circumstances a procedure can and always 

does begin functioning with a new stack frame. On the other hand, when control 

passes to a procedure via an abnormal return point, execution resumes. This im­

plies that certain information necessary to this resumption of effort may have been 

previously accumulated, probably in its then current stack frame. Therefore, re­

sumption at an abnormal return point in the general case clearly forces the need to 

recover this stack frame, i.e., reset the stack pointer to this frame. The clerical 

details involved in resetting stack conditions, and in recovery of space for all allo­

cated temporary data in the intervening procedures, are numerous. Even if all pro­

cedures in the chain of calls being bypassed (including the two procedures at the end 

points of the chain) have executed in only one ring, the complexity is sufficient to 

justify a system-provided Unwinder service. If we consider the more general case 

where procedures in the call chain may have executed in different rings, the clerical 

complexity is not only compounded, but protection issues dictate that a ring -0 Un­

winder is required.'~ In the current implementation of the Unwinder, the more 

limited "single-ring service" is all that is provided. Our discussions in this section 

are based on the current design for the more general multi-ring service. The gen­

eral service is justified on the grounds that the Multics user should not be forced to 

be conscious of ring crossings in planning an abnormal return. In many instances, a 

user may not even know about ring crossings in the path of the abnormal return. The 

next paragraphs will indicate more specifically some of the complexities that are 

involved. 

Let s be the ring of< a> and let us assume that the pointer to the desired frame 

in< stack_s> is part of the label datum used for generating the abnormal return in 

a statement of the form: 

tra label datum 

(We can normally assume that the value of label_datum has been passed along the 

call chain as an argument. ) One might then imagine the abnormal return to < a> can 

':'The principal MSPM reference is BD. 9. 05. 
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be achieved by executing some kind of return sequence that includes the appropriate 

adjustment of the stack pointer at <stack _s >I 2 and the base address registers. 

Adjustment of <stack _s> j 2 would have the virtue of recovering space in <stack s> 

for frames of ring-s procedures that are bypassed in this return. 

The label datum that defines the abnormal return is not necessarily "authentic", 

however. Suppose, for instance, the stack pointer in the label datum has been in­

advertantly altered by the user and no longer corresponds to the beginning of any 

stack frame in< stack s > (let alone to the frame that was intended). Clearly, 

chaos would result if an attempted abnormal return were allowed to proceed using 

an incorrect stack pointer. To check the given stack pointer for validity will involve, 

at the very least: 1) a search through the back pointers in the stack frames (at spjl8) 

for one that matches the given stack pointer, and 2) provisions for error returns in 

case the search fails to turn up a "good 11 match. 

Even if all goes well, however, two very undesirable side effects must be con­

sidered. These would occur if any rings were crossed in the chain of calls from 

<a> to the point where the abnormal return was invoked, Specifically, suppose the 

chain is: < a> calls < b > calls < c >, and suppose each call involves a ring cross­

ing. At< c > we imagine the abnormal return is invoked by executing a statement 

like 

tra (label_datum for "f 11 ) 

as suggested in Figure 5-8, 

Side effect No. 1. Suppose we fail to pop the top two frames in < rtn stk> while 

executing this return. What will be the consequence the next time a normal re­

turn is executed that involves leaving ring s to reach an antecedent of <a> ? 

For example, suppose <a> was originally reached at <a > I [ g J. via a call from 

ring r. In attempting to oversee the normal return from <:a> , the Gatekeeper 

expects to find a validating return address in the top frame of < rtn stk> . This 

address will not be found, because the frame in question is now buried below the 

top of< rtn_stk>. This failure causes the Gatekeeper to signal an unrecoverable 

error. The difficulty could be avoided only in very special situations where one 

could guarantee that all of <a> 1 s antecedents are in ring s. 

Side effect No. 2, What about the other stack segments that hold frames for 

bypassed procedures? If we fail to pop these frames while executing the abnormal 

return, then space involved becomes unreclaimable, 
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Figure 5-9 suggests why the frame for < b >, pictured in <stack _t >, and any 

other frames that may have been stacked during the last "visit" to ring t (cross 

hatched), can never be reclaimed, The pointer at <stack_t> J[z]will not have 

been altered. Thus, after the abnormal return to <a>, any future visit to ring t 

will force the adding ~of additional stack frames beginning at the place marked 

"next". As a matter of fact, since we have also failed to pop the appropriate 

frames in< rtn_stk>, all space thus far used in< stack t> would be unreclaimable, 

5. 3. 2 The Unwinder Details 

The Unwinder mechanism is provided to perform two principal classes of 

service: 

(1) To validate or screen an attempted abnormal return and, if valid, 

(2) To perform various clerical tasks, including those motivated in the 
preceding subsection, which might otherwise be left undone when 
normal returns are bypassed, 

In subsequent subsections we elaborate on these points, 

5. 3. 2, 1 Validation of the Abnormal Return 

For this discussion we again employ as an example the case where< a> calls 

< b > calls < c>, with< c > attempting to execute an abnormal return to <a> J [f]. 

There are two crucial reasons for validating this abnormal return. 

(1) The ring access rules which were developed for entry points also 
apply to abnormal return points. Thus if s, t, and u are the ring 
numbers of <a>, < b >, and <c > respectively, and if u lies outside 
the call bracket of <a> an abnormal return from < c> to <a> should 
be illegal, The Unwinder should be (and is) held responsible for 
making these ring access determinations.'~ 

(2) Having determined that< c> has ring access to <a>, and in the event 
< c > 1 s ring lies within the call bracket of< a>, it is also necessary 
to verify that [f] is, in fact, an anticipated reentry point. 

If< a> has been coded in a higher level language like EPL or EPLBSA, then 

every such location will be so declared. These declared reentry points are re­

ferred to as doors, In declaring that [f] is a permitted abnormal return point, 

i. e. , a door, it is assumed that the author of <a> is anticipating inward returns 

::,~ 

The Unwinder, in fact, calls a ring-0 procedure named < get_ring > (see BG. 3. 01} 
for the help in accomplishing this check. 
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Figure 5-9. A Picture of< stack t > 
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at [f] and has presumably programmed accordingly. If [f] is not named a door, 

the Unwinder should presume that an inward return to this point is not anticipated 

and cannot be risked, i.e., is likely to result in undesirable, even chaotic be­

havior. 

Such a design philosophy is essential for the protection of supervisor routines 

that expect abnormal returns. Extending this concept to user-constructed sub­

systems implies that every abnormal return point designed to take control from 

an outer-ring procedure must be marked or declared by its author in the source 

code. 

From such declarations the translators can generate doors in the linkage 

section in the form of specially formatted entry points. The format for a door is 

similar to that of a gate. Refer to Figure 4-23.1 

< Unwinder > will treat the word pointed to in the no-op instruction of the entry 

as ~information, rather than as gate information. Only the first bits of this 

word are of interest to the < unwinder >, bits 6 and 7, called the "g" field. A value 

of g = 2 identifies this entry as a door. 

Some of the processors within the Multics system e. g., EPL) will provide':' for 

establishing doors at the users' request. 

[
Here will follow in some future revision of this ] 
document an example of such a declaration to be 
used in EPL. 

Some of the same processors will also interpret all non-local go to statements 

as abnormal returns. The generated code in each such instance is a call to the Un­

winder. Thus the EPL statement: 

go to a$£; 

will result in generated code equivalent to 

call unwinder (a$£); 

A subsystem writer who codes in a programming language that does not have 

this feature must, of course, "manually" call <unwinder> when executing an ab­

abnormal return. 

:.,~ 

Not yet implemented in EPL as of 1/1/69. 
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For this reason it is worthwhile to explain briefly the protection provided 

in Multics in case a programmer fails to employ < unwinder > when attempting 

to execute an abnormal return. The design concept here is this: Only if the 

abnormal return is to an inner ring procedure is system intervention mandatory. 

This intervention will prevent a user from damaging either more sensitive pro­

cedures within a subsystem or the supervisor itself. Each user should be given 

the freedom to do what he wants to (or thinks he can do correctly at his own risk, 

to avoid the unnecessary system overhead) with procedures in rings he has full 

control over. With this philosophy in mind we see that an abnormal return, ex­

ecuted without the aid of < unwinder >, can be regarded more or less as a dis­

guised call. If an inward eros sing is attempted, the Gatekeeper should and would 

in fact intervene. Of course, the Gatekeeper would then properly interpret this 

transfer as an inward call. We are reminded that every inward call must be veri­

fied by determining that it is a gate (g = l in gate_info). If a valid abnormal return 

point is properly declared as a door, (g = 2), the Gatekeeper which is in search of 

a gate, will necessarily recognize the discrepancy and sound the alarm. It should 

now be clear why in the Multics design gates and doors are necessarily mutually 

exclusive. 

5. 3. 2. 2 Handling Unfinished Business 

< Unwinder > takes full responsibility for reverting the stack frames of bypassed 

procedures. It also reverts frames in< rtn_stk> when and if ring crossing(s) have 

been involved. The reversion is achieved by tracing backward through the chain of 

stack frames that correspond to the pending returns. The backward search ends 

when a stack frame is reached whose address matches that given in the return label 

which has been pas sed to < unwinder> as the argument. < Unwinder >, because 

it is in ring 0, is able to consult the top frame of< rtn_stk> when a dummy frame, 

indicating a ring crossing, is encountered. Each stack frame or< rtn stk> frame 

is reverted as it is passsed over in this scan for the matching stack address. 

Cleanup Concepts 

Are there other types of temporary data storage besides stack frames which 

also should be reverted when normal returns are bypassed? Indeed there are--in 

some subsystems, as we shall see later in this subsection. Multics must be pre­

pared to serve such subsystems. < Unwinder > is endowed with a built-in capacity 
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of supervising the recovery of such other temporary storage when and if the sub­

systems programmer wishes this service to be performed. This type of activity 

is referred to in MSPM as "cleanup". 

In subsystems that are coded in EPL, for instance, two kinds of temporary 

data (i.e., recoverable storage} are subject to cleanup. These are: 

(1) Reversion of unwanted condition handlers, and 

(2) Recovery of automatic storage for data types that must be kept on free 
storage lists outside the customary stack frame (e. g., arrays of varying 
strings whose datum portions are kept in a special free storage segment 
called <free_>.) 

Other types of recoverable data may arise and be recognized in the particular 

subsystem you design. What follows in the next paragraphs is a brief outline of the 

general cleanup mechanism that has been embedded within <unwinder>. 

Cleanup activity is regarded as a special task to be invoked, when needed, in 

connection with any (or with each) pending return that's being bypassed in the 

course of the unwinding process. 

Each cleanup task is invoked as if it were a signalled condition. 

The Unwinder has, in other words, been designed to behave as if it has been 

signalled to perform the requisite cleanup task, if any, on behalf of each bypassed 

procedure. To implement this signalling analogy, a handler for each cleanup activity 

is stacked in the format of a bonafide condition handler under the condition name 

"cleanup11 • This word, incidentally, is specially reserved by Multics for this par­

ticular use. The user is allowed to stack and revert handlers for "cleanup", via 

calls to <condition> and <reversion>, but he may not signal "cleanup", i.e., 

<signal> will reject a call of the form: 

call signal ("cleanup", etc. 1, etc. 2 ) ; 

As each stack frame is about to be reverted, < unwinder > first consults the 

corresponding< signals_i> segment for a "cleanup" handler having a matching 

invocation number and stack pointer. (In this search < unwinder > performs a 

task quite similar to that of <signal>.} If no such handler is found the stack 

frame now being considered is reverted and the unwinding process continues. 

If an appropriate "cleanup" handler is found, unwinder generates and 

executes a call to the designated cleanup procedure before reverting the stack 
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frame. The job that a properly written cleanup procedure must then accomplish 

is: 

(l) Via calls to< reversion>, revert all as yet unreverted ha,1dlers 
that were stacked while executing the procedure being bypassed. 
Also, revert this particular cleanup handler. 

(2) Free all space occupied by "automatic" data that was previously 
allocated to free storage lists. 

Who writes the cleanup procedures? 

From the above discussion we can see that writing and using cleanup procedures 

can become a pretty tricky business. Their main function of course is to prevent 

undue growth of "dead" storage in a process. A user may write his own cleanup 

routines and establish them as condition handlers - as many as he wishes. On the 

other hand, writing cleanup procedures and seeing to it they become condition 

handlers (by calls to <condition>), and then later reverting them in the event the 

abnormal return never gets executed, is the sort of mechanical programming we 

would normally want compilers or assemblers to generate for us wherever possible. 

EPL, fortunately, is one of those compilers that offers some of these cleanup ser­

vices. However, even with EPL, the user, when programming abnormal returns, 

is expected to program his own cleanup routines for freeing up space that has been 

previously reserved by "allocate" statements. We shall elaborate momentarily on 

the services offered by the EPL compiler. 

First, we summarize the various reversion steps of < unwinder >, and the re­

version accomplished as a result of cleanup handlers. These are pictured schema­

tically in Figure 5-ll for the abnormal return situation depicted in Figure 5-10. 

We again consider the abnormal return from <c> to <a>, bypassing <b>. 

The EPL-like coding displayed in Figure 5-10 shows the stacking of cleanup handlers 

during execution in < b > and in < c >. The case also presupposes other calls to 

<condition > during execution of <a >, < b > and < c > for the conditions named 11 X 11 

and 11 Y11 , as shown. For simplicity we imagine first that all these procedures re­

side in the same ring (32). 

Figure 5-12 is provided to suggest, by contrast with Figure 5-10, the nature of 

the cleanup service offered by the EPL compiler. Figure 5-12 gives an itemized 

list of the "free services" generated by EPL. It will be noted that no explicit refer­

ence to cleanup procedures or even to < unwinder > is required when writing code 
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call condition 

I 

call condition 
("cleanup'', cb); 

•I call condition ("cleanup", cc); 

call b (a$f); I j 
call condition (''Y", bl ); call condition ("Y", cl); 

call reversion ("X"); 

call c(lab_l); 

l 

call reversion ("Y"); 

• I call reversion 
("cleanup"); 

return; 

call unwinder (lab_Z); 

call reversion ("Y"); 

•I call reversion 
("cleanup''); 

return; 

The abnormal return bypasses calls to< reversion> (shown below dashed 
lines in< b > and < c>, which would be executed if normal returns were taken. 
The coding in this figure shows explicit EPL - like calls to <condition>, 
<reversion> and < unwinder > using a compiler that does not offer special 
cleanup service. The programmer would also be required to supply the 
cleanup procedures referred to as cb in <b> and cc in <c>. Figure 5-12 
shows the same case coded in EPL, where starred calls in< b> and in< c > 
are no longer needed. 

Figure 5-10. Chain of Calls <a>~< b >~ < c > and Abnormal Return to< a> I [f] 
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<stack 32>- <signals 32> 

<signals_32.11nk> 

"cleanup" 

"X" 

"Y" 

Key: ~\_~ reverted by the <unwinder> 

~~ reverted by cleanup procedure 

~ reverted by cleanup procedure . 

Figure 5-11. Stack Frames and Handlers Reverted 
After Successful Return from Call to 
< Unwinder> 
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<a> < b > (lab_l) < c > (lab_2) 

{ 
call condition 

("X", al); \ 
call condition 

("Y", bl ); 

l 
call condition 

("Y", cl); 

call b (a$f); l { 
go to lab_2; 

~ 
call c (lab_l); 

~ l 
call reversion ("X"); 
return: 

call reversion ("Y"); 
return; 

call reversion 
return; 

Note: 

(a) No specific call to establish handlers for "cleanup" 
are needed. These are generated by EPL and placed 
in the so-called prologue of the target code. The pro­
logue is called as an internal procedure. 

(b) No need to supply the cleanup procedures themselves. 
EPL generates these. 

(c) No need to call the < unwinder > explicitly. The 
statement: 

go to lab _2; 

generates the call to the < unwinder >. 

(d) No need to revert the ''cleanup" handler immediately 
prior to the normal returns in < b > and < c> • EP L 
takes care of this by placing a suitable call to 
< reversion> in the so-called epilogue of the target 
code. See BP. 3. 00 for more details. 

(e) If ON statements are used in place of calls to< condition>, 
even more service is provided by the EPL compiler. It 
will then automatically generate the calls to <reversion> 
immediately prior to the return statements. 

Figure 5-12. Chain of Calls and Abnormal Return Coded in EPL 
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for inter-related procedures that include abnormal returns. The techniques 

employed by the EPL compiler to achieve this service for the EPL programmer 

are described in BP. 3. 00. Briefly, EPL generates the required calls to <condition> 

and to < reversion> for "cleanup" as required, i.e., for any procedure for which 

cleanup may be needed. It also generates and embeds the requisite cleanup pro­

cedure as an internal function. This function is referred to as the "epilogue" of 

the target code. The epilogue is ordinarily executed immediately prior to executing 

a normal return. 

The clerical details performed by < unwinder > when it traverses a chain of 

calls that include ring crossings is more complicated than we have suggested in 

Figure 5-11. However the basic principal of frame-by-frame inspection, reversion, 

etc., is the same and, even more importantly, the net effect is the same. The de­

tails can be investigated in BD. 9. 05 by the stalwart. Whether you make this investi­

gation or not, you should now be well convinced that a subsystem may be designed 

within Multics using or permitting others to employ abnormal returns, but the 

overhead for their oft-repeated use could prove to be prohibitive. Use of abnormal 

returns is in fact being avoided wherever possible in the implementation of Multics 

itself (Code value parameters are being used in place of statement label parameters). 

Old MAD or FORTRAN lovers who are accustomed to using statement label 

parameters for abnormal returns should also be forewarned. Thus, if a compiler 

for MAD were to be implemented for use in Multics which accepted statement label 

arguments, one might well caution MAD programmers to restrict or to avoid use 

of abnormal returns, even if the compiler were to provide cleanup services similar 

to those now provided by EPL. 
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