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Chapter 8 

The Input-Output System 

8.1 Introduction 

In many early operating system designs the software known as the 

input output control system (IOCS) played a central conceptual and func­

tional role. In the pre-multiprogramming, batch operating systems, in 

fact, many supervisory functions had to do with input output control 

e.g., control over queued jobs, control for management and operation of 

secondary storage, control for operation of display devices and other 

peripheral equipment, etc. A system programmer (or subsystem designer) 

for such operating systems could hardly prove his professional competence 

without acquiring a reasonable familiarity with the intricacies of the 

roes for his "installation''. 

By contrast the role played by the input/output control system in a 

long-lived Multics system is decidedly secondary, at least from a concep­

tual point of view and certainly tends to diminish over time. Even from 

a functional point of view the relative importance in Multics enjoyed by 

the software having responsibility for I/O may tend to attenuate in time. 

In fact, it will probably prove true that many or even most subsystem de­

signers may be able to achieve their respective objectives while remaining 

entirely oblivious to the IOCS details of Multics. In the next few para­

graphs of this introduction we shall enlarge on (justify) this viewpoint. 

One of our objectives in this ch~pter is to describe the degrees of 

involvement in or awareness of I/O system details that are appropriate for 
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the reader, depending on his interest and on the type of subsystem he may 

be planning to design. Before we can succeed with this objective it is 

believed that a reasonably complete top-·down view of the Multics I/O 

system organization is needed. This we attempt in Section 8-2. Those 

reading this chapter in its entirety will (hopefully) gain some insight 

on the relationship of the I/O system to the central supervisory functions 

of Multics (especially the file system) that have been described in pre­

ceding chapters. 

There are two related views of Multics which suggest a secondary role for 

I/O in Multics: First, there is the central fact that the file system makes 

known and dynamically links files that are stored in the hierarchy, i.e., within 

the system, to the processes that legitimately request this service. It does 

not matter whether these files reside on drums, disks or tapes. The users 

(or for that matter other supervisory modules) are unaware of any explicit 

data movement in accessing these segments even though physical transfer 

from actual secondary devices to central memory may in fact be involved and 

some duly incurred, The required data or procedure object from the hierarchy 

is made part of the virtua 1 memory of the "requesting'' process in a manner 

such that any data movement that is involved in entirely transparent at the 

level of ordinary source coding. In other systems, particularly in most 

earlier ones, a request for an:information object on secondary storage always 

required an explicit request for an I/0 transfer in the ''source/sink" sense. 

That is, the source of ~he object desired had to be identified as a named 

object and/or location. Correspondingly, if information was to be removed 

from main memory, it was necessary that the destination (sink) be identified 
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as a named object and/or location, and the transfer (often along with 

parameters to afford control for a particular type of transfer) be expli­

citly initiated. 

The second view stems from the fact that the information storage within 

the Multics file system is open ended, being basically a growing storage. 

Hence, over time there w.ill be a tendency for an increasing proportion of 

the information needed by a process to be made known {added to virtual memory) 

through the service of the file system. The corollary observation is the 

diminishing frequency of need for data and programs that are "original", 

i.e., that originate outside the system during execution of the process 

and hence must be input via an I/O activity. 

I/O activity will be related only to the one 

In the limit, the Multics 

or more I/O devices that a 

user's process would have direct control over, normally for conversation 

with the system. In most cases this is simply his typewriter or TV console. 

Moreover, in such cases, thoughtfully designed system default mechanisms 

are supplied, offering the programmer the option to remain oblivious to 

specific functions of the I/O system, and to the fact that his process is 

actua.lly making use of this facility. 

The reader should not jump too quickly to the conclusion, however, 

that the Multics designers' principal objective has been to erect a barrier 

that prevents the (system or user) programmer from acquiring and exercising 

full control over I/O devices, whatever they are, be they tapes, speci~l 

display devices, special communications channels, etc. On the contr.ary, 

user processes are able to "negotiate" with the system administrator, who 

controls distribution of I/O resources, to acquire particular I/O devices 

(and/or channels). Then, with user code, the user process may program the 
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control of these I/O devices (and c-.hanne ls) and operate them with the full • 

freedom that is normally accorded a hardcore system programmer. One of 

our purposes in this chapter is to provide at least an initial guide to 

this programming flexibility for those interested. 

In brief, the Multics I/O system has been designed using guidelines 

that would be followed in the design of any good multi-purpose tool: 

a) the simplest, most commonplace use of it requires only a minimum 

of knowledge and skill -- and the overhead for such simple (common 

mode) use is also minimized. 

b) to extract more tailored (special purpose) services there is added 

cost -- both in the time that must be committed to understand 

how the tool works and in the actual overhead that will be incur­

red in execution. 

8.2 I/O System Organizational Overview 

In our introduction we claimed that there are different levels or 

degrees of potential involvement in I/O system implementation that would 

be appropdBte to each subsystem application. We shall enumerate and ex­

emplify these in succeeding sections. But, first, we are in need of an 

effective frame of reference to guarantee meaning for the delineations we 

shall be making. An organizational overview of the I/O system is what is 

wanted for this purpose. 

Such an overview must begin by recognizing an overriding design 

objective for any general I/O system; namely: the input/output operations 

stated in the programs or service procedures that a user writes should 
e 
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specify only those device functions that are required for the application 

at hand, leaving to the system the responsibility for gauging the degree 

of device independence implied by the user's request. In this way a user 

who invokes such service procedures is free to designate substitute devices 

as may be appropriate, while adhering to the device dependencies that are 

implied by the stated I/O function requests. (For most ordinary users whose 

sole I/O device is normally just the console, this objective amounts to 

an opportunity for the user to stat~ his I/0 requests in a manner that 

implies device independence. Moreover, the identity or special idiosyn­

crasies of the particular I/O device used in this fashion is of no concern 

to him either.) For this reason user-coded I/O ·operations of a process 

should ordinarily be independent (or as independent as feasible) of the 

particular device and model, or even of the type of device, e.g., typewriter, 

as opposed to teletype or tape. 

There are two clear reasons for this crucially important objective. 

First, we must presume that at any given time a system will generally 

accomodate several types of I/O devices and models. Each is likely to 

require different programmed control. Each may have different character 

sets, and may be intrinsically different in various respects (e.g., line 

printers are not backspaceable, tapes are; some tapes can be read backwards 

as well as forwards, while card readers are never designed to read cards 

backwards, etc.) Second, we presume that I/O devices become obsolete and, 

over time, are replaced by new models of the same or different types, 

e.g., keyboard-TV versus typewriter. Clearly, if programs are to be re­

usable, if processes are to be repeated with minor or no variation in the 

nature or effect of their I/O operations during reuse of these programs, 
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then recognition of device independence must be a planned part of the 

programming system for I/O operations. 

One approach to design for the needed device independence is to re­

gard the I/O resource needed to complete any given I/O operation not as a 

real or physical resource, as for instance a particular card reader, but 

as a virtual (pseudo) I/O resource that is described in terms of the func­

tions it must be capable of performing, which is mapped by the system to 

a particular real resource at run time, using whatever I/O device is 

available and convenient. The analogy here is with virtual memory, regard­

ed as a resource, which is mapped by the system into particular blocks of 

core memory using the segmentation and paging features of the hardware and 

in a way that is transparent to the user. Such an approach implies that 

all available input devices, regardless of type (or location) are in some 

sense acceptable equivalents and all output devices are correspondingly 

equivalent. 

Unfortunately, even if we exclude the user's own console, which 

normally must be fixed during the life of the process, it is still a poor 

analogy if interpreted too strictly. The user must, when he so chooses, be 

able to decide what I/O devices he wants used (when there is a choice avail­

able to him.) If, for instance, he wants to develop a subsystem whose out­

put may optionally drive either a dedicated line printer, 30-column ca.rd 

punch or SO-column card punch, he must be allowed to specify which one, or 

which compination of two or three, and in what prescribed order. In short, 
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a completely flexible I/O system must provide for user designation of 

the specifics of certain I/O operations -- and even of user-provided 

devices (or simulated devices) in certain cases. For example, a user 

develops a subsystem whose output will drive a newly acquired display 

device. He may be required to furnish the detailed I/O coding for the 

control of that device (later referred to as a Device Interface Module 

or DIM). Those interested in seeing what is involved for such an appli­

cation will hopefully find this chapter helpful, but should regard this 

entire chapter merely a jump-off point for more extended reading of the 

MSPM). 

Certainly some kind of compromise arrangement is needed whereby some 

users (most, in fact) may code their processes so that I/O is regarded as 

employing virtual resources while others may code I/O operations by partially 

or completely specifying the devices to be used and the programmed control 

to go with it. The former use the so-called package I/O calls, such as 

ios_$read_ptr, while the latter will come to grips with and effectively 

utilize the basic functions of the I/O system itself in varying degrees of 

involvement. Some details of these calls and related techniques are des­

cribed in sections 8.3 and 8.4. Readers may already have encountered 

descriptions of these calls in the MPM. 

The particular design approach taken in Multics is based on two prac­

tical requirements, one having to do with the discharge of the system's 

responsibility for dispensing and recovery of all real I/0 devices, and 

the other having to do with the run-time mapping of valid user-coded I/O 
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operations, regardless of their degree of specificity, onto specific 

devices and in the manner and with controls appropriate to those specific 

devices. 

First, it is recognized that at: any given time, as a consequence of 

the I/O device needs of a process, certain specific I/O devices (or device 

capabilities) must be allocated to each or any given (user) process. The 

system's decision to allocate from available I/O device resources to a 

process will be made for any of several reasons. For ordinary situations 

the system is able easily to infer those needs, e.g., the console is needed 

on which a user logs in. In more exotic cases, the user can negotiate 

these allocations in advance with the system's administrator, or eventually 

obtain these resources at run-time via commands or library subroutine calls. 

Second, any programmed I/O operation should at source level, at least, 

be expressed (coded) in a general way that specifies the I/O source or 

sink, not by its device designation but only by a placeholder name for that 

source or sink. (Moreover, as an added convenience to users, it may be 

possible to code certain standard I/0 operations so that even this name 

may be inferred from context.) 

For example, [and here we illustrate only schematically), rather 

than use a specific device designation, even though that device may in fact 

already be allocated to a process at the time its use is wanted, such as 

in the following forms: 
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read from "card_ reader_ 211 into area_ 23; 

input ( 11card_reader_2", area_23 ) 

read ("device 35_2", area_23 

input ("console 20411 , area_ 23 

) 

) 

call io (input, "console 20411 , area_ 23); 

we might instead say: 

read from the stream named "Billy" into area 23; 

or read ("Billy", area_23); 

or call read ("my_ console", area_23); 

or call io (read, ''my console'', area_23); 

depending on the syntax of the coding language being used. 

Here in examples @, "Billy" and 11my_console 11 are simply identifiers 

for sources of data. For such a read statement to have any meaningful 

effect, the specific device represented by that identifier must be bound 

to or "attached" to (i.e., associated in some way with) "Billy" or "my_ 

console" at some time Eter the device is allocated to the process and 

before the read statement is executed. The Multics I/O system is responsi-

ble for maintenance and supervision of these device-source name associations. 

Like-wise for output, names for sinks are used in write statements rather 

than acttlal o~tput device designations. Thus by analogy to the read 

examples in ~ above we could conceivably picture something like 

write ("his_ console", "format 1211 , area_22); G) 

in which "his console" is here intended to suggest the name of some sink 

(output device). The attachment at any given time may be to one of a set 

of several (di:ferent) devices. Thus, if a single pr~cess had several 



8-10 

consoles allocated, the process could simulate a "party-line" conversation 

on the several consoles where the name "his console" could be attached 

and reattached, possibly cyclically, among the several different allocated 

devices. 

A generic name .for elements of the set (source, sink} that has now 

found favor is stream. We shall use this term frequently hereafter. Thus 

the term "stream name" refers to either a name of a source or a name of a 

sink. It is clear why the word stream is selected since an input or output 

operation suggests a stream of information (words, or characters, or bytes, 

or bits) flowing from a source (input device) or to a sink (output device). 

Conceptually, the attaching of a stream name to a particular device is a 

form of parameter binding. The device designation plays the role of the 

actual argument and the stream name that of the formal parameter. In order 

to apply more than one "argument" to the same "parameter" Multics provides 

for the detaching of a device (designation) from a stream name so that subse­

quently another device can be ~ttached to the same stream name. 

To carry out a read or write operation (call) of the type suggested 

in ~ and ~ above, the following steps can now be visualized. The system 

module that receives and is responsible for "interpreting" this call must 

first perform a table look-up (in a per process, per-ring data base) to 

determine the device designation (and type of device, constraint rules, if 

any, for use, etc.) that is currently associated with the named I/O stream 

parameter. [Because attachments are maintained on a per-ring basis, a sub­

system that executes in a special ring can have a distinct set of stream name 

"meanings".] 
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In principle, assuming the I/O call parameters are consistent with 

the data kept in this so-called "attach table'', this same I/O control 

module can then convert this request into an I/O action -- i.e., by init-

iating the desired I/O operations after generating the required channel 

commands*, etc. Because the system must be capable of supporting an open-

ended number of devices, device types, and controllers, considerably more 

modularity is called for. So, in actual fact, the I/O control module merely 

transmits the now more specific I/O request as a call to an appropriate 

"specialist" module (called a Device Interface Module or DIM). There is 

one such specialist module for each type of device. This DIM in turn 

takes charge of getting the I/O request accomplished as suggested in 

Figure 8-1. 

To get a better grasp of what the specialist module's job is, it is 

worthwhile to degress momentarily to consider some of the special char-

acteristics of the GE645 I/O controller hardware. The input/output 

controller hardware of Multics is designed so that each individual I/O 

device may be (and in fact normally is) in effect connected to a 

separate I/O channel. By I/O channel we mean (here) conceptually a 

separate I/O processor capable of accepting commands that carry out 

* IBM set a trend by calling the I/O channel instructions on its model 
709 computer commands to distinguish them from the instructions of 
'the CPU. This distinction became a rather conventional notation 

. that has remained popular for over ten years. In the GE645, however, 
these channel instructions are ca.lled "data control words" or DCW's. 
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I/O operations.* Hence, when we speak about allocating a device to a 

process (group) we shall also take for granted that the system also 

more or less permanently allocates a channel for this device. The identity 

of the channel, the identity of the device connected to it, and the identity 

of the current owner process (group) can be regarded as system-maintained 

in conveniently-organized (ring-0) system data bases available to the 

modules of the I/O system. 

Communication with the channels, i.e., initiating their activity and 

supplying them with their needed commands, receiving and interpreting the 

status information that they return, etc., is achieved in the GE645 system 

by providing a peripheral processor called a GIOC (Qeneralized J/Q fontroller). 

This active hardware device acts as a high speed "broker'' to manage (and 

multiplex) the communication between memory and the many I/O channels 

(which are themselves packaged in the GIOC). Each GIOC is logically organ-

ized to provide half duplex (one way) communication service for up to 2000 

input devices, output devices, or devices that alternate as input and 

>'d: 
output devices , or up to 1000 full duplex units such as typewriter 

or keyboard-TV consoles. 

We can now return to complete our view of the I/O system's handling 

of read/write calls as suggested in Figure 8-1. Each device interface 

* 

** 

Those who later .have occasion to study the reference literature on 
the GE6Lj.5 I/O Controller hardware will find that the term channe 1 
is used in a more restricted and technical sense. There, several 
such channels, taken together, comprise what we speak of in this 
chapter as an I/O Channel. 

Such as the IBM 2741 typewriter console. 
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module (DIM) performs a number of functions: The description that follows ~ 

* is inspired by a recent description of Graham . 

The DIM converts ~device independent request into ~device dependent 

one. In doing this, it must compile a program for the hardware input/output 

controller GIOC (which it can in turn supply to the target channel). The 

compiled program reflects the idiosyncracies of the particular device to 

which the stream is attached. It (the program) may include line controls 

in the case of remote terminals, select instructions in the case of tapes, 

and so forth. In addition the device interface module may need to convert 

the internal character code used by the system into an appropriate char-

acter code for the device. Typewriter terminals for example, come in many 

different varieties. Virtually every different variety has different 

character codes. 

The device interface module, after compiling a program for the GIOC, 

calls a module that serves as an interface for the GIOC to start the I/O 

using this GIOC program. It is the DIM's responsibility to interact with 

the GIOC Interface Module (abbreviated as GIM) until this I/O request has 

been completed. This may require several calls to the GIM depending on 

the format of the channel programs that the GIOC can provide to the 

channels for execution. 

* "File management and related topics", by Robert M. Graham, @) 1969, 
p. 48. Course notes issued at the 1969 Engineering Summer Confe·rence, 
University of Michigan on Computer and Program Organization. I 
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The GIOC Interface Module (a ring-0 CPU program) is responsible for 

the overall management of the GIOC. Thus, the GIM is also responsible for 

overail monitoring of the operc:,tion of the GIOC. This requires answering 

interrupts (i.e., that its code acts as an interrupt handler for), recog­

nizing completion of tasks (and transmitting to its caller status informa­

tion deposited by the GIOC). 

A final point of explanation for Figure 8-l regards the four indi­

cated entry points to the I/O Control Program. The entry attach is always· 

employed (to establish the appropriate stream name-device association in 

the attach table) prior to utilizing the entry points read or write for 

the same streams. The entry point detach is used to nullify a previous 

attach stream name-device pairing. 

Generalization of the device concept to include files. 

If we now add one powerful, in fact crucia~ generalization to the 

I/O system organization picture painted thus far, we can then see the 

actual Multics design overview in its entirety. That generalization is the 

one which permits segments to be substituted for I/O devices in the 

associati6n with stream names (let us pause briefly to let the last sen­

tence sink in.) What we mean by this remark is that any named segment of a 

user's p~ocess may be employed as a source or sink for a read or write 

function, as if it were (or in lieu of) an actual I/O device. 

There are a number of important applications that are now possible as 

a result of this type of generalization. For instance during a console 
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debugging session, information can be read out of storage on to the user's 

console for visual verification. Once verified, the results of subsequent 

but similar computations might be more appropriately outputted to segments 

and thus saved as files. To achieve this objective, the programmer 

might follow these steps: 

1. (For debugging) Call attach to associate the stream name, say, 

"user_outpue• with his console, e.g., tty302. 

2. (For production runs, after debugging) Call detach to nullify 

the previous call to attach. Call attach once again, this time 

to associate the same stream name "user_output" with, say, 

<results_file>· 

Other applications are those that make it possible to simulate I/O 

devices for interactive or conversational interplay, sending mail, i.e., 

output to data bases shared with other users, converting console sessions 

to run absentee by placing on one file the sequence of commands which can 

be~ as an input file and placing (writing) the series of resulting 

responses on another file. (The dialogue's results can be examined later 

at leisure by asking for a printout of the output file.) 

This remarkable generalization of the notion of input/output is 

achieved in a mechanically almost trivial manner in Multics. The trick 

is simply to create another speeialist· DIM called the file system interface 

DIM, as shown in Figure 8-2, which completes the I/O system organization 

overview. Again we follow closely Graham's description of this module's 

function. 
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The fi'le system interface DIM functions like any other DIM. However 

it does not call the GIOC Interface Module. The ~ system interface DIM 

~ used ~ ~ ~segment look like ~-I/O device. In its (per process) 

static storage, the file system interface DIM maintains a table holding 

status information for each segment which is being referred to as a 

device. When an attach call is made to the I/O control program for attaching 

a stream to a segment (instead of to an actual device), the requested seg­

ment is initiated as a known segment (if not already known). [See Chapter 

6 as a refresher for the details on making a segment known.) The file 

system interface DIM maintains in the table of status information separate 

read/write indexes of the current positions in the segment where reading 

or writing is taking place. Subsequent read or write calls are processed 

by the file system interface DIM and consist of copying the requested 

information into or out of the segment at the position of the appropriate 

read/write index. After the copy is made, the index or ''current pointer" 

is updated to the new position of the segment. 

We have just seen how the I/O system may behave as a "customer", 

of the file system which supplies needed services. One might wonder if 

the reverse of these roles is ever true. That is, does the file system 

through its page control module, when seeking to transfer a page of informa­

tion from/to core and disk or tape storage, ever find itself to be a customer 

of the I/O system? Emphasis on objectives of modularity might cause one 

to guess the affirmqtive. In actual fact, however, considerations of 

efficiency have dictated that paging I/O in Multics be treated with special 

purpose I/O software that greatly streamlines the processor's task in 

initiating and controlling such I/0. The details of this special purpose 
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software should be of no interest to subsystem designers and for this 

reason will not be covered here. 

B. 3 Packaged _I/O ~-Communication with_ the Console 

Typical of all operating systems 'that support interactive processing, 

Multics furnishes several routines (and enables them) to satisfy the typical 

user's need for an easy-to-express console I/O request, i.e., one that requires 

a minimum of acquaintance with the I/O system organization. These routines 

have been referred to as "packaged I/O"*. They serve effectively as inter-

faces with the I/O system by mapping the received call into the appropriate 

(and more technical) calls to the I/0 system. 

One of the simplest of the interface routines currently available is 

the simplified print routine called ioa_ which can be used to construct 

and print messages made up of character strings, integers and pointer values. 

For instance, a call written in PL/1 Syntax, might be: 

call ioa ("date "'a "'d, "'d, time "'d:"'d", 

"June", 20, 1969, 2014, 36); 

When executed this call would produce a typed line that might appear as: 

date June 20, 1969, time 2014:36 

As another example, the statement, 

call ioa ("overflow at "'p"," pointer_variable); 

l 
* This is terminology used in the Multics Programmer's Manual, Section I!, 3.7 
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would produce when executed a typed line that might appear as 

overflow at 27413263 

The first argument is a control string which is a form of format code 

somewhat similar to a Fortran format (but more limited in purpose). We'll 

not dwell on the details of this routine or its variants as they are well 

described --- with additional illustrations in the MPM. We only consider 

here how functions like ioa behave in the context of the operating system 

organization structure just overviewed in the preceding section. 

To understand how ioa is able to do its intended job we must appre­

ciate the following system service conventions that are obeyed for each 

process created at log-in. 

First, the identification of the console device-channel pair on 

which the log-in attempt is made is noted by the user control process (i.e., 

the "answering service") that responds to the dialup. When log-in valida­

tions are completed and the process is created on the user's behalf, the 

console device is allocated to that created process and the stream name 

"user io" is "attached" to this device by calling the I/O control module 

at the entry point attach and supplying as arguments the necessary informa-

tion to complete a suitable entry in that process' attach table. (Note 

that the interface routine can be oblivious to the type of device the user 

is logging in on. The I/O control module has responsibility for directing 

the I/O request: to the appropriate device interface module). In Section 
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8.4 we shall take a closer look at this bit of business, but for the 

moment we merely note that in fact several calls are made to the attach 

entry, resulting in a table entry that shows the names "user output" (as 

well as "user- input") ~ synonyms for the stream name, ''user io", where 

"user io'' means the tty he logged in on. Second, we must also appreciate 

that ioa is written to call the write function using 11user_output11 as 

the I/O name. In general, packaged I/O interface routines always use 

the fixed names ''user_ output'' or "user_input" as I/O names for their 

function calls to the I/O system. 

We now see that when the log-in process is completed, and the user 

is "put in charge", the necessary connections that essentially enable 

ioa to perform properly have all been made. The same connections (i.e., 

attachments) are also made for other packaged I/O routines. Of particular 

interest in this category is a pair of routines for reading or writing 

typewriter I/0. These two routines, whose full names are ios_$read_ptr 

and ios~$write_ptr, are fully described in the MPM. 

For example, 

call ios_$read_ptr (stringv_ptr,rdmax,rdcount); 

requests that up to rdmax characters be accepted from the console for 

assignment to the character string variable, pointed to by stringv_ptr. 

The output argument rdcount reports the number of characters actually 

read from the typed line. 

A subsystem writer will be pleased to observe that the effective sources 

or sinks for packaged I/O routines are easily changed to any device or file 
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of his choosing. For instance, if the only explicitly called I/O routines 

in the subsystem are of the packaged variety, then to convert the sub-

system to run absentee, the only requirement for the change is to cause 

execution of an I/O system call to detach the 11user_input" and/or "user 

output" synonyms from the stream name "user_io", and then cause explicit 
I 

attach calls to reassociate the na:nes "user_input" and/or "user_ot:itput" 

with the designated files (named segments). These I/O system calls could 

be executed (preferably at command level) just after log-in or at any 

time afterward when absentee mode execution becomes appropriate. This 

flexibility may motivate some readers to investigate the attach call and 

the related I/O'system calls that are discussed in the next section. 

8.4 I/O System Calls (ios_) 

These direct calls to the I/O system, a total of over twenty by 

current count, are enumerated and fully described in the MSPM as well as 

in the Multics Programmer's Manual. (The details for specifying all the 

arguments for these calls, however, are somewhat scattered throughout the 

latter.)· Here we shall give brief descriptions of some of these calls 

and their use but avoid a detailed technical description. Four of the 

most frequently: used entry points are listed in Table 8-l. 

8.4.1 ios $attach 

To attach a d.evice to a stream name, the programmer must specify the 

following (indicated arguments* are given to the left): 

* The first three arguments (ionamel, type, and ioname2 must be 
supplied as character strings). 
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Table 8-l 

The Most Frequently Used I/O System Entry Points and Their Arguments 

·Entry point name Arguments 

ioname ionamel typet ioname2~~ modet wkspace offset nelem nelemt 
(output) 

ios_$attach I I ./ I 
ios_$detach ./ ./ 

ios_$read I I I I I 
ios_$write / I ./ I ./ 

* for details, see Section 1.41, Reference Data Section, MPM. 

t for details, see Sections 1.4 and 1.41, Reference Data Section, MPM. 

* for details, see Section 1.4, Reference Data Section, MPM. 

e 

disposal I status* 
(output) 

I I 

l I I 

I I 

./ 
i 

I 

00 
I 

N 
w 



ionamel 

type 

ioname2 

mode 

status 
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the stream name 

the type of device, to designate the appropriate DIM, 

e.g., ".tdsm" for the tape DIM, or "file" for the file 

system interface DIM. 

the device designation, e.g., 11 ttyl38" for a typewriter, 

or ''Harry'' for a file (i.e., a relative path name) 

a code to designate the kind of restraints to be placed 

on the use of the device, its method of accessing, and 

its interpretation of the data representation (and any 

other type of constraint or optional use or function that 

is deemed appropriate during this particular attachment.) 

the name of a (72-bit) variable to record the response 

of this request •• i.e., in which to receive the reflected 

error messages, warnings, or other advice from the modules 

that are the dynamic descendents of this call. 

The MPM (Reference Data Sections 1.4, and 1.41) maintains an up-to­

date list of all the DIMs that one can designate in an attach call. This 

reference also provides the subsystem writer a complete list of function 

calls besides attach, detach, read and/or write that are meaningful for 

each system-supplied DIM. The same reference supplies a list of the de­

fault modes that are set for use in'package I/O read/write calls. The 

coding for modes recognized by the system-supplied DIM's is explained in 

the same reference. (Subsystem writers who must write their. own DIM's are 

urged to follow this cod~ng although the particular code scheme that one 

devises is up to the DIM designer, since the I/O control module simply 
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transmits this code to the target DIM and is otherwise oblivious to it,) 

The mode code for system-supplied DIM's is simply a character string 

of concatenated pre-defined code charctcters, one or mo,·e characters per 

each~' access or data mode. For example, a mode code to attach a 

tape unit for reading only (use), forward only (access) and only logical, 

linear records (data) would be the concatenation, "RFGL" for _Eeadable, 

_!orward, lo_sica l, _!inear. 

In the initial Multics implementation the mode argument may be null 

(i.e.,"") because the I/O switch is not progranuned to check the mode. 

Ultimately, however, it is planned that the "switch" will check the use 

code portion of the mode argument (i.e., to see if codes R, for readable, 

and/or W for writable are compatible with the attached device) and will 

pass the remainder of the mode argument (access mode and data mode codes} 

to the DIM for further compatibility checks. 

A complete explanation (interpretation) of the output argument called 

status is also maintained in the same Reference Data Section (1.4). Many 

of these error explanations should make more sense upon completing the 

reading of this section (8.4). Atte'mpts to attach a device should fail 

if there is an incompatibility of the supplied arguments either with what 

is already recorded in the attach table for the process, or with what is 

recorded in or known about the target DIM. 

An attempt to attach a named segment for use as an input file will 

result in an error status return from ios_$attach if the specified segment 

cannot be found. An attempt to attach a specified segment for use as an 
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output file will result in one of two actions. If the segment cannot 

be found, then one will be created and'used (without comment). If 

the segment is found, writing into it will be by appending to the end 

of it. 

In MPM parlance the I/O control module (which maintains the attach 

table) is referred to as the "I/O switch" because during function calls 

like ios_$read or ios_$write, the job of this module is to route or switch 

the incoming call not only to the appropriate DIM, but also to direct the 

call to the appropriate entry within the target DIM. 

Each target DIM has an entry point transfer vector, one entry per 

each of the functions supported by that DIM. The transfer vector is 

consulted when the DIM is called by the I/O switch for routing the call 

to the appropriate functional entry point, e.g., read, write, backspace, 

rewind, etc. A call to a function that is not supported within the parti­

cular DIM (e.g., to read a printer) will reflect an error code when and 

if it is called. (Section 8.5 gives more details on the design of a DIM 

including naming conventions for DIMs and for the calls the DIMs may 

receive.) 

By special design, a user who wishes to provide synonyms for a given 

stream name may do so by executing a call to ios_$attach in which the 

arguments take on their special meaning when the argument called~ is 

supplied with the value 11 syn". For instance to assign the string "his_io" 

as a synonym for an already-attached stream named "her io" one could write: 
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call ios_$attach ("his_io", "syn", "her_io", mode, status); 

8.4.2 ios $detach 

To detach or nullify a previous attachment, i.e., delete the entire 

attach-table entry previously recorded for a given stream name -- remember, 

there may be one and only one entry for each stream name -- one calls 

ios_$detach and names the streamname and, as a redundancy check, the 

(presumed) device associated with that stream. A status return argument 

provides a report of the resulting action. Incompatibility (or invalid­

it~ of the input arguments will rest;lt in an error message reflected from 

the I/O control module (I/O switch). 

The input argument called disposal may be null (i.e., "") for most 

applications. It is planted in this call for future use, to provide special 

instruction to the system or operator for the disposal of dedicated I/O 

devices such as tapes, and/or magnetic tape drives. (Both tapes and drives 

can be co~sidered as independent resources to be disposed of.) 

When fully implemented, a null value for the disposal argument will 

mean: take the default action and close out the device to allow future 

assignment to another user (e.g., dismount the tape). Alternatively, 

a value of "hold" for the disposal argument will mean: keep the device 

active ("I will be back"). 

8.4.3 ios $read 

To execute a read the caller is obliged to name the input stream 

(source) and a pointer argument (workspace) that identifies the destination 
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in the process' virtual memory where the input data is to be transmitted. 

Additional qualifying input arguments are the offset and the number of 

elements, nelem, that are to be read. The offset is from the beginning 

of the workspace in which to begin receiving the input data. [Offset is 

measured in elements where the element size is usually set by a default 

convention for each DIM. Typical element sizes might be 9 bits for 

character-oriented streams or 36 bits for word-oriented streams]. The 

number of elements specified is, of course, subject to the current upper­

bound restraint imposed by the segment size of the workspace. 

There are two output arguments, nelemt and status. The former provides 

a report on the actual number of elements read into the workspace while 

status provides the normal advice on success or degree of success of the 

read operation. The report can reflect error reports transmitted from a 

variety of sources, including t:he GIM, or in the case of the file devices, 

from file system modules. (It may even reflect an error message that 

alerts the user to trouble caused during the preceding transaction -- an 

indication of interest during certain asynchronous reading modes described 

later.) 

8.4.4 ios_$write 

As can be seen from Table 8-1, this call employs the same set of 

arguments. Their interpretation is what would be expected by symmetry 

with ios_$read. The workspace pointer and offset identify the place from 

which writing-out is to begin. The number of elements to be written out, 

nelem, and the number actually written out, nelemt, provide input instruc­

tion and output reporting respectively. Status provides additional infor-
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mation to complete the reporting responsibility. 

8.4.5 Other calls 

Several calls are available to provide the subsystem writer more 

flexibility or control of the use of I/O devices. For instance, 

ios_ $changemode 

allows one to alter the current mode of a given attachment. Several 

calls deal with control over the synchrony of the read or write operations 

and/or of the workspaces employed in these operations. We don't burden 

the reader here with the actual names of these calls or their arguments. 

These can be found in the MPM. We will, however, digress here to discuss 

the subject of I/O synchronization control at a conceptual level. 

Read/write synchrony refers to the type of coupling one wants (loose 

[asynchronous] or rigid [synchronous]) between the actual initiation of 

the I/O transfer and the corresponding read/write call in the user's 

program. Workspace synchrony refers to the type coupling one wants (loose 

or rigid) between the point in time when the I/O workspace has been 

filled/emptied and the point in time when the program may resume execution 

beyond the read/write call (that would cause the workspace to fill/empty.) 

These two types of synchronization are mutually orthogonal, so a user may 

wish to specify particular combinations for his subsystem application when 

other than the systemwide default selections are wanted. The next few para­

graphs elaborate on each type of synchronization control and suggest several 

app lie a tions. 
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Read (synchronous ~ asynchronous) 

Shall "read-ahead" be permitted or not? That is the question, By 

read-ahead (asynchronous) we mean permitting the system to anticipate our 

program's read request by issuing an I/O order to read the attached device 

before our program actually executes the corresponding read call. Read­

ahead is what is meant by read asynchrony and is precisely what is 

wanted in the typical console read operation. This allows the information 

that the user types ahead to be available in core when the program issues 

the read call. Hence, the system's default mode for typewriter input is 

asynchronous. 

A read synchronous operation implies, "Don't read a thing from the 

device until a call for it has been issued, This input mode lock-steps 

a user to the program, thus in effect reversing the normal master/slave 

interactive relationship between them. Now the program is in control of 

the user rather than vice versa. Read synchronous might be useful in 

certain computer-assisted instruction applications or in situations where, 

say, no fQrther requests may be accepted from an inquiry station that is 

attached to a subsystem. 

Write_ (synchronous ~ asynchronous) 

Shall "write-behind" be permitted or not? This is the question here. 

If so, then return is possible from the write call before all output infor­

mation designated in the write call has been transferred to the device. In 

most applications write asynchronous is acceptable and in fact, highly desir­

able for the sake of efficiency (so long as it is safe). Write asynchronous 
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is the system's default decision. There are cases, however, where write 

synchronous operations are required. The system, for example, uses this 

mode of output during automatic logout of a user to be sure that all mes­

sages and other I/O transactions have been completed before taking subse­

quent action. 

Workspace (synchronous ~ asynchronous) 

Shall permission to return from a read/write call be permitted before 

the workspace designated in that call has been filled/emptied? That is the 

question asked here. The system's default decision is workspace synchronous 

(i.e., ~ return of control from the DIM until the workspace has been as­

certained to be filled for the designated read (or emptied for the desig­

nated write). Conceivably some speedup of a read/write asynchronous action 

can be achieved by opting for workspace asynchronous but this is risky 

practice beca~se a succession of reads (or writes) could conceivably cause 

chaotic overlaps in the workspace areas; so, unless there is a special 

purpose application where the user feels safe in doing so, workspace asynchron­

ous is not recommended. 

To summarize our foregoing discussion, the defaults for the synchron-

ization options are: 

1. reading is asynchronous 

2. writing is asynchronous 

3. workspace use is synchronous 
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Still other calls provide the user an opportunity for such functions 

- .... ,~' 
as abandoning data piled up as read-ahead in the input workspace so as to 

reuse this space for new reads. A symmetrical call aborts any, as yet 

physically unwritten, data that may be piled up as write-behind in the 

output workspace. These calls may be especially useful for designers of 

subsystems dealing with typewriter-like consoles where the read-ahead or 

write-behinds can become numerous in certain conversations. Often the 

need to reset the current pointers in the read or write workspace becomes 

essential to avoid frustrating the console user, for instance by accepting 

previously typed but now undesirable input or by typing out now unwanted 

results. 

Still other calls allow the user to control (or determine) the size 

of input or output elements for next (or current) reads or writes. These 

calls may be useful in certain applications where the device is the type-

writer or a file. 

In addition~ there are ios_ calls to allow the user to control (or 

determine) the set of read delimiters and/or break characters in input 

streams. Read delimiters are used to condition read calls (e.g., the new 

line character for typewriter read calls) so they halt their scan of the 

input buffer after a read delimiter is seen (and transmit all characters 

seen up to that point, i.e., up to and including the read delimiter~ to the 

user). Break characters are used to control the action of an "interactive" 

channel so that it will trigger a hardware interrupt (when such a character 

arrives over the channel), so as to make all data read since receiving 
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the last break character available to the user. Break characters are 

useful to achieve a form of code conversion or editing known as 11cannoni­

calization11 (see MPM, Section 2.5 for an orientation and a full explana­

tion). They are also used to achieve erase and kill effects. These, 

too, are a form of imn1ediate editing that has been found essential in the 

the typing of input streams. (Section 2.5 of the MPM elaborates). For 

typewriters, new line is not only set as the read delimiter but is also 

set as a break character. 

When segments are attached as pseudo input devices, say for absentee 

jobs, it would be nice if the file system interface DIM could respond 

to both read delimiters and to break characters in input messages so as 

to fully simulate the action and effects of, say, reading typewriter input 

data. Although the file system interface DIM does accept delimiters (e.g., 

new-line), it does~' however, accept break characters, because it is 

not an interactive channel. Another point to note is that, as a result of 

a design decision, the file system interface DIM supports (permits) no 

code conversion during input from a segment. 

The default values of new-line for the read delimiter and 9 (bits) 

for element size make it especially easy to have segments substitute for 

typewrite~ devices (that transrnit ASCII character strings). But the user 

may choose any read delimiter and/or any element size simply by executing 

appropriate calls to ios_$setdelim and ios_$setsize for the streamname 

in question. 
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The fact that the file system interface DIM does not itself produce 

code conversion during input from a segment is no serious restriction 

either. The user's program that invokes the action of the file system 

DIM is certainly free to perform the needed conversion steps either 

before or after the simulated input operation. 

Finally, as if this portfolio of possible user-originated I/O control 

were not enough, the Multics designers have planned an open end to the 

list in the form of a special, catch-all call, 

ios_$order 

This call permits the sophisticated subsystem writer to transmit special 

requests to the target DIM of subsequent read/write calls, such as the 

setting of hardware device modes on typewriters or tape drives, e.g., 

red or blue ribbon, high or low tape density. 

8.5 Designing a DIM 

Users may write non-privileged device interface modules* for a variety 

of purposes, usually to control a particular device or set of devices, but 

occasionally to serve as an intermediate interface with existing DIMs. 

To construct a DIM that controls an actual device the subsystem designer 

must become thoroughly acquainted with the channel adapter that communicates 

with the device (or its controller). The channel adapter is connected to 

* The current implementation of Multics includes certain privileged 
(ring-0) system DIM's designed to satisfy certain high-performance 
requirements (e.g., typewriter response). The design details of 
these system DIM's are not considered in this Guide. 
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the GIOC. Additionally the programmer must become acquainted with the 

GIOC hardware, and with the software module that manages this hardware 

and that interfaces with the DIM on its out-going end. He must also 

be familiar with the system-supplied I/O switch which must call the DIM. 

The DIM is the only module in the chain of calls that knows about the 

I/O device being controlled. On the user's side of the DIM the I/O switch 

routes the user's call to the proper DIM, checks for and transmits compatible 

sets of arguments, otherwise generating and returning appropriate error 

messages generated as a result of the I/O action itself. On the device 

side of the DIM the GIOC Interface Module (GIM) transmits control informa­

tion to the GIOC, selects and reacts to interrupts received from the GIOC, 

and interprets and transmits status information to the DIM. The GIM also 

allocates and controls the use of channel buffers that must necessarily 

lie outside the user's virtual memory space. The GIM is designed so it 

need not care how the user makes use of a channel that it, as GIOC "manager", 

assigns to the user (through the DIM). Of the three modules in the chain, 

namely the I/O switch, the DIM, and the GIM, it is the GIM alone that 

provides for the system's safety in carrying out these various functions. 

A user may also design a pseudo DIM which acts merely as an intermediate 

module between the I/O switch and one or more existing DIMs. To write a 

pseudo DIM one need know nothing about the GIM or the hardware it serves. 

A "broadcaster" module would be an example of such a pseudo DIM. 

Its purpose might be to receive a single write call from the I/O switch 
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and convert it to two or more ios_$write calls via the switch, this time 

to the actual DIM or DIMs that will in turn cause replication of the message 

on the devices in the "broadcast'' set. 

Schematically, this idea is easily displayed. For example, we may 

picture a call of the form: 

call ios_$attach ("A", "broadcast", "C", "D", "E", mode, status); 

where we assume that "C", ''D", and "E" are I/O stream names that are them­

selves already attached (to their respective devices). 

The coding for the broadcast pseudo-DIM would then be such as to 

anticipate and process a call of the form 

call ios_$write ("A", workspace, offset, etc.); 

so as to generate and execute the following three calls (and then return); 

call ios_$write ("C'', workspace, offset, etc.); 

call ios_$write ("D", workspace, offset, etc.), 

call ios_$write (''E", workspace, offset, etc.); 

In the subsections which follow we recite in a more systematic fashion 

a "checklist" of things a DIM writer needs to know. 

8.5.1 Conformity with other DIMs 

There are some general rules of conformity that are worth reviewing 

when approaching the design of a DIM. These ideas are given here. 
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1. It goes without saying that a DIM or pseudo DIM designer must become 

acquainted with and try to adhere to all the ios conventions for 

communicating between the user and the I/O system. In this way the 

new DIM can be used interchangeably with other DIMs and thereby 

preserve the appearance of device independence, Conventions which 

are enumerated in the BF sections of the MSPM have to do with: 

(a) interpretation of error codes, 

(b) attach modes, 

(c) treating default strategies re: element size, read delimiters, etc. 

2. In the same spirit of maximizing uniformity of application, calls to 

ios through the switch should be matched to the device's functions 

in a meaningful way, if necessary, using the many special calls 

already in use by other system-supplied DIMs, e.g., ios_$changemode, 

ios_$setsize, ios_$seek, ios_$tell, etc., and as a last resort, 

ios_$order. 

Achieving this type of conformity can well have a high payoff during 

the debugging of a new subsystem that includes a new DIM. Remember 

that during early debugging of the subsystem the actual I/0 device 

will probably not be physically connected to the system, So, the 

device will have to be simulated by using existing equipment, using 

the existing system-supplied DIM. (Letting the device be represented 

by a file and using the existing file DIM is regarded as the best 

choice.) Cutover to the actual DIM and the actual device should there­

fore present fewer problems if the new DIM presents a similar inter­

face as the one used in the preliminary testing. 
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3. As a general rule of good design the DIM should be constructed to 

expect any reasonable ios call and do something sensible with it, 

i.e., not reject it. For example, if a device has only one read 

delimiter, say the new line character, then a call tnansmitted via 

the I/O switch to set the delimiter to new line should be accepted, 

(and of course ignored), 

8.5.2 The ~ Interface with the I/O switch 

When the call to ios_$attach is received by the I/O switch it in turn 

calls the attach entry of the target DIM. The latter must be coded to 

return a device pointer which can be used as an argument during subsequent 

function calls transmitted through the switch. 

The I/O switch employs a special naming convention in designating the 

appropriate entry point in the DIM target. The switch is coded to accept 

a call of the form: 

call ios_$attach (ionamel, type, etc,); 

as signifying that there exists a transfer vector in the target DIM's 

linkage section whose elements point, via links, to the respective func­

tional entry points in the target DIM. This transfer vector begins at 

type$type. For ~xample, suppose one were writing a special DIM for the 

pdp7 computer regarded as a peripheral device. If the DIM is given the 

type nailie 11 pdp7 11 , and if the call to attach were: 

call ios_$attach ( 11 input7", "pdp7", etc ..... ); 

then the I/O switch assumes that the segment <PdP7> has an entry point 

located at <PdP7>1£pdp7] at which there is to be found a vector of transfer 
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instructions, one to each supported functional entry point in the DIM. 

Since the order in which these entry-point transfer instructions appear 

is fixed by still another system-wide convention for all DIMs*, the I/O 

switch is able to execute a call to the desired point (offset) in the DIM's 

transfer vector so as to reach the desired functional entry point. Thus, 

if the standard position for the read entry transfer is the third element 

in the vector, then a function call of the form 

call ios_$read ("input?", workspace, offset, etc.); 

would find the I/O switch transferring into the third element in the 

transfer vector of <Pdp7>, i.e., at <Pdp7>j [pdp7] +2. Here it would be 

expected to find the assembled code for an instruction like 

tra read-*,ic* 

which transfers to the link named read whose contents, when snapped, will 

be an its pair pointing to where the DIM designer has placed the DIM's 

read function. 

The DIM must be written in such a way as to return an error indica-

tion when there is an attempt by the switch to transfer to an entry point 

that corresponds to an unsupported I/O function. Here again, status re-

porting of attempts to utilize an unsupported function of a DIM is to 

be handled in convention-set way. ~he transfer vector element that would 

* The particular order of these entries is to be found in a listing 
of the so-called "transfer vector template" which appears in the 
MSPM section that overviews the I/O system. 
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correspond to an unsupported function, e.g., ios_$seek for the typewriter 

DIM, is coded to send control to a small subroutine of fixed form* which 

fabricates the appropriate "entry-not-found" status word and returns to 

the I/O switch that called it. 

By way of summary it is well to repeat that the DIM writer can only 

supply as entry points a subset of those which are in the ''vocabulary" of 

the I/O switch (currently those twenty or so entry points given in the 

ios_ section of the MPM.) 

8.5.3 The DIM 1 s Interface with the GIM 

With each read/write function call, the DIM fabricates Data Control 

Word lists (DCW lists) and passes these to the GIM for further modification 

and use. There is a series of calls outlined in the MSPM and in the MPM 

under "GIOC calls" which the DIM must make in order to give the GIM an 

opportunity to 11set itself up" to receive and employ these DCW lists and 

to perform its various communication tasks. To make much sense of these 

calls the reader must acquaint himself with the GIOC hardware system 

reference manual. It is beyond the scope of this Guide to provide a suffi-

ciently detailed explanation of the GDOC to make the DIM's calls to the 

GIM thoroughly meaningful. 

* More details can be found in the same MSPM discussion that was 
cited in the preceding footnote. 
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A few general concepts can be conveyed here however. First, it should 

be understood that the GIM's work areas and I/O buffers must be wired down 

because they can only be referenced by the GIOC in an absolute addressing 

mode. The work areas are used for DCW lists that are compiled by the DIM 

and moved by the GIM from the virtual memory work areas designated by the 

DIM in its principal call on the GIM (at the entry point hcs_$list_change). 

These transmitted lists are transformed by the GIM before being activated 

so that the address fields in the DCWs are in loaded-and-ready-to-use 

absolute form. The work areas are also used for holding status words 

received from each channel and periodically copied over to corresponding 

work areas in the DIM's (virtual memory) data base. 

The I/O buffers are also necessarily wired down and are referenced 

by the GIOC in absolute mode, The output buffer holds the actual data to 

be written out onto the channels. This data is copied by the GIM into its 

buffer from a corresponding buffer previously established and filled by 

the DIM. Similarly the GIM's input buffers are necessarily wired down and 

filled directly by action of the GIOC during input channel activity. This 

data is copied by the GIM from this buffer back onto the data array 

designated by the DIM. The GIM knows how to move data into its output 

buffer or out of its input buffer to/from the corresponding DIM data arrays 

because the call(s) made by the DIM to the GIM (at hcs_$list_change) 

provide the required pointers. 

When the DIM is ready to ask the GIM to activate a DCW list, i.e., 

actually start the I/O (physically), the former makes a call requesting the 
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GIM to transmit a Channel Instruction Word for processing by the GIOC's 

so-called connect channel. 

Prior to transmitting a DCW list the DIM must issue two preliminary 

or "set-up" calls to the GIM. The first call (to hcs_$assign) affords the 

user access to the desired channel. The DIM requests such access by supply­

ing a symbolic name and receiving in return a uniquely-generated device index 

(17 bits) to be used in all subsequent I/O calls to the GIM for service 

on this channel. In the same call the DIM transmits an event channel name 

as an argument. This argument would be previously obtained from the inter­

process communication facility (IPC} as a result of a call to ipc_$create_ 

event channel. It is by this event channel name that the process, when 

later blocked awaiting completion of a requested I/O operation, can be 

awakened by the GIM. The GIM acts as the interrupt handler for all I/O 

interrupts. It consults a privileged table which it maintains wherein are 

recorded the channel name, device index, process_id, event channel name 

4-tuples. DIMs are normally programmed to call ipc_$block when processing 

reads or writes that are synchronous or when the read-ahead or write-behind 

buffers are filled. 

Once the assign call has been successfully completed, the DIM, using 

~he received device index as its key argument, can call the GIM again. 

This time the request is for the GIM to allocate sufficient wired down 

work space for the DCW list to be designated in subsequent calls that cause 

the DCW lists to be transmitted to that work space and assembled into 

~~loaded" form. 

. ' 
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The reader has hopefully been treated to the promised sketch of the 

DU1/GIM interface and is now on his own, ready for independent study, 

except for a few final remarks in the next section. 

8.6 Final Remarks 

A tour through the I/O system design would not be complete without 

observing that the I/O switch ~ DIM ~ GIM ~ GIOC chain is not absolutely 

mandatory as the only path allowed by :r-tultics for I/0. A sophisticated 

subsystem desi~ner will be the first to recognize that the I/O switch ~ DIM 

portion of this chain is strictly for user convenience. In principle, be­

cause the GIM may be called directly by the user, there is no reason why a 

designer could not bypass the I/O switch and DIM altogether for I/O to some 

special purpose or dedicated devices and communication or channels. 

In essence the subsystem would be written with code that achieves the 

equivalent of many I/O switch and DIM functions but calls the GIM directly 

using calls such as those suggested in Section 8.5.3. At all events the 

subsystem designer who chooses to travel this route should profit by a 

careful inspection of the I/O switch and DIM functions before launching 

into his own design that would allow a bypass of these modules • 
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