
1 ,
j -

I ,
"

HONEYWELL EDP

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: April 25, 1966

8828
7366

Printed in U. S. A.

-

- - SOFTWARE MANUAL

1 SERIES 200 I
, I

COBOL COMPILER B I

SERIES 200/BASIC PROGRAMMING SYSTEM

Programming and Operating Procedures for
COBOL Compiler B.

This manual completely supersedes the pre­
liminary software bulletin COBOL Compiler
B (File Number 122.1205. OOOB. 1-028) dated
January 14, 1966.

,:~

FILE NO:. 123.1205. OOOB. 0-292

'~When ordering this publication please specify
Title and Underscored portion of File Number.

I

PREFACE

This software ITlanual is intended to be used only for reference and recall purposes by pro­

graITlITlers having previous COBOL knowledge or experience. It is not intended to be a self­

teaching guide. Those with no previous COBOL background are directed to the publication set

entitled Study Guide: COBOL PrograITlITling, Order NUITlber 260. This study guide, consisting of

three books, begins with the basic eleITlents of COITlputers and data processing in general, con­

tinues through an explanation and exaITlples of each basic language eleITlent, and concludes with a

series of saITlple prograITlITling techniques and routines. A cOITlpanion publication entitled Study

Guide: Easytab SysteITl, Order NUITlber 281, is also suggested as a prerequisite for those using

COBOL B as part of the Easytab prograITlITling systeITl.

This reference ITlanual is organized according to the logical path followed in writing a

COBOL prograITl. The order also parallels that of the reference ITlanuals for the other Honeywell

COBOL cOITlpilers to facilitate cross-referencing aITlong theITl.

The reader has a choice of using this ITlanual in its bound forITl (as distributed) or inserting

it in a three-ring binder with the staples reITloved. The loose-leaf usage perITlits easy updating

by ITleans of addenda, which are distributed in the saITle ITlanner as the ITlanual. The cover of

each addenduITl indicates the pages to be replaced and the reasons for the revisions. Revision

pages are dated and indicate, via bars in the ITlargin, what changes have been ITlade in the text.

The only exception to this notation occurs when an entire section is replaced. In this case, the

change or addition is noted on the cover and no bars appear in the ITlargin. When a revision page

replaces an existing page, the existing page is discarded and the new page inserted. When a page

is to be inserted between existing pages, a deciITlal page nUITlber is used. For exaITlple, a page

to be inserted between pages 4 and 5 of Section VI is nUITlbered 6-4.1. Whenever a revision is

ITlade to the ITlanual, it is suggested that the user enter the date of the revision on the log sheet

provided in the front. In this way a record can be kept which will aid in ascertaining that all

available revisions have been received and entered in the ITlanual.

Copyright 1966
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

.'--'"".

ACKNOWLEDGEMENT

The following acknowledgement has been reproduced from COBOL Report
to Conference on Data Systems Languages, U. S. Department of Defense, 1961,
at the request of the Conference.

"This publication is based on the COBOL System developed in 1959 by a
committee composed of government users and computer manufacturers. The
organizations participating in the original development were:

Air Materiel Command, United States Air Force
Bureau of Standards, Department of Commerce
David Taylor Model Basin, Bureau of Ships, U. S. Navy
Electronic Data Processing Division, Honeywell Inc.
Burroughs Corporation
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand Corporation

In addition to the organizations listed above, the following other organiza-
tions participated in the work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Corporation
General Electric Company
General Motor s Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Standard Oil Company (N. J.)
United States Steel Corporation

This COBOL-6l manual is the result of contributions made by all of the
above-mentioned organizations. No warranty, expressed or implied, is made
by any contributor or by the committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

It is reasonable to assume that a number of improvements and additions
will be made to COBOL. Every effort will be made to insure that the improve­
ments and corrections will be made in an orderly fashion, with due recognition
of existing users' investments in programming. However, this protection can
be positively assured only by individual implementors.

Procedures have been established for the maintenance of COBOL. In­
quiries concerning the procedures and the methods for proposing changes
should be directed to the Executive Committee of the Conference on Data Sys­
tems Languages.

The authors and copyright holders of the copyrighted material used herein:
FLOW-MATIC (Trademark of Sperry-Rand Corporation), Programming for the
UNIVAC@ I and II, Data Automation Systems © 1958, 1959, Sperry-Rand Corpora­
tion; IBM Commercial Translator, Form No. F 28-8013, copyrighted 1959 by
IBM; FACT, DSI27A5260-2760, copyrighted 1960 by Honeywell Inc. have spe­
cifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

Any organization interested in reproducing the COBOL report and initial
specifications in whole or in part, using ideas taken from this report, or utiliz­
ing this report as the basis for an instruction manual or any other purpose is
free to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention "COBOL" in acknowl­
edgement of the source, but need not quote this entire section. "

iii

MANUAL REVISIONS

As each set of revision pages is received and inserted into this manual, enter the revision date

below.

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

/ / / / / / / /

iv

•

Section I

Section II

Section III

Section IV

Section V

TABLE OF CONTENTS

Introduction•....•...••.
Equipment Requirements •
Symbology .••••••••••••• .

Page

0-1
0-1
0-2

Elements of COBOL B Language •••••••••••••••••••••••••••• 1-1
Program Structure. .. 1-1
Character Set••.......•••...•.......••.•..•...••••
Words•...••...•...••...........••••.•••.•...
Punctuation. •........•.•..•....•.•..•..•..•.•..•.•..•...
Literals•.•.........

Non-Numeric Literals
Numeric Literals.

Figurative Constants•..•.........••..............
Source-Language Reserved Words ••••••••••••••••••••••••
Source-Language User-Created Names (Non-Reserved

Words)•.••..•..............•.••........
General Syntactical Structure of COBOL Source Language .•

Statement s • • • • • • • • • • • • • • ••••••••••••••
Sentences ••

Imperative Sentences .••••••••••••••
C onditi onal S entenc e s ••••••••••••••••••••••••••••••
Compiler-Directing Sentences ••••••••••••••••••••••
Punctuation of Sentence s

Paragraphs ...•......................•............
Subscripting .. .

Reference Format ••
Card Format .•••

Sequence Number Field .••••••
Area A ...•••.•..
Area B•..
Remarks Field.

......................

Continuation of Source -Coding Line ••••••
Keypunching the Source Program.

Programming Conventions •••••
Keypunching Conventions ••••••••

The IDENTIFICA TION DIVISION.
Division Format ••••••••••

The ENVIRONMENT DIVISION
Structure•...
Formats and Entries in the ENVIRONMENT DIVISION •••••••

CONFIGURATION SECTION ••••••••••••••••••••••••••.
SOURCE-COMPUTER ••••••••••••••••••••••••••
OBJECT-COMPUTER ••••••••••••••••••
SPECIAL-NAMES •••••••••••••••.•••••••.•••••••.•.

INPUT-OUTPUT SECTION •••••.•••••••.••••••••••••••

1 -1
1-2
1-2
1-3
1-3
1-3
1-3
1-4

1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-5
1-6
1 -6

2-1
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5

3-1
3-1

4-1
4-1
4-2
4-2
4-3
4-4
4-5
4-6

The DATA DIVISION. • . • • • • • • • • • •• 5-1

v

Section V (cont)

Section VI

TABLE OF CONTENTS (cont)

Structure
File Description Entry •••••••••••

FILE DESCRIPTION .•••••••••
BLOCK CONTAINS .••••••••••
DA T A RECORD(S) .•••••••••••
FD
LABEL RECORDS ••••••••••••
VALUE OF ..•..•...•...•••..

Record Description Entry ••••••••••••••••••••••.
RECORD DESCRIPTION •••••••••••••••••••••
Data-Name /FILLER ...•...••......•.................
Level-NUn1ber .•.....•....•..
OCCURS ...••.•......•••..
PIC TURE •••••••••••••
REDEFINES ••••••••••

DA T A DIVISION Section Entrie s
FILE SEC TION •••••••••••••
WORKING-STORAGE SECTION

VALUE•

The PROCEDURE DIVISION •••••••••
Statements
Sentences.

Imperative Sentences •••••••••
Conditional Sentences •••••••••
Compiler-Directing Sentences.
Sentence Execution •••••••••••
Control Relationship Between Procedures •••••••••.•••••

Par agr aphs•....•.•.........................••......
Conditionals
PROCEDURE DIVISION Verb Formats and Verb

Descriptions •••••••••••
ACCEPT ••
ADD ••••••
ALTER•....
CLOSE ••••.•••
DISPLAy •••••.
DIVIDE •...•..........•......
ENDACOBOL ••••••••••••••••
EXIT •••
GO TO

.
IF ••••
MOVE
MULTIPLy ••••••••••••
NOTE•...........
OPEN.
PERFORM.
READ

vi

Page

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-8
5-9
5-10
5-11
5-12
5-13
5-19
5-19
5-19
5-20
5-22

6 -1
6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4

6-5
6-5
6-6
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-17
6-18
6-19
6-20
6-21
6-23

Section VI (cont)

Section VII

Section VIII

Section IX

Appendix A

Appendix B

Appendix C

TABLE OF CONTENTS (cont)

STOP•...........•.....
SUBTRACT •••••••••••••.•••
WRITE•.•.......

Input/Output Procedures •••••
Buffer s•..•.....
Physical Format of Tape. • • • • • • • • • • • • • • • ••••••••
Tape Swapping ...••.......•.•.......•.......•......•....
Non-Tape Files.•••.........
I/O Halts
Peripheral Address Assignments

Operating Instructions. • . . • •
Compiler Program Operating Instructions ••••••••••••••
Object Program Operating Instructions •••••••••••••••

Loading frolll Tape•... . .••......•.......
Loading from Cards

Compilation Listings and Diagnostics ••••••••••••••••••••
Source Program Listing and Embedded Diagnostics •••••
Object Code Memory Map .••••••••

Subroutine Information •••••••••
Data Division Information ••••••.

Punctuation Table. • • • • • • • • • •• • ••.•.••
Index Register Table •••••••••....•••••
PROCEDURE DIVISION Information.

COBOL Reserved Word Lists •••.••
COBOL B Reserved Word List .•
Honeywell COBOL Reserved Word List

Tables•..............................

The Update B Program ••••
Input .•............•... . '

Old SLT•..••.......•.
Control Deck ••••••••••••••
Input Prograrns ..••••....•.•.............•.....•.•.•.

Card Input ..•.......•..•.•......................
Tape Input•..••.......••...•..........

Binary Run Deck Format ••••••••••••••••
Self-Loading Format. • . • • • • • ••••••.•

Output•....
New SLT •••••••••
Directory Li sting.

Director Cards •••••••••••••••••••••
Control Header Card ..•••.•..•..•....•.•.•.•.......
Action Directors .••.•••.•.•.•••.......•••.•..•....

Insert Director ..••••••.•.•.
Delete Director••••.........•.•...•.....
Copy Director .•••.••...•.••.•......•...•••..

vii

Page

6-24
6-25
6-26

7-1
7-1
7-1
7-2
7-2
7-2
7-4

8-1
8-1
8-2
8-2
8-2

9-1
9-1
9-1
9-1
9-3
9-3
9-3
9-4

A-I
A-2
A-4

B-1

C-l
C-l
C-l
C-l
C-l
C-2
C-2
C-2
C-2
C-3
C-3
C-3
C-3
C-4
C-5
C-5
C-6
C-6

Appendix C (cont)

Appendix D

Figure C-1.
Figure C-2.

Table 0-1.
Table 7-1.
Table 7-2.
Table 9-1.
Table B-1.
Table C-I.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
TableC-7.
Table C-8.
Table D-1.
Table D-2.

T ABLE OF CONTENTS (cont)

Page

Replace Director ••..••••..••....•••.•••••.••••••••• C-7
Trailer Card•............... C-7

Operating Procedures .••••••••••••••••••••••••••••••••••• C-7
Setup and Loading Pr ocedure s for Update B .•••••••••••• C - 8

Loading Update B from Cards •••••••••••••••••••••.. C-8
Loading Update B from Tape with a Console Call

Card•............•....................... C-8
Loading Update B from Tape without a Console

Call Card. •. C - 9

Update B Programmed Halts •••••••••••••••••.•••••••• C-9
Loading Programs from the SLT •••••••••••.••••••••••••• C -10

Operating Characteristics .•••••••••••••••••••••••••••• C-IO
Tape Search B Programmed Halts .••••••.••••••••••• C-II

Loader B oil •• D-l
Equipment Requirements for Loader B •••••••••••••••••••• D-I
Program. Loading .•................................... oil. D-l

Loading froIll Cards ...•.............................. D-l
Loading froIn Tape .. oil. oil •• oil •• oil. oil ••• oil. oil •••••••• oil. oil •• oil •• D-l

Loader B Programmed Halts ..••••••••••••••••••••••••••• D-2

LIST OF ILLUSTRATIONS

The Update B Program .•••••••••.•••..••.•••••••••••••.••.• C-3
Self-Loading Tape (SLT) Format •••••••••.•••••.•••.••...••• C-4

LIST OF TABLES

Equipment Requirements for COBOL Compiler B ••••••••••••••
Input/Output Device Halts at Object Time .••••••••••••••••.•••
Standard Peripheral Address Assignments ••••••.•••••••••••••
Summary of Diagno stic Keys ••••••••••••••••••••••••••••••••
Character Correspondence Table •••••••••••••••••••••••••.••
Control Header Card•........
Insert Director Card ••••..•.••••••••••••••••.•••••••.••..••
Delete Director Card •••.••••••••••••••••••••••••••••••••••
Copy Director Card .••••••••••••••••••••••••••••..••••.•••
Replace Director Card .•••••••••••••••••••••••.••••••••••••
Trailer Card ••••••••••••••••.•••.••..••..•••••••.••••••••.
Update B Programmed Halts •••••••••••••••••••••••••••••••
Tape Search B Programmed Halts •••••••••••••••••••••••••••
Console Call Card Format .••••••••••••••.••••••••.•.•••••••
Programmed Halts for Loader B .••••••••••••••••••••••••••.

viii

0-2
7-3
7-4
9-2
B-1
C-4

C-5
C-6
C-6
C-7
C-7
C-9
C-12
D-I
D-2

"

•

1

INTRODUCTION

This publication defines the COBOL language elements available for the Honeywell Series

200 COBOL Compiler B, which operates on any Series 200 computer having a minimum of 8, 192

characters of main memory and the other equipment outlined in Table 0-1. The compiler opera­

ting procedures and input/output considerations are also presented, along with a discussion of

compiler listings and diagnostic messages. Descriptions of both the Loader B and Update B

programs are included in Appendix C and Appendix D.

COBOL is an easy-to-learn programming language designed primarily for commercial ap­

plications. Using a subset of the English language, COBOL follows format and usage conventions

which are familiar to the English-speaking person. Among the major advantages of COBOL are:

simplicity - programs coded in COBOL language can be written, read, and understood by non­

technical personnel with minimal background in the data processing field; shorter training time -

training time is reduced, not only for the novice but also for the experienced COBOL programmer

being retrained for another computer; compatibility - programs written for one model of com­

puter can easily be modified to run on other models, either of the same or of another manufac­

turer. When used as part of the Easytab1 programming system, COBOL B is particularly use­

ful in programming tab operations not covered by any of the precoded Easytab Utility Routines.

EQUIPMENT REQUIREMENTS

The Series 200 equipment which is required or which may be used with COBOL Compiler B

is listed in Table 0-1.

Table 0-1. Equipment Requirements for COBOL Compiler B

AT COMPILE TIME AT OBJECT TIME

EQUIPMENT Quantity Additional Quantity Additional
Required Usable Required Usable

Central Processor with 8K 1 0 1 0
characters of main memory

Additional memory up to a
total of 32K characters 0 1 0 1

The Easytab programming system is further described in the software announcement: Easytab,
"-' Order Number 1 04. Programming and operating information for the Easytab Utility Routines

can be found in the software manual entitled Easytab Utility Programs, Order Number 206.

0-1

INTRODUCTION

Table 0-1 (Cont). Equipment Requirements for COBOL Compiler B

AT COMPILE TIME AT OBJECT TIME

EQUIPMENT
Quantity Additional Quantity Additional
Required Usable Required Usable

Advanced Programming In-
structions 1 0 1

Editing Instructions 0 0 1

Tape Control (1 /Z-inch tapes) 1 0 0

Magnetic Tape Units {l/Z-
inch tapes) Z 11 0

High-Speed Printer 1 0 0

Extension of Print Line to
13Z Characters 0 0 0

Card Reader /Punch 11 0 0

1 The additional output device required may be either another tape unit or
a card punch.

SYMBOLOGY

0

0

1

8

1

1

1

The symbology adopted for the repr~sentation of values in examples and illustrations is

that used in the Department of Defense publication Report to Conference on Data Systems Lan­

guages, 1961. The CODASYL notation is as follows:

1. LOWER-CASE CHARACTERS represent information that must be supplied
by the programmer.

2. UPPER-CASE CHARACTERS THAT ARE UNDERLINED are key words
and must be used when the functions of which they are a part are used.

3. UPPER-CASE CHARACTERS THAT ARE NOT UNDERLINED are words
reserved by the COBOL compiler but that are optional when the functions
of which they are a part are used. They are generally used as docu­
mentation.

4. BRACES { } indicate that a choice must be made from the contents

enclosed by the braces.

5. SQUARE BRACKETS [] indicate that the contents enclosed are

optional and can be included in the source program or omitted, as desired.

6. SERIES NOTATION. If two or more nouns can be written in a series in a
COBOL statement, commas are shown as connectives in the format

specification. Where a comma is shown as a connective in a format
specification, the comma can be omitted or it can be replaced by "AND"
or by ",/:"AND."

0-2

•

SECTION I

ELEMENTS OF COBOL B LANGUAGE

PROGRAM STRUCTURE

Honeywell COBOL programs consist of four major divisions:

IDENTIFICATION DIVISION - which consists of an indentification of the
source program.

ENVIRONMENT DIVISION - which describes the equipment configuration on
which the object program is to be compiled, the configuration of the equip­
ment on which the object program is to run, and the relationship between
data files and input/output media.

DATA DIVISION - which describes the data to be processed by the object
program.

PROCEDURE DIVISION - which describes the procedures used in manipu­
lating the data.

CHARACTER SET

The complete character set for Honeywell COBOL B consists of the following 45 characters

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (numeric characters)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V,
W, X, Y, Z (alphabetic characters)

blank or space (represented by aLl)

- (hyphen or minus sign)

':' (asterisk)

$ (dollar sign)

, (comma)

(period or decimal point)

" (quotation mark)

(left parenthesis)

(right parenthesis)

Of the above set, the following 37 characters are used for COBOL B words (which can be

from one through thirty characters in length):

A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V,
W,X, Y, Z

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- (hyphen or minus sign)

1 -1

SECTION I. ELEMENTS OF COBOL B LANGUAGE

The characters used for punctuation are:

" (quotation ITlark)

6 (blank or space)

((left parenthesis)

(right parenthesis)

(c OTIlITla)

(period)

Additional characters, used in editing are:

$ (dollar sign)

,~ (check protection sYITlbol)

(coITlITla)

(actual deciITlal point)

All of the above characters are contained in the COBOL character set. In addition, the

Series 200 COBOL prograITlITler can use as characters in non-nuITleric literals (see below) or in

the sequence nUITlber field any characters included in the Series 200 high-speed printer charac­

ter set that are not included in the COBOL set or any character that can be punched on a card;

however, such characters, acceptable to all Honeywell COBOL cOITlpilers, ITlay be unacceptable

to COBOL cOITlpilers for other cOITlputers.

WORDS

A word is cOITlposed of not ITlore than 30 characters chosen froITl the 37 characters given

in the second character set above. The first 6 characters of a word ITlust be unique within the

source prograITl. A word ITlust contain at least one alphabetic character.

A word is ended by a space or by a period, right parenthesis, or COITlITla. When a word is

ended by a punctuation ITlark, the punctuation ITlark ITlust be followed by a space. While a word

can contain one or ITlore hyphens, a hyphen cannot be the first or the last character of the word.

A literal is a special type of word that is an exception to these rules and is discussed below.

PUNC T UA TION

When a period or a COITlITla, is used, it ITlust iITlITlediately follow a word (no space can in­

tervene) and it ITlust be followed by a space. A left parenthesis ITlust not be followed iITlITlediately

by a space, and a right parenthesis ITlust not be iITlITlediately preceded by a space. A beginning

quotation ITlark ITlust not be succeeded by a space, and an end quotation ITlark ITlust not be pre­

ceded by a space unless such spaces are desired in the literal (see page 1-3).

1-2

SECTION!. ELEMENTS OF COBOL B LANGUAGE

LITERALS

"A literal is an iteITl of data, the value of which is identical to those characters constituting

the literal. It can belong to one of two classes: non-nuITleric or nUITleric.

Non-NuITleric Literals

Non-nuITleric literals ITlust be bounded by quotation ITlarks. These ITlust iITlITlediately pre­

cede the first character of the literal and iITlITlediately succeed the last character.

A non-nuITleric literal can be cOITlposed of any allowable characters (see "Character Set, "

page 1 -1) except the quotation ITlark. All spaces which are enclosed within the quotation ITlarks

bounding a literal are included as spaces in the literal.

A non-nuITleric literal can be £rOITl 1 through 30 characters in length.

NUITleric Literals

A nUITleric literal ITlust contain at least one nUITleric character. Under no conditions can

it contain an alphabetic character.

In addition, a nUITleric literal can also contain as its leftITlost character a plus (+) or a

ITlinus (-) sign. If neither sign is used, the literal is assuITled to be positive.

A deciITlal point (.) can appear within the nUITleric literal except to the left of a + or a -

sign or as the rightITlost character of the literal. Such a point is treated as an iITlplied deciITlal

point. If the deciITlal point is not used, the literal is assuITled to be an integer.

A nUITleric literal can be froITl 1 through 30 characters in length. However, it should not

exceed 18 characters in length if cOITlpatibility with other ITlanufacturers I COBOL cOITlpilers is

a concern.

A literal conforITling to the rules for the forITlation of nUITleric literals but enclosed within

quotation ITlarks is considered to be a non-nuITleric literal and is treated as such by COBOL COITl­

piler B. That is,

-125.65 is not the saITle as "-125.65".

FIGURATIVE CONSTANTS

Certain values have been assigned fixed data-naITles and are called figurative constants.

When used as figurative constants, they ITlust not be bounded by quotation ITlarks. If these fixed

1-3

SECTION 1. ELEMENTS OF COBOL B LANGUAGE

data names are bounded by quotation marks, they are considered to be non-numeric literals.

The fixed data-names and their meanings are:

ZERO

SPACE

QUOTE

Represents one or more ocurrences of the value
o or the character 0, depending on context.

Represents one or more blanks or spaces.

Represents one or more occurrences of the quo­
tation mark (") at object time. The data-name
QUOTE cannot be used to bound a non-numeric literal.

Figurative constants generate a string of homogeneous information whose length is de­

termined by the compiler based upon context. When the length is not deducible from context, a

single character is generated. The figurative constants can be used only in the PROCEDURE

DIVISION and the DATA DIVISION of the source program.

SOURCE- LANGUAGE RESERVED WORDS

The source language consists of reserved and non-reserved words. Reserved words are

those which are required to express a procedure function (such as ADD or MOVE) or to describe

a dat unit, or words which can be used to make a program easier to read.

Reserved words whose use is mandatory are called key words. Reserved words whose use -'

is at the direction of the programmer are called optional words. A complete list of the reserved

words for Series 200 COBOL is given in Appendix A.

SOURCE-LANGUAGE USER-CREATED NAMES (NON-RESERVED WORDS)

User-created names are non-reserved words created by the programmer and used as

literals, data-names, or procedure-names. User-created names may have up to 30 characters.

However, only the first six characters are recognized by the compiler and these six characters

must form a unique name within the program environment. The programmer must be aware that

the reserved words listed in Appendix A cannot serve as user-created names.

GENERAL SYNTACTICAL STRUCTURE OF COBOL SOURCE LANGUAGE

COBOL procedures are expressed in a manner similar to, though not identical to, normal

English prose. The basic unit of procedure formation is a sentence or a group of successive

sentences. A procedure is a paragraph or a group of successive paragraphs within the PRO­

CEDURE DIVISION. The following discussion is more fully developed in Section VI.

Statement s

A statement expresses a processing function or a condition. In general, a statement

1-4

SECTION I. ELEMENTS OF COBOL B LANGUAGE

consists of a verb and its operand, or a condition together with its subjects and objects. There

-----. are three types of stateTI1ents:

1. An iTI1perative stateTI1ent consists of either a verb (excluding cOTI1piler­
directing verbs, see Section VI) and its operands or a sequence of iTI1-
perative stateTI1ents. A sequence of iTI1perative stateTI1ents can contain
either a GO TO or a STOP RUN iTI1perative stateTI1ent. If either is present,
it TI1ust appear as the last iTI1perative stateTI1ent of its (GO TO or STOP
RUN) sequence.

2. A conditional stateTI1ent takes the forTI1:

IF condition iTI1perative-stateTI1ent.

3. A cOTI1piler-directing stateTI1ent consists of a cOTI1piler-directing verb and
its operands.

Sentences

A sentence can be either iTI1perative, conditional, or cOTI1piler-directing.

IMPERA TIVE SENTENCES

An iTI1perative sentence consists of at least one iTI1perative stateTI1ent, the last of which is

terTI1inated by a period. For exaTI1ple, both

ADD A TO B.
ADD A TO B MOVE B TO C.

are iTI1perative sentences.

CONDITIONAL SENTENCES

A conditional sentence consists of a conditional stateTI1ent terTI1inated by a period, such as

IF A EQUAL TO B GO TO C.

COMPILER-DIRECTING SENTENCES

A cOTI1piler-directing sentence consists of a cOTI1piler-directing stateTI1ent terTI1inated by

a period. For exaTI1ple, both

EXIT.
NOTE THAT THE FOLLOWING PARAGRAPH CONSTITUTES THE
ENTIRE INPUT-OUTPUT SECTION OF THIS PROGRAM.

are cOTI1piler-directing sentences.

PUNCTUA TION OF SENTENCES

The following rules apply to the punctuation of sentences.

1. A sentence is terTI1inated by a period.

2. In the COBOL B environTI1ent, a COTI1TI1a is the only legal separator. Use
of the COTI1TI1a is optional; when used, it TI1ust not be followed by another COTI1TI1a.

1- 5

I

SECTION I. ELEMENTS OF COBOL B LANGUAGE

Paragraphs

A paragraph is a sentence or a group of sequential sentences to which a procedure-name

(known as a paragraph-name) is assigned. Because paragraphs are named, they can be refer­

enced from other parts of the PROCEDURE DIVISION of the source program.

Sentences are executed in the order of their appearance within a paragraph. This is subject

to the results of any tests of conditions in the sentences (since such tests could result in control

being transferred to another paragraph). Paragraphs are executed in their order of appearance

within the program, barring any specified transfers of control.

SUBSCRIPTING

The technique of subscripting is most commonly used for table-handling functions. The

ability to reference individual elements (of a table or list) which have not been assigned individual

data-names is provided by using subscripts; the ability to reference the entire table or list is

provided by using the name of the table or list.

A subscript is an integer whose value determines which element is being referred to within

a table (or list) of like elements. The subscript may be represented either by a literal which is

an integer (e. g., 25) or by a data-name (e. g., AGE) which has an integral value.

When the subscript is represented by a data-name, the data-name must be described by a

record description entry in the DATA DIVISION. In both cases, i. e., whether the subscript is

represented by a literal or a data-name, the subscript is enclosed in parentheses and appears

immediately after the terminal space of the name of the element referenced, e. g., RATE (AGE)

or RATE (25). One level of subscripting is permitted.

No element of a table or list can be referenced without a subscript. However, the entire

table can be referenced, provided that the table has been given a unique name. Some examples

of the writing of subscripts are:

MOVE RATE (AGE) TO LISTING.
IF HEIGHT (10) IS GREATER THAN ••••••
MULTIPLY PRICE (STOCK-NO) BY INVENTORY (STOCK-NO).
EXAMINE STATE (REGION) REPLACING ••••••
MOVE RATE-TABLE TO OUTPUT-AREA.

If a data item is repeated (i. e., involves the OCCURS clause at its own or a higher level),

then the name of this item must be subscripted whenever it is referenced. Furthermore, a data-

name can only be subscripted if the data item is repeated.

1-6

SECTION II

REFERENCE FORMAT

The COBOL B source program is written on the Honeywell COBOL Programming Form

(#1523 or #2235). It is from these forms that the source program card deck is punched. Since

the placing of information in specific card columns is imperative, card column numbers are

shown on these forms.

PUNCHING INST.

!!~!!~~-~!!~
COBOL PROGRAMMING FORM cooml I I I I I

.U"C1 J J J J J ·~. __ o" ___

PROGRAM PROGRAMMER DATE REV. NO._ c 1'10 FO .. '" NO.

SEQUENCE ~ A
B

IDENTITY
PAGI: 1..1",1: . , , . 5.,. " " .. " " " "

. 1,1· ·151-, • " .. I .. I" I .. I" I .. I .. I .. I .. I .. I" I .. I .. I" " "

At the head of the form there are numerous blanks which serve program documentation

purpose only (i. e., PROGRAM ____ , PROGRAMMER ____ , DATE ____ ' REV. NO.

). None of this information is punched into the source-language card deck. ---

2-1

N
I
N

(

Honeyw-ell
ELECTRONIC OATA PROCESSING COBOL PROGRAMMING FORM

PROGRAMMER ______ _ ---------- -----

I PAGE I ~ PROGRAM _____ _
I 2 3

F== ,...:
SERIAL Z

0
I U A B

4 5 6 7 8 12 16

I

I I I

I

I

I

I

I I ~~

I

4 5 6 7 8 12 16

(

FOR
PAGE OF __ _

DATE
IDENT ~-- 801

I" -I I I I I I I

(

(fJ

M
()
I-,l
H o
Z
H
r-'

::u
M
t-zj
M
::u
M
Z
()

M
t-zj
o
::u
~
:x:.
I-,l

SECTION II. REFERENCE FORMAT

CARD FORMAT

The card format consists of four fields:

1. Sequence number field

2. Area A

3. Area B

4. Remarks field

NOTE: Column 7 is never used with COBOL Compiler B.

Sequence Number Field

The sequence number field (columns 1-6) may contain any of the 64 legal punches (see

"Character Set," Section I). If the sequence number field of the first card contains all blanks,

the compiler ignores the sequence number field on all cards in the deck. If the sequence num­

ber field of the first card contains any legal punch or punches, a sequence check is performed

by the compiler and a warning diagnostic is issued for each sequence number not greater than

the preceding sequence number.

Area A

All division, section, and paragraph headers, and FD and 01 level indicators must start

in area A (c olumns 8- 11).

Area B

All other text, not falling within the definition of area A, must start in area B (columns

12-72).

Remarks Field

The remarks field (columns 73-80) is ignored by the compiler but reproduced on the output

listing.

Continuation of Source-Coding Line

When it is necessary or desired to continue a line of source coding from one coding-form

line to another, the following rule applies:

To continue a source-coding line on the succeeding form line, the first
continuing word on the second line must begin under Area B (column 12).
As many spaces as desired can follow the last word on the first line, or
the last word of the first line can end at column 72. In any case, a word
cannot be broken or hyphenated. The compiler issues a warning diagnostic
if column 7 contains anything other than a blank.

2-3

SECTION II. REFERENCE FORMAT

KEYPUNCHING THE SOURCE PROGRAM

If the COBOL source program is written on a "free-form" coding sheet, it is important

that the keypunch operator as well as the programmer work within a basic set of rules so that

the source program deck is as free from error as possible. For the programmer, these rules

consist for the most part of the avoidance of ambiguities in his writing and the observance of

the reference format rules given in the first part of this section. The rules for keypunching from

the coding sheet are given below, under "Keypunching Conventions." While individual installa­

tions may have their own special conventions, the following basic rules are suggested.

Programming Conventions

1. The source program should be printed if the programmer's handwriting
is not legible to the keypunch operator.

2. To avoid confusing certain alphabetic characters with numeric digits,
and for clarity for the keypunch operator, the following conventions should
be followed:

0 Alphabetic - written as O.
Numeric - written as 0.

Alphabetic - written as I.
Numeric - written as 1.

S Alphabetic - written with tails to distinguish from
numeric 5.

T Alphabetic - written with a clearly defined crossbar
to distinguish from numeric 7.

D Alphabetic - written with a straight leading line to
distinguish from alphabetic O.

Z Alphabetic - written with a slash (~) to distinguish
from numeric 2.

G Alphabetic - written with a clearly defined crossbar
to distinguish from numeric 6.

U Alphabetic - written with a clearly rounded base to
distinguish from alphabetic V.

V Alphabetic - written with a clearly pointed base to
distinguish from alphabetic U.

E Alphabetic - written with a clearly separated bar to
distinguish from alphabetic B.

B Alphabetic - written with clearly joined rounds to
distinguish from alphabetic E.

SPACE SYMBOL - written as b.. While this symbol does not
always have to occur in a source program
to indicate the presence of a space or a
blank, it should be used whenever the exact
number of spaces to be keypunched is criti­
cal, such as in non-numeric literals.

2-4

SECTION II. REFERENCE FORMAT

3. The reference format for the beginning of entries or statements should be
strictly adhered to.

Keypunching Conventions

1. The entry in the sequence number field is punched in columns 1-6 and may
be any of the 64 legal punches.

2. In no case may there be an entry in column 7.

3. The remaining entries on a line are punched beginning in the column indicated
on the programming form (column 8, 12, or 16) and continue through column
72. In no case can the line be continued into column 73 and beyond.

4. To a COBOL programmer, a "word" can be composed of other than the
alphabetic characters A through Z. It is in the sense of a string of one or
more of any characters except a space that "word" is used in the remainder
of this discussion. Line entries (other than those already discussed) con-
sist of one or more words. Unless a word is followed by a punctuation mark,
it must be followed by a space. Any punctuation mark immediately following
a word must itself be followed by a.space. (It must be noted, however, that
a hyphen can never occur as a punctuation mark following a word and that
unless a hyphen is included between quotation marks, it can never be succeeded
by a space but must be followed by another character. Also, unless a hyphen
is used to indicate a negative quantity, such as -187.35, it can never be pre­
ceded by a space.) Any punctuation mark immediately following a word must
be followed by a space. These spaces following a word or a punctuation
mark can be omitted if the last character of the word or the punctuation mark
is punched in column 72. A left parenthesis can never be followed by a space
if it is not included within quotation marks.

A beginning quotation mark must not be followed by a space, and an ending
quotation mark must not be preceded by a space unless such a space has been
indicated by the programmer. It is especially important that the number of
spaces within a word bounded by quotation marks be exactly the number of
spaces indicated by the programmer.

5. The line entry is punched as indicated by the programmer's groupings of
words. When the last character of the entry is punched, any remaining
columns on the card through column 72 are left blank. If the whole content
of the line cannot be punched on one card, it must be continued on another
card according to the following rules:

When the last letter or character of a word is punched in
column 72, the first character (other than a space following
that word) is punched in column 12. Columns 7 through 11
are left blank. The rest of the line being continued is punched
through column 72 if necessary. Should the punching of the
line still not be completed, it can be extended to another card
in the same manner.

2-5

I
I

1

I
~ !

I

I

1

SECTION III

THE IDENTIFICATION DIVISION

The purpose of the IDENTIFICATION DIVISION is to identify the source program and the

outputs of a compilation. In addition, the programmer can include certain other information

relative to the program for documentation purposes.

DIVISION FORMAT

IDENTIFICATION DIVISION. If a serial number appears on this
card, a card-number sequence check occurs.

PROGRAM-ID. program-name -=- (6 characters maximum; any
characters in the complete COBOL B set can be used except the
hyphen).

Other documentation statements may follow. These statements are accepted by the compiler

but have no effect on the program.

3-1

•

..

SECTION IV

THE ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION specifies the computer on which the source program is to

be compiled, the computer on which the object program is to be executed, the mnemonic names

assigned by the programmer to specific pieces of hardware referenced in the source program,

the source program files assigned to hardware units, and the input/output techniques to be ap­

plied to the files when the object program is executed.

There are two sections in the ENVIRONMENT DIVISION.

1. CONFIGURATION SECTION. This section deals with the overall specifi­
cations of the source and object computer and is divided into three
paragraphs:

a. SOURCE-COMPUTER.

b. OBJECT-COMPUTER.

c. SPECIAL-NAMES (optional).

2. INPUT-OUTPUT SECTION. This section deals with the definition of the
external media and contains information needed to create the most ef­
ficient transmission and handling of data between the media and the object
program. This section is divided into two paragraphs:

a. FILE-CONTROL.

b. I-O-CONTROL.

STRUCTURE

The source program ENVIRONMENT DIVISION begins with the heading:

ENVIRONMENT DIVISION.

Each section within this division begins with the appropriate section name followed by the word

SECTION, and each paragraph within each section begins with the appropriate paragraph-name:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER ••••
SPECIAL-NAMES ••••
INPUT-OUTPUT SECTION.
FILE-CONTROL. •••
I-O-CONTROL ••••

The sections and the paragraphs within the sections must appear in the source program in the

order outlined above.

4-1

•

SECTION IV. THE ENVIRONMENT DIVISION

FORMA T AND ENTRIES IN THE ENVIRONMENT DIVISION

I CONFIGURATION SECTION I
FUNCTION: To define hardware assignments.

FORMAT:

CONFIGURATION SECTION.

SOURCE-COMPUTER. [SERIES-200]

{

l20} MODEL - 200
1200
2200

[, MEMORY SIZE integer-1 CHARACTERS] .:...

OBJECT-COMPUTER. [SERIES-200] MODEL - {1~~~ }
2200

[
MEMORY SIZE {ADDRESS integer-2 THRU integer- 3}]

, integer-4 CHARACTERS

[ASSIGN OBJECT-PROGRAM TO {CARD-READER}]
, TAPE- UNIT

[, SINGLE-BUFFER] [, WITH EDIT-OPTION] .:...

TECHNICAL NOTES:

1. This section must always appear in the source program.

2. Both the SOURCE-COMPUTER and the OBJECT-COMPUTER paragraphs
must appear in this section in the format given above.

3. The individual paragraphs, including the optional SPECIAL-NAMES
paragraph, are described in the following pages.

4-2

SECTION IV. THE ENVIRONMENT DIVISION

SOURCE-COMPUTER

FUNCTION: To describe the computer upon which the source program is to be compiled.

FORMAT:

SOURCE-COMPUTER. [SERIES-200]

{

120 } 200
MODEL - 1200

2200

[, MEMORY SIZE integer-l CHARACTERS].:....

TECHNICAL NOTES:

1. This paragraph must appear in the source program.

2. The model number must be specified. It is used for documentation
purposes only.

3. If the MEMORY SIZE is specified, integer-l may be any number (of
CHARACTERS). This clause is used for documentation purposes only
and has no effect on the actual memory used by the source computer.
If it is desired that more memory be used, see Section VIII, "Operating
Instructions. "

4-3

SECTION IV. THE ENVIRONMENT DIVISION

I OBJECT-COMPUTER

FUNCTION: To describe the computer upon which the object program is to run.

FORMAT:

OBJECT-COMPUTER. [SERIES-200]
200

MODEL- 1200
{

120}

2200

{
ADDRESS integer-2 THRU integer-3}]

[, MEMORY SIZE integer-4 CHARACTERS

[,

[,

ASSIGN OBJECT-PROGRAM TO { CARD-READER}]
TAPE-UNIT

SINGLE-BUFFER] [, WITH EDIT-OPTION]:...

TECHNICAL NOTES:

1. This paragraph must appear in every source program.

2. The model number must be specified. It is used for documentation
purposes only.

3. In the MEMORY SIZE clause, there are two options:

a. If the

ADDRESS integer-2 THRU integer-3

option is specified, integer-2 must be the address of the
low- order character position of high- speed memory that
can be used by the object program.

b. If the

integer-4 CHARACTERS

option is specified, integer-4 may be any number.

4. If the MEMORY SIZE clause is not specified, it is assumed that the
source program operates within 8192 characters of high-speed memory.

5. The object program is normally produced on cards. If it is desired to
produce the object program on tape, the clause

ASSIGN OBJECT-PROGRAM TO TAPE- UNIT

must be specified.

6. The SINGLE-BUFFER option directs the compiler to apply single buffering
to every file. If this option is not specified, double buffering is applied
to every file.

Exception: If SINGLE- BUFFER is specified, it is still pos sible to
designate one file assigned to a terminal device (printer or reader/
punch) as being double buffered. See the APPLY DOUBLE-BUFFER
option in the I-O-CONTROL paragraph.

7. WITH EDIT-OPTION must be specified if editing is desired as no edit
subroutine is provided by the compiler. This option also indicates that
Editing Instructions are included in the machine configuration.

4-4

..

SECTION IV. THE ENVIRONMENT DIVISION

SPECIAL- NAMES

FUNCTION: To provide a means of relating hardware units with mnemonic-names and to relate
the status of program switches with switch-status-names.

FORMAT:

[SPECIAL-NAMES. [{ PAGE } IS mnemonic-name]
CHANNEL a

[SENSE-SWITCH m {g~F} STATUS IS switch-status-name] .:..]

TECHNICAL NOTES:

1. This paragraph is not required if mnemonic-names and sense- switch- status
names are not used in the source program.

2. The assigned mnemonic-name for PAGE is used to advance the printer page
to the head of form. The assigned mnemonic-name for CHANNEL a is used
to advance the printer page to a position governed by channel a of the vertical
format, paper-tape loop. Acceptable values for a depend on the specific
printer to be used, as listed in the appropriate hardware manuals.

3. In a SENSE-SWITCH entry, m indicates the number of a switch, 1 through 4.

4. More than one CHANNEL or SENSE-SWITCH clause may be specified •

4-5

SECTION IV. THE ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

FUNCTION: To specify the external media and the information needed to effect the most efficient
transmission and handling of data between the media and the object program.

FORMAT:

INPUT-OUTPUT SECTION.

FILE-CONTROL.

{

INPUT-TAPE m 1
OUTPUT-TAPE m

SELECT file-name-1 ASSIGN TO CARD-READER
CARD-PUNCH
PRINTER

[I-O-CONTROL.

APPLY DOUBLE-BUFFER ON file-name-2 ~]

TECHNICAL NOTES:

1. The SELECT clause identifies the beginning of information concerning
file- name- 1.

2. A SELECT clause must be specified for each file used in a source program.
No more than six files may be selected for anyone program. The file-name
of each selected file must be unique within a program. Each file must have
a file description in the DATA DIVISION of the source program.

3. If the

APPLY DOUBLE-BUFFER

clause is specified, the file (file-name-2) is double buffered. If SINGLE­
BUFFER has been specified, DOUBLE-BUFFER serves to designate a non­
tape file as being double buffered. Only one DOUBLE- BUFFER clause may
be designated.

If neither SINGLE-BUFFER nor DOUBLE-BUFFER is specified, double
buffering is applied to every file.

4. If the

APPLY DOUBLE-BUFFER

clause is not used, omit the entire I-O-CONTROL paragraph.

4-6

SECTION V

THE DATA DIVISION

Data to be processed falls into two categories:

1. Data contained in files. Such data enters or leaves the internal memory
of the computer from a specified area or areas.

2. Data which is developed internally and is placed into intermediate or
working- storage.

Consequently, the DATA DIVISION consists of two sections:

1. FILE SECTION, in which files and records in files are described.

2. WORKING-STORAGE SECTION, in which memory space is allocated for
the storage of intermediate results of processing.

The approach taken in defining file information is to distinguish between the physical

characteristics of the file (that is, the file description) and the conceptual characteristics of

the data contained within the file (that is, the record description). The physical aspects of a

file include the way the logical records are grouped within the physical limitations of the file

medium, the means by which the file can be identified, and the mode in which the file is re­

corded on its storage medium. The conceptual characteristics of a file encompass the explicit

definition of each logical entity within the file itself.

For processing purposes, the contents of a file are divided into logical records (a logical

record being any consecutive set of information). Several logical records can occupy a block

on the storage medium.

The concept of a logical record is not restricted to file data but is carried over into the

definition of working-storage and constants. Thus, working-storages and constants can be

grouped into logical entities and defined by a series of record description entries.

In effect, then, two elements enter into the description of data in the DATA DIVISION:

1. The description of files.

2. The description of records.

The FILE SECTION includes both elements; the WORKING-STORAGE SECTION consists solely

of the description of records.

STRUCTURE

The source program DATA DIVISION begins with the heading:

DA T A DIVISION.

5-1

•

SECTION V. THE DATA DIVISION

Each section within the DATA DIVISION begins with the appropriate section name followed

by the word SECTION:

FILE SECTION.
WORKING-STORAGE SECTION.

When a section is not required, its name need not appear.

The sections themselves consist of a series of related and unrelated entries. An entry

consists of a level indicator, a data-name, and a series of independent clauses which can be

separated from each other by the use of commas. The entry is terminated by a period. A

file description consists of a single entry. A record description, however, consists of one or

more entries.

FILE DESCRIPTION ENTRY

A file description entry contains information pertaining to the physical aspects of a file.

In general, it may include the size of the physical records, the names and values of the label

records contained in the file, and the names of the data records which compose the file. The

listing of data and label record names in a file description entry serves as a cross-reference

between the file and the records in the file.

A file description entry consists of a level indicator, a file-name, and a series of in-

dependent clauses which define the physical and logical characteristics of the file. The mne­

monic level indicator FD is used -to identify the start of a file description entry and distinguishes

this entry from those associated with a record description.

In the following pages, the individual clause formats are arranged in alphabetic order.

They are preceded by the complete entry format containing the clauses in this recommended

order of appearance.

5-2

SECTION V. THE DATA DIVISION

FILE DESCRIPTION

FUNCTION: To provide information concerning the physical structure. identification. and
record descriptions pertaining to a given file.

FORMAT:

(FILE SECTION.)

FD file-name

[
. {RECORD }] • BLOCK CONTAINS mteger-l RECORDS

{
STANDARD}

, LABEL RECORDS ARE OMITTED

[, VALUE OF IDENTIFICATION IS literal-I]

{
RECORD IS }

• DATA RECORDS ARE record-name-l [. record-name-2 •••] •

TECHNICAL NOTES:

1.

2.

3.

The individual entries for the FILE SECTION are discussed in the following
pages. FILE SECTION must always appear.

The "FD file-name" entry must be given for each file in the source program.

The

LABEL RECORDS ARE •••

clause must be given for each FD file-name entry.

5-3

SECTION V. THE DATA DIVISION

BLOCK CONTAINS

FUNCTION: To specify the size of a physical record (i. e., a block) on magnetic tape.

FORMAT:

[, BLOCK CONTAINS integer-l {RECORD}]
RECORDS

TECHNICAL NOTES:

1. Integer-l must be a numeric literal with an integral value.

2. This clause is required when the block is to contain more than one logical
record.

5-4

SECTION V. THE DATA DIVISION

I DATA RECORD(S)

FUNCTION: To cross-reference the description of data records with their associated file.

FORMAT:

{
RECORD IS }

, DATA REC ORDS ARE record-name-1 [, record-name-2 •••]

TECHNICAL NOTES:

1. The presence of more than one record-name indicates that the file contains
more than one type of data record.

2. Conceptually, all data records within a file share the same area. This is
in no way altered by the presence of more than one type of data record within
the file.

3. Both record-name-1 and record-name-2 must have 01 level numbers.

4. The length of a data record cannot exceed 4,095 characters.

5. This clause is used for documentation purposes.

5-5

SECTION V. THE DATA DIVISION

FD

FUNCTION: To indicate the highest level of a file description.

FORMAT:

FD file-name

TECHNICAL NOTES:

1. FD must be the first entry of the file description. It is entered beginning
in column 8 of the coding form.

2. The file-name must be selected in the FILE-CONTROL entry of the
ENVIRONMENT DIVISION.

5-6

SECTION V. THE DATA DIVISION

LABEL RECORDS

FUNCTION: To cross-reference the description of label records with their associated file.

FORMAT:

LABEL RECORDS ARE {STANDARD}
, OMITTED

TECHNICAL NOTES:

1. This clause is required in every file description entry.

2. When OMITTED is specified, the file is understood to have no header label
records. Exception: A tape containing (or one which is to contain) the file
must have a beginning-of-tape label.

3. When STANDARD is specified, the file is understood to conform to the
Series 200 label conventions.

4. Whenever STANDARD is specified, a

VALUE OF IDENTIFICATION IS •••

clause must be given.

5. The STANDARD option may be used for files assigned to tape units; the
OMITTED option must be used for files not assigned to tape units.

5-7

SECTION V. THE DATA DIVISION

VALUE OF

FUNCTION: To specify the value of an item in the label records associated with a magnetic
tape.

FORMAT:

[, VALUE OF IDENTIFICATION IS literal-l]

TECHNICAL NOTES:

1. This clause must be specified when the

LABEL RECORDS ARE STANDARD

clause is given.

2. This clause causes (1) the value stated in the non-numeric literal-l to be
placed in the label rec ord identification field of an output file at object time.
or (2) a check for the value stated in the non-numeric literal-l in the label
record identification field of an input file at object time.

3. The value stated in literal-l must be in the range from 1 to 10 alphanumeric
characters in length (space characters are allowed). If less than 10 charac­
ters are used, the field is right-filled with spaces.

RECORD DESCRIPTION ENTRY

A detailed data description consists of a set of entries, each of which" defines the charac-

teristic s of a particular unit of data. With minor exceptions, each entry is capable of com-

pletely defining a unit of data. Because the COBOL detailed data descriptions involve a

hierarchical structure, the contents of an entry can vary considerably, depending upon whether

or not an entry is followed by subordinate entries.

In defining the lowest level of subdivision of data, the following information is required.

1. A level number which shows the relationship between this and other
units of data.

2. A data- name.

3. A PICTURE clause.

A record description consists of a set of entries. Each record description entry, itself,

consists of a level number, a data-name, and a series of independent clauses.

In the following pages, the individual clause formats are arranged in alphabetic order.

They are preceded by the complete entry format containing the clauses in their recommended

order of appearance.

5-8

SECTION V. THE DATA DIVISION

RECORD DESCRIPTION

FUNCTION: To specify the particular characteristics of an item of data.

FORMAT:

{
data-name-l}

level-number FILLER [REDEFINES data-name-2]

[, OCCURS integer-l TIMES]

[, PICTURE IS { any allowable combination of PICTURE characters}]

TECHNICAL NOTES:

1. For an explanation of the reference format used in the DATA DIVISION,
see Section II.

2. The PICTURE clause must appear in the entry of an elementary item, and
it must not appear in the entry of a group (or non-elementary) item.

3. The REDEFINES clause, when specified, must immediately follow data-name-l.

4. Detailed descriptions of each clause are given in the following pages.

5-9

SECTION V. THE DATA DIVISION

data- name / FILLER

FUNCTION: To name the data being described, or to specify an unused portion of the logical
record.

FORMAT:

{
data-name}

level- number FILLER

TECHNICAL NOTES:

1. A data-name or the key word FILLER must be the first word following the
level-number in each record description entry.

2. The key word FILLER is used to name a record item not otherwise
referenced. Under no circumstances can a FILLER item be referenced
directly.

5-10

SECTION V. THE DATA DIVISION

I level-number

FUNCTION: To show the hierarchy of data within a logical record.

FORMAT:

level-number

TECHNICAL NOTES:

1. A level-number is required as the first element in each record description
entry.

2. A level-number may have a value of 0 I through 05.

3. The level-number 0 I indicates the first entry in each record description.
This corresponds to the logical record on which the READ and WRITE
verbs operate. The following examples illustrate the use of level-numbers.

01 payr 011- master

The 0 I level in a record description corresponds to the name of the record.
When this name is referenced from the PROCEDURE DIVISION, the entire
record, including all of its groups and fields, is made accessible.

02 employee-number

Data units with a level number higher than 0 I can be either fields or groups
of fields. The above example shows that employee-number is a field, since
it is not further subdivided into smaller units.

02 employee-name
03 last-name
03 first-name
03 initial

This example illustrates three fields at the 03 level which constitute the
02-level group employee-name. The three fields last-name, first-name,
and initial can each be referenced separately, or their collective contents
can be referenced by the group-name employee-name.

02 wage-data
03 average-wage

04 high-wage
04 low-wage
04 median

03 present-pay
04 class-code

05 position-letter
05 job-description

04 salary
03 review-rating

02 work-history

The above is a hierarchy of data description showing data named at various
levels. The level-02 group wage-data includes all groups and fields up to
but not including work-history. Specifically, it includes the groups average­
wage and present-pay, and the field review-rating. The level-03 group
average-wage includes only the three elementary fields high-wage, low-wage,
and median. The level-03 group present-pay includes the group class-code
and the field named salary. The level-04 group class-code includes the fields
pos ition-lette rand j ob- de sc r iption.

5-11

SEC TION V. THE DATA DIVISION

OCCURS

FUNCTION: To eliminate the need for separate entries to describe repeated data.

FORMAT:

[, OCCURS integer-l TIMES]

TECHNICAL NOTES:

1. integer-l must be a numeric literal with a positive integral value.

2. This clause cannot be specified in a record description entry that has an 01
level number.

3. The OCCURS clause is used in defining tables and other homogeneous sets
of repeated data. When the OCCURS clause is used, the data-name which
is the subject of this entry must be subscripted whenever used as an operand,
regardless of the value of integer-I. Further, if this data-name is the name
of a group item, then all data-names belonging to the group must be sub­
scripted whenever used as operands. The data description clauses associated
with an item whose description includes an OCCURS clause apply to each
repetition of the item being described.

4. The repeated item cannot occur more times than would require 4,095 charac­
ters of memory.

5. The limit of 4,095 characters affixed to record size and the OCCURS clause
can be circumvented by defining a large record or table as two records, as
in the following example:

01 A
02 B PICTURE IS XX, OCCURS 2000 TIMES

01 C
02 D PICTURE IS XX, OCCURS 1500 TIMES

MOVE B(3000)

6. At object time, the character positions in memory for record storage and/
or for reading from or writing to an external medium are allocated as
though the maximum number of item occurrences were in the record.
There can be fewel- occurrences of valid input data at object time, pro­
vided that the programmer (1) provides padding in the source program
for the space beyond that taken up by the valid data and (2) tests the
number of item occurrences.

7. There should not be more than 30 OCCURS clauses in a program.

8. A group may have any number of OCCURS clauses (to the prescribed limit)
as long as no one OCCURS clause is subordinate to another OCCURS clause.

Examples: 02 d-n-l a 02 d-n-l u
03 d-n-2 OCCURS

c n c 03 d-n-2 OCCURS a
03 d-n-3 OCCURS

e c p 03 d-n-3 c
04 d-n-4 t 04 d-n-4 OCCURS

e
a P

04 d-n-5 b 04 d-n-5 t
1 a

03 d-n-6 OCCURS e 03 d-n-6 b
1

5-12 e

SECTION V. THE DATA DIVISION

J PICTURE

FUNCTION: To show a detailed picture of the standard data forITlat of an eleITlentary iteITl, the
general characteristic s of the iteITl, and any special report editing.

FORMAT:

(data-naITle .••) .[, PICTURE IS character-string]

TECHNICAL NOTES:

1. A PICTURE clause can only be used to describe an eleITlentary iteITl (or field).

2. A PICTURE ITlay consist of no ITlore than 30 characters froITl the following list:

Data Characters

A indicates an alphabetic character
X indicates an alphanuITleric character
9 indicates a nUITleric character

Operational SYITlbols

S indicates the presence of a sign
V assuITled deciITlal point location

Floating Characters

$$ dollar sign (replaces last leading zero)
':":' check protection (replaces leading zeroes)
Z standard zero suppression (replaces leading zeroes with blanks)

Insertion Characters

$ dollar sign
COITlITla
deciITlal point

B blank

Report Signs

CR credit
ITlinus or negative sign

3. When consecutive repetitions of the saITle character occur, they ITlay be
replaced by that character followed by an unsigned nUITleric literal enclosed
in parentheses. The value of the literal indicates the nUITlber of repetitions
of the character. No ITlore than 4 digits ITlay appear within the parentheses.

ExaITlple: 9999999AAAAAA ITlay be written as 9(7)A(6)

NOTE: A zero-value ITlay not appear within the parentheses.

ExaITlple: 9V99(0) or Z (000) 99

It is iITlportant that the terITlS "iITlplicit PICTURE character-string" and
"explicit PICTURE character-string" be defined at this tiITle.

"IITlplicit PICTURE character-string" indicates the abbreviated PICTURE
as coded in the exaITlple above; viz., 9(7)A(6). The character-count of
this iITlplicit PICTURE character-string is eight characters.

"Explicit PICTURE character-string" indicates the actual PICTURE as it
is expanded by the cOITlpiler. In the exaITlple above, 9999999AAAAAA is
the explicit PICTURE character-string. The character-count of this
explicit PICTURE character-string is 13 characters.

5-13

SECTION V. THE DATA DIVISION

In determining the size of the item defined by the explicit PICTURE, all
characters other than the operational symbols (S and V) are counted. The
explicit PICTURE S9999V99 defines an item whose size is six characters.

4. The allowable characters (or symbols) which may appear in a character­
string are defined and described below according to the class definition of
the data item being described by the PICTURE clause and according to the
associated move category of the item (see the MOVE verb in Section VI).

a. Numeric Class Characters - a PICTURE is considered to be
numeric if it contains at least one 9; S and V are the only
other allowable characters and they are optional.

9 Indicates that the character position contains a numeric
character.

S Indicates the presence of an operational sign which is
not counted in the size of the data item. The PICTURE
of a numeric data item can possess only one operational
sign and, if specified, S must be the leftmost character
of the PICTURE.

V Indicates an assumed decimal point which does not occupy
a character position and is not counted in the size of a
data item. The PICTURE of a data item cannot contain
more than one assumed decimal point. A low-order V
in a PICTURE is considered redundant, since when V
is not specified for a numeric data item, the decimal
point is assumed to be to the right of the PICTURE
description.

Not more than sixty-three 9' s can appear to the right of
a V.

b. Numeric-Edited Class Characters - a PICTURE is considered
to be numeric edited if it contains any allowable characters with
the exception of A and X.

$

9 S V have been previously defined.

B} Indicates the insertion characters space (blank) and
, comma (,). Each insertion character is counted in

the size of the data item but does not represent a
numeric character position. The presence of zero
suppression and check protection (,~,~) indicates that
suppression of leading insertion characters also
takes place with associated space or asterisk re­
placement. A PICTURE description must not have
as its rightmost PICTURE character the symbol", "
unless immediately followed by one of the punctuation
characters (comma or period).

The floating characters, floating dollar sign ($$),
floating check-protect (*,~), and floating zero­
suppression (Z), "float through" the insertion charac­
ters, i. e., if the most significant digit is immediately
to the right of an insertion character, the floating re­
placement character replaces the insertion character.

Indicates the dollar sign character. As a fixed in­
sertion character, the "$" may appear only once in a

5-14

c.

. }

SECTION V. THE DATA DIVISION

PICTURE, either as the leftmost character or
following a minus sign as the second symbol in
a PICT URE character- string.

Indicates the actual decimal point and is a special
insertion character. The data item being edited is
aligned by decimal point and the actual decimal point
appears in the indicated character position. The
actual decimal point, unlike the assumed point (V),
is counted in the size of the data item. The symbols
V and. are mutually exclusive within a PICTURE
description. A PICTURE description must not have
as its rightmost PICTURE character the symbol ". II
unless immediately followed by one of the punctuation
characters (comma or period).

CR}Indicate the editing sign control characters credit (CR)
- and negative or minus sign (-). The symbol "CR" may

only appear in the low-order position of a PICTURE
and represents two character positions when counted
in the size of the data item. If the data item chances
to be positive, two spaces are displayed. The negative
or minus symbol "_" may only appear in either the high­
or low-order position of the PICTURE and represents
one character position when counted in the size of the
data item. If the data item chances to be positive, a
space is displayed.

Non-Numeric Class Characters - a PICTURE is considered to
be non-numeric if it contains alphabetic or alphanumeric characters.

(1) Alphabetic Characters

A Indicates that the character position contains
an alphabetic character (letter or space).

B Indicates the insertion character space (blank)
and is counted in the size of the data item. If
data is moved to a data item whose PICTURE
description contains the insertion character
B, the alphabetic data is right justified within
the receiving character positions independently
of the insertion characters. This means that
if the sending data item is shorter than the
receiving item, the excess positions at the
left end of the receiving field are space-filled;
if the sending data item is longer than the re­
ceiving item, the excess characters are
truncated from the left end of the sending data.
The insertion characters are placed in the re­
ceiving data item regardless of the nature of
the sending data item. If data whose PICTURE
description contains the insertion character B
is moved to another data item, each data item
character position in the sending data item is
considered as part of the data item during the
move operation.

5-15

5.

SECTION V. THE DATA DIVISION

(2) AlphanuITleric Character

x Indicates that the character position contains
any character in the cOITlputer' s character
set. If a data iteITl PICTURE consists entirely
of any cOITlbination of X, A, and 9 other than
all 9' s, the PICTURE is treated as if it con­
sisted of all X's.

d. Non-NuITleric-Edited Class Characters - A PICTURE description
containing at least one insertion character B and at least one of
the characters X or A is considered to be an alphanuITleric edited
data iteITl. The rightITlost character ITlust not be an insertion B.

A PICTURE ITlust contain at least one of the following characters:

A X 9 Z

or at least a pair of one of the following characters:

$ ':' (indicating floating characters)

6. Only one type of floating replaceITlent character, i.e., "$", "':' " , or "Z",
can be used within a given PICTURE description. However, it is per­
ITlissible for a single insertion $ to appear with floating Z or ':'. A
PICTURE character "9" can never appear to the left of a floating or a
replaceITlent character.

7. The following liITlitations and restrictions ITlust be carefully followed
when writing a legal PICTURE description:

a. The size of any iteITl defined by a PICTURE character­
string cannot be greater than 4095. ExaITlples of illegal
size: X (4096) or A (2000) X (2000) A (1000).

b. The size of a nUITleric or alphanuITleric iteITl defined by a
PICTURE character-string containing editing characters
ITlust not exceed 30. ExaITlples of illegal size: Z (3l) or
X (25) B (5) X (5).

8. The following warnings indicate how COBOL COITlpiler B handles certain
PICTURE descriptions:

a. If the low-order Z is followed by a COITlITla and then a re­
ceiving character, that receiving character is replaced
by Z.

PICTURE string as written:

Z, ZZZ, 999

Modified to:

Z, ZZZ, Z99

b. If the low- order $ or ':' is followed by a c OITlITla or a Band
then two receiving characters, the two receiving characters
are replaced by $ or ':'.

PICTURE string as written: Modified to:

$, $$$, 999CR $, $$$, $$9CR
$':' , ,:,,~ ':' , 999

$$$B999 $$$B$$9

5-16

SECTION V. THE DATA DIVISION

If the low- order $ or ,~ is followed by a c OITHna or Band
something other than two receiving characters after that,
the comma or B is replaced by a $ or ,~.

PICTURE string as written: Modified to:

$$$$, B999 $$$$$B999

(NOTE: In the last example the rule is not applied to the
B following the comma and the blank remains; it
will not be floated "into".)

c. If the low- order $ or ,~ is preceded by a comma or a Band
followed by a receiving character, that receiving character
is replaced by a $ or ,~.

PICTURE string as written: Modified to:

$,$$$,$99 $,$$$,$$9
';";";',';'99 ';0;";' , ,;,,~ 9

$B$$$B$99 $B$$$B$$9

If the low-order $ or ,;, is preceded by a comma or a Band
followed by something other than a receiving character, the
comma or B is replaced by a $ or ';'.

PICTURE string as written: Modified to:

$$$B$9 $$$$$9
';";";"~';";'9

$$$, $B99 $$$$$B$$
';";";";";"~9

(NOTE: In the last two examples rule (c) was applied first,
and then rule (b).)

d. If only one ,;, appears and it is followed by a receiving charac­
ter, that receiving character is replaced by an ';'.

Examples

';'99,999
-';'99,999
$';'99,999CR
-$';'9,999

Modified to:

';0;'9,999
-';";'9,999
$,;o;'9,999CR
-$';";', ';";'9

(NOTE: In the last example, rule (b) was applied after
rule (d).)

9. Non-COBOL Editing - the following items indicate editing actions contrary
to CODASYL specifications:

a. No blank-when-zero in non-integral fields

Float characters to the right of the decimal point (assumed or
actual) are ignored. As a result, there is no way of getting
blank-when-zero in a non-integral field.

Example

$$$.$$
Z,ZZZVZZZ

Has same effect as:

$$$.99
Z, ZZZV999

5-17

r

SECTION V. THE DATA DIVISION

b. Right justification in non-numeric editing

When a field is being moved to a non-numeric edited field,
right justification with high- order space-filling or truncation
is performed, rather than the left justification required by
CODASYL specifications:

Literal

"12"
"1234"

Receiving Picture

XXBX
XBXX

Receiving Result

I:::. 1 I:::. 2
2 I:::. 34

c. Space-filling in numeric edited fields

When the number of integral digits in the sending field is
less than the number of integral non-edited positions in
the receiving field, space-filling rather than zero-filling
is used.

Literal

23
56.7

Receiving Picture

$,$$9,999
Z, Z99,999. 99

Receiving Result

1:::.1:::.1:::. $ 1:::.1:::. I:::. 23
1:::.1:::.lJ.1:::. I:::. I:::. 1:::.56.70

d. No blank-when-zero in dollar edited fields

When a zero value is moved to field filled with float dollar
signs, a single dollar sign will appear as the result.

Literal Receiving Picture Receiving Result

o $,$$$

10. Whenever the floating or insertion dollar sign symbol ($) appear s in a
PICTURE character-string, it is essential that the PICTURE contain
enough receiving positions apart from the leftmost dollar sign to re­
ceive all significant integral digits from the sending field.

Legal sending value for this receiving PICTURE

0123 456 $$$$. 99

01234 56 -$, $$$. 99

Illegal sending value for this receiving PICTURE

0123 456 $$$.999

012345 $,$$$

1234 $999.99

No warning is given at compilation time. If this rule is violated at
object time, unpredictable results occur.

5-18

'-../

SECTION V. THE DATA DIVISION

I REDEFINES

FUNCTION: To allow the same storage area to contain different data items.

FORMAT:

(data-name-1. ••) [, REDEFINES data-name-2]

TECHNICAL NOTES:

1. The REDEFINES clause, when specified, must immediately follow

level-number data-name-l

that is, it must precede a PICTURE clause or any other data descrip­
tion entry.

2. The level-numbers of data-name-l and data-name-2 must be identical.

3. Redefinition starts at data-name-2 and ends when a level-number less
than or equal to that of data-name-2 is encountered.

4. When the level-number of data-name-2 is other than 01, it must specify

5.

6.

7.

8.

9.

a storage area of the same size as data-name- 1, except in the WORKING­
STORAGE SECTION.

The entries which give the new description of the storage must immediately
follow the entries which describe the area being redefined.

This clause must not be used for logical records associated with the same
file. The DATA RECORDS clause in the file description is used instead.

Subscripting of data-name-2 is not permitted.

The entries giving the new description of the storage area must not contain
any VALUE clauses, except in condition-name entries.

A REDEFINES clause cannot be subordinate to, or at the same level as, an
OCCURS clause.

DATA DIVISION SECTION ENTRIES

FILE SECTION

The FILE SECTION contains a section header, file description entries, and record descrip-

tion entries. The order of information is as follows:

FILE SEC TION.

FD file-name •••
01 label-name •••

01 record-name •••

FD file-name •••

5-19

SECTION V. THE DATA DIVISION

WORKING-STORAGE SECTION

Working-storage is that part of computer memory set aside for intermediate processing

of data. The WORKING- STORAGE SECTION must not use more than 8,192 locations. Working-

storage deals with computer memory requirements for the storage of intermediate data results,

whereas file storage deals with the characteristics of the entire file, as well as the computer

memory requirements for the storage of each record of the file.

While the FILE SECTION is composed of file description entries and record description

entries, the WORKING-STORAGE SECTION is composed only of record description entries.

The WORKING-STORAGE SECTION begins with a section header and a period, followed by

record description entries for working-storage items, and then by record description entries

for working-storage records, in that order. The skeletal format for the WORKING-STORAGE

SECTION is as follows:

WORKING-STORAGE SECTION.

01 data-name-l

01 data-name-n
01 data-name-2

02 data-name-3

01 data-name-4
02 data-name- 5

03 data-name-6
01 data-name-7
01 data- name- n

The following record description clauses are required in each entry:

1.

2.

3.

level- numbe r

{
data- name}
FILLER

PICTURE

In addition, there are three optional clauses which may be used in each entry:

1. REDEFINES

2.

3.

OCCURS}

VALUE
One or the other but not both

Data elements in working- storage which bear a definite relationship to one another must

be grouped into records according to the rules for formation of record descriptions. All clauses

which are used in normal input or output record descriptions can be used in a working-storage

record description.

5-20

SECTION V. THE DATA DIVISION

The initial value of any item in the WORKING-STORAGE SECTION may be specified by

"--"" using the VALUE clause of the record description. All the rules for the expression of literals

and figurative constants apply. The size of a literal used to specify an initial value can be equal

to or less than the size specified in the PICTURE clause of the associated data entry, but it

cannot be greater.

. {data-name}
Smce level-number, FILLER , PICTURE, REDEFINES, and OCCURS have been

discussed above under "Record Description Entry," only the VALUE clause is described in

detail here.

5-21

I

SECTION V. THE DATA DIVISION

I VALUE

FUNCTION: To define the initial value of a working- storage item.

FORMAT:

(data-name-l •••) [, VALUE IS literal]

TECHNICAL NOTES:

1. A VALUE clause has no meaning when applied to an input or output
file record.

2. The VALUE clause may not be stated in an entry which contains an
OCCURS clause or which is subordinate to an entry containing an
OCCURS clause.

3. If the VALUE clause is used in an entry at the group level, the group
area is initialized without consideration for the individual elementary
or group items contained within this group. Further VALUE clauses
cannot be stated at the subordinate levels within the group.

4. When VALUE is not specified, the initial contents of the working- storage
area is zero.

5-22

SECTION VI

THE PROCEDURE DIVISION

The PROCEDURE DIVISION contains all procedures needed to solve a given problem.

These are written as sentences and combined to form paragraphs under paragraph-names.

Every word in a source program PROCEDURE DIVISION must be one of the following:

1. A Series 200 COBOL reserved word.

2. A word previously described (i. e., defined) in the DATA or the ENVIRON­
MENT DIVISION.

3. A paragraph-name not used in any other division.

4. A figurative constant (ZERO, SPACE, and QUOTE),

The only other possible PROCEDURE DIVISION entries in the source program are:

1. Numeric literals.

2. Non-numeric literals.

3. Punctuation marks.

The first entry in the PROCEDURE DIVISION of the source program must be the words PRO­

'-" CEDURE DIVISION. The next entry must be a paragraph-name.

COBOL procedures are expressed in a manner similar (but not identical) to normal English

prose. The basic unit of procedure formation is a sentence or a group of successive sentences.

A procedure is a paragraph or a group of successive paragraphs within the PROCEDURE

DIVISION. A source program must contain at least one paragraph-name in the PROCEDURE

DIVISION.

A PROCEDURE DIVISION sentence is made up of verb statements. Each statement must

follow a given format {described in the following pages}. While the format may differ for differ­

ent verbs, the verb must be the first word of each statement. For COBOL purposes, the word

IF is regarded as a verb since it results in the generation of coding. The verb statements can

be categorized into three types, as follows:

1. Imperative

a. Arithmetic

ADD
SUBTRACT
MULTIPLY
DIVIDE

6-1

SECTION VI. THE PROCEDURE DIVISION

b. Sequence Control (Branching)

GO TO
ALTER
PERFORM

c. Data Movement

MOVE

d. Ending

STOP

e. Input/ Output

2. Conditional

ACCEPT
CLOSE
DISPLAY
OPEN
READ
WRITE

IF

3. Compiler-Directing

EXIT
NOTE

The verbs are discussed individually in alphabetic order under "PROCEDURE DIVISION Verb

formats and Verb Descriptions" below.

STATEMENTS

An imperative statement consists of either a verb (excluding IF, EXIT, and NOTE) and

its operands or a sequence of imperative statements. A GO TO or a STOP statement which

appears in a sequence of imperative statements must be the last statement in the sequence. A

conditional statement has the following form:

IF condition imperative- statement

A compiler-directing statement consists of a compiler-directing verb and its operands.

SENTENCES

A sentence consists of a sequence of one or more statements, the last of which is termi-

nated by a period. The statements composing the sentence must be either one compiler-directing

statement or one or more imperative or conditional statements, syntactically correct according

to the above rules. A sentence which is composed of an imperative or a conditional statement{s)

is called a procedural sentence.

Imperative Sentences

An imperative statement terminated by a period is an imperative sentence.

6-2

SECTION VI. THE PROCEDURE DIVISION

EXAMPLE; MOVE A TO B.
MOVE A TO B, ADD C TO D.

An imperative sentence can contain either an unconditional GO statement or a STOP RUN state­

ment, which (if present) must be the last statement in the sentence.

EXAMPLE; MOVE A TO B, ADD C TO D, GO TO START.

Conditional Sentences

A conditional statement terminated by a period is a conditional sentence.

EXAMPLE; IF X IS EQUAL TO Y MOVE A TO B, MOVE
C TO D.

Compiler-Directing Sentences

A compiler-directing statement terminated by a period is a compiler-directing sentence.

For example,

EXIT.

Sentence Execution

For the remainder of this discussion, the phrase "execution of a sentence" (or a statement

within a sentence) is interpreted to mean "execution of object program coding compiled from a

sentence (or from a statement within a sentence) which has been written in COBOL." The phrase

'- "transfer of control" is interpreted to mean "transfer of control in the object program by trans­

ferring (going) from one place (control point) to another place (control point) out of the written

sequence." The phrase "passing of control" is interpreted to mean "passing of control in the

object program by passing from one place (control point) to the next place (control point) in the

written sequence. "

Whenever a GO TO statement is encountered during the execution of a sentence or a state­

ment, there is an unconditional transfer of control to the first procedural sentence of the para-

graph referenced by the GO TO statement.

An imperative sentence is executed in its entirety and control is passed to the next pro­

cedural sentence (unless it consists of an unconditional GO TO).

The following four elements form a skeletal conditional sentence.

IF condition imperative- statement ~

The condition is an expression which is either true or false. If the condition is true, then the

statement is executed and control is transferred to the sentence. If the condition is false,

control is passed to the next sentence.

Example; IF A IS EQUAL TO B GO TO C. MOVE X TO Y.

6-3

SECTION VI. THE PROCEDURE DIVISION

In the example, if A is equal to B, control is transferred to paragraph C. If A is not equal to

B, control is transferred to the next sentence (MOVE •••).

Compiler-directing sentences direct the compiler to take action at compilation time. Pro­

cedural sentences, on the other hand, denote action to be taken by the object program.

Control Relationship Between Procedures

In COBOL, imperative and conditional sentences describe the procedure that is to be

accomplished. The sentences are written successively, according to the reference format, to

establish the sequence in which the object program is to execute the procedure.

In the PROCEDURE DIVISION, names are used so that one paragraph can reference another

by name. In this way, the sequence in which the object program is to be executed can be varied

simply by transferring to a named paragraph.

In executing procedures, control is transferred only to the beginning of a paragraph.

Control is passed to a sentence within a paragraph only from the sentence written immediately

preceding it. If a paragraph is named, control can be passed to it from the sentence immediately

preceding it, or can be transferred to it from any sentence which contains a GO TO or PERFORM

statement followed by the name of the paragraph to which control is to be transferred.

PARAGRAPHS

So that the source programmer can group several sentences to convey one idea (procedure),

paragraphs have been included in COBOL. In writing procedures according to the rules of the

PROCEDURE DIVISION and the requirements of the reference format, the source programmer

begins a paragraph with a name, which consists of a word followed by a period.

The source programmer usually puts compiler-directing sentences in their own paragraphs.

Paragraphs composed of compiler-directing sentences are called "compiler-directing paragraphs. "

Paragraphs which contain at least one procedural sentence are called procedural paragraphs.

CONDITIONALS

Conditional procedures are one of the keystones in describing data processing problems.

COBOL makes available to the programmer several means of expressing conditional situations.

COBOL conditionals generally involve the key word IF, followed by the conditions to be examined,

followed by the operations to be performed. Depending upon the truth or falsity of the conditions,

different sets of operations are to be performed.

6-4

SECTION VI. THE PROCEDURE DIVISION

PROCEDURE DIVISION VERB FORMATS AND VERB DESCRIPTIONS

-..........-. In the following pages the PROCEDURE DIVISION verbs and the format or formats associ-

ated with each are discussed. The verbs are arranged alphabetically for the purpose of this dis-

cussion.

ACCEPT

FUNCTION: To receive low-volume data from a peripheral device.

FORMAT:

ACCEPT data-name

TECHNICAL NOTE:

The ACCEPT device is the card-reader. If the size
is greater than 80 characters, only one card is read,
positions of the field defined by data-name are filled.
left unchanged.

6-5

of the field defined by data-name
and only the first 80 character
The remaining positions are

SECTION VI. THE PROCEDURE DIVISION

ADD

FUNCTION: To add two numeric data items and set the value of an item equal to the result.

FORMAT:

ADD {
literal-l }
data-name-l {

literal-2 }
data- name - 2

[GIVING data-name-3]

[ROUNDED] ~ ON SIZE ERROR imperative- statement]

TECHNICAL NOTES:

1. Each ADD verb statement must contain two operands (viz., an addend
and an augend).

2. Only numeric fields and numeric literals can be used as operands in
ADD verb statements. The only figurative constant that can be used
is ZERO.

3. A data-name can only reference an elementary item. Neither the
addend nor the augend can contain editing symbols. Data-name- 3
(GIVING option) may be edited.

4. Each operand can have an operational sign and an implied decimal
point. There is no practical limit to the length of operands in an ADD
statement. If the decimal point is not indicated for an ADD operand,
it is assumed to be to the right of the least significant digit of the
operand.

5. Literals cannot be used to receive the sum.

6. The sum is stored as follows (unless ON SIZE ERROR results in
detection of a size error):

a. When neither TO nor GIVING occurs in the ADD statement,
the sum is stored in the receiving field data item of the
statement.

b. When TO occurs in the ADD statement but GIVING does not occur,
the value of the operand preceding the TO is added to the receiving
field.

c. When GIVING occurs in the ADD statement, the values of the
operands preceding the GIVING are added together, and the sum
obtained is stored in the data item following the GIVING.

7. Operands are aligned according to implied decimal points. Zeros are right­
filled as necessary; that is, 99,,9 and 99,,999 are aligned and zero-filled:

99,,900
99,,999

8. Truncation of right-hand digits of the sum can occur during the storage of
that sum according to the size associated with the receiving field. In
general, when the receiving field contains fewer decimal places than the
sum, right truncation occurs.

9. SIZE ERROR and ROUNDED options are provided for those cases where
truncation may take place.

6-6

SECTION VI. THE PROCEDURE DIVISION

a. When the SIZE ERROR option is specified, a test is made at
object time to see if overflow occurs when the sum is stored
in the receiving field. If overflow occurs, the sum is not
stored. Instead, the "imperative- statement" associated with
the SIZE ERROR option is performed.

b. When the ROUNDED option is specified, a test is made at
compilation time to see if right truncation occurs when the
sum is stored in the receiving field. If right truncation
occurs, the least significant digit that can be stored is in­
creased by one if the most significant digit truncated is in
the range 5 through 9.

Example: Store 9741\617 in 999.99 Result: 974.62

c. When the SIZE ERROR option is used in conjunction with the
GIVING option, the following restriction applies: If data­
name-3 contains any editing other than zero suppression,
SIZE ERROR handling is unspecified.

10. Note should be taken of the optional use of the words TO and GIVING.
For example,

ADD A TO B is the logical equivalent of A + B = B

ADD A TO B GIVING C is the logical equivalent of A + B = C

11. The ability to use both TO and GIVING in the same ADD statement, while
equivalent to common English usage, may not be allowed in other manu­
facturers' COBOL compilers.

6-7

I

SECTION VI. THE PROCEDURE DIVISION

I ALTER

FUNCTION: To modify a predetermined sequence of operations.

FORMAT:

ALTER paragraph-name-l TO PROCEED TO paragraph-name-2

TECHNICAL NOTE:

Paragraph-name-l must be the name of a paragraph which contains a single
sentence consisting of:

GO TO paragraph-name.

6-8

SECTION VI. THE PROCEDURE DIVISION

CLOSE

FUNCTION: To tenninate the processing of input and output files and to provide a closing con­
vention associated with these files.

FORMAT:

CLOSE file-name [WITH NO REWIND]

TECHNICAL NOTES:

1. A CLOSE of a file assigned to a terminal device (card reader, card punch,
or printer) causes no action.

2. The resulting actions for tape files are as follows:

For input files the reel is rewound unless NO REWIND is specified.

For output files, the actions are as follows:

a. If the BLOCK CONTAINS integer is other than 1 and any
unwritten records remain in the final block, the unused
record positions in the final block are set to the padding
character (77

8
) and the block is written.

b. The label area is reset to spaces.

c. If LABEL RECORDS ARE STANDARD is specified, the
appropriate fields in the label area are overlayed with
11EOF~" and the VALUE OF IDENTIFICATION literal,
and the 80-character label is written.

d. Two "lERI~ II blocks are written and the tape is back­
spaced twice.

e. If NO REWIND has not been specified, the tape is rewound.

6-9

I

SECTION VI. THE PROCEDURE DIVISION

DISPLAY

FUNCTION: To display low-volume data.

FORMAT:

DISPLA Y { literal- 1 }
data- name- 1

TECHNICAL NOTE:

The DISPLAY device is the printer. The field specified is printed on one line
of the printer page. If the field exceeds the size of the printer line, the right­
most data is truncated.

6-10

•

SECTION VI. THE PROCEDURE DIVISION

DIVIDE

FUNCTION: To divide one numerical data item into another and set the value of an item equal
to the result.

FORMAT:

DIVIDE { literal-l } INTO {literal-2 } [GIVING data-name- 3]
data-name-l --- data-name-2

[ROUNDED] [, ON SIZE ERROR imperative-statement]

TECHNICAL NOTES:

1. Each DIVIDE statement must contain two operands (viz •• a dividend and a
divisor).

2. Only numeric fields and numeric literals can be used as operands in a
DIVIDE statement.

3. Neither the dividend nor the divisor can contain editing symbols. Only
data-name-3 (GIVING option) may be edited.

4. Each operand can have an operational sign and an implied decimal point.
There is no practical limit to the length of operands in a DIVIDE statement.

If the decimal point is not indicated for a DIVIDE operand, it is assumed
to be to the right of the least significant digit of that operand.

5. Division by zero constitutes a special type of size error and the rules
specified under 7 .• below, apply.

6. Truncation of right-hand digits of a quotient can occur during the storage
of that quotient according to the size associated with the receiving field.
At the completion of a DIVIDE statement, the result is moved to the re­
ceiving field according to the rules of numeric MOVE statements.

7. SIZE ERROR and ROUNDED options are provided for those cases where
truncation may take place.

a. When the SIZE ERROR option is specified, a test is made at
object time to see if overflow occurs when the quotient is
stored in the receiving field. If overflow occurs, the quotient
is not stored. Instead, the "imperative- statement" as sociated
with the SIZE ERROR option is performed.

b. When the ROUNDED option is specified, two more digits are
developed than are needed in the result field. Then, before
testing for SIZE ERROR (if specified), and before storage
in the receiving field, the third rightmost digit of the result
is increased by 1 if the second rightmost digit of the result
is in the range 5 through 9.

c. When the SIZE ERROR option is used in conjunction with the
GIVING option, the following restriction applies: If data­
name-3 contains any editing other than zero suppression,
SIZE ERROR handling is unspecified.

6-11

SECTION VI. THE PROCEDURE DIVISION

ENDllCOBOL

FUNCTION: To signal the physical end of the input deck.

FORMAT:

ENDllcOBOL

TECHNICAL NOTE:

This entry must be placed in columns 8 through 16 and must be the last entry in
every source program.

6-12

SECTION VI. THE PROCEDURE DIVISION

EXIT

FUNCTION: To furnish an end point for a loop, when required.

FORMAT:

EXIT.

TECHNICAL NOTES:

1. EXIT must be preceded by a paragraph-name and appear as a single, one­
word paragraph. For example,

LOOP-OUT. EXIT.

2. EXIT is used in conjunction with procedures referenced by the PERFORM
verb. When a paragraph consisting only of the single verb EXIT is named
as the end of range of the PERFORM, a variety of exits from the procedure
can be obtained by making each point at which exit is required a transfer
to the EXIT paragraph.

When an EXIT paragraph is encountered at a time when no PERFORM
statement is in effect, control passes from the paragraph preceding the
EXIT paragraph to the paragraph following it.

6-13

SECTION VI. THE PROCEDURE DIVISION

GO TO

FUNCTION: To depart froITI the norITIal sequence of procedures.

FORMAT:

GO TO paragraph-naITIe

TECHNICAL NOTE:

The paragraph-naITIe assigned to the GO TO paragraph-naITIe stateITIent is re­
ferred to by the ALTER verb to ITIodify the sequence of the prograITI. If the
GO TO paragraph-naITIe stateITIent is to be altered, then

1. The GO TO paragraph-naITIe stateITIent ITIust iITIITIediately succeed a
paragraph-naITIe.

2. The paragraph containing the GO TO paragraph-naITIe stateITIent can
contain only the GO TO paragraph-naITIe stateITIent.

6-14

SECTION VI. THE PROCEDURE DIVISION

FUNCTION: To provide for the testing of a stated condition not connected with the ON SIZE
ERROR path of an arithmetic verb (ADD, SUBTRACT, MULTIPLY, DIVIDE), or
the AT END path of the READ verb statements. The determination of the truth
or falsity of the condition determines the subsequent operations to be performed.

FORMAT:

IF simple-condition imperative-statement.:...

The basic format for a simple-condition clause is one of the following:

1.

2.

{

IS [NOT] GREATER THAN}
data-name-l IS [NOT] LESS THAN

IS [NOT] EQ UAL TO

This is called a relation test.

data-name IS {
NUMERIC }
ALPHABETIC

{
data-name-2}
literal

(i. e., data-name content is not equal to all numeric class characters, or
data-name content is not equal to all alphabetic class characters and/ or
spaces.)

3. [NOT] switch- status-name

A switch- status condition determines the on or off status of a hardware
switch. This switch must be named in the SPECIAL-NAMES paragraph
of the ENVIRONMENT DIVISION.

TECHNICAL NOTES:

1. A relation test specifies that at object time a test be made to determine a
specified relation between two items. The only relations pos sible are that
one item is, or is not, less than, equal to, or greater than another item.

a. Numeric Comparisons

b.

A numeric comparison compares two fields, treating them
as algebraic quantities. That is, the fields are aligned by
decimal point, and their signs are taken into consideration
in determining whether one field is greater than, equal to,
or less than the other field. For a given simple relation
test, a numeric comparison is performed only if both fields
have numeric pictures and are elementary, and neither
contains editing symbols.

Non-Numeric Comparisons

A simple relation test which does not meet the criteria
specified above for numeric comparison is treated as
a non-numeric comparison. In this type of test, charac­
ters from each item (beginning with the leftmost) are
compared pair by pair until an inequality has been found
or until the right end of one of the fields has been reached.
Inequality (greater than or less than) is determined as soon
as non-matching characters from corresponding character
positions have been found. The determination of the relationship

6-15

SECTION VI. THE PROCEDURE DIVISION

is based on the standard Honeywell character set (see page B-1);
the lowest possible bit configuration for a character is 000000;
the highest, 111111. A determination of equality is made if each
of the corresponding character positions of the items contains
the same bit configurations. If one of the items is shorter than
the other, in effect, spaces are added to the low-order end of that
item until it is the same length as the longer item.

6-16

SECTION VI. THE PROCEDURE DIVISION

MOVE

FUNCTION: To transfer data from one data area to another data area.

FORMAT:

MOVE {data-name-l} TO data-name-2 [THRU literal]
literal

TECHNICAL NOTES:

1. There are three types of MOVE operations:

a. Figurative Constants - if literal is SPACE, QUOTE, or ZERO,
either spaces or quotes or zeroes are moved into the entire
receiving field.

b. Non-Numeric - if either the sending field or the receiving field
is a group item, or if the sending field is edited, or if the re­
ceiving field is not numeric, the MOVE is a non-numeric MOVE.
In a non-numeric MOVE, data is filled into the receiving field
from left to right. The remainder of the receiving field, if any,
is space-filled. If the receiving field is too small to contain the
data being moved, right truncation occurs.

c. Numeric - if the items do not fulfill the requirements described
under (b), the MOVE is considered numeric. In a numeric move,
decimal-point alignment, right- or left-truncation, and/or right
or left zero-fill occur when necessary.

2. If the THRU option is specified, the literal must be a one-character alphanumeric.

3. The THRU option causes a Substitute (SST) instruction to be added to the
object code. The MOVE is then accomplished through the variant "literal. "
Only the rightmost character is moved by the Substitute instruction to the
rightmost position of the receiving field.

6-17

SECTION VI. THE PROCEDURE DIVISION

I MULTIPLY

FUNCTION: To multiply numeric data items and set the value of an item equal to the results.

FORMAT:

MULTIPLY {
data-name-l} BY {data-name-2}
literal-l -- literal-2

[GIVING data-name-3]

[ROUNDED]

TECHNICAL NOTES:

[, ON SIZE ERROR imperative- statement]

1. Each MULTIPLY statement must contain two operands (viz., a multiplier
and a multiplicand).

2. Only numeric fields can be used as operands in a MULTIPLY statement.
The only figurative constant that can be used is ZERO.

3. The rightmost operand must be a data-name. Any data-name used can
only reference an elementary item. Neither the multiplier nor the
multiplicand can contain editing symbols. Data-name-3 (GIVING option)
may be edited.

4. Each operand can have an operational sign and an implied decimal point.
If the decimal point is not indicated, it is assumed to be to the right of
the last significant digit of the operand. There is no practical limit to
the number of digits in a MULTIPLY statement operand.

5. Literals and constant fields cannot be used to receive the product.

6. Truncation of right-hand digits of the product can occur during the storage
of that product according to the size associated with the receiving field.
In general, when the receiving field contains fewer decimal places than
the product, right truncation occurs.

7. SIZE ERROR and ROUNDED options are provided for those cases where
truncation can take place.

a. When the SIZE ERROR option is specified, a test is made to
see whether overflow occurs when the product is stored in the
receiving field. If overflow occurs, the product is not stored.
Instead, the "imperative statement" associated with the SIZE
ERROR option is performed.

b. When the ROUNDED option is specified, a test is made to see
if right-digit truncation will occur when the product is stored
in the receiving field. If right truncation occurs, the least
significant digit that can be stored is increased by 1 when the
most significant digit truncated is in the range 5 through 9.

c. When the SIZE ERROR option is used in conjunction with the
GIVING option, the following restriction applies: If data-name-3
contains any editing other than zero suppression, SIZE ERROR
handling is unspecified.

8. Unless the

GIVING data-name-3

clause is used, the product is stored in data-name -2. When the GIVING option
is used, the product is stored in data-name-3 which is not used in the arith­
metic process. That is, MULTIPLY A BY B and MULTIPLY A BY B GIVING C
are the logical equivalents, respectively, to: A· B = B and A • B = C

6-18

\"'-..-'

SECTION VI. THE PROCEDURE DIVISION

NOTE

FUNCTION: To provide the ability to write notes (within the PROCEDURE DIVISION) that are
not compiled.

FORMAT:
NOTE •••

TECHNICAL NOTES:

1. A "note" may appear only within the PROCEDURE DIVISION.

2. When NOTE is the first word of a paragraph, the entire paragraph must
consist of "notes" (i. e., there can be no source program coding to be
compiled), since no compilation will occur until the next paragraph is
reached. When an entire paragraph is a note, the paragraph must still
follow the rules of proper format.

3. When NOTE is not the first word of a paragraph, only the characters
between NOTE and a period followed by a space are not compiled.
Compilation will begin again with the first sentence following the sentence
containing NOTE.

4. Any combination of characters from the COBOL set can follow the word
NOTE, except in the case of 3., above, where the occurrence of a period
followed by a space is regarded as ending the "note. "

6-19

•

SECTION VI. THE PROCEDURE DIVISION

I OPEN

FUNCTION: To initiate the processing of input and output files, to provide the opening con­
ventions associated with magnetic tape and punched card files.

FORMAT:

{
INPUT }

OPEN OUTPUT file-name [WITH NO REWIND]

TECHNICAL NOTES:

1. An OPEN of a card-input or card-output file causes the card device to be
initialized to read or punch in special mode. An OPEN of a card- output
file also causes the punching of one blank card. There is no action when
a printer file is opened.

2. The actions for tape files are as follows:

Statement Labels STANDARD Labels OMITTED

OPEN INPUT file- name A, B, C A, B

OPEN OUTPUT file-name A, B, D, F, G, H A, B, D, F, H

OPEN INPUT file-name B, C No Action
WITH NO REWIND

OPEN OUTPUT file-name E, F, G, H No Action
WITH NO REWIND

Table Legend:

A Rewind.

B Read a blank into the label area.

C Check label area for" lHDR" and correct value of ID and reel number.

D Backspace one block.

E Fill label area with spaces.

F Overlay first five characters of label area with" IHDR".

G Overlay appropriate fields in label area with value of ID and reel number.

H Write a block from the label area.

3. An OPEN verb must be applied to a file before any READ, WRITE, or CLOSE
verb is applied to it.

4. Only one OPEN can be applied to a file at anyone time. That is, before a second
OPEN can be executed for a file, the file must have a CLOSE executed for it.

5. The execution of an OPEN does not obtain or release the first data record
of a file (a READ or a WRITE must be executed to obtain or release each
data record of a file).

6. The WITH NO REWIND clause must be used if the tape is not to be automatically
rewound as part of the standard opening process of the object program.

6-20

SECTION VI. THE PROCEDURE DIVISION

I PERFORM

FUNCTION: To depart from the normal sequence of procedures in order to execute one state­
ment, or a sequence of statements, and then return to the normal sequence.

FORMAT:

PERFORM paragraph-name-l [THRU paragraph-name-2]

TECHNICAL NOTES:

1. When

PERFORM paragraph-name-l

is specified, only that paragraph is executed.

2. When

PERFORM paragraph-name-l THRU paragraph-name-2

is specified, the source-language coding from the first statement in paragraph
1 through the last statement of paragraph 2 is executed. The only necessary
relation between paragraph 1 and paragraph 2 is that a sequence beginning
in paragraph 1 must logically proceed into paragraph 2. When the loop speci­
fied by the PERFORM statement has more than one possible path to follow,
an EXIT paragraph must provide the common ending point for each path.

3. In all cases, after the completion of a PERFORM, a bypass is automatically
created around the return mechanism which has been inserted after the "last
statement." Therefore, when no related PERFORM is in progress, sequence
control will pass through a "last statement" to the following statement as if no
PERFORM existed.

4. The programmer should note that a paragraph referenced within a PERFORM
statement is also executed in the normal sequence of program execution.

5. If a sequence of statements referenced by a PERFORM includes another
PERFORM statement, the sequence associated with the included PERFORM
must itself be totally included in, or totally excluded from, the logical
sequence referenced by the first PERFORM.

For example, the following illustrations are correct.

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU j d PERFORM f THRU j

f h

j m

m f

j

6-21

SECTION VI. THE PROCEDURE DIVISION

The following illustrations are incorrect:

x PERFORM a THRU TIl

a

d PERFORM f THR U j

f

TIl

x PERFORM a THRU TIl

a

d PERFORM x THRU j

f

TIl

The return TIlechanisTIl set by PERFORM a THRU TIl prevents the perforTIlance
of PERFORM f THRU j in one case. In the other, a continuous loop has been
set up.

The sequence of procedures associated with a PERFORM stateTIlent can overlap
or intersect the sequence associated with another PERFORM, provided that
neither sequence includes the PERFORM stateTIlent associated with the other
sequence.

For exaTIlple:

Correct Incorrect

x PERFORM a THRU TIl x PERFORM a THR U TIl

a a

f d PERFORM f THRU j

TIl f

j TIl

d PERFORM f THRU j j

6-22

,-.

•

SECTION VI. THE PROCEDURE DIVISION

READ

FUNCTION: To make the next logical record of an input file available and to allow the execution
of a specified imperative statement when the end of this file is detected.

FORMAT:

READ file-name RECORD AT END imperative- statement

TECHNICAL NOTES:

1. A READ cannot be executed for a file unless the file is opened.

2. Only the information in the record made available by the current READ is
accessible. (When a file consists of more than one type of logical record,
these records share the same storage area.)

3. No verb in the PROCEDURE DIVISION should reference information that
is not actually present in the current record. If reference is made to the
nth occurrence of data which occurs fewer than n times in the accessible
record, the results during object program execution are unpredictable.

4. Once the AT END path has been taken for a file, no other READ statements
can be executed for that file until a CLOSE and a subsequent OPEN for that
file have been executed.

6-23

I

SECTION VI. THE PROCEDURE DIVISION

STOP

FUNCTION: To halt the object program either temporarily or permanently.

FORMAT:

STOP {RUN }
--- literal

TECHNICAL NOTES:

1. When the

STOP RUN

option is specified, the object program branches. to a standard Halt instruc­
tion in the Loader. This halt can be identified by the B-address register
contents being equal to 17002.

2. When the

STOP literal

option is specified, a program halt for operator intervention is effected.
A Halt instruction is generated with the B-address register containing only
the rightmost character of the literal.

When the RUN button is depressed, the program continues with the next
statement.

6-24

'---

SECTION VI. THE PROCEDURE DIVISION

SUBTRACT

FUNCTION: To subtract one numeric data item from another data item and set the value of an
item equal to the result.

FORMAT:

SUBTRACT {literal-l } FROM {literal-2 }
data-name-l data-name-2

[GIVING data-name-3]

[ROUNDED] [, ON SIZE ERROR imperative-statement]

TECHNICAL NOTES:

1. Each SUBTRACT statement must contain two operands (viz., a subtrahend
and a minuend).

2. Only numeric fields and numeric literals can be used as operands in a
SUBTRACT statement. The only figurative constant that can be used is
ZERO.

3. Of the operands used, the rightmost must be a data-name. A data-name
can only reference an elementary item. Neither the subtrahend nor the
minuend can contain editing symbols. Data-name-3 (GIVING option) may
be edited.

4. Each operand can have an operational sign and an implied decimal point.
There is no practical limit to the length of operands in a SUBTRACT verb
statement. If the decimal point is not indicated for a SUBTRACT operand,
it is assumed to be logically to the right of the least significant digit of
the operand.

5. Literals and constant fields cannot be used to receive the result.

6. Truncation of right-hand digits of the result can occur during the storage
of that result according to the size associated with the receiving field.
In general, when the receiving field contains fewer decimal places than
the result, right truncation occurs.

7. SIZE ERROR and ROUNDED options are provided for those cases where
truncation may take place.

a. When the SIZE ERROR option is specified, a test is made
at object time to see if overflow occurs when the result is
stored in the receiving field. If overflow occurs, the sum
is not stored. Instead, the "imperative statement" associated
with the SIZE ERROR option is performed.

b. When the ROUNDED option is specified, a test is made at
compilation time to see if right truncation occurs when the
result is stored in the receiving field. If right truncation
occurs, the least significant digit that can be stored is
increased by one if the most significant digit truncated is
in the range 5 through 9.

Example: Store 9741\617 in 999.99 Rounded result: 974.62

c. When the SIZE ERROR option is used in conjunction with
the GIVING option, the following restriction applies: If
data-name-3 contains any editing other than zero suppression,
SIZE ERROR handling is unspecified.

6-25

SECTION VI. THE PROCEDURE DIVISION

WRITE

FUNCTION: To release a logical record for an output file and to allow for vertical positioning
if the output device is a printer.

FORMAT:

WRITE record-name [BEFORE ADVANCING {integer :r--INES
}]

mnemonIc-name

TECHNICAL NOTES:

1. A WRITE cannot be executed for a file unless the file is open.

2. After the execution of a WRITE instruction, the associated record-name
is no longer available.

3. The ADVANCING option is used for printer-line spacing control. Integer
cannot specify a line advance greater than 15. The integer is interpreted
modulo-16.

Mnemonic-name must have been assigned in the SPECIAL-NAMES paragraph
·as PAGE IS mnemonic-name. If the output device is a printer, mnemonic­
name may also be assigned to CHANNEL a in the SPECIAL-NAMES paragraph.

6-26

:;

SECTION VII

INPUT / OUTPUT PROCEDURES

Object-time input/ output operations are performed by a set of subroutines selected for

inclusion in the object program according to the particular requirements of the program. These

subroutines are of two types: file- specific subroutines and general subroutines.

BUFFERS

For each FD entry in the DATA DIVISION, one file-specific subroutine is produced.

Associated with each file- specific subroutine is a buffer area containing one or two buffers.

(Two buffers are normally allocated; however, when the clause SINGLE-BUFFER is used in

the OBJECT-COMPUTER paragraph, only one buffer is allocated for each file. There is an

exception to this rule: Even though the SINGLE-BUFFER clause is used, its effect can be

overridden for a particular file by use of the statement APPLY DOUBLE-BUFFER TO file­

name. This statement may not appear more than once, and it must refer to a file that has been

assigned to a non-tape device. Thus, the object program may be arranged so that either none,

one, or all of its files are double buffered. Although these three options provide increasingly

greater object-time efficiency, they also require increasingly more memory space. For this

reason, single buffering should be specified only for those programs which will not otherwise

fit into the available memory space.

The length of the buffers or buffers allocated for a file is the length of the longest record

in that file times the integer specified in the BLOCK CONTAINS clause. (Absence of a BLOCK

CONTAINS clause is equivalent to the statement BLOCK CONTAINS 1 RECORD.) All records

in a file are not required to be the same length; if they are of different lengths, every READ

will obtain and every WRITE will release a number of characters equal to the length of the

longest record in that file.

PHY@CALFORMATOFTAPE

Tape files are written in odd parity, fixed- sized blocks of one or more fixed- sized records.

Each block is preceded by a one-character banner. Input tape files are expected to be in this

format. For tape files whose BLOCK CONTAINS integer is greater than 1, the final block may

contain padding records in its last position(s). A padding record is one whose first character

has the value 77
8

• When an output tape file is closed, sufficient padding records are auto­

matically supplied by the general subroutine to fill the last block. For input tape files, all

padding records are automatically skipped.

7-1

•

SECTION VII. INPUT/OUTPUT PROCEDURES

Regardless of whether label records are omitted or standard, the first record on a tape

reel is assumed to be a tape label. If the first file on the reel has standard label records, then '-../

the first record on the reel does double duty as both a tape label and a file header label. Every

tape file with standard label records is preceded by a header label and followed by a trailer

label. These labels are 80-character tape blocks containing the reel number and the value of

identification literal. The labels are automatically created for output files and checked for

input files.

Unless the clause WITH NO REWIND is used, reels are rewound when the associated file

is opened or closed. By use of the NO REWIND clause, the rewind may be suppressed; thus,

the tape can be positioned to anyone of several files on the same tape.

TAPE SWAPPING

If the end of tape is reached during the course of writing a file on tape, a special closing

operation is initiated and the computer halts. The operator then supplies a new reel addressed

the same as the previous reel and restarts the computer, and the file continues to be written on

the new reel. The writer of the source program need not be concerned with this tape-swapping

mechanism. A complementary process takes place when this multireel file is being read; pro­

vision is made for tape swapping when the end of the reel is reached, and reading continues with

the next reel. Of course, the reels must be mounted in the same order in which they were

written.

NON-TAPE FILES

For non-tape files (that is, those assigned to the card reader, the card punch, or the

printer), there is no blocking, labelling, or bannering. Every logical record corresponds to

a single card or print line; no header or trailer labels are expected or produced, and the first

character of the record appears in the first column of the card or print line. The length of

logical records in a file assigned to a terminal device is not required to be the same as the unit

record length for that device {e. g., 80 characters for card records}. However, characters

will be lost if the logical record length is longer than the unit record length.

I/O HALTS

When a read or write error occurs during the operation of the object program, the standard

correction procedures are executed. If they are not successful in correcting the error, the

computer halts with a code in the B-address register which identifies the type of halt. The

codes and their meanings are listed in Table 7-1.

7-2

SECTION VII. INPUT/OUTPUT PROCEDURES

Table 7-1. Input/Output Device Halts at Object Time

Contents of BAR Explanation of Halt

OOOlx Read error on tape drive x

0002x Write error on tape drive x

00110 Card read error

00120 Card punch error

00220 Printer error

0004x Label-check failure on tape drive x

0003x End of reel on tape drive x

The last code in Table 7-1 does not indicate an error; it directs the operator to change

the reel. For each of these halts except the last, there are two options available to the operator:

1. He may push the RUN button.

For card read, card punch, and printer errors, the program repeats
the last Peripheral Data Transfer (PDT) instruction to that device. This
action assumes that the operator has either

a. retrieved the last card read from the eject pocket and re­
loaded it,

b. discarded the last card punched, or

c. manually spaced the printer and marked the last line printed
as erroneous.

For tape read or tape write errors, the program repeats the standard
error procedure.

For the tape-swap halt, it is assumed that the operator has dismounted
the current reel and mounted the next reel in its place on drive x.
(Alternatively, he may have already mounted the next reel on a spare
drive so that the only action required is to readdress the spare drive
in place of drive x.) For the incorrect label halt, it is assumed that
the operator has dismounted the incorrect reel from drive x and mounted
the correct reel in its place.

All these actions except the swap are repeatable. For example, the
operator may attempt rereading the same tape record any number of
times simply by repetitively pushing the RUN button.

2. He may branch to the address specified by the A-address register. In
all cases except the tape- swap halt, the effect of this action is that the
program will ignore the error that caused the halt and proceed as if it
had not occurred. Caution should be stressed in choosing this option
in the case of a read or a write error halt. If a read error indication
exists, the record will be accepted and processed as though no read
error had occurred. If a write error indication exists, the tape is
backspaced and an attempt is made to write the record correctly. If
the write error persists after 63 such attempts, the record is written
anyway and processing continues.

7-3

SECTION VII. INPUT/OUTPUT PROCEDURES

PERIPHERAL ADDRESS ASSIGNMENTS

COBOL Compiler B assumes that the standard octal addresses have been assigned to the

peripheral controls as shown in Table 7-2.

Table 7-2. Standard Peripheral Address Assignments

PERIPHERAL CONTROL OCTAL ADDRESS

Magnetic Tape 00 for output
40 for input

Card Reader 41

Card Punch 01

Printer 02

7-4

SECTION VIII

OPERATING INSTRUCTIONS

COMPILER PROGRAM OPERATING INSTRUCTIONS

1. Assign Tape Units. The self-loading tape (SLT) is always mounted on
logical drive O. A required work tape is always mounted on logical drive
1. If tape output is desired, another work tape must be mounted on
logical drive 2.

2. Insert Source- Language Deck. Only one source program can be compiled
at a time. The cards in the source-program deck must be in the following
order:

a. Console Call card (must have COBOLB':' punched in columns
1-7)

b. COBOL source program beginning with the

IDENTIFICATION DIVISION card

and ending with the

END COBOL card

c. One blank card

3: Press the BOOTSTRAP button once.

4. Press the RUN button twice.

5. A halt occurs with the value 17070 in the B-address register. If more than
8K characters of memory is available and the programmer desires to use
it, the operator must key one of the following entries into location O.

Keyin Total Memory Available

2 12K
3 16K
4 20K
5 24K
6 28K
7 32K

Regardless of whether or not a keyin is made, execution is resumed by
pre.ssing the RUN button.

NOTE: If SENSE switch 4 is OFF, the normal printout is produced
(see Section IX). If SENSE switch 4 is ON, this printout is
suppressed (with the exception of the source-language
diagnostic s).

6. The halts that may occur during compilation are identical to those listed
in Table 7-1, page 7-3.

7. At the end of compilation, a halt occurs with the B-address register
containing 17002.

8-1

SECTION VIII. OPERATING INSTRUCTIONS

OBJECT PROGRAM OPERATING INSTRUCTIONS

Loading from Tape

1. Insert the Console Call card; this card must have the program-name punched
in columns 1-6 and an asterisk (':') in column 7. If the specified program
cannot be found, a halt occurs with the B-address register containing 00162.

2. Mount the required tapes. If the object program is executed directly after
compilation, change the assignment of logical drive 2 (the output object
program tape) to logical drive O.

3. Press the BOOTSTRAP button once.

4. Press the RUN button twice.

Loading fr om Cards

1. Insert the object deck; when a punched deck is requested, the compiler
produces a completely self-loading deck.

2. Press the BOOTSTRAP button once.

3. Press the RUN button twice.

8-2

•

SECTION IX

COMPILATION LISTINGS AND DIAGNOSTICS

Certain infonuation is generated by COBOL COITlpiler B as a debugging aid and docuITlenta­

tion of the source prograITl. This output appears in the following order:

1. Source prograITl listing and eITlbedded diagnostics.

2. Object code ITleITlory ITlap.

SOURCE PROGRAM LISTING AND EMBEDDED DIAGNOSTICS

The user's source prograITl, cOITlplete with sequence nUITlbers (if specified), is provided.

Diagnostics, in the forITl of single-character keys, are eITlbedded within the source-prograITl

listing. The diagnostic keys and their ITleanings are sUITlITlarized in Table 9-1. The following

printout shows an exaITlple of a diagnostic:

01510 MOVE ZEROES TO CTR.

S

In ITlost instances, fatal diagnostics do not halt cOITlpilation iITlITlediately. However, if

the cOITlpilation is halted by a fatal diagnostic, the prograITlITler should correct all fatal errors

in his prograITl before cOITlpiling again.

The following diagnostic s are generated after cOITlpilation and appear at the end of the

source prograITl listing:

"paragraph-naITle" IS NOT DEFINED.
"paragraph-naITle" IS NOT ALTERABLE.
TOO MANY FILES SELECTED. (generated when seventh SELECT

clause is detected)

The above diagnostics are fatal.

OBJECT CODE MEMORY MAP

Subroutine InforITlation

The cOITlpiler supplies iITlportant inforITlation regarding the input/ output and other special

subroutines generated by the cOITlpiler. Following the subroutine naITle is a listing of the actual

ITleITlory locations, load paraITleters, and the encoded instruction. The following exaITlple shows

this inforITlation.

9-1

•

Key

1

2

3

4

5

6

7

8

10

11

12

13

14

15

17

18

19

C

D

E

L

M

o
P

Q

R

S

W

SECTION IX. COMPILATION LISTINGS AND DIAGNOSTICS

Table 9- 1. Sununary of Diagnostic Keys

Meaning

This word is syntactically incorrect.

Colunm 7 is not blank. (Fatal)

(Fatal)

Line nUITIber sequence error. (Warning)

Illegal character in word. (Fatal)

Not a COBOL word. (Fatal)

More than 30 characters in a word. (Fatal)

Either the period is ITIissing at the end of a description of there is
a syntax error. (Fatal)

This file was not selected in the ENVIRONMENT DIVISION. (Fatal)

Only one level of OCCURS is perITIitted within a hierarchy. (Fatal)

An iteITI requiring subscripting cannot be redefined. (Fatal)

Redefinition area is bigger than redefined area; layout has been
adjusted. (Warning)

Previous PICTURE iteITI ITIust be eleITIentary and cannot have a
subordinate iteITI. (Fatal)

The edited PICTURE was ITIodified to conforITI to the Series 200
edit instructions. (Warning)

The edited PICTURE contained an illegal cOITIbination of characters.
(Fatal)

This record contains ITIore than 4096 characters. (Fatal)

Two records in a file have been described with different sizes;
padding to the ITIaxiITIuITI size is assuITIed. (Warning)

This eleITIentary iteITI does not have a PICTURE clause. (Fatal)

Illegal character or cOITIbination of characters in this PICTURE.
(Fatal)

Illegal duplication of previous naITIe. (Fatal)

ENVIRONMENT DIVISION header ITIissing. (Fatal)

FD ITIust contain a LABEL RECORDS clause. (Fatal)

Peripheral file cannot have standard labels. (Fatal)

A ITIaxiITIuITI of 30 OCCURS clauses is perITIitted. (Fatal)

Period ITIissing after previous word. (Warning)

This prograITI naITIe is ITIore than 6 characters long. The naITIe
will be truncated. This only applies to an all-nuITIeric prograITI­
naITIe. (War ning)

OCCURS clause is illegal for a record in the FILE SECTION. (Fatal)

All words between last diagnosed word and this word have been
skipped. (Fatal)

VALUE IS clause is legal only for eleITIentary unredefined iteITIs.
(Fatal)

9-2

~

-'

SECTION IX. COMPILATION LISTINGS AND DIAGNOSTICS

FILE SUBROUTINE FOR FILE-l

000000 60 000310
000310 24 43000412
000314 27 14017100000426
000323 24 65020102
000327 24 65017214
000333 24 43000412
000337 24 65020471
000343 24 65017214
000347 24 43000412
000353 24 65017224
000351 30 5500035300045577

Data Division Information

The next printout section lists the DATA DIVISION record description entries, WORKING­

STORAGE entries, their respective address assignments, and interspersed initial values. The

following example indicates this information.

DAT~ DIVISION ADDRESS ASSIGNMENTS
(WITH INTERSPERSED INITIAL VALUES)

NAME P LEFT RIGHT

REC-2 001052 001223
TA~2A W 001052 001066
TA~2B W 001136 001173
TA~2C 001174 001223

TAG2D W 001174 001217
T~G2E W 001220 001223

000276 60 000276
000276 32 65314523644364441515

Punctuation Table

A punctuation table is provided to indicate the punctuation of the file and WORKING­

STORAGE areas set during compilation. The following is an example of a punctuation table.

PUNCTUA TI ON

000455 60 000456
000455 63
000471 60 000472
000471 63
000527 60 000530
000527 63

Index Register Table

An index register table is included to indicate the initial values of the index registers

as set by the compiler. An example follows.

9-3

•

SECTION IX. COMPILATION LISTINGS AND DIAGNOSTICS

INDEX REGISTERS

012333 60 000002
000002 24 02724200
000002 60 000006
000006 23 017162
000006 60 000012
000012 23 000000
000012 60 000016
000016 23 000000

PROCEDURE DIVISION Information

The final printout information lists, by paragraph name, absolute memory locations, load

parameters, and encoded instructions for the complete PROCEDURE DIVISION. A C indicates

the beginning of a clause. The following example shows a paragraph and related code.

PROCEDURE DIVISION

BG

021411 C 24 65021157
021415 23 012355
021420 23 012332
021420 64
021423 C 24 65021157
021427 23 012355
021432 23 012332
021432 64
021435 C 24 65021157
021441 23 012354
021444 23 012332
021444 64
021447 C 24 65700213
021453 21 45
021453 61 021334

TrlERE ARE 005567 LOCATIONS REMAINING

9-4

---./

"-'

'-'

APPENDIX A

COBOL RESERVED WORD LISTS

This appendix contains two lists of words reserved for COBOL compilers. Programmers

should note that these words have particular meanings to the compilers and, therefore, should

not be used by the programmer as user -created names.

List #1 is the Honeywell COBOL B Reserved Word List and applies only to programs

written for COBOL Compiler B. If the programmer has no concern, either present or future,

for upward compatibility, he must avoid using the words in this list.

List #2 is the Honeywell COBOL Reserved Word List and applies to all Series 200 com­

pilers up to and including COBOL H. If there exists a chance that a COBOL B program may,

at some later date, be compiled by a larger compiler, the programmer must avoid using the

words in this list.

I. COBOL B RESERVED WORD LIST

ACCEPT EQUAL MULTIPLY
ADD ERROR NO
ADDRESS EXIT NOT
ADVANCING FD NOTE
ALPHABETIC FILE NUMERIC
ALTER FILE-CONTROL OBJECT-COMPUTER
APPLY FILLER OBJECT -PROGRAM
ARE FROM OCCURS
ASSIGN GIVING OF
AT GO OFF
BEFORE GREATER OMITTED
BLOCK IDENTIFICA TION ON
BY IF OPEN
CARD-PUNCH INPUT OUTPUT
CARD-READER INPUT -OUTPUT OUTPUT-TAPE
CHANNEL INPUT-TAPE PAGE
CHARACTERS INTO PERFORM
CLOSE I-O-CONTROL PICTURE
COBOL IS PRINTER
CONFIGURA TION LABEL PROCEED
DATA LESS PROGRAM-ID
DISPLAY LINES QUOTE
DIVIDE MEMORY READ
DIVISION MODEL-120 RECORD
DOUBLE-BUFFER MODEL-200 RECORDS
EDIT -OPTION MODEL-1200 REDEFINES
END MODEL-2200 REWIND
ENVIRONMENT MOVE ROUNDED

A-I

COBOL RESERVED WORD LISTS

I. COBOL B RESERVED WORD LIST (cont)

-...../
RUN SPACE THAN
SECTION SPECIAL-NAMES THRU
SELECT STANDARD TIMES
SENSE-SWITCH STATUS TO
SERIES-200 STOP VALUE
SINGLE-BUFFER SUBTRACT WITH
SIZE TAPE WORKING-STORAGE
SOURCE-COMPUTER TAPE-UNIT WRITE

ZERO

II. HONEYWELL COBOL RESERVED WORD LIST

ABOUT CARD-READER DEPENDING
ACCEPT CARD-READERS DESCENDING
ACCEPT-CARD-READER CARD-TAPE-READ DETAIL
ACCEPT-CONSOLE CHANNEL DIGIT
ADD CHANNELS DIGITS
ADDRESS CHARACTER DISPLAY
ADVANCING CHARACTERS DISPLAY -1
AFTER CHECK DISPLA Y-2
ALL CLASS DISPLA Y -CONSOLE
ALPHABETIC CLOCK-UNITS DISPLA Y -PRINTER
ALPHANUMERIC CLOSE DIVIDE
ALTER COBOL DIVIDED
ALTERNATE CODE DIVISION
AN COLUMN DOLLAR '-"

AND COMMON- W -STORAGE DOWN
APPLY COMP DUMP
ARE COMP-1 DUMP-FILE
AREA COMP-2 ELSE
AREAS COMP-3 END
ASCENDING COMPUTATIONAL ENDING
ASSIGN COMPUTATIONAL-1 ENDING-FILE-LABEL
AT COMPUTATIONAL-2 ENDING-TAPE-LABEL
AUTHOR COMPUTATIONAL-3 END-OF -FILE
AUX - CHANNEL COMPUTE END-OF-TAPE
AUX-CHANNELS COMPUTER ENTER
BCD CONFIGURATION ENVIRONMENT
BEFORE CONSOLE-KEYBOARD EQUAL
BEGINNING CONSOLE - TYPEWRITER EQUALS
BEGINNING - FILE - LABEL CONSTANT ERROR
BEGINNING-TAPE-LABEL CONTAINS EVERY
BEGIN/PROG/ AT CONTINUE/PROG/ AT EVF-SIGNAL
BIT CONTROL EXAMINE
BITS CONTROLS EXCEEDS
BLANK COpy EXIT
BLOCK CORRESPONDING EXPONENTIA TED
BLOCK-COUNT DATA FD
BLOCK-SIZE DATE-COMPILED FILE
BY DATE- WRITTEN FILE-CONTROL
CALL DECLARA TIVES FILE-LABEL
CARD-PUNCH DEFINE FILLER '-"
CARD-READ DELETED:WHEN=RESOLVED FINAL

A-2

•

COBOL RESERVED WORD LISTS

II. HONEYWELL COBOL RESERVED WORD LIST (cont)

~

FIRST LIMITS PICTURE
FLOAT LINE PLACE
FLOA TING-POINT LINE-COUNTER PLACES
FOOTING LINES PLUS
FOR LOAD POINT
FORMAT LOADER POSITION
FORTRAN LOCATION POSITIVE
FROM LOCK PREPARED
GENERATE LOWER-BOUND PRINT
GIVING LOWER-BOUNDS PRINTER
GO LOW-VALUE PRINTERS
GREATER LOW-VALUES PRINT-TAPE
GROUP MEMORY PRIORITY
HASHED MEMORY-DUMP PROCEDURE
HEADING MEMORY-DUMP-KEY PROCEED
HIGH-VALUE MINUS PROGRAM-ID
HIGH-VALUES MODE PROTECT
H-1400 MODULE PUNCHES
H-ISOO MODULES PUNCH-TAPE
H-ZOO MOVE PURGE-DATE
H-ZOO-SPECIAL MULTIPLE QUOTE
H-400 MULTIPLIED QUOTES
H-SOO MULTIPLY RANGE
HLT-CTL MULTIPLY -DIVIDE READ
HONEYWELL-1400 NEAC-ZSO READER-PUNCH
HONEYWELL-ISOO NEGATIVE READER-PUNCHES

~ HONEYWELL- ZOO NEXT REASSIGNMENT
HONEYWELL-400 N-ZSOO RECORD
HONEYWELL- SOO NO RECORDING
HVF-SIGNAL NO-MEMORY-DUMP RECORD-COUNT
ID NOT RECORD-SIZE
IDENTIFICA TION NOTE RECORDS
IF NUMBER REDEFINES
I-O-CONTROL NUMERIC REEL
IN OBJECT-COMPUTER REEL-NUMBER
INCLUDE OBJECT -PROGRAM RELEASE
INDEX OCCURS REMARKS
INDICATE OF RENAMES
INITIATE OFF RENAMING
INPUT OMITTED REPLACING
INPUT -OUTPUT ON REPORT
INSTALLATION OPEN REPORTING
INTO OPTIONAL REPORTS
IS OR RERUN
JUSTIFIED ORIGINAL:SOURCE LANGUAGE RESERVE
KEY OTHERWISE RESET
LABEL OUTPUT RETURN
LAST OVERFLOW REVERSED
LEADING PAGE REWIND
LEAVING PAGE-COUNTER RIGHT
LEFT PAPER-TAPE-PUNCH ROUNDED
LESS PAPER-TAPE-READER RUN

'-' LIBRARY PERFORM RWCS
LIMIT PICTURE SAME

A-3

•

COBOL RESERVED WORD LISTS

II. HONEYWELL COBOL RESERVED WORD LIST (cont)

SD
SECTION
SECURITY
SEGMENTATION
SEG MENT - LIMIT
SELECT
SELECTED
SENSE -SWIT CH
SENTENCE
SENTINEL
SEQUENCED
SET
SHORT-GAP
SIGN
SIGNED
SIZE
SLAVE - TYPEWRITER
SORT
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-80
STANDARD-l 20
STATUS
STOP
SUBTRACT
SUM
SUPERVISOR
SUPPRESS
SYNCHRONIZED
TALLYING
TAPE
TAPE-READ
TAPE-READ-BACKWARDS
TAPE-READ-FORWARD
TAPE-UNIT
TAPE-UNITS
TAPE-WRITE'
TEMP-STORAGE
TERMINATE
TEST-PATTERN
THAN
THEN
THROUGH
THRU
TIMES
TO
TRAILING- COUNT
TYPE
UNEQUAL
UNTIL

UPON
UPPER-BOUND
UPPER - BOUNDS
USAGE
USE
USING
VALUES
VARYING
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS

SPECIAL SYMBOLS
=

+

/

A-4

COBOL
CHARACTER

SET

a
1
2
3
4
5
6
7
8
9

=

/),

+
A
B
C
D
E
F
G
H
I
;

)

-
J
K
L
M
N
0
P
Q
R

$

*
"

S
T
U
V
W
X
Y
Z

(

t --

APPENDIX B

TABLES

Table I. Character Correspondence Table

KEY PUNCH
HIGH-SPEED CHARACTER CARD. MACHINE
PRINTER SET SET CODE CODE

a a 0 000000
1 1 1 000001
2 2 2 000010
3 3 3 000011
4 4 4 000100
5 5 5 000101
6 6 6 000110
7 7 7 000 III
8 8 8 001000

9 9 9 001001
I 8, 2 001010

= # 8, 3 001011
: @ 8, 4 001100

space space blank 001101

<I non-printing 8, 6 001110
&, 8, 7 001111

+ &, R, a 010000
A A R. I 010001
B B R, 2 010010
C C R, 3 010011
D D R, 4 010100
E E R, 5 010101
F F R, 6 010110
G G R, 7 010 III
H H R, 8 011000
I I R, 9 01100 I
; R, 8, 2 011010

R, 8, 3 011011
) R, 8, 4 011100

% R, 8, S a 1110 I

• R, 8, 6 011110
/), non-printing R 011111

- - X, 0 100000
J J X, I 100001
K K X, 2 100010
L L X, 3 1000 II
M M X, 4 100100
N N X, 5 10010 I
0 0 X, 6 100110
P P X, 7 100 III

Q Q X, 8 101000
R R X, 9 101001

X, 8, 2 101010

$ $ X, 8, 3 101011

* * X, 8, 4 101100

" X, 8, 5 101101
I non-printing X, 8, 6 JOIIIO
? non-printing X 10 IIII
o non-printing 8, 5 110000

/ / 0, I 11000 I
S S 0, 2 lJOOJO
T T 0, 3 110011
U U 0, 4 110100
V V 0, 5 11010 I
W W 0, 6 110110
X X 0, 7 lJ011I
Y Y 0, 8 111000
Z Z 0, 9 111001

@ 0, 8, 2 111010
0, 8, 3 111011

(% 0, 8, 4 111100
C R 0, 8, S 11110 I

Dnon-printing 0, 8, 6 IIII JO
S non-printing 0, 8, 7 IIIIII

B-1

NORMAL
COLLATION

VALUE
(OCTAL)

00
01
02
03
04
05
06
07
10
II
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

APPENDIX C

THE UPDATE B PROGRAM

The Series 200 Update B prograITl perITlits ITlore cOITlpact storage, easier ITlaintenance,

and faster loading of object prograITls by enabling the user to store theITl on ITlagnetic tape.

Update B perforITls either one of two separate functions, depending upon the ITlode in which

it is used. These are:

1. Create Mode - creates a prograITl tape by placing one or ITlore object pro­
graITl card decks or card-iITlage tapes on a self-loading tape (SLT).

2. Update Mode - ITlaintains and updates an existing SLT by producing a new
SLT as follows:

INPUT

a. Copies prograITls froITl the old SLT onto the new SLT.

b. Deletes old prograITls by oITlitting theITl froITl the new SLT.

c. Inserts new prograITls onto the new SLT froITl either punched
cards or ITlagnetic tape.

The input required by Update B depends upon which function is perforITled. In the create

ITlode, Update B requires as input a control deck and the object prograITls (on either punched

cards or magnetic tape) which are to be placed on the new SLT. In the update ITlode, the old

SLT containing those prograITls to be copied or deleted is also required.

Old SLT

Required only in the update ITlode, the old SLT is ITlounted as logical tape O. The descrip­

tion of this tape corresponds to that given under "New SLT" below.

Control Deck

The control deck, consisting of a series of director cards which indicate the action to be

perforITled for each input prograITl and each prograITl on the old SLT (update ITlode only), is read

via an on-line card reader. In the create ITlode, these action directors ITlay be in any sequence;

in the update ITlode ,they ITlust be in the saITle sequence as the prograITls on the old SLT (with the

exception of the Insert directors, which ITlay be interspersed as desired). A description of the

forITlat and function of each type of action director is found under "Director Cards" below.

IJ:lput PrograITls

Update B will accept any cOITlplete object prograITls, in the forITl of punched card decks or

card iITlages on tape, which are generated by any of the following Honeywell Series 200 software:

C-l

APPENDIX C. THE UPDATE B PROGRAM

1.

2.

3.

4.

5.

Easycoder Assembler A

Condense A

Easycoder Assembler B

Easycoder Assembler B

COBOL Compiler B

(Self-loading format)

(Self-loading format)

(Self-loading format)

(Binary run deck format)

(Binary run deck format)

In addition, Update B will accept any complete object programs from an old SLT (self-loading

format) generated by a previous Update B run or from a Distributor Transaction Tape (self­

loading and/ or binary run deck format) received from Honeywell.

CARD INPUT

Any object-program card deck which is input to Update B is placed immediately behind

its associated action director in the control deck. In the case of an object-program deck gener­

ated by COBOL Compiler B in binary run deck (BRD) format, the Loader B program must pre­

cede the object program (see Appendix D). Both of these decks are then placed behind the ap-

propriate action director.

TAPE INPUT

An input program tape containing one or more complete object programs to be included on

the new SLT can be mounted as logical tape 2. Any action director specifying a program on this

tape causes the tape to be searched. If the program is not found, a programmed halt occurs.

Binary Run Deck Format

For each input object program recorded in binary run deck format, Update B generates the

following series of self-loading routines. These are written ahead of the object program on the

new SLT.

1. Tape Search B Bootstrap record (sets up punctuation and reads in next record).

2. Tape Search B program record. (This single record program locates and
initiates the loading of any program on the program tape as called for by a
Console Call card. If SENSE switch 4 is set ON, it initiates the loading of
the next program on tape without reading a Console Call card.

3. Tape Loader B (loads the BRD-format object program which follows).

Following these is the object program in binary run deck format.

Self- Loading Format

Each object program on tape in self-loading format is handled by Update B as follows:

1. The Tape Search B bootstrap record and the Tape Search B program
record are generated ahead of the object program.

2. The object-program bootstrap record is increased in length to 104
characters and the Load card is modified for tape loading.

C-2

•

APPENDIX C. THE UPDATE B PROGRAM

OUTPUT

New SLT

The new SLT is written on tape drive 1. It is composed of one or more complete object

programs, in self-loading or binary run deck format (see Figure C-2). Each object program

in binary run deck format is preceded by a Tape Search B bootstrap record, a Tape Search B

program record, and the Tape Loader B program. Each object program in self-loading format

is preceded by a Tape Search B bootstrap record and a Tape Search B program record; no

loader is required since the object program is in self-loading format.

Directory Listing

An optional listing of all programs on the new SLT is produced on an on-line printer.

- ,/ '\

IOLD SLT \

(UPDATE J
\ MODE ONLY);

'- ./

TAPE 0~-­
'\

CONTROL DECK AND
INPUT PROGRAM DECKS

"

--
/ "

/ \
f INPUT \
\ PROGRAMS,
\ I

'- ./ -i--
I TAPE 2

UPDATE B

"­
'\

NOTE: INPUT PROGRAMS CAN BE
EITHER IN THE FORM OF
PUNCHED CARD DECKS
WITHIN THE CONTROL DECK
OR ON TAPE, BUT NOT BOTH.

V-------l
I DIRECTORY I
I LISTING J
I /---
L..-/

Figure C-l. The Update B Program

DIREC TOR CARDS

The director cards which make up the control deck input to Update B consist of three types:

1. Control header card

2. Action directors

3. Trailer card

The control deck, which is always read by an on-line card reader, must begin with a control

header card, contain one or more action directors, and terminate with a trailer card.

C-3

.'--"

FOR EACH SELF­
LOADING FOR­
MAT OBJECT
PROGRAM

APPENDIX C. THE UPDATE B PROGRAM

Tape Search B Bootstrap Record

Tape Search B Program Record

Program Header Bootstrap Card (expanded to 104

Object Program } char.)
Clear Cards

(Self-loading format) Load Card (modified to tape load)
.... I--------~---------I Program Instructions

Execute Cards
End Card

Tape Search B Bootstrap Record

FOR EACH BINAR Y
RUN FORMAT
OBJECT PROGRAM

Tape Search B Program Record

Program Header

Tape Loader B

Control Header Card

(Self-loading format)

Object Program

(Binary run deck format)

J

}

segment Header Record
Program Instructions
Terminate Loading Record

Figure C-2. Self-loading Tape (SLT) Format

The control header card identifies the beginning of the control deck and initializes Update

B to operate in either the create or the update mode. Table C-l below details the parameters

required.

Table C-l. Control Header Card

COLUMN(S) CONTENTS INTERPRET A TION

1-5 Must contain the value IHDR Ll •

6-14 Blank

15 Spec ifie s whether Update B is to operate in the create or the
update mode:

C - Indicates that Update B is to operate in the create mode.
No old SLT is mounted on tape drive 0 and only insert
action directors are permitted in the control deck.

U - Indicates that Update B is to operate in the update
mode. An old SL T must be mounted on tape drive 0
and all action director s are valid.

16-27 Blanks

28-55 Contains any information, such as the revision number or
revision date of the new SL T, to be printed in the header
line of the directory listing.

56-80 Blanks

C-4

APPENDIX C. THE UPDATE B PROGRAM

Action Directors

Action director cards are of four types:

1. Insert - Directs Update B to insert the naITled prograITl, which either
follows in punched card forITl or is on the input prograITl tape,
onto the new SL T.

2. Delete - Directs Update B to bypass copying the naITled prograITl froITl
the old SL T onto the new SL T.

3. Copy - Directs Update B to copy the naITled pr ograITl froITl the old
SL T onto the new SL T •

4. Replace - Directs Update B to insert the naITled prograITl, which either

INSERT DIRECTOR

follows in punched card forITl or is on the input prograITl tape,
onto the new SLT in place of an identically naITled prograITl
on the old SLT.

In the create ITlode, Update B requires that there be one Insert director for each prograITl

to be written onto the new SLT. The sequence of these directors establishes the order in which

these prograITls will appear on the new SLT. In the update ITlode, Insert directors ITlayappear

anywhere in the control deck and deterITline at what points the new prograITls will appear within

the order of the prograITls froITl the old SLT. The only restriction is that the naITle of the pro­

graITl to be inserted next cannot be the saITle as the naITle of the currently positioned prograITl

on the old SLT.

The setting of SENSE switch 2 deterITlines froITl what source these new prograITls will be

taken. If SENSE switch 2 is OFF, all prograITls to be inserted are assuITled to be on the input

prograITl tape (tape drive 2). If SENSE switch 2 is ON, all prograITls to be inserted ITlust be in

punched card forITl following their respective Insert directors.

The forITlat for the Insert director is described in Table C-2.

Table C-2. Insert Director Card

COLUMN(S) CONTENTS INTERPRET A TION

1- 3 INS

4-20 Blanks

21-26 The six-character prograITl naITle of the object prograITl to be
inserted onto the new SLT. This prograITl ITlust either follow
this director card (SENSE switch 2 ON) or else be present on
the input prograITl tape (SENSE switch 2 OFF).

27-29 Blanks

30-37 Identifying inforITlation (creation date, revision nUITlber, etc.) -
Optional

38-80 Blanks

C-5

APPENDIX C. THE UPDATE B PROGRAM

DELETE DIRECTOR

The Delete director is valid only in the update ITlode. Since there ITlust be SOITle type of

director card present for each prograITl on the old SLT, a Delete director ITlust be supplied for

all old-SLT prograITls which are not otherwise referenced by either a Copy or a Replace director.

The absence of a director reference to a prograITl on the old SLT results in a prograITlITled halt.

In effect, the old- SLT prograITl specified in the Delete director card is not copied onto the

new SLT. A description of the forITlat for this director is given in Table C-3.

Table C- 3. Delete Director Card

COLUMN(S) CONTENTS INTERPRET A TION

1-3 DEL

4-20 Blanks

21-26 The six-character prograITl naITle of the old- SLT object prograITl
which is not to be included on the new SLT. --

27-29 Blanks

30-37 Identifying inforITlation - Optional

38-80 Blanks

-... COpy DIRECTOR

The Copy director is valid only in the update ITlode and causes the naITled prograITl to be

copied froITl the old SLT onto the new SLT. A Copy director ITlust be included for every old-SLT

object prograITl which is not otherwise referenced by a Delete or a Replace director. A descrip-

tion of the forITlat for this director is given in Table C-4.

Table C-4. Copy Director Card

COLUMN(S) CONTENTS INTERPRETATION

1- 3 COP

4-20 Blanks

21-26 The six-character prograITl naITle of the old- SLT object prograITl
which is to be included on the new SL T.

27-29 Blanks

30-37 Identifying inforITlation - Optional

38-80 Blanks

NOTE: Since the Update B prograITl itself is norITlally the first prograITl on
the SLT, the first action director in the control deck should be a
Copy director containing UPDATB in co1UITlns 21-26.

C-6

•

APPENDIX C. THE UPDATE B PROGRAM

REPLACE DIRECTOR

The Replace director is valid only in the update TI1ode. It is used whenever an object pro­

graTI1 on the old SLT is to be replaced on the new SLT by an input prograTI1 which is either in

punched card forTI1at following this director (SENSE switch 2 ON) or on the input prograTI1 tape

(SENSE switch 2 OFF). This function is priTI1arily used to replace an old version of an object

prograTI1 with its updated or corrected version. The prograTI1 naTI1e assigned to this new version

is the saTI1e as that of the original prograTI1. In effect, the Replace director causes the deletion

of the existing prograTI1 and the insertion of the new prograTI1. The forTI1at for this director is

described in Table C-5.

Table C- 5. Replace Director Card

COLUMN(S) CONTENTS INTERPRET A TION

1-3 REP

4-20 Blanks

21-26 The six-char acter pr ograTI1 naTI1e of the old- SL T object pr ograTI1
to be replaced on the new SLT by either the prograTI1 deck which
follows (SENSE switch 2 ON) or by an object prograTI1 of the
saTI1e naTI1e on the input prograTI1 tape (SENSE switch 2 OFF). ------

27-29 Blanks

30-37 Identifying inforTI1ation - Optional

38-80 Blanks

Trailer Card

The trailer card is used to signal the end of the input control deck. Upon reading this

card, Update B first verifies that the old SLT has also reached the end of file if operating in

the update TI1ode. If the end of file has not been reached on the old SLT, the operator has the

option of causing the reTI1aining prograTI1s to be copied onto the new SLT. Update B terTI1inates

the new SLT by writing a "lEOFt. " record followed by two "lERIt. "records. The forTI1at

for the trailer card is shown in Table, C-6.

Table.C-6. Trailer Card

COLUMN(S) CONTENTS INTERPRET A TION

1-5 lEOFt.

6-80 Blanks

OPERA TING PROCEDURES

The Update B prograTI1 can be run on any Series 200 cOTI1puter having the following TI1iniTI1uTI1

equipTI1ent configuration:

C-7

.:.

APPENDIX C. THE UPDATE B PROGRAM

I. S, 192 characters of main memory.

2. Advanced programming instructions.

3. Tape drives:

4.

5.

Create Mode - one tape drive if the input programs are on punched
cards; two tape drives if the input programs are on
tape.

Update Mode - two tape drives if the input programs are on punched
cards; three tape drives if the input programs are on
tape.

One card reader.

One printer if a directory listing is desired.

Setup and Loading Procedures for Update B

1. If running in the update mode or if loading the Update B program from tape,
mount the old SLT on tape drive ° and place it in PROTECT status.

2. Mount an available tape for the output SLT on tape drive I and place it in
PERMIT status.

3. Mount the tape reel containing the input programs (if they are on tape) on
tape drive 2 and place it in PROTECT status.

4. Initialize the printer if a directory listing is desired.

5. Press the INITIALIZE button on the central processor control panel.

6. Depending upon the method of loading the Update B program, follow the
appropriate procedure below.

LOADING UPDATE B FROM CARDS

1. Piace in the card reader the Update B binary run deck followed by the control
deck. No blank cards are permitted between the two decks. The input pro­
grams, if on cards, must follow the associated action directors.

2. If the input programs are on punched cards, set SENSE switch 2 ON.

3. If a directory listing is desired, set SENSE switch 4 OFF.

4. Set the ADDRESS buttons to OOOOS' Set the CONTENTS buttons to the
octal address assignment of the card reader (normally 4I

S
)'

5. Press BOOTSTRAP.

6. Press RUN.

LOADING UPDATE B FROM TAPE WITH A CONSOLE CALL CARD

I.

2.

Place in the card reader a Console Call card for Update B (UPDATB'~ in
columns 1-7, blanks in the remaining columns) followed by the control
deck. The input programs, if on cards, must follow the associated action
directors.

Set the ADDRESS buttons to OOOOS' Set the CONTENTS buttons to the octal
address assignment of the tape drive containing the old SPT (normally
40 S)'

C-S

•

APPENDIX C. THE UPDATE B PROGRAM

3. Press the BOOTSTRAP button.

4. Press RUN.

5. At the first programmed halt (sequence register should contain 0032 8),
set SENSE switch 2 ON if the input programs are on punched cards
and set SENSE switch 4 OFF.

6. Press the RUN button to initialize the search for Update B.

7. While the search is being made, set SENSE switch 4 ON if a directory
listing is not desired.

LOADING UPDATE B FROM TAPE WITHOUT A CONSOLE CALL CARD

The Update B program must be the first program on the old SLT tape.

1. Place the control deck in the card reader. The input programs, if on
cards, must follow the associated action directors.

2. Set the ADDRESS buttons to 0000
8

, Set the CONTENTS buttons to the
o,ctal address assignment of the tape drive containing the old SPT (normally
40

8
),

3. Press the BOOTSTRAP button.

4. Press RUN.

5. At the first programmed halt (sequence register should contain 0032
8

),
set SENSE switch 2 ON if the input programs are on punched cards and
set SENSE switch 4 ON (forces the loading of the first program from the
old SLT).

6. Press the RUN button to initiate loading.

7. While Update B is being loaded, set SENSE switch 4 OFF if a directory
listing is desired.

Update B Programmed Halts

Table C-7 below lists the programmed halts contained in Update B.

NOTE: aaaaa = location of program name from director card.
bbbbb = buffer address

Table C-7. Update B Programmed Halts

A ADDRESS B ADDRESS INTERPRET ATION PRESCRIBED ACTION

00000 00001 Card reader not operable. Initialize card reader; press

bbbbb 00010 Read error on old SLT. Press RUN to. try again.

bbbbb 00012 Read error on program Press RUN to. try again
input.

bbbbb 00021 Write error on new SLT. Press RUN to. try again

RUN.

00000 00031 New SLT has reached end Press RUN to properly terminate
of tape. new SLT. Last program is in-

complete.

C-9

APPENDIX C. THE UPDATE B PROGRAM

Table C-7 (cont). Update B Programmed Halts

A ADDRESS

bbbbb

00000

bbbbb

00000

000(10

00000

00000

aaaaa

00000

77777

B ADDRESS

00111

00200

00220

04001

04002

04003

04004

04005

04006

04007

INTERPRET A TION

Card read error.

Printer not operable.

Printer error.

IHDR card missing.

Illegal director card, or
control deck is out of
order.

First card of program is
not a Bootstrap card.

Card(s) between Bootstrap
and Load card are not Clear
cards.

Named program is not on
the input program tape.

Control deck is at lEOF.
More information remains
on the old SLT.

End of run.

LOADING PROGRAMS FROM THE SLT

PRESCRIBED ACTION

Run out cards. Check and re­
feed. Last card out. Press RUN.

Initialize printer. Press RUN.

Mark line in error. Press RUN
to reprint line.

Correct control deck. Press RUN.

Correct control deck. Rerun
from the beginning.

Correct program input.
from the beginning.

Correct program input.
from the beginning.

Rerun

Rerun

Correct control deck. Rerun from
the beginning.

Press RUN to continue copy of
all remaining programs.

Remove output.

Program searching and loader initialization are under control of the Tape Search B pro­

gram, which precedes each object program on the SLT. A call to search for and load either

a specific program or the next sequential program can originate from either the operator

(manual operation) or another program (automatic operation).

The Tape Search B program exists on the SLT as two records:

1. The Tape Search B bootstrap record, which sets punctuation and loads
the Search program record which follows.

2. The Tape Search B program record, which performs the actual search
and loader initialization.

The Tape Search B program occupies memory locations 026-199
10

(032-307
8

), In addition,

the bootstrapping of the Search B program destroys the previous contents of locations 00-25
10

(00-31
8

),

Operating Characteristics

After the Search program has been bootstrapped, a programmed halt occurs. At this point,

the operator can set SENSE switch 4 ON and press the RUN button to cause the loading of the

C-IO

APPENDIX C. THE UPDATE B PROGRAM

next sequential program on tape, or he can set SENSE switch 4 OFF, insert a Console Call card

in the card reader, and press the RUN button to initiate a search for the program specified in the '--'"

call card. If the search is successful, the program is loaded and started. If the search is un­

successful (i. e., the end of file is encountered before locating the named program), the program

tape is rewound and a programmed halt occurs. A second search from the beginning of the SLT

can be initiated by pressing the RUN button

The actual operational steps for loading are as follows:

1. The SLT is mounted on tape drive a and placed in PROTECT status. The
tape must be either rewound or positioned directly before a Tape Search
B bootstrap record following the loading of the previous run. (The SLT is
always thus positioned after loading any program except the last.)

2. Press the INITIALIZE button on the central processor control panel.

3. Set the CONTENTS buttons to the octal address assignment for the SLT
tape drive (normally 40

8
).

4. Set the ADDRESS buttons to 0000 8.

5. Press the BOOTSTRAP button.

6. At the first programmed halt (sequence register contains 0032
8

), set up
for the desired type of search and load:

a. Search and Load by Console Call card:

1) Place the Console Call card (see format, Table D- 1)
in the card reader and initialize.

2) Set SENSE switch 4 OFF.

3) Press the RUN button to read the call card and locate
the named program.

b. Load the Next Sequential Program:

1) Set SENSE switch 4 ON.

2) Press RUN to load the next program on the SLT.

TAPE SEARCH B PROGRAMMED HALTS

The programmed halts for Tape Search B are given in Table C-8.

C-ll

•

APPENDIX C. THE UPDATE B PROGRAM

Table C-8. Tape Search B Programmed Halts

SEQUENCE REGISTER INTERPRET A TION PRESCRIBED AC TION

00032

00043

00065

00121

Tape Search B has been
bootstrapped and is
ready to search for and
load the next program.

Column 7 of the Console
Call card does not con­
tain an asterisk (,~).

Called program has not
been found.

Tape read error while
searching.

C-12

1. Console Call Card Mode

a. Ready call card in card
reader.

b. Initialize card reader.

c. Set SENSE switch 4 OFF.

d. Press RUN.

2. Load Next Program Mode

a. Set SENSE switch 4 ON.

b. Press RUN.

Correct the call card, replace in
card reader, and press RUN.

SLT has been rewound. Press RUN
to search again from beginning of tape.

Press RUN to accept the record and
continue the search.

APPENDIX D

LOADER B

Easy tab Utility Programs and COBOL B programs written and compiled by the user can be

loaded from either a binary run deck (BRD) or a binary run deck format tape under the operation

of Loader B. In addition, such programs can be placed on a self-loading program tape (SLT)

through the use of Update B, which is covered in Appendix A.

EQUIPMENT REQUIREMENTS FOR LOADER B

1. A Series 200 central processor. Approximately 510 memory locations
are required by Loader B. These include locations 025-189

10
(031-275

8
)

plus the last 345 locations of the highest bank in memory. Loader B
also uses index registers X5 and X6.

2. Advanced programming instructions.

3. One card reader or one tape drive.

PROGRAM LOADING

Loading from Cards

1. Place the binary run deck, followed by any required parameter card
and/or input data deck, into the card reader. Initialize the card reader.

2. Press the INITIALIZE button on the central processor control panel.

3. Set the CONTENTS buttons to the octal address assignment of the card
reader (normally 41

8
), Set the Address buttons to 0000

8
,

4. Press the BOOTSTRAP button. This causes the Bootstrap card (first
card of the binary run program deck) to be read into memory starting
at location O.

5. Press the RUN button. This causes the instructions on the Boostrap
card to be executed and results in the subsequent loading of Loader B
into memory.

6. The binary run deck following the loader is read and loaded into memory.
If SENSE switch 1 is ON, a programmed halt occurs after loading. Press
the RUN button to continue. This halt does not occur for the Sort B program.

Loading from Tape

1. Punch a Console Call card containing the name of the program on the binary
run deck format tape which the loader is to search for and load. The format
for this card is given below.

Table D-l. Console Call Card Format

COLUMNS CONTENTS

1-6 Pr og r am name

7 Asterisk (,:,)

8-80 Blanks

D-l

.

APPENDIX D. LOADER B

2. Mount the program tape on tape drive 0 and place it in PROTECT
status.

3. Place the Console Call card, followed by any other input cards (parameter

4.

5.

6.

7.

8.

9.

10.

card, input deck, etc.), in the card reader. Initialize the card reader.

Press the INITIALIZE button on the central processor control panel.

Set the CONTENTS buttons to designate the octal address assignment of
the program tape (normally 40

8
), Set the ADDRESS buttons to 0000

8
,

Press the BOOTSTRAP button. The first record (bootstrap record) is
read from the program tape into memory starting at location O •

Press the RUN button. This causes the execution of the instructions in
the bootstrap record.

A programmed halt occurs with the sequence register set to 32
8

,

Press the RUN button.

The binary run deck card images following the loader on the program tape
are read and loaded into memory. If SENSE switch 1 is ON, a programmed
halt occurs after loading. Press the RUN button to continue.

LOADER B PROGRAMMED HALTS

Table D-2 shows the programmed halts contained in the Loader B program.

A ADDRESS

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

Table D-2. Programmed Halts for Loader B

B ADDRESS

00104

17002

xppld

x4011

14000

INTERPRET ATION

Tape version only.
Program specified in the
Console Call Card cannot
be found on the program
tape.

Current program has
reached end of job and
control has been returned
to the loader.

PRESCRIBED ACTION

Recheck the Console Call Card
and the program tape mounted
on tape drive O. Correct ~nd
restart from the beginning.

Set up, initialize, and bootstrap
next program to be executed.

Uncorrectable read error. Tape Loading: Depress RUN
button to retry.

Tape version only. The
current program has
called another program
or program segment
which cannot be found.

This halt occurs after
the program has been
loaded if SENSE switch
1 is ON.

Card Loading: Refeed card
in error and depress RUN
button to reread.

Program tape has been rewound.
Correct program name in
memory, (locations 145-152

8
), if

possible, and press RUN.

Perform any actions requested
by the programmer and press
RUN to begin execution.

NOTE: pp = octal address assignment of loading device. x = contents unspecified.
d = 0 if loading from tape; 1 if loading from cards.

D-2

,

COMPUTER-GENERATED INDEX

ACCEPT, 6-5
ACTION DIRECTORS, C-5
ADD, 6-6
ADDRESS ASSIGNMENTS

PERIPHERAL ADDRESS ASSIGNMENTS, 7-4
STANDARD PERIPHERAL ADDRESS ASSIGNMENTS, 7-4

ALTER, 6-8
AREA

• A, 2-3
• 8, 2-3

ASSIGNMENTS
PERIPHERAL ADDRESS ASSIGNMENTS, 7-4
STANDARD PERIPHERAL ADDRESS ASSIGNMENTS, 7-4

81NARY RUN DECK FORMAT, C-2
8LOCK CONTAINS, 5-4
BUFfERS, 7-1
CALL CARD

CARD

• FORMAT,
CONSOLE CALL CARD FORMAT. D-l

LOADING UPDATE B FROM TAPE WITH A CONSOLE CALL CARD.
C-8

LOADING UPDATE B FROM TAPE WITHOUT A CONSOLE CALL
CARD. C-9

CONSOLE CALL CARD.
LOADING UPDATE B FROM TAPE WITH A CONSOLE CALL

CARD. C-8
LOADING UPDATE B FROM TAPE WITHOUT A CONSOLE

CALL CARD. C-9
CONTROL HEADER CARD. C-4
COpy DIRECTOR CARD. C-6
DELETE DIRECTOR CARD. C-6
DIRECTOR CARDS. C-3

" FORMAT, 2-3
CONSOLE CALL CARD FORMAT. D-l

• INPUT. C-2
INSERT DIRECTOR CARD. C-5
LOADING FROM CARDS. 0-1. 8-2
LOADING UPDATE B FROM CARDS. C-8
REPLACE DIRECTOR CARD. C-7
TRAILER CARD. C-7

CHARACTER
• CORRESPONDENCE TABLE. 6-1
" SET, I-I

CHARACTERISTICS
OPERATING CHARACTERISTICS. C-I0

CLOSE. 6-9
C080L

• 8 RESERVED WORD LIST. A-2
• COMPILER.

EQUIPMENT REQUIREMENTS FOR COBOL COMPILER B. 0-2
ELEMENTS OF COBOL B LANGUAGE. I-I
END COBOL. 6-12

" RESERVED WORD LIST.
COBOL RESERVED WORD LISTS. A-I
HONEYWELL COBOL ~ESERVf.D WORD LIST. A-4

" SOURCE LANGUAGE.
GENERAL SYNTACTICAL STRUCTURE OF COBOL SOURCE

LANGUAGE, 1-4
CODE MEMORY MAP

08JECT CODE MEMORY MAP. 9-1
COMPILATION LISTINGS AND DIAGNOSTICS. 9-1
COMPILER

C080L COMPILER.
EQUIPMENT REQUIREMENTS FOR COBOL COMPILER B. 0-2

• PROGRAM OPERATING INSTRUCTIONS. 8-1
COMPILER-DIRECTING SENTENCES. 1-5. 6-3
CONDITIONAL SENTENCES. 1-5. 6-3
CONDITIONALS. 6-4
CONFIGURATION SECTION. 4-2
CONSOLE CALL CARD

" FORMAT, D-I
LOADING UPDATE B FROM TAPE WITH A CONSOLE CALL CARD.

C-8
LOADING UPDATE B FROM TAPE WITHOUT A CONSOLE CALL

CARD. C-9
CONSTANTS

FIGURATIVE CONSTANTS. 1-3
CONTINUATION OF SOURCE-CODING LINE. 2-3
CONTROL

• DECK. C-l
• HEADER CARD. C-4
• RELATIONSHIP BETWEEN PROCEDURES. 6-4

CONVENTIONS
KEYPUNCHING CONVENTIONS. 2-5
PROGRAMMING CONVENTIONS. 2-4

COpy DIRECTOR. C-6
(CONT,)"

COpy DIRECTOR (CONT,)
• CARD. C-6

DATA DiViSION, 5-1
" INFORMATION. 9-3
• SECTION ENTRIES. 5-19

DATA RECORD(S). 5-5
DATA-NAME/FILLER, 5-10
DECK

CONTROL DECK, C-l
• fORMAT.

BINARY RUN DECK FORMAT, C-2
DELETE DIRECTOR. C-6

" CARD, C-6
DESCRIPTION

DESCRIPTIONS, 6-5
• ENTRY,

FILE DESCRIPTION ENTRY, 5-2
RECORD DESCRIPTION ENTRY, 5-8

FILE DESCRIPTION. 5-3
RECORD DESCRIPTION. 5-9

DEVICE HALTS
INPUT/OUTPUT DEVICE HALTS AT OBJECT TIME, 7-3

DIAGNOSTIC KEYS
SUMMARY OF DIAGNOSTIC KEYS, 9-2

DIAGNOSTICS
COMPILATION LISTINGS AND DIAGNOSTICS, 9-1
EMBEDDED DIAGNOSTICS.

SOURCE PROGRAM LISTING AND EM8EDDED DIAGNOSTICS.
9-1

DIRECTOR
ACTION DIRECTORS. C-5

• CARD,
COpy DIRECTOR CARD. C-6
DELETE DIRECTOR CARD. C-6
DIRECTOR CARDS. C-3
INSERT DIRECTOR CARD. C-5
REPLACE DIRECTOR CARD. C-7

COPy DIRECTOR. C-6
DELETE DIRECTOR. C-6
INSERT DIRECTOR. C-5
REPLACE DIRECTOR. C-7

DIRECTORY LISTING. C-3
DISPLAY. 6-10
DIVIDE. 6-11
DIVISION

DATA DIVISION. 5-1
ENVIRONMENT DIVISION. 4-1

FORMATS AND ENTRIES IN THE ENVIRONMENT DIVISION.
4-2

" FORMAT. 3-1
IDENTIFICATION DIVISION. 3-1

• INfORMATION.
DATA DIVISION INFORMATION. 9-3
PROCEDURE DIVISION INFORMATION. 9-4

PROCEDURE DIVISION. 6-1
" SECTION ENTRIES.

DATA DIVISION SECTION ENTRIES. 5-19
" VERB FORMATS.

PROCEDURE DIVISION VERB FORMATS AND VERB. 6-5
ELEMENTS OF COBOL B LANGUAGE. I-I
EMBEDDED DIAGNOSTICS

SOURCE PROGRAM LISTING AND EMBEDDED DIAGNOSTICS. 9-1
END COBOL, 6-12
ENTRIES

DATA DIVISION SECTION ENTRIES, 5-19
FILE DESCRIPTION ENTRY, 5-2
FORMATS AND ENTRIES IN THE ENVIRONMENT DIVISION, 4-2
RECORD DESCRIPTION ENTRY, 5-8

ENVIRONMENT DIVISION, 4-1
FORMATS AND ENTRIES IN THE ENVIRONMENT DlylSION, 4-2

EQUIPMENT REQUIREMENTS, 0-1
• FOR COBOL COMPILER B. 0-2
" FOR LOADER A, D-l

EXECUTION
SENTENCE EXECUTION, 6-3

EXIT, 6-13
FD. 5-6
FIELD

REMARKS FIELD. 2-3
SEQUENCE NUMBER FIELD. 2-3

FIGURATIVE CONSTANTS. 1-3
fiLE DESCRIPTION, 5-3

• ENTRY, 5-2
FILE SECTION, 5-19
FILES

NON-TAPE FILES. 7-2
FORMAT

(CONT.)

.----.

COMPUTER-GENERATED INDEX

FORMAT (cONT.)
BINARY RUN DECK FORMAT. C-Z
CARD FORMAT. Z-3
CONSOLE CALL CARD FORMAT. D-I
DIVISION FORMAT. 3-1
FORMATS AND ENTRIES IN THE ENVIRONMENT DIVISION. 4-Z
PHYSICAL FORMAT OF TAPE. 7-1
PROCEDURE DIVISION VERB FORMATS AND VERB •• 6-5
REFERENCE FORMAT. Z-I
SELF-LOADING FORMAT. C-Z
SELF-LOADING TAPE (SL TI FORMAT. C-4

GENERAL SYNTACTICAL STRUCTURE OF COBOL SOURCE
LANGUAGE. 1-4

GO TO. 6-14
HALTS

I/O HALTS. 7-Z
INPUT/OUTPUT DEVICE HALTS AT OBJECT TIME. 7-3
PROGRAMMED HALTS.

LOADER B PROGRAMMED HALTS. D-Z
TAPE SEARCH B PROGRAMMED HALTS. C-ll. C-12
UPDATE B PROGRAMMED HALTS. C-9

PROGRAMMED HALTS FOR LOADER e. D-Z
HEADER CARD

CONTROL HEADER CARD. C-4
I/O HALTS. 7-2
IDENTIFICATION DIVISION. 3-1
IMPERATIVE SENTENCES. 1-5. 6-Z
INDEX REGISTER TABLE. 9-3
INFORMATION

DATA DIVISION INFORMATION. 9-3
PROCEDURE DIVISION INFORMATION. 9-4
SUBROUTINE INFORMATION. 9-1

INPUT. C-I
CARD INPUT. C-2

• PROGRAMS. C-l
TAPE INPUT. C-2

INPUT-OUTPUT SECTION. 4-6
INPUT/OUTPUT

• DEVICE HALTS AT OBJECT TIME. 7-3
• PROCEDURES. 7-1

INSERT DIRECTOR. C-5
• CARD. C-5

INSTRUCTIONS
COMPILER PROGRAM OPERATING INSTRUCTIONS. 8-1
OBJECT PROGRAM OPERATING INSTRUCTIONS. 8-2
OPERATING INSTRUCTIONS. 8-1

INTRODUCTION. 0-1
KEYI'UNCHING

• CONVENTIONS. Z-5
• THE SOURCE PROGRAM. Z-4

KEYS
DIAGNOSTIC KEYS.

SUMMARY OF DIAGNOSTIC KEYS. 9-2
LABEL RECORDS. 5-7
LANGUAGE

COBOL SOURCE LANGUAGE.
GENERAL SYNTACTICAL STRUCTURE OF COBOL SOURCE

LANGUAGE. 1-4
ELEMENTS OF COBOL B LANGUAGE. I-I

LEVEL-NUMBER. 5-11
LINE

LIST

SOURCE-CODING LINE.
CONTINUATION OF SOURCE-CODING LINE. Z-3

COBOL RESERVED WORD LIST.
HONEYWELL COBOL RESERVED WORD LIST. A-4

COBOL RESERVED WORD LISTS. A-I
RESERVED WORD LIST.

COBOL B RESERVED WORD LIST. A-2
LISTING

COMPILATION LISTINGS AND DIAGNOSTICS. 9-1
DIRECTORY LISTING. C-3
SOURCE PROGRAM LISTING AND EMBEDDED DIAGNOSTICS. 9-1

LITERALS. 1-3
NON-NUMERIC LITERALS. 1-3
NUMERIC LITERALS. 1-3

LOADER
• B PROGRAMMED HALTS. D-Z
• B. D-l

EQUIPMENT REQUIREMENTS FOR LOADER B. D-I
PROGRAMMED HALTS FOR LOADER a. D-Z

LOADING
• FROM CARDS. D-l. 8-Z
• FROM TAPE. D-l. 8-Z
• PROCEDURES.

SETUP AND LOADING PROCEDURES FOR UPDATE B. C-8
PROGRAM LOADING. D-l

(CONT.)

LOADING (CONT.)
• PROGRAMS FROM THE SLT. C-l0
• UPDATE.

LOADING UPDATE B FROM CARDS. C-8
LOADING UPDATE B FROM TAPE WITH A CONSOLE CALL

CARD. C-8
LOADING UPDATE B FROM TAPE WITHOUT A CONSOLE

CALL CARD. C-9
MAP

OBJECT CODE MEMORY MAP. 9-1
MEMORY MAP

OBJECT CODE MEMORY MAP. 9-1
MOVE. 6-17
MUL TlPLY. 6-18
NAMES

SOURCE-LANGUAGE USER-CREATED NAMES (NON-RESERVED
WORDS). 1-4

NON-NUMERIC LITERALS. 1-3
NON-RESERVED WORDS

SOURCE-LANGUAGE USER-CREATED NAMES (NON-RESERVED
WORDS). 1-4

NON-TAPE FILES. 7-Z
NUMBER FIELD

SEQUENCE NUMBER FIELD. 2-3
NUMERIC LITERALS. 1-3
OBJECT

" CODE MEMORY MAP. 9-1
" PROGRAM OPERATING INSTRUCTIONS. 8-Z
• TIME.

INPUT/OUTPUT DEVICE HALTS AT OBJECT TIME. 7-3
OBJECT-COMPUTER. 4-4
OLD SLT. C-I
OPEN. 6-Z0
OPERATING

• CHARACTERISTICS. C-IO
• INSTRUCTIONS. 8-1

COMPILER PROGRAM OPERATING INSTRUCTIONS. 8-1
OBJECT PROGRAM OPERATING INSTRUCTIONS. 8-Z

• PROCEDURES. C-7
OUTPUT. C-3
PARAGRAPHS. 1-6. 6-4
PERIPHERAL ADDRESS ASSIGNMENTS. 7-4

STANDARD PERIPHERAL ADDRESS ASSIGNMENTS. 7-4
PHYSICAL FORMAT OF TApE. 7-1
PICTURE. 5-13
PROCEDURE DIVISION. 6-1

• INFORMATION. 9-4
• VERB FORMATS AND VERB. 6-5

PROCEDURES
CONTROL RELATIONSHIP BETWEEN PROCEDURES. 6-4
INPUT/OUTPUT PROCEDURES. 7-1
LOADING PROCEDURES.

SETUP AND LOADING PROCEDURES FOR UPDATE e. C-8
OPERATING PROCEDURES. C-7

PROGRAM
INPUT PROGRAMS. C-l

• LISTING.
SOURCE PROGRAM LISTING AND EMBEDDED DIAGNOSTICS.

9-1
• LOADING. D-l

LOADING PROGRAMS FROM THE SLT. C-l0
• OPERATING INSTRUCTIONS.

COMPILER PROGRAM OPERATING INSTRUCTIONS. 8-1
OBJECT PROGRAM OPERATING INSTRUCTIONS. 8-2

SOURCE PROGRAM.
KEYPUNCHING THE SOURCE PROGRAM. 2-4

• STRUCTURE. 1-1
UPDATE B PROGRAM. C-I. C-3

PROGRAMMED HAL TS
• FOR LOADER B. D-Z

LOADER B PROGRAMMED HALTS. D-z
TAPE SEARCH B PROGRAMMED HALTS. C-Il. C-12
UPDATE B PROGRAMMED HALTS. C-9

PROGRAMMING CONVENTIONS. Z-4
PUNCTUATION. 1-2

• OF SENTENCES. 1-5
• TABLE. 9-3

READ. 6-23
~ECORD DESCRIPTION. 5-9

• ENTRY. 5-8
RECORD(S)

DATA RECORD(S). 5-5
RECORDS

LABEL RECORDS. 5-7
REDEFINES. 5-19
REFERENCE FORMAT. Z-1
REGISTER TABLE

(CONT.)

l

COMPUTER-GENERATED INDEX

REGISTER TABLE (CONT.)
INDEX REGISTER TABLE. 9-3

RELATIONSHIP
CONTROL RELATIONSHIP BETWEEN PROCEDURES. 6-4

REMARKS FIELD. 2-3
REPLACE DIRECTOR. C-7

" CARD. C-7
REQUIREMENTS

EQUiPMENT REQUIREMENTS. 0-1
EQUIPMENT REQUIREMENTS FOR COBOL COMPILER a. 0-2
EQUIPMENT REQUIREMENTS FOR LOADER B. D-l

RESERVED
• WORD LIST.

COBOL B RESERVED WORD LIST. A-2
COBOL RESERVED WORD LISTS. A-I
HONEYWELL COBOL RESERVED WORD LIST. A-4

" WORDS.
SOURCE-LANGUAGE RESERVED WORDS. 1-4

RUN DECK FORMAT
BINARY RUN DECK FORMAT. C-2

SEARCH
TAPE SEARCH B PROGRAMMED HALTS. C-ll. C-12

SECTION
CONFIGURATION SECTION. 4-2

" ENTRIES.
DATA DIVISION SECTION ENTRIES. 5-19

FILE SECTION. 5-19
INPUT-OUTPUT SECTION. 4-6
WORKING-STORAGE SECTION. 5-20

SELF-LOADING
" FORMAT. C-2
" TAPE (SLT) FORMAT. C-4

SENTENCE EXECUTION. 6-3
SENTENCES. 1-5. 6-2

COMPILER-DIRECTING SENTENCES. 1-5. 6-3
CONDITIONAL SENTENCES. 1-5. 6-3
IMPERATIVE SENTENCES. 1-5. 6-2
PUNCTUATION OF SENTENCES. 1-5

SEQUENCE NUMBER FIELD. 2-3
SET

CHARACTER SET. I-I
SETUP AND LOADING PROCEDURES FOR UPDATE a. C-8
SLT

LOADING PROGRAMS FROM THE SLT. C-I0
NEW SLT. C-3
OLD SL T. C-I
SELF-LOADING TAPE (SL T) FORMAT. C-4

SOURCE
" LANGUAGE.

GENERAL SYNTACTICAL STRUCTURE Of COBOL SOURCE
LANGUAGE. 1-4

" PROGRAM.
KEYPUNCHING THE SOURCE PROGRAM. 2-4

" PROGRAM LISTING AND EMBEDDED DIAGNOSTICS. 9-1
SOURCE-CODING LINE

CONTINUATION OF SOURCE-CODING LINE. 2-3
SOURCE-COMPUTER. 4-3
SOURCE-LANGUAGE

" RESERVED WORDS. 1-4
• USER-CREATED NAMES (NON-RESERVED WORDS). 1-4

SPECIAL-NAMES. 4-5
STANDARD PERIPHERAL ADDRESS ASSIGNMENTS. 7-4
STATEMENTS. 1-4. 6-2

STOP. 6-24
STRUCTURE. 4-1. 5-1

GENERAL SYNTACTICAL STRUCTURE Of COBOL SOURCE
LANGUAGE. 1-4

PROGRAM STRUCTURE. 1-1
SUBROUTINE INFORMATION. 9-1
SUBSCRIPTING. 1-6
SUBTRACT. 6-25
SUMMARY Of DIAGNOSTIC KEYS. 9-2
SWAPPING

TAPE SWAPPING. 7-2
SYMBOLOGY. 0-2
SyNTACTICAL STRUCTURE

GENERAL SYNTACTICAL STRUCTURE Of COBOL SOURCE
LANGUAGE. 1-4

TABLE

TAPE

TIME

CHARACTER CORRESPONDENCE TABLE. a-I
INDEX REGISTER TABLE. 9-3
PUNCTUATION TABLE. 9-3
TABLES. B-1

" INPUT. C-2
LOADING FROM TAPE. D-l. 8-2
LOADING UPDATE B fROM TAPE WITH A CONSOLE CALL CARD.

C-8
LOADING UPDATE B fROM TAPE WITHOUT A CONSOLE CALL

CARD. C-9
PHYSICAL FORMAT OF TAPE. 7-1

" SEARCH B PROGRAMMED HALTS. C-ll
TAPE SEARCH B PROGRAMMED HALTS. C-12

SELf-LOADING TAPE (SL T) fORMAT. C-4
• SWAPPING. 7-2

OBJECT TIME.
INPUT/OUTPUT DEVICE HALTS AT OBJECT TIME. 7-3

TRAILER CARD. C-7
UPDA TE

" B PROGRAM. C-l. C-3
• B PROGRAMMED HALTS. C-9

LOADING UPDATE B FROM CARDS. C-8
LOADING UPDATE B fROM TAPE WITH A CONSOLE CALL CARD.

C-8
LOADING UPDATE B fROM TAPE WITHOUT A CONSOLE CALL

CARD. C-9
SETUP AND LOADING PROCEDURES fOR UPDATE B. C-8

USER-CREATED NAMES
SOURCE-LANGUAGE USER-CREATED NAMES (NON-RESERVED

WORDS). 1-4
VALUE. 5-22

• Of. 5-8
VERB

• FORMATS.
PROCEDURE DIVISION VERB FORMATS AND VERB. 6-5

PROCEDURE DIVISION VERB FORMATS AND VERB. 6-5
WORD LIST

COBOL B RESERVED WORD LIST. A-2
COBOL RESERVED WORD LISTS. A-I
HONEYWELL COBOL RESERVED WORD LIST. A-4

WORDS. 1-2
SOURCE-LANGUAGE RESERVED WORDS. 1-4
SOURCE-LANGUAGE USER-CREATED NAMES (NON-RESERVED

WORDS). 1-4
WORKING-STORAGE SECTION. 5-20
WRITE. 6-26

I
/~ I

I
I

HONEYWELL EDP TECHNICAL PUBLICATIONS

USERS' REMARKS FORM
1--

....

-.

CD
c

:::i
btl
c
o
<

I
I
.' TITLE: SERIES 200 COBOL COMPILER B DATED: APRIL 25, 1966

SOFTWARE MANUAL FILE NO: 123.1205. OOOB. 0-292

ERRORS NOTED:

Fold

~ SUGGESTIONS FOR IMPROVEMENT:
o

.. ,""

XI
I

.. I
I
I
I
I

'-f
I
I
I
I
I
I
I

Fold

FROM: NAME _________________________________ _ DATE _________ _

COMPANY _________________________________ _

TITLE ________________________________ _

ADDRESS ________________________________ _

iii

f,iZ;);f . \
\

~ :~.

t

------------------------~--------------------------

. BUSINESSREPLY·Mltl...
No~age stamp necessary if UI-·l ... tt!e~lnJqt(t.

··ae ,,,....: ..•.

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

Honey~ell
ELECTRONIC DATA PROCESSING

FIRST CLASS

PERMIT NO. 39531

WELLESLEY HILLS
MASS .

J'I"~
I i· / I /
I "
I
I
1---_-.

'y
I
I
I
I
I
I
I

