
HONEYWELL EDP

-
.j,.;. .. > ,I

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: September 15, 1966

V 9257
31066

Printed in U.S.A.

APPLICATION IL'''BBOOK

SERIES 200
USER'S LIBRARY

EXTENDED CONTROL AND

SIMULATION LANGUAGE COMPILER

SERIES 200/APPLICATIONS SYSTEM

Extended C.S.L. - A Language and Compiler System
Used to Describe and Formulate Problems Involving
Complex Logic for Simulation on a Series 200
Compiler.

Extended C.S.L. is included in Honeywell's Series
200 Users' Library. Details of the operation of
the library and the procedure for requesting pro­
grams can be found in the General Bulletin titled
Submi ttal and Request Procedures for Users', Li­
brar,y, Order No. 217.

* FILE NO.: 134.8405.0000.0-524

*Underscoriag denotes Order IU.ber.

Introduotion

Seotion 1

Seotion 2

Seotion 3

Seotion 4

Seotion 5

Seotion 6

Seotion 7

Seotion 8

Seotion 9

Seotion 10

Seotion 11

Seotion 12

Seotion 13

Seotion 14

Appendix A

Index

~ - --~--- -- -

CONTENTS

Page 101

Pages 101 - 1.3

Definition of Terms in Extended C.S.1.

Pages 201 - 208

Definition Statements

Pages 301 - 307

Arithmetio Expressions and Statements

Pages 401 - 4.10

Set Arithmetio, Boolean Algebra and Switoh

Pages 501 - 506

Test Chains

Pages 6.1 - 6.9

Complex Test Statements

Pages 701 - 7.3

ll!m Statement

Pages 801 - 8.4

Histograms and Statistioal Distributions. ~

Pages 901 - 9.7

Input/Output Statements

Pages 1001 - 1005

Prooedures and Funotions

Pages 1101 - 1103

Simulation

Page 12.1

Program Termination

Pages 13.1 - 1302

1?ill Statement

Pages 14.1 - 1406

Operating an Extended C.S.L. Program

Pages A.1 - A.3

Sample Program

Pages 1 - 6

Copyright 1966

Honeywell Inc.

Electronic Data Processing Division

Wellesley Hills, Massachusetts 02181

'-.,.-..

r,

~
f _-

101

INTRODUCTION

Extended C.S.L. is intended to assist in the formulation and description
of problems which consist of complicated logic. It will be of great use in the
simulation of industrial and commercial systems on a computer.

The language is based on the use of groups of entities, which are the
elements of the system, and in particular sets of entities which have some
common property. The most powerful feature of this language. is its ability to
perform set arithmetic rapidly ioe. testing and operating on the members of a set.

The system also incorporates methods of sampling from standard and empirical
distributions, and for the statistical presentation of results in the form of
histograms. Also incorporated is a built-in time mechanism to assist simulation.

The extended C.S.L. compiler is designed for the Honeywell Series 200
computer and translates the simulation program directly into machine code.

A sample program including an explanation is present in Appendix A.

N.B: Words underlined in this text represent Extended C.S.L. structural words.

..

SECTIOB 1

Definition of TeJ.'U in Extended C.S.L.

!!!!: An item in C.S.L. (eg. oell, array) is identified by
a sequenoe of any number of letters. The oompiler, however
only reoognises the first six lettersJ so oare must be taken to
avoid ambiguity (eg. mABSPORIf, TRANSPOSE). Any sequenoe of
letters (numerio and speoial oharaoters are not allowed) oan
be used for a name except those reserved for the struotural
words in the Extended C.S.L. language.

£!!!: A single storage looation whioh is addressed by a name.
The contents of a oell are assumed to be integer values unless
otherwise speoified.

Arra"y: A multi-dimensional array of cells may be used for the
storage of data. Each array oan be identified by a name eg.
GROUP and eaoh oell in the array oan be referenoed by the name
followed b.1 a list of subsoripts appropriate to the dimension
of the array, in parenthesis. Eg. GROUP (9,A) is the. 9th by Ath
oell (element) of a 2-dimensional array.

Distribution: A distribution is a speoial form of array whioh
is used for random sampling and/or the acoumulation of results.
!his ~ is in the form of a frequenoy distribution.

Entitl: An entity is a,n. objeot

Class: A olass is a group of entities whioh is identified
by '& IUUU eg. SHIPS.

Entity Jamel An entity is referenoed by a name, whioh oonsists
of the olass name followed by a olass index.

eg. SHIPS I

SHIPS Y

SHIPS 1
where Y & I have integer values.

The above all reterenoe partioular ships within the
olass SHIPS

1.1

I

Indell An index is an integer\) a cell or an expression in parenthesis, and must
always have a positive integer value.

Setg A set is a device for holding the names of entities of a specific class.
~y be addressed by a name and optionally an index.

ego 10 ATSEA could be a set holding entities from a class sm PS
which are at present at seae

2. WORKERS 2 could be a set holding entities from a class
STAFF which are at present employed on a certain job.

The entities recorded in a set must all be from one specific class, but the memJers
of a class may be recorded in several sets. The set holds a .. list of entity nam~s.
This list is ordered and may therefore be used to represent a queue. Eg. if UNLDD
is a set holding the members of class TRUCK which are waiting to be loaded,
then the first entity in UNLDD represents the truck waiting longest etc. Advanced
list processing methods are used in Extended CoSoLo to manipulate sets.

T-Cells T-Cells are used to hold time values for simulation purposeso A T-Cell
may be associated with each entity of a class and addressed as ToTHING 6, for
example. In addition~ T=Cells not associated with entities may be used and given
names preceded by T or T ••

ego T LATE To LOST

Expressiom This term is used to denote a collection of Yariables, brackets and
operation symbols which form a meaningful single valued arithmetical expression
(see Section })o

Variableg A single location addressed as a cell, T-Cell, or a member of an array.
Unless the name of the variable is mentioned in a FLOAT, BOOLEAN or STRING statement
(See Section 2) it will have an integer valueo The capacity of integer and floating
point cells is as defined under Constant, below o

Labelg A number between 1 and 99999, which is used to identify a statement, is
known as a labelo This number can be written a~here in the first five character
positions of an extended CoSoLe statemento

..

Constant: A constant is a string of digits, possibly including
a decimal pOint. It will be assumed to be an integer unless
a decimal point is included. The decimal may not be the first
oharacter of the string. In this manual nl , n2 eto. are used to
indicate obligatory constants. The range of values for integer
oonstants is from -9999 to +9999, although integer variables can
range from -4194304 to +4194303. For floating point constants
the argument is held to an accuracy of 7 decimal digits and the
exponent oan have any value between - 32 and + 32 (base 10)

Destination Clause: Many statements in Extended C.S.L. involve
the oarrying out of an explicit or implied test. Depending on the
result of the test, control m83 be passed to another part of the
same seotor of program. These test statements may be terminated
by a destination olause of the following form:-

@ L - where L is the label of a statement in the
program sector;

A suocessful test will result in a transfer of control to ~he
next statement in the program. If the test fails control is
transferred to the statement labelled L.

The destina.tion clause m83 start in the first position following
the statement proper, or it m83 be separated from it by one or
more blanks.

!i!. 1. If no destination olause is given with a test
statement, then control passes to the first statement of the next
seotor (i.e. to the next BEGIN statement) if the test results in
faiiure.

2. In all desoription of statements in this manual the @ L
form will be used.

Subsoript: Up to three subscripts may be used for addressing
arr~ elements. ego

LENGTHS (5)
LIST (I,J)

ELEMENTS (A, B, C,)

A subsoript m83 itself be an expression, and so may itself
include a subscripted variable.

ego LIST (ALLOC(I) *2, 3*X(J) + Y(J))

.-

It

, /

I

SECTION 2

Definition Statements

CLASS

The CLASS statement defines a class of entities together with any
associated T-cells and sets and must precede all mention of the entities
and sets. The general form of this statement is as follows:-

CLASS TIME namel'~' ~ n&me2 , name3 , n2 , name 4 etc., where
name, - -, - ... -, name4 are Exteilded C.:5.L. names and ~. ~,
are Unsigned integer cons~ants.

~ must be less than or equal to 2047
n2 must be less than or equal to 4095

The above statement defines a class of n, entities which is identified
by the name 'na::S~. Each ent.i ty has a T-cell (only if the word TIME appears)
and the entity s ~ be used in any statement associated with sets.

If the word ~ appears followed by a list of names, then sets known by
these names are nefined. The general form of specifying a set in the list
is:- naDlek , nl •

Here 'name' is the name of the set. ~,if it appears, indicates
that n1 sefs with the names 'namekl', 'namek2', upto 'nameknl ' are to
be defIned.

2.1

r- -_ .. -

Dots and commas in the statement are optional and
initially all sets are empty.

Examples:-

1 CLAS S WAREHSS 12

2 CLASS TIME SHIPS. 15 2m. ATSEA, BERTH2

; CLASS WORKERS 50 ~ ONSTRIKE, SHIFTS ;, ABSENT

The second of the above examples defines a class of
15 entities SHIPS 1, SHIPS 2 up to SHIPS 15. Associated with
each of these entities is a T~cell T.SHIP 1,T.SHIP 2 up to
T.SHIP 15. The entities of the class can be placed in sets
ATSEA, BERTH 1 and BERTH 20

ARRAY

The ARRAY statement is used to define one or more. arrays
of numbers. This definition must precede all mention of the
cells of the arrays. The general form of the ARRAY statement
is:-

ARRAY namel (nlP ~). name2 (n;, n4, n5), name; (n6)

where namel , name2, name; are Extended C.S.L.

names and ~, n2, n;, n 4' n
5

, and n6 are unsigned integer

constants, less than or equal to 102;, or names of classes.

..

-

..

. ,

The above statement defines 3 arr~s 'n&mel with 2 dimensions and nl x n2 cells,

'name2' with 3 dimensions and n3 x n4 x n5 cells and 'name
5

' with n6 cells.

nl , n2 , etc. specify the maximum value of the array subscript and if a

class name is used then the maximum value of the subscript is the number

of entities in that class. The total number of cells in an arr~ must be less

than or equal to 1023. All commas in the statement are optional.

Examplesl-

1 CLASS DRIVERS 20

2 CLASS ~ TRUCKS 30

3 ARRAY CHESSBOARD (8,8), RESISTANCE (20)

4 ARRAY GARAGE (TRUCKS), MILEAGE (DRIVERS, TRUCKS)

Example 3 defines an 8 by 8 cell array CHESSBOARD
and a 2¢ cell array RESISTANCE.

Example 4 defines a 30 cell arr~ GARAGE and a 20 by 30

cell array MILEAGE.

N.B. Single cell and isolated T-cells are defined by their

appearance in a statement.

FLOAT

The general form of this statement is:-

FLOAT namel , name2, n&me3, - - - -, - - - -, - - - -,
where namel , name2, name

3
, are cell or function names.

The cells mentioned in this statement will hold floating point

numbers and can be used for floating point calculations.

The functions mentioned will all present their results in floating point

forms. This statement must precede all mention of the cell or function names •

FLOAT ARRAY

The general form of this statement is :-

FLOAIf ARRAY name
l

(n
l

, n2) name2 (n,) name,

{n4, n5, n6 P)p - - - - -. Here the arr~s a~ defined as for

the ARRAY statement but each cell will hold a float.ing point

number and can be used in floating point calculations.

BOOLEAN

STRING

The general form of this statement is :-

BOOLEAN namel nl , name2 n2, nama, n,­

where n&mel , name2 .and name, are Extended O.S.L. names and

n
l

, n
2

, n,' if present are the number of elements in the vector,

nl , n2P and n, must be less than 2048 and if they are not used

the number of elements in the vector will be assumed to be 1.

The general form of this statement is :-

STRING namel , nl , nam&2' n2, name,' n,' - -

where name
l

P name
2

and name, are Extended O.S.L. names and

nl , n2, and n,p if present are the number of characters in

the string. n
l

, n2P and n,' must be less than 4096 and if

they are ~ot present the number of characters in the string

will be assumed to be 1.

•

"

DIS'!'

The ~ statement is u~ed to define frequency distributions

which ~ be used to sample and/or to accumulate data compiled during the

execution of program (See Section a). The general form of this

statement is :-

~ namel n1 (n2, n,' n
4
), name? nS (n6 ,

where name1 and name2 are Extended C.S.L. names.

n , n), - - - - -7 a

nl , n2, n,' n
4

, n
5

, n6 , n
7

, na are unsigned integer constants.

n
l

, n2 and n
5

, n6 must be less than 1024.

n,' n
4

and n
7

, na are to all intents unlimited (i.e. 9999)

This statement defines groups of distributions name
l

1,

namel 2 upto namel nl and name2 1, name2 2 upto name2 n2•

If n lor n2 are omitted then a single distribution namel or name2

is defined. If the first group of distributions is considered then

each of these distributions has n
2

cells, n, is value associated with

first cell and n4 is the incremental value between cells.

Distributions a~ cleared on definition.

This is a synonym for DIS!'

Examples :-

1 B!§! ARRIVALTIMES (,0,1,1), SHIFTPROD , (12,1,1)

2 ~ ACCIDENTS (150,5,5)

Example 1 defines 4 distributions:- ARRIVALTIMES,
SHIFTPROD 1, SHIFTPROD 2 and SHIFTPROD , and example
2 defines one distribution ACCIDENTS.

the

ACCIDENTS has 150 cells whose associated values will be 5,10,--,-- --,
750.

2.5

The IS statement enables two names to reference the same
item suchas an array~ cell stc o The general form isge.

namel !§. naJne2, name
3

, and name
4

, are Extended CoS.L.

names. This statement causes name2 to be regarded as

synonymous with namel and name4 to be regarded as synonmous

with .name
3

o namel , name
3

, etc. may be constants. in which

case the apprearance of names, ioe. name2, name4 etc. in

the program are taken to be the relevant constant, not a

variable.

CLASS

This is the second form of the CLASS statement and its
general form isg~

CLASS namel (name2 n2, name, n
3

, - - -, - - -)

where namel , name2, and name
3

are Extended C.S.L.

and ~ and n3 are unsigned integer constants.

names

This statement defines a main class 'namel ' which is broken

into subclasses name2, name
3

, - = -. The first entity of the

first subclass name2 1 is the same as the. first entity of the

main class iee. namel 1 and the first entity of the second subclass

i.e. name
3

1 is the same as the (n2 + 1) tho entity of the main

class i.e o namel (n2 + 1). The name of a subclass may be omitted,

in which case the unsigned constant simply displaces the next subolass

by that number of entitieso The number of entities in the main

class must not exceed 2047.

The word ~ may be used in this statement as for the normal
CLASS statement but sets must not be defined.

•

Example:-

1 CLASS MACHINES (7 t TRDIG 3, 10, TRHARROW 2, TRGART 8, 20).

This statement defines a class MACHINES with 50 entities,
3 of which belong to a subclass TRDIG, 2 to a subclass TRHARROW and 8

to a subclass TRCART. 37 entities in class MACHINES have no other name.

SET

CLASS SUBCLASS

none

TRDIG 1 - TRDIG 3

none

TRHARROW 1 - TRHARROW 2

TRCART 1 - TRCART 8

MACHINES 1 - MACHINES 7

MACHINES 8 - MACHINES 10

MACHINES 11- MACHINES 20

MACHINES 21- MACHINES 22

MACHINES 23- MACHINES 30

MACRINES 31- MACHINES 50 none

The general form of this statement is:­

namel ~ name2 nl , name
3

n3

where namel is a class or subclass name

name2, name
3

are Extended CoS.Lo names

nl , n3 are unsigned integers.

The above statement is used as for the ~ section of the

CLASS statements. Two groups of sets name2 and name
3

are defined, each

is large enough to hold all members of class/subclass namel •

Example:-

1. TRCART.§!t REPAIR, INFIELDS 8

This example defines nine sets REPAIR, INFIELDS 1 - - - up to INFIELDS

8. If considered in conjunction with example 1 of the CLASS statement above,

then each set can hold 8 entities from TRCART.I up to TRCART.a i.e. 8 entities

from MACHINES.23 up to MACHINES.3~o

•

•

I

SECTION 3

ARITHMm'IC EXPRESSIONS AND STATEMmTS.

Expressi ons

An expression is any meaningful combination of constants and/
or variables, separated by operation symbols, which is used to
define the procedure for calculating a value. The permissable
operation symbols are :-

+ - addi~ion

- - subtraction

* - multiplication

I - division

** - exponentiation (B.B. The combination of two asterisks
is treated as one syabol).

Example :-

A ** 3 + 3H * EL(I,J) /ABC

A valid expression will be ensured if the following points
are respected :-

1. Any fixed point or floating point constants, variable,
entity cell, T-cell or arr~ element is itself considered to be
an expression.

Examples :-
1. 17
2. X

3. TRUCK. 9
4. T. SHIP 5
5. MATRIX (I,J)

2. If any two quantities, separated by an operational symbol,
are of different mode then the resulting value will be of floating
point mode.

3. A function (see Section 15) is an expression

Example g ~ SQRT (TIMA)

40 Parenthesis are used to avoid ambiguity as in normal
mathematical practiceo

Example&- Y*(T.XYZ + 5)

The expressions in parenthesis are always evaluated first.
To avoid further ambiguity the following rules should be respected:-

1. In the absence of parenthesis the order of performance is :-

a) Exponentiation.

b) Multiplication/Division

c) Addition/Subtractione

Example&- A + C/D-E**3 is equivalent to&- A+(C/D)-(E**3)

2e When an expression consists entirely of operation symbols
on the same hierarchical level then evaluation will procede from
left to right.

Example: ..
7/y*I is equivalent to

1 * I
Y

Arithmetic Statements.

Assignment Statement.

The general form of this statement is g=

Variable - Expression

and it is used to give the named variable the evaluated result of
the expression. The left hand side may be a ce1l 9

T-cell or an array element. The expression must obey the rules
given in the first part of this section. The result obtained from
the expression is converted to the mode of the variable and then
overwrites the previous contents of the variable.

•

Examples:-

1. AV'l'IME. (T. CELLA - T. CELLB) /2

2. J - 1

3. A(I,J) - G* (A+C/D - E**3)
4. L = (J - 1) * (K - 7)
5. N - Z + SQRT (A(I,J) + L)

Incremental Statement.

The general form of this statement is :-

a) variable + expression

b) variable - expression.

The previous definition of variable and expression apply to
the above statement. In the above statements the expression is
evaluated, the result is converted to the mode of the variable and
added to or subtracted from the current value of the variable o

Examples :-

1. J + 1

2. T. SHIP. 5 + 7 * STINE

3. X + ((z - 3) + EL (12) **2}

N.B. In cases where a floating point number is converted to fixed
point, e.g. when the result of a mixed mode expression is to be
placed in a fixed point variable ~ when a floating subscript is
used, the value taken will be the largest integer less than or equal
to the floating point value.

FCB Statement.

The execution of a group of statements may be repeated under
the control of the !QB statement. The group of statements to be
repeated must have an equal indentation, this level of indentation
being further to the right than the beginning of the ~ statement.

I

This group of statements to be repeated under the control of the
FOR statement is known aa the FOR loopo - ~

There are two general forms of the FO~ etatement g=

xxxx

xxxx

xxxx

Where name
l

is a cell name (it may be a member of an arrayL known a.a an

index, and ml and m2 are either UItsigned integers p cell namee or expressions,

and name
2

is either a clau name or a set nameo All arguments must have

integral values.

m3 can be a cell name or expression or a signed integer, ioeo

+ n is for an incrementing loop and.

- n is for a deorementing loopo

(NoB. - For a decrementing loop the value of m2 !IIIlI.st never be zero
or leBII).

a) For this version of the FOR statement the first loop i8 executed with

the index 'nameli ~ ml~ thereafter m1 i8 increased by m3 (if m3 ie not

epecified it iB taken a8 1) and the loop repeated with 'namel ' s the

new value of m10 This process is discontinued when the next addition

of m3 to m1 would re8ult in a value greater than m2~ When this con­

dition ariseB control passeB to the statement after the !:Q!i loop.

The range of a FOR loop is defined as the group of statemente with indentation
further to the ;:i..e;ht than the F.QR statemento
The index ie available throughout the range of the FOR loop and can be used a8
a variable in either a normal or a 6ubl'!(;ript expression. If it 1.8 not used it
will act Bimply ae a control counter for the FOR loop.

..

Examples:-

1. !Q!!. I • 1,20

To SHIP I • 0

This example will zeroize the T-cells associated with T.SHIP 1 up to

T. SHIP 20.

2. ASVM-¢

!:Q!!. J .. l,K,2

GRID (L,J) .. 3 * POT (J)

ASVM + GRID (L,J)

Here all the odd elements of the Lth row of GRID (up to the nearest odd
number less than or equal to K) are set equal to three times the corresponding
odd elements of the vector POT. A sum of the values of the elements of
GRID involved in this loop is formed in the variable ASVM.

b) In the second form of the ~ statement, if 'name2 ' is a class

name then repetition over the indented range is performed with

index, 'namel ' .. 1, thereafter being increased by 1 until its

value reaches the number of entities in the class. The .. Sign

is optional.

Example:-

FOR I .. SHIPS

T. SHIPS.I .. ¢
Here the time cells associated with all the ships in class SHIPS are
zeroized (cf. Example 1 of a)

If in the second form, 'name2 ' is a set name then repetition takes place
over the indented range as many times (including zero) as there are members in
the set 'name2'. The index • name 1 , takes in turn the value of the class index
of each entity in the set. Again the use of the .. sign is optional.

Example:-
1. FOR W - QUEUE

T.MANW=O

Here the time cells of any MAN at present in the QUEUE are zeroized.

I

The following pointe should be noted in relation to FOR loops

10 !Q! loops may occur wi thin !QB, loops 0

s.ge FOR I ~ 10 50
FOR J ... 1~50

L (IpJ) - 0
SUM -+ N (I)

This process is known as nesting and nesting can occur to a depth of
6 loops. In the above example the outer loop is executed 50 times and
the inner loop is executed 50 times i.8 9 2500 loops are performed. At
each repetition of the outer loopg all the elements of the Ith rov of
matrix are zeroized (this is performed by the inner loop) and a sum
is kept in SUM of the Ith elements of the one dimensional array N.

2e There must be no transfer of control into the range of a FOR loop
from outside the loop and the last statement of a FOR loop mu~not itself
be a transfer of control statement (GOTO). To avoid the latter condition
three special statements axe available which do nothing but enable the
programmer to avoid ending the loop in a transfer of controlo

They are DUMMY

c synonymous to REPEA~

synonymous to CONTINUE

30 No statement in the range of the FOR loop may alter the values of
its index or controlling parameters s ===

Test~ between quantities can be performed according to the following
six relational=operatorsg=

18 LT lesa than

2$ t.E less than or equal to

30 GT greater than

4. GE greater than or equal to

5. m equal to

6c !!! not equal to

30 6

--

~

~ The general form of this statement is :-

'namel ', 1:2 l'lame2 ' @ L

where namel and name2 can be a cell or T-Cell, a constant or

an expression &~ is one of the six above relational operators.

If the statement is true then control passes to the next statement,
otherwise the test fails and control passes to the statement labelled
L in that sector (or to the first statement of the next sector 1 if
@ 1 is omitted).

Examples:-

'-' Transfer Statement.

1. T.SHIP. 5 ~ ~

Control will pass to the next program sector if the
time-cell for SHIP. 5 is not zero o

2, A iI B

3. T. MAN • 1 + 67 1! 12.0

4. X NE Y + 5/; -

The following allows unconditional transfer of control and its general
form is :-

QQ!Q. L

where L is a statement label within the same sector.

Example

1. ~ 777

this will cause a transfer of control to statement 777

I

c •

SECTION 4

SET ARITHMETIC

The following statements are provided to facilitate the manipulations
of setso In all the general forms of statements in this seotion "setname"
should be taken to mean an Extended C.S.L. name which is defined a.a a
seto This name mq or mq not be qualified by a suffix. 'Ehti tyname' is
an Extended C.S.L. entity name.

GAINS

The general form of this statement is:.

"setname " GAINS 'setname ' 1 2

This statement causes the members of 'setname2 ' which are not already in
'setnamel ' to be added to the end of 'setnamel '.

Examples:-

1. FLEET GAINS REPAIRED

Here any member of REPAIRED not already in FLEET is added to FLEET.

2. QUEUE 1 GAINS ARRIVALS

LOSES

The general form of the statement is:-

This statement causes the members of 1setname1 ' which are also in 'setname2'
to be removed from 'setnamel '.

r~~·--

Examples:-

1. QUEUE 2 LOS E S ~ERVICED

Here the vehicles which have been SERVICED and are still registered
in QUEUE 2 are removed from QUEUE 20

2. STAFF LOSES STRIKERS

The general form of this statement is :-

'name1n' ~ 'setname1 ', • se tname 2 " •••••••••
where 'name1 ' is a class name (i.e. the class for which the sets

are defined) and 'n' is an integer9 variable name or expression in

parenthesis 0

This statement causes 'setname1' and 'setname2' to be emptied and

then loaded with entities 'name1.~· 'name1.2' up to 'name1o n' in

that order. (NoB. 10 set may have a capacity less than 'n').

Examples:-

1. VEHICLES. 8 ~ QUEUE 1, SERVICE

This example causes VEHICLESo 1~ VEHICLES. 2, up to VEHICLES. 8 to be
loaded, in that order 9 into sets QUEUE 1 and SERVICE.

2. SHIPS • 15 ~ ATSEA

The general form of this statement is &-

This causes the named sets to be emptied.

Examp1e:-

1. ~ RECRUITS, STAFF 1, STAFF 2, APPLICATIONS

The following set statements allow tests to be performed on sets.

The general form of this statement is :-

'entity name' .!! 'setname' @ L

The above statement tests if 'entity name' is in the set 'setname',
If it is, the test suooeeds and oontrol passes to the next statement,
otherwise oontrol passes to the statement lab.eIled L in the same
seotor. (If @ L is omit.ted and the test fails then oontro1
passes to the first statement of the next seotor).

Examples:-

1. MAN. I 1! OVERTIME @ 55

This statement oauses oontrol to pass to the next statement if and only
if MAN. I is in the set OVERTIME, otherwise oontrol passes to statement
labelled 55.

ITDt. 5.!! SECTION ,

ELEMENT (I*J) .!! VECTOR 6 @ 11

~ NOTIN

The general form of this statement is :-

'enti ty name' NOTIN 'setname' @ L

!his is the reverse of the .!! test~ and the test suooeeds if the
entity is not present in the set.

Examp1e:-

1. MAN. 6 NOTIN SHIFT 1 @ 232

Here, oontrol passes to the next s'tatement if MAN. 6 is not present
in the set SHIFT1, otherwise oontrol passes to statement 232.

I

SPARE. 2 NOTIN STORE

Her~if SPARE.2 is present in set STOR~then control will pass to
the first statement of the next sector.

DEFINITION. 7 NOTIN APPENDAB

EQUALS

The general form of this statement is g~

'setnamel t ~ EQUALS 'setname2' @ L

The above test succeeds only if the membership of both sets is
identical p otherwise control passes to the statement labelled L in
the sector (only if @ L is present p otherwise as before}o No
significance is given to the ordering of members within the sets e

Examples~ ...

1. TOTAL EQUALS CHECK

Control will pass the next sector if the set TOTAL does not have an
identical membership to the set CHECKo

2" CHOCBOX 3 EQUALS VARIETIES @ 696

WITHIN

The general form of this statement is g=

'setnamel ' WITHIN 'setname2' @ L

This test succeeds only if all entities within 'setnamel ' are also
present in tsetname2

1 otherwise the test fails. No Significance is
given to ordering of entities within the sets.

Examplesg=

LABFORCE WITHIN EMPLOYEES @ L

Control will pass to the next statement if all the entities within
set LABFORCE are also recorded in set EMPLOYEES p otherwise control
passes to statement labelled L

2. TUGS WITHIN FLEET

DISJOINT

This is logical opposite of WITHINp i.e. success results if named sets
have ~ common members.

•

•

The general form of this statement is :-

tsetnamel ', 'setname2', ••••• 0 ••••••• 0 •••• EMPTY @ L

This test results in success if all the sets listed before EMPTY
are empty. If at least one entity name is present in any oneof the
sets then the test fails and control passes to statement labelled L
(if @ L is present).

Examples:-

1. LIST EMPTY

If there are any entities in the set LIST then control passes to the
next sector of the program, otherwise the next statement in sequence
is processed.

(QUEUE K) K-4, 8 EMPTY @ 12

This example shows the use of the implied list i.e. only if QUEUE 49
QUEUE 5, up to QUEUE 8 are $11 empty will the test succeed.

GROUP, SHIFT, STAFF EMPTY @ 44

The following statements combine a set operation statement and set
test statement to form a compound statement.

The general form of this statement is :-

'entityname' ~ 'setname' @ L

In this statement an implied test is carried out to determine if the
enti ty 'enti tyname' is a member of set 'setname·. 11 ~ t is "uen the
test fails and control passes to statement .labelled L (or to next
sector if @ L is omitted). Otherwise the entity is added as the first
member of the set • setname , and control passes to the next statement.

Examples:-

SHIP. I ~ QUEUE 3 @ 200

If SHIP. I is not at present in set QUEUE 3 then it is placed at the
head of QUEUE and control passes to the next statement. Otherwise
control is transferred to statement labelled 200.

CAR. 3 HEAD FERRY Q

ITa! (NUMBER **2) ~ ELEMENTS @ 70

TAIL and INTO are synonymous c The general ror.m of the statement isg=

Venti tyname' .TAll v setname' @ L

If the entity 'entityname V is in the set 'setname' the test fails and
control passes to the statement labelled L (or to the next sector
if @ L is omitted), otherwise the entity 'entityname' is added to the
end of the members in set Vsetname' and control passes to the next
statement 0

Examples ~-

10 MAN 0 L INTO QUEUE @ 4

If MANo L is not in the set QUEUE then he is added to the end
of the set and control passes to the next instructiono Otherwise set QUEUE
is left unaltered and control passes to the statement numbered 4.

2 .. LATEARRIV 6 TAIL SERVICE

The general form of this statement is:-

"enti tyname" .lli.Q!:! "setname" @ L

In this statement the implied test fails if the entity "entityname"
is not present in the set "setname" and control is transferred to the statement
labelled L (or to the next sector if @ L is omitted).. Otherwise the test
will succeed and the entity lIentityname" is removed froIII the set "setname"
and control passes to the next statemento

Examples:=

TRUCK K ~ SERVICED @ 767

If TRUCK K is at present in SERVICED and control is transferred to
statement labelled 7670

PARA 0 3 ~ PAGE 7

~ \

..

Compounding & Listing

1. EMPTY, WITHIN. LOSES & GAINS may be used together
to form a compound statement. So also may IN. NOTIN p HEADg .m9. and Eill!l

2. Set names occurring after the keyword may be listed.

Examples of 1. CARS !ill!! GARAGE .!!IT2. USED @ 222

This test succeeds if CAR. 8 is in set GARAGE but not in set USED. Under
this condition CAR, 8 will be removed from GARAGE and placed in USED and control
will be transferred to next instruction. Otherwise the test will fail
the sets will be unaltered and control will pass to statement labelled 222.

2. SHIP.2 NOTIN ATLANTIC p PACIFIC~ INDIAN @ 8

The above test will succp.ed if SHIP. 2. is in nonp. of thE" ~,.,tR AI1'T,I\Wf1rC,
PACIFIC and INDIAN and control will pass to the next statement, If however
SHIP. 2 is a member of at least one of tne above sets then the test i-ails and
control is transferred to statem~nt labelled 8 within that sector.

3. This example is show in Fig. 4.1 to illustrate the
layout of statements on the coding sheet.

a) Columns 1 to 5 are used to contain the statement label

b) The statement proper is written in columns 1 to 12

c) Columns 13-80 are used for card identification and
sequencing.

d)

e)

Column 6 is used to denote continuation lines of a
statement too large for one line (never split variable
names over two lines)
e.g. if a statement needs 3 lines of the coding sheet,

then column 6 for the first line could contain
¢ (or be left blank) and the succeeding column
6's should contain some digit say 1 and 2.

Column 1, if it contains a vcv denotes that any
characters on this line are to be ignored by the compiler
but will be produced-in any listings of the program
i.e. comments.

C THIS EXAMPLE CONTAINS A RANDOM SELECTION OF' STATEMENTS

~CLASS TIME EMPLOYEE 2~ SET QUEUING SERVED ONBREAK DELIt1EB.ING
lARRIVED

FLOAT ARRAY WAGES (2¢)
FOR I-:J.,2~

WAGE(I) .. ¢
Goro 77

77 FOR X-EMPLOYEE
-EMPLOYEE.X TAIL QUEUING

SUM.~
FOR X=1,2¢

EMPLOYEE.X FROM QUEUING INTO SERVED
SUM+SAMPLETIME
T.MAN X+SUM
WAGE(X)+(1.4*SUM)
QUEUING EMPTY @ 6
CONTINUE

FIG 4.1

Boolean Algebra

~ Boolean variables can be created using the BOOLEAN statement given in
Section 20 They can be given values .!ill!! or FALSE by having values read
into them or they can be given values by the assignment statement which
follows.

Assignment Statement

The general form of this statement is:-

name1 ... name 2

where namel is a BOOLEAN variable

and name2 is either a BOOLEAN constant (TRUE or FALSE) or another
BOOLEAN variable (or expresBIOn~ see later)

The BOOLEAN variable 'nam~v is given the value TRUE or FALSE depending
on the value of the BOOLEAN constant or variable v name 2 ,

Example:- TABLE (6) = TRUE

Here the BOOLEAN element TABLE (6) is assigned the value TRUE

BOOLEAN expressions

There are two BOOLEAN operators
1. + - this performs a BOOLEAN OR
2. * '"' this performs a BOOLEAN AND
These can be used toform a BOOLEAN expressiono

Example:-

1. A = B + C

There, if A,B and Care eOOLEAN variables, then if either B or C is ~,
A will be given the value TRUEo Otherwise A will be FALSE.

20 A = 8 * C

If B is TRUE and C is .I..!ll!f.9 then A will be given the value TRUE.
Any other combination of 8 and C will result in A being FALSE.

Parenthesis can also be used in BOOLEAN expressions to determine priority.

4 0 9

30 A = (B * C) + D

If Ap B~ C & D are BOOLEAN variables then B '" C will be evaluated (TRUE
if both B & C ~p otherwise FALSE) and if either its value or that of n--­
is ~ then A will be given a value ~o

BOOLEAN t IF 0

The general form of this statement isg=

1E bexp @ L

where vbexp 9 is a BOOLEAN expression and L is a statement label e

If the BOOLEAN expression is TRUE then control Passes to the next
statement otherwise control passes~statement labelled L (or to the
next sector if @ L is omitted)e

Exampleg-

IF STORY @ 99

If STORY is FALSE control passes to statement labelled 990

BOOlEAN 'UNLESS V

The general form of this statement isg=

UNLESS bexp @ L

This is the reverse 1! statement o It signifies that UNLESS the BOOLEAN
expression is FALSE transfer control to statement labelled L.

Switch Statement

A special instruction is provided for testingthe sense switchese Its
general form isg=

a) SWITCH n OFF @ L

b) SWITCH n ON @ L

where n is a digit between 1 & 4 which represents a particular sense
switch

and L is a statement label

a) This first version causes control to pass to statement labelled 'L' (or
to the beginning of the next sectorp if @ L is omitted) if sense switch
'n 0 is ..QE!

b) This version causes transfer of control if sense switch en' is Q!

r-- ---~---

I

.....,/ \

•

..

SECTION 50

TEST CHAINS

A test chain is a group of test statements, which produce a single result of
success or failure.

They are used to qualify the action and/or transfers which result from the
complex test statements to be defined in Section 6. These statements will
in general, be represented by 'Keyword' and would normally be followed by "@L"
The test chain must contain at least one test and must be indented to the
right of the ' Keyword' •

Simple Test Chain

The general form of a simple chain is:-

'feyword' @L

test 1

test 2

test 3

--_

test n

where test
l

to test
n

are unlabelled tests of the following type

1. Arithmetic test (Page 3.5)

2. Set Test (Page 4.3 to 4.5)

3. Compound Set Test (Page 4.6 to 4.1)

4. Complex test (another test using a test chain)

50 Co~pound Find Test (see Later)

Success results in a test chain if all tests succeed but, if there ~s
failure in any of the tests, then the test chain results inUhilure.

Examples:

1. 'Keyword' @ L

Al1B

B b! C

Cm,D

D Q! (A + B)

Success results if A is less than B is less than C ~ if C and D are equal and
greater than the sum of A & B.

2. 'Keyword' @ L

T. SHIP X ~ ¢

SHIP X 1! ATSEA

Success results if SHIP&X is in set ATSEA ~ the T-cell associated with
SHIP.X is equal to zeroe

Complex Test Chain

The general form of this chain is:-

'Keyword' @ L

test I

test 2

test
n

OR test 1
- n+
testn+2

test
m

OR test I - m+
testm+2

test
n

where.testl up to testp are tests as for the simple test chain.

5.2

,-

Here the test chain is composed of subchaina or disjoints separated
by the word .Q!!..

i.e. T~'~l ~
l 1st. disjoint

• • • •
test n

test l •••• n+l
•••• 2nd disjoint
••••) test) II

test •••• m+l ~
••••) 3rd disjoint •. 0.

~ test p

The complex test chain has again only one result, success or failure.
Success is accomplished if any one of the disjoints produce success as
defined for the simple test chain. If none of the disjoints succeed then failure
results.

Examples:-

1. 'Keyword' @ L

C.9! 7~ B b! 5
ANE
OR:O GT (B * B - 4 * A * A)
ORA!!B
BNEC
CNEA -

Success results if either a) C is greater than 7¢¢, B is less than 5¢ and
A is not equal to zeroo

2 OR b) D is greater than B - 4AC

OR c) No two of A, Band C are the sameo

a. 'Keyword' @ L
SHIP 6 1! UNLOADED, PORT 1

SHIP 6 NOTIN REPAIRS

.Q!i SHIP 6 1! SEAAREA 1

To SHIP 0 6 1! 7

LOADC(6) 11 1125

Success results if either a) SHIP. 6 is unloaded in port but not being repaired.

or b) SHIP. 6 is in area 1, is less than 7 days from port
and has a load less than 1125 tons.

Indentation

The range of any test chain is determined by the number of statements of
equal indentation after the Keyword. (NoB. For a disjoint the word .Q!!. must start
at the common level.)

Act Statements wi~hin chains.

Unlabelled acts (i.e. statements other than tests, transfers or compiler control
statements) may be interspersed with tests in a test chain only if preceding tests
succeed.

Example:-

1. 'Keyword' @ L

SHIP. 6 NOTIN REPAIRS

A-I

.Q!i SHIP. 6 NOTIN ATSEA

B-1

If the above example resulted in success then by examining the value of A & B
the test or tests, giving success could be determinedo

1

!Q!l loops in chains

FOR loops (over unlabelled acts only) are also permissable in test chains

Example:-

Nested Test Chains

I. 'Keyword' @ L

A GT B

FOR X .. lilO

Y (X) ~ ¢
J (X) ~M (llpX)

.Q!!A1!,B
BNEC -

~ The indented block in a for loop iSi by implicationp
itself a test chain.

Test Chains can be nested to a depth of 6 provided each inner chain has its own
common level further to the right than the common level of the chain around ito

Example:-

t Keyword ' @ L
1

A LT B

.Q!lA~D

'Keyword ' 2
CQ!A*B

C ~ l¢¢¢

OR 'Keyword ' - 3
Em. 5¢
Q!FLE9¢

X~¢

Assuming that succ.ss results if the conditioDB demanded b.r the '~ord'
are satisfied then the further succ.ss condition. are:-

a) i) (E equals 511.Q! F less than 9_) and X doe. no",
equal _

or ii) C i. less than l~~ but greater than the product
of A &: B

A is less than B Or (A equal. D and X doe. not
equal 1)

--i \

SECTION 6

COMP1EX STATEMENTS

COMP1EX TEST STATEMENT

The complex test statement is normally qualified by a test chain.
If '@ L' is present in the statement then transfer of control is to
statement labelled '1' within that statement. Transfer of control takes
place if the complex test results in f~ilure.

CHAIN

The general form of this statement is:

CHAIN @ 1

•

test
n

where testl up to testn are tests within a test chain

and 1 is a statement label (which may be omitted).

The result of the CHAIN statement is simply the result of the
test chain qualifying it.

If the test chain fails then control passes to the statement labelled 1
(or to the first statement of the next sector if '@ l' is omitted).
Success causes control to pass to the next statement following the test
chain.

6.1.

r

EXAMPLES:

1.
CHAIN @ 7¢¢

A ~ ¢

I = 1

OR NID LT (B*B-4*A*C)

II = 1

If either A is zero ££ if NEG is less than B2 - 4AC then success results
and control passes to the next statement. Otherwise control passes to the
statement labelled 1¢¢.

CHAIN @ 5¢

(QUEUE I) I .. 2, 8 EMPTY

CHAIN'

(T.TRUCK. X) X • 1, 8 Q! 5

OR (TRUCK. X) K .. 1, 8 N'OTIN' AREAA

If QUEUE 29 QUEUE 39 QUE.'UE 4, up to QUEUE 8' are empty and if
either:

a) the T-cells associated with TRUCK 1 up to TRUCK 8 are greater
than 5

££ b) TRUCK. 1 up to TRUCK. 8 are not in set AREAA

then the test succeeds and control passes to the following statement.
Under any other condition failure results and control passes to the
statement labelled 5¢
Dummy Index

The following complex test statements use a cell (i.e: an unsubscripted
variable). This variable acts as a dummy index, and takes in turn the value
of the class index of each member of the set on which the statement operates.

If the complex test statement is qualified by a test chain, then the
chain is performed once for each member of the set involved in the test and
a record of the results is maintained. There should be at least one test
in the test chain involving the dummy index, so that for each member of the
set there is a corresponding test chain result.

6.20

'-' \ ...

ALL

The general form of the statement is:

ALL namel name 2 @ L

testl

test2

o

test
n

where testl up to testn is a test chain,

namel is a fixed point cell (dummy index),

name2 is a setname,

and L is a statement label within same sector (may be omitted).

Success results if, for all members of set 'name2 ', the test chain results
in success.

Example:

10 ALL X ATSEA @ 2¢

SHIP X NOTIN AREA 1

OR To SHIPo X GT 23

Control passes to the following statement if all ships in set ATSEA
are not in set AREA 1 ~ if the T-cells associated with the ships in ATSEA
are all less than 23. Otherwise control is transferred to the statement
labelled 2¢ (Remember if I@ L' is omitted control would pass (if tests
result in failure) to the first statement of the next program section)o

2. ALL K STOCK @ 999

BOOK K NOT IN ONLOAN

BOOK K NOTIN DAMAGES

BOOK K NOTIN AVAILABLE

BOOK K TAIL MISSING

EXISTS

The general form of this statement isg

EXISTS (expression) namel name2 @ L

testl

test
n

where 'expression' has an integral result,

namel is the dummy index,

name2 is a set name,

L is a statement label (which may be omitted)

and testl up to testn form the test chain.

Success results if the test chain is satisfied for at least as many
members of set 'name2 ' as the value of the expression. If the number of
...-bers of set 'name2 ' satisfying the chain is less than the value of the
expression failure results o

If the expression is omitted a value of I is assumed and if the test
chain is omitted, the test is simply on the number of members at present
in the set.

The expression must not involve the dummy index 'namel '

Examplesg

1. EXISTS (TOTAL/2) K STAFF @ 9¢

MAN 0 K IN ABSENT

If at least half the TOTAL membership of STAFF are IN ABSENT then the
test 'succeeds' and control passes to the statement following the test, other­
wise control passes to the statement labelled 9¢.

-..
• ,.

2. EXISTS K LISTING @ 2

MEMBER K IN AREA 2

AGE (K) LT 45
CHAIN -
----mILEAGE (K) GT 5~~~~

o~ OfFENCE (K) LT 2

Control passes to the statement following the test if at least one
MEMBER from the set LISTING lives in AREA 2" is younger than 45 and has
either: a) driven more than 5¢¢¢¢ miles since joining the company or g

b) no more than one offence recorded against him since joining.

UNIQUE

This statement is identical to EXISTS but success only results if the
number of members from the set 'name~' is equal to the current value of the
expression.

Examples:

1. UNIQUE (7) X QUEUE @ 3

MEMBER, X IN GROUP 9

To MEMBER X GT 5¢

Control passes to the statement following the complex test if there are
exactly 1 MEMBERS from QUEUE who also belong to GROUP 9 and whose T-cells cont­
ain a value greater than 5¢. Otherwise control passes to statement labelled 30

UNIQUE (2¢) K ATSEA @ 2¢

Control is transferred to statement labelled 2¢ if there are not exactly
twenty members at present recorded in group ATSEA.

UNIQUE L TRANSPORT

TRUCK 0 L.!! AVAILABLE

CAR. L IN AVAILABLE

OR TASK. 6 IN COMPL.I!.~ED

Control is transferred to the first statement of the next sector if there
is not exactly one TRUCK and one CAR IN set AVAILABLE ~ if TASK.6 is not IN
set COMPLETED.

Incremental Indexipg

Instead of the test chain being controlled by the members of the set
mentioned in the complex test statement it can be controlled by any of the
indexing forms available with the FOR statement. (See pg. 3.3)

Examples:

ALL I = 3, MAX @ 4¢

MAN. I NOT IN ABSENT

ABTlME (I) LT l¢

Success results if for ALL I from 3 to the value of MAX (in steps of l),
MAN.I is NOTIN se'i ABSENT and ABTIME (I) is less than l¢. Otherwise control
passes to statement labelled 4¢

EXISTS (6* (L-J)) K = SEn'A @ 12

T. SHIP. K!Q. ¢

The test is repeated with K taking successive values of the class indices
of members of SEn'A. Success results if exactly 6 (L-J) members cf SETA satisfy
the given conditions that their T-cells are zero.

UNIQUE J = TRANSPORT

TRUCK. J IN STAND~Y

The chain is repeated with J taking value from 1 up to (in steps of 1) the
size of class TRANSPORT. If exactly one TRUCK is IN set STANDBY control passes
to the statement following the test chain. Otherwise control is transferred to
the first statement of the next sector.

COMPLEX ACT STATEMENTS

The following statements perform some action on a set and, in general are
qualified by a test chain. A dummy index is used and is as defined in the com­
plex test statement (see page 6.2)

COUNT

The general form of this statement is:

COUNT namel name2
testl

test n
6.6.

.. ~

"

where namel is the dummy index

name2 is the set

& test l up to testn form the test chain.

If the test chain is present a count is made of the members of set
'name2 ' which satisfy the test chain and a record of this number is avail­
able for use, in cell 'namel~ after the act is performed.

If the test chain is omitted a count is produced in cell 'namel ' of
the membership of set 'name2 '.

Examples:

1. COUNT K ATSEA

SHIP K. IN AREA 1

SHIP K. IN UNLOADED

CAPACITY (K) GE 5¢¢¢

A count is produced in K of all SHIPS in ATSEA which are at present in
AREA 1, are UNLOADED and have a CAPACITY (S.LI;.;ater or equal to 5¢¢¢ tons.

2. COUNT ISUMS QUEUING

Place the number of members at present in set
QUEUING into cell ISUMS

The general form of this statement is:

SUM (Expression) incremental indexing

o

test
n

I

where 'Expression' has integer values

test
l

up to testn forms the test chain.

and 'incremental indexing' is of exact~ the same form as for the ~
statement i.e. a) namel amI' m2, m3

b) namel - name2 (see page 3.3)

The value of the expression is summed for each value of 'name1 '
which satisfied the test chain. The sum is left in I.

N.B.:

Examples:

1.

I. The expression must involve the index 'name1 '

2. The index 'name 1 , should occur in the test chain,

if present, so that for each value of 'name1 '

there is a corresponding result to the test chain.

3. If the test chain is omitted the expression i8

summed for all values of ·name1 '.

4. If every value of 'namel ' causes failure in the

qualifying test chain then zero is left in ·namel '.

SUM (6 * A (I)) I - 1,17

A (I) NE B(I)
C (I) LT 5~

T.CELL !! ~
The expression is summed for every value of I (from 1 to 17 in steps of

one) which satisfied the test chain. The sum is left in I.

2. CLASS :m:!§. MAN 15 §§'! ABSENT

~ (T. MAN. K) K = MAN

MAN K. NOTIN ABSENT

6.8

'i

,

J

The vaiues in the time cells associated with each entity i~ class
MAN are summed provided that entity is not in set ABSENT. The sum is left
in Ko

SUM (CAPACITY (J» J • DEPOT

TRUCK J NOUN QSERVICE

The capacity of all lorries in the set DEPOT but not in set QSERVICE
is summed and the result placed in Jo

I

f

I
" ~ ..
}

r
I

I~
f

i

SECTION 7
FIND Statement.

The ~ statement involves an incremental statement which can be any
of the forms available with the ~ statement (see page 3e3)

ioeo

b) namel = name2

where name l = indexing variable (fixed point)

name2 = set .2!. class name

m19 m2, m3 = integer constants or cells containing integer values e

The general form of the FIND Statement i8:-. -
~ (indexing as for FOR statement) Criterion @ L

test
n

where 'Criterion' is some condition to be satisfied (see below)p
testl up to test

n
form the test chain

and L is the label of some statement in same sectoro (@ L may be omitted)

This statement causes a subset of all values of 'name ' whieh result in
success in the test chain to be formed. Then one of that subset is selected
according to the criterion given and that value (i.eo class index o~ the entit;
from the subset is left in lnamel'e

If no subset can be formed (i.e. no value of 'namel ' causes success in
the test chain or if the set 'name " (see (b) above ~s empty) then control is
transferred to statement labelled t (or to the beginning of the next sector if
@ L is omitted).

The criteria which can be used in the FIND statement are listed below
(in each case assume the subset of values or-r-namel ' which satisfy the test
chain ha" been formed)~-

1. ill (stream)

Where 'stream' is a cell holding an initial value to be used
for a random number generation (see later)

This criterion causes each member of the subset to have a random number
generated and associated with it. The member associated with the highest random
number is chosen to give in effect a random member of the subset. The value of
this random member is left in 'namel '.

2.

in 'name ' 1
3.

value is chosen.

5.

value is chosen.

N.B.

Exanwle:-

10

FIRST

The first member of the subset is selected and its value placed

1!§!

The last member of the subset is selected and its value placed in

MAX (expression)

The member of the subset which gives the expression its .minimum

MIN (expression)

The member of the subset which gives the expression its minimum

In 4 & 5 the 'expression' must involve the index variable 'namel '.

~ J = 1, VAL, 2 ~ (A(J) **2) @ 2¢

A (J) GE ¢
All odd values of J from 1 up to but not greater than the value in VAL

are selected.

A subset of the values which do not give a negative A(J) is formed.
The value on that subset which gives the largest value to A(J)2is chosen
and placed in J~ and is available for use as a subscript or entity index
after the FIND statement and qualifying chain. Note that the contents of
J are unspecified if no member satisfies the test chain and therefore J has
no meaning if used in statement 2¢0

t'J
l

2. ~ I NOTWORKING ill (START) @ 555
MAN.! NOTIN ABSENT

MAN. I NOTIN ONSTRIKE

A subset of all values of I (i.e. class indices of all members in set NOTWORKING)9
which satisfy the condition than MAN.I is neither in set ABSENT nor ONSTRlKE p is
formed.

A value from this subset is chosen at random and placed in I and control passes to
the statement following the test chain. If the set NOTWORKING is empty or if no
member of that set satisfies the test chain, control passes to statement labelled
555 and the value of I is unspecified.

3. ~ K SHIPS FIRST

SHIPS K 1! QUEUE

T. SHIPS K Q! l¢

A subset of all values of K (indices of entities in class SHIPS) which satisfy the
condition that SHIPS. K is in set QUEUE and the time cell associated with SHIPS e K
is greater than l¢, is formed. The value of the first member of the subset (the
first class index) is then chosen and placed in index variable K. If no member of
class SHIPS satisfy the test chain, control passes to the next sector and K contains
an unpredictable value.

,

I
'-'"

SECTION S.

HISTOGRAMS AND STATISTICAL DISTRIBUTIONS.

User Specified Distributions.

A distribution is a device which serves one of the following two functions~-

a) It may be used by the program to obtain random
samples from an empirical distribution supplied
as data.

b) It may be used as a device for accumulating data
developed by the program •

.lli1 synonymous with !!!§!

The general form of this statement is:-

Where namel name2 are extended C.S. L. names.

nl ,n2 115: n6 are unsigned in.teger constants less than 1023

n, n4.n7' HS are unsigned integer constants

This statement defines groups of distributions naIne1l. name12 up to namel nl

and name2 1, name2 2 up to nam92 n5' If n.J.0r n5 were omitted single distributions

would be defined i.e. namel and name2 0

Consider only the I name 1 9 distributions. Each of these would have n2 cells 9 n,

would be the value associated with the first cell and n
4

the incremental value

between ce11so This statement must precede all reference to the distributions.

Example ~-

1. DIST OBSERVATIONS (6¢pl,1) FREQU 3 (2¢,¢ 5)

Here four distributions are defined - OBSERVATIONS, FREQU1, EREQU2, FREQU;.

The last three each have 2¢ cells which have associated values ¢.5 p l¢, - - - up to
950 These values must not be confused with the contents of the cells, ioe. they
can be considered as the sampling scale of the distribution/histogram.

So 1

2 • .!!!§! WAITTIME (S,¢,l¢)

Here one distribution, WAITTIME, is defined having S cells, associated values

¢, l¢. 2¢, 3¢, 4¢, 5¢, 6¢, 1¢.

SAMPLE

The function SAMPLE may be included in an arithmetic statement.

Its general'!Qrm is:-

SAMPLE (dist, stream)

Where 'dist' is a distribution name including a suffix (if required) and 'stream'
is the name of a fixed point cell which contains some initial value for the random
number generator.

This causes a random value to be selected from the distribution and the value selected
is taken as the value of the expression.

Example:-

10 T. SHIP. 5 = SAMPLE (WAITTlME, STR) + T.TIDEIN

Here the time cell associated with SHIP 5 is given the value of T.TIDEIN plus a
sample waiting time taken from the distribution defined under DIST i.e. WAITTIME.

ADD

2. TIMEAWAY (I) = 2 * MILES (1)/ AVSPEED + SAMPLE (TURNROUND,
STARTNO)

This statement is used to enter data into a histogram. Its general form is:-

~ expression, dist

where 'expression' is any integer expression
and 'diet' is a user defined distribution.

One is added to the cell of the distribution which is nearest to the current value
of the expression.

•

I~

Examplesg~

1. ADD A / 6 FREQ.U 2

'-' Assuming 'A' had the value 18 then one would be added to the cell of the
distribution, FREQ.U2, whose associated value was nearest to 3.

2. !!!Q. K II: QUEUING FIRST

SHIPCAP (K) Q! 5¢¢¢

~ -.T.SHIP.K,Q.UEUETM

eLEAR synonymous with ERASE

The general form of this statement is:-

CLEAR distl ,dist2, - - -, - - -

where distIl dist2 are defined distribution names.

All the distributions mentioned in this statement have the values in their
cells set to zero. CLEAR/ERASE can be used on any valid member of the 1/0 List.

(See Section 9)

EXAMPLESg~

1. ERASE FREQ.U 1

2. CLEAR WAITTIME, QT'IMES

Theoretical Distributions.

The following distribution functions are available to the user and may form a papt
or the whole of an expression, subject to the rules for functions in Section 10.

RANDOM

The general fom of this statement is:-

RANDOM (range, stream)

where 'range' is an expression
and • stream' i!I an unsuffixed cell name containing an
initial value for random number generation.

This statement causes an integer to be selected at random in the range ¢ to R-l
where R is the current value of the expression • range'

8. :3

I

.... pl •• s-

IOBIUL

1. QU'lDIE -RPDOM (11, STRM)

Bere QUT1JIIE i. gi-ven 8. rand. om value between _ and 1_
2. TRY (1) • X ".. RAHD(J((B ** 3, lIUMB)

'!'be .. _eral fora .f this statement is &­

IORMAL (.ean, de.., 9 .-.reaa)

where mean' is an expre8sion wh.se value represent. & JleaD value. 'dev' is an
.~ssion whose value represents & standard deviation and 'stream' is an
uaauffi:ted cell D8JIe which contaill8 an initial value tor random number generators.

!bia Itatement enable. the user to take a sample normal deviate from the normal
d.iatribution whose mean is the current value ot the .. an expression and whose
standard deviation is the current value of the deviation expression.

baaples:-

1. IQ • NORMAL (l~~f 9. VAL)

Bert a sample ia taken trom the normal distri~tion whoa. mean is 100 and standard
4eTi.tion 9.

2. T. SBIP K = JOWL ($I, 3. STD) * 3 + T/2

A saaple is taken trom a normal distribution whoae •• an i. the value ~/2 and whose
.tandard deviation i. 9. i.e. the above is equivalent to

'-'he general fol'S of this statement is: ..

NEGEXP (mean, stresa)

Where etrean'is an unauffixed cell which ccntainl an initial value tor the
r&IldODl number generator.

This statement causes a randotl .ample to be ~n from the negative eXponential
distribution whose mean i. the ourtent value of the -mean' expression.

B. 4

•

-
I

I.

Ilxamples:-

1. WAITTIME... To LAST LOADED + INT + NEGEXP (1 ~ STRNG)

This statement calculates the sum of the time the last truck was loaded plUS
the interval plus a sample from a negative exponential whose mean is 1 and
places the result in cell, WAITTIME.

2. ELEM (K) ... NEGEXP (S, VAL)

N.B. In all statements involving ~andom sampling an initial value p the stream
parameter, is specified in an un!:>uffixed celL This value is used to generate
random numbers using the formula:-

Where

19 X 1 = l25.X mod 2 n+ n

X 1 is the random number to be generated n+

X is the last random number (in the first case the value in
n the unsuffixed cell).

i.e. the next random number is obtained from the remainder
when 125 x X is divided by 219

n

\

I
1

1

1

• 1

• 1

1

1

1

r~ 1

~ "-1

• !
i

t

'" t

~

l'-'
~

SECTION 9

INPUT/OUTPUT STATEMENTS

Input/Output statements are in the form of a keyword followed by a
list of inforlDatio1!l to be input or output. These keywords fall into three
groupe:

a)

b)

Input from Cards

READ

INPUT -
LIST -

Output to Cards

PUNCH

synonymous Wi. th

synonymous Wi. th

c) OUtput to the Printer

and

PRINT

OUTPUT

CHECK -
TYPE

qnonymous with

(Olltput to c ODS ole)

d) Magnetic Tape Operations

and

READTAPE

WRI'l'ETAPE

REWIND

BACKSPACE

ENDFILE

I

list elements

The list may be composed of any of the follo.,ing elements seperated by
commas 8

a)

b)

c)

Cells (I/O)

A cell name may appear anywhere in a list and may be suffixed
or unsuffixedo

Exampleg~ A, GRID (1 9 K), T. ATImE, ARRIVALTImE, X, Y, Z

If used following an input: keyword then values will be read
into each of the cells listed. If used with an output keyword
then the current values of the listed cells will be output.

Arrays (I/O)

Artay names (no subscripts) may be also be included in the input
output list, if an entire array ie to b~ transmitted in or out.
The elements of an srray to be filled or output are always dealt
with in such a way that the first subscript varies most rapidly,
then, the second etc o

Example:- x, Y, COEffS, W ("her~ X, y & Ware single cells and
COErrS is a 3 by 3 array).

If the list follows an input keyword then cells X, Y COEFrS (1,1)
COEFFS (2,1), COrFFS (3,1) COEDDS (1, 2) - - - - - - -COEFfS (3,3)
and Ware filled with input data. If the list follows an output
keyword then the current contents of the list are output, in the
order specified above.

HISTOGRAmS AND DISTRIBUTIONS (I/O)

Histogram and distribution naMes may also be included in an input/
output listo On input, nata will be read in to till all cells of the
named distrlbutJon/h~tograll. On output the total nu.ber of
observations in the distribution/hhtogaram is given along with the
number of observations recorded in each cello

E.ample~- fREQ 1, AmPLETlmES where both names represent dietributionso
If used "in conjuntion with an input keyword then these distributionsl
histograms are filled with input datao {NoBo the first value to be
input must be the total number of observations being input)o
If used in conjunction with an output keyword then consider th.
follo.,ing:-

Exampleg FREQI has 8 cells whose values are:­
o 7 5 18 9 6 2 1

then output will be:
48 0 7 5 18 9 6 2 1 where 48 is the t otel number of.

observations recorded.

t

Implied Loops (I/O)

Elements in an. input/output list may be qualified by an implied loop which can
assume any of the forms available with the FOR statement (see page 3.3)

i.e. a) name 1 .. m1, m2

N.B. m3 must be omitted since only unit incrementing is available.

b) name1 - name2

The elements to be controlled by the implied loop must be enclosed in brackets
followed by one of the forms of the implied loop given above.

Examp1es:-
X, (A (l,K), T. MAN. K) K .. QUEUEA, MATRIX

For K equal to all the class indices of entities on set QUEUE! the value of
attribute i.e. A(l,K), and of the time cell associated with each entity, T.MAN
will be input/output.
The implied loop is also useful for inputing or outputtng sections of arrays.

Examp1e:-

(K (6,J»J .. 3,6
Outputs/inputs K (6,3), K(6,4), K(6,5) and K(6,6)

Loops of the above type may be nested to a depth of four.

Examp1e:-
(K (I,J) I .. 1,3)J - 2,4

Inputs/Outputs K(1,2), K(2,2) K(3,2) K(l,j), K(2,3) - - - - - - -
- - - - - - - , K(3,4) in that order.

Literal Strings (0)

Strings of characters may appear in the list associated with an output
keyword. The string must be enclosed wi thin inverted comma.s and causes the
string of characters specified to be output e.g. To print headings.

Examp1e:-
"ANSWER .'t, K, "TONS"

If K had the value 175 then the following would be output:-

ANSWER .. 175 TONS

I

The 'I' separator (I/O)

The character 'I' ~ be used in an input/output list in place of a comma.

Input:- When the 'I' is encountered this causes data to be taken from the ~
record to fill the following list elements (e.g. next card)

Output:~ When the '/' is encountered this causes data to be output to a new
record from the following list elements (e.g. new line on printer)

Example: - "PAGE NO.", I/VEC'l'OR

Assuming I contains 1 then PAGE NO. 1 is printed on one line and the elements
of the arr~ VECTOR are printed on succeeding lines.

The *n specification (0)

For printed output or output to tape each cell is allowed 10 character positions
to hold its value unless *n precedes these cells. The first of the l~ characters is
the sign, the last is a space, enabling input and output to be compatible. 'n' is
an unsigned integer constant which represents the number of consecutive character
pOSitions to be used to contain following cell values. The number of characters
specified by 'n' must exclude the initial sign character and the final blank
characters. 'n' must be less than 16.

Examp1e:- X,Y, * 5 Z, w
X and Y will each be allowed 1~ characters, Z and W will each be allowed 7, i.e.
each field includes a sign character (blank or.-) and a terminal blank character
for I/O compatibility.

The ** specification (0)

This specification is designed for output to the printer and when encountered in
an output list it causes the printer to throw the paper to the head of the next
page.

Examp1e:- ** "PAGE NO. ", I/!, B,C

This will cause PAGE NO. n, where n is the value in cell I, to be printed at
the head of the next page and on a new line the values of A, B and C.

~ synonomous with

INPUT synonomous with These key words are used to
input data from cards and
take the following form:-

INPUT List

where list contains any permissab1e element as defined previously for input

Examp1e:- 1. ~ (K(l,J)) J - 1,10,/X,Y,Z

FREQ.UI, AVTIME, MATRIX

•

k
I

PRINT synonomous with These two keywords are used
to output 'information to

OUTPUT the printer and take the form:-

PRINT list
Where 'list' is a list of permissab1e elements in an output list.
EA.ch line of print can contain 132 characters. If the PRINT list is greater
than 132 then the first 132 are printed on one line and the next 132 on the
following line etc. If the configuration has a 120 print position printer the
compiler can be altered to suit this.

Examp1e:- PRINT "OBSERVATIONS" II * 5 (SMPLETIMES II) I = 1,3

CHECK

This statement is only executed if SENSE SWITCH 2 is on. The general form is:-

CHECK list

Where 'list' is as previously specified for output keywords.
When SENSE SWITCH 2 is on the first six letters of all variables in the list are
printed along with their current values. If SENSE SWITCH 2 is off this statement
is equivalent to DUMMY

Examp1e:-

CHECK" TRACING "/ToAB I I MATRIX I OBSERVATIONS

where MATRIX is a 2 by 2 array.

T.AB. I is T-ca11 associated with entity I
OBSERVATIONS is a distribution of 6 cells

& TRACING is a fixed-heading

this statement would result in the following printed output (if SENSE SWITCH 2
was on)

TRACING

AB I 5
MATRIX 17 - 9 12 5

OBSERV 2¢ ¢ 1 3 14 2 ¢ ¢

~ CHECK must not use implied loops in its output list.

CHECK ON
CHECK ON -This statement overriaes the use of the sense switch and all CHECK statements

after this become executable unconditionally.
CHECK OFF

CHECK OFF'
This statement when encountered, returns the CHECK statement to the control

of the sense switch.

I

TYPE

If a console typewriter is present in the configuration then this statement
may be used to output messages to the operator. In no console is p~esent this
statement is illegalo This statement should only be used to communicate with
the operatoro

The general form of this statement i8:-

TYPE list

where 'list' is ae defined for the output Iiate

Exampleg-
TYPE 'PUT SENSE 9111."., 2 ON AND PRESS RUN'

READTAPE

The general form of this statement isg=

READTAPE n list

whereOlist' is as specified for the input list
and °no is one of '2,39495969 & 79 sp.~fying the logical drive on the magnetic
tape unito The statement cause a record/rttcords from the 'specified tapa to ba
read into the spec1fi~rl list. A record on tape is l2~ charcaters .. long (print
image)o Enough records are read to fill all members of the list.

Examp!eg-

READTAPE 2 Ap B9 C /MATRIX / DISTRIB

UJRIT,EPATE

The general form of this statement isg­

UlRITEPATE n list

UJhere 'list' is as specified previously for the output list
and on' is one of 293949596 or 7p specifying the logical drive to be used on the
magnetic tape unit.

This statement will write the current values of the list to tape.

Exampleg-

WRITETAPE 2 (VECTOR(I)I :: l,l¢¢, MED, A, 8, C,/(Z(J»J :: 1,10

•

REWIND

The general form of this statement is:-

REWIND n

where 'n' is one. of 2,3,4;5,6, or 7, specifying a logical drive on the magnetic
tape unit. T~ie statement rewinds tape .'n'

BACKSPACE

The general form of thi.s sta.tement is:­
BACKSPACE n

where 'n' is one of 2,3,4,5,6 or?, spe,cifying a logical drive on the magnetic tape
unit. 1hie statement backspaces the specified tape 'n' Qne record.

ENDfILE

The general form of this statement is:-

ENDrILE n

where 'n' is one of 2,3,4,5,6 or 7, sp.ciryln~ a logidal drivi on the ~agn.tic tape
unit.
This statement writes the end of file record to tape 'n'. If this record ia
encountered~uring a READTAPE statement the program will stop and 'SY$TEM CARD
ENCOUNTERED' will be printed on the printer. If start is pressed the system
will proceed with next job. See Section 16.

•

SECTION 10

PROCEDURES AND FUNCTIONS

It may often occur that a section of program, i.e. routine, is a common
requirement of several programs or even to different parts of the same prograa.
Such routines ~ be written as entities and are known as subprograms.

There are two type. of subprograms in Extended C.S.L.

a) PROCEDURE - routines written in Extended C.S.L.

b) FUNCTION - routines written in EASYCODER assembly language.

PROCEDURE

A PROCEDURE must be defined before it is first encounte:('td in an executeble
statement. Any variables defined within a PROCEDURE are defined within that
PROCEDURE only. The general form of a PROCEDURE is

PROCEDURE name (dl , d2• d
3

• - - - - - dn)

where 'name' is a pe:nnsaable Extended C.S.L. name used to identify
the PROCEDURE

and dl , d2 - - - - - - up to dn are d~ parameters used in .tateaent.

within the PROCEDURE and can be replaced by &QY Extended C.S.~ entity
except a distributionjhistogram name.

The body of the PROCEDURE is written in Extended C.S.L. following the PROCEDUBE
statement.

10. 1

If in a PROCEDURE a test fails then control returns to the
main program. Control will also return to the main program if the
PROCEDURE is completely executed.

The PROCEDURE is used form the main program by means of the
following statement, i.e o by including the PROCEDURE name in an
expression, as for FUNCTION (see below):-

var = name (PI' P2 , ----------------Pn)

where 'name' is ~e name of the PROCEDURE to
be executed andF , P , up to Pn are the arguments
to correspond to lhe aummy variables specified and
used in the PROCEDURE.

The PROCEDURE name appearing by itself with parameters as a statement
is compiled as a ~ to the PROCEDURE,

The PROCEDURE name may appear in the body of the PROCEDUR~ since
it can be used to transmit the result. It will be a fixed point
cell but if a floating point res ul t is required the PROCEDURE
statement must be as follows:-

FLOAT PROCEDURE name (d , d , --------------d) 1 2 n

FUNCTION

The general form of this statem&bt is:­

FUNCTION name l , name2 , ----------------
where name , name , etco are taken to be FUNCTION names.

This statement tells tfie compiler to include these funct,ions from
the library in this program, since they occur in the body of the
program. The EASYCODJ:t.;R routines correspondihg to these names
must have been added to the function library. (All functions,
excepting SAMPLE, NORMAL, NE GEXP and RAWDOM, must be dealt with in
tbis way).

These functions are then used by writing their name followed by
a list of parameters in an Extended C.S.L. statement.

function name (expressionl , expression2------------)

The expressions are th~evaluated and their values taken as the
parameters required by the FUNCTION. The FUNCTION will prodace
a ~1xed point result unless its name has appeared in a FLOAT
statement or it is defined as a floating ~oint FUNCTION. The number
of parameters should correspond to the number expected by the
FUNCTION.

Example:-

\

1. Xl = (B-SQRT (B*B-4*A*C»/(2*A) --.J \
lIere SQRT must be a routine on the t'unction library for finding

the square root of 2ne parameter which in this csse is the value
of the expres4ion B - 4AC

2. Y = MAXOF (H,C,J(,), D)
10.2.

The Extended C.S.L. function library will contain a standard group of
functions which ~ be used in Extended C.SoLo programs. These are:

a) FIXED POINT

MAXOF (el , e2, - - = - - - en) - where el , e2, - - - - ~ en
are arithmetical expressions having integer valueso The result is the value of
the maximum expression.

MINOF (el , e2, - - - = - en) - as for MAXOF but the result is
the value of the minimum expressiono

SQROOT (e) - This finds the square root of a single expression
which has a positive integer value.

GENERAL (cl , c2, c3, c4' c5' stream)

This function selects a random sample from a general distribution using the

2 (2 2 formula AX log2(1-X). + B l-X) log2X + C + DX + EX

where A,B,C,D, & E are the values in cells 01' c2 ' c3, c4 ' & c5
Stream gives an initial value to the random number generator.

MOD

b) FLOATING POINT

(e) this finds the absolute value of a single
expression

FLOAT this function does not concern the codes as it
is handled automatically. However it must be
present in the function library.

SQRT (e) this finds the square root of a positive floating
pOint expression.

LOGE (e) this finds natural logarithm of a positive
floating expression.

LOGTEN (e) this finds the log to the base 10 of a positive
floating point expression.

EXP (e) this finds the exponential of a positive floating
point expression.

EXPTEN (e) - this finds the antilog to the base 10 of a single
floating point expression.

ABS (e) this finds the absolute value of a floating point
expression.

10. 3

I

The fWlction library may be added 1K> at any tille b7 wrltiRg new function. iB
BASIC EASYCODER with the following ~ification ••

1. The first card of a FUNCTION IlUst have the fo110wUg f01'll&t:-

2.

Col. 6 - 13 these co1umaa must contain the word FUNCTION

Col. 14 if blank this designatee a fixed point fuaction
if '.' thi8 dellignate. a floating point function.

Cole. 15 - 20

Cola. 21 .. 72

thelle columns contata the BaBe of the tuaction
aad llUet be an ExteJlded C.SoL ... e of up to 6
characters.

parameterll which IlU8t be legal EASYCODER tags
separated by commas. These tagII can be preceeded
by an '.' or t.'
* .. thii epecifies addre.a of variable i8 paraaeter,
Dot value •
• - thill specifiell ftriable is a float1Dg poillt
quantity otherwise fixed point value of ta« ia
couidered.

W.B. If fwaction 1Il8II9 appears as paraDl4;tter, then
ita value is placed in the re.ult locatio ••

Iutructiou JlUllt be in adlIode 3. So the following
inlltructions are i11ega1:-

1) CAM

2) ADMODE

.nIlO illegal ill ,. The

3) DC

followiRg extra iutructiona are availab1e:-

1) RETURN - returns control to main program

2) C(JI1 A,B - cauaes a n~eric compariaoD
between values in addre •• ee A & B

3) II A,B - mu1tipliell the conteatll of A by
the contentll of B &ad leaves
rellu1t in B

4) D A,B - content. of B are divided by content.
of A - rellult in B.

5) p A,B - content8 of B are rai8ed to the
power of the contentll of A and the
result i8 placed in B.

The above are all fixed poiatarithaetic, the following are
floating point:

10. 4

,~

-..../ \

~

J ...

I'"

I

6) Fe

7) FA

8) FS

9) »i

10) FD

11) FP

A,B

A,B

A,B

A,B

- as for 2) but floating point
numbers.

- add the floating point quaatity in
A to the floating poiat quantity in
Bo Result in Bo

- subtract the floating point qU8llti ty
in A fro. the floating poiat quaatity
in B. Result in B.

- as for 3) but floating pout numbers

- as for 4) but floating poiJl.t llUIlbera

- as for 5) but floating poat .umbers

The following are two conversioJl. instructions:-

12) FIX A,B

13) FLOAT A,B

- the quantity in A is converted to a
fixed point number in B.

- the quantity in A is converted to a
floating point number in B.

The above rules, if observed, will produce valid functions. To
maintain a fnaction library the following rules must be observed:

1. A system card containing an asterisk in column 1 and the
word LIBRARY in columns 7 - 14 must preceed the pack of cards
to be used to update the 11 brary.

2 • The library is held in alphabetical order and so the input IlUst
be in alphabetical order. i.e. according to function aames.

3. If the name of an input function is the same as a function on
tape then the new function overwrites the old one.

4. If the word DELETE appears from column 6 onwards in place of
FUlCl'ION and the function name, only, appears in column 15
6Rward., then that function is deleted from the library.

5. A card with END punched in columna 6 - 8 specifies the end of
a library Update.

6. The system tape should be OR logical drive ~ and the tape
being created should be on logical drive 1. The EM> card
causes a halt and if a program execution is to follow, the
JleW tape should be placed OR logical drive ¢ &ad a .ew work
tap' placed on logical drive 1.

10. 5

-..../ \

I

f

SECTION 11

SIMULATION

A simulation model may be formulated using Extended C.S.L. If the structure
of the model is defined by the Simulation Control Statements, given later in this
section, the computer will supply a built in mechanism for time advancement and
iteration.

T-cells can be defined (e.g. in CLASS statement) and are considered as holding
times relative to the present time, zero. The value in the T-cell, associated with
an entity, could for example specify when this entity needs consideration. The
units in the T-cell can be considered as anything, e.g. days, hours, minutes, etc.,
but all T-cells must be assumed to hold values in the same units. A negative time
would specify that consideration of the associated entity is overdue.

Example:-

T.SHIP 5 might represent the time that must elapse before
SHIP 5 can enter harbour.

A simulation operates in a two phase manner, based on a consideration of the time
cells.

PHASE 1

This first phase scans the T-cells associated with entities to find which event
will occur first, i.e. T-cells with smallest positive value. All T-cells are then
incremented by that amount to simulate time advancement.

CLOCK - This is a special T-cell which holds the total elapsed time since the
beginning of simulation. It may be used and/or reset by the programmer. CLOCK
is also incremented on any time advancement.

PHASE 2

This is the iteration phase where a scan of all program sectors (equivalent to
activities) is made and, if possible, some action to advance the state of the model
is made. When no further action can be performed then a return to Phase I is made.
For example if all SHIPs were outside the harbour and their associated T-cells all
held positive values (e.g., waiting for tide to come in) and no other action could
be performed then a return to Phase 1 and a time advancement would enable'progress.

The cycle of operations between Phase I and 2 is continued until the value in
CLOCK exceeds a given value specified in the ACTIVITIES statement. At this point
control is passed to the FINALIZATION section (see later in this s$ction).

11.1

SIMULATION CONTROL STATEMENTS~

ACTIVITIES

This has the form:-

ACTIVITIES cell name

This statement defines the start of the list of program sectors (activities)
in the program. This causes the built in mechanism for time advancement and
iteration to be incorporated, i.e. sectors will be treated as in Phase 1 & Phase 2.
'cellname' is either an unsigned integer constant or a cell name containing an
integer, which is used to specify the duration of simulation. Simulation will
cease when the value in CLOCK exceeds this value, i.e. control will pass ,to the
FINALIZATION sector. The statement ACTIVITIES, as well as signifying the start
of program sectors, can be considered as terminating th~ first section of program
in which definition and initializatioh statements occur.
NB. The duration of simulation cannot be changed by altering CLOCK in program exeoution,
since a twin cell, which cannot be accessed by program, is incremented with CLOCK to
control the simulation duration!

BIDIN The general form of this statement is:­

BEGIN identification

This statement is used to specify the start of activities (program sectors).
It ~ be omitted from the first activity whose start is defined by the ACTIVITIES

statement. An identification of up to 28 characters will be printed on the
standard output.

RECYCLE

The general form of this statement is:-

RECYCLE identification.

If this statement is encountered during the execution of an activity then
a further complete cycle of all activities, once the present cycle is completed
is performed before time advancement is conSidered. Only one further cycle is
performed regardless of how many RECYCLE stateme~ts there ~ in the program.
Characters for identification may follow the structural word RECYCLE but these
characters will be ignored at each execution of the statement.

Normally time advancement occurs after a pass- through all activities is
made. However, these activities may interact in a complex manner, or the action
in one sector (e.g. the ~eleasing of a machine) may enable fUrther actions to
occur at that instant in time. The encounter of at least one RECYCLE statement
in the program will ensure another pass of all activities to be performed before
time advancement occurs.

I
f

I

,

I~
I
!

I

FINALIZATION

The general form of this statement is:-

FINALIZATION. identification.

When the CLOCK value exceeds the value specified in the ACTIVITIES statement
then activity cycling ceases and control passes to the section of program following
the FINALIZATION statement. Identification can follow the FINALIZATION key word but
this will be ignored and not output. The FINALIZATION card can also be considered
as te:rm1na.ting the activities section.

Either both ACTIVITIES and FINALIZATION statements must occur or neither.

I

SECTION 12

PROGRAM TERMINATION

The various methods of bringing the program to a halt are discussed below:-

The form of this statement is:-

This causes termination of program execution and control is returned to the
Extended C.S.L. Monitor System on the H200. The words 'NORMAL EnT' appear on
the printer.

EXIT need not appear in the program to terminate the execution since it is
~matically inserted, by the compiler, prior to termination b,y END (see below).

Program execution is terminated, and control returned to the Extended C.S.L.
Monitor System, if an input statement is encountered for which insufficient data
(or no data) is available and a system card is read; or if an End ot File record
is read from tape. The words 'Normal Exit' do not occur (see page 9.9)

The form of this statement is:-

~

This must be the last physical statement (last card in deck) in the program.

FINISH

The form of this statement i~:-

FINISH

This statement causes control to pass to FINALIZATION section, at the end ot
the cycle, regardless of CLOCK value.

RESTART

The form of this statement is:­

RESTART

This statement causes constant data to be re-entered and transfers control
back to the beginning of the initialization section. RESTART does not re-zero
locations other than those mentioned in ~ (see later) or in the initialization
section.

12.1

I

ADVANCE

Th. form of this statement ls:-

ADVANCE

This causes the cycle to be compl.ted without considering the succe.ding
activiti.s.

12.2

..

SECTION 13

DAi'A STATEMEIT

The tom of this s ta teaent is:-

DATA. -
This urd JIWIt preeeed the eards whioh oontain the n.lues to be initially

set as data, vhiQh in turn IlUS-t pre •• ed the !!m urd. The toll owing rules for
oreating the DATA. stat •• ents IlUSt be adhered to:-

a) No individual IlUllbers aay oontain oha.r&otera other than digits (they
_y however be preoeeded by a ainus 8!sn.) lfuaerio data is written
in ooluans 7 to 72 of the oard and any characters ot~r than above will
be !snored.

b) If there is too llUoh data in any item of the statement for one card, a
seeond card ~ be used for oontinuation, ooluans 1 - 6 being left blank.

Buaples:-

DA.ti

1. RUBTIME 55

2. PARAMETER 2~

3. MATRIX 3 -7 1 5 19

2 4 -5 ~ 6

8 ~ ¢ 7 3

12 11 9 13 ~

4. JlBEQU 1 24 1 2 3 7 8 3 'i
5. INQU!IUE 1 3 4 5 6 7

END

13. 1

I

The nuabering on the left band side is only present for reference in
the explanations below.

1. This sets the value 55 in cell RUNTIME

2. This sets the value 2¢¢ in 8ell PARAMETER

3. If MATRIX is a 5 by 4 array then the 4 eards specified fill that
array.

4. In this case FREQU 1 is a distribution the value 24 represents the
total number of observations and is followed by the observations to
be recorded in each of the 7 ce11so

5. a) If INQUEUE is a set then entities with indices, 1,3,4,5.6, & 7
are recorded in that set, in that order.

b) If INQUEUE 1 is defined as a set then entities 3.4,5,6, & 7 are
recorded in that set, in that order.

13. 2

SEXJTION 14

OPERATING AN EXTENDED C.S.L. PROGRAM

Operation of the computer is uDder the control of the Extended C.S.L.
Operating System. This 8,Ystem miniMizes operator intervention and is controlled
by u8iag SY8tem Control Cards. The.e cards all have an asterisk in column 1 and
are detailed below:-

DATE card

Columns: 1

*
7
DATE

15
DD/MM/YY

Normally this will be the first card on the input deck and is used to supplJ'
the date (col. 15 - 22) to the computer for use in program printed output.

LIBRA~Y card

ColuJllls: - 1

*
7
LIBRARY

This card must preceed any function (written in Basic Easycoder) to be u8ed
to modify and update the function library. (Pgs. 10.2 to 10.5) All cards following,
up to but not including the next card with an asterisk in column 1, are taken to be
function cards.

COMPILE card

ColuDlDs:- 1

*
7
COMPILE

17
PRNAME

This card indicates that the named program, PRNAME, (Up to 6 characters)
which follows it is to be compiled up to the END card. The compiler leaves a
bin&17 version of the program on tape. 1. An 'R' in col. 71 denotes noating.
point calculations are involved and column 72 should contain (one less than the
nuaber of 4K banks; e.g., column 72 should contain 7 if one wishes to use 32K).
An 'N' in column 7¢ will prevent the compilation of statement nullbers to be
printed out under control of sense switch 4.

EXECUTE card

ColUllll8 1

*
7
EXECUTE

When encountered after an END card this causes the program which is currently
on tape 1. (placed there by * COMPILE) to be executed.

14.1

END RUN card

Columns:- 1

*
7
END RUN

This card is used to designate the end of the deck of programs being rw1

and must be followed by at 1east 2 blank cards.

REMARK card

Columns:- 1

*
7
REMARK

17 - - - - - - - - - 80

This card can occur anywhere in the deck except between source statement
cards or data cards. When encountered the message in columns 17 .. 80 is typed on
the console and a few seconds elapse when the operator can put on sense switches.
(This card must not be used if there is no console in the configuration).

T.APB.5 card

Columns:- 1

*
7
TAP&')

When enoountered the card causes a dump of information on alltapes to be
given.

GET card

Columns:-

~~
1

*
*

7
GET C
GET Tn

17
PRNAME
PRNAME

Where n is the tape dri v;~ number and
PRNAME is the program name.

Form a) of this card causes the binary program card deck to be read into
memory.

Form b) causes the binar,y program on drive tnt to be read in to memory.

•

•

KEEP card

Columnsg ..

a)
b)

1

*
*

7
KEEFC

KEEPl'n

Form a) causes a binary program card deck to be punched and

Form b) causes a binary program dump to be given on tape drive • n • •

POSTMORTEM card

Columns:- 1

*
7
PMDUMP

Provided the last*card was an EXECUTE card and provided a post mortem dump
has not just been given then the contents of all variables are dumped and an exit
from the program occurs 0

'WAIT card

Column:- 1

*
7
'WAIT

This causes program to halt at XXXIX and awaits operator action. To continue
press run.

OPERATIllZ PROCEDURES

The System tape must be on logical drive ¢, and three work tapes on logical
drives 1,2,3.

The operating procedure is:-

Bootstrap- tape ¢ twice to location ¢,
Press RUN three times.
The call card~gas the format:
CSL2¢¢Al~ ~

From here on the system is controlled b.Y the System Control cards just
described. The Sense Switches have the following significance, if Q!:-

Sense Switch 1 - Clock changes printed.

Sense Switch 2 - 'CHECK' lists are output.

Sense Switch 3 .. Gives dumps of all variables every time
control passes to the Extended C.S.L.
Monitor.

Sense Switch 4 = Prints out secto~ Headings. 'The
statement numbers of the latest
statement executed in proceeding
sector will be printed provided there
was no 'N' in col. 7¢ of COMPILE card'.

I

Messages Output from Extended CoSoLo compiler are:

PASS 1

Definition Errors

INVALID DEFINITION OF XXXXXX

DIMENSION TOO LARGE

FUNCTION XXXXXX Nal' IN LIBRARY

LIBRARY NOT ON TAPE ¢

UNDEFINED WORD

PREVIOUSLY DEFINED WORD AFTER IS

* XXXXXX IS MISSPELT

Syntax Errors

-- ------

EXCESS OPEN BRACKETS

EXCESS CLOSE BRACKETS

FIRST WORD SHOULD BE A SET NAME

FIRST WORD SHOULD BE A CLASS NAME

KEY WORD MISSING

SET USED WITH WRONG CLASS

SET AFTER KEYWORD MISSING

HISTOGRAM MISSING

14. 4

•

•

•

•

REAL VARIABLE IN ADD

UNSUBSCRIPTED ARRAY NAME

Logical Errors

* UNBALANCED LABELS

DUPLICATED LABEL

INDENTATION ERROR

NO LABEL

SET CONTROLLING LOOP ALTERED

JUMP INTO LOOP

REAL VARIABLE!

ALL T. CELLS ARE ZERO

Other Errors

N.B. -

SYMBOL TABLE OVERFLOW

LOOPS NESTED TOO DEEP

STATDlENT TOO LONG

ERROR IN COLUMN nnn (OCTAL)

TOO MUCH DATA

Those marked with * can be non fatal errors.
PASS 2

Syntax Errors

INVALID ARITHMETICAL EXPRESSION

INVALID CHARACTER IN LIST

EXPRESSION MISSING

NOT ENOUGH PARAMETERS FOR FUNCTION

NON-ARITHMETIC WORD IN EXPRESSION

SUBSCRIPT ERROR

INVALID USE OF FUNCTION

n AFTER L.H.S.

NON BOOLEAN RHS

I

INVALID WORD IN EMPTY LIST

PROGRAM TOO BIG

NO INDEX CAN BE :rotJlU)

KEYWORD FOUND INSTEAD OF VARIABLE

CONSTANT IN I/O LIST

Logical Error

LOOP INDEX ALTERED

Execution

TAPE ERROR L

SYSTEM CARD
ENTITY ZERO L

bIVSR ZERO L

STREAM ZERO L
DISTN ZERO L

NB. L is statement number mhich will be output provided there •• a no 'N' in colu.n
7~ or COMPILE card.

Binary Pro9ram Loading

WRONG BINARY DECK

INVALID TAPE NUmBER

PROGRAM NOT IN LIBRARY

Binary Program Creation

INVALID TAPE NUMBER

14.6

•

•

C

PROORAM - TEST

SIMULATION OF PRIVATE TELEPHONE LINES
CLASS TIME PERSON 50 SET WAITING UNUSED CONNECTED
CLASS TIME LINE 6 SET FREE
ARRAY USER(LlNE)
HIST DELAY(30,O,l)POISSON(7,0,1) INCOMING(20,O,1)
READ MEAN LENGTH NOLI STREMA,STREMB,STREMC,STREMD,INCOMING
ToARRIVAL=SAMPLE(INCOMING,STREMC)+l
INPUT POISOON
T CALL .. 2
LINE NOLI LOAD FREE
PERSON 50 LOAD UNUSED

ACTIVITIES LENGTH

BmIN PHONING
100 ToCALL EQ 0

ToCALL .. SAMPLE (POISSON,STREMB)
FIND X UNUSED FIRST
PERSON X FROM UNUSED INTO WAITING
CHECK X,T.CALL
ToPERSON X .. 0
GOTO 100

BmIN RINGOFF
FOR Y - l,NOLI

ToLlNEoY EQ 0 :200
LINE. Y INTO FREE
XDUSER(Y)
PERSON X FROM CONNECTED INTO UNUSED
CHECK X , Y

200 DUMMY

BEGIN INCOMING
1 ToARRIVAL EQ 0

ToARRIVAL .. SAMPLE(INCOMING,STREMC)
MADE+1
CHECK MADE
FIND Y FREE FIRST g 1
RECEIVED +1
CHECK Y
Z-RANDOM(50,STREMD)+1
PERSON Z INTO CONNECTED 1
THRU +1
USER(Y).Z

FIG A.1.

o
001
002
003
004
005
006
007
008
009
010

011

012
013
014
015
016
017
018
019

020
021
022
023
024
025
026
027

028
029
030
031
032
033
034
035
036
037
038
039

PROORAM - TEST

CHAIN
PERSON Z FROM UNUSED
OR PERSON Z FR<JI WAITIlG

T. LINE Y - .RmEXP(MEAB ,STREMA.) + 1
LINE Y FReM FRB
CHECK Z
GO TO 1

:amIN SPEECH
300 FIND X WAITIlG FIRST

FIND Y FREE :rmST
T.LlNE.Y .. NmEXP (MEAlf,STRDtA)+l
LINE Y FROM FREE
.ADD -T.PERSON.X,DELAY
USER(Y).X
PERSON X FRCItt WAITn& INTO CONNECTED
CHECK X,Y,T.LINE Y
GOTO 300

FINALIZATION
PRINT "MADE RECEIVED THRU"
PRINT MADE RECEIVED THRU
PRINT "WAITING TIME HISTOORAM"
OUTPUT DELAY

END

* EXECUTE

FIG A.l

100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116

117
118
119
120
121

122

r.

•

APPENDIX A

Figure A.l. shows the listing for an Extended CoS.Lo program TEST, and
a detailed description follows e

Initialization Section

1.

2.

A comment line (denoted by a 'C' in column 1) is used to expand the title
TEST and explain the object of the program.

A class PERSON with 50 members is defined with assqciated T-cells. Allor
any of the members of PERSON can be held in sets WAITING, UNUSED, CONNECTED.
i.e. to hold PERSON waiting to make a call, not thinking of making a call and
at present calling respectively.

A class LINE with 6 members and associated T-cells is defined to represent
say 6 lines into an office building. Allor any of the members of class
LINE can be held in set FREEo ioe. if a line is not in FREE it is assumed to
be in use.

4. Three histograms are definedg~

a) DELAY wh~ch has 30 cells & associated values ¢ - 29 to
represent the waiting time in minutes for a FREE line under
the given conditions, i.e. 6 lines & a staff of 50.
This will be built up in the program.

b) POISSON which has 1 cells & assoc~ated values from ¢ - 6
will be filled with 1 observed totals to sample lengths
of telephone call.

c) INCOMING which has 20 cells with associated values from ¢
- 19 which are to be filled with sample frequencies of
elapse times between incoming calls.

5. The next statement reads in data from cards into:-

a) MEAN - ~he value read into this cell will be taken as the
mean value of a negative experimental distribution.

b) LENGTH. this cell is used to hold the value which represents
the duration of the run. i.e. 'N' minutes.

c) NOLI - this is the cell whose value will be taken as the number
of lines to be used for the random number generator.

d) STREMA - the value read into this cell will be used as a
starting value for the random number generator •

e) STREMB, STREMC AND STREMD as for d) but different start
values.

f) INCOMING - the frequencies recorded are read into cells of
the histogram.

6. A sample time for the next incoming call is placed in T.ARRIVAL.

8.

This statement reads in the seven observations into the distribution POISSON.
(N.B.) DELAY is initially cleared so no CLEAR/ERASE st.atement is needed.

The T cell associated with the length of a call; T CALL is initially set to
2, i.e. it will be 2 minutes till this call is finished.

A.l.,

9. This statement, where NOLI has a value between 1 and 6, is used to load thatJ
number of lines into set FREE.

10. Set UNUSED is loaded with PERSON. 1 up to PERSOB. 50.

Activities Section

The statement ACTIVITIES LENGTH, where LE:fCTH contains the length Qf simulation
parameter, defines the end of initialization and the beginning of activities.

PHONING

This activity is introduced by the BmIN PHONING statement, If T. CALL is
not equal to zero then control passes to the next activity (RINGOFF). Otherwise
T.CALL is set to a sample value from POISSON. The next statement places in X
the class index of the first member of set UNUSED and the value of X is printed
by the following statement. PERSON.X i.e. first member of set UNUSED, is removed
from that set and placed in set WAITING •

. The CHECK statement (if Sense Switch 2 is on) prints out current values of X
and T.CALL. The time cell for PERSON. X is then set equal to ~ i.e. PERSOB.X is now
available to start phoning. Control is then passed back to statement l~. T.C!LL
may now not be zero, so control would pass to the next sector.

If T.CALL is zero, (i.e.. a phone call has ended) then a new sample time is ~
loaded into it and the first person of set UNUSED is placed at the end of set
WAITING (to make a call).

If T.CALL is not zero control passes to the SPEECH activity in an attempt to
advance its state.

RING OFF

This sector involves a FOR loop where Y takes values from 1 up to the number
of lines used in the simulation (NOLI) in steps of 1. If the T-cell associated
with LINE Y is not equal to zero no action is performed and control is transferred
to the beginning of the next loop, (0200). If it is zero, i.e. the duration the
call on that line has terminated, the corresponding line (LINE Y) is placed into
and at the end of set FREE and PERSON is removed from the set CONNECTED into the
end of set UNUSED, where X has the value given to USER (Y) activity SPEECH or
INCOMI:fC.

SUl!!!!!8.rY

As soon as a line becomes free it is placed into set FREE and the associated
PERSON X is taken from CONNECTED and placed in UNUSED. (B.B. First time through
this activity no action is taken).

A.2

[
r

INCOMIIC

If no inooming oa11 is due i.e. T.ARRIVAL is not zero then oontro1 passes to
the next aotivity (SPEECH). Otherwise T.ARRIVAL is put equal to a sample time
from the INCOMING frequenoy distribution and MADE is inoremented by 1 and CHECKED.
If there is a free LINE then reoeived is inoremented b.1 1 and Y oheoked. Other­
wise return to beginning of aotivity to see if another inooming oa11 is due. A
random person Z is ohosen and if he is not in CONNECTED he is placed there and
THRU is inoremented by 1 and the person is linked to the 11ne,(i.e.
to beginning of aotivity). PERSON.Z is then removed from either set UNUSED or
WAITIIC, a sample time is given to the use of the line and LINE Y is removed
from set FREE. This aotivity is repeated until no inooming oa11 is due at that
instant in time.

Summary

This aotivity deals with inooming oa11s by searohing for a free line and
then for the person to whom the oa11 is being made, MADE represents the number
of attempted inooming oa11s, RECEIVED represents the number of inooming oa11s
aooepted by exohange and THRU represents the number of inooming oa11s whioh
were suooessfu1ly oonneoted with the required person.

SPEECH

The olass index of the first PERSON in set WAITING is loaded into X. The
~ olass index of the first LINE in set FREE is loaded into Y. The T-oe11 assooiated

with LINE Y is now loaded with a random value from a negative exponential distri­
bution whose mean is the value in oe11 MEAN. LINE Y is then removed from set
FREE. The negative value of T.PERSON X (i.e. if there were no members in
either or both of sets WAITING & FREE, then oontro1 would have been transferred
to the PHONING sector and on the next oyole. (i.e. CLOCK advanced) T.PERSON.
X will have a negative value. The person and the line are connected by USER(Y)aX.

Person X is now removed from WAITING and placed in set CONNECTED o Control is
transferred to the beginning of the sector, oausing the sector to be repeated
until either sets WAITING or FREE are emptied.

The above activities are recycled, a time advanoement ocouring after eaoh
cycle, until the value in CLOCK exceeds the parameter in LENGTH. At this point
the FINALIZATION seotor is reaohed and the required output is printed out.

I

ABS

ACTIVITIES

INDEX

,

ADD

ALL

ANY

ARITHMETIC EXPRESSIONS

ARITHME'l'IC STATEMENTS

ARRAY

BACKSPACE

BEGIN

CELL

CHAIN

CHECK

CLASS

CLEAR

10.3

11.2

8.2

6.3
7.2
3.1

3.2
1.1

1.1

6.1

9.5

__________________ _____________ 11.1 CLOCK

CODIlG SHEm'

COMPILE

CONSTANT

CONTINUE

---------------------------- 4.8
_____________________________ 14.1

_1.3

_ 3.6
CONTROL TRANSFER ____________________ ____ 1.3.3.7
COUNT _______________________________ 6.6

DATE

DATA

DESTINATION CLAUSE ----------------------

-- ... _-------------------------DISJOINT
DIST

DISTRIBUTIONS

DUMMY
DUMMY INDEX

8.1
, user _ 8.1

,theoretical ____________________ 8.,
,.6
6.2

EASYCODER,

EMPl'Y

BASIC _________________________ 10.4

_______________________________ 4.5

END
END FILE

END RUN
ENTITY
EQ ____ _

EQUALS

ERASE

EXECUTE

EXISTS

EXIT

12.1

9.7
_14. 2

_1.1

3.6
_4.4
_ 8.,
_14.1

6.4
12.1

EXP ________________________________ 10·.3
EXPRESSIONS _ 1.2

EXPl'EN ______________________________ 10.,

FINALIZATION

FIND
FINISH

11.3

7.1
12.1

_______________________________ 7.2 FIRST
FIXED-POINT,
FLOAT

functions ______________________ 10.,

2.1

FLOATING POINT, functions _____________________ 10.3

FOR ________________________________ 3.'

FROM

FUNCTIONS g library ________________________ 100 5

f1oating=point _____________________ 1003

fixed=point ______________________ 10.,3

GAINS ________________________________ 401

GE _______________________________ 306

GO TO _______________________________ ..)07

GT _________________________________ 306

HEAD ---------.------------------------
HIERARCHY OF OPERATIONS

HIST

IN _____________________________ 4 .. 3

INCREMENTAL STATEMENT _______________________ .3.3

" INDEXING ________________________ 304

INDENTATION 3.,4

INDEX _______________________________ ...)04

INITIALIZATION ___________________________ 11 .. 2

__________________________ 3 .. 4 INPUT

INPUT LISTS (1)

INTO

_________________ ________ ,.302

4.6
IS _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2.6

ITERATION ~ ____________________________ 11.1

LABEL

LAST

LE

_________________ ____ ___________ 1.2
..

____________________ 1.2
____________________ 306

LIBRARY ~ _____________________________ 14 .. 1

LIST

LOAD

LOGE

________________________________ 9.1

__________________ 402

_______________________________ 10.3

LOGTEN ______________________________ ~10.3

LOSES ________________ 4 .. 1

I

LT _________________________________ 3.6

MAX

MAXOF

MIN

MINOF

MOD

________________________________ 10.3

_______________________________ 7.2

_______________________________ 10.3

100 3

NAME ________________________________ 1.1

NE _______________________________ 3.6

NEGEXP

NORMAL

NORMAL EXIT

NOTIN

-----------------;...---------

OPERATION SYMBOLS

OR
OUTPUT _______________________________ 9.1

OUTPUT LIST (0) __________________________ 9.2

PARENTHESIS

PROCEDURE

PROGRAM

PRINT

poperating systems ___________________ 1401

,sectors _

,termination

,execution _

_ _____________________ 1102

12.1

RANDOM _______________________________ 8.3

RANDOM SAMPLING ____________________________ 8.5

READ ________________________________ 9.1

":
L

I

I

READTAPE

RECYCLE

REmARK

REPEAT

RESTART 12.1

REUJIND - ___ - ______ ~ ~ ______ C-=> _ -. _ -. -.. _ _____ ...

SAmPLE -------- --.--------- -=--"-"-------
SENSE SUJITCH 1

SENSE SIIIITCH 2

SENSE SUJITCH 3

SENSE SUJITCH 4 14.3

SET 2.7

SET ARITHmETIC 4.1

SET TESTS

SQROOT_

10.3

STREAIVI PARAIVIETER _________________________ 8.2

.sUBSCRIPT ___ ____ ______________________ 1.3

sum 6.7

TAIL

TESTS~ Sat, ___ _

Arithmetic

Complex __________________________ 6.1

1.2

TImE

TImE UNITS

ADVANCEmENT

TRANSfER STATEmENT_

TYPE_ --------- ... -----

UNIQUE_

VARIABLE_
-------------------~--------

3.7

WRITETAPE ______________________________ 9.6

ZERO ------------------------------

