Section 3

Central Processor Architecture

This section describes the architecture of the Models 23 and larger central processors.
From a functional point of view the processors are identical. The differences among them
are in the amount of memory they can address, the number of registers, the kinds of
options, and the number of peripherals each is capable of handling.

REGISTERS

In the Models 23 and 33, there are |8 registers visible to the programmer:

7 general registers (R1—R7); (R1—R3) can be used as index registers
7 base registers (B1—-B7)

1 program counter (P register)

1 svstem status register (S register)

1 mode control register (M1 register)

1 indicator register (I register)

o 0o o oo

In the Models 43 and larger, there are 26 registers visible to the programmer. They
include all of those found in the Models 23 and 33 plus the following:

o | stack address (T) register

o | remote descriptor base register (RDBR)'

o | mode control register (M3) for the CIP

o 3 RFU? mode control registers (M2, M6, M7)
o 2 mode control registers for the SIP (M4, M5)

All of the 26 registers can be accessed via the control panel. Other registers can also be
accessed from the control panel, including:

o Instruction register
o Memory address register
o Memory data register

Finally, there is a single 32-bit scientific register that is simulated by software and is used
to store floating-point operands. This register is utilized by the scientific instruction set that
is automatically trapped to software routines in Model 23 and 33 systems. In Models 43 and
larger, an optional Scientific Instruction Processor is offered that can hold either single-
precision (32-bit) or double-precision (64-bit) floating-point quantities.

' Used with CIP instructions.
*Reserved for Future Use.

CENTRAL PROCESSOR
ARCHITECTURL 3-1 CC71

Data Formats

The word length in all Level 6 central processors is 16 bits.-All hardware registers are 16
bits in length except for the M and I registers, which are 8 bits; scientific accumulators,
which are 32 or 64 bits; and for the Models 43 and larger, the address registers. which are-
20 bits, Within this Iramework the central processor has the ability to process double-words
(32 bits in length). words (16 bits), half~-words or bytes (8 bits), and single bits.

Basically, there are two types of data: signed data used in arithmetic operations; and
unsigned data, used for logical quantities, addresses, ASCII characters. or any other type of
internal data coding,

Unsigned data is usually expressed in hexadecimal notation. Thus, a 16-bit address can
range from (_[}OO[])1 ¢ 10 {FFFF)I & The contents ol a byte can be expressed from ([)U'J1 to
(FF) .. A 16-bit word can contain two ASCII characters; il a word contained (4139 3
this would represent “*A9” in ASCII.

Arithimetic (signed) data is represented in twos complement notation. All arithmetic is
performed in binary, with single word (16-bit) values extending from -32,768 to +32,767.
A signed value in a byte can range from -128 to +127. Figure 3-1 shows the various data
Ly pes lor both signed and unsigned data.

A byte in memory can represent either an unsigned 8-bit quantity or an arithmetic value
with a sign and seven bits. The byte can occupy the left-or right-hand halt of a word. How-
ever, when the byte is loaded into a register, it will occupy the right-half of the register. The
left-halt’ will contain either zeros, if a logical load instruction was used, or the sign extended,
i an arithmelic load was used. (See¢ Figure 3-2 for examples).

SIGNED DATA (TWOS COMPLEMENT) RANGE
siew
DOUBLEWORD |5]= |-+ AODUE
|_l T ™ 2BILLION
01 3
WORD Is‘ ~32,768 10 + 32,767
01 15
BYTE B:] ~128 t0 4127
T 7
UNSIGNED DATA
WORD |] 0 TO 85536 (HEX 0000-FFFF)
i T
o [T
0 7
BIT D Oort
i
Figure 3-1. Data Formats
CENTRAL PROCESSOR

ARCHITECTURE 32 CC71

BYTE IN

BYTE IN LOGICAL REGISTER
MEMORY e 00000000 | 11111110/ (FE,
LOAD
117111110 0 7 8 15
0 . 7 ARITHMETIC
(11111111 11111110 2y
LOAD = e =
L i cooooooo|otooooot] B
LOAD OR (A
01000001 0 o By | 15 ASCII
0 z ARITHMETIC
T 000 0100000D1 +65) .
LOAD 00000000 (+65) ,,

0 Pl 15

Figure 3-2, Byte Formats

Floating-point values occupy two or four words. The format for a floating-point value is
as follows:

[¢ s M N
0 6 78 31/63
Where C is a 7-bit value representing the characteristic expressed as an excess 64 power-of-
sixteen exponent
S is the sign of the mantissa
M is the magnitude of the mantissa

General Registers

There are seven general registers (R registers) numbered R1 through R7. These registers
may be loaded from or stored in memory ecither a word or a half-word at a time. (If a half-
word store is executed, it is the right-half of the register that is stored.) It is possible to load
and store two of them (R6 and R7) as a single double-word. Each register can be shifted
individually or as pairs (even/odd) and used as operands in arithmetic, logical, and compare
operations. Additionally, the first three registers (R1—-R3) also double as index registers and
mav be used to store double-word, word, half-word, or bit counts. These quantities are used
to modify the addresses of items in memory. See Figure 3-3.

Base Registers

In addition to the seven general (R) registers, there are seven base registers (B registers).
These are numbered B1 through B7. It is a very important concept of Level 6 architecture
that the general registers are separate from the base registers. The Models 43 and larger also
have a stack address (T) register and a remote descriptor-base register.

Address registers in the Models 23 and 33 are all 16 bits in length; however, in the Models
43 and larger they are 20 bits in length and are used either in the Short Address Form (SAF)
or in the Long Address Form (LAF). SAF is oriented to systems of 128K bytes (64K words)
or less of addressable memory where each word can be accessed through a 16-bit address
pointer. LAF is oriented to systems of IM words where each word can be accessed through

CENTRAL PROCESSOR
ARCHITECTURE 33

CC71

mif |

i i PR LS D
| 3

R | |
o)

” R6R7 CAN BE USED AS

l SINGLE 32 BIT-REGISTER

R7

l 5) FOR DOUBLE-WORD OPERAND
1

——

BYTES ARE LOADED/STORED TO/FROM
RIGHT-HALF OF REGISTER, LEFT-HALF
WILL CONTAIN ZEROS (LOGICAL LDAD!
OR SIGN EXTENDED (ARITHMETIC LOADI

Figure 3-3. General Registers

a 20-bit address. An address stored in memory takes up one word (16 bits) in SAF mode and
two words (32 bits) in LAF mode. The most significant 12 bits of an LAF address field in
memory are reserved for hardware use,

WORD 0
f AN —
Bit: 0 15
SAF Address Register
(B1 through B7, P, and ANY ADDRESS
T in Models 43 and
larger)
WORD 0 WORD 1
o Fal
Bit: 0 1112 1516 31
LAF Address MBZ
(B1 through B7, P, and] I
T in Models 43 and Least Significant
larger) Bits of Address

Most Significant
Bits of Address

——Reserved for Hardware

The seven base registers can be used for formulating addresses by pointing to any pro-
cedure, data, or arbitrary location in the system. Address registers typically contain addresses
and are not used for arithmetic calculations. However, they do have the capability of being
automatically incremented or decremented during instruction execution. This allows them
to be used to scan arrays cither forwards or backwards and also to conveniently utilize
stacks.

Addresses are normally expressed in memory as four or eight hexadecimal digits, with the
memory addresses running from 0-0 through F-F. Details of how base registers are used in
formulating addresses are given in Section 4,

CENTRAL PROCESSOR

ARCHITECTURE CC71

s
&

Program Counter

The program counter (P register) is a 16-bit (SAF) or 20-bit (LAF) register which points
to the next instruction to be executed. Instruction length is variable. The majority of
instructions are one or two words in length, but certain instructions can be as long as ten.
The program counter is always incremented during instruction execution to point to the
next sequential instruction, except for branches and jumps. Thus, for example, if a two-
word instruction is executed, the program counter will be incremented by two during its
execution.

The Models 43 and larger have a pre-fetch or look-ahead capability. Software must
ensure that procedures within the pre-fetch range are not modified at run time. If proce-
dures must be modified at run time, a jump or branch instruction must be executed after
the modification, and before subsequent execution of the modified code.

Indicator Register
The indicator register (I register) is an 8-bit register that contains various single-bit indi-
cators. The register format is as follows:

R
F j
UCBIGLL
|

0
[Register |V
0 234 506 7

The indicators contained in this register can be grouped as follows:

o Arithmetic indicators
— OV (overflow indicator)
C (carry bit)
o Comparison indicators
— G (greater than indicator)
- L. (less than indicator)
U (unequal signs indicator)
o Bit indicator
— B (bit test indicator)
o I/O Indicator
— I (input/output indicator)

Arithmetic Indicators

Two indicators are affected by arithmetic and shifting operations: the overflow (OV)
indicator and the carry (C) indicator.

The overflow indicator is set when any of the seven general registers “overflows,” that is,
when an arithmetic result produced is larger than the capacity of the register. For example,
adding the quantity 1 to a register that contains +32,767 (7FFF),, will set overflow
because the arithmetic capacity is exceeded. The register would contain (8000), ¢, or
—32,768 after the addition. If the data were not to be interpreted as signed data, the over-
flow could be ignored.

The carry (C) indicator, conversely, is set when the logical capacity of a register is
exceeded. Thus if 3 were added to a register that contained (FFFE), ., a carry to the 17th
bit would be produced, i.e., the answer would be (1)(0001), - However, il these were
arithmetic quantities, (FFFE) _ would represent -2, and adding +3 to it would produce
(0001), ,: thisis the correct answer and thus the carry would be ignored.

CENTRAL PROCESSOR

ARCHITECTURE CC71

‘JJ
L

Comparison Indicators

The three indicators which are controlled by compare instructions are the greater than
(G). less than (L), and unlike signs (U) indicators. These one-bit indicators contain the
results of the last compare instruction executed by the computer and in turn can be tgsted
by other central processor instructions (sce Branch on Indicator in Section 4).

A comparison is typically executed between a register and a word in memory. If the
contents of the register arc greater, the G indicator is set; if the contents of memory are
greater, the register is less and L is set.

Bir Test Indicator

This can be considered a one-bit register loaded by load bit instructions. Not only can it
be loaded from any bit in any word of memory, but it can also be set if any of a group of
bits in @ word in memory is set, The selection is done under the control of a 16-bit mask and
is very usetul for testing bit patterns in memory.

Input/Output Indicator

The I-bit stores an indication of whether the last input/output command was successful.
For example, if the central processor issucs a command output to a peripheral channel that
is busy, the peripheral channel will issue a “*NAK,” which in turn will cause the 1/O indi-
cator lo be cleared. Soltware can then test this indicator and determine what alternate
action to take.

Mode Control Registers

Other control registers are the trap enable/mode control registers (M1-M7). These are all
8-bit registers. Registers M2, M6, and M7 are reserved for future use.

O I 2 3 4 5 & 7

M1 Register J |R1|R2|R3|R4 [R5 |R6|R7

\ o

Overﬂuwvtrap control bits
0 = Trap Disabled
1 = Trap Enabled
Trace trap control bit

0 = Trace Trap Disabled
1 = Trace Trap Enabled

The seven overflow trap control bits arc associated with the seven general registers,
R1 R7. If overflow in any one of these occurs and if the corresponding trap control bit is
set, a trap occurs through trap vector 6. This facility saves the programmer from having to
test the result of every arithmetic operation for overflow, and yet also guarantees that over-
MNow will not go undetected.

The other bit in this register, bit zero, is the trace trap enable bit (J-bit). When this is
enabled, all jumps and branches that are executed in a program will cause a trap to the trace
entrv location. This bit therefore allows a programmer to trace a code without having to
modify its procedure at all.

The following M registers are found only in the Models 43 and larger. The M3 register is
only used with the Models 47 and 57. The M4 and MS registers are used only when the
oplional SIP is installed.

Q 7
M2 Register | RFU |

0 1 2 7
M3 Register [OV[TR] RFU |

CENTRAL PROCESSOR
ARCHITECTURE 3-6 &1 87 &1

The format of the CIP Control Register (M3) is the same as that of the CIP Mode Register
which is described later in this section.

0 1 2 3 4 5 6 7
M4 Register [R/T[RFU[MLIJ ALI[ML2[AL2[ML3[AL3]

— — . e e it
SAl SA2 SA3

The formats of registers M4 and M35 are the same as those of the SIP Mode Register
and the SIP Trap Mask Register respectively. These registers are described later in this

section.
o 1 2 3 4 7
MS Register EUM|RFU [SEM [PEM | RFU |
0 7
M6 Register | RFU |
0 7
M7 Register | RFU]

Status Register

The status register (S register) is a 16-bit register. This register contains four fields, as
shown below: QLT indicator (Q). the privileged state indicator (P), the processor ID, and
the interrupt priority level.

S Register | p | rpu |ID- Level
No.

Qi1 23 78910 15

OLT Indicaror :
This 1-bit field indicates whether a unit in the system has successtully completed its
Quality Logic Test (QLT) or not.

0 = QLT successtully completed
| = QLT either still running or failed

Privileged State Indicator
There are two modes of instruction execution: user mode and privileged mode. The
privilege field in the S register defines this mode as follows:

P = Privilege State (Ring Number)
1] = Ring 0 (Privilege)
10 = Ring | (Privilege)
01 = Ring 2 (User)
00 = Ring 3 (User)

NOTE: Privileges and access rights accorded the various rings are in inverse order

to the ring number (i.e., Ring 0 is the most privileged).

CENTRAL PROCESSCOR
ARCHITECTURE 37 CC71

It bit 1 is not set, the processor is in the user mode and will automatically trap when
certain instructions are attempted (bit 2 is ignored). Input/output command instructions
plus the interrupt level change instruction are privileged instructions and can be executed
only when the privilege mode bit is set. They will be automatically trapped if attempted in
user mode. By utilizing this hardware feature, systems can be protected against unauthor-
ized use of input/output by user routines.

Processor {1}

This is a 2-bit field that is fixed during system configuration. It is typically zero (a second
processor in the system would have an ID of 01). These 2 bits are used as the least significant
bits of the 10-bit channel number for the processor itself. The high 8 bits are always zero.
Thus, the processor ID and the processor channel number are for all intents and purposes
SYNONYIMOoUus.

The processor ID in the S register is hard-wired and cannot be changed under program
control.

Priority Level

This 6-bit level field defines the interrupt priority level on which the processor is currently
executing instructions. Zero is the highest priority level and 63 is the lowest. Upon receiving
interrupt requests from other units, it also determines whether the interrupting unit is of
higher, equal, or lower priority. Only higher priority interrupt requests are granted. When an
interrupt occurs, the level of the interrupting unit replaces the level in the status register.
The old level is always automatically stored. (See Interrupts for further details.)

Stack Address Register
This register, which is used only with the Models 43 and larger, points to the first word of
the stack header. See also “*Stack Management™ described later in this section.

0 15/19

T Register Address of Current Stack

Remote Descriptor Base Register

This register, which is used only with the Models 47 and 57, contains the address of a
remote descriptor array. An offset of the RDBR and the contents of a label in the CIP
instruction are combined to generate the remote descriptor address. See also “Commer-
cial Instructions™ in Section 4.

0 19

RDBR Register Word Address

SUMMARY OF PROGRAM VISIBLE REGISTERS

Thus 18 registers are visible to the Model 23 and 33 programmer and 26 to the Model 43,
47, 53, and 57 programmer. The central processor registers are shown in Figure 3-4. Of the
various registers, two are automatically saved and restored upon interrupt (the S register and

CENTRAL PROCESSOR
ARCHITECTURE 3-8 CC71

MODELS 23 AND 33
SYSTEM STATLS REGISTER PROGRAM COUNTER
s [a]p [RFu [1o | Lever | P
0 5 0 (5
GENERAL REGISTERS BASE REGISTERS
R | e | |
Rz [] e]
R3 | | 63| |
Ra [| e |
w | | w | |
| 7w [|
v [A]
0 15 0 15
INDICATOR REGISTER MODE CONTROL REGISTER
I‘E’,]Eic‘all G L[.Uw M1 ‘Jlﬁﬁnz‘rm‘m:ns|ﬁs|m
0 7 0 7
MODELS 43, 47, 53, AND &7
SYSTEM STATUS REGISTER PROGRAM COUNTER
s [ale TAFu | o [tever | P]
i i3 [182
GENERAL REGISTERS BASE REGISTERS
A | 1|]
R [| ez | |
3 | | &2 [|
Re | | e |]
“ |] w []
Re [| &8 |]
R [| 87 | |
0 15 0 192
INDICATOR REGISTER TRAP ENABLE/MODE CONTROL REGISTERS [CIP CONTROL)
IE’E nla‘r ‘ GL|u M1 ‘J R'IR2R3|H4|HEFIEE: OV | TR AFU
0 7 i | = 4l/ (SIP MODE)
STAGK ADDRESS REGISTER M | // e l:::-:rF:L:M:sL:J
yl | ™ o EUM |RFU| SEM | PEM RFU
REMOTE DESCRIPTOR BASE REGISTER "° |_ =+
RDBA| | me | RPU |
1 19 | RFU |
0 7
820 BITS IN LAF MODE; 16 BITS IN SAF MODE.
Figure 3-4. Central Processor Register Complement
CENTRAL PROCESSOR

ARCHITECTURE

CC71

the P register). The others have their context stored and restored under firmware control

according to a 16-/32-bit mask. This mask is st up under program

control. Its format is as

follows:
0 INTERRUPT SAVE MASK #1 Is
MI|RI|R2|R3|R4| RS |R6|R7 Bl|B2|B3|B4|B5| B6|B7
INTERRUPT SAVE MASK #24
0 1 34 5 6 7 B 13 14 15
M NATSAP S ¢ M2
M ‘S"ELF : MBZ [I MBZ T |to
U o PP M7
|
L!\‘IMU Context L CIP Context L M2 is “right most™
—— SIP Context

4MBZ for Models 23 and 33,

INTERRUPTS

Stack Address
Register

There are 64 levels of interrupt, numbered from 0 to 63; level 0 has the highest priority.
Clearing the computer puts it into level 0, which in effect makes it uninterruptable.

Associated with sach interrupt level is a dedicated memory location which contains the
interrupt vector. These locations extending from address 0080 to address 00OBF (OOFF for

LAF) contain a pointer to an interrupt save arca, which is a block of memory in which the

hardware/firmware saves context when an interrupt occurs. The interrupt save area needs

only to be set up for those levels that are active in a particular program. Each interrupt save

area has five or six fixed locations and up to 47 variable locations. These locations are as

follows:

o DEV — this location contains the channel number (bits 0-9) and level (bits 10-15) of an

interrupting device,

NOTE: DEV is not updated when a level is activated by an internal condition such as

a power failure (level 0), watchdog timer (level 1), trap save area overflow
(level 2), real-time clock (assigned level), or execution of a LEV instruction.

Interrupt levels |,

)

and the assigned real-time clock level should not be

used for devices, If these levels are assigned to devices, or if multiple devices
have been assigned to the same interrupt level. software should clear DEV

before each [/O operation that will interrupt. This ensures that the inter-

rupted level can determine the interrupt source.

o ISM [/2 — these two locations contain the 32-bit interrupt save mask. This mask con-
trols which of the registers will be saved in the variable portion of the interrupt save

dred.

o P — in this word or two, the program counter of the interrupt level is stored. It acts as
a pointer to the interrupt handling procedure for a new level, or upon restoration of an

interrupted level, to the location of the next instruction to be executed.

0 S — this is where the status register is automatically stored. Note that when a new
interrupt level is set up, the S register is loaded [rom this location only as far as the
privileged mode field is concerned; the level is generated automatically, and the proc-

essor ID is hard-wired.

CENTRAL PROCESSOR
ARCHITECTURE

CCN1

Words 652 are locations for saving the machine registers under control of the interrupt
save mask. If the interrupt save mask is all zeros. none of these words will be reserved.
The mask bits are scanned from right (bit 15) to left (bit 0), ISM1 first and then ISM2.

It should also be noted that the word(s) prior to the one pointed to by the interrupt-
vector (that is, the word(s) prior to the device word) are also dedicated. This includes the
TSAP which points to a trap save arca. (See discussion of Traps.)

Figure 3-5 shows this action of an interrupt. Both levels 20 and 30 have had their interrupt
save areas set up — level 20s at AB20, as pointed to by its vector at 0094 or 00AS8; and level
30s at 1000, as pointed to by its vector at 009E or 00OBC.

INTERRUPT DESIGNATED
LEVELS MEMORY LOCATION POINTER
iSAFI {LAF) - INTERRUPT SAVE AREA
0 -~ o080 00080
=l .o eE 00082 .
_-E—- 0082 00084
L]
. :
— 2 . o094 oooag | AB20
- -
- .
- -
— 30 . 009 0DOBC 1000
- . R T (e P b= ¥ L
: : [_WmbGONTEXT |} | [_ Mi4l) CONTEXT]
| LEVEL30ISA | LEVEL20ISA _
— 40 . ooas 00000 RN T B - D SR e S TSAR -
: 2 1000 DEV AB20 DEV
o . 1001 1SM1 AB21 1SM1
B2 0BE QO0FC 1002 1SM2? AB22 15M2?
83 o0BF oehEE 1003 [AB23 P
1004 S AB24 5
4
VARIABLE,
UNDER CONTROL
OF MASK VARIABLE
SEQUENCE: : UNDER
CONTROL DF

MASK SEQUENCE: /

IF CP QPERATING AT LEVEL 30

IS INTERRUPTED BY LEVEL 20; B7 R7
« PSTORED IN 1003 BE Ré
«SSTORED IN 1004 BS AS
« REGISTERS STCRED IN 1005 ON UP AS B4 R4
DETERMINED BY MASK IN 1001 B3 R3
» REGISTERS LOADED FROM AB25 ON UP B2 R2
AS DETERMINED BY MASK IN AB21 B1 A1 .,
«5 LOADS WITH LEVEL 20 AND | M
PRIT FROM AB24 LiH]
« P LOADS FROM AB23 M7
ROBR
SIP CONTEXT

8Second ward of 1ISM must ba zero for Models 23 and 33,
Figure 3-5. Interrupt Action

Il level 30 is interrupted by level 20, firmware automatically saves the register contents
in the level 30 interrupt save area and loads the registers with the values in the level 20
interrupt save area. One of these values is the starting address of the level 20 interrupt sub-
routine which is automatically loaded (in this example) from location AB23 into P.

Associated with each interrupt level is a dedicated flag bit which is set when the interrupt
is initiated. These bits are stored in four dedicated memory locations, 0020-0023. In the
example above, both bits 20 and 30 would be set. At the end of the interrupt routine for
level 20, a level change instruction (LEV) would be executed. This would clear the bit for
level 20 and then scan the table to determine which is the next highest scheduled level. If
no intermediate interrupts (such as level 25) were pending, it would scan the table, find bit
30 set, and therefore return to level 30.

CENTRAL PROCESSOR
ARCHITECTURE 311 CC71

TABLE 3-1. EVENT INTERRUPT LEVEL ASSIGNMENT

Event Causing Interrupt Level Assignment Comment
Incipient Power Failure 0 Highest priority
Walchdog Timer Runout 1 —

rJ
|

Overflow of Trap Context

Save Area

Real-Time Clock - Level is contained in main memory location
0016 (HEX)

Device Requiring Service = Level is dynamically controlled by software

LEV Instruction Level specified in instruction |

The LEV instruction can set or clear activity flags, change the current level, inhibit inter-
rupts, or do a “‘quick change” without saving and restoring context. By changing the current
level to level 3 all device interrupts can be inhibited; level 2 (overflow of trap context save
area), level 1 (watchdog timer runout), and level 0 (incipient power failure) will still be
enabled. Table 3-1 shows the assignment of interrupt levels.

TRAPS

Traps are a special software- or hardware-related condition that may occur during execu-
tion of a task. The Level 6 hardware/firmware responds to many trap conditions. The design
of any application program should provide that when a trap occurs, the hardware/software
response will include calling a dedicated software routine (a trap handler) to react to the
trap. When trap handlers are provided, handling the trap is invisible to the task that caused
the trap.

A trap can occur at any priority level, and several can be nested at the same level. A trap
could be entered at one level, that level interrupted during the execution of the trap routine,
and then the same trap routine reentered in the new level. See Table 3-2.

Fach type of trap has its own trap vector containing a pointer to the trap-handler proce-
dure. Also utilized are four® pointers (NATSAPs) at locations 10 and below to form *pools™
of available Trap Save Areas (TSA). The linkage between TSAs in a pool is maintained by
the firmware, When a trap occurs, the CP uses the NATSAP selected by ISM2 to access one
of the four TSA pools (only one pool is supported by the Models 23 and 33). If the pool is
empty, the CP will halt; otherwise, the first available TSA is unlinked from the pool and
some (but not all) register contents are automatically stored in the trap save area. The
pointer in the first word of the interrupt save arca for the current level is adjusted so that it
points to the trap save area; the pointer in the trap save area points to any other traps that
occurred at the same interrupt level. Thus, several traps may be nested at the same interrupt
level. At the end of the execution of the trap-handler procedure, a return from trap (RTT)
must be executed; this does a restoration of the partial context that was stored and returns
all pointers to their original state.

The relationship of traps and interrupts, and their vector linkage are shown in Figure 3-6.

?Only one NATSAP (nexi available trap save ares peinter) is available in the Models 23 and 33 processors,

CENTRAL PROCESSOR
ARCHITECTURE 3-12 CC71

TABLE 3-2. TRAP VECTORS AND EVENTS

Vector #

Event

Vector #00
Vector #1
Vector 2
Vector #3
Vector #4
Vector 5
Vector #6
Vector #7
Vector #8
Vector #9
Vector #10
Vector #11
Vector 212
Vector #13

Vector #14

Veclor #15
Vactor #16

Vector #17

Vector F18
Vector #19
Vector +#20
Vector #21
Vector #22
Vector #23
Vector #24
Vector #25
Vector #26
Vector #27
Vector #28
Vector #2!

Vector #30
Vector #31

Vector #32 through Vector 246

No trap event set

Monitor call (MCL instruction)

Trace® (debug) or BRK instruction
Scientific operation not in hardware
Reserved for software use

Other operation not in hardware (or undefined)
Integer register overflow”

Scientific divide by zero

Scientific exponent overflow

Stack underflow

Stack overflow

Reserved for future use

Recursive Remolte Descriptor usage
Unprivileged use of privileged operation

Unauthorized reference to protected memory
(with optional protection)

Reference to unavailable resource
Program error

Memory or Bus error (parity or noncorrectable
EDAC) detected

Reserved for future use
Scientific exponent underflow®
Scientific program error
Scientific significance error®

Scientific precision error?

Reference to unavailable resource by SIP or CIP
Memory or Bus error seen by SIP or CIP
Commercial Divide by Zero

Commercial [llegal Specification

Commercial llegal Character

Commercial Truncation

Commercial Overflow

CIP QLT fault

SIP QLT fault

Reserved for future use

NOTE: The Models 23 and 33 do not use Trap Vectors 18 through 46. Other trap vectors are used/
not used depending on the model and options installed.

A1 enabled.

CENTRAL PROCESSOR
ARCHITECTURE

Tad
7]

EC71

HARDWARE
DEDICATED
MEMORY
LOCATIONS
0000
= T
000A = TO AVAILABLE TSAs POOL 3)
NATSAP3
000C [\ reppo [~ TO AVAILABLE TSAs (POOL 2)
000E ————= TO AVAILAELE TSAs (POOL 1)
NATSAR AVAILABLE TSAs [POOL 0
: Al
TSA TSA TSA
0010 f gaTSAPD TSAL TSAL L g4 el NULL
I | I
'-t "
- =
JoETe L L emc L) PER = (o P
007E| TV # 2 TRAP
HANDLER
i
007F | TV #1 - e
ooso| |v %0 TSAP TSAL |[—=f B
J’ -
oo |y #1 DEV I
ooBz| IV #2 1SM A3
RFU INSTR
/L' F
a£ ar P z
TASK
L ec L a
nosr | |V # B3 P
B3
J’ -~
aPT
WORK - -
SPACE
> -~

Figure 3-6. Trap Vector and Interrupt Vector Linkage

‘0 NATSAP — Pointers to Next Available Trap Save Area: Four NATSAPs (NATSAPO to
NATSAP3) are maintained at location 0010 and below. The NATSAP (and TSA pool)
that is to be used for the current level is selected by bits 1-3 of ISM2. NATSAPO at
location 0010 is the only TSA pool pointer supported by the Models 23 and 33. Refer
to Figure 3-6,

o TSA — Trap Save Areas: Initially, when processing of an application begins, all trap
save areas exist in a linked “pool,” which is pointed to by memory location 0010, .
All trap save areas remain in this pool until a trap condition occurs within a running
task. at which point the hardware/firmware (1) stores information in the first available
trap save area in the pool, (2) links this trap save area to the interrupt save area for the
priority level of the task that was running when the trap occurred, and (3) unlinks this
trap save area from the pool. Later, after the trap handler (if any) has completed its

CENTRAL PROCESSOR
ARCHITECTURE 3-14 CC71

work, the trap save area is returned to the pool of available trap save areas. Thus, at
any time, a given trap save area is either in the pool of available trap save areas or in use
because of a trap condition, The trap save areas reside in the system pool.

Trap save areas are 64 words long in SAF mode, and 104 words in LAF mode.

o TSAL — Trap Save Area Link: When the trap save area resides in the “available” pool,
TSAL points to the next trap save area in the pool; the TSAL of the last trap save area
in the pool contains a null pointer. When the trap save area is in use (i.e., connected to
an interrupt save area), TSAL contains a null pointer (if this is the only or last trap save
area connected to this interrupt save area) or it points to the next trap save area con-
nected to this interrupt save area.

o 1 — Indicator Register; The contents of this register are saved by hardware/firmware
when a trap occurs. This register is then available for use by the trap handler.

o R3 R3 Register: The contents of this register are saved by hardware/firmware when
a trap occurs. This register is then available for use by the trap handler.

o INSTR — Instruction: The hardware/firmware stores the instruction associated with
the trap. If a multiword instruction is involved, the first word is saved, :

o 7 — Z-Word: This word contains miscellaneous information relative to the trap.

o A - A-Word: In many cases, this word contains an address associated with the trap.
The nature of the saved address is governed by the specific trap condition and the
specific instruction associated with the trap.

o P — Program Counter: The contents of the program counter are saved by the hardware/
firmware when a trap occurs. This is the address to which a return is made when the
trap handler completes, In most cases the program counter will point to the instruction
or location following the instruction associated with the trap. However, when an input/
output instruction is involved, the program counter may point to an address within the
instruction: in this case, the trap handler must modify this word before issuing a return
to “‘normal™ task processing.

o B3 — B3 Register: The contents of this register are saved by hardware/firmware when a
trap occurs., This register is then available for use by the trap handler: as the trap
handler is entered, the B3 register points to the A-word in the trap save area.

Notec that when a trap occurs, if the appropriate trap handler 1is available in the applica-
tion. the first word (TSAP) of the interrupt save area (for the current priority level) is set to
point to the link word (TSAL) of the trap save arca in which hardware/firmware has just
stored information relative to the trap (see Figure 3-6). TSAP is subsequently used by the
trap handler to gain access to the trap save area.

QUEUE MANAGEMENT

The Models 43 and larger provide a queue capability that allows easy maintenance of
ordered lists of “frames” (a frame contains a frame priority number, a next frame pointer,
and an associated data structure). Each list is identified by a lock frame which contains a
lock word and list head and tail pointers (Figure 3-7).

Four generic instructions are provided to enqueug/dequeue frames from the list. The
instructions, which are described in Section 4, are as follows:

o Queue on Head (QOH)
o Queue on Tail (QOT)

o Dequeue from Head (DQH)
o Dequeue by Address (DQA)

CENTRAL PROCESSQOR
ARCHITECTURE 3-15 CC71

¥

L Low Memory
LacK / \: PRIORITY —»| PRIDRITY PRIORITY

FIRST NEXT NEXT LOCK
- FRAME ~FRAME - FRAME - POINTER |
POINTER POINTER POINTER
FDATA #
LAST 7 DATA = 7 DATA F r——gr—
"FRAME —_— ~—— LAST FRAME
POINTER FIRST FRAME INTERMEDIATE (TAIL)
—_ (HEAD) FRAME
LOGK FRAME i
High Memory

NOTES: 1. Scanning (if any) is always performed from first frame (head) to last frame (tail).
2, Priority is an unsigned 16-bit integer.
3. Frame pointers are two wards for LAF mode, 1 word for SAF mode.

LOCK =

FIRST
— FRAME "
PTR.

LAST
- FRAME
PTR.

e
LOCK FRAME FOR
ZERD ENTRY LIST

Figure 3-7. Queue Management

The lock word is used to ensure that only one CP is accessing a particular queue at a time.
Each queue instruction causes a fetch of the lock word with a Read-Modify-Write (RMW)
cycle. It the low-order bit of the lock word is set, the RMW cycle is completed without
changing the lock, | (C) is cleared, and the next instruction is fetched. If the low-order bit of
lock is cleared, the CP completes the RMW cycle, writing ones into the lock word, and initi-
ates execution of the queue/dequeue instruction. Each queue/dequeue instruction causes a
scan of the frames from the head toward the tail.

The scan continues until the conditions of the particular command are met (a hit), the
last frame is reached without a hit, or an interrupt occurs,

When a hit occurs or if the last frame is reached without a hit, the frame is linked into or
out of the list as appropriate, and I(G) and I(L) are left in a known state. In either case, the
CP initiates another RMW cycle, writing zeros into the lock word, sets I(C), then fetches the
next instruction. If an interrupt® occurs, the CP stops the scan, initiates an RMW. writes
zeros into the lock word, clears I(C), leaves 1(G) and I(L) undefined and backs up P to point
to the queue/dequeue instruction, before servicing the interrupt.

Software must build the lock frame of each list to be used. A list with no entries is a lock
frame in which the first and last frame pointers point to LOCK (see Figure 3-7). The CP
leaves the lock frame in the same condition when a frame is unlinked from a single frame
list,

*This includes service of the internal timer at a 120-Hz rate.

CENTRAL PROCESSOR
ARCHITECTURE 3-16 CC71

STACK MANAGEMENT

The Models 43 and larger provide a single stack capability for each interrupt level. The
Stack Address Register (T) points to the first word of the stack header (Figure 3-8).

Four generic instructions are provided to manipulate the stack. The instructions, which
are described in Section 4, are as follows:

-

y Load Stack Address Register (LDT)
Store Stack Address Register (STT)
Acquire Stack Frame (ACQ)
Relinquish Stack Frame (RLQ)

o oo

These are all two-word instructions having a common first word. Appropriate checks are
made for stack overflow/underflow conditions.

The stack header contains four entries, two of which are not used, but must contain null
pointers if upward software compatibility is desired.

MW is the number of words allocated to this stack. MW is written by software when the
header is created and referenced (but not altered) by hardware.

CW represents the number of words currently consumed in this stack. CW is written by
software when the header is created. Thereafter, the value of CW is a hardware responsibility.

memory % Sngcs
top of stack N

T_ 1 7477 A:;hbﬁijf// 7
Lower in ,é//////{’, Stack / %
o 2

Length (b} of Frame B

Mw T
E Stack Frame B
C
Higher in " Length (a) of Frame A
A
E.l:tTuan? 3 ' 3 Stack Frame A
of stack

Current Length in Words (CW)

t / Maximum Length in Words (MW)
Stack STACK

a
Address (T) STACK{ MBN HEADER

Register HEADER

mBeN?

3must be null

Figure 3-8, Stack Structure

SCIENTIFIC INSTRUCTION PROCESSOR

The Scientific Instruction Processor (SIP) is optionally (CPF9503) available on Models 43,
47,53, and 57. The 30 scientific instructions operate on single-precision and double-precision
(respectively, double-word and quadruple-word fields) with floating-point, integer and zero
formats. These operands come from main memory, CP registers (following their conversion
to two- or four-word floating-point quantities) and scientific accumulator (SA) registers.
Prior to command execution involving two operands, the SIP tests for unequal length
floating-point values. If the operand lengths are not equal, the destination scientific accumu-
lator’s length dominates.

CENTRAL PROCESSOR

ARCHITECTURE ceil

L
'
~1

Control Registers

There are three scientific control registers in the SIP. Two of these registers. the SIP Mode
Register (M4) and the SIP Trap Mask Register (M3) reside in the associated CP with a copy
of their contents stored in the SIP. The third register is the SIP Indicator Register, located
in the SIP.

Scientific Indicaror (SI) Register
The 8-bit Sl-register contains error and status indicators that can be tested with the
scientific branch instructions.

0 1 2 3 4 8 6 7
EU |RFU| SE | PE |RFU| SG | SL |RFU

where:
EU = Exponent underflow (trap 19)
SE = Significance error (trap 21)
PE = Precision error (trap 22)
SG = Greater than
SL. = Lessthan

SIP Mode (M4) Register

The SIP mode. or M4, register is an 8-bit control register residing in the SIP, but with a
copy in the CP. Both versions are set to O upon CP initialization and both may be modified
with an MTM instruction. If only the SIP is initialized, the CP copy of the register is not
cleared, and the contents of both versions must be reestablished with an MTM.

0 1 2 3 4 5 6 7
R/T [RFU[MLI1 | ALI ML2 |AL2|ML3 |AL3

SAl SA2 SA3
where:

R/T = Round/Truncate Mode
0 = Truncate
1 = Round

SAl = Scientific Accumulator |

SA2 = Scientific Accumulator 2

SA3 = Scientilic Accumulator 3

ML = Memory Length — Length of main memory data field associated with this
SA.
0 = 2 words
1 = 4 words

AL = Accumulator Length — Length of the value in the scientific accumulator
data field.
0 = 2 words
1 = 4 words

CENTRAL PROCESSOR

ARCHITECTURE 3-18 CC71

SIP Trap Mask (M5) Register

The SIP Trap Mask. or M5 register, is an 8-bit control register residing in the SIP but with
a copy in the CP. Both versions are set to 0 upon CP initialization and both may be mod-
ified with an MTM instruction. If only the SIP is initialized. the CP copy of the register is.
not cleared. and the contents of both versions must be reestablished with an MTM.

0 1 2 3 4 7
EUM|RFU|SEM [PEM RFU
where:
EUM = Exponent Underflow Trap Mask
0 = Trap disable
I = Trap enable
SEM = Significance Error Trap Mask
0 = Trap disable
1 = Trap enable
PEM = Precision Error Trap Mask
0 = Trap disable
1 = Trap enable
RFU = Reserved for future use (MBZ)
" Accumulators

The SIP contains three variable length scientific accumulators (SA1, SA2, SA3) that may
contain either single-precision (32-bit) or double-precision (64-bit) floating-point quantities.

Automatic Round/Truncate

Scientific operations requiring right scaling, which is the process of shifting floating-point
mantissa digits to the right, inserting zero digits into the most significant mantissa digit
positions and increasing the exponent appropriately, may produce results where nonzero
data is shifted off the end of the scientific accumulator into guard digit locations. These
guard digits will be truncated from the result if bit zero of mode register (M4) is zero. If
bit zero is a one, the result is rounded using the significant guard digits.

Scientific Traps

As the SIP is an option of the CP and functions as an extension of it, any SIP exception
conditions are reported to the CP in the form of traps rather than interrupts. This trap
facility is activated upon detection of specific status conditions during the execution of a
scientific instruction. The SIP has nine types of trap vectors. _

These traps and the conditions that cause them are shown in Table 3-3. Trap 23, ref-
erence to unavailuble resource, and Trap 24, bus parity or uncorrected main memory error,
are functions of the Megabus. Trap 20, program error. identifies program errors detected
by the SIP. Note that program errors detected by the CPU activate Trap 16. If more than
one trap condition exists, the SIP sends the trap with the highest priority to the CPU. The
other conditions are lost. The priority of the traps is indicated in Table 3-3 by their
location: the trap at the top (Trap 31) has the highest priority.

CENTRAL PROCESSOR

ARCHITECTURE 3-19 CC71

TABLE 3-3. SIP TRAP VECTORS AND EVENTS

Trap

Vector SIP Registers
Number Trap Event c/u? Indicator Mask
31 SIP QLT Fault u — -
23 Reference to Unavailable Resource U =
24 Megabus/Memory Error U — —
20 Program Error (SIP) U — -
7 Divide by Zero U -
8 Exponent Overflow U - -
21 Significance Error C SI M5
19 Exponent Underflow C SI M5
22 Precision Error C SI M5
0o No Trap Event Set e = =

4 — Conditioned Trap on Indicator and Mask
Il Unconditioned Trap

Data Formats

Floating-point data appears either as a single-precision (32-bit) or double-precision
(64-bit) conste

ant. as follows:

63

0 678 31
| ¢ 5 M
SINGLE-PRECISION
0 678 "
L ¢ s M i]

where:

C = the characteristic (excess 64 power-of-16 exponent) of the number. The character-
istic represents exponents with a range from -64 to +63. Since the characteristic
has no sign bit, the number 64 (decimal) is effectively added to each exponent, thus
allowing a characteristic range of 0 to 127 to represent exponents with a range of

-64 to

S =sign bit (0 = +; 1 = =) of the mantissa.

DOUBLE-PRECISION

+63.

M = magnitude of the mantissa.

Signed integer data contains a sign (0 = +; 1 =-) in bit 0 and the data in the remaining
bits. Negative numbers appear in twos-complement form. Word and double-word formats

are permitted,

as follows:

0 I 15

1
{0} DATA

WORD

0 1 1516 B 3]
o DATA B

0 : B

DOUBLE-WORD

Single-word integers must be in general registers R4, R5 or R6 of the CP in order to be

processed by the SIP. Double-word integers must be in registers R6 and R7.

CENTRAL PROCESSOR
ARCHITECTURE

3-20

CC71

Software Simulation of the SIP

For systems on which a Scientific Information Processor (SIP) is not available, GCOS
provides the equivalent of the SIP functions through software simulation. Two trap handlers,
the Floating-Point Simulator. entered via trap vector 3, and the Scientific Branch Simulator,
entered via trap vector 5, are available. These two simulators are described in the System
Service Macro Cafls manual, Order No., CBOS.

COMMERCIAL INSTRUCTION PROCESSOR

The Commercial Instruction Processor (CIP) is only available with the Models 47 and 57.
The CIP operates on a powerful set of 30 instructions including numeric, alphanumeric,
edit, and branch instructions. Operands are specificd by data descriptors that give operand
location, length, type (packed/unpacked decimal or character string), and other necessary
information (leading/trailing sign, blank fill/no fill, etc.).

Control Registers
There arc two commercial control registers in the CIP, the CIP Mode Register and the CIP
Indicator Register.

CIP Mode (M3) Register

The &-bit CIP mode register is a copy of the M3 register (in the CPU) which is provided
for use with the CIP. Both are set to zero at initialization of the CPU. Both registers may be
modified with an MTM instruction. If only the CIP is initialized, the M3 register is not
cleared, and -the contents of both registers must be established with an MTM instruction.

0 2 3 7
oV | TR RFU
where:
OV = Overflow Trap Mask

0 = Disable Trup
I = Enable Trap
TR = Truncation Trap Mask
RFU Reserved for future use (MBZ)

Note that, although the contents ol the CIP mode register are not saved, the equivalent
information in the M3 register is saved or restored as a function of the mask bits in the
interrupt save area. When a restore is done, the restored value is sent to the CIP by the CPU:

CIP Indicator Register

The 8-bit CIP indicator register is cleared at initialization. During the execution of an
instruction that affects the register, only the bits pertinént to the instruction are preset (set
or reset). All other bits remain unchanged. During the execution of a branch instruction.
all bits including the one being tested are lef't unchanged.

CENTRAL PROCESSOR
ARCHITECTURE 321 cc71

OV | TR | SF RFU G L |RFU

wherc:
OV = Overflow occurred during decimal instruction
TR = Alphanumeric result is truncated
SF = Sien fault (negative operand is stored in unsigned lield)
G = (reater than
I = Less than

Commercial Traps

CIP exception conditions are reported to the CP in the form of traps rather than inter-
rupts. This trap facility is activated upon detection of specific status conditions during the
execution of commercial instructions. The CIP has eight types of trap vectors. These traps
and the conditions that cause them are shown in Table 3-4.

TABLE 3-4. CIP TRAP VECTORS AND EVENTS

Trap Vector CIP Registers
Number Trap Event c/ud Indicator Mode
23 Reference to u - =
Unavailable Resource
24 Bus or Memory Error U = =
25 Divide ny Zero U —
26 lilegal Specilication 16} — -
27 Megal Character U — ==
28 Truncation C Cl . CM
29 Overflow C Cl CM
30 Inoperative CIP T = -

& = conditional Trap
L = unconditional Trap

Software Simulation of the CIP

For systems on which a Commercial Instruction Processor (CIP) is not available (i.e.,
Models 23. 33. 43, and 53), GCOS provides the equivalent of the CIP functions through
software simulation. The CIP Simulator is entered via trap vector 5.

MEMORY MANAGEMENT UNIT

The Memory Management Unit (MMU) is optionally (CPF9501) available on the Models 43
and 47, and standard on the Models 53 and 57. MMU functionality provides for the sep-
aration of memoryv into 16/31 independent segments. the relocation of each segment
independently in physical memory, and the protection of each segment from improper
access, based on software-specitied attributes.

Segmentation

The MMU option divides the million-word address space into 16 regions of 65,536 words
each, numbered 0 through 15. The first of these regions is subdivided into 16 regions of
4096 words each, numbered 0.00 through 0.15. Each of these regions may contain a seg-
ment of program address space. Each segment may range from 256 words in size up to the
4K or 64K size of its associated region, in steps of 256 words.

CENTRAL PROCESSOR
ARCHITECTURE 3-22 CC71

In Short Address Form (SAF), segments 0.00 through 0.15 are available, corresponding
to the SAF address space of 64K. In Long Address Form (LAF), segments 1 through 15 are
also available, vielding a total of 31 segments corresponding to the LAF address space of
one million words, See Figure 3-9.

SAF
ADDRESS
ADDRESS A
0.00
, SPACE LR "
0 0.01
64K 8K
- "
128K — q 9
2 —— 86K
WP 1 BOK
j" ‘4" 0.1 5
BIEK B4K
14
960K
15
1024K

Figure 3-9. Memory Layout with Memory Management Unit Option

Relocation

Through 32-bit “segment descriptors,” software can specify the location each segment is
to occupy in main memory. This is given as a base (on a 256-word boundary) and a size (in
multiples of 256 words). Each segment is relocated independently: segments need not be
contiguous, be in order, or have any other particular physical relationship,

Protection

The MMU implements protection using the ‘“‘ring’” approach pioneered by Honeywell’s
Multics system. At any time, the processor is operating in one of four “rings” of privilege.
Each ring, starting with Ring 0 and continuing through Ring 3, is more privileged than the
next outer ring. Thus, Ring 0 can be used for the most critical system functions; Ring 1 for
less critical system functions: Ring 2 to create a “‘user supervisor” or for well-checked-out
user programs; and Ring 3 for the majority of user software. Programs operating in one ring
cannot access code or data reserved for rings of higher privilege.

The MMU controls three forms of access: read, write, and execute. Each form of access
is limited to programs operating in a certain ring or lower-numbered ring. Access control is
implemented on a segment basis. so each segment has its own protection attributes. Access
control can support many different objectives:

o Data protection — critical system control data can be placed in a user’s address space,
s0 that operating system routines executing on a user’s behalf can access it while pro-
tecting it from user programs.

0 Source data integrity — data to be read but not modified can be given read, but not
write, access.

o Software protection — proprietary routines which a user is permitted to execute can be
made inaccessible to “read’ operations, thus preventing copying.

o Program checkout — by making data segments nonexecutable and code segments
nonwritable, many programming errors can be detected quickly.

An additional margin of protection is provided by the segment tables themselves. There is
no way a program can attempt to access data not covered by that program’s segment
descriptors.

CENTRAL PROCESSOR
ARCHITECTURE 323 CC71

Segment Descriptor Format
Each segment is described by a 32-bit segment descriptor (see Figure 3-10).

0 1 3 4 15
V MBZ SEGMENT BASE
1 1 | 1 1 | 1 1 J 1 1 |
; o
Wyshhe:zaro Starting address of this seament in real memory, in units of
256 words; low-order zeros are appended to yield the

Segment validity bit;
the segment is valid (i.e., it exists)
only if this bit equals one.

actual starting address of the segment

16 17 18 19 20 21 22 3
RP WP EP MBZ SIZE
1 | 1 [O SO TN e [|
LMust be zero LSize of the segment, in units of 256 words

Execute Permission; simular to RP
Write Permission; similar to RP

Read Permission; defines the rings within which the
processar must be operating in order to read data within
this segment; the field value, interpreted as a binary
number from 0 to 3, is the lowest-privilege ring which
can read the data,

Figure 3-10. Segment Descriptor Format

During program execution, the segment descriptors are contained within the MMU hard-
ware itself. Al syvstem initialization, the descriptors are given values which create a “‘trans-
parent” mode of execution: each virtual address maps into the same real address, and all
access modes are permitted in all four rings. Therefore, all programs execute on a system
with the MMU exactly as they would on a system without it. until explicit software action
changes the MMU tables. This can happen in one of two ways:

o When a level change takes place, i’ desired. Specifically, bit 0 of the second Interrupt
Mask (ISM 2) in the Interrupt Save Area (ISA) of a level determines whether the MMU
registers are to be loaded when that level is activated. If this bit is |, the Address Space
Vector in the ISA indicates a 62-word area which contains 31 descriptor images. These
images are loaded into the MMU before instruction execution starts at the new level.

o When an Activate Segmenl Descriptor instruction is executed, This instruction loads
a single segment descriptor into the MMU.

Descriptor tables in memory are not referred to during program execution. Therefore, there
is no performance degradation with the Memory Management Unit; programs using it
operate at the same speed as programs which do not.

CENTRAL PROCESSOR
ARCHITECTURLE 3-24 CC71

As instructions are executed, three types of addressing errors can occur. These are
detected by the MMU and result in program traps. They are as follows:

1.

~d

Nonexistent seegment — an attempt to reference a segment whose validity bit is zero.
Causes Trap 15 (unavailable resource).

. Access out of bounds — an attempt to reference an address beyond the size established

by the segment descriptor, Causes Trap 15 (unavailable resource).

_Protection violation — an attempt to perform a type of access not permitted by the

appropriate permission field (RP, WP or EP) in the segment descriptor. Causes Trap
14 (protection violation).

Three instructions invoke MMU functionality, over and above the relocation and protec-
tion functions performed on every memory access. They are:

Q
O
Q

ASD (Activate Segment Descriptor)
VLD (Validate)
LEV (Level Change)

They are described in Section 4 of this handbook.

CENTRAL PROCESSOR
ARCHITECTURE 325

CC71

