]
INTRODUCTION

This manual describes the functionality and provides the the-
ory of operation for the Level 6 Model 43/53 Central Processor
Unit (CPU).

1.1 GENERAL DESCRIPTION

The CPU is a high-speed general purpose digital computer de-
signed to process data from main memory and associated system
devices. Its logic elements are fabricated on a 15- by lé6-inch
control board and a 12- by l4-inch four-layer CPU board. The CPU
board is physically supported by the control board, hereafter re-
ferred to as the controller, in a piggyback manner. The control-
ler houses the CPU control logic including some of the CPU regis-
ters, clock network, and Megabus* interface logic. The CPU board
contains associated functional elements including the micropro-
cessor, Random Access Memory (RAM), and bootstrap Programmable
Read Only Memory (PROM). A Memory Management Unit (MMU) and
cache memory are available as CPU options and, when included as
part of the Model 43/53 system configuration, they are also
housed on the CPU board. For details concerning the MMU and
cache memory options, refer to the applicable documentation list-
ed in subsection 1.2

CPU communication with main memory and other units of the
Level 6 system is over a common bus, called the Megabus (see
Figqure 1-1). The interface signals between the CPU and the Mega-

*Trademark of Honeywell Information Systems, Inc.

bus are shown in Figure 1-2. The CPU can also operate in a
multi-processor environment consisting of up to four central pro-
cessing units, and each CPU can communicate directly with the
following optional processor type controllers over the Megabus.

@ Commercial Instruction Processor (CIP)
@ Scientific Instruction Processor (SIP)

For details concerning the CIP and SIP options, refer to the
applicable documentation listed in subsection 1s 2.

The CPU uses hardware, with the aid of firmware, to communi-
cate directly with the MMU or cache memory, to communicate with
main memory over the system Megabus, and to decode all CPU in-
structions, performing the necessary arithmetic, logical, or
shift operations (see Fiqure 1-3). The following list provides
additional information relative to the general characteristics of
the CPU:

1. 8-, 16-, or 32-bit data

2. Up to two megabytes of directly addressable main memory

3. Bit, byte, word, and double-word registers -

4, Bit test, set, and mask capability

5. 26 program visible general registers, including multiple

accumulators, multiple address, index, and control regis-
ters

6. Immediate, register-to-register, and register-to-memory
operations

7. 64 vectored interrupt levels
8. Stack/Queue handling

9. Multiple vectored trap structure

lv. Hardware supported context save and restore

11. Multiple addressing modes, including indexing, indirect,
base plus displacement, program counter relative, auto
increment /decrement, etc.

12. Real-time clock and watchdog timer

13. Power failure detection

14. Automatic restart

15. Bootstrap

16. Writable Control Store (WCS).

LEVEL 6 MEGABUS

CENTOAL SCIENTIFIC COMMERCIAL MULTIPLE MULTILINE
PROCESSOR INSTRUCTION INSTRUCTION DEVICE COMMUNICATIONS MEMORIES
UNIT PROCESSOR PROCESSOR CONTROLLER PROCESSOR
TO MODEMS
DUAL
DISKETTES PRINTER CONSOLE

Figure 1-1 CPU Communications Block Diagram

RESUME INTERRUPT

MASTER CLEAR
READ-MODIFY-WRITE CYCLE
SECOND HALF BUS CYCLE
POWER OK

TIE-BREAK NETWORK (10 LINES)
ADDRESS (24 LINES + 1 PARITY)
DATA (16 LINES + 2 PARITY)
CENTRAL EXTERNAL PROCESSOR TRAP

FROCESSOR UNRECOVERABLE MEMORY ERROR (RED) MEGABUS

RECOVERABLE MEMORY ERROR (YELLOW)
MEMORY REFERENCE
BUS TRANSFER REFUSED (NAK]

WAIT

BUS TRANSFER ACCEPTED (ACK)
BUS REQUEST

DATA CYCLE NOW

RESPONSE REQUIRED

DOUBLE PULL REQUEST

Figure 1-2 CPU/Megabus Interface Signals

SHIFT (SHIFT).
, CONTROL
LOGIC LOGIC sus command | CONTROL STORE
DECO - REGISTER (IKX64BIT)
WORDS
i SRR (R
20-BIT
Ty REGISTER
REGISTER
FILE
ADDRESS CONTROL
STORE
ADDRESS
GENERATION
LOGIC
]
1
20-81T INSTRUCTION Ay
ALU REGISTER STATUS
20
: 1 _T INTERRUPT
STATUS BYTE INDICATOR
ALY (s) (H)} (1)
STATUS | |
(' TRI-STATE SELECTOR
16 X 20
ADDRESS
RAM
20-BIT INTERNAL BUS - | TRansceiver |MEGABUS
3] *— " LOGIC [—
A
y
s BUS
SN T RAL conTROL
@ . MULTIPLEXER LOGIC
RAM ' RANDOM ACCESS MEMORY
ALU : ARITHMETIC LOGIC UNIT PROGRAM
COUNTER,
MEMORY ADDRESS
REGISTERS,
MAPPING AND
PROTECTION
Figure 1-3 CPU Functional Block Diagram

1.2 REFERENCE DOCUMENTATION

The following support documents for the Model 43/53 CPU con-
tain supplementary information for the data presented in this
manual.

ORDER
DESCRIPTION NUMBER

1. Model 53 CPU Manual - Volume 2 FQ30
(cache memory)

2. Model 53 CPU Manual - Volume 3 FW85

(MMU)

3. Model 47 CPU Manual - Volume 2 FW32
(CIP)

4. Type CPF9503 Scientific Instr- FN3U

uction Processor Manual

1.3 SOFTWARE VISIBLE REGISTERS

Twenty six program visible registers, counters, and discrete
signal lines are available for use by software to maintain soft-
ware related data or instructions, and to display selected CPU
status conditions for software interrogation. These elements
include:

Seven base registers

Seven data registers

Indicator register

Seven mode registers

Program counter

Remote data descriptor base register
Status/security register

Stack pointer.

The software application for each of the above is described
in the following subsections.

1.3.1 Base Registers (Bl Through B7)

Seven base registers (Bl through B7) are located in the reg-
ister file portion of the microprocessor (refer to subsection
4.4.2), and maintain a 20-bit address of any procedure, data,
array, or arbitrary location in memory.

1.3.2 Data Reqgisters (D1 Through D7)

Seven data registers (D1 through D7) are located in the re-
gister file portion of the microprocessor (refer to subsection
4.4.2), and serve as 1l6-bit (10 through 1F) general purpose re-
gisters or accumulators. Bit 10 of each register is considered

the most significant bit. Each data register can also be used
for post-indexing of addresses (i.e., as index registers).

NOTE

In software notation these registers are designated
Rl through R7.

1.3.3 1Indicator Register (I)

The indicator register (I) contains several single bit 1indi-
cators that provide temporary storage for overflow and program
status information.

1.3.4 Mode Registers (Ml Through M7)

The mode registers (M1 through M7) reside in locations 1
through 7 of the CPU Random Access Memory (RAM), refer to sub-
section 4.9.1. These registers retain mode information pertain-
ing to the CPU and other processors (i.e., CIP and/or SIP), and
can be modified by the MTM instruction. Currently, registers
M2, M6, and M7 are reserved for future use, while the remaining
four registers (M1 and M3 through M5) define the following system
features:

@ Ml - CPU trace and overflow trap masks
e M3 - CIP truncation and overflow trap masks

¢ M4 - SIP memory and accumulator length control and round/
truncate mode control

® M5 - SIP exponent underflow, significance, and precision
error trap masks.

1.3.5 Program Counter (P Register)

The program counter (or P register) normally contains the
storage address of the next instruction to be executed by the
SPU.

1.3.6 Remote Descriptor Base Register (RDBR)

The Remote Descriptor Base Register (RDBR) resides in loca-
tion B of the CPU Random Access Memory (RAM), refer to subsection
4.9.1. The contents of this register point to a table of up to
4,096 data descriptors.,

1.3.7 Status/Security Register (S)

The status/security register (S) contains the system status
and security keys.

L-6

1.3.8 Stack Pointer (T Register)

The stack pointer (or T register) resides in location'A of
the RAM. The contents of this register point to the base of the
current stack structure in memory.

1.4 DATA WORD FORMATS

This subsection defines the various data word formats that
are used by the CPU.

1.4.1 Memory Data

All data elements, such as a bit or byte, are based on 16-bit
memory words. The format of each word is defined from left to
right with the first bit numbered O:

MSB | O 15| LSB

Memory data may be accessed by instructions to the bit, byte,
digit, word, or multiword data item level. 1In all cases, the
leftmost element is the most significant element of the word;
e.g., bit 0 (above) is the first bit, bit 1 is the second bit,
bits 0 through 7 are the first byte, bits 8 through 15 are the
second byte, etc. Multiword items require successive word loca-
tions; the lowest address is defined as the leftmost or most sig-
nificant part of the data item.

1.4.2 Addresses

An address pointer is used to point to bit, byte, word,
or multiword data items. This address indicates the leftmost and
most significant element of. the data item. Within an array, data
items are numbered from left to right.

The CPU may operate in either Long or Short Address Form (LAF
or SAF). LAF provides virtual addressability to 1M words, where-
as SAF provides addressability to 64K words. .Addresses are un-
signed. Physical byte addresses must be presented to the Megabus
and must contain 24 bits,

0 23 -

Megabus Address

Bit positions of processor address registers are numbered to
correspond to their positions on the Megabus with an appropriate
number of leading zeros.

The CPU generates addresses which may contain 21 significant
bits:

0 2 3 23
T
{MBZ Address
L———

1.4.3 Signed Integer Data Word

The data field is a 16-bit integer (in two's complement form)
with the radix point to the right of bit 15, the least signifi-
cant bit. Bit 0 indicates the Sign (S) of the data field. The
format of the signed integer data word is:

01 15
] Data

S = Zero, sign is positive.

S = One; sign 1is negative.

1.4.4 Signed Integer Data Byte

The data field is an 8-bit integer (in two's complement form)
with the radix point to the right of bit 7, the least significant
bit. Bit 0 indicates the Sign (S) of the data field. The format
of the signed integer data byte is:

01 7
S Data

S = Zero; sign is positive.

S = One; sign 1is negative.

1.4.5 Sign Extended Integer Byte in Word

The data field is a 16-bit integer (in two's complement form)
with the radix point to the right of bit 15, the least signifi-
cant bit. The Sign bit (S) is extended from bit 8 through bit U
of the data word. The format of the sign extended byte in a word
15:

0 789 15

S SS8SS558 5 5|5 Data

S = Zero; sign is positive.
S = One; sign is negative.

1.4.6 Unsigned Integer Word

The data field is a 16-bit integer. The format of the un-
signed integer word is as follows:

0 15

Data

1.4.7 Unsigned Integer Byte

The data field is an B-bit integer. The format of the un-
signed integer byte is as follows:

0 7

Data

1.4.8 Unsigned Integer Byte in Word

The data field is an B8-bit integer and bits 0 through 7 are
Zero. The format of the unsigned integer byte in a word is:

0 7 8 15

All Zeros Data

1.4.9 Signed Integer Double-Word

The data field is a 32-bit integer (in two's complement form)
with the radix point to the right of bit 31, the least signifi-
cant bit. Bit 0 indicates the Sign (S) of the data field. The
format of the signed integer double-word is as follows:

01 15 16 31

T
S Data

= Zero; sign 1s positive.
S = One; sign is negative.

1.5 INSTRUCTION WORD FORMATS
The CPU instruction set is divided into eight categories:

Double-operand instructions
Single-operand instructions
Input/Output instructions

Short value immediate instructions
Branch on register instructions
Branch on indicator instructions
Shift instructions

Generic instructions.

For a complete list of Level 6 instructions and their defini-
tions, refer to the Honeywell Level 6 Minicomputer Handbook
(order number AS22).

The double-operand and single-operand type instructions use
an Address Syllable (AS) field to generate address references. A
decode of the AS field usually results in the formulation of an
Effective Address (EA), which points to an operand. The address
syllable can take one of the following three formats:

1. Register AS (RAS): The source or destination of the
operand is a register (D or B).

2. Immediate Operand (IMO): The operand follows the in-
struction (special case of MAS, see item 3).

3. Memory AS (MAS): This form specifies a memory location
that contains the operand.

1.5.1 Double-Operand Instructions

Double-operand instructions have the following format:

01 3 4 8 9 15
1 # Op AS
Op = op-code field
= register number
AS = Address Syllable; refer to subsection 1.6 for the

AS format.

Within this group, three types of instruction are available:
(1) address register instructions, (2) data register instruc-
tions, and (3) mode register instructions. The type of register

(D, B, or M) selected by the register number field is a function
of the op-code. Depending on whether the address syllable speci-

fies RAS, MAS, or IMO format, these instructions are defined as
having the following formats, respectively:

® RR: Register to Register
® RM: Register to Memory
@ RI: Register Immediate

1.5.2 Single-Operand Instructions

Single-operand instructions have the following format:

01 3 4 8 9 15

110 0 O Op AS

Op = op-code field
AS = Address Syllable; refer to subsection 1.6 for the

AS format.

Within the group, three types of instructions are available:
(1) control instructions, (2) bit instructions, and (3) modify
operand instructions. Depending on whether the address syllable
specified RAS, MAS, or IMO format, these instructions are defined
as having the following formats, respectively:

R: Register oniy
e M: Memory only
I: Immediate only,

NOTE

Some instructions that modify operands in memory op-
erate in the Read Modify Write (RMW) mode. In this
mode, the selected memory cannot be accessed by any
other processor in RMW mode until the location is

modified by the current RMW. This feature is useful
for synchronization in a multiprocessor environment.

1.5.3 Input/Output Instructions

The I/0 instructions are defined by their format as follows:

@ Data and command I/0 instructions
e Address and range output instruction.

1.5.3.1 Data and Command I/0 Instructions

These instructions specify two quantities: (1) the data word
that is identified by an address syllable identical to the one
used for single-operand instructions, and (2) the control word
that identifies the external channel (or device) and the function
it has to perform. The control word may be imbedded in the pro-
cedure as follows:

a1 3 4 8 9 15

1/0 0 0 Op DAS

Additional word if needed by DAS
(refer to subsection 1.6)

Word CH F

Control }

or it may be nonprocedural, in which case the format is as
follows:

01 3 4 8 9 15
1/lo0 00 Op DAS
Additional word if needed by DAS
Points to
000000000 CAS {Control Word

Additional word if needed by CAS

Op = op-code field.

DAS = Data Address Syllable; specifies the location from/to
which the data are transferred to/from the Megabus
(refer to subsection 1.6 for DAS format).

CH = Channel number or the device address.

F = Function code, where:

e If F is even, data are transferred from the controller
to the CPU.

¢ If F is odd, data are transferred from the CPU to the
controller.

CAS Controll Address Syllable; points to control word that
contains CH and F (refer to subsection 1.6 for CAS

format) .
1.5.3.2 Address and Range Output Instructions

This instruction specifies three quantities: (1) the ad-
dress, which is identified by an address syllable that 1s identi-
cal to the one used for single operand instructions, (2) the con-
trol word, which identifies the external channel (or device) and
the function it has to perform, and (3) the range which is iden-
tified by an address syllable. The control word may be imbedded
in the procedure as follows:

01 3 4 8 9 15

10 0 0 Op AAS

Additional word if needed by -AAS

CH F(09)

0 0000O0O0OCOCOQO0 RAS

Additional word if needed by RAS

[
|

12

or it may be nonprocedural, in which case the format is as
follows:

01 3 4 8 9 Lh

1000 op AAS

Additional word if needed by AAS

00000000OQ CAS

Additional Word if needed by CAS

0O 00O0COCODOCOD RAS

Additional word if needed by RAS

The definitions of the above words are the same as those spe-
cified in subsection 1.5.3.1 with the following additions:

AAS = Address Address Syllable; the byte effective address
formulation from the AAS is transferred to the Megabus
(refer to subsection 1.6 for AAS format).

RAS = Range Address Syllable; specifies the location from

which the range is transferred to the Megabus (refer
to subsection 1.6 for RAS format).

F = Function code; must specify the function code that is
used to load the channel address pegister; otherwise,

the operation is unspecified.

NOTE
All 1/0 instructions are privileged. If the privi-
ilege bit is zero, a trap will result (using trap
vector 13) in lieu of execution (refer to Table 2-5).

1.5.4 Short Value Immediate Instructions

Short value immediate instructions have the following format:

01 3 4 7 B 15

0 # Op v

Op = op-code filed.

= register number; selects one of seven word operand
registers.

V = immediate operand value; the value is between -128 and
+127, inclusive.

These instructions operate on the word operand (D) registers and
perform the following operations:

Load
Compare
Add
Multiply.

1.5.5 Branch On Register Instructions

Branch on register instructions have the following format:

0 1 3 4 8 9 15
0 # op d
Op = op-code field.
$# = register number; selects one of seven word operand
registers.
d = displacement; the relative address of the branch

destination (refer to subsection 1.6.1).

These instructions enable branching on specified conditions of a
selected word operand register, such as:

Equal to zero
Less than zero
Increment and test
Decrement and test.

1.5.6 Branch on Indicator Instructions

Branch on indicator instructions have the following format:

01 3 4 8 9 15
0|0 0 O Oop d
Op = op-code field.
d = displacement; the relative address of the branch

destination (refer to subsection 1.6.1).

These instructions enable branching on various indicators, such
as:

Carry

Equal

Less than
Greater than
I/0 bit.

11/79
1-14 FN28A

1.5.7

Shift Instructions

The
shift 1

1.5.7.1

The

1.5.7.2

The

Various types of shifts on single or double operands (two
registers linked together) are possible; e.g., closed, open,
arithmetic, left, right, etc. For double-operand shifts, the
5, or 7; otherwise, the operation

register number must equal 3,
The pairing of the registers is as follows:

is unspecified.

#I

shift instructions have two formats: shift short and
ong.
Shift Short Format
shift short instruction format is as follows:
01 34 789 11 12 15
0 # 0000 0 T - d

register number; selects one of seven word operand
registers.

type and direction of the shift.

distance (value between 1 and 15, inclusive); if d = 0O,
substitute the contents of D1 (bits 12 through 15) for

distance.

Shift Long Format

shift long instruction format is as follows:
01 3 4 78 9 10 11 15
0 # 0000 |1 T d

= register number; selects one of three word operand

register pairs.

= type and direction of the shift.

= distance (value between 1 and 31, inclusive); if d

0,

substitute the contents of D1 (bits 11 through 15) for

distance.,

#' #

=] un W

2
4
6

= the number of the implied register that is linked

together with the selected register (#).

Some shift operations modify the Carry (C) or Overflow (OV)
indicators. The Carry indicator reflects the state of the last
bit shifted out. If the Carry or Overflow indicator is to be
modified and the actual shift distance is zero, the Carry or
Cverflow indicator is clear.

1.5.8 Generic Instructions

The generic instructions have the following format:

0 7 8 15

D 0OO0OO0CO0OODO F

Additional words as needed
o =]
F = function code:

Within this group, the following types of instructions are
available:

1. Acquire Stack Space

2. Activate Segment Descriptor

3. Breakpoint Trap

4. Control Real-Time Clock

5. Contrcl Watchdog Timer

6. Dequeue On Address

7. Degueue From Head

8. Halt

9, Load Remote Descriptor Base
10. Load Stack Pointer

11. Memory-To-Memory Move

12. Moniter Call

13. Queue On Head

14. Queue On Tail

15. Reconfigure External Processor
16. Relinquish Stack Space

17. Return From Trap
18. Store Stack Pointer

19, Store Remote Descriptor Base
20. Validate Address, Range, and Access Rights.

1.6 CPU/MEMORY EFFECTIVE ADDRESSING

Address generation depends on the following address types
contained in the instruction.

e Displacement
e Address Syllable

In some cases, the contents of the Program Counter (P) are
used to generate the effective address; P is assumed to be _
pointing to the word that contains the displacement in questilon.

1.6.1 Displacement Address Type

The first type of address definition field is the displace-
ment type used with branch on register and branch on indicator
instructions (refer to subsection 1.5.5 and 1.5.6, respectively).

The formulation of the effective address 1s:

T If d = 0, the effective address is obtained from the
second (and third) word(s) of the instruction.

2. If @ = 1, the effective address is obtained by adding to
P the Displacement (DSP) contained in the second word of
the instruction. :

3. If d +# 0 or 1, the effective address is obtained by
adding the displacement (a two's complement number with
a value between -64 and +63, 1nclusive) to the address of
the instruction (P).

1.6.2 Address Syllable

The single-operand and double-operand instructions generate
address references through a field called the Address Syllable
(AS). The format of the address syllable is:

9 11 1213 15

m @ n
m = address modifier.
@ = indirect addressing bit. _
n = register number; values between 0 and 7, inclusive.

Figure 1-4 is a representation of the complete address sylla-
ble. Table 1-1 lists a set of definitions to facilitate the use
of these AS descriptions.

1.6.2.1 Register Address Syllable
The Register Address Syllable (RAS) addresses a register that

is the source or destination for the operand. The following sub-
set of Figure 1-4 is defined as RAS:

N >0

m @ =20

5 B register or
D register

1-17

Entries in this figure are mnemonics for the various

address forms available. These forms are described

in subsections 1.6.1 through 1.6.3.

Figure 1-4

Address Syllable

n=0 n>0
m @=0 @=1 @=0 @=1
0 IMA *TMA Bn *Bn
1 IMA+4DL *IMA+D1 Bn+D1 *En+D1
2 IMA+D2 *IMA+D2 Bn+D2 *Bn+D2
3 IMA+D3 *IMA+D3 Bn+D3 *Bn+D3
4 P+DSP * {P+DSP) Bn+DSP * (Bn+DSP)
Bn register n=1,2, or 3 n=4 n=5,6, or 7
5 RFU RFU or
Dn register Bn + +D1 RFU B(n-4) + D1}
n=1,2, or 3 n=4 n=5,6, or 7
6 RFU RFU +Bn
Bn + {D2 RFU B(n-4) + p2t
n=1,2, or 3 n=4 n=5,6, or 7
7 IMO IV+DSP Bn+t
Bn + ¢D3 RFU B(n-4) + D3t
NOTE

Table 1-1 Address Syllable Notation

R

NOTATION DESCRIPTION

DSP DSP indicates a l6-bit signed displacement that fcllows
the address syllable

* Indirect operator (# @)

+D Specifies indexing

T Auto-increment (BT or DT indicates postincrementation)

1 Auto-decrement (!B or !D indicates predecrementation)

IMA Immediate Address

B Base register

D Operand register

P Program counter; for the purpose of P relative address-
ing, P points to the word containing the displacement

() Logical binding

(1] Contents of

+ Addition operator

- Subtraction operator ‘

X Multiplication operator

o Is replaced by

EA Effective Address

IEA Intermediate Address

IMO Immediate Operand

IV Interrupt Vector (points to Interrupt Save Area of

—

Current Level)

i=19

The interpretation of RAS is determined by the op-code. For
op-codes on Base (B) registers, RAS is defined as follows:

m @ =0

5 B register

Select word operand register n (n = value between 1 and 7,
inclusive).

For all other single-operand and double-operand instructions,
excluding LAB, LNJ, JMP, ENT, SAVE, and RSTR, RAS 1is defined as
follows:

m g =0

5 D register

Selects word operand register n (n = value between 1 and 7,
inclusive).

1.6.2.2 Immediate Operand Address Syllable
The Immediate Operand Address Syllable (IMO) specifies an

operand of appropriate size, which immediately follows the in-
struction. The following subset of Fiqure 1-4 is defined as IMO:

min-=20
@ =20
7] IMO

1.6.2.3 Memory Address Syllable

The Memory Address Syllable (MAS) specifies the effective ad-
dress of a memory location. The MAS can have one of three for-
mats: (1) P relative, (2) Immediate Address, or (3) B relative.

P Relative Format

The P Relative format is as follows:

4 | P+ psp | *® + DsP)

1-20

P + DSP: The effective address is formed by adding DSP to the
contents of P

*(P + DSP): The effective address is pointed to by P + DSP.

Immediate Address Format

The Immediate Address (IMA) format is as follows:

0| IMA *IMA

1| IMA + D1 | *IMA + D1

2 | IMA + D2 | *IMA + D2

3 |IMA + D3 | *IMA + D3

IMA: 1In LAF, use the two words that follow the address syllable
as shown below:

0 8 9 15
AS

MBZ (TV15) 3 6

7 (SB) 22

IMA: In SAF, use the 16 bits in the word that follows the ad-
dress syllable:

AS

7 22

*IMA: The effective address is contained in the location(s)
pointed to by IMA (* is the indirect operator).

IMA + D (1, 2, or 3): The effective address is IMA indexed by
the appropriate index register (see the following notes).

*IMA + D (1, 2, or 3): The effective address is obtained by

adding the contents of the appropriate index register to the

contents of the location(s) pointed to by IMA; indirect, post
indexing (see the following notes).

1-21

NOTES

1. 1If the operand is larger or smaller than 16 bits,
scale the index value before adding.

2. If in the LAF mode, indirection extracts a double-
word (IMA and IMA + 1) as follows:

0 1112 15

MBZ (TV15) 3 6

7 22

B Relative Format

The B Relative format is as follows:

n >0
m @ =20 @ =1
0 Bn *Bn
1| Bn + D1 *Bn + D1
2| Bn + D2 *Bn + D2
3| Bn + D3 *Bn + D3
4 | Bn + DSP * (Bn + DSP)
n = 1'2'3 n = 5f6’7
5
Bn + |D1 B(n-4) + D1T
n=1,2,3 n=5,6,7
6 Bn
Bn + [D2 B(n-4) + D27
n=1,2,3 n = B:67y
7 Bn
Bn + |D3 B(n-4) + D37

Bn: The effective address is contained in base register n
(n = value between 1 and 7, inclusive).

*Bn: The effective address is contained in the memory loca-
tion pointed to by base register n (n = value between 1 and 7,
inclusive).

1-22

Bn + D1, D2, or D3: The effective address is obtained by adding

the contents of the appropriate index register to the contents of
base register n (n = value between 1 and 7, inclusive). Refer to
the following note.

*Bn + D1, D2, or D3: The effective address is obtained by adding
the contents of the appropriate index register to the contents of
the memory location(s) pointed to by base register n (n = value
between 1 and 7, inclusive). Refer to the following note.

NOTE

If the operand is larger or smaller than 16 bits,
scale the index value before adding.

Bn + DSP: The effective address is obtained by adding DSP to the
contents of base register n (n = value between 1 and 7, inclu-
sive).

*(Bn + DSP): The effective address is contained in the loca-
tion(s) pointed to by Bn + DSP (n = value between 1 and 7, inclu-
sive).

lBn: The effective address is contained in base register n after
it is decremented by the operand size in words (n = value between
1 and 7, inclusive).

BnT: The effective address is contained in base register n (n =
value between 1 and 7, inclusive). The base register is incre-

mented by the operand size in words after effective address for-
mation and prior to instruction execution.

Bn + Dx: The effective address is obtained by adding the con-
tents of the appropriate (m - 4) index register (after it is de-
cremented by 1) to the contents of the selected (n - 4) base re-
gister. If the operand is larger or smaller than 16 bits, the
index value is scaled to operand size before addition.

B (n-4) + Dx: The effective address is obtained by adding the
contents of the appropriate (m - 4) index register to the con-
tents of the selected (n - 4) base register. After effective
address formation and prior to execution of the op-code, the
selected index register is incremented by 1. If the cperand is
larger or smaller than 16 bits, the index value is scaled to
operand size before addition.

1.6.3 Indexing

Many address syllable forms specify indexing. During effec-
tive address generation, one of three index registers (D1, D2, or
D2) is algebraically added as the last step, after any indirec-
tion, to the base address. The index value is treated as a sign-
ed integer data word.

While indexing, the hardware automatically aligns the index
value to correspond to the size of the item being referenced.
The size of this item is determined by the op-code type (bit,
byte, digit, word, double-word, or quadruple-word).

1.6.3.1 Bit Addressing

The index value for bit instructions (LB, LBF, LBT, LBC, and
LBS), where the address syllable calls for indexing (IMA + Dx,
Bn + Dx, *Bn + Dx, etc.), is aligned to denumerate bits in the
array, with bit 0 being the leftmost bit in word 0 of the array.
As an example, consider the following instruction.

LB, Bl + Dl

If Bl = 100 and D1 = +21, then the addressed bit is bit 15 in
location 101.

1] 5 15
Location
101
Addressed Bit
If Bl = 100 and D1 = -2, then the addressed bit is bit 14 in
location FF.
0 14 15
Location [I | J

FF
Addressed Bit ———+

1.6.3.2 Byte Addressing

The index value for byte instructions (LDH, STH, CMH, etc.),
where the address syllable calls for indexing, is aligned to de-
numerate bytes in the array, with byte 0 being the leftmost byte
in word 0 of the array. As an example, considering the following
instruction:

LDH, D4, Bl + D2

If Bl = 200 and D1 = +n, then the addressed byte is as shown
below:

Location O 15
]
1FF -21-1
T
Bl = 200 U! +1
201 +2; +3
|
i
i j—

1174

1.6.3.3 Word Addressing

The index value for word instructions (LDR, ADD, OR, etc.},
Where the address syllable calls for indexing, denumerates words
in the array, with word 0 being the leftmost word in the array.
As an example, consider the following instruction.

ADD, D3, Bl + D2

If B1 = 150 and D2 = +n, then the addressed word is as
follows:

Location 0 15
14E -2
14F =1
B1 = 150 0
151 +1
152 +2
A A

1.6.3.4 Double-Word Addressing

The index value for double-word operands, where the address
syllable calls for indexing, denumerates double-words (32 bits)
in the array, with the double-word zero (0) being the leftmost
double-word. The processor assumes double-word operands for the
fellowing: (1) LDI, SDI, and AID instructions, and (2) scienti-
fic instructions (except branch instructions) if the memory
operand length stored in M4 equals 2, and (3) all base register
instrucitons (LDB, CMN, STB, CMB, and SWB) 1if the processor is in
LAF mode. As an illustrative example, consider the following
instruction.

LpI, (pé, D7), B4 + D3

If B4 = 300 and D3 = +n, then the address operand is as
follows:

1-25

2FC

2FD

2FE

2FF

300
301

302
303

1.6.3.5 Quadruple-Word Addressing
The index value for scientific instructions (except branch
instructions), where the memory operand length equals 4 (stored
in M4) and the address syllable calls for indexing, assumes an
array of quadruple words.
Consider the following example:
FAD, S1, B5 + D1

If B5 = 2000 and D1 = +n, then the addressed operand is as
follows:

1FFC — —
[-1 -
2000 |— -
= 0 -
2004 — -
= . =

1.7 MEMORY ADDRESS BOUNDARIES

When the CPU initiates a memory cycle that addresses non-
existent memory. the processor either traps (using trap vector
15, see Table 2-5) or causes undefined results. These boundaries
are of interest in defining nonexistent memory:

l. Addresses below zero

2. Addresses beyond the last module on-line at a given
installation

3. Addresses greater than 1,024 K-words (i.e., maln memory
equals 1lM-words).

If main memory is less than 1lM-words, violation of any of the
above three address boundaries causes a trap. If main memory 1s
1M-words, then trap conditions caused by incrementing the program
counter, a hidden register, or a base register may not be detect-
ed and cause undefined results.

It should be noted that when the memory management unit
(refer to subsection 1.2) is configured into the system, large
virtual addresses may roam freely within the CPU and are not
subjected to the scrutiny previously described until they are
mapped and deposited onto the Megabus. The memory management
unit may trap an address for other reasons, for example:

e Violation of protection (trap vector 14)

e Attempt to reference an invalid segment (trap vector 15).

1-27/1-28

