H()neywe“ ASSEMBLY LANGUAGE

SERIES 60 (LEVEL 6) GCOS/BES2

SOFTWARE

Honeywe" ASSEMBLY LANGUAGE

SERIES 60 (LEVEL 6) GCOS/BES2

SUBJECT:
Detailed Description of Series 60 (Level 6) GCOS/Basic Executive System 2 Assembly Language

SOFTWARE SUPPORTED:
This publication supports Release 0200 of the Series 60 (Level 6) GCOS/Basic Executive System 2.
When a later release of the system occurs, see the Subject Directory of the latest Series 60 (Level 6)
GCOS/BES2 Software Overview and System Conventions manual (Order No. AU50) to ascertain
whether this revision of this manual supports that release.

DATE:
July 1976

ORDER NUMBER:
AU43,Rev.0

PREFACE

This manual describes the GCOS/Basic Executive System 2 (GCOS/BES2)
assembly language, a machine-oriented language for writing programs to
execute upon the Series 60 (Level 6) 6/30 Models. Unless stated otherwise
herein, the term BES will be used to refer to the GCOS/BES2 software; the
term Level 6 will indicate the specific models of Series 60 (Level 6) on which
the described software executes.

Where appropriate, the actions performed by the BES Assembler as it
processes elements of the assembly language are also discussed. Within this
document, the term “assembly language” includes both Assembler control
statements and assembly language instructions.

Section 1 introduces the Level 6 describing both data representation and
the hardware registers. Section 2 describes the basic elements of the BES
assembly language, and Section 3 describes the considerations the pro-
grammer must make when writing his source program. Sections 4 and 5
describe, in detail, the Assembler control statements and assembly language
instructions, respectively. The macro facility is described in Section 6.
Appendix A provides programmer reference information. Appendix B .
describes the hexadecimal numbering system. Appendix C contains a sample
assembly language program. Appendix D describes how to debug an
assembly language program. Appendix E contains a list of flags produced by
the assembler to notify the user of a source code error. Appendix F describes
error flags that may be issued by the Macro Preprocessor. Appendix G
contains a list of reserved symbolic names.

Descriptions and examples within this manual use the following
conventions:

{ } Indicates that one of the options enclosed in the braces must be
selected.

[1 Indicates that one or none of the enclosed options need be selected; if
one of the options is underlined, it is selected as the default if you do
not select any of the options enclosed in the brackets.

. Indicates either a logical sequence (e.g., A,B...) or that the immedi-
ately preceding type of value can be repeated (e.g., a...).

a Indicates that the character must be replaced by any valid ASCII
character.

n Indicates that the character must be replaced by any valid numeric
(decimal) digit.

d Indicates that the character must be replaced with a binary digit.

h Indicates that the character must be replaced with a hexadecimal digit
(0 through 9, A through F).

¢ Indicates that the character must be replaced with a, n, or h, above.

A Indicates that one or more spaces or horizontal tab characters are
required.

Uppercase letters, numbers, and any of the following special characters

must be coded exactly as shown:

O $
< .
> /
= *
+ B

© 1976, Honeywell Information Systems Inc. File No.: 1823

AUA43

GCOS/BES?2 Subject Directory

This subject directory is designed to assist the user in finding information about
specific topics related to GCOS/BES2. Topics are listed alphabetically; each topic is
accompanied by the order number of each manual in which the topic is described. At the
end of the Subject Directory, all GCOS/BES2 manuals are listed according to the
alphabetic/numeric sequence of their order numbers.

Subject Order No.
Allocate Disk File (Utility Set 1) oottt it e e AU47
Application Development (Overview)ottt nnnnn. AUS0
ASCII Character Set and Conversion Tables AUS50
Assembling Programs AU48
Assembler Diagnostic Flags AU43
Assembly Source Language e e AU43
BASIC e e AU44
Bootstrap Generator e e AU47
Bootstrapping and Loading P AU46
Buffer Manager e AU4S5
Building an Online Application i, AU49
Card Loadert e AU46
Clock Manager it it e et e e e e e AU45
COBOL Compilation« oottt it e et it it e e e AU48
COBOL Source Language« . v oottt ittt et e e e AU42
COBOL Statements veov v e eae e et e e e e e et AU42
COBOL Compiler Diagnostic Messagesc.uiunennean... AU42
COBOL Operating Proceduresottt it i AU46
Command Processort e AU48
CommUNICatiONS . . oottt ettt e e e AU45
Compare Disk Volumes/Files/Members (Utility Set3) AU47
Configuration Load Manager AU49
Console Messages (Error and Informational) e AU46
Control Panel e AU46
Copy Disk Volume/File/Member (Utility Set3) AU47
Cross-Reference Program e AU48
Debugging (Offline)ttt e e AU47
Debugging (Onling)o oottt i i e e e e AU49
Delete Disk File/Member (Utility Set 1) AU47
Disk Conventionst e AUS50
Disk Loader e AU46
Dumps e e e AU47
Dump Edit AU47
Editor . ..o e AU48
Equipment Requirements e AUS0
Error Reporting by Online Applications AU46
Error Reporting by System Software e e e e e e AU46
Executive Componentst AU45
File Manager 0t iiiiinnnnn.. e AU45
File Naming Conventions ittt AUS0
Floating-Point Simulator AU45
FORTRAN Compilation AUA48
FORTRAN Compiler Diagnostic Messagesouutneenn.. . AS32
FORTRAN Intrinsic Functions e e e e e e e AS32
FORTRAN Source Language i uunnnan... AS32
FORTRAN Statements and Procedures AS32
Glossary of System Termsottt AU50
Hexadecimal Numbering System AU43
Initialize Disk Volume/File (Utility Set 1) AU47
Input/Output Drivers i AU45

AU43

LInKer .. o e e e e e AU48

List Disk Volume/File Description (Utility Set 1) AU47
Loaders e e AU46
Macro Facility Usage i e e AU43
Macro Preprocessoro e e AU48
Offline Applications i AU45
Operating Procedures i i AU46
Operator Interface Manager AU45
Overlay Loaderttt e e AU4S
Paper Tape Loader AU46
Planning an Online Application AU49
Print Disk File/Member (Utility Set2) AU47
Program Development Tools AU48
Program Naming Conventions AUS0
Program Patch AU47
Punch Disk File/Member to Paper Tape (Utility Set2) AU47
Rename Disk Volume/File/Member (Utility Set 1) AU47
Replace Memory Values (Utility Set 1) AU4T
Scientific Branch Simulator AU45
Software Release Materials (Contents)oouiooo...... AUS0
System Conventionsttt e AUS0
System Software and Documentation (Overview) AUS0
Task Manager e AU45
Trace TrapHandler AUA45
Transfer Input to Disk File/Member (Utility Set2) AU47
Trap Handling (Offline) i, AU46
Trap Handling (Online) i AU45
Utility Programs ot e e AU47

The following publications constitute the GCOS/BES2 manual set. The Subject
Directory in the latest Series 60 (Level 6) GCOS/BES2 Software Overview and System
Conventions manual lists the current revision number and addenda (if any) for each
manual in the set.

Order No. Manual Title

AS32 Series 60 (Level 6) GCOS/BES FORTRAN Reference Manual

AU41 Series 60 (Level 6) GCOS/BES2 COBOL Reference Manual

AU43 Series 60 (Level 6) GCOS/BES2 Assembly Language Reference Manual

AU44 Series 60 (Level 6) GCOS/BES2 BASIC Reference Manual

AU45 Series 60 (Level 6) GCOS/BES2 Executive and Input/Output

AU46 Series 60 (Level 6) GCOS/BES2 Operator’s Guide

AU47 Series 60 (Level 6) GCOS/BES2 Utility Programs

AUA48 Series 60 (Level 6) GCOS/BES2 Program Development Tools

AU49 Series 60 (Level 6) GCOS/BES2 Planning and Building an Online
Application

AUS50 Series 60 (Level 6) GCOS/BES2 Software Overview and System
Conventions

In addition to the GCOS/BES2 manual set, the following manual is required by
GCOS/BES users as a general hardware reference:

Order No. Manual Title
AS22 Honeywell Level 6 Minicomputer Handbook

The following manual provides detailed information regarding programming for the
Multiline Communications Processor:

Order No. Manual Title
AT97 Series 60 (Level 6) MLCP Programmer’s Reference Manual

iv

AU43

CONTENTS

Section 1. Introduction
Assembly Languages

Level 6 Data

Representations
Signed Integer Data
Unsigned Data
Floating-Point Data

Level 6 Hardware
Considerations
Hardware Registers
Program Counter (P) Register
Address (Bn) Registers

General (Rn) Registers
Mode (Control (M1) Register

System Status (S) Register
Indicator (I) Register
Scientific Information
Processor (SIP) Registers
Scientific Accumulator
(Sn) Registers
Scientific Indicator
(SDRegister
SIP Mode (M4) Register
SIP Trap Mask
(M5)Register
Software Simulation of
the Scientific Information
Processor

Section 2. Elements of BES
Assembly Language
MnemonicCodes
SymbolicNames
Identifiers......................
Labels.........
User-Defined Labels
Reserved Labels
Constants
String Constants
ASCII String Constants
Hexadecimal Siring
Constants
Bit String Constants
Truncation/Padding
of String Constants
Arithmetic Constants
Integer Constants
Decimal Integer Constants
Hexadecimal Integer
Constants
Fixed-Point Constants
Floating-Point
Constants

Page
Expressions 2-8
Evaluating Expressions 29
Location and Value
Expressions 29
Internal Value Expressions 29
Location Expressions 2-10
Internal Location
Expressions 2-10
External Location
Expressions 2-11
Common Location
Expressions 2-11
Address Expressions 2-12
References 2-13

Section 3. Programming Considerations. . . 3-1

Assembly Language Source

Statement Formats 3-1
Order of Statements in Source
Program 3-2
Calling System Services 3-2
Calling External Procedures 3-2
Assembler-Related Utility
Program 3-3
BES Assembler 3-3
Scientific Instruction Processor (SIP)
Programming Considerations 3-3

Section 4. Assembler Control

Statements 4-1
Assembly-Controlling Statements 4-1
List-Controlling Statements 4-1
Data-Defining Statements 4-1
Storage-Allocation Statements 4-2
Symbol-Defining Statements 4-2
Program-Linking Statements 4-2
Conditional Assembly-Control

Statements 4-2
Assembler Control Statements 4-3
CALL i 4-3
CLST .. 44
COMM 44
CIRL ... i 44
DC 4-5
END ... 4-6
EQU 4-6
FAIL 4-7
IF . 4-7
LIST ..o 4-8
NLST ... 4-9
NULL.........oiiiiii... 4-9
ORG ...t 49
RESV ... 4-10
TEXT ... 4-10
TITLE 4-11
XDEF 4-11

AU43

XLOC e e 4-12
XVAL .. 4-12
Section 5. Assembly Language
Instructions 5-1
Arithmetic Operations 5-1
Boolean Operations 5-1
Branch Operations 5-2
Compare Operations 5-2
Control Operations 5-2
Input/Output Operations 5-2
Load Operations 5-2
Modify Operations 5-2
Scientific Instructions 5-3
Shift Operations 5-3
Store Operations 5-3
Swap Operations 5-3
Assembly Language Instruction
Types ..o 5-3
Branch-on-Indicator (BI)

Instructions 5-3
Branch-on-Register (BR)

Instructions 54
Double Operand (DO)

Instructions 5-4
Generic (GE) Instructions 5-5
Input/Output (I0) Instructions 5-5
Shift (SHS and SHL)

Instructions 5-5
Short-Value-Immediate (SI)

Instructions 5-6
Single Operand (SO)

Instructions 5-6

Addressing Techniques 5-7
Register Addressing 5-7
Immediate Memory

Addressing (IMA) 5-7

Direct Immediate Memory
Addressing 5-8
Indirect Immediate Memory
Addressing 59
Indexed Direct Immediate
Memory Addressing 59
Indexed Indirect Immediate
Memory Addressing 5-10
Immediate Operand Addressing 5-10
P-Relative Addressing 5-12
Direct P-Relative
Addressing 5-12
Indirect P-Relative
Addressing 5-13
B-Relative Addressing 5-14
Direct B-Relative
Addressing 5-14

Page
Indirect B-Relative
Addressing 5-15
Indexed Direct B-Relative
Addressing 5-16
Indexed Indirect B-Relative
Addressing 5-16
Direct B-Relative Plus
Displacement Addressing 5-17
Indirect B-Relative Plus
Displacement Addressing 5-17
B-Relative Push Addressing5-19
B-Relative Pop Addressing 5-19
Indexed B-Relative Push
Addressing 5-20
Indexed B-Relative Pop
Addressing 5-20
Short Displacement Addressing 5-22
Specialized Address Expression 5-22
Interrupt Vector Addressing 5-23
Assembly Language Instructions 5-24
ADD e 5-24
ADV . e 5-24
AND 5-25
ANH 5-26
B i 5-26
BAG ... 5-27
BAGE 5-27
BAL 5-28
BALE i 5-28
BBE ... 5-29
BBT ... 5-29
BCF .. 5-30
BCT ... e 5-30
BDEC ...t 5-31
BE ... e 5-31
BEVN 5-32
BEZ 5-32
BG ... 5-33
BGE 5-33
BGEZ 5-33
BGZ ... 5-34
BINC i, 5-34
BIOF 5-35
BIOT 5-35
BL .. 5-36
BLE 5-36
BLEZ 5-37
BLZ ... e 5-37
BNE ... 5-37
BNEZoiiiiiiiiii. 5-38
BNOV i 5-38
BODDc i 5-39
BOV .. e 5-39
BRK .ot 5-40

AU43

BSE .. 540 SAL ... 5-75
BSU i e 5-41 SAR .. 5-75
CAD ... 541 SAVE . .. 5-76
CL o e 5-42 SBE ... 5-77
CLH ... i 542 SBEU i 5-77
CMB ..o 5-43 SBEZ .. e 5-78
CMH.....cciiiii i 543 SBG .. e 5-78
CMN . e e e e 5-44 SBGE ... 5-79
CMR ... i 5-45 SBGEZ ... 5-79
CMV e 545 SBGZ ... e 5-80
CMZ . e e e 5-46 SBL . e 5-80
CPL .. 5-47 SBLE ...ttt 5-81
DAL 5-47 SBLEZ ..o 5-81
DAR ... 5-48 SBLZ 5-82
DCL .. e 548 SBNE ... i 5-82
DCR .. 5-49 SBNEUiii i 5-83
DEC i 5-50 SBNEZ 5-83
DIV ... 5-50 SBNPE, 5-84
DOLo 5-51 SBNSEt 5-84
DOR. ... 5-52 SBPE ..ot 5-85
ENT ... 5-52 SBSE ..ttt 5-85
HLT .. i 5-53 SCL .o e, 5-86
INC ... 5-53 SCR oo, 5-86
0. . 5-54 SCM vttt 5-87
IOH i 5-55 SCZD .. e 5-88
IOLD ... 5-56 SCZQ ot 5-89
IMP e 5-57 SDI .. 5-89
LAB .. e 5-57 SDV e 5-90
IB . e 5-58 SLD .. e 5-91
LBC . i 5-58 SML .ottt e 5-92
LBF .. 5-59 SNGD .. it e 5-93
LBS .. 5-60 SNGQ ..ottt e 5-93
LBT oo 5-61 SOL it 5-94
LDB .. e 5-61 SOR .. 5-94
LDH .o oo 5-62 SRM .ot e 5-95
IDI o 5-63 SSB e 5-95
LDR .o 5-63 SST i e 5-96
LDV . 5-64 SSW o 597
LEV o 5-64 STB it e 5-98
LILH i 5-66 STH vttt ettt ean 5-99
INT 5-67 STM it e 5-100
MCL .. e e 5-67 STR .o e 5-100
MLV . e 5-67 STS i 5-101
MIM 5-68 SUB ittt 5-101
MUL i, 5-69 SWB ... e 5-102
NEGooiiiiiiii, 5-69 SWR ... 5-102
NOP ... i 5-70 WDTE ..., 5-103
OR ... 5-70 WDTN i 5-103
ORH........... ...t 5-71 XOH . oot i i 5-103
RSTR ... 5-72 D.(0) 2 S 5-104
RTCF ... 5-73 :

RTICN i 5-73 Section 6. Macro Facility 6-1
RTT o e 5-73 Order of Statements Within a

SAD 5-74 SourceModule 6-1

vii AU43

Macro Routines
Creating a Macro Routine
MAC Macro Control Statement,
Without Parameters
Contents of Macro Routine
ENDM Macro Control
Statement
Specializing a Macro Routine by
Parameter Substitution
MAC Macro Control Statement,
Including Parameters
Protection Operators
Situating Macro Routines
LIBM Macro Control
Statement
‘Macro Calls
Nested Macro Call
Recursive Macro Call
Controlling Expansions
Macro Variables
SETA Macro Control
Statement
Apostrophes Within
SETA Statements
SETN Macro Control
Statement
Conditional Macro Control
Statements
FAIL Macro Control
Statement
GO TO Macro Control
Statement
IF Macro Control
Statement
NULL Macro Control
Statement
Macro Functions
Format of Macro
Functions
First Argument
Middle Argument
Last Argument
Length Attribute Macro
Function
Hexadecimal Conversion Macro
Function
Index Macro Function
Search Macro Function
Substring Macro Function
Vector Orientation Macro
Function

...................

......

..........

...................

.......................

...............

.................

...........

...................

....................

...................

...................

...................

...................

..................

.....................

................

..............

.....................

.....................

.........

viii

Verify Macro Function 6-21
Example Illustrating Macro
Facilityoieeii . 6-22
Programming Considerations. 6-24
Initialized Values of
Macro Variables 6-24
Designating Numeric Values 6-25
Designating Alphanumeric Values ... 6-25
Appendix A. Programmer’s Reference
Information A-1
Summary of Hardware Registers A-1
Assembly Language Internal
Formatsby Type A4
Hexadecimal Representation of
Instructions A-5
Valid Address Expressions A9
Appendix B. Hexadecimal Numbering
System B-1
Decimal-to-Hexadecimal
Conversioncovevenuenn. B-2
Hexadecimal-to-Decimal
Conversionccveeunen... B-2
Hexadecimal-to-ASCII
Conversioncoevueunn.. B4
Hexadecimal Addition B-6
Hexadecimal Subtraction B-7
Hexadecimal Multiplication B-7
Hexadecimal Division B-8
Appendix C. Sample Assembly Language
Program C-1
Appendix D. Debugging Assembly
Language Programs D-1
Debugger D-1
Reading and Interpreting Memory
Dumpsc..ciiiia.. D-1
Appendix E. Source Code Error
Notification by
Assembler E-1
Appendix F. Source Code Error
Notification by Macro
Preprocessor F-1
Appendix G. Reserved Symbolic
Names G-1
AU43

ILLUSTRATIONS

Figure

1-1.
5-1.

5-2.

Page

Assembler Functions 1-1
Direct Immediate Memory

Addressing 5-8
Indirect Immediate Memory

Addressing 59
Indexed Direct Immediate

Memory Addressing 5-10
Indexed Indirect Immediate

Memory Addressing 5-11
Immediate Operand Addressing-

Scientific Instruction 5-12
Immediate Operand Addressing ... 5-12
Direct P-Relative Addressing 5-13
Indirect P-Relative

Addressing 5-13
Direct B-Relative Addressing 5-15
Indirect B-Relative

Addressingc.n... 5-15
Indexed Direct B-Relative

Addressingcvvvinnn... 5-16
Indexed Indirect B-Relative

Addressing 5-17
Direct B-Relative Plus

Displacement Addressing 5-18
Indirect B-Relative Plus

Displacement Addressing 5-18
B-Relative Push Addressing 5-19
B-Relative Pop Addressing 5-20
Indexed B-Relative Push

Addressing 5-21
Indexed B-Relative Pop

Addressing, 5-21
Short Displacement Addressing ... 5-22
Specialized Address

Expressions 5-23
Interrupt Vector Addressing 5-23

Sample Unexpanded Source Module
and Assembler Listing of Resulting

Expanded Source Module 6-22
Level 6 Hardware Registers A-1
Internal Formats of Assembly

Language Instructions A4
ASCII/Hexadecimal Memory

Dumpccoiao.L. D-1

TABLES

Table
2-1. Defining BES Symbolic

Names
2-2. Rules of Truncation/Padding

String Constants

A-1. Internal Representation of
Assembly Language

Instructions
A-2. Address Syllables
A-3. Summary of Valid Forms

of Address Expressions........

B-1. Comparison of Binary,

Decimal, and Hexadecimal

Symbols
B-2. Storage and Printout of

theValue32................
B-3. Hexadecimal/Decimal

Conversionceevun...
B4. Hexadecimal/ASCII

Conversioneeuuun..
B-5. Hexadecimai Addition Tabie
B-6. Hexadecimal Multiplication

Table

.....................

....................

AU43

SECTION 1
INTRODUCTION

Computer programs can be written in high-level languages or machine-oriented
lower level languages. High-level languages are generally designed for specific
environments (e.g., COBOL is a business-oriented language, and FORTRAN is a
scientifically-oriented language). Low-level languages (i.e., assembly languages) support
a wide range of application environments.

ASSEMBLY LANGUAGES

Computer logic is designed to interpret only machine (i.e., object) code. Since
object code is composed of binary digits, it is difficult to interpret unless the binary
representation is translated into a more convenient, readable code. As a result,
assembly languages have been developed to simplify the problem of writing programs
in object code. These intermediate-level assembly languages consist of assembler-
controlling statements and operational instructions.

As illustrated in Figure 1-1, an assembler interprets the assembly language (i.e.,
source code) program and translates it into object code, which the computer executes
to produce the desired results.

. ~.
I'4
Mo A
| S~———
| 1
| oBsecTt |
{ CODE i
7
~ —
ASSEMBLER
SOURCE
CODE
\ mTTTS N
\/ '
Yoo 1A
I source '
: LISTING .
——
L ¢/’<\ - d

Figure 1-1. Assembler Functions

One of the primary differences between assembly languages and high-level languages
is that each assembly language instruction is equivalent to a single machine-level
instruction, whereas a single high-level language instruction can be translated into any
number of machine-level instructions. The advantage, then, is that the assembly
language gives you more control over the operations to be performed.

LEVEL 6 DATA REPRESENTATION

All data stored in main memory must be in predefined, system-recognizable
formats. All data elements are based on 16-bit memory words. The format of each
word is defined from left to right, with the first bit numbered O and the last 15. The
leftmost bit (i.e., bit 0) is considered the most significant and the rightmost (i.e., bit
15) is the least significant, with each intervening bit less significant than the one to its
left.

INTRODUCTION 1-1 AU43

Because of this predefined format, it is possible to access data at any of the
following levels:

Bit - 1 bit

Byte (half-word) - 8 bits
Word - 16 bits
Multiword - 32, 64 bits

O o o 0o

Regardless of the size of the data item being accessed, addresses generated by the
operand(s) in an instruction point to the most significant bit of the item. For example,
to access a multiword data item in main memory, the address generated by the
Assembler (from the operand contained in the instruction) points to the first bit (i.e.,
bit 0) in the first word of the item.

The system supports a maximum of 128K bytes (i.e., 64K words) of addressable
memory, and each word can be accessed through a 16-bit address pointer.

Each four bits of data are represented by a single hexadecimal value in a listing or
printout, although the bits are stored in memory in binary form. The hexadecimal
equivalent of a binary value is derived by converting each successive four bits to the
hexadecimal value as follows:

0000 =0 1000 =8
0001 =1 1001 =9
0010=2 1010=A
0011=3 1011 =B
0100=4 1100=C
0101 =5 1101 =D
0110=6 1110=E
0111 =7 1111 =F

Thus, if a listing shows that a word at a given address contains the hexadecimal
value 8FD3, it means that the system contains the stored binary value
1000111111010011.

Data stored in memory can be in any of the following forms:

o Signed integer
o Unsigned integer
o Floating-point

A signed or unsigned integer byte can also be stored in a hardware general register.
A floating-point constant occupies two (short-precision) or four (long-precision)
memory words and may also be stored in the software-simulated scientific register.

Signed Integer Data

Signed integers stored in memory contain a sign (0 = +; 1 =-) in bit 0 and the data
in the remaining bits. Negative numbers appear in twos-complement form. Byte, word,
and double-word formats are permitted, as follows:

Bit: 0 1 7
{é} DATA Byte
Bit: 0 1 15
{é} DATA Word

INTRODUCTION 1-2 AU43

Bit: 0 1 15 16 31

|
{] } DATA Double-word
[

If the first digit in the hexadecimal representation of a signed integer is O through 7,
the value is positive and is stored in memory exactly as it was coded; if the first digit is
8 through F, the value is negative and is stored in memory as the twos complement of
the coded inteter. For example, if the contents of a signed integer word appearing in
memory are BDAO, the decimal equivalent is -12640.

When a signed integer byte is loaded from memory into a hardware general register,
the seven data bits are placed into bits 9 through 15 of the register and the sign into bit
8. The sign is then extended through bit O of the register, as follows:

Bit:

o — |
O =
o — |0
—

DATA

o —
O -
o —
o —
o —

e

Fars |

The sign of the integer byte (i.e., the first bit of the 8-bit byte), which is contained in
bit 8 of the register, is extended through the first byte of the register.

If the first byte of the register contains the hexadecimal value FF, the integer in the
second byte is a negative value;if the first byte contains the hexadecimal value 00, the
value of the second byte is positive.

Unsigned Data
Unsigned data appears in memory in three possible formats:

Bit: 0 7
DATA Byte
Bit 0 15
DATA Word
Bit: 0 31
DATA Double-word

When an unsigned data byte is loaded from memory into a hardware general
register, the byte is placed into register bits 8 through 15, and register bits 0 through 7
are set to 0, as follows:

Bit: O 78 15

00000000 DATA

INTRODUCTION 1-3 AU43

Floating-Point Data
Floatingpoint data appears in memory either as a short-precision (32-bit) or
long-precision (64-bit) constant, as follows:

Bit: 0 678 31
C S M Short precision
Bit: 0 678 63

C S M KK Long precision

Represents the characteristic (excess 64 power-of-16 exponent) of the number. The
characteristic represents exponents with a range from -64 to +63. Since the
characteristic has no sign bit, the number 64 (decimal) is effectively added to each
exponent, thus allowing a characteristic range of 0 to 127 to represent exponents
with a range of -64 to +63.

Sign bit (0 = +; 1 =-) of the mantissa.

Magnitude of the mantissa.

A floating-point constant in memory may be loaded into the software-simulated
scientific register, described later in this section. If the floating-point constant had been
specified as long-precision, the low-order (rightmost) 32 bits are ignored during the
loading process.

LEVEL 6 HARDWARE CONSIDERATIONS

Hardware Registers

Level 6 provides hardware registers that can be loaded or read by various assembly
language instructions. Of these registers, one is the program counter, seven are address
registers, seven are general registers (of which three double as index registers), one is a
mode control register, one is a system status register, and one is an indicator register.

Program Counter (P) Register

The program counter, or P-register, contains the address of the currently executing
instruction. It is used by the Central Processor to generate the effective address of data
based upon various operands in the assembly language instruction set (se€ “Addressing
Techniques™ in Section 5). Its content can be modified only by the JMP and branch
instructions. If necessary, you can refer to the P-register for the address of the
instruction that caused the system to abort a program. For this purpose, the contents
of the Pregister can be displayed at the control panel.

Address (Bn) Registers

The seven address registers can be used in the formulation of addresses by pointing
to any procedure, data, or location in main memory. Typically, the address registers
contain addresses, pointers, or base references for use in generating effective addresses

and referring to data through relative addresses (see *“Addressing Techniques” in
Section 5).

INTRODUCTION 14 AU43

General (Rn) Registers

The seven general registers can be used as accumulators, and the first three (R1,R2,
R3) can be used as index registers (see ‘““Addressing Techniques” in Section 5). '

Mode (M1) Register

The mode, or M1, register contains the trap enable control bits. Its contents can be
altered by the MTM assembly language instruction, and used by other instructions in
the assembly language instruction set. The bits in the mode control register have the

following meanings when set to binary 1:

Bit: 01234567

J

Le Overflow trap
—s Overflow trap
——— Overflow trap

> OQverflow trap
L——® Overflow trap
L Overflow trap

Overflow trap

Setting one or more overflow trap bits makes it possible to enter the Trace Trap
Handler by a trap-to-trap vector 6. See the Executive and Input/Output manual for a

L——sTrace trap enabled for JMP

detailed description of trap handlers.

System Status (S) Register

The S-register contains the status and security bits for the system. The contents,
which can be read by an executing program, have the following meaning, depending on

which bits are set to binary 1:

Bit: 0

INTRODUCTION

12 56 8910 15

H Level Number

priviledged state.

enabled
enabled
enabled
enabled
enabled
enabled
enabled

and branch instructions

for
for
for
for
for
for
for

R7
R6
R5
R4
R3
R2
R1

LInterrupt priority level of the
executing program; 63 (all bits
set to 1) is the lowest level;
0 (all bits set to 0) is the
highest; see the Executive
and Input/Output manual for
a detailed description of
I/0 interrupts.

L—w»Processor identifier; set automatically
during system configuration.

_——» Indicates that the system is running in

AU43

Indicator (I) Register
The I-register contains overflow and program status indicators. When set to binary
1, the bits have the following meaning:

Bit: 0 78 9 1011 12 13 14 15

0
v C|{B{I|{G}|L}U

Result of last
compare is:
Unequal signs
L——pless than
L Greater than

LpIndicates that device
accepted I/0 command.

—»=Bit-test indicator (see the
descriptions of the follow-
ing instructions in Section
5 for the setting: LB, LBC,
LBF, LBS, LBT).

—— Carry occurred during
arithmetic operation.

L Overflow occurred during
arithmetic instruction.

Scientific Information Processor (SIP) Registers

The Level 6 Scientific Information Processor (SIP) is an optional hardware unit
containing three identical scientific accumulator registers, one scientific indicator
register, one SIP mode register, and one SIP trap mask register. The SIP performs
arithmetic operations on single- and double-precision floating-point data and also
provides a set of scientific branch instructions.

Scientific Accumulator (Sn) Registers

The SIP provides three 64-bit scientific accumulator registers for use in either short-
or long-precision floating-point operations. When these registers are used in short-
precision operations, only the high-order (leftmost) 32 bits participate.

The format of the scientific accumulator registers is shown below.

Bit: 0 678 63

s ’ K K
‘ |—>Magn1’tude of the mantissa.
Sign (0 = positive; 1 = negative) of

the mantissa.

L— s Characteristic (excess 64 power-of-sixteen
exponent) of the number.

Scientific Indicator (SI) Register

The 8-bit Sl-register contains error and status indicators that can be tested with the
scientific branch instructions. When set to binary 1, the bits have the following
meanings:

INTRODUCTION 1-6 AU43

Result of last
scientific compare:

L——» Less than

‘—————— Greater than

Precision error (trap 22)

Y

= Significance error (trap 21)

Exponent underflow (trap 19)

Y

Traps and trap handlers are discussed in the Executive and Input/Output manual.

SIP Mode (M4) Register

The SIP mode, or M4, register is an 8-bit control register residing in the SIP but
with a copy in the CPU. Both versions are set to 0 upon CPU initialization and both
may be modified with an MTM instruction (see Section 5). If only the SIP is initialized,
the CPU copy of the register is cleared, and the contents of both versions must be
reestablished with an MTM.

The format of the M4-register is as follows:

ALT | ML2 | AL2] ML3j| AL3

SAT SA2 SA3

R/T: Round/Truncate Mode

0 — Truncate
1 — Round

ML: Memory Length (Length of main memory data field to or from which data is
transferred via a scientific accumulator (SA))

0 — Two words
1 — Four words

AL: Accumulator Length (Length of scientific accumulator data field to or from
which data is transferred to/from main memory, a hardware register, or another
SIP register)

0 — Two words
1 — Four words

SIP Trap Mask (M5) Register

The SIP Trap Mask, or M5, register is an 8-bit control register residing in the SIP but
with a copy in the CPU. Both versions are set to 0 upon CPU initialization and both
may be modified with an MTM instruction (see Section 5). If only the SIP is initialized,
the CPU copy of the register is leared, and the contents of both versions must be
reestablished with an MTM.

INTRODUCTION 1-7 AU43

The format of the M5-register is as follows:

Precision error trap mask

= Significance error trap mask

= Exponent underflow trap mask

Software Simulation of the Scientific Information Processor

For Level 6 systems on which a Scientific Information Processor (SIP) is not
installed or available, BES provides a limited equivalent of the SIP functions through
software simulation. Two trap handlers, the Floating-Point Simulator, entered via trap
vector 3, and the Scientific Branch Simulator, entered via trap vector 5, are available.
These two simulators are described in the Executive and Input/Output manual.

The Floating-Point Simulator and Scientific Branch Simulator provide the same
functions as the SIP, with the following differences:

(6]
o
o

Only one scientific accumulator register (S1) is supported.

Only short-precision floating-point operations may be performed.

General registers R4, R5, and R7 must be reserved for use by the simulators
while they are executing.

Since, in the absence of an SIP, no Sl-register is available, the simulators use the
G, L, and U bits of the I-register for scientific compares.

Not all SIP instructions are simulated. See “Assembly Language Instructions” in
Section 5 to determine whether or not an individual instruction is available with
one of the simulators.

INTRODUCTION 1-8

AU43

SECTION 2

ELEMENTS OF
BES ASSEMBLY LANGUAGE

The principal elements of the BES assembly language are:

0 Mnemonic codes
o Symbolic names
o Constants

o Expressions

These elements are combined to form a source program that consists of:

1. Machine instructions to be assembled, on a one-to-one basis, into their
corresponding object code representations.

2. Assembler control statements which are interpreted by the Assembler to control
the assembly process, allocate work and storage areas in memory, and to define
constant data used by the program.

MNEMONIC CODES

Assembler control statements, which direct the Assembler in the preparation of
object code, and assembly language instructions are specified by predefined mnemonic
names of one to five characters in length. These mnemonic (operation) codes are
described, in detail, in Sections 4 and 5.

SYMBOLIC NAMES

Locations, values, and other data pertinent to the determination of assembly
language instruction or Assembler control statement operand values can be referred to
by the use of reserved (predefined) and user-defined names.

Character strings can be assigned as names of memory locations, registers, values, or
other objects to be referred to in the development of object code. The manner in
which a symbolic name is defined depends on the attributes of the object referred to
by that name.

Regardless of the manner of definition and the type of object being referred to, the
symbolic name must conform to the following rules:

1. It must be from one to six characters long.

2. It must be composed of alphabetic characters (A,B,...Z), digits (0,1,...9), and/or
the special characters $ and —(underscore).

3. The first character must be a § or alphabetic character.

The following types of symbolic names can be used in Assembler control statements
and assembly language instructions:

o Identifiers - Reserved symbols designating the hardware registers and the
scientific register

o Labels - User-defined and reserved symbols designating locations in memory and
values

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-1 AU43

Identifiers

Identifiers are reserved symbolic names that refer to hardware registers or to the
software-simulated scientific register. In addition, names that are defined to be
equivalent to identifiers (through the EQU Assembler control statement) are treated as
identifiers.

The following identifiers refer to hardware registers:

$B1 through $B7 - Address (base) registers

$R1 through $R7 - General registers

$R1 through $R3 - Index registers

$M1 through §M7 - Mode control registers

$S1 through $S3 - Scientific accumulator registers

[elNeRNeR o]

Labels

Labels are symbolic names that can be used to refer to locations and values. They
must be defined in a manner specific to the attributes of the location or value to which
they refer (i.e., each label is typed according to the location or value attributes, which
also establish the context in which they can be used). The types of labels and their
methods of definition are as follows:

o Internal location label - Refers to a location allocated within the assembled
program. It is defined by its occurrence in the label field of an instruction
(resulting in the allocation of memory to the program). The definition of labels
appearing in certain Assembler control statements that do not cause memory to
be allocated (e.g., EQU statement) depend on the statement and its operands.

o External location label - Refers to a location in another, independently
assembled program. It is defined by appearing in the operand list of an XLOC
statement.

o Common location label - Refers to a location allocated to FORTRAN-
compatible common blocks. It is possible to specify that the object code
resulting from assembly language instructions is to be allocated to a common
block area rather than to the area allocated to the program by means of the
ORG statement. All labels that appear in instructions that result in the allocation
of common block locations are defined as common location labels. In addition,
labels specified in the COMM statement are defined as common location labels;
these labels can be used to refer to locations in the common block by indicating
their offset from the first word.

o Internal value label - Refers to a value defined within the program. It is assigned
by its occurrence in the label field of an EQU statement with an operand
expression (see “Expressions’ in this section) that yields a scalar value.

o External value label - Refers to a value defined in another, independently
assembled program. It is defined by appearing in the operand list of an XVAL
statement.

o Complex label - Refers to the label of an EQU statement that has an address
expression (see “Expressions” in this section), or the label of another EQU
statement that has an address expression, in the operand field.

Table 2-1 summarizes the types of labels and how they are defined.

User-Defined Labels

User-defined labels can be either permanent or temporary. Permanent labels can be
defined only once in a program; they must conform to the rules listed under
“Symbolic Names** in this section.

The 26 temporary labels ($A, $B, ..., $Z) may be defined as often as necessary
within a single program. They may be referred to only in the operand of a hardware
instruction or of a define constant (DC) assembly control statement. You must be

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-2 AU43

careful, during programming, that you are referring to the desired definition of a
temporary label when the label has multiple definitions within a single program.
Temporary labels must be defined as internal location labels.

Reserved Labels
Reserved labels are predefined and cannot be redefined by the user. The following
reserved labels are available:

o § - Refers to the location to be allocated as a result of the statement in which it
appears as a reference (i.e., the current location). It can be either an internal
location or common location label type.

o $AF - Refers to the address form of the system configuration. A value of 1
indicates that the system configuration is the short-address form configuration; a
2 indicates a long-address form configuration. $AF is an internal value label.

o $IV - Refers to the address of the interrupt vector for the priority level at which
the application is currently executing. A description of interrupt vectors and
priority levels can be found in the Executive and Input/Output manual.

TABLE 2-1. DEFINING BES SYMBOLIC NAMES

Type How Defined

Internal location label Appears in label field of an assembly language instruction or
Assembler control statement (except EQU or COMM
statements) when the location counter type attribute (set
by the ORG statement) is internal.

External location label ~ Appears in the operand field of an X1.OC statement.

Common location label ~ Appears in the label field of a COMM statement; or appears
in label field of an assembly language instruction or
Assembler control statement (except EQU or COMM
statements) when the location counter type attribute (set
by the ORG statement) is common.

Internal value label Appears in label field of an EQU statement that has an
expression that yields a scalar arithmetic value in the
operand field.

External value label Appears in the operand field of an XVAL statement.

Complex label Appears in the label field of an EQU statement that

contains an address expression in the operand field; or
appears in the label field of an EQU statement that contains
a label identifying another EQU statement that contains an
address expression in the operand field.

Same as operand Appears in the label field of an EQU statement that
contains an operand other than one of those listed above;
e.g., an identifier.

CONSTANTS

Arithmetic and nonarithmetic values can be expressed in decimal, hexadecimal,
character, or binary form, all of which are converted by the Assembler to the
appropriate machine code format. Depending on the context, such values may be
assigned as object code or be used by the Assembler in the computation of operand
locations or values.

The following types of constants are supported:

o String constants
o Arithmetic constants

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-3

AU43

String Constants
String constants can be expressed as ASCII, hexadecimal, or bit strings. Regardless
of how they are expressed, string constants have the following format:

A
[(n)] Zi'cle...]’
B

()]
Specifies an optional decimal integer in the range from 1 to 255, which represents
the replication factor (number of times the coded string is to be repeated.

i

Specifies whether the string is expressed in ASCII (A; default if none of these values is
specified), hexadecimal (Z), or bit (B).

‘clc...]”
Identifies the character(s) in the string; to include an apostrophe, a double apostrophe
must be specified (i.e., ™ is interpreted as).

String constants are left-justified.

ASCII String Constants

An ASCII string constant is written as the letter A (optionally) followed by a string
of any of the valid ASCII characters enclosed within apostrophes.

An ASCII string constant denotes the value formed by replacing all double
apostrophes by a single apostrophe and removing the delimiting apostrophes.

The value of an ASCII string constant cannot be more than 255 ASCII characters
(each of which is eight bits long).

The format of an ASCII string constant is as follows:

[(m)] [A]’a[a...]’
The following examples illustrate how to specify ASCII string constants:

1. "ASCII SAMPLET’
2. A’ASCH SAMPLE2’
3. (4)A 'DATAL’

The characters enclosed within the apostrophes can be any character shown in
Table B-4. The examples shown above result in the following values being stored in
memory, respectively:

1. ASCII SAMPLEI
2. ASCII SAMPLE2
3. DATAA DATAA DATAA DATAA

Hexadecimal String Constants

A hexadecimal string constant is written as the letter Z followed by a string of any
of the valid hexadecimal digits (i.e., O through F) enclosed within apostrophes.

A hexadecimal string constant denotes the value formed by replacing the characters
contained within the delimiting apostrophes with their binary values and removing the
delimiting apostrophes.

The value of a hexadecimal string constant cannot be more than 510 hexadecimal
digits (each of which is four bits long).

The format of a hexadecimal string constant is as follows:

[m] Z'h[h...]’

The following example illustrates how to specify a hexadecimal string constant:

ELEMENTS OF BES
ASSEMBLY LANGUAGE 24 AU43

7'5449544C452053414D504C4531"
This example translates into TITLEA SAMPLE] (see Appendix B).

Bit String Constants

A bit string constant is written as the letter B followed by a string of binary digits
(i.e.,0 and 1) enclosed within apostrophes.

‘A bit string constant denotes the value formed by converting the 0 and 1 characters
contained within the delimiting apostrophes to 0 and 1 bits.

The value of a bit string constant cannot be more than 2040 binary digits (each of
which is one bit long).

The format of a bit string constant is as follows:

[((m)] B'd[d...]”
The following example illustrates how bit string constants are expressed:
B’00011010°

This bit string provides an 8-bit mask that can be used by an assembly language
instruction.

Truncation/Padding of String Constants

Various statements require a half-word (8-bit) value, whole-word (16-bit) value, or a
value that is an integral number of words in length. In order to satisfy these
requirements, string constants are automatically truncated or padded.

If truncation is required, low-order (i.e., the rightmost) bits are discarded, and the
Assembler issues a diagnostic message.

If padding is required, low-order bits are appended to the value. ASCII string
constants are padded with spaces; hexadecimal and bit strings are padded with O’s.

Table 2-2 describes how the Assembler handles the various situations that require
truncation or padding.

TABLE 2-2. RULES OF TRUNCATION/PADDING STRING CONSTANTS

If a string constant appears: It is converted to:

In a nontrivial arithmetic expression A whole-word value.

As the only term of the operand of a A half-word value.

short value immediate (SI) instruction

As the only term of an operand of a A value having a length that is an integral

DC Assembler control statement number of words; such string constants
are never truncated.

As the operand of a TEXT Assembler A string having an initial bit offset which

control statement is a multiple of 4 (for hexadecimal string

constants) or a multiple of 8 (for ASCII
string constants) with slack bits inserted
between successive operands. A bit string
constant can begin at any bit position;
slack bits never precede a bit string
operand.

In any context not listed above A whole-word value.

NOTES: 1. If two or more rules apply to the same string constant, the first takes
precedence.

2. Refer to specific statements identified in this table for additional
information.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-5 AU43

Arithmetic Constants
An arithmetic constant specifies the value of a real number. An arithmetic constant
is either an integer constant, fixed-point constant, or a floating-point constant.

Integer Constants

Integer constants can be expressed as decimal or hexadecimal integers. They may be
preceded by a plus (+) or minus (-) sign, indicating a positive or negative value,
respectively, and must be within the range -32768 to +32767; if unsigned, an integer
constant is assumed to be positive.

Integer constants have the following format:

+ n[n...]
- X'hfh..]’

+

Specifies whether the value is positive (+; the default value) or negative(-).

n[n...]
Is a decimal integer constant as defined below.

Xh[h...}’
Is a hexadecimal integer constant as described below.

Decimal Integer Constants

Decimal integer constants are expressed as character strings composed of the
decimal digits O through 9.

The following examples illustrate valid decimal integer constants:

1. 31764
2. +4652
3. -6781

Hexadecimal Integer Constants

A hexadecimal integer constant is written as the letter X followed by a character
string composed of the hexadecimal digits O through 9 and A through F enclosed
within apostrophes.

The following examples illustrate hexadecimal integer constants:

1. +X2F’
2. X"TFFF’
3. -X"8000°

Using Table B-3, you can see that the decimal equivalent of the above examples is
+47,+32767, and -32768, respectively.

Fixed-Point Constants

A fixed-point constant is written as a decimal number with an associated scale
factor. When the resultant value is stored in memory, a fixed-point constant appears as
a signed integer word with negative values in twos complement form. The scale
factor (s) gives the location of the implied binary point in the stored constant. A
positive scale factor means that the point is situated s bits to the left of the rightmost
bit stored in memory. A negative scale factor means that the point is situated s bits to
the right of the rightmost bit stored in memory. Thus, a fixed-point value can be
ccS)nsidered to be written as the product formed by multiplying the decimal number by
2°,

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-6 AU43

Fixed-point constants have the following format:
+141 [If]] [+]
[-]{[i] FB s
Specifies the sign of the constant. The + sign may be omitted.

Specifies the integer part of the decimal number.

Specifies the fractional part of the decimal number.
[£]s
Specifies the value and sign of the scale factor.

The value of a fixed-point constant must fall within the range

7SR 2158

where R is the value of the decimal number.
The following examples illustrate how to specify fixed-point constants and show
the hexadecimal representations of the resultant values in memory.

Source Language Stored Vaiue
2.5B4 0028
2.5B8 0280
65536B-15 0002
65536B-7 0200
-2.5B8 FD8O0
-65536B-15 FFFE

Floating-Point Constants

BES assembly language provides a convenient method with which you can write a
decimal number and have the Assembler convert it into floating-point format. (See
Section 1 for a description of floating-point data.)

Two formats for writing floating-point constants are available:

Format 1
[+]{ [i]' [_ff] } SHORT PRECISION
Format 2
[+]{[i] [,ff] } E [+] c SHORT PRECISION POWER-OF-10
[£]

Specifies the sign of the constant. The + sign may be omitted if desired.
Specifies the integer part of a decimal number.

Specifies the fractional part of a decimal number.

E
Indicates that a short precision power-of-10 floating-point representation is desired.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 27

AU43

[£]lc

Expresses the power of 10 by which the coded decimal number should be
multiplied to produce the value wanted. The + sign may be omitted if desired.

NOTE: If the decimal point is omitted, the number is assumed to be an integer.

The absolute value of a floating-point constant must be greater than or equal to
27260 (approximately 3.3753 x 1078°) and less than 2252 (approximately
4.7428 X 1089),

Normalization

Floating-point constants are stored as normalized hexadecimal floating-point
numbers with a 7-bit excess 64 power-of-16 characteristic and a 25-bit signed
magnitude mantissa. A normalized floating-point number has a nonzero high-order
hexadecimal fraction digit. If one or more high-order fraction digits are zero, the
number is said to be unnormalized. Normalization consists of shifting the fraction left
until the high-order hexadecimal digit is nonzero and reducing the characteristic by the
number of hexadecimal digits shifted.

Examples

The following examples illustrate how to specify floating-point constants and show
the hexadecimal representations of the resultant values in memory. You can determine
sign, characteristic, and mantissa of the resulting floating-point numbers by dividing
the hexadecimal representations into parts according to the patterns described in
Section 1.

Source Language Stored Value
0.5 8080 0000
0.5E12 9474 6A52

6.665039063E-2 8011 1000

-6.665039063E-2 8111 1000

EXPRESSIONS

Expressions are combinations of symbolic names and constants used as operands
within Assembler control and assembly language (machine) instructions. Expressions
can represent locations (internal or external), values, and addresses. Components of an
expression can be joined by various functions and arithmetic operators, as follows:

Arithmetic Operator Meaning

+ Addition (or Unary +)
- Subtraction (or Unary -)
* Multiplication

/ Division

Boolean Function Meaning

AND Conjunction

OR Inclusive Disjunction
XOR Exclusive Disjunction
NOT Negation

Shift Functions Meaning

ALS Arithmetic Left Shift
ARS Arithmetic Right Shift
LLS Logical Left Shift
LRS Logical Right Shift

ELEMENTS OF BES
ASSEMBLY LANGUAGE 28

AU43

Arithmetic Function Meaning
MOD Remainder after division

When a value is operated upon by an arithmetic operator or function or by an
arithmetic shift function the value is considered to be a 16-bit signed (twos
complement) binary integer. When a value is operated upon by a Boolean or logical
shift function the value is considered to be a 16-bit string. You must ensure that the
results of a Boolean or shift operation will be meaningful when subsequently
interpreted as an integer value by the Assembler.

To use a function within an expression you write the function name followed by its
operands, enclosed in parentheses and separated by a comma; e.g., AND
(TAG1,TAG2).

Evaluating Expressions

Within an expression you may use parentheses to eliminate ambiguities or to specify
the order of evaluation. Expressions within parentheses are evaluated first. Within
nested parentheses, evaluation proceeds from the least inclusive set to the most
inclusive. If parenthesized expressions are at the same level of inclusiveness or if
parentheses are not used, the following hierarchical order of evaluation applies:

All functions

Unary plus and minus
Multipiication and division
Addition and subtraction

W —

Once the values resulting from these operations have been computed, evaluation
proceeds from left to right.

Location and Value Expressions

The Assembler permits expressions to be used to specify values and locations. An
internal value expression denotes a computation to be performed by the Assembler and
produces an integer scalar value.

A location expression denotes a computation of an address that can be internal to
the referencing program, in a separately assembled program (i.e., external to the
referencing program), or in a common memory block.

Internal Value Expressions

An internal value expression, which produces an integer scalar value, is written as a
sum-of-products algebraic expression. The product portion consists of two or more
factors to be multiplied or divided as indicated by the * or / operators, preceding the
multiplier or divisor factor. In addition, each factor can be preceded by a unary plus
{(+) or minus (-) operator.

Each factor of the product portion of the expression must be an internal value
expression enclosed within parentheses, an integer or string constant (see “Constants”
in this section), or an internal value label (see “Labels” in this section).

The sum portion of the algebraic expression consists of two terms to be added or
subtracted as indicated by the + or - operator preceding the addend or subtrahend
term. In addition, each term can be preceded by a unary plus (+) or minus (-) operator.

Each sum of an internal value expression must take one of the following forms:

o An internal value expression plus or minus an integer or string constant, an
internal value label, an internal value expression enclosed within parentheses, or
a product of such terms

o The difference between two internal locations

o The difference between two common locations within the same common block

ELEMENTS OF BES
ASSEMBLY LANGUAGE 29 AU43

The following examples illustrate internal value expressions. In these examples,
labels of the form VALc are internal value labels, labels of the form LOCc are internal
location labels, and labels of the form COMMc are common location labels.

Example 1:
X'34F0'+(VALS8-(VALB/(X'E4'*2)))
In this example, the expression is evaluated as follows:

1. The product of X'E4'*2 is calculated.

2. The value associated with VALB is divided by the product of step 1, above.

3. The quotient of step 2, above, is subtracted from the value associated with
VALS.

4. The difference calculated in step 3, above, is added to X'34F0Q’

Example 2:
B’11110110"+(COMM1-COMM?2)/2*(54+VALF-(LOCA-LOCB))

The expression in example 2 is evaluated as follows:

The difference between LOCA and LOCB is calculated.

The difference between COMM1 and COMM?2 is calculated.

The sum of 54 and value associated with VALF is calculated.

The result of step 1, above, is subtracted from the result of step 3.

The result of step 2, above, is divided by 2.

The quotient calculated in step 5 is multiplied by the result of step 4.

The bit string constant B’11110110" is padded to occupy a full word and added
to the result of step 6.

NouA W~

Location Expressions
Location expressions are used to express computations to be used by the
Assembler. There are three types of location expressions:

o Internal location expressions - Refer only to values that are defined within the
referencing program.

o External location expressions - Refer to one memory address defined in an
external program and may refer to elements within the referencing program.

o Common location expressions - Refer to one or more locations within common
blocks and may refer to elements within the referencing program.

Each of the above types of location expressions produces a memory address.

Internal Location Expressions
Internal location expressions, which produce a memory address based upon a
computation using only internal values, must take one of the following forms:

o An internal location expression plus or minus an integer or string constant, an
internal value label, or an internal value expression enclosed within parentheses.

o An internal value expression plus an internal lbocation label, an internal location
expression enclosed within parentheses, or a § (which is valid only if the
Assembler’s location counter type attribute is internal when the expression is
processed).

The following example illustrates internal location expressions. In this example,
labels of the form LOCc are internal location labels.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-10 AU43

Example:
(LOC3-LOCD)+X'30F2'+LOCA
The expression in this example is evaluated as follows:

1. The address associated with LOCD is subtracted from the address associated
with LOC3 yielding an internal value.

2. X’'30F2’ is added to the result of step 1 yielding another internal value.

3. The address associated with LOCA is added to the result of step 2 yielding an
internal location as the final result.

External Location Expressions

External location expressions, which produce a memory address based upon a
computation using external location labels and internal values, must take one of the
following forms:

0 An external location expression plus or minus an integer or string constant, an
internal value label, or an internal value expression.

o An internal value expression plus an external location label or an external
location expression.

The following example illustrates an external location expression. In the example,
labels of the form XLOCc are external location labels and labels of the form VALc are
internal value labels.

Example:
((VALI+VALA)+XLOC2)X"2A22’

This sample expression is evaluated as follows:

1. The values associated with VAL1 and VALA are added together.
2. The offset associated with XLOC?2 is added to the result of step 1.
3. X"2A22’ is added to the result of step 2.

Common Location Expressions

Common location expressions, which produce a memory address based upon a
computation using one or more locations within a common block and internal values,
must take one the following forms:

o A common location expression plus or minus an integer or string constant, an
internal value label, or an internal value expression.

o0 An internal value expression pius a common location label, a common location
expression, or a § (which is valid only if the assembler’s location counter type
attribute is common when the expression is processed).

A memory address referring to a common block is represented by the name of the
common block and an optional offset from the beginning of that common block.

The following example illustrates a common location expression. In the example
COMMc is a common location label and labels of the form VALc are internal value
labels.

Example:

((COMMA+42)-(COMMA+80))-VAL2)*2+X'1000+COMMB

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-11 AU43

The expression in this example is evaluated as follows:

The difference between COMMA+42 and COMMA+80 is calculated.

The value associated with VAL2 is subtracted from the result of step 1.

The result of step 2 is multiplied by 2.

X'1000" is added to the result of the calculation in step 3.

The offset associated with COMMB is added to the result of step 4. This offset is
then associated with the name of the common block containing COMMB to
complete the evaluation of this expression.

(O N NV N S

Address Expressions

An address expression specifies the addressing form used in an instruction. It
contains special character identifiers that are assembled into corresponding object code
to control run-time address development processes such as indirection and indexing.

The various forms of address expressions permitted by the Assembler are described
in detail in Section 5 (see “Addressing Techniques™).

Function Examples

VAL EQU X'100'

VAL2 EQU X'10F’

VAL3 EQU 3

LOC1 EQU §$ (at location 200 hexadecimal)
AND

DC <LOC1+AND(VALI3VAL?2)
resolves to address 300 hexadecimal

OR

DC <LOCI1+OR(VALIVAL2)
resolves to address 30F hexadecimal

XOR

DC <LOC1+XOR(VAL1,VAL2)

resolves to address 20F hexadecimal
NOT

VAL4 EQU NOT(VAL2)

resolves to value FEFO hexadecimal
ALS

VALS5 EQU ALS(VALI1,VAL3)

resolves to value 800 hexadecimal)
ARS

VAL6 EQU ARS(VALI1,VAL3)

resolves to value 20 hexadecimal
LLS

VAL7 EQU LLS(VAL2,12)

resolves to value FOOO hexadecimal
LRS

VALS EQU LRS(VAL2VAL3)

resolves to value 21 hexadecimal
MOD

VAL9 EQU MOD(VAL2,VAL1)
resolves to value F hexadecimal

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-12

AUA43

REFERENCES

References are the use of symbolic names as labels in assembly statements to refer
to locations or values.
The employment of references is dependent upon two conditions:

1. The resolution of labels by the two-pass BES Assembler.
2. The position of the referencing statement within the body of the program.

A simple rule may always be applied to determine the validity of a reference: the
reference to a label is legitimate if during the second assembly pass, at the point in the
program where the referencing statement is positioned, the value of the label being
referred to, has been defined.

References may be made either forward or backward. A forward reference is a
reference to a label that is defined after the referencing statement. A backward
reference is a reference to a label defined in a statement before the referencing
statement.

Further, forward or backward references may be categorized as either simple or
complex. A simple reference is a forward or backward reference to a label that is
directly defined by the referenced statement. A complex reference is a forward or
backward reference to a label defined by an equate (EQU) statement that in turn
makes at least one additional reference.

Example:
References
A DC 13
G DC 7

LDR $R1,A (Valid simple backward reference)
LDB $B1,X (Valid simple forward reference)

W EQU E
B EQU G
LDR SR2.E (Invalid complex forward reference (label E not defined at
this point))
LDR $R3,W (Invalid complex backward reference (label W can never be
defined in a two-pass assembly))
E EQU D
LDR $R4,E (Valid complex backward reference (label E has been defined
at this point))
LDR $R5,C (Valid complex forward reference (label C has been defined
in the first assembly pass))
C EQU B
D RESV 1
X DC 3

Restrictions that apply to references are as follows:

1. All forward references to a label defined by a complex equate statement are
invalid.

2. A forward reference in an origin (ORG) or common (COMM) statement is
invalid.

3. A forward reference in the first operand of a reserve (RESV) or conditional
assembly control IFxx statement is invalid.

4. A complex reference involving one or more intermediary equate statements
making a forward reference is invalid.

ELEMENTS OF BES
ASSEMBLY LANGUAGE 2-13 AU43

SECTION 3

PROGRAMMING
CONSIDERATIONS

Before writing an assembly language source program, you should take into
consideration both features and constraints inherent in the design of the Assembler and
the system. This section describes the considerations that should be made, as well as
the various rules that must be followed, when coding your source program. These
include:

o Rules of formatting your source language statements

o Ordering of statements in an assembly language program

o Rules governing the calling of system services and external procedures
o Utility programs that supplement assembly language source programs

ASSEMBLY LANGUAGE SOURCE STATEMENT FORMATS

As mentioned in Section 2, the BES assembly language consists of Assembler
controlling statements and assembly language (operational) instructions. Assembly
language source code must be submitted to the Assembler in a recognizable format so
that it can be interpreted accurately. Therefore, when coding assembly language source
statements, you must conform to the following formatting conventions:

Column 1
A A A
labelA opcode { Aoperand{ ,operand { ,operand[...] [Acomments]
linenumA A ; ;

linenum-labelA

The semicolon (;) indicates to the Assembler that the next operand is contained in
the next sequential source line (i.e., the continuation statement), which has the
following format:

Column 1 —l ‘

[linenum] [A] { Aoperand v{:operand[...] }} [Acomments]

A A

In addition to comments being included on individual assembly language source
statements, comment statements, which have the following format, can be included
in the source language program.

Column 1 —
*

{ / } comments

The asterisk (*) indicates that the comment line is to be included in the listing
wherever it is included in the source language program. The slash (/) indicates that the
printer is to skip to the top of the next page of the listing before printing the
comment. Printing of lines can be overridden by the inclusion of a NLST Assembler
control statement in the source code (see Section 4).

In the above formats, label is any user-specified tag, linenum is any user-specified
line number, linenum-label indicates a line number followed by a label with no

PROGRAMMING CONSIDERATIONS 3-1 AU43

intervening spaces, opcode and operand indicate the required assembly language fields
described in Sections 4 and 5, and blank (A) indicates that one or more blanks or
horizontal tab characters must be coded. Any number of blanks and/or horizontal tab
characters can follow a comma (,). A line number is an unsigned decimal integer of any
length. Line numbers are ignored by the Assembler. '

Except for the order in which information must be supplied, the source language
format is free-form. However, it is suggested that you establish a fixed format for
coding source statements (e.g., always starting opcodes in the eleventh position and
operands in the twenty-first) so that you can read your listing more easily.

ORDER OF STATEMENTS IN SOURCE PROGRAM

With the following exceptions, Assembler control statements can be entered in any
order:

1. The TITLE statement must be the first statement in the source program.

2. The EQU statement must define complex type labels before they are referred to
within the source program.

3. The END statement must be the last statement in the source program.

However, to simplify the reading of listings, it is recommended that you group all of
the memory allocating Assembler control statements (e.g., DC, TEXT, RESV) at the
beginning of your program (immediately following the TITLE statement), except for
the conditional assembly-control Assembler control statements (i.e., IF, NULL, FAIL).

Assembly language instructions are coded in the order in which they are to execute.

CALLING SYSTEM SERVICES

System services (e.g., the Task Manager) can be requested by coding a request
sequence similar to the following:

SAVE <savloc,2'639C’
LNJ §B5,<entry

In the above sequence, ‘savloc’ is the label of the context save area and “entry” is the
external label of the appropriate entry point of the system service routine.

The X'639C’ operand results in saving the contents of the following hardware
registers: R1, R2, R6, R7, I, B3, B4, B5. It may be necessary to save their contents
because the various system services use these registers and may alter their contents.
Any but the I-register can be used to pass arguments to the requested system service,
and any register not used by the system service (i.e., R3, R4, R5,Bl, B2, B6, B7) can
be made available for the service to return a value to the requesting program.

All system services execute a JMP $BS5. For that reason, the LNJ instruction must
identify B5 as the register containing the return address. ,

For additional information about calling system services, see the Software Overview
and System Convention manual.

CALLING EXTERNAL PROCEDURES

Procedures that are assembled separately from the invoking procedure are
designated external procedures.

The individual elements of data passed to an external procedure are known as
arguments. The external procedure interprets these arguments as parameters; to the
external procedure, the order of the parameters is the same as the order of the
arguments passed from the invoking procedure.

" PROGRAMMING CONSIDERATIONS 32 AU43

Although the standard calling sequence does not allow reentrant code, an external
procedure can be reentrant (i.e., it can be used by more than one program
concurrently), provided the following rules are observed:

1. The only work space used by the external procedure comprises (1) the
parameters passed to it and (2) the hardware registers.

2. All the arguments to be passed in nested external procedure invocations are
constants.

In other words, an external procedure can be reentrant if the invoking program
provides the required work space and formally passes it to the external procedure.

External procedures can be requested by coding request sequences such as the
following:

LAB §B7 ,arglist
LNJ $B5,<entry

In the above sequence, ‘entry’ is the external label of the appropriate entry point of
the called (external) procedure, and ‘arglist’ is the argument list to be passed to the
called (external) procedure.

Alternatively, you could use a request such as the following:

CALL entry,argl ,arg2....

This request is similar to the preceding sequence except that the CALL Assembler
control statement automatically generates the argument list, ioads its address into B7,
and sets the return address in B5. As a result, when the external procedure completes
its work, control is returned to the next sequential instruction or statement in the
calling program.

For additional information about calling external procedures, see the Software
Overview and System Conventions manual.

ASSEMBLER-RELATED UTILITY PROGRAM

A special Assembler-related utility program is available to assembly language
programmers. The cross-reference utility program, which is described in detail in the
Program Development Tools manual, provides a listing of all labels and symbols in the
source module. In addition, it flags labels that are undefined or defined more than
once. ‘

The listing includes the label, the location at which it is defined and a list of all
locations that refer to that label. The list of labels is alphabetical; the locations that
refer to each label are listed in ascending sequence.

BES ASSEMBLER

The BES Assembler processes source statements written in BES assembly language,
translates the statements into object code, and produces a listing of the source program
together with its associated assembly information.

The Assembler accepts arguments that allow you to control its operation in various
ways. Detailed information about the Assembler and its arguments can be found in the
Program Development Tools manual.

Scientific Instruction Processor (SIP) Programming Considerations
Since the SIP and the Level 6 central processor operate asynchronously, you must
ensure that they do not come into conflict by attempting to use a main memory

PROGRAMMING CONSIDERATIONS 33 AU43

operand concurrently. You can guarantee proper synchronization by obeying the
following rules:

1. If the source field of any of the following instructions refers to a main memory
location or R-register, do not modify that location or register until a scientific
branch instruction or another floating-point instruction is executed:

SAD SML
SCM SNGD
SCZD SNGQ
SCZQ SSB
SDV SSw
SLD

2. If the result field of any of the following instructions refers to a main memory
location, do not modify that location until a scientific branch instruction or
another floating-point instruction is executed:

SNGD
SNGQ
SST
SSW

Descriptions of the above instructions can be found in Section 5 under ‘“‘Assembly
Language Instructions.”

PROGRAMMING CONSIDERATIONS 34 AU43

SECTION 4

ASSEMBLER CONTROL
STATEMENTS

Every assembly language program must contain, in addition to the assembly
language instructions, a set of instructions that tells the Assembler about the program.
These Assembler control statements, which are not assembled into the object text,
provide information to the Assembler for:

o Controliing the assembly of the program

Controlling the listing of assembly language instructions and Assembler control
statements

Defining constants to be used by the program

Defining main memory storage and/or work areas

Defining symbols

Linking assembly language programs

Conditioning the assembly of various parts of a program

o 0 O OO0

Assembler control statements must be coded as described in Section 3 (see
“Assembly Language Source Statement Formats’), except that some explicitly
prohibit the use of labels. For that reason, each Assembler control statement described
in this section identifies labels where they are required or permitted; when not shown
under “Source Language Format,” labels are not allowed.

ASSEMBLY-CONTROLLING STATEMENTS

Assembly-controlling statements tell the Assembler where the beginning and end of
each program are; they also set the Assembler’s location counter.

The following statements are the assembly-controlling subset of Assembler control
statements:

o END
o ORG
o TITLE

These statements are described in detail later in this section.

LIST-CONTROLLING STATEMENTS

List-controiling statements control the listing of an assembly language source
program via a printer, disk, or console typewriter. The following statements are
available to provide this function:

o CLST
o LIST
o NLST

These statements are described in detail later in this section.

DATA-DEFINING STATEMENTS

Data-defining statements are required to define data used in the object text. The
Assembler assigns this data to memory locations at the exact point at which they are

ASSEMBLER CONTROL STATEMENTS 4-1

AU43

defined. The following statements are the data-defining subset of the Assembler
control statements:

o DC
o TEXT

These statements are described in detail later in this section.

STORAGE-ALLOCATION STATEMENTS

Storage-allocation statements direct the Assembler to make areas of memory
available for use as storage and/or work space. This subset of the Assembler control
statements consists of the following statements:

o COMM
o RESV

These statements are described in detail later in this section.

SYMBOL-DEFINING STATEMENTS

Symbol-defining statements assign specific meanings to given symbolic names; they
also may identify symbolic names defined outside the program but used within it. The
assembler control statements provided to support the symbol-defining function are:

o EQU
o XLOC
o XVAL

These statements are described in detail later in this section.

PROGRAM-LINKING STATEMENTS

Large programs are often written as several separately assembled smaller programs.
At execution time, it is necessary for these separately assembled programs to establish
communication links. The linking processes (see the Program Development Tools
manual) use information from the following program-linking statements to assign final
addresses and/or data values to be used by the separately assembled procedures (i.e.,
programs) common to a single assembly language program:

o CALL
o CTRL
o XDEF

The program-linking statements are described in detail later in this section.

CONDITIONAL ASSEMBLY-CONTROL STATEMENTS

Conditional assembly-control statements allow a comprehensive source program to
be written to cover many situations. Then, during assembly, they can direct the
Assembler to assemble or inhibit assembly of particular assembly language instructions
(and/or groups of assembly language instructions) when specific conditions occur. The
following statements provide the Assembler with information for conditional
assembly:

o FAIL

o IF
o NULL

ASSEMBLER CONTROL STATEMENTS 42 AU43

CALL

These statements are defined in detail later in this section.

ASSEMBLER CONTROL STATEMENTS

The remainder of this section lists and describes the Assembler control statements
in alphabetical order. The descriptions include the expanded name of the statement, its
source language format (including the label field, where it is permitted or required), a
detailed description of what the statement does, and a description of each of its
operands.

Information about the various symbolic names identified in the statements is
contained in Section 2.

CALL

Instruction:
Call external procedure

Source Language Format:
[label]ACALLA[obj-mod-name.] entry[,argl[,...,arg31]]

Description:
Initiates a transfer of control to a specified external subroutine.

The operands have the following meanings:
obj-mod-name.
If specified, it is the object text name of the external procedure; otherwise, it is
assumed to have the same name as the entry point (entry).
entry
Identifies the entry point in the procedure to which control is transferred.
argl,...arg31
If specified, provides addresses of arguments to be passed.

If the argument list is not included, the CALL statement is broken down by the
Assembler as follows:

CTRL LINK obj-mod-name
XLOC entry

LAB $B7 =1

LNJ $BS <entry

If the argument list is included, the CALL statement is broken down as follows:

CTRL LINK obj-mod-name
XLOC entry

LAB $B7,$+SAF+3

LNJ $B5 ,<entry

B >$+n*§AF+1

DC <argl[,<arg2?]...

The XLOC statement shown in the breakdowns provides a temporary label that is
not entered into the Assembler’s symbol table, and ceases to exist after the LNJ
instruction is executed. The term n, shown in the B-instruction in the second break-
down is an internally computed constant equal to the number of arguments

ASSEMBLER CONTROL STATEMENTS 4-3 AU43

CALL /CLST /COM / CTRL

specified in the CALL statement; this makes it possible for the Assembler to branch
around the DC statement(s).

Additional information about calling external procedures can be found in the
Software Overview and System Conventions manual.

CLST

Instruction:
Conditional Listing

Source Language Format:
[label] ACLSTAint-val-expression

Description:

If the internal value expression is = 0, the CLST statement does not appear in the
assembly listing. If the internal value expression is < 0, the CLST statement appears in
the assembly listing with an error flag (Z-conditional assembly error). The comment
field may be used to provide additional information concerning the error. The label of
a CLST statement is not entered into the Assembler’s symbol table.

COMM

Instruction:
Define common block

Source Language Format:
[label] ACOMMAint-val-exp

Description:
Allows you to define a common block compatible with FORTRAN common areas.

The label field and operands have the following meanings:

label
If specified, the common area is given that name; otherwise, it is unlabeled (i.e.,
blank) common, and is given the symbolic name $COMM (by implication).
int-val-exp
Specifies the size (in words) of the common area. The Linker (see the Program
Development Tools manual) assigns all common blocks with the same name to the
same memory area regardless of the memory location in the source program at

which they are defined (i.e., the COMM statement does not alter the Assembler’s
location counter.)

int-val-exp is an internal value expression (see Section 1), and must be defined prior
to the occurrence of this COMM statement. It must not contain a forward

reference. Elements in a common block can be referenced by the name of the
common block plus the element’s displacement within the block.

CTRL

Instruction:
Pass control information to Linker

ASSEMBLER CONTROL STATEMENTS 44 AU43

CTRL /DC

Source Language Format:

ACTRLAcommand-line

Description:

Provides a method of passing Linker commands from the source program to the Linker
(see the Program Development Tools manual for a description of the Linker).

The operand has the following meaning:

command-line

Specifies data to be passed verbatim to the Linker as part of the program’s object
text (i.e., it is not verified by the Assembler).

DC

Instruction:
Define constant(s)

Source Language Format:

< temporary-label

string-constant
arithmetic-constant }[,. |
internal-value-label
external-value-label
internal-value-expression
complex-label

{ location-expression }

[label] ADCA <

[o—" [y pu— [— fo— f—
LN LI L [{1}
[RSy Yy T WA W

Description:

Defines data to be included in the object text. The Assembler interprets the constants,
converts them to the proper binary representation, and assigns them to successive
memory locations at the exact point at which the DC statement appears in the source
program. :

The operands have the following meanings:

location-expression
< temporary-label

Causes a 1- or 2-word address pointer, as appropriate, to be allocated.
[=]string-constant
~ Is padded, if necessary, to make an integral number of words; the padded value is
allocated to memory.
[=]arithmetic-constant _
Causes a 1- or 2-word real binary number to be allocated.
[=]internal-value-label

[=]external-value-label
[=]internal-value-expression

Causes a 1-word binary integer to be allocated.

ASSEMBLER CONTROL STATEMENTS 4-5 AU43

DC / END / EQU

[=] complex-label
Processed as described above for:

location-expression
< temporary-label

external-value-label, or internal-value-expression, depending on whether the label
has been equated to a direct immediate memory form of addressing or an internal
value immediate operand form of addressing. No other form of addressing can be
used.

Detailed descriptions of the various types of labels, constants, and expressions can be
found in Section 2 (e.g., internal-value-label is described under ‘Labels,” string-
constant is described under ‘““Constants,” and location-expression is described under
“Expressions”).

END

Instruction:
End of program

Source Language Format:
AENDAprogram-name|[,internal-location-expression]

Description:

Identifies the end of the assembly language program. This Assembler control statement
must be the last statement in every assembly language source program.

The operands have the following meanings:

program-name
Must be the same program name specified in the source program’s TITLE
statement.

internal-location-expression

If specified, it identifies the program’s normal entry point. (See “Expressions” in
Section 2 for a description of internal location expressions.)

EQU

Instruction:
Equate

Source Language Format:

location-expression

internal-value-expression
Jabel AEQUA address-expression

complex-label

identifier

fixed-point-constant

ASSEMBLER CONTROL STATEMENTS 4-6 AU43

EQU / FAIL / IF

Description:

Assigns the value identified in the operand field, together with all of its associated
attributes, to the label.

The operands have the following meanings:

fixed-point-constant
location-expression
internal-value-expression

The label is treated by the Assembler as the same type as the operand (see
“Expressions” in Section 2).

address-expression

complex-label

The label is treated as a complex type (see “Expressions” and “Labels” in
Section 2).

NOTES: 1. The address expression cannot be a hexadecimal string constant as defined
under “Immediate Memory Addressing” in Section 5.
2. Complex iabeis cannot contain externai or common references.

identifier _
The label is treated as an identifier that is equivalent to this one (see “Identifiers” in
Section 2).

FAIL

Instruction:
Identifies a statement that should never be assembled.

Source Language Format:
[label] AFAIL

Description:

If the FAIL statement is assembled, an Assembler error flag (Z-conditional assembly
error) is generated.

The FAIL statement is used in conditional assemblies to ensure that the prevailing
conditions are logically consistent.

If the statement is labeled, the label is not entered into the Assembler’s symbol table;
as a result, it can be referred to only by a preceding IF statement.

IF

Instruction:
Conditional skip

Source Language Format:

oD
P
[label] AIF [N] <N, ¢ Aint-val-expression,int-loc-label
Z
EV

ASSEMBLER CONTROL STATEMENTS 47 AU43

IF / LIST

Description:
If the specified condition is met, the Assembler skips subsequent statements until the
label is encountered; otherwise, the next sequential instruction is processed.

The opcode is interpreted as follows:

IFP
Skip to int-loc-label if int-val-expression is positive.

IFNP
Skip to int-loc-label if int-val-expression is not positive.

IFN
Skip to int-loc-label if int-val-expression is negative.

IFNN
Skip to int-loc-label if int-val-expression is not negative.

IFZ
Skip to int-loc-label if int-val-expression is zero,

IFNZ
Skip to int-loc-label if int-val-expression is not zero.

IFOD
Skip to int-loc-label if int-val-expression is odd.

IFEV
Skip to int-loc-label if int-val-expression is even.

The operands have the following meanings:

int-val-expression
Internal value expression (see ‘‘Expressions’ in Section 2); forward references are
not permitted.

int-loc-label

Internal location label (see “Labels” in Section 2) identifying the location of the
next statement or instruction to be processed by the Assembler if the condition is
met. ‘

If a label is specified, it is not entered in the Assembler’s symbol table; as a result, it
can be referred to only by a preceding IF statement.

LIST

Instruction:
List following source statements

Source Language Format:

ALIST

Description:

Causes subsequent assembly language instructions and Assembler control statements to
be included on the assembly listing. Listing of the statements continues until the end
of the program or until an NLST Assembler control statement is encountered.

ASSEMBLER CONTROL STATEMENTS 4-8 AU43

NLST / NUL / ORG

NLST

Instruction:
Inhibit listing of following source statements

Source Language Format:
ANLST

Description:

Prevents subsequent assembly language instructions and Assembler control statements
from being included in the assembly listing. Listing of the statements continues to be
inhibited until the end of the program or until a LIST Assembler control statement is
encountered.

This statement overrides the use of * or / comment source statements (see Section 3).

NULL

Instruction:
No effect; processing continues

Source Language Format:
[label] ANULL

Description:
Has no effect on the assembly process.

This Assembler control statement is commonly used to define a label referred to by an
IF statement. Processing continues with the next sequential instruction.

If the statement is labeled, the label is not entered into the Assembler’s symbol table;
as a result, it can be referred to only by an IF statement.

ORG

Instruction:
Origin

Source Language Format:

common-location-expression
[label] AORGA {internal-location-expression }

Description:

Assigns the attributes and value of the operand to the location counter (i.e., if the
operand is 2 common location expression, the location counter type attribute is set to
common; if the operand is an internal location expression, the location counter type
attribute is internal). The initial value of the Assembler’s location counter is internal
location 0.

The label field and operands have the following meanings:

label

If specified, the label will be assigned the value contained in the location counter
before the new value is stored in the location counter.

ASSEMBLER CONTROL STATEMENTS 4-9 AU43

ORG / RESV / TEXT

common-location-expression
Sets the location counter type attribute to common and sets the location counter
value to the specified offset in the common block. Temporary labels cannot be
defined while the location counter has the common attribute.
internal-location-expression

Sets the location counter type attribute to internal and sets the location counter to
the specified value of the location expression (see Section 2 for a description of
common location and internal location expressions). Regardless of the type
attribute of the expression specified in the operand, it must not contain a forward
reference.

RESV

Instruction:
Reserve main memory space

Source Language Format:
[label]ARESVAint-val-expaf ,int-val-expb]

Description:
Reserves space in main memory for use by the object text program (generated by the
Assembler) as work or storage space.

The label field and operands have the following meanings:

label
If specified, the reserved area is given that name.

int-val-expa
This is an internal value expression (see Section 2) that specifies the size (in words)
of the reserved area. It must not contain a forward reference.

int-val-expb
If specified, it is an internal value expression (see Section 2) specifying the initial
value to which each word in the reserved area is initialized when the object text

program is loaded. If this operand is not specified, the contents of the reserved area
are undefined.

TEXT

Instruction:
Allocate space for text

Source Language Format:
[label] ATEXTAstring-constant[string-constant{,...]]

Description:

Causes the Assembler to allocate the binary representation of the successive string
constants concatenated into the fewest number of words (i.e., packed). The Assembler
inserts “slack bits” (0’s) between successive operands, as necessary, to ensure that each
ASCII string begins at a bit position that is a multiple of 8, and that each hexadecimal
string constant begins at a bit position that is a multiple of 4;if the last word occupied
by the concatenated string is not full, slack bits are added to fill it. (String constants
are described in Section 2.)

ASSEMBLER CONTROL STATEMENTS 4-10 AU43

TITLE / XDEF

TITLE

Instruction:
Start of program

Source Language Format:
ATITLEAprogram-name [,rev-number] [Apage-header]

Description:

Identifies the beginning of the assembly language source program. This statement is
required.

The operands have the following meanings:
program-name

Name by which the source program can be referred to. The name must conform to
the following rules:

1. One through six characters (A through Z, O through 9, § or — (underscore).
2. First character must be one of the following:

a. §
b. A,B..Z

rev-number

Optional operand identifying the revision number of the program. It must be an
ASCII string constant of one through eight characters in length.

page-header
Optional comment line that will appear at the top of each page in the assembly
listing (together with the revision number). Up to 20 characters are permitted.

XDEF

Instruction:
External label definition

Source Language Format:

label

(label, {int'k’c'exp}) [, 1]

int-val-exp

AXDEFA

Description:

Identifies labels to be made available to external procedures. These labels can then be
referred to through XLOC and XVAL statements in the external procedures. The
occurrence of a label in an XDEF statement does not define that label for use
elsewhere within that program (the label is not entered into the Assembler’s symbol
table).

The operands have the following meanings:

label

Identifies a label, defined elsewhere in the source program, as an internal location
label or internal value label (see Section 2), that can be referred to by a separately
assembled program through an XLOC or XVAL statement.

ASSEMBLER CONTROL STATEMENTS 411 AU43

XDEF / XLOC / XVAL

label int-loc—exp})
* }int-val-exp
int-loc-exp and int-val-exp are internal location or internal value expressions,
respectively, which are evaluated by the Assembler, with the resulting value and

type being associated with the label. The label can be referred to by a separately
assembled program through an XLOC or XVAL statement.

Regardless of which form of the operands is used, the Assembler evaluates the label
and generates a type and value attribute to be associated with the label. The results of
the evaluation are passed to the Linker with the object text for use during the linking
process (see the Program Development Tools manual).

NOTES: 1. It is not necessary for all labels identified through the XDEF statement
to be referred to by an external program.
2. If a label is not identified to an external procedure by an XDEF
statement, the label can be defined at link time by the LDEF
command to the Linker.

XLOC

Instruction:
Define external locations to be referenced

Source Language Format:
AXLOCAlabela[labelb] ...

Description:
Identifies labels associated with locations in programs assembled separately from this
program (i.e., external procedures), but used in this program.

The external program must identify the labels in an XDEF Assembler control
statement.

The operands have the following meanings:

label .
Identifies the external location label(s) (see Section 2) used in this program.

XVAL

Instruction:
Define external values to be referenced

Source Language Format:
AXVALAlabela[labelb] ...

Description:
Identifies labels associated with values in programs assembled separately from this
program (i.e., external procedures), but used in this program.

The external program must identify the labels in the XDEF Assembler control
statement.

ASSEMBLER CONTROL STATEMENTS 4-12 AU43

XVAL

The operands have the following meanings:

label
Identifies the external value label(s) (see Section 2) used in this program.

ASSEMBLER CONTROL STATEMENTS 4-13 AU43 -

SECTION 5

ASSEMBLY LANGUAGE
INSTRUCTIONS

The BES assembly language instruction set provides the means by which you can
write your source programs. These assembly language instructions, which are assembled
into object text, enable you to perform the following types of operations:

Arithmetic
Boolean
Branching
Comparison
Controlling
Input/Output
Loading
Modification
Shifting
Storing
Swapping

Q000 OO0 O0O0OOoOOo

The following paragraphs identify which of the assembly language instructions are
included in each of the above operations. However, detailed information about each of
the instructions is contained in the alphabetical list of instructions later in this section.

In addition to identifying the assembly language instructions by operation, they are
also listed by type (e.g., double operand). The various types can be distinguished not
only by their op codes, but by their formats; therefore, the valid format for each type
of instruction is included in the description of each type of instruction. However, the
detailed format of each instruction is not shown, since the format used must conform
to that described in Section 3.

ARITHMETIC OPERATIONS

The following assembly language instructions perform arithmetic operations (Add,
Subtract, Multiply, Divide):

ADD INC

ADV MLV

CAD MUL

DEC NEG

DIV SUB
BOOLEAN OPERATIONS

Boolean operations (Inclusive OR, Exclusive OR, AND) are provided through the
following assembly language instructions.

AND OR XOH
ANH ORH XOR
CPL

ASSEMBLY LANGUAGE INSTRUCTIONS 5-1 AU43

BRANCH OPERATIONS

The following instructions exist to support branching operations (Branch if ...,
Branch unconditionally). This subset comprises following:

B BEVN BLEZ
BAG BEZ BLZ
BAGE BG BNE
BAL BGE BNEZ
BALE BGEZ BNOV
BBF BGZ BODD
BBT BINC BOV
BCF BIOF BSE
BCT BIOT BSU
BDEC BL NOP
BE BLE

COMPARE OPERATIONS
The following assembly language instructions perform the comparison operation

(Compare X to Y):
CMB CMR
CMH CMV
CMN CMZ

CONTROL OPERATIONS

Control instructions affect the flow of an assembly language program. They provide
a means of entering trap handlers, starting and stopping hardware clocks, passing
control to system service routines or external procedures, and jumping. This subset
comprises the following:

BRK LNJ WDTF

ENT MCL WDTN

HLT RTCF

JMP RTCN

LEV RTT
INPUT/OUTPUT OPERATIONS

The following assembly language instructions are provided to support the
input/output operations:

I0 IOH IOLD
LOAD OPERATIONS

Load operations are provided through the following instructions:

LAB LBT LDR
LB LDB LDV
LBC LDH LLH
LBS LDI RSTR
MODIFY OPERATIONS

Modification (Clear Memory, Increment or Decrement the Contents of a Memory
Location) operations are provided by the following assembly language instructions:

CL CLH MTM

ASSEMBLY LANGUAGE INSTRUCTIONS 5-2 AUA43

SCIENTIFIC INSTRUCTIONS

The following set of instructions executes on the (optional) Scientific Instruction
Processor (SIP). These instructions manipulate data in floating-point format and utilize
the scientific accumulator registers (Sn) and the scientific indicator register (SI)
provided by the SIP.

SAD SBLEZ SCZD
SBE SBLZ SCZQ
SBEU SBNE SDV
SBEZ SBNEU SLD
SBG SBNEZ SML
SBGE SBNPE SNGD
SBGEZ SBNSE SNGQ
SBGZ SBPE SSB
SBL SBSE SST
SBLE SCM SSwW
SHIFT OPERATIONS

Shift operations are achieved through the following assembly language instructions:

DAL DOL SCL

DAR DOR SCR

DCL SAL SOL

DCR SAR SOR
STORE OPERATIONS

The following assembly language instructions are available to store the contents of
specific registers in main memory or other registers:

SAVE STB STR
SDI STH STS
SRM STM

SWAP OPERATIONS

Swapping (i.e., exchanging) is supported through the following:

SWB SWR
ASSEMBLY LANGUAGE INSTRUCTION TYPES

In addition to identifying assembly language instructions by the operations they
perform, they can be classified by type:

Branch-on-indicator (BI)
Branch-on-register (BR)
Double operand (DO)
Generic (GE)
Input/output (I0)

Shift (SHS and SHL)
Short-value-immediate (SI)
Single operand (SO)

©C 00000 O0oOOo

Branch-on-Indicator (BI) Instructions
Branch-on-indicator (BI) instructions have the following source language format:

[label] AopcodeAaddress-expression

AQQEMNRT V T ANICTTANTE TNCTRTINTINNIC [e ATI4A3

The opcode identifies the I-register bit to be tested for a specific condition.

The address-expression identifies the address of the next instruction to be executed
if the condition exists. It must specify one of the following addressing forms (see
“Addressing Techniques” in this section):

o Direct Immediate memory address
o Direct P-relative
o Short displacement

The BI instructions are included in the alphabetical list of assembly language
instructions later in this section.

Branch-on-Register (BR) Instructions
Branch-on-register (BR) instructions have the following source language format:

R-register } .
flabel] AopcodeA {in teger-constant ,addr-expression

The opcode identifies the R-register condition that is to be tested for the existence
of a specific condition.

The first operand identifies the R-register to be tested. If an integer constant is
specified, the assembler assumes that the integer is an R-register identifier.

The second operand specifies one of the following addressing forms (see
““Addressing Techniques” in this section):

o Immediate memory address (direct form only)
o P-relative
o Short displacement

See the alphabetical list of instructions later in this section for detailed descriptions
of the BR instructions.

Double Operand (DO) Instructions
Double operand (DO) instructions have the following source language format:

R-register
B-register
[label] AopcodeA < M-register ,addr-expression [,mask]
S-register
integer-constant

The opcode identifies the operation to be performed and the type of register that is
required in the first operand.

The first operand identifies the register that contains one of the data elements to be
used in the operation, as well as the register that is to contain the result. All of the
registers, except for the S-register are hardware registers; the S-register is a
software-simulated scientific register provided by the Floating-Point Simulator (see the
Executive and Input/Output manual). If an integer constant is specified, the Assembler
assumes that it refers to a register that is of the type required by the opcode.

The second operand specifies an address expression that gives the location of the
other data element to be used in the operation. If an address expression is not
specified, the second operand must be a complex label equated to an address
expression. (See ‘“Labels” in Section 2 for a description of complex labels, and
“Addressing Techniques™ in this section for a description of address expressions.)

The third operand is valid only for the Store Register Masked (SRM) instruction.

The alphabetical list of assembly language instructions later in this section provides
detailed descriptions of each of the DO instructions.

ASSEMBLY LANGUAGE INSTRUCTIONS 54 AU43

Generic (GE) Instructions
Generic (GE) instructions. are identifiable by the fact that they contain no
operands, as follows:

[label] AopcodeA

All of the GE instructions perform controlling operations. The alphabetical list of
instructions later in this section describes the GE instructions.

Input/Output (IO) Instructions
Input/output (IO) instructions have the following source language format:

[label] AopcodeAaddress-expression,address-expression[,address-expression]
The opcode identifies the instruction as one of the following types:

o Data and command I/O
0o Address and range output

The address expression in the first operand identifies the location from which a data
word is transferred to the I/O bus, or the location to which a data word is transferred
from the I/O bus.

The second operand address expression identifies the channel number and function
code, or the location where this information can be found.

The third operand address expression is valid only for the input/output load (IOLD)
instruction. It identifies the location of the word that contains the range. When this
instruction is specified, the address expression in the first operand identifies the
location of a byte of data to be transferred to the I/O bus.

Address expressions are described under “Addressing Techniques™ in this section.
The 10 instructions are described in the alphabetical list later in this section.

Shift (SHS and SHL) Instructions
Shift (SHS and SHL) instructions have the following source language format:

R-register

[tabel] Aopcodel {integer-con‘stant

} ,int-val-expression

The opcode identifies the format, type and direction of the shift. The formats can
be:

o SHS - Shift short
o SHL - Shift long

The valid types are:
o Arithmetic
o Open
o Closed
The direction of the shift can be:

o Right
o Left

The first operand identifies the register (or register pair for long-precision shifts)
containing the data to be shifted. For short-precision shifts, any R-register can be

ASSEMBLY LANGUAGE INSTRUCTIONS 55 AU43

specified; for long-precision shifts, the R-register specified must be $R3, $RS5, or $R7,
with the preceding even-numbered register ($R2, $R4, or $R6, respectively) being
implied. Use of an integer constant implies that the R-register with that number is
specified.

The internal value expression (see Section 1) in the second operand specifies the
number of bits to be shifted. For short-precision shifts, the count must be within the
range 1 through 15;if 0 is specified, the system uses the value found in bits 12 through
15 of $R1. For long-precision shifts, the count must be within the range 1 through 31;
if O is specified, the value in bits 11 through 15 of $R1 is used.

Detailed descriptions of the SHS and SHL instructions are included in the
alphabetical list of instructions later in this section.

Short-Value-Immediate (SI) Instructions
Short-value-immediate (SI) instructions have the following source language format:

integer-constant
string-constant 1
} ,[=] < internal-value-label
int-val-expression S
fixed-point-constant

R-register

[label] AopcodeA {integer-constant

The opcode identifies the operation to be performed.

The first operand specifies an R-register that contains one of the data elements to
be operated upon and receives the result of the operation. If an integer constant is
used, the corresponding R-register is assumed (i.e., X'5’ implies R-register $R5).

The second operand is a 1-byte (8-bit) value. If it is a string constant (see
Section 2), it is treated as a half-word string; if the length of the string is greater than 8
bits, low order (i.e., the rightmost) bits are truncated; if less than 8 bits, O’s are
appended to the low order bit positions. If the second operand is not a string constant,
the value is considered to be numeric within the range -128 to +127.

Integer constants, string constants, internal value labels, internal value expressions,
and fixed point constants are described in Section 2. The SI instructions are described
in detail in the alphabetical list later in this section.

Single Operand (SO) Instructions
Single operand (SO) instructions have the following source language format:

integer-constant
string-constant
internal-value-label
external-value-label
int-val-expression
fixed-point-constant

[label] AopcodeAaddr-expression

>

The opcode identifies the operation to be performed.

The first operand address expression (see “Addressing Techniques” in this section)
identifies the location of the data element to be operated upon.

The second operand is valid only for the Save (SAVE) and Restore (RSTR)
instructions. It specifies the value of a one-word mask that indicates which registers are
to be saved and restored. Integer constants, string constants, internal value labels,
external value labels, internal value expressions, fixed point constants are described in
Section 2.

The SO instructions are described in the alphabetical list of assembly language
instructions later in this section.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-6 AU43

ADDRESSING TECHNIQUES

Many of the assembly language instructions require the use of address expressions in
their operand fields. Address expressions can take any of the following forms:

Register addressing

Immediate memory addressing
Immediate operand addressing
P-relative addressing

B-relative addressing

Short displacement addressing
Special addressing

Interrupt vector addressing

©O 0 O0O000OoOO0o

Any of these addressing forms can be used to specify the location of data to be used
in an operation. Furthermore, the data can be referenced directly, indirectly, via
indexing, or by utilizing the push/pop feature.

Register Addressing
Register addressing is specified when a value or address is contained in a register.
This form of address expression is specified as follows:

=$Rn =$Bn =$Sn

=$Rn and =$Bn are mutually exclusive; i.e., some instructions permit the use of
=$Rn and others allow =$Bn (the descriptions of the various instructions identify
which is valid for that instruction). The =$Rn form is generally used in those
instructions that require some data to be contained in the register. The =$Bn form is
valid for those instructions that expect to find an address in the register. The =$Sn
form addresses the scientific accumulator registers.

The following examples illustrate register addressing. In the examples, assume that
$B5 contains the address 3FFF, that $B3 contains the address 12A4, that $RS
contains the value 2012, and that $R7 contains the value 00ED.

Example 1:
ADD X7’ =$R5

In this example, the contents of $RS5 are added to the contents of $R7, and the result
(20FF) is stored in $R7. Since this instruction requires that the first operand specify
an R-register, the Assembler assumes that the integer constant refers to $R7 and
generates code to executes the instruction accordingly.

Example 2:
LDB $BS,=$B3
In this example, the address stored in $B3 is loaded into $BS5.

Immediate Memory Addressing (IMA)

Immediate memory addressing is specified when a value or address is contained in a
main memory location. This form of addressing allows you to reference a location
directly, indirectly, and through indexing (direct or indirect). Depending on how you

ASSEMBLY LANGUAGE INSTRUCTIONS 57 AU43

wish to reference the memory location, you can specify immediate memory addressing

as follows:

location-ex pression

< f temporary-label — Direct IMA
location-expression

< {f} temporary-label — Indirect IMA
location-expression 1

<4 -_I-} temporary-label SR g — Indexed Direct IMA
location-expression 1

< { j‘} temporary-label{ -S& % — Indexed Indirect IMA

When a source instruction indicating immediate memory addressing is assembled,
the actual address of the operand is assembled into the operand field. Therefore, any
internal, external, or common location expression is a valid operand. In contrast,
P-relative addressing (defined later in this section) creates object code in which the
displacement from the current instruction to the operand is assembled into the
operand field.

Direct Immediate Memory Addressing

Direct immediate memory addressing makes it possible for you to specify explicitly
the location of the data or address to be used in an operation.

The following example illustrates the use of this form of immediate memory
addressing. In the example, assume that INTLB1 is an internal location label at
location 20F4 and that location contains the address OFO0B, and that $B3 contains the
address 111A.

Example:
LDB $B3,<INTLB1

In this example, the contents (OFOB) of location 20F4 (specified by INTLB1) are
loaded into $B3, replacing its current contents.

Figure 5-1 illustrates how the instruction in the example is stored in memory and
how the data is found.

ASSEMBLED INSTRUCTION
{L.DB $B3,<INTLB1)
" ea—

i BC80 | 20F4 j

LOCATION 20F4
MEMORY (EFFECT!VE ADDRESS)

(L=l

Figure 5-1. Direct Immediate Memory Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 58 AU43

Indirect Immediate Memory Addressing

This form of immediate memory addressing is available when you want to refer to a
location whose address is stored in another location.

The following example illustrates the use of this form of 1mmed1ate memory
addressing. Assume that $C is a temporary label, whose next definition is at location
30A2 and that location contains the address 100C. Further, assume that location 100C
contains the value OF2C, and that $R6 contains the value 10D3.

Example:

ADD $R6,*<+§C

In this example, the system goes to the location specified at location 30A2 (identified
by +8C, the + indicating that a forward reference is involved), which is 100C. It then
adds the value found there (i.e., OF2C) to the contents of $R6, and stores the result
(1FFF) in $Ré6.

Figure 5-2 illustrates how the instruction appears in memory and how the data used
in the instruction is found.

LOCATION 100C

ASSEMBLED INSTRUCTION

(EFFECTIVE ADDRESS)
(ADD $R6,*<+3C}

2 OF2C 5
MEMORY \ EA08 | 30A2 f

LOCATION 30A2

e,

=1

Figure 5-2. Indirect Immediate Memory Addressing

Indexed Direct Immediate Memory Addressing

Indexed direct immediate memory addressing is available when vou want to refer to
data or an address that has a known number of words beyond a specific location.

The following example illustrates the use of this form of immediate memory
addressing. Assume that TABLE!] is an internal location label at location 2000, and
that word 3 in the table is the address of an error routine. Also, assume that $R3
contains the value 0003.

Example:

LDB $B1,<TABLE1.$R3

In this example, the system adds the contents of the index register (§R3) to the
address of TABLEI (i.e., 2000). Then the contents of that location (i.e., the address of
the error routine) are loaded into $B1.

ASSEMBLY LANGUAGE INSTRUCTIONS 59 AU43

Figure 5-3 illustrates how the instruction appears in memory and how it locates the
effective address.

ASSEMBLED INSTRUCTION
{LDB $B1,<TABLE1.$R3)
————

l 9CBO | 2000 K

LOCATION 2003

1
[}
|
: LOCATION 2000 (EFFECTIVE ADDRESS)
' [——— P ——"p—
MEMORY \)\ J/
|
L}
1
! \—\~
R3Y

0003 f= = = = >+ 3 WORDS

Figure 5-3. Indexed Direct Immediate Memory Addressing

Indexed Indirect Immediate Memory Addressing

This form of immediate memory addressing combines the feature of indirect
immediate memory addressing with indexing to generate the location of the data or
address to be used in an operation.

The following example illustrates the use of this form of immediate memory
addressing. In the example, assume that TABLIA is an internal location label at
location 20AA and that that location contains the address 30FF. Also assume that $R1
contains the value OF00, that $R2 contains the value 401 A, and that location 3FFF
contains the value 3D91.

Example:
ADD $R2,*<TABL1A.$R1

In this example, the contents of $R1 (i.e., OF00) are added to the contents of location
20AA (ie., 30FF) to obtain the effective address of the data to be used in the
operation. Then, the data found at location 3FFF (OF00 + 30FF) is added to the
contents of $R2 as follows: 3D91 + 401A = 7DAB. The result is then stored in $R2.

Figure 54 illustrates how the instruction appears in memory, and how the system
locates the data to be used in the operation.

Immediate Operand Addressing

Immediate operand addressing makes it possible to specify a literal value or address
as the address expression. Depending on the type of instruction, this form of
addressing must be specified in one of the following forms:

{mtemal—value-expresswn} (LDB, STB, SWB, CMB)

location-expression

_ fhex-string-constant } (SAD, SCM, SCZD, SDV, SLD,
{floating—point-constant SML, SNGD, SSB, SST, SSW)

(All others)

external-value-label

internal-value-expression }
fixed-point-constant

ASSEMBLY LANGUAGE INSTRUCTIONS 5-10 AU43

ASSEMBLED INSTRUCTION
(ADD $R2,*<TABL1A.$R1)

——

(U e

20AA f

LOCATION 20AA

—

T
|
1
I
|
|
U] |
1

MEMORY | LOCATION 3FFF
: LOCATION 30FF (EFFECTIVE ADDRESS)
I
i
|
|
1
] \—\~
R1 '
K OFQ0 |- === = - == + OF00 WORDS

Figure 5-4. Indexed Indirect Inmediate Memory Addressing

The hex-string-constant form must specify a hexadecimal string constant that

provides the following information for the scientific instructions:

Bit: 0

678

31

¢ Characteristic (excess power-of-16 exponent) of the mantissa.

s Sign (0 = positive; 1 = negative) of the mantissa.
m Magnitude of the mantissa.

The following examples illustrate the use of the immediate operand addressing form
of addressing. Assume that $S1 is the scientific accumulator register and that it
contains the value 84130000 (indicating a floating-point number with a value of
19.000000, that $RS5 contains the value 300A, and that INTVAL is the label of an

internal value expression that is equated to 1FF3.

Example 1:

SAD §$81,=7’8280000A"

In this example, the floating-point value specified by the hexadecimal string constant
(i.e., 8.000010,, is added to the floating-point value stored in $S1 (i.e., 19.00000),

and the result is stored in ' $S1

Figure 5-5 illustrates how the above example is stored in memory and how it

determines the effective address.

ASSEMBLY LANGUAGE INSTRUCTIONS

5-11

AU43

ASSEMBLED INSTRUCTION
(SAD $S1,=2'8280000A°)

MEMORY{\ 99F0 | 8280 | 000A f

N— —

EFFECTIVE ADDRESS

Figure 5-5. Immediate Operand Addressing-Scientific Instruction

Example 2:
ADD $R5 =INTVAL

In this example, the value equated to the internal value label INTVAL (i.e., 1FF3) is

added to the value contained in $RS (i.e., 300A), and the result (4FFD) is stored in
$R5.

Figure 5-6 illustrates how the above ADD instruction is stored in memory and how
it finds the effective address.

ASSEMBLED INSTRUCTION
{ADD $R5,=INTVAL)
———~m——

MEMORY {K DA70 | 1FF3 ’

— o —

EFFECTIVE ADDRESS

Figure 5-6. Immediate Operand Addressing

P-Relative Addressing

P-relative addressing is available for those situations in which you want to
reference data or an address by indicating its (Assembler-calculated) displacement from
the current location (i.e., the location of the currently executing instruction). This
form of addressing allows you to reference a location directly or indirectly. Depending

on which way you want to reference a location, you can specify P-relative addressing as
follows:

location-expression
— Direct P-Relative Addressing

+
{_ }temporary-label

locati i
*{ cation-expression } — Indirect P-Relative Addressing

f}temporary-label

Direct P-Relative Addressing

This form of addressing is available when you want to specify a location relative to
the contents of the P-register (i.e., the address of the currently executing instruction)
directly.

The following example illustrates this form of P-relative addressing. In the example,
assume that $R5 contains the value 3F10, and that INTLOC is a location label at
location 1110, which contains the value 1E10.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-12 AU43

Example:
SUB $R5,INTLOC

In this example, the contents of the location identified by INTLOC (1E10) are
subtracted from the contents of $R5, and the result (2100) is stored $R5.

Figure 5-7 illustrates the above instruction in memory, and shows how it finds the
effective address.

LOCATION 1110 ASSEMBLED INSTRUCTION
(EFFECTIVE ADDRESS) (SUB $R5,INTLOC)
P i 7 — —— .
MEMORY { z 1E10 { D240] F110 i
7 Am————
_/ LOCATION 2000
1110-2000=-EF0 WORDS (I.E., F110)

Figure 5-7. Direct P-Relative Addressing

——

Indirect P-Relative Addressing
Indirect P-relative addressing is similar to indirect immediate memory addressing.
The following example illustrates indirect P-relative addressing. In the example
assume that $E precedes the current instruction, and that location that it identifies
contains the address 3000; furthermore, assume that location 3000 contains the value
20AA, and that $R1 contains the value 4F44.

Example:
ADD $R1,*-$E

This instruction adds the contents of the location pointed to by location 3000 (i.e.,
20AA) to the value contained in $R1, and stores the result (6FEE) in $R1.

Figure 5-8 shows how the instruction described above is stored in memory and how
it locates the data to be used in the operation.

ASSEMBLED INSTRUCTION
LOCATION 2000 (ADD $R1,*-$E)
e, ——— ~—

K 3000 f{ 9A48 | FFAF {

LOCATION 3000
(EFFECTIVE ADDRESS)

MEMORY

W

2000-2051=-51 (I.E., FFAF)

Figure 5-8. Indirect P-Relative Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-13 AU43

B-Relative Addressing

B-relative addressing is used when you want to reference through an address register
(i.e., $B1, $B2,..$B7) a location that contains data or an address. This form of
addressing can be used to reference a location directly, indirectly, through indexing, as
a displacement, or through the push/pop feature.

The push/pop feature causes the system to automatically decrement the contents of
the specified address or index register before executing the instruction, or automati-
cally increment its contents after execution, as specified in the address expression.

Depending on the features you want to use in the address expression, B-relative
addressing can take any of the following forms:

$Bn — Direct B-relative addressing

*$Bn — Indirect B-relative addressing
1

$Bn.§R {2} — Indexed direct B-relative addressing
3
1

*$Bn.SR¢ 2 — Indexed indirect B-relative addressing
3

$Bn. {L&t{;'f;;ﬁﬁ:éz?} — Direct B-relative plus diéplacement addressing

ex ternal—val—label} — Indirect B-relative plus displacement addressing

*$Bn. {mt-val—expressmn
-$Bn — B-relative addressing with automatic
decrement before execution (Push)

+$Bn — B-relative addressing with automatic
increment after execution (Pop)

1
$Bn.-SR {2} — Indexed direct B-relative addressing
3 with automatic decrement of index
register before execution (Push)

|
$Bn.+$R {2} — Indexed direct B-relative addressing
3 with automatic increment of index
register after execution (Pop)

The first four forms of B-relative addressing are similar to their immediate memory
addressing counterparts, except that the location of the data or address to be used in
the operation is contained in an address register rather than being expressed as a
location expression or label.

The next two are similar to the P-relative forms of addressing. The last four utilize
the push/pop feature, as defined above. However, the last two forms require that you
identify $B1, $B2, or $B3 as the address register although use of +$R1, +$R2, or +3R3
causes the system to specify $B5, $B6, or $B7, respectively, when the instruction is
stored in memory. As a result, when reading a memory printout, you must remember
that although the stored instruction indicates that the $B5, $B6, or $B7 register was
specified, in reality $B1, $B2, or $B3, respectively, was coded and their contents used
in the generation of the effective address of the data or address used in the operation.

Direct B-Relative Addressing
This form of addressing is available when you want to use data or an address whose
location is contained in an address register.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-14

AU43

The following example illustrates direct B-relative addressing. In the example,
assume that $B7 contains the address 20F2, and that $B2 contains the address 4FFF.

Example:
LDB $B2,$B7

In this example, the contents of the address contained in $B7 are loaded into and
replace the contents of $B2.

Figure 5-9 shows how the instruction in the example is stored in memory and how
the effective address is found.

ASSEMBLED INSTRUCTION

(LDB $B2,$B7)
(
K AC87 f
B7
MEMORY < LOCATION 20F2
20F2 (EFFECTIVE ADDRESS)

T[T

Figure 5-9. Direct B-Relative Addressing

Indirect B-Relative Addressing

Like indirect immediate memory addressing, this form of addressing is used when
you want to use data or an address contained at a location whose address is pointed to
by an address register. .

The following example illustrates indirect B-relative addressing. In the example, $B3
contains the address 100F, address 100F contains address 302A, and address 302A
contains the address 3FFF; furthermore, $B1 contains the address 1110.

Example:
STB $B1,*$B3

In this example, the address 1110 is stored at location 302A, replacing the address that
was contained there (i.e., 3FFF).

Figure 5-10 illustrates how the sample instruction is stored in memory and how it
derives the effective address.

ASSEMBLED INSTRUCTION
(STB $B1,*$B3) LOCATION 100F

e .

(K 9F8B { R 302A {
MEMORY < L.BTOOF
K 3FFF f

LOCATION 302A
(EFFECTIVE ADDRESS)

Figure 5-10. Indirect B-Relative Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-15 AU43

Indexed Direct B-Relative Addressing

This form of addressing, like indexed direct immediate memory addressing, uses an
index register to compute the effective address of the data or address to be used in the
operation. The contents of the index register are added to the contents of the address
register to derive the location of the data or address to be included in the operation.

‘In the following example, which illustrates indexed direct B-relative addressing, $R3
contains the value 1110, $R1 contains the value 0002, $BS contains the address 3FFD,
and memory location 3FFF contains the value 9999.

Example:
ADD $R3,$B5.5R1

In this example, the system adds the contents of $R1 to the contents of $B5 to
compute the address of the data to be used in the operation. The result is 3FFF (i.e.,
3FFD + 2). The contents of location 3FFF are added to the contents of $§R3, and the
result (AAA9) is stored in $R3.

Figure 5-11 illustrates how the above example appears in memory.

ASSEMBLED INSTRUCTION
ADD $R3, $B5.$R1

— s~

\ BATS j LOCATION 3FFF
T LOCATION 3FFD (EFFECTIVE ADDRESS)
] e e s,
!
| . Oy
!

MEMORY < | a4 3FFD

| N g
1 + 2 WORDS
L}
h A
1 R1 !
H I

\ L] o002 f- -~ - = -~ -

Figure 5-11. Indexed Direct B-Relative Addressing

Indexed Indirect B-Relative Addressing

This form of B-relative addressing is similar to indexed indirect immediate memory
addressing. The contents of the index register are added to the contents of the location
pointed to by the address register to obtain the effective address of the data to be used
in the operation.

The following example illustrates this form of addressing. In the example, assume
that $B5 contains the address 2022 and that that address contains the address 1000;
also, assume that $R2 contains the value 40FF, that $R1 contains the value 001A, and
that location 101A contains the value 1001.

Example:

ADD $R2,*$B5.5R1

In this example, the contents of $R1 (001 A) are added to the contents of the location
pointed to by $B5 (1000). The contents of the resulting location (101A) are added to
the contents of $R2, and the result (5100) is stored in $R2.

Figure 5-12 illustrates how the sample instruction is stored in memory and how it
derives the effective address.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-16 AU43

ASSEMBLED INSTRUCTION
(ADD $R2,*$B5.$R1)

e,
——

U Jowo] ¢

B5

2022 LOCATION 2022

s g
1000 i

LOCATION 101A
MEMORY LOCATION 1000 (EFFECTIVE ADDRESS)
—r " —.
R‘ J{ 191 J
N~ ~"
+ 1A WORDS

i J

QA — - ———

btttk

Figure 5-12. Indexed Indirect B-Relative Addressing

Direct B-Relative Plus Displacement Addressing

This form of addressing causes the system to compute the effective address by
adding a specific value to the contents of an address register.

The following example illustrates this form of addressing. In the example, assume
that XVAL2A is an external value label equated to the value 000A, that $BS5 contains
the address 2000, that memory location 200A contains the value 20ED and that $R6
contains the value 6DFE.

Example:

SUB $§R6,8B5. XVAL2A

This instruction computes the effective address of the data to be used by adding 000A
to the contents of $B5 (2000). It then subtracts the contents (20ED) of the effective
address (200A) from the contents of $R6, and stores the result (4D11) in $R6.

Figure 5-13 shows how the above example is stored in memory and how it derives
the effective address of the data.

Indirect B-Relative Plus Displacement Addressing

This form of addressing adds a displacement value to the contents of the specified
address register. Then, the effective address is obtained by checking the contents of the
location whose address is derived through the preceding operation.

In the following example of this form of addressing, EXP10 is an internal value
expression equated to 0010, $B4 contains the address 30FF, location 310F contains
the address 10FE, location 10FE contains the value 400D, and $R7 contains the value
1013.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-17 AU43

ASSEMBLED INSTRUCTION
(SUB $R6,$B5.XVAL2A)

———
\ £245 | 000A f
-]
1
1
B5 !
1
=t 2000 \!
MEMORY \
]
' LOCATION 200A
1 LOCATION 2000 (EFFECTIVE ADDRESS)
i — s, P a—
! R)/ 20ED 7
|
|
! *\~
|
1= — = = == +AWORDS
Figure 5-13. Direct B-Relative Plus Displacement Addressing
Example:

ADD $R7,$B4.EXP10

In this example, the displacement value 0010 is added to the contents of $B4 (i.e.,
0010 + 30FF), producing the address 310F. Then, applying the indirection operator,
the contents of the location 310F (i.e., 10FE) are used as a memory address. The value
found at location 10FE (i.e., 400) is added to the contents of $R7. The result (5020) is

stored in $R7.

Figure 5-14 illustrates how this form of addressing generates an effective address

when stored in memory.

ASSEMBLED INSTRUCTION
(ADD $R7,*$B4.EXP10)

LOCATION 30FF

f

—~—
(R FA4C] 0010 f

T
|
' LOCATION 10FE
| (EFFECTIVE ADDRESS)

B4) e e,

30FF ! K 400D f

MEMORY <

LOCATI

e s,

10FE

ON 310F

~

N r”’

————— -+ 10 WORDS

e

Figure 5-14. Indirect B-Relative Plus Displacement Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-18

AU43

B-Relative Push Addressing

This form of B-relative addressing causes the contents of the specified address
register to be decremented by one before the effective address is formed. The new
address in the register is the effective address of the location or data to be used in the
operation.

In the following example, $R5 contains the value 30FF, $BS contains the address
4011, and memory location 4010 contains the value 0001,

Example:

ADD $R5,-$B5
In this example, the contents of location derived by subtracting one from the address
contained in $BS5 are added to the contents of $RS, and the result (3100) is stored in
$R5. The next time $BS5 is used, it will contain the address 4010.

Figure 5-15 illustrates how the sample instruction described above is stored in
memory and how it derives the effective address of the data to be used in the

operation.
ASSEMBLED INSTRUCTIONS
(ADD $R5,-$B5)
[1
\ DA65)/ LOCATION 4010
(EFFECTIVE ADDRESS)
\ 0001 /
B5
BEFORE: 4011
MEMORY
|

AFTER: 4010

Figure 5-15. B-Relative Push Addressing

B-Relative Pop Addressing

This form of B-relative addressing causes the contents of the specified address
register to be incremented by one after the effective address is formed.

In the following example, $R3 contains the value 222A, $B2 contains the address
A000, and location A0O0O contains the value 0005.

Example:
ADD $R3+$B2

In this example, the contents of location AOOO are added to the contents of $§R3, and
the result (222F) is stored in $R3.

The address stored in $B2 is then incremented by one. The next time $B2 is used in an
instruction, it will contain the address AOO1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-19 AU43

Figure 5-16 shows how the instruction above is stored in memory and how it
derives an effective address.

ASSEMBLED INSTRUCTION
(ADD $R3,+$B2)

et~

LOCATION A000

\ BA72 i (EFFECTIVE ADDRESS)
———

L [=[7

B2)
MEMORY
BEFORE: A000
AFTER: A001

Figure 5-16. B-Relative Pop Addressing

Indexed B-Relative Push Addressing

This form of B-relative addressing decrements the contents of the specified index
register by 1, then computes the effective address of the data or address to be used in
the operation as described under “Indexed Direct B-Relative Addressing,” above.

In the following example, $R1 contains the value 0003, $R2 contains the value
20F0, $B3 contains the address 20A0, and memory location 20A2 contains the value
DFOF.

Example:

ADD $R2,$B3.-$R1

In this example, the effective address of the data to be used in the operation is derived
by subtracting 1 from the contents of the index register, then adding the revised
contents to the address contained in $B3. Then, the contents of the effective address
are added to the contents of $R2 (i.e., 20F0 + DFOF), and the result (FFFF) is stored
in $R2. The next time the index register $R1 is used, it will contain the value 0002.

When indexed B-relative push addressing is used, only address registers $B1, $B2, or
$B3 can be specified in the address expression. Figure 5-17 illustrates how the sample
instruction described above is stored in memory and how it derives the effective
address of the data to be used in the operation.

Indexed B-Relative Pop Addressing

This form of B-relative addressing computes the effective address of the location or
data to be used in the operation as described under “Indexed Direct B-Relative
Addressing,” in this section. After computing the effective address, the contents of the
index register are incremented by 1.

In the following example of this form of B-relative addressing. $B3 contains the

address 1000, $R2 contains the value 20A0, $R6 contains the value 2FFF, and
location 30A0 contains the value 0001,

ASSEMBLY LANGUAGE INSTRUCTIONS 5-20 AUA43

ASSEMBLED INSTRUCTION LOCATION 20A2
{ADD $R2,$B3.-$R1) LOCATION 20A0 (EFFECTIVE ADDRESS)
PR N— — g o
T\ AASB)7 (DFOF {
1
: B3 N mnnr’
i +2 WORDS
i 20A0 A
I i
] R |
MEMORY L L I
— !
BEFORE: | 0003 |
1
I
i
\ AFTER: [0002|~== == = = - = 4
Figure 5-17. Indexed B-Relative Push Addressing
Example:

ADD $R6,$B3,+$R2

In this example, the effective address of the data to be added to the contents of $R6 is
derived by adding the contents of the index register to the contents of $B3. The value
found at that location (30A0) is then added to the contents of $R6, and the result
(3000) is stored in $R6.

After the effective address is formed, the contents of the index register are
incremented by 1. The next time the index register is used, it will contain the
value 20A1.

When using B-relative pop addressing, only address registers $B1, $B2, or $B3 can
be specified in the address expression. However, when stored in memory, the
instruction will indicate $B5, $B6, or $B7, respectively, although the contents of the
specified register are always used in the computation of the effective address.

Figure 5-18 illustrates how the sample instruction described above is stored in
memory and how it derives the effective address of the data to be used in the

operation.
ASSEMBLED INSTRUCTION
(ADD $R6,$B3.+$R2)
LOCATION 30A0
LOCATION 160G (EFFECTIVE ADDRESS)
EAGF PN A
T R f f— 0001 [
]
B3
! —
" 1000
X + 20A0 WORDS
MEMORY ! R2 f
BEFORE: |20A0f = = = = = == = ==)
i
AFTER: | 20A1

Figure 5-18. Indexed B-Relative Pop Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 521 AU43

Short Displacement Addressing
Short displacement addressing is available only for branch instructions. It is
specified as follows:

internal-location-expression
>+
_ { temporary-label

When this form of addressing is used, the referenced location must be within the
range -64 words to -1 word and +2 words to +63 words from the location of the
instruction specifying it (i.e., it cannot reference itself or the Location following it).

The following example illustrates the use of short displacement addressing. In the
example, $R3 contains the value 3033 and 8$F is a temporary label at a location
preceding the instruction by 24 words.

Example:
BODD 3>-$F

In this example, 3 is identified with $R3, and since its contents are an odd value,
control is transferred to the instruction located at the memory address identified by $F
(i.e., $F preceding the instruction illustrated in the example).

Figure 5-19 illustrates how the above example is stored in memory and how it
derives the effective address of the location to be branched to.

ASSEMBLED INSTRUCTION
LABEL $F {BODD 3,>-$F)
MEMORY { k (3BESI {
4
e ———T T ————]
24,4 V‘VORDS

Figure 5-19. Short Displacement Addressing

Specialized Address Expressions

The following address expression is available for specifying an embedded control
word in an I/O instruction. It can be used only in the second operand, and is specified
as follows:

- intemal—value—expression}
external-value-label

The following example illustrates the use of this address form. In the example, $B3
contains the address 2002, which is assumed to be the address of the output control
word, and it is to be output over channel 010. The value for sending the output control
word over channel 010 is 0405.

Example:

10 $§B3,>=7"0405’

In the example, the output control word is extracted from location 2002, as specified
by $B3, and sent over the desired channel.

ASSEMBLY LANGUAGE INSTRUCTIONS 522 AU43

Figure 5-20 illustrates how the example above is stored in memory and how it
derives the effective address of the data.

ASSEMBLED INSTRUCTION
(10 $B3,>=0405)
P ——
LOCATION 2002
8003 | 0405 (EFFECTIVE ADDRESS OF DATA)
MEMORY CONTROL WORD \ f
B3 }
2002

Figure 5-20. Specialized Address Expressions

Interrupt Vector Addressing

Interrupt vector addressing provides a convenient method by which you can
examine the contents of the interrupt save area for the priority level at which your
program is currently executing. (Priority levels and interrupt save areas are described in
the Executive and Input/Output Manual.) Interrupt vector addressing is specified as
follows:

s { internal-value-expression }
external-value-label

In this form of addressing, $IV. points to the second word within the interrupt save
area, and the value provides a displacement from the second word to another word
within the interrupt save area. In the example below, the fifth word of the interrupt
save area is loaded into R1. (Note that to address the second word of an interrupt save
area, you require a displacement of 1, etc.)

Example:

LDR $R1,$IV, THREE
THREE EQU 3

Figure 5-21 illustrates how the above example locates the desired memory word and
places it into R1.

INSTRUCTION
LDR $R1,$IV.THREE
HARDWARE- INTERRUPT
DEDICATED SAVE
MEMORY AREA
0080 WORD
LEVEL O 0
LEVEL 1 - 1 R1
> =]
INTERRUPT
VECTORS
LEVEL 63 & v
00BF ~ ~

Figure 5-21. Interrupt Vector Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 523 AUA43

ADD / ADV

ASSEMBLY LANGUAGE INSTRUCTIONS

The remainder of this section lists (alphabetically) and describes the assembly
language instructions. The description of each instruction includes the name, type,
format, and explanation of operands. '

When an operand specifies a symbolic name, constant, or expression (other than an
address expression), you can refer to Section 2 for a detailed description of those
elements. Address expressions are defined in this section under “Addressing Tech-
niques.” Before using the following instructions you should fully understand the
assembly language elements described in Section 2 and in this section.

Although not shown in the source language format, all assembly language
instructions can be labeled.

ADD

Instruction:
Add Contents to R-register

Type:
DO

Source Language Format:

$Rn
AADDA < X'n’ p address-expression
n

Description:

Adds the contents of the location or R-register identified in the address expression to
the contents of the Rregister specified in the first operand. The result is saved in the
first operand R-register.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:gSB: } register addressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:
o If the result is more than 2!5-1(32767) or less th8n -215(-32768), the OV-bit is
set to 1; otherwise, it is set to O.

o If, during the summation, a carry occurs, the C-bit is set to 1; otherwise, it is set
to 0.

ADV

Instruction:
Add value to R-register

ASSEMBLY LANGUAGE INSTRUCTIONS 524 AU43

ADV /| AND

Type:
SI

Source Language Format:

$Rn ‘ integer-constant
1ot _ string-constant
AADVA {X n } (=] linternal-value-label
n internal-value-expression

Description:
Adds the 8-bit value (with sign extended) specified in the second operand to the

contents of the R-register identified in the first operand. The result is saved in
R-register.

The contents of the I-register are affected as follows:

o If the result is more than 2!35-1(32767) or less than -215 (-32768), the OV-bit is
set to 1; otherwise, it is set to 0.

o If, during the summation, a carry occurs, tht C-bit is set to 1; otherwise, it is set
to 0.

AND

Instruction:
AND contents with R-register -

Type:
DO

Source Language Format:

$Rn
AANDA X'n' p ,address-expression
n

Description:

Logically AND’s the contents of the R-register identified in the first operand with the
contents of the location or R-register specified in the address expression. The result is
saved in the first operand R-register.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

}register addressing

The following chart illustrates the result of logically ANDing bits:

First operand bit: 0j0]1
Second operand bit: 1{0]71]0

Result: 0tof1(o0

ASSEMBLY LANGUAGE INSTRUCTIONS 525 AU43

ANH /B

ANH

Instruction:
Logically AND half-word (byte) with R-register

Type:
DO

Source Language Format
$Rn

AANHA {X’n'} address-expression
n

Description:

Logically AND’s the contents of the R-register identified in the first operand with the
contents of the byte specified in the address expression.

Prior to the operation, the byte operand is internally expanded to word length by
extending the sign through the eight high-order bit positions. The byte selected to
participate in the operation is determined by the format of the address expression, as

follows:

o0 Register Addressing (=§Rn): The rightmost byte of the register is selected.

o Memory Addressing Without Indexing: Immediate Memory Addressing: The
leftmost byte of the word at the designated memory address is selected.

o Memory Addressing With Indexing: The memory address indicates a starting
point. The index register contains an arithmetic value to be added to the starting
point. The value specifies the number of bytes before or after the starting point
needed to reach the byte selected for the operation.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The following chart illustrates the result of logically ANDing bits:

First operand bit:
Second operand bit:

Result:

B

Instruction:
Branch unconditionally

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-26

AU43

B/ BAG / BAGE

Source Language Format:

direct-IMA
ABA | direct-P-relative-address
short-displacement-address

Description:
Branches unconditionally to the location specified in the operand.

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BAG

Instruction
Branch if algebraically greater than

Type:
BI

Source Language Format:

direct-IMA
ABAGA < direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were algebraically greater than
the contents of the memory location specified in the compare instruction.

Action if Branch Occurs:

If the J-bit in the M1-register contains binary 1, the trace procedure is entered via trap
vector 2. Upon completion, the trace procedure automatically branches to the address
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction
sequence starting at the location specified by the operand is executed.

BAGE

Instruction:

Branch if algebraically greater than or equal to
Type:

BI

ASSEMBLY LANGUAGE INSTRUCTIONS 527 AU43

BAGE / BAL

Source Language Format:

direct-IMA
ABAGEA (direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were either algebraically
greater than or equal to the contents of the memory location specified in the compare
instruction.

Action if Branch Occurs:

If the J-bit in the M1-register contains binary 1, the trace procedure is entered via trap
vector 2. Upon completion, the trace procedure automatically branches to the address
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction
sequence starting at the location specified by the operand is executed.

BAL

Instruction:
Branch if algebraically less than

Type:
BI

Source Language Format:

direct-IMA
ABALA <direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were algebraically less than the
contents of the memory location specified in the compare instruction.

Action if Branch Ocurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BALE

Instruction:
Branch if algebraically less than or equal to

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 528 AU43

BALE / BBF / BBT

Source Language Format:

direct-IMA
ABALEA <direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison indicates that the contents of the R-register were algebraically less than or
equal to the contents of the memory location specified in the compare instruction.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BBF

Instruction:
Branch if bit-test indicator false

Type:
BI

Source Language Format:

direct-IMA]
ABBFA <{direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the B-bit in the I-register is set to 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary O, the
instruction sequence starting at the location specified by the operand is executed.

BBT

Instruction:
Branch if bit-test indicator true

Type:
BI

ASSEMBLY LANGUAGE INSTRUCTIONS 529 AU43

BBT / BCF / BCT

Source Language Format:

direct-IMA
ABBTA <direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the B-bit in the I-register is set to 1.

Action if Branch Occurs:

If the J-bit in the MI1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary O, the
instruction sequence starting at the location specified by the operand is executed.

BCF

Instruction:
Branch if no carry

Type:
BI

Source Language Format:

direct-IMA
ABCFA' < direct-P-relative-address
short-displacement-address

Branches to the location specified in the operand if the C-bit in the I-register is set to 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed. ‘

BCT

Instruction:
Branch if carry

Type:
BI

Source Language Format:

direct-IMA
ABCTA Sdirect-P-relative-address
short-displacement-address

ASSEMBLY LANGUAGE INSTRUCTIONS 5-30 AU43

BCT / BDEC / BE

Description:
Branches to the location specified in the operand if the C-bit in the I-register is set to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BDEC

Instruction:
Branch and decrement

Type:
BR

Source Language Format:

$Rn (direct-IMA
ABDECA ¢ X‘n’ p, < direct-P-relative-address
n short-displacement-address

Description:

Subtracts 1 from the contents of the R-register identified in the first operand; then,
branches to the location specified in the second operand if the contents of the
R-register are greater than or equal to 0.

Action if Branch Occurs:

If the J-bit in the MI1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BE

Instruction:
Branch if equal

Type:
BI

Source Language Format:

direct-IMA
short-displacement-address

ABEA {direct-P—relative—address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison sets both the G- and L-bits of the I-register to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 531 AU43

BE / BEVN /| BEZ

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary I, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BEVN

Instruction:
Branch if R-register even

Type:
BR

Source Language Format:

$Rn direct-IMA
ABEVNA < X'n* ; , <direct-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains an even value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BEZ

Instruction:
Branch if R-register equal to O

Type:
BR

Source Language Format:

$Rn direct-IMA
ABEZA X'n'p , qdirect-P-relative-address
n short-displacement-address
Description:

Branches to the location specified in the second operand if the R-register identified in
the first operand contains 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 532 AU43

BG / BGE / BGEZ

BG

Instruction:
Branch if greater than

Type:
BI

Source Language Format:

direct-IMA
ABGA | direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison sets the G bit of the I-register to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BGE

Instruction:
Branch if greater than or equal to

Type:
BI

Source Language Format:

direct-IMA
ABGEA (direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets the L-bit of the I-register to 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BGEZ

Instruction:
Branch if R-register greater than or equal to 0

ASSEMBLY LANGUAGE INSTRUCTIONS 533 AUA43

BGEZ / BGZ / BINC

Type:
BR

Source Language Format:

$Rn direct-IMA
ABGEZA ¢ X'n’ ; | {direct-P-relative-address

n * (short-displacement-address

Description:

Branches to the location specified in the second operand if the R- register identified in
the first operand contains a positive value or 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BGZ

Instruction:
Branch if R-register greater than 0

Type:
BR

Source Language Format:
$Rn direct-IMA
ABGZA X'n' p , (direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if the R-register identified in
the first operand contains a positive value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.
BINC

Instruction:
Branch and increment

Type:
BR

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-34 AU43

BINC / BIOF / BIOT

$Rn direct-IMA
ABINCA Xm' ¢, sdirect-P-relative-address
n short-displacement-address

Description:

Adds 1 to the contents of the R-register identified in the first operand; then, branches
to the location specified in the second operand if the contents of the R-register is
not 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BIOF

Instruction:
Branch if I/O indicator false

Type:
BI

Source Language Format:

direct-IMA
ABIOFA <direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the I-bit in the I-register is set to 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BIOT

Instruction:
Branch if I/O indicator true

Type:
BI

Source Language Format:

direct-IMA
ABIOTA { direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the I-bit in the I-register is set to 1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-35 AU43

BIOT / BL / BLE

Action if Branch Occurs:

If the J-bit in the MI1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BL

Instruction:
Branch if less than

Type:
BI

Source Language Format:

direct-IMA
ABLA <{direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison sets the L-bit of the I-register to 1.

Action if Branch Occurs:

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BLE

Instruction:
Branch if less than or equal to

Type:
BI

Source Language Format:

direct-IMA
ABLEA (direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
comparison sets the G-bit of the I-register to 0.

Action if Branch Occurs:

If the J-bit in the MI1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-36 AU43

BLEZ / BLZ /| BNE

BLEZ

Instruction:
Branch if R-register equal to or less than O

Type:
BR

Source Language Format:

$Rn) (direct-IMA
ABLEZA {X’n' s¢ direct-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains a negative value or O.

Action if Branch Occurs:

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary O, the
instruction sequence starting at the location specified by the operand is executed.

BLZ

Instruction:
Branch if R-register less than O

Type:
BR

Source Language Format:

$Rn) (direct-IMA
ABLZA {X'n')sdirect-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains a negative value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0O, the
instruction sequence starting at the location specified by the operand is executed.

BNE

Instruction:
Branch if not equal

ASSEMBLY LANGUAGE INSTRUCTIONS 5-37 AU43

BNE / BNEZ /| BNOV

Type:
BI

Source Language Format:

direct-IMA
ABNEA < direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison sets either (but not both) the G-bit or the L-bit of the Iregister to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BNEZ

Instruction:
Branch if R-register not equal to 0

Type:
BR

Source Language Format:

$Rn direct-IMA
ABNEZA { X'n’) «direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if the R-register identified in
the first operand contains a value other than 0.

Action if Branch Occurs:

If the J-bit in the MIl-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BNOV

Instruction:
Branch if no R-register overflow

Type:
BI

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 538 AU43

BNOV / BODD / BOV

direct-IMA
ABNOVA < direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the OV-bit in the I-register is set
to 0.

Action if Branch Occurs:

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BODD

Instruction:
Branch if R-register odd

Type:
BR

Source Language Format:

$Rn direct-IMA
ABODDA { X'n’ ; »qdirect-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the R-register identified in
the first operand contains an odd value.

Action if Branch Occurs:

If the J-bit in the MIl-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BOV

Instruction:
Branch if R-register overflow

Type:
BI

Source Language Format:

direct-IMA
ABOVA (direct-P-relative-address
short-displacement-address

ASSEMBLY LANGUAGE INSTRUCTIONS 5-39 AU43

BOV / BRK / BSE

Description:

Branches to the location specified in the operand if the OV-bit in the I-register is set
to 1.

Action if Branch Occurs:

If the J-bit in the MI-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

BRK

Instruction:
Break trap

Type:
GE

Source Language Format:
ABRKA

Description:

Enters the trace procedure by a trap to trap vector 2; this instruction is used for
debugging.

BSE

Instruction:
Branch if signs equal

Type:
BI

Source Language Format:

direct-IMA
ABSEA { direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison indicates that the sign of the value in the R-register was equal to the sign of
the value in the memory location in the most recent compare instruction (i.e., the
U-bit in the I-register is set to 0.)

Action if Branch Occurs:

If the J-bit in the Ml1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 540 AU43

BSU / CAD

BSU

Instruction:
Branch if signs unlike

Type:
BI

Source Language Format:

direct-IMA
ABSUA < direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
comparison indicates that the sign of the value in the R-register was unequal to the sign
of the value in the memory location or R-register in the most recent compare
instruction (i.e., the U-bit in the I-register is set to 1.)

Action if Branch Occurs:

If the J-bit in the MIl-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

CAD

Instruction:
Add carry bit to contents

Type:
SO

Source Language Format:
ACADAaddress-expression

Description:
Adds the contents of the C-bit in the [-register to the contents of the location specified
in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The contents of the I-register are affected as follows:

o If a carry occurs during the operation, the C-bit is set to 1; otherwise, it is set
to 0.

o If the result is more than 16 bits long, the OV-bit is set to 1; otherwise, it is set
to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 541 ~ AU43

CL /CLH

CL

Instruction:
Clear

Type:
SO

Source Language Format:
ACLAaddress-expression

Description:
Stores zeros in the location or R-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

CLH

Instruction:
Clear half-word

Type:
SO

Source Language Format:
ACLHAaddress-expression

Description:
Stores O’s in the half-word (byte) location specified in the address expression.

o If the address expression specifies =Rn, 0’s are stored in the rightmost byte of
the register. ‘

o It the operand specifies immediate memory addressing without indexing, or an
immediate operand format O’s are stored in the leftmost byte of the word found
at the specified location.

o If the operand specifies immediate memory addressing with indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word
specified. O’s are stored in the byte thus addressed.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing

Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 542 AU43

CMB / CMH

CMB

Instruction:
Compare contents to B-register

Type:
DO

Source Language Format:

$Bn
ACMBA < X'n’ ; ,address-expression
n

Description:
Compares the contents of the B-register identified in the first operand to the contents
of the location or B-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Rn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The contents of the I-register are affected as follows:

o If the contents of the B-register are greater than the contents of the location, the
G-bitis set to 1; otherwise, it is set to 0.

o If the contents of the B-register are less than the contents of the location, the
L-bit is set to 1; otherwise, it is set to 0.

o The setting of the U-bit is undefined.

CMH

Instruction:
Compare half-word (byte) to R-register

Type:
DO

Source Language Format:

$Rn
ACMHA ¢ X'n’ ; ,address-expression
n

Description:

Compares the contents of the R-register identified in the first operand to the contents
of the byte specified in the address expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 543 AU43

CMH / CMN

Prior to the operation, the byte operand is internally expanded to word length by
extending the sign through the eight high-order bit positions. The byte selected to
participate in the operation is determined by the format of the address expression, as
follows:

o Register Addressing (=$Rn): The rightmost byte of the register is selected.

o Memory Addressing Without Indexing: Immediate Memory Addressing: The
leftmost byte of the word at the designated memory address is selected.

o Memory Addressing With Indexing: The memory address indicates a starting
point. The index register contains an arithmetic value to be added to the starting
point. The value specifies the number of bytes before or after the starting point
needed to reach the byte selected for the operation.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The contents of the I-register are affected as follows:

o If the contents of the R-register are greater than the contents of the created
temporary word, the G-bit is set to 1; otherwise, it is set to 0.

o If the contents of the R-register are less than the contents of the created
temporary word, the L-bit is set to 1; otherwise, it is set to O.

o If the contents of the R-register and the contents of the created temporary word
do not have like signs, the U-bit is set to 1; otherwise, it is set to O.

CMN

Instruction:
Compare address to null

Type:
SO

Source Language Format:
ACMNAaddress-expression

Description:

Compares the contents of the location or B-register specified by the address expression
to a null address (the address 0).

The contents of the I-register are affected as follows:
o The G-bit is set to 0 if the contents of the specified location or register are equal
to null; otherwise, it is set to 1.

o The L-bit is set to O.
o The U-bit is affected, but its value is undefined.

ASSEMBLY LANGUAGE INSTRUCTIONS 544 AU43

CMN / CMR / CMV

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Rn
=§Sn
Short displacement addressing
Specialized addressing

} register addressing

CMR

Instruction:
Compare contents to R-register

Type:
DO

Source Language Format:

$Rn
ACMRA ¢ X'n’ ,address-expression
n

Description:

Compares the contents of the R-register identified in the first operand to the contents
of the location or R-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

;glsag } register addressing

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:
o If the contents of the R-register are greater than the contents of the location, the
G-bit is set to 1; otherwise, it is set to 0.
o If the contents of the R-register are less than the contents of the location,.the
L-bit is set to 1; otherwise, it is set to 0.

o If the content of bit O of the R-register is not equal to the content of bit O of the
location, the U-bit is set to 1; otherwise, it is set to 0.

CMV

Instruction:
Compare value to R-register

Type:
SI

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 545 AU43

CMV /CMZ

integer-constant
{ $Rn || string-constant
ACMVA ¢ X'n’ } ,[=]f integer-value-label
n [integer-value-expression
fixed-point-constant

Description:

Compares the 8-bit value (with sign extended) specified in the second operand to the
contents of the R-register identified in the first operand.

Except for the string constant form all values are assumed to be numeric.
The contents of the I-register are affected as follows:

o If the contents of the R-register are greater than the value (with sign extended),
the G-bit is set to 1; otherwise, it is set to 0.

o If the contents of the R-register are less than the value (with sign extended), the
L-bit is set to'1; otherwise, it is set to 0.

o If the sign of the R-register and the sign of the value are not equal, the U-bit is
set to 1; otherwise, it is set to O.

cMZ

Instruction:
Compare to 0

Type:
SO

Source Language Format:
ACMZAaddress-expression

Description:

Compares the contents of the location or R-register specified in the address expression
to 0.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The $Bn.$R1, $Bn.$R2, or $Bn.$R3 form of addressing can be used by this instruction
to cause a trap for the purpose of sizing main memory provided the generated effective
address is less than or equal to 64K.

The contents of the I-register are affected as follows:

o If the contents of the specified location do not equal 0, the G-bit is set to 1;
otherwise, it is set to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-46 AU43

CMZ / CPL / DAL

o The L-bit is set to O.
o If the first bit of the specified location equals 1, the U-bit is set to 1; otherwise,
it is set to 0.

CPL

Instruction:
Complement

Type:
SO
Source Language Format:

ACPLAaddress-expression

Description:

One’s complements the contents of the location or Rregister specified in the address
expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:g SBr? } register addressing

Short displacement addressing
Specialized addressing

DAL

Instruction:
Double-shift arithmetic-left

Type:
SHL

Source Language Format:

S

ADALAS X {

3

5

7
Description:

Left shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and RS,
R6 and R7) identified in the first operand the number of bit positions specified by the
internal value expression in the second operand. The bit positions vacated by the shift
are filled with binary O’s.

|

} ' > ,internal-value-expression

NV WwW JwnmWw

ASSEMBLY LANGUAGE INSTRUCTIONS 547 AU43

DAL / DAR/ DCL

The internal value expression must be = 0 and < 31.

If the internal value expression equals 0, the contents are shifted left the number of bit
positions derived by using the value in bits 11 through 15 of general register R1.

The contents of the I-register are affected as follows:

o If the contents of bit 0 in the even-numbered R-register changes, the OV-bit is
set to 1; otherwise, it is set to O.

DAR

Instruction:
Double-shift arithmetic-right

Type:
SHS

Source Language Format:

3
($R{5}
7

3
ADARA< X {5} ’ > ,internal-value-expression

Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and
R7) identified in the first operand right the number of bit positions specified by the
internal value expression in the second operand. The bit positions vacated by the shift
are filled with the sign value originally contained in bit 0.

The internal value expression must be 2 0 and < 31.
The contents of the I-register are affected as follows:

o C-bit contains the last binary digit shifted out of the odd-numbered R-register.

DCL

Instruction:
Double-shift closed-left

Type:
SHS

ASSEMBLY LANGUAGE INSTRUCTIONS 5.48 AU43

DCL / DCR

Source Language Format:

g

3
ADCLA< X {5} ’ 7 ,internal-value-expression

Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and
R7) identified in the first operand left the number of bit positions specified by the
internal value expression in the second operand. The bits shifted out of the
even-numbered R-register are placed in the bit positions of the odd-numbered
R-register vacated as the bits are shifting left.

The internal value expression must be = 0 and < 15.

If the internal value expression equals O, the contents are shifted left the number
derived by using the value in bits 11 through 15 of general register R1.

DCR

Instruction:
Double-shift closed-right

Type
SHS

Source Language Format:

(]

ADCRA! X' {

3))
5
7

}' Jinternal-value-expression

~N W

Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3 R4 and R5, R6 and
R7) identified in the first operand right the number of bit positions specified by the
internal value expression in the second operand. The bits shifted out of the
odd-numbered R-register are placed in the bit positions of the even-numbered
R-register vacated as the bits are shifting right.

ASSEMBLY LANGUAGE INSTRUCTIONS 549 AU43

DCR / DEC/ DIV

The internal value expression must be =2 0 and < 15.

If the internal value expression equals 0, the contents are shifted right the number
derived by using the value in bits 11 through 15 of general register R1.

DEC

Instruction:
Decrement

Type:
SO

Source Language Format:
ADECAaddress-expression

Description:

Decrements by 1 the contents of the location or R-register specified in the address
expression, then copies bit 0 of the addressed word or register into I(B).

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The contents of the I-register are affected as follows:

o If the decrementation causes a carry to occur, the C-bit is set to 1; otherwise, it
is set to 0.

o If the value being decremented was - 32768 (-2 %), I(OV) is set to 1; otherwise, I
(OV) is cleared to O.

o I (B)isset as described above.

DIV

Instruction:
Divide R-register by contents of location

Type:
DO

Source Language Format

$Rn
ADIVA ¢ X'n* ; ,address-expression
n

ASSEMBLY LANGUAGE INSTRUCTIONS 5-50 AU43

DIV / DOL

Description:

Divides the contents of the R-register identified in the first operand by the contents of
the location or R-register specified in the address expression. The result is saved in the
first operand R-register (except for the remainder, which is ignored).

If R7 is identified as the first operand R-register, the double integer operand contained
in R6 and R7 is divided by the single integer operand identified by the address
expression. The result is saved in R7 and the remainder is saved in R6.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
=$Sn

Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

1. I(OV)issetto 1if
a. The divisor =0
b. The quotient is greater than 2!5 -1 {32767) or less than -215 (-32768)
Otherwise I(OV) is cleared to 0.
Divide operations that cause I(OV) to be set terminate with all operands
unchanged. ,

2. I(C) is set to 1 if the remainder is not O, or cleared to O if the remainder is O.
I(C) is unchanged when the first operand is $R7. If the divisor = 0 or if the
dividend is -2! % times the divisor, I(C) is undefined.

DOL

Instruction:
Double-shift open-left

Type:
SHL

Source Language Format:

3
)
7

3
ADOLA< X' {5} ' > internal-value-expression

7
3
5
7
Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and
R7) identified in the first operand left the number of bit positions specified by the
internal value expression in the operand. The bit positions vacated by the shift are
filled with binary 0’s.

ASSEMBLY LANGUAGE INSTRUCTIONS 5.51 ' AU43

DOL / DOR / ENT

The internal value expression must be 2 0 and < 31.

If the internal value expression equals O, the contents are shifted left the number
derived by using the value in bits 11 through 15 of general register R1.

The contents of the I-register are affected as follows:
o C-bit contains the last binary digit shifted out of the even-numbered R-register.
DOR

Instruction
Double-Shift open-right

Type:
SHL

Source Language Format:

ot

ADORA{ X' {5} * > internal-value-expression

Description:

Shifts the contents of the even-odd R-register pair (i.e,. R2 and R3, R4 and R5, R6 and
R7) identified in the first operand right the number of bit positions specified by the
internal value expression in the operand. The bit positions vacated by the shift are
filled with binary O’s.

The internal value expression must be = 0 and < 31.

If the internal value expression equals 0, the contents are shifted right the number
derived by using the value in bits 11 through 15 of general register R1.

The contents of the I-register are affected as follows:

o C-bit contains the last binary digit shifted out of the odd-numbered R-register.
ENT

Instruction:
Enter

Type:
SO

ASSEMBLY LANGUAGE INSTRUCTIONS 552 AU43

ENT / HLT / INC

Source Language Format:

i fimmediate-memory-address
AENTA {B—relative—addressing }

Description:

Jumps to the memory location specified by the operand; also, sets the P-bit in the
S-register to O (i.e., sets the bit to indicate slave mode).

If the J-bit in the MIl-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, or if the J-bit contains a binary 0, execution
commences at the specified location.

HLT

Instruction:
Halt

Type:
GE

Source Language Format:
AHLTA

Description:

Stops program execution. HLT state is indicated on the control panel. All interrupts
will be honored.

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If not, the unprivileged use of a
privileged operation is signified by a trap to trap vector 13.

INC

Instruction:
Increment

Type:
SO

Source Language Format:
AINCAaddress-expression

Description:

Copies bit 0 of the contents of the location or R-register specified in the address
expression into I(B), then increments by 1 the contents of the location or register.

This instruction operates in read modify write (RMW) mode, which prevents any other

processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

ASSEMBLY LANGUAGE INSTRUCTIONS 553 AU43

INC /IO

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:ggg} register addressing
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

o If the incrementation causes d carry to occur, the C-bit is set to 1; otherwise, it is
set to 0.

o If the value being incremented was 32767, I(OV) is set to 1; otherwise, it is
cleared to O.

IO

Instruction:
Input/Output (word)

Type:
IO

Source Language Format:
AIOAaddress-expression,address-expression

Description:

1. If the function code (F) is odd (indicating output): sends the command word
(CH,F) specified by the second operand and the word specified by the first
operand to the addressed 10 channel.

2. If the function code (F) is even (indicating input): sends the command word
(CH,F) specified by the second operand to the addressed channel. If the channel
accepts the command, receives a word response from the channel and stores it in
the word location or R-register specified by the first operand. If the channel
does not accept the command, the contents of the location or register remain
unchanged.

In both cases above, if the IO channel accepts the command, the I-bit in the indicator
register is set to binary 1.

For the first operand, the address expression can take any of the forms described
earlier in this section under ‘“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

} register addressing

For the second operand, the address expression can take any of the forms described
earlier in this section under ‘‘Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing

} register addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-54 AU43

10 / IOH

The channel number and function code are contained in the R-register or memory
word specified by the second operand. The channel number and function code occupy
16 bits formatted as follows:

Bit: O 910 15

CH F

CH is the channel number and F is the function code. The channel number is odd for
output (memory-to-device) transfer and even for input (device-to-memory) transfer.
The function code is controller-specific, subject to these constraints:

1. If F is odd, data (specified by the first operand) is transferred from the CPU to
the controller.

2. If F is even, data is transferred from the controller to the CPU, which stores the
data in the R-register or memory word specified by the first operand.

The following shows how the required channel number and function code are used.
Assume that the status of a read operation on channel 20, ¢is to be stored into the
word labeled STATUS. Also assume that the controller uses the standard function code
18, ¢ for “input status register.” The 10 instruction to accompiish this could be coded
as shown below:

I0 STATUS >=Z7'0818’
or it could be coded as:

IO STATUS >=X"20"*64+X"18’

For detailed information on the bus, refer to the Handbook.
The contents of the I-register are affected as follows:
o If the controller accepted the command, the I-bit is set to 1; otherwise, it is

cleared to 0.

IOH

Instruction:
Input/output half-word

Type:
I0

Source Language Format:
AIOHAaddress-expression,address-expression

Description:

This instruction is identical to the IO instruction, except that the first operand
specifies a half-word as follows:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-55 AU43

IOH / IOLD

o If it specifies =§R, the rightmost byte of the specified R-register is sent (i.e.,
function code is odd) to the bus.

o If it specifies memory addressing without indexing, or an immediate operand
addressing format, the leftmost byte of the word found at the specified location
is sent (i.e., function code is odd) to the bus.

o If it specifies memory addressing with indexing, the index register is aligned to
count bytes relative to the leftmost byte of the word specified. The byte thus
addressed is sent (i.e., function code is odd) to the bus.

For each of the above cases, if the function code is even, the first operand specifies the
byte in which the response from the bus is to be stored.

See the description of the IO instruction for details regarding the coding of the
operands.

IOLD

Instruction:
Input/output load

Type:
10

Source Language Format:
AIOLDAaddress-expression ,address-expression,address-expression

Description:

Sends the controller the effective address (specified by the first operand), the channel
number and function code (specified in the second operand), and the range (i.e.,
number of bytes to be transferred) value (specified in the third operand) over the
channel specified in the second operand to the bus. The address and range value are
used to load the controller address and range registers.

For the first operand, the address expression can take any of the forms described
earlier in this section under“Addressing Techniques” except for the following:

=$Sn

Short displacement addressing
Specialized addressing
Immediate operand addressing

=$Bn
=$Rn register addressing

For the second operand, the address expression can take any of the forms described
earlier in this section under “Addressing Techniques,”” except for the following:

=$Bn
=$Rn register addressing
=$Sn

Short displacement addressing
Specialized addressing
Immediate operand addressing

The second operand of this instruction must specify the function code 09, 4.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-56 AU43

IOLD / JMP / LAB

For the third operand, the address expression can take any of the forms described
earlier in this section under “Addressing Techniques” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The following shows how the required channel number and function code are used.
Assume that 128 bytes are to be read from the device on channel 20, ¢ into the buffer
labeled BUFFER. The IOLD instruction to output this information to the controller
could be coded as shown below:

IOLD BUFFER >=7'0809" =128
For detailed information about the bus, see the Handbook.
The contents of the Iregister are affected as follows:

o If the channel accepted the command, the I-bit is set to 1; otherwise, it is set
to 0.

JMP

Instruction:
Jump

Type:
SO

Source Language Format:
ATMPA { 1mmed.1ate-memo.ry-address }
B-relative-addressing
Description:

Jumps to the location specified in the operand.

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, or if the J-bit contains a binary 0, execution
commences at the specified location.

LAB

Instruction:
Load effective address into B-register

Type:
DO

Source Language Format:

$Bn
ALABA § X'n’ ; ,address-expression
n

ASSEMBLY LANGUAGE INSTRUCTIONS 5-57 AU43

LAB/LB/LBC

Description:

Loads the effective address generated by the address expression into the B-register
identified in the first operand.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

o Register addressing
o Short displacement addressing
o Specialized addressing

LB

Instruction:
Load bit

Type:
SO

Source Language Format:

integer-constant 1
string-constant
internal-value-label
external-value-label
internal-value-expression

L fixed-point-constant B

ALBAaddress-expression | ,

Description:

1. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit O of the specified word. The bit thus addressed is loaded into the
B-bit of the I-register.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bit(s) are to be checked (e.g., 2’8000’ indicates that the
first bit of the word found at the specified location is to be checked); then, if
(any of) the specified bit(s) contain a binary 1, the B-bit of the I-register is set to
1; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

LBC

Instruction:
Load bit and complement

Type:
SO

ASSEMBLY LANGUAGE INSTRUCTIONS 5-58 AU43

LBC / LBF

Source Language Format:

- (integer-constant
string-constant
internal-value-label
external-value-label
internal-value-expression
|\ fixed-point-constant 4

ALBCAaddress-expression | ,

Description:

1. If the first operand specifies indexing, the index register is is aligned to count
bits relative to bit O of the specified word. The bit thus addressed is loaded into
the B-bit of the I-register.

Upon completion of the operation, the addressed bit is set to the one’s
complement of its value.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bit(s) are to be checked (e.g., Z'8000’ indicates that the
first bit of the word found at the specified location of R-register is to be
checked); then, if (any of) the specified bit{s) contains a binary !, the B-bit of
I-register is set to 1; otherwise it is set to O.

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is compieted.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

LBF

Instruction:
Load bit and set false

Type:
SO

Source Language Format:

integer-constant T
string-constant
internal-value-label
external-value-label
internal-value-expression
fixed-point-constant

ALBFAaddress-expression |,

Description:

1. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit O of the specified word. The bit thus addressed is loaded into the
B-bit of the I-register.

Upon completion of the operation, the addressed bit is set to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-59 AU43

LBT / LBF

2. If the first operand does not specify indexing, the value (mask) in the second

operand identifies which bit(s) are to be checked (e.g., Z'8000' indicates that the
first bit of the word found at the specified.location or R-register is to be
checked); then, if (any of) the specified bit(s) contains a binary 1, the B-bit of
the I-register is set to 1; otherwise, it is set to 0.

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

The address expression can take any-of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn

} register addressing

Short displacement addressing
Specialized addressing
Immediate operand addressing

LBT

Instruction:
Load bit and set true

Type:

SO

Source Language Format:

integer-constant
string-constant
internal-value-label
external-value-label
internal-value-expression
fixed-point-constant

ALBTAaddress-expression |,

Description:

1. If the first operand specifies indexing, the index register is aligned to count bits

relative to bit O of the specified word. The bit thus addressed is loaded into the
B-bit of the I-register.
Upon completion of the operation, the addressed bit is set to 1.

. If the first operand does not specify indexing, the value (mask) in the second

operand identifies which bit(s) are to be checked (e.g., Z'8000’ indicates that the
first bit of the word found at the specified location of R-register is to be
checked); then, if (any of) the specified bit(s) contains a binary 1, the B-bit of
the Iregister is set to 1; otherwise, it is set to 0.

Upon completion of the operation, the bit(s) checked in accordance with the
mask is (are) set to 1.

This instruction operates in read modify write (RMW) mode, which prevents any other
processor in a multiprocessor environment from accessing the location being modified
until the modification is completed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-60

AU43

LBT /LBS / LDB

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

LBS

Instruction:
Load bit and swap

Type:
SO

Source Language Format:

integer-constant T
string-constant
internal-value-label
external-value-label
internal-value-expression
fixed-point-constant 4

ALBSAaddress-expression |,

Description:

1. If the first operand specifies indexing, the index register is aligned to count bits
relative to bit 0 of the specified word. The bit thus addressed is interchanged
with the B-bit of the I-register.

2. If the first operand does not specify indexing, the value (mask) in the second
operand identifies which bit(s) are to be checked (e.g., Z'8000’ indicates that the
first bit of the word found at the specified location or R-register is to be
checked); then, if (any of) the specified bit(s) contains a binary 1, the B-bit of
the I-register is set to 1; otherwise, it is set to 0.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

LDB

Instruction:
Load B-register

Type:
DO

ASSEMBLY LANGUAGE INSTRUCTIONS 5-61 AU43

LDB / LDH

Source Language Format:

$Bn
ALDBA ¢ X'n’; ,address-expression
n

Description:

Loads the contents of the location or B-register specified by the address expression
into the B-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:g I;?} register addressing

Short displacement addressing
Specialized addressing

Immediate operand addressing with an internal value expression
LDH

Instruction:
Load half-word (byte) into R-register

Type:
DO
Source Language Format:
$Rn :
ALDHA < X'n'; ,address-expression
n

Description:

Loads the contents of the location specified in the address expression, as described
below, into the R-register identified in the first operand:

o If the address expression specifies =$Rn the rightmost byte (sign extended) of
that R-register is loaded into the R-register specified by the first operand.

o If the address expression specifies memory addressing without indexing, or an
immediate operand addressing format, the leftmost byte (sign extended) of the
word found at the specified location is loaded into the R-register.

o If the address expression specifies memory addressing with indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word
specified. The byte thus addressed is loaded (sign extended) into the R-register.

In all cases, the selected byte is loaded into the rightmost byte of the R-register, with
the sign extended to the left.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-62 AU43

LDI/LDR

LDI

Instruction:
Load double-word integer

Type:
SO

Source Language Format:
ALDIAaddress-expression

Description:
Loads the contents of the location specified by the address expression into register R6
and the contents of the next location into register R7.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

) . .
} register addressing

If =$Rn is used, only =$R3 (loads the contents of R2 and R3 into R6 and R7,
respectively) or =§R5 (loads the contents of R4 and RS into R6 and R7, respectively)
may be used.

LDR

Instruction:
Load R-register

Type:
DO

Source Language Format:

$Rn
ALDRA <(X'n’'} ,address-expression
n

Description:

Loads the contents of the location or R-register identified in the address expression
into the R-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=8Sn
Short displacement addressing
Specialized addressing

} register addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 563 AU43

LDV / LEV

LDV

Instruction:
Load value

Type:
SI

Source Language Format:

{$Rn}
ALDVA ¢ X'n'; ,[=]

n

string-constant

internal-value-label
linternal—value-expression‘

fixed-point-constant

s integer-constant l

Description:

Loads the 8-bit value identified in the second operand into the right half-word of the
R-register specified in the first operand. The contents of bit 8 are extended through the
left half-word of the R-register.

Except for the string constant form of the second operand, all values are assumed to be
numeric.

LEV

Instruction:
Level Change

Type:
SO

Source Language Format:
ALEVAaddress-expression

Description:

Sets or resets level activity bits according to the contents of the location indicated by
the address expression.

The following bit configurations in the indicated location produce the actinne
described below.

Bit: 0 1 2 3 4 5 6 7 8 S 10 15

00|10 |0|0J010]0]0]|O0]} Level Number

Schedule Interrupt Level, Scan and Dispatch
The level activity bit for the designated level will be set. The level activity bits will be
scanned and the highest active level ascertained. The context of the current level will
be saved (unless the current level is the highest active level). The context of the highest
active level will be restored (again, unless the current level is the highest active level).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-64 AU43

LEV

Bit: 0 1 2 3 4 5 6 7 8 910 15

01 oj(ojotiojofoio o Level Number

Schedule Interrupt Level, Defer Interrupt

The level activity bit for the designated level will be set. Execution will continue at the
current level.

Bit: ¢ 1 2

w
o
w

6 7 8 9 10 11 12 13 14 15

04j0f(0j0jOojOjOoj0ofrjojojojojo 1|1

Inhibit
The level activity bit for priority level 3 will be set. The interrupt vector for priority
level 3 will be set equal to the interrupt vector for the current level. Execution of the
current task continues at priority level 3. The use of level 3 as the inhibit level is a
software convention.

Bit: 0 1 2 3 4 5 6 7 8 910 15

110 (0 |cCj0(0|0j0(0¢t0 Level Number

Schedule Interrupt Level, Suspend, Scan and Dispatch
The level activity bit for the designated level will be set. The level activity bit for the
current level will be reset. The level activity bits will be scanned and the highest level

ascertained. The context of the current level will be saved. The context of the highest
active level will be restored.

Bit: 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

110 j0j0fjojojojojr1fojojofjojjoil jn

Suspend, Inhibit
The level activity bit for the current level will be reset. The level activity bit for
priority level 3 will be set. The interrupt vector for priority level 3 will be set equal to
the interrupt vector for the current level. Execution of the task continues at priority
level 3. The use of level 3 as the inhibit level is a software convention.

Bit: 0 1 2 3 4 5 6 7 8 9 10 1112 1314 15

10 [0jo0jo0jojofojofoqf1 11 (1|1 |1

Enable

Enable is used to end execution at priority level 3. The level activity bit for priority
level 63 will be set. The level activity bit for priority level 3 will be reset. The level
activity bits will be scanned and the highest active level ascertained. The context of the

ASSEMBLY LANGUAGE INSTRUCTIONS 5-65 AU43

LEV /LLH

current level is saved (unless the level where the inhibit originated is now the highest
active level). The context of the highest active level will be restored (again, unless the
level where the inhibit originated is now the highest active level).

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,”” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If the P-bit is not set to 1, the
unprivileged use of a privileged operation is signified by a trap to trap vector 13. (Traps
and trap handling are described in the Executive and Input/Output manual.)

The contents of the S-register are affected as follows:

o Bits 10 through 15 of the S-register will be set to indicate the priority level at
which processing continues after execution of the LEV instruction.

LLH

Instruction:
Load logical half-word (byte) into R-register

Type:
DO

Source Language Format:

$Rn]
ALLHA < X'n* ; ,address-expression
n

Description:
Loads the contents of the location specified in the address expression, as described
below, into the R-register identified in the first operand.

o If the address expression specifies =$Rn the rightmost byte of that R-register is
loaded into the R-register specified by the first operand.

o If the address expression specifies memory addressing without indexing, or an
immediate operand addressing format, the leftmost byte of the word found at
the specified location is loaded into the R-register.

o If the address expression specifies memory addressing with indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word
specified. The byte thus addressed is loaded into the R-register.

In all cases, the selected byte is loaded into the rightmost byte of the R-register, with
0’s loaded into the leftmost byte.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-66 AU43

LLH / LNJ / MCL /| MLV

=$Bn
=$S
Short displacement addressing
Specialized addressing

} register addressing

LNJ
Instruction:
Load B-register and jump

Type:
DO

Source Language Format:

ALNIJA { X'n’ immediate-memory-address
n B-relative-address

$Bn } { P-relative-address }

Description:
Loads the address of the next sequential instruction into the B-register identified in the
first operand, and jumps to the location specified in the second operand.

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary O, the

instruction sequence starting at the location specified by the second operand is
executed. The last instruction in the subroutine should be:

JMP $Bn
MCL

Instruction:
Call monitor via trap

Type:
GE
Source Language Format:

AMCLA

Description:
Calls monitor by a trap to trap vector 1.

MLV

Instruction:
Multiply by value

Type:
SI

ASSEMBLY LANGUAGE INSTRUCTIONS 5-67

AU43

MLV / MTM

Source Language Format:

integer-constant

$Rn string-constant
AMLVAS4 X'’ ¢ ,[=] { internal-value-label
n internal-value-expression

fixed-point-constant

Description:

Multiplies the contents of the R-register identified in the first operand by the 8-bit
value (with sign extended) specified in the second operand. The result is saved in the
first operand R-register.

If R7 is identified as the first operand R-register, the result (double-precision format) is
saved in R6 and R7, with the most significant part in R6 and the least significant in
R7.

The contents of the I-register are affected as follows:

o If the result is more than 2%-1 (32767) or less than -215(-32768) (except if R7
is specified), the OV-bit is set to 1; otherwise; it is set to 0.

MTM

Instruction:
Modify or test M-register

Type:
DO

Source Language Format:

$Mn
AMTMA § X'n’ ¢ ,address-expression
n

Description:

Modifies or tests the contents of the M-register identified in the first operand with the
contents (mask) of the location or R-register specified by the address expression.

The mask is treated as two 8-bit fields; then, depending on the content of
corresponding bits in the two fields (i.e., bit 1 in the first field and bit 1 in the second;
bit 2 in the first field and bit 2 in the second; etc.), the corresponding bit in the
M-register (i.e , if bit 1 in the two mask fields, then bit 1 in the M-register) is altered as
described below:

o If bit n in the first mask field is 1, the corresponding bit in the M-register is
loaded with the contents of the corresponding bit from the second mask field
(i.e., Mregister is modified).

o If bit n in the first mask field is 0 and the same bit in the second mask field is 1,
the corresponding bit in the M-register is inclusively ORed with the contents of
the B-bit in the I-register. If the result of the ORing is 1, the B-bit is set to 1;
otherwise, it is set to 0 (i.e., M-register is tested).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-68 AU43

MTM / MUL / NEG

o If bit n in the first mask field is 0 and the same bit in the second mask field is O,
the corresponding bit in the M-register is neither modified nor tested.

NOTE: The assembly language instructions LEV, SAVE, and STM store the
contents of the M-register in a form suitable for reloading by MTM.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn §
Short displacement addressing
Specialized addressing

register addressing

MUL

Instruction:
Multiply R-register

Type:
DO

Source Language Format:

$Rn
AMULA § X'n' ¢ ,address-expression
n

Description:

Multiplies the contents of the R-register identified in the first operand by the contents
of the location or R-register specified in the address expression. The result is saved in
the first operand R-register.

If R7 is identified as the first operand R-register, the result (double-precision format) is
saved in R6 and R7, with the most significant part in R6 and the least significant
in R7. '

The contents of the I-register are affected as follows:

o If the product is more than 215 -1 (32767) or less than -2'% {-32768) (except if
R7 is specified), the OV-bit is set to 1; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

NEG

} register addressing

Instruction:
Negate

ASSEMBLY LANGUAGE INSTRUCTIONS 5-69 AUA43

NEG / NOP / OR

Type:
SO

Source Language Format:
ANEGAaddress-expression

Description:
Two’s complements the contents of the location or R-register specified in the address
expression.

The contents of the I-register are affected as follows:

o If a carry occurs during the operation, the C-bit is set to 1; otherwise, it is set
to 0.

o If the value complemented was -32768, the OV-bit is set to 1; otherwise, it is set
to 0.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

NOP

Instruction:
No operation

Type:
BI

Source Language Format:

direct-IMA
ANOPA « direct-P-relative-address
short-displacement-address

Description:
Performs no operation.

If the J-bit in the MI1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion of the trace procedure or if the J-bit contains a binary
0, processing continues with the next sequential instruction in the program.

OR

Instruction:
Inclusive OR with R-register

Type:
DO

ASSEMBLY LANGUAGE INSTRUCTIONS 570 AU43

OR / ORH

Source Language Format:
[SRn

AORA 1§ X'n’, ,address-expression
n

Description:

Inclusively ORs the contents of the R-register identified in the first operand with the
contents of the location or R-register specified in the address expression. The result is
saved in the first operand R-register.

The following chart illustrates the result of inclusively ORing bits:

First operand bit: ofof1 (1
Second operand bit: || 1]0]11]0

Result: 110111

b

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short dispiacement addressing
Specialized addressing

} register addressing

ORH

Instruction:
Half-word (byte) inclusive OR with R-register

Type:
DO

Source Language Format:

$Rn
AORHA § X'n’ ; ,address-expression
n :

Description:
Inclusively OR’s the contents of the R-register identified in the first operand with the
contents of the byte specified in the address expression.

Prior to the operation, the byte operand is internally expanded to word length by
extending the sign through the eight high-order bit positions. The byte selected to
participate in the operation is determined by the format of the address expression, as
follows:

o Register Addressing (=$Rn): The rightmost byte of the register is selected.
o Memory Addressing Withhout Indexing: Immediate Memory Addressing: The
leftmost byte of the word at the designated memory address is selected.

ASSEMBLY LANGUAGE INSTRUCTIONS 571 AU43

ORH / RSTR

0 Memory Addressing With Indexing: The memory address indicates a starting
point. The index register contains an arithmetic value to be added to the starting
point. The value specifies the number of bytes before or after the starting point
needed to reach the byte selected for the operation.

The following chart illustrates the result of inclusively ORing bits:

First operand bit: |00 1
1101140

Second operand bit:

Result: “1 Of1]1

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=3$Sn
Short displacement addressing
Specialized addressing

} register addressing

RSTR

Instruction:
Restore context

Type:
SO

Source Language Format:

integer-constant

immediate-memory-address} string-constant
b

ARSTRA {B-relative—address internal-value-label

external-value-label
internal-value-expression
fixed-point-constant

P-relative-address

Description:

Restores the registers specified in the second operand mask starting from the location
specified in the address expression.

The second operand is a mask that specifies which registers are to be restored. If the
mask is all zeros, the contents of R1 are used as the mask.

Depending on which bits in the specified mask are set to 1, the registers that can be
restored are as follows:

Bit: 0 1 2 3 4 5 6 7 8 9 10 1112 13 1415

M |R1 jRZ {R3 | R4 |R5 |R6 |R7] I |B1 |B2 |B3 [B4 {B5 | B6 |B7

ASSEMBLY LANGUAGE INSTRUCTIONS 5-72 AU43

RSTR / RTCF / RTCN / RTT

This mask should be the same as the one used to save the registers (see the SAVE
instruction).

RTCF

Instruction:
Real-time clock off

Type:
GE

Source Language Format:
ARTCFA

Description:
Disables real-time clock interrupts.

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the

privileged state) for this instruction to be executed. If not, the unprivileged use of a
privileged operation is signified by a trap to trap vector 13.

RTCN

Instruction:
Real-time clock on

Type:
GE

Source Language Format:
ARTCNA

Description:

Enables real-time clock interrupts, which will occur only when the real-time clock
interrupt level is higher than the priority interrupt level specified in the S-register.

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If not, the unprivileged use of a
privileged operation is signified by a trap to trap vector 13.

For a detailed description of traps and trap handling procedures (i.e., trap handlers),
refer to the Executive and Input/Output manual.

For a detailed description of interrupts, refer to the Handbook.

RTT

Instruction:
Return from trap

Type:
GE

ASSEMBLY LANGUAGE INSTRUCTIONS 573 AU43

RTT / SAD

Source Language Format:
ARTTA

Description:

Restores the registers that were saved in the trap save area when the trap was entered;
restores the central processor to the nonprivileged state if entering the trap caused the
state to change from nonprivileged to privileged; returns the trap save area block to the
trap save area memory pool; returns control to the next instruction to be executed
(determined by the event that caused the trap and/or by the trap handler).

SAD

Instruction:
Scientific add

Type:
DO

Source Language Format;

$Sn
ASADA <(X'n’p ,address-expression
n

Description:

Adds the floating-point or integer value in the location, scientific accumulator, or
R-register identified in the second operand to the contents of the scientific
accumulator specified in the first operand. The result is saved in the scientific
accumulator.

This instruction uses the optional Scientific Instruction Processor (SIP). A Floating-
Point Simulator is available to allow this instruction to be executed on systems that do
not include an SIP. Information on the Floating-Point Simulator is available in the
Executive and Input/Output manual.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the value forms are:

=$R
6‘ If =§R7 is specified, the 32-bit value contained in the
7 register pair formed by R6 and R7 becomes the operand.

=$Sn
=$Sn

If immediate operand addressing is used, you must provide a floating-point constant or
hexadecimal string constant in suitable floating-point format.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-74 AU43

SAD / SAL / SAR

If the second operand is =§R4, =§R5, =§R6, or =§R7, the integer value contained in
the specific R-register is internally converted to floating-point format before it is added
to the S-register by the first operand.

Scientific Indicator Settings:

EU: set to 1 on exponent underflow; otherwise, set to 0.
PE: set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

SAL

Instruction:
Single-shift arithmetic-left

Type:
SHS

Source Language Format:

{ SRn
ASALA % X'n’
in

,internal-value-expression

N

Description:

Shifts the contents of the R-register identified in the first operand left the number of
bit positions specified in the internal value expression. The bit positions vacated by the
shift are filled with binary 0’s.

The contents of the I-register are affected as follows:

o If the contents of bit 0 in the R-register change, the OV-bit is set to 1; otherwise,
it is set to 0.

The internal value expression must be =2 0 and < 15.

If the internal value expression equals O, the contents are shifted left the number
derived by using the value in bits 12 through 15 of general register R1.

SAR

Instruction:
Single-Shift arithmetic-right

Type:
SHS

Source Language Format:

N

$Rn
ASARA X’n'; ,internal-value-expression
n

ASSEMBLY LANGUAGE INSTRUCTIONS 5-75 AU43

SAR / SAVE

Description:

Shifts the contents of the R-register identified in the first operand right the number of
bit positions specified in the internal value expression. The bit positions vacated by the
shift are filled with the sign value originally contained in bit 0.

The contents of the I-register are affected as follows:
o C-bit contains the last binary digit shifted out of the R-register.

The internal value expression must be =2 0 and < 15.

If the internal value expression equals O, the contents are shifted right the number
derived by using the value in bits 12 through 15 of general register R1.

SAVE

Instruction:
Save context

Type:
SO

Source Language Format:

integer-constant

immediate-memory-address} string-constant

ASAVEA {B-relative-address internal-value-label

external-value-label
internal-value-expression
fixed-noint-constant

P-relative-address

Description:
Saves the registers specified in the second operand starting at the location specified in
the address expression.

The second operand is a mask that specifies which registers are to be saved. Each bit in
the mask represents a particular register which can be saved, as shown below:

Bit: 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

M IRT1|R2 [R3|R4|R5 {R6|R7| I |B1|B2 |B3 (B4 |B5 |B6 |B7

If a mask bit is set to 1, the corresponding register is saved. If a mask bit is O, the
corresponding register is not saved. If the mask is all 0’s, the contents of R1 are used as
the mask.

The registers are saved in reverse order. For example, if the second operand specified
Z'CAO01’ (which, when translated into binary is 1100 1010 0000 0001), indicating that
registers M1, R1, R4, R6, and B7 are to be saved, the context save area will contain the
registers starting with B7 and ending with M1.

ASSEMBLY LANGUAGE INSTRUCTIONS 576 AU43

SBE / SBEU

SBE

Instruction:
Scientific branch on equal

Type:
BI

Source Language Format:

direct-IMA
ASBEA < direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
scientific comparison sets both the SL- and SG-bits of the SI-register to O.

Action if Branch Occurs:

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5.

SBEU

Instruction:
Scientific branch on exponent underflow

Type:
BI

Source Language Format:

direct-IMA
ASBEUA (direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the EU-bit in the SI-register to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed. If
the Scientific Information Processor (SIP) is not installed on this system, the Scientific
Branch Simulator is entered via trap vector 5.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-77 AU43

SBEZ / SBG

SBEZ

Instruction:
Branch if scientific accumulator equal to 0

Type:
BR

Source Language Format;

$Sn direct-IMA
ASBEZA { X'n'p , { direct-P-relative-address

n short-displacement-address

Description:

Branches to the location specified in the second operand if the scientific accumulator
identified in the first operand contains a floating-point value algebraically equal to 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary O, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5. $S1 is the only scientific
accumulator register supported by the simulator.

SBG

Instruction:
Scientific branch on greater than

Type:
BI

Source Language Format:

direct-IMA
ASBGA | direct-P-relative-address
short-displacement-address

Description;
Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the SG-bit in the Sl-register to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-78 AU43

SBG / SBGE / SBGEZ

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5.

SBGE

Instruction:
Scientific branch on greater than or equal

Type:
BI

Source Language Format:

direct-IMA
ASBGEA | direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the S1-bit of the SI-register to 0.

Action if Branch Occurs:

If the J-bit in the MIl-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the- J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is enterd via trap vector 5.

SBGEZ

Instruction:
Branch if scientific accumulator equal to or greater than O

Type:
BR

Source Language Format:

$Sn direct-IMA
ASBGEZA <X'm'p , | direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if the scientific accumulator
identified in the first operand contains a nonnegative floating-point value.

Action if Branch Occurs:

If the J-bit in the MI1-register contains a binary 1, the trace procedure is entered via
trap vector 2. (Upon completion, the trace procedure automatically branches to the

ASSEMBLY LANGUAGE INSTRUCTIONS 5-79 AU43

SBGEZ / SBGZ / SBL

address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5. $S1 is the only scientific
accumulator register supported by the simulator.

SBGZ

Instruction:
Branch if scientific accumulator greater than 0

Type:
BR

Source Language Format:

$Sn direct-IMA
ASBGZA <(X'n'p | < direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if the scientific accumulator
identified in the first operand contains a positive floating-point value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the

Scientific Branch Simulator is entered via trap vector 5. $S1 is the only scientific
accumulator register supported by the simulator.

SBL

Instruction:
Scientific branch if less than

Type:
BI

Source Language Format:

direct-IMA
ASBLA (direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the S1-bit of the Sl-register to 1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-80 AU43

SBL / SBLE / SBLEZ

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure automatically
branches to the address specified by the operand. In this case, or if the J-bit contains a
binary 0, the instructions sequence starting at the location specified by the operand is
executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5.

SBLE

Instruction:
Scientific branch on less than or equal

TFype:
BI

Source Language Format:

direct-IMA
ASBLEA {direct-P-relative-address
short-displacement-address)

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the SG-bit in the SI-register to 0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5.

SBLEZ

Instruction:
Branch if scientific accumulator equal to or less than 0

Type:
BR

Source Language Format:
$Sn direct-IMA
ASBLEZA <X'n'; , {direct-P-relative-address
n short-displacement-address

Description:
Branches to the location specified in the second operand if the scientific accumulator
identified in the first operand contains a floating-point value algebraically equal to or
less than 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-81 AU43

SBLEZ / SBLZ / SBNE

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5. $S1 is the only scientific
accumulator register supported by the simulator.

SBLZ

Instruction:
Branch if scientific accumulator less than O

Type:
BR

Source Language Format:

$Sn direct-IMA
ASBLZA {X'n'p , <direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if the scientific accumulator
identified in the first operand contains a negative floating-point value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the

Scientific Branch Simulator is entered via trap vector 5. $S1 is the only scientific
accumulator register supported by the simulator.

SBNE

Instruction:
Scientific branch on not equal

Type:
BI

Source Language Format

direct-IMA
ASBNEA (direct-P-relative-address
short-displacement-address

ASSEMBLY LANGUAGE INSTRUCTIONS 5-82 AU43

SBNE / SBNEU / SBNEZ

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets either the SL- or SG-bit of the Sl-register to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary O, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5.

SBNEU

Instruction: -
Scientific branch on not exponent underflow

Type:
BI

Source Language Format:

direct-IMA
ASBNEUA < direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the EU-bit of the SI-register to 0.

Action if Branch Occurs:

If the J-bit of the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

SBNEZ

Instruction:
Branch if scientific accumulator not equal to 0

Type:
BR

Source Language Format:

$Sn direct-IMA
ASBNEZA | X'n'p , <direct-P-relative-address

n short-displacement-address

ASSEMBLY LANGUAGE INSTRUCTIONS 583 AU43

SBNEZ / SBNPE / SBNSE

Description:

Branches to the location specified in the second operand if the scientific accumulator
identified in the first operand contains a floating-point value not algebraically equal to
0.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

If the Scientific Information Processor (SIP) is not installed on this system, the
Scientific Branch Simulator is entered via trap vector 5. $S1 is the only scientific
accumulator register supported by the simulator.

SBNPE

Instruction:
Scientific branch on not precision error

Type:
BI

Source Language Format:

direct-IMA
ASBNPEA (direct-P-relative-address
short-displacement-address

Description:
Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the PE-bit of the SI-register to 0.

Action if Branch Occurs:

If the J-bit of the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

SBNSE

Instruction:
Scientific branch on not significance error

Type:
BI

Source Language Format:

direct-IMA
ASBNSEA ({direct-P-relative-address
short-displacement-address

ASSEMBLY LANGUAGE INSTRUCTIONS 5-84 AU43

SBNSE / SBPE / SBSE

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the SE-bit of the SI-register to 0.

Action if Branch Occurs:

If the J-bit in the MIl-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

SBPE

“Instruction:
Scientific branch on precision error

Type:
BI

Source Language Format:

direct-IMA
ASBPEA ({direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the PE-bit of the Sl-register to 1.

Action if Branch Occurs:

If the J-bit of the M1-register contains a binary 1, the trace procedure automatically
branches to the address specified by the operand. In this case, or if the J-bit contains a
binary 0, the instruction sequence starting at the location specified by the operand is
executed.

SBSE

Instruction:
Scientific branch on significance error

Type:
BI

Source Language Format:

direct-IMA
ASBSEA < direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the result of the most recent
scientific comparison sets the SE-bit of the SI-register to 1.

ASSEMBLY LANGUAGE INSTRUCTIONS 585 AU43

SBSE / SCL / SCR

Action if Branch Occurs:

If the J bit of the M1-register contains a binary 1, the trace procedure is entered via
trap vector 2. Upon completion, the trace procedure automatically branches to the
address specified by the operand. In this case, or if the J-bit contains a binary 0, the
instruction sequence starting at the location specified by the operand is executed.

SCL:

Instruction:
Single-shift closed-left

Type:
SHS

Source Language Format:

$Rn
ASCLA < X'n* ; ,internal-value-expression
n .

Description:

Shifts the contents of the R-register identified in the first operand left the number of
bit positions specified in the internal value expression. The bits shifted out of the
register are placed in the bit positions vacated by shifted bits as they are shifting.

The internal value expression must be 2 0 and < 15.

If the internal value expression equals O, the contents are shifted left the number
derived by using the value in bits 12 through 15 of general register R1.

SCR

Instruction:
Single-shift closed-right

Type:
SHS

Source Language Format:

$Rn
ASCRA { X'n' } ,internal-value-expression
n

Description:

Shifts the contents of the R-register identified in the first operand right the number of
bit positions specified in the internal value expression. The bits shifted out of the
register are placed in the bit positions vacated by shifted bits as they are shifting.

The internal value expression must be =2 0 and < 15.

If the internal value expression equals 0, the contents are shifted right the number
derived by using the value in bits 12 through 15 of general register R1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-86 AU42

SCM

SCM

Instruction
Scientific compare

Type:
DO

Source Language Format:

$Sn l
ASCMA § X'n’ j ,address-expression
n

Description:

Compares the contents of the scientific accumulator identified in the first operand to
the floating-point or infeger value in the location specified in the second operand.

Scientific Indicator Settings:
SG: Set to 1 if contents of the scientific accumulator are greater than the contents
of the location; otherwise, set to 0.)
SL: Set to 1 if contents of the scientific accumulator are less than the contents of
the location; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift for scaling before
comparison; otherwise, set to 0.

If the Scientific Information Processor (SIP) is not installed on this system, the
instruction causes the Floating-Point Simulator to be entered via trap vector 3. Since
the Sl-register is not available if the SIP is not installed, the I-register is used as a
substitute. The contents of the I-register are affected as follows:

o If the contents of the register are greater than the contents of the location, the
G-bit is set to 1; otherwise, it is set to 0.

o If the contents of the register are less than the contents of the location, the L-bit
is set to 1; otherwise, it is set to 0.

o If the content of bit 7 of the register is not equal to the content of bit 7 of the
location, the U-bit is set to 1; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques™ except for the foilowing:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

4 If =§R7 is specified, the 32-bit value contained in the
=$R 5 register pair formed by R6 and R7 becomes the operand.

6

7 ($S1 is the only scientific accumulator register supported

=$Sn by the simulator.)
=$Sn

ASSEMBLY LANGUAGE INSTRUCTIONS 587 AU43

SCM / SCZD

If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If the second operand is =§R4, =§RS5, =§R6, or =§R7, the integer value contained in
the specific R-register is internally converted to floating-point format before it is
compared to the S-register specified by the first operand.

SCZD

Instruction:
Scientific compare to zero (short-precision)

Type:
SO

Source Language Format:
ASCZDAaddress-expression

Description:

Compares the short-precision floating-point value in the specified location or scientific
accumulator to 0.

Scientific Indicator Settings:

SL: Set to 1 if contents of the location are less than 0; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift for scaling before
comparison; otherwise, set to 0.

If the Scientific Information Processor (SIP) is not installed on this system, the
instruction causes the Floating-Point Simulator to be entered via trap vector 3. Since
the Sl-register is not available if the SIP is not installed, the I-register is used as a
substitute.

The contents of the [-register are affected as follows:

o If the contents of the specified location do not equal 0, the G-bit is set to 1;
otherwise, it is set to O.

o The L-bit is set to 0.

o If bit 7 of the specified location equals 1, the U-bit is set to 1; otherwise, it is set
to 0.

The address expression can take any of the forms described earlier in this section under
““Addressing Techniques,” except for the following:

=$Bn
=$Rn
Short displacement addressing
Specialized addressing

} register addressing

The only valid form of register addressing is:
=$Sn ($Sn is the only scientific accumulator register supported by the simulator.)
If immediate operand addressing is used, you must provide a floating-point constant or

string constant in suitable floating-point format.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-88 AU43

SCZQ / SDI

SCZQ

Instruction:
Scientific compare to 0 (long-precision)

Type:
SO

Source Language Format:
ASCZQAaddress-expression

Description:

Compares the floating-point value in the specified location or scientific accumulator to
0.

Scientific Indicator Settings:
SL: Set to 1 if contents of the location are less than 0; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift for scaling before
comparison; otherwise, set to 0.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Rn
Short displacement addressing
Specialized addressing

} register addressing

The only valid form of register addressing is:
=§Sn

If immediate operand addressing is used, you must provide a string constant in suitable
floating-point format.

SDI

Instruction:
Store Double word integer

Type:
SO

Source Language Format:
ASDIAaddress-expression

Description:
Stores the contents of register R6 into the location specified by the address expression
and the contents of register R7 into the next location.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

ASSEMBLY LANGUAGE INSTRUCTIONS 5-89 AU43

SDI / SDV

=$Bn
=$Rn}register addressing NOTE: =$R3 and =$R5 are legal.
=$Sn

Short displacement addressing
Specialized addressing

SDV

Instruction:
Scientific divide

Type:
DO

Source Language Format:

$Sn
ASDVA < X'n’; ,address-expression
n

Description:

Divides the contents of the scientific accumulator identified in the first operand by the
contents of the location, scientific accumulator, or R-register specified in the second
operand. The result is saved in the scientific accumulator (except for the remainder,
which is ignored).

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3. $S1 is the only scientific
accumulator register supported by the simulator.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

4
=$R 3) If =$R7 is specified, the 32-bit value contained in the
g ’ register pair formed by R6 and R7 becomes the operand.

=$Sn
=§Sn
If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If the second operand is =$R4, =$§R5, =§R6, or =§R7, the integer value contained in
the specific R-register is internally converted to floating-point format before it is
divided into the S-register specified by the first operand.

ASSEMBLY LANGUAGE INSTRUCTIONS 590 AU43

SDV /SLD

Scientific Indicator Settings:

EU: Set to 1 on exponent underflow; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

SLD

Instruction:
Scientific load

Type:
DO

Source Language Format:

$Sn
ASLDA <X'n’p ,address-expression
n

Description:
Loads the contents of the location, scientific accumulator, or R-register identified in
the second operand into the scientific accumulator identified in the first operand.

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3. $S1 is the only scientific
accumulator register supported by the simulator.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

f

=$R
l register pair formed by R6 and R7 becomes the operand.

~NONn b

; “If =$R7 is specified, the 32-bit value contained in the

=$Sn

If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If the second operand is =$R4, =§R5, =§R6, or =§R7, the integer value contained in
the specific R-register is internally converted to floating-point format before it is
loaded to the Sregister specified by the first operand.

Scientific Indicator Settings:

EU: Set to 1 on exponent overflow; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 591 AU43

SML

SML

Instruction:
Scientific multiply

Type:
DO

Source Language Format:

$Sn
ASMLA {X'n’¢ ,address-expression
n

Description:

Multiplies the contents of the scientific accumulator identified in the first operand by
the contents of the location, scientific accumulator, or R-register specified in the
second operand. The result is saved in the scientific accumulator.

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3. $S1 is the only scientific
accumnlator register supported by the simulator.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,”” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

If =§R7 is specified, the 32-bit value contained in the
register pair formed by R6 and R7 becomes the operand.

=$R

NN N

=$Sn

=$Sn
If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If the second operand is an R-register the integer value contained in the specific
R-register is intemally converted to floating-point format before it is multiplied to the
S-register specified by the first operand.

Scientific Indicator Settings:

EU: Setto 1 on exponent underflow; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

ASSEMBLY LANGUAGE INSTRUCTIONS 592 AU43

SNGD / SNGQ

SNGD

Instruction:
Scientific negate (short-precision)

Type:
SO

Source Language Format:

ASNGDAaddress-expression

Description:

Negate the short-precision floating-point number at the location or scientific
accumulator specified in the operand.

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Rn
Short displacement addressing
Specialized addressing

} register addressing

The only valid form of register addressing is:
=$Sn ($S1 is the only scientific accumulator register supported by the simulator.)

SNGQ

Instruction:
Scientific negate (long-precision)

Type:
SO

Source Language Format;
ASCGQAadddress-expression

Description:

Negate the long-precision floating-point number at the location or scientific accu-
mulator specified in the operand.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:ggﬁ } register addressing

Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 593 AUA43

SNGQ / SOL / SOR

The only valid form of register addressing is:

=$Sn (§S1 is the only scientific accumulator register supported by the simulator.) If
immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

SOL

Instruction:
Single-shift open-left

Type:
SHS

Source Language Format:

$Rn
ASOLA : X'n' } ,internal-value-expression
n

Description:

Shifts the contents of the R-register identified in the first operand left the number of
bit positions specified in the internal value expression. The bit positions vacated by the
shift are filled with binary 0’s.

The contents of the I-register are affected as follows:
o C-bit contains the last binary digit shifted out of the R-register.

The internal value expression must be 2 0 and < 15.

If the internal value expression equals O, the contents are shifted right the number
derived by using the value in bits 12 through 15 of general register R1.

SOR

Instruction:
Single-shift open-right

Type:
SHS

Source Language Format:

$Rn
ASORA{ X'n’ ; ,internal-value-expression
n

Description:

Shifts the contents of the R-register identified in the first operand right the number of
bit positions specified in the internal value expression. The bit positions vacated by the
shift are filled with binary O’s.

The contents of the I-register are affected as follows:

ASSEMBLY LANGUAGE INSTRUCTIONS 594 AU43

SOR / SRM / SSB

o C-bit contains the last binary digit shifted out of the R-register.

The internal value expression must be 2> 0 and < 15.

If the internal value expression equals O, the contents are shifted right the number
derived by using the value in bits 12 through 15 of general register R1.

SRM

Instruction:
Store register masked

Type:
DO

Source Language Format:

$Rn
ASRMA{ X'n' } ,address-expression,mask
n)

Description:

AND’s the contents of the R-register identified in the first operand with the mask;
AND’s the contents of the location or R-register specified by the address expression
with the complement of the mask; then inclusively OR’s the values obtained from the
two AND’s. Then, stores the result in the second operand.

See the AND and OR instructions described in this section.
If the mask =0, the contents of R1 are used in place of the mask.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following.

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

SSB

Instruction:
Scientific subtract

Type:
DO

Source Language Format:

$Sn
ASSBA < X'n’, ,address-expression
n

ASSEMBLY LANGUAGE INSTRUCTIONS 5-95 AU43

SSB / SST

Description:

Subtracts the contents of the location, scientific accumulator, or R-register identified
in the second operand from the contents of the scientific accumulator specified in the
first operand. The result is saved in the scientific accumulator.

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3. $S1 is the only scientific
accumulator register supported by the simulator.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

4
5 If =$R7 is specified, the 32-bit value contained in the
g register pair formed by R6 and R7 becomes the operand.

=$Sn

If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If the second operand is an R-register, the integer value contained in the specific
R-register is internally converted to floating-point format before it is subtracted from
the S-register specified by the first operand.

Scientific Indicator Settings:

EU: Set to 1 on exponent underflow; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

SST

Instruction:
Scientific store

Type:
DO

Source Language Format:

$Sn
ASSTA <X'm’ ¢ ,address-expression
n

ASSEMBLY LANGUAGE INSTRUCTIONS 596 AU43

SST / SSW

Description:

Stores the contents of the scientific accumulator identified in the first operand in the
location, scientific accumulator, or R-register specified in the address expression.

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3. $S1 is the only scientific
accumulator register supported by the simulator.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

4
_ 5 1 If =$R7 is specified, the 32-bit value contained in the
=$R 6 ‘ register pair formed by R6 and R7 becomes the operand.

7 .
=$Sn

=$Sn

If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If the second operand is an R-register, the floating-point value contained in the specific
scientific accumulator is converted to integer format before it is stored into the
specified R-register.

Scientific Indicator Settings:

EU: Set to 1 on exponent underflow; otherwise, set to 0.
SE: Set to 1 if resultant floating-point value has a zero fraction; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

SSw

Instruction:
Scientific swap

Type:
DO

Source Language Format:

$Sn
ASSWA < X'n’p ,address-expression
n

Description:
Swaps the contents of the scientific accumulator identified in the first operand with

ASSEMBLY LANGUAGE INSTRUCTIONS 597 AUA43

SSW / STB

the contents of the location, scientific accumulator, or R-register specified in the
address expression.

If the Scientific Instruction Processor (SIP) is not installed on this system, the
Floating-Point Simulator is entered via trap vector 3. $S1 is the only scientific
accumulator register supported by the simulator.

The address expression can take any of the forms described earlier in this section under
*‘Addressing Techniques,” except for the following:

=$Bn register addressing
Short displacement addressing
Specialized addressing

If register addressing is used, the valid forms are:

=$R

NN b

=$Sn
=$Sn

If immediate operand addressing is used, you must provide a floating-point constant or
string constant in suitable floating-point format.

If an R-register is specified as the second operand, the value specified by the first
operand is internally converted to integer format, and the value specified by the second
operand is internally converted to floating-point. These converted values are then
interchanged.

:ger?} register addressing

Short displacement addressing
Specialized addressing
Immediate operand addressing with an internal value expression

Scientific Indicator Settings:

EU: Setto 1 on exponent underflow; otherwise, set to 0.
SE: Set to 1 if resultant floating-point value has a zero fraction; otherwise, set to 0.
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to 0.

STB

Instruction:
Store B-register

Type:
DO

Source Language Format:

ASSEMBLY LANGUAGE INSTRUCTIONS 598 AU43

STB / STH

$Bn
ASTBA § X'n’ ; ,address-expression
n

Description:
Stores the contents of the B-register identified in the first operand in the location or
B-register identified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:ger? } register addressing

Short displacement addressing

Specialized addressing

Immediate operand addressing with an internal value expression

STH

Instruction:
Store R-register halfword (byte)

Type:
DO

Source Language Format:

$Rn
ASTHA < X'n’ p ,address-expression
n

Description:

Stores the rightmost byte of the R-register identified in the first operand into the
location specified in the address expression as follows:

o If the address expression specifies the =$Rn addressing form, the byte is stored
in the rightmost byte of the specified R-register.

o If the address expression specifies memory addressing without indexing, the byte
is stored in the leftmost byte of the word found at the specified location.

o If the address expression specifies memory addressing witk indexing, the index
register is aligned to count bytes relative to the leftmost byte of the word

specified. The R-register byte is thus stored in the memory byte thus addressed.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=$Sn
Short displacement addressing
Specialized addressing

} register addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 599 AU43

STM / STR

STM

Instruction:
Store M-register

Type:
DO

Source Language Format:

$Mn
ASTMA < X'n’;} ,address-expression
n

Description:

Stores the 8-bit M-register identified in the first operand in the right half-word of the
location or R-register specified in the address expression; the left half-word of the
location is filled with 1°s.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

}register addressing

STR

Instruction:
Store R-register

Type:
DO

Source Language Format:

$Rn
ASTRA § X'n’ ¢ ,address-expression
n

Description:
Stores the contents of the R-register identified in the first operand in the location
identified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

:gSB;I } register addressing

Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-100 AU43

STS / SUB

STS

Instructions:
Store S-register

Type:
SO

Source Language Format:
ASTSAaddress-expression

Description:

Stores the contents of the system ‘status (s) register in the location or R-register
identified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn)
=§Sn
Short displacement addressing
Specialized addressing

register addressing

SUB

Instruction:
Subtract from R-register

Type:
DO

Source Language Format:

$Rn
ASUBA ¢ X'n’ ; ,address-expression
n

Description:

Subtracts the contents of the location or R-register identified in the address expression
from the contents of the R-register specified in the first operand. The result is saved in
the first operand R-register.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

} register addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-101 AUA43

SUB / SWB / SWR

The contents of the I-register are affected as follows:

o If the result is more than 21%-1 (32767) or less than -2'5 (-32768), the OV-bit is
set to 1; otherwise, it is set to 0.

o If, during the subtraction, a carry occurs, the C-bit is set to 1; otherwise, it is set
to 0.

SWB

Instruction:
Swap B-register

Type:
DO

Source Language Format:

$Bn
ASWBA ¢ X'n’ » ,address-expression
n

Description:
Swaps the contents of the B-register identified in the first operand with the contents of
the location or B-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Rn
=$Sn
Short displacement addressing

Specialized addressing

Immediate operand addressing with an internal value expression

register addressing

SWR

Instruction:
Swap R-register

Type:
DO

Source Language Format:

$Rn
ASWRA < X'n’ [,address-expression
n

Description:
Swaps the contents of the R-register identified in the first operand with the contents of
the location or R-register specified in the address expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-102 AU43

SWR / WDTF / WDTN / XOH

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

Immediate operand addressing

} register addressing

WDTF

Instruction:
Watchdog timer off

Type:
GE

Source Language Format:
AWDTFA

Description:
Disables the watchdog timer interrupt (i.e., level 1 interrupt).

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If not, the unprivileged use of a
privileged operation is signified by a trap to trap vector 13.

WDTN

Instruction:
Watchdog timer on

Type:
GE

Source Language Format:
AWDTNA

Description: _

Enables watchdog timer interrupt (i.e., level 1 interrupt).

The P-bit in the S-register must be set to 1 (i.e., the central processor must be in the
privileged state) for this instruction to be executed. If not, the unprivileged use of a
privileged operation is signified by a trap to trap vector 13.

XOH

Instruction:
Half-word (byte) exclusive OR with R-register

Type:
DO

ASSEMBLY LANGUAGE INSTRUCTIONS 5-103 AUA43

XOH / XOR

Source Language Format:

$Rn
AXOHA S X'n' ; ,address-expression
n

Description:

Exclusively OR’s the contents of the R-register identified in the first operand with the
contents of the byte specified in the address expression.

Prior to the operation, the byte operand is internally expanded to word length by
extending the sign through the eight high-order bit positions. The byte selected to
participate in the operation is determined by the format of the address expression, as
follows:

o Register Addressing (=§Rn): The rightmost byte of the register is selected.

o Memory Addressing Without Indexing; Immediate Memory Addressing: The
leftmost byte of the word at the designated memory address is selected.

0o Memory Addressing With Indexing: The memory address indicates a starting
point. The index register contains an arithmetic value to be added to the starting
point. The value specifies the number of bytes before or after the starting point
needed to reach the byte selected for the operation.

The following chart illustrates the result of exclusively ORing bits:

First operand bit: 10111
Second operand bit: 1101110

Result: 11001

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques,” except for the following:

=$Bn register addressing
=§Sn

Short displacement addressing
Specialized addressing

XOR

Instruction:
Exclusive OR with Rregister

Type:
DO

Source Language Format:
$Rn

AXORA {X’n’ } ,address-expression
n

ASSEMBLY LANGUAGE INSTRUCTIONS 5-104 AU43

XOR

Description:

Exclusively OR’s the contents of the R-register identified in the first operand with the
contents of the location or R-register specified in the address expression. The result is
saved in the first operand R-register.

The following chart illustrates the result of exclusively ORing bits:

First operand bit: gloj1f1
Second operand bit: 11011]0

Result:

_—
(]
(o]
-

The address expression can take any of the forms described earlier in this section under
“Addressing Techniques™ except for the following:

=$Bn
=§Sn
Short displacement addressing
Specialized addressing

} register addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-105 AU43

SECTION 6
MACRO FACILITY

The Macro Preprocessor is a program development tool that provides a convenient
method for including in a source module specified sequences of statements that are
specified in a macro routine.

A macro routine is a block of source code that is written only once and can be
included multiple times within a given source module. A single statement, known as a
macro call, is specified in the source module each time the sequence of statements is to
be included. A source module containing one or more macro calls is called an
unexpanded source module. Macro routines can be at the beginning of a source module
or in a macro library; those occurring within a source module are called inline macro
routines.

NOTE: Honeywell provides a library of macro routines that support MLCP
programming. (See the Software Overview and System Conventions, and
the MLCP Programmer’s Reference Manual.)

The Macro Preprocessor produces an expanded source module which is used as
input to the Assembler. The expanded source module may contain an error flag for
each nonfatal error.’ (Nonfatal error flags are described in Appendix F.) If a fatal error
occurs, processing terminates, an error message is issued through the system console,
and control returns to the Command Processor. (Error messages issued by the Macro
Preprocessor are described in the Operator’s Guide.)

ORDER OF STATEMENTS WITHIN A SOURCE MODULE

Statements within a source module must be in the order listed below:

1. TITLE assembler control statement.
2. LIBM macro control statements and/or macro routines delimited by MAC and
ENDM macro control statements.

(Optional) LIST or NLST Assembler control statement.

NOTE: LIBM statements, macro routines, and a LIST or NLST statement can
be intermixed. ,

3. Statements that constitute the body of the source module; includes macro calls.
4. END Assembler control statement.

Macro control statements and macro calls are described in this section. Assembler
control statements are described in Section 4.

MACRO ROUTINES

A macro routine can be either generalized or specialized. A generalized macro
routine causes a fixed expansion in the source module. A specialized macro routine
permits specified values to be included in the expanded source module.

! The expanded source module includes error flags only if the IC argument was specified in the load command to the
Command Processor. (See “Input to Command Processor Before Macro Preprocessor is Loaded™ in Section 7 of
the Program Development Tools manual.)

MACRO FACILITY 6-1 AU43

MAC / WITHOUT PARAMETERS /| ENDM

The following information is described below.

Creating a macro routine
Specializing a macro routine
Including protection operators
Situating a macro routine

O 0 OO0

Creating a Macro Routine
A macro routine must be preceded by a MAC macro control statement and
followed by an ENDM macro control statement.

MAC Macro Control Statement, Without Parameters

The MAC statement assigns a name to a macro routine; it must immediately precede
every macro routine. MAC must be the last entry on the source line, or it must be
immediately followed by a comma and an optional comment.

Format:
macro-nameAMAC[,comment]
macro-name

Name of the macro routine; must be a valid symbolic name. To include the macro
routine within a source module, specify the macro name in a macro call.

NOTE:. A macro routine can be specialized by including macro parameters in the
MAC statement. (See “MAC Macro Control Statement, Including Param-
eters’ later in this section.)

Contents of Macro Routine
A macro routine can include:

Macro control statements, excluding MAC and ENDM
Macro functions

Assembler control statements, excluding END
Assembly language statements

[e BN RN eRNe)

Macro control statements and macro functions are described in this section. Assembler
control statements and assembly language statements are described in Sections 4 and 5,
respectively.

ENDM Macro Control Statement
The ENDM statement designates the end of a macro routine, it must immediately
follow each macro routine. v

Format:
[label] AENDM

label
Symbolic name that identifies the ENDM statement.

Specializing a Macro Routine by Parameter Substitution

In a given macro routine, up to 35 different macro parameters can be referenced.
Parameters are named P1 to P9 and PA to PZ. Each parameter name must be preceded

MACRO FACILITY 62 AU43

ENDM / MAC WITH PARAMETERS

by a substitution operator (question mark) to indicate that substitution will occur;i.e.,
a value will be substituted.

Macro parameters can be assigned values in the MAC statement and/or in macro
calls.

When a macro call is specified, each macro parameter reference in the requested
macro routine is replaced with the parameter’s value. If a parameter was assigned a
value in the MAC statement and then assigned a different value in the macro call, the
value specified in the macro call is included. If no value was specified in the MAC
statement or in the macro call, the parameter is equal to a null ASCII character string;
ie., ”.

MAC Macro Control Statement, Including Parameters
The MAC statement assigns a name to a macro routine and optionally assigns values
to macro parameters. :

Format:
macro-nameAMAC [APJ-[=V]] [, Pk[=v]]
macro-name
Name of the macro routine being created ; must be a valid symbolic name.
Py
Macro parameter name; can be P1 to P9 or PA to PZ. Parameter names can be
specified in any order.

NOTE: It may be impossible to specify all parameters on one source line.
Parameters can be continued on the next line by replacing the last comma
with a semicolon. (See “Assembly Language Source Statement Formats’ in
Section 3.)

=y
Value of macro parameter; can be any alphanumeric characters.

NOTE: To include a comma, space or horizontal tab as part of a parameter value,
specify that character within apostrophes.

If a value is not specified, the corresponding parameter remains equal to a null
ASCII character string.

Example:

This example illustrates an unexpanded source module that includes a MAC statement
with parameters. The resulting expanded source module includes those parameter
values.

Unexpanded source module:
TITLE EXMPL

SAMPLE MAC P3=5; Designates beginning of macro routine and

PB='6," assigns values to parameters P3 and PB
LDV '$R1=?P3
Statements to be included in source module
LDR $R2=2PB
FINI ENDM Designates end of macro routine
éAMPLE Macro call requesting macro routine named

SAMPLE

MACRO FACILITY 6-3 AU43

MAC WITH PARAMETERS

Expanded source module:

TITLE EXMPL

Macro call replaced by contents of macro

LDV $R1,=5
{routine named SAMPLE

LDR $R2,='6,

Protection Operators

Protection operators are brackets; they enclose one or more characters that are not
to be interpreted by the Macro Preprocessor. Protection operators can be included in
macro routines and/or in statements that constitute the body of a source module.

NOTE: Brackets illustrated in each command’s Format are not protection
operators; they enclose optional characters.

Example:

This example illustrates an unexpanded source module, which includes protection
operators, and the resulting expanded source module.

Unexpanded source module:

TITLE EXMPL

SAMPLE MAC P7=3 Designates -beginning of macro routine and
assigns value to parameter P7
NEWA[2?]P7 Substitution operator will not be inter-

preted by Macro Preprocessor, so no value
will be substituted

NEWB ?P7 Reference to P7 will be replaced with its
value

ENDM Designates end of macro routine

[éAMPLE] Not interpreted as macro call because name

of macro routine is enclosed within protec-
tion operators

SAMPLE Macro call; in the expanded source module
will be replaced by contents of macro rou-
tine named SAMPLE

Expanded source module:
- TITLE EXMPL
SAMPLE

NEWA 2P7
Contents of macro routine named SAMPLE
NEWB 3

MACRO FACILITY 64 AU43

MAC WITH PARAMETERS

Protection operators cannot extend over operand or argument delimiters; to protect
adjacent operands or arguments, enclose each one individually in brackets.

Example 1:
FOOA[AB],[CD]

The above macro call FOO designates that parameter P1 equals [AB] and parameter P2
equals [CD].

Example 2:
FOOA[AB,CD]

The above macro call FOO is not equivalent to the macro call illustrated in example 1.
The macro call in example 2 specifies that parameter P1 equals [AB and parameter P2
equals CD].

If any part of a label or operation code is protected, the entire label or operation
code is protected.

Example:

LAB[EL]LD[R] A$R1,=100
The above statement is considered to have label and operation code.

Protection operators do not appear in expanded source modules unless the
operators are embedded in other protection operators. Embedded protection operators
are removed from the expanded source module only if that module is reprocessed by
the Macro Preprocessor. One level of embedded protection operators is removed each
time the expanded source module is reprocessed.

Example 1:
NEWA[?]P7

The above statement would appear in the expanded source module as NEWA?P7.

Example 2:
DC A [BC[DEF] GH] I

The above statement would appear in the expanded source module as
DC’A BC[DEF]GHI '. Only the outermost protection operators are removed, unless
the expanded source module is then reprocessed by the Macro Preprocessor.

Situating Macro Routines

Macro routines can be in the source module in which they are requested by macro
call(s) and/or in macro libraries on a diskette volume. A macro library is a partitioned
file whose members are macro routines. Each member must be a single macro routine
that is referenced in a macro call by its member name. Its member name must be
identical to the label of its MAC statement. There can be multiple macro libraries, but
all libraries must be on the same diskette volume.

MACRO FACILITY 6-5 AU43

MAC WITH PARAMETERS / LIBM

All macro routines within a source module must be at the beginning of the module.
(See “Order of Statements Within a Source Module” earlier in this section.)

To place a macro routine in a macro library, use the Editor insert command or the
XF command of Utility Set 2. (These commands are described in the Program
Development Tools manual and the Utility Programs manual, respectively.)

If the source module to be processed by the Macro Preprocessor includes macro
calls that request library-resident macro routines, before loading the Macro Preproc-
essor you must specify in an AT 06 command to the Command Processor the volume
name of the diskette that contains macro libraries. (See “Input to Command Processor
Before Macro Preprocessor is Loaded” in Section 7 of the Program Development Tools
manual.) A LIBM statement must be included in the source module for each macro
library that contains macro routines that will be requested in that module.

LIBM Macro Control Statement

The LIBM statement specifies the name of a macro library and indicates whether all
or only specified macro routines in that library will be made available so that they can
be requested in subsequent macro calls. If applicable, you must specify LIBM
statement(s) at the beginning of the source module.

Format:
LIBMAlibrary [,macro-name] ...
library
Name of the macro library that contains macro routine(s).
macro-name

Name(s) of macro routine(s) in the macro library that may be requested in macro
call(s); must be a valid symbolic name. The names must be different from the names
of inline macro routines. If the same name is specified, the inline macro routine is
used.

Default: All macro routines in the specified macro library may be included in the
expanded source module by subsequent macro calls.

MACRO CALLS

A macro call is a statement that causes a specified macro routine to be included in
the source module and optionally assigns or reassigns values to parameters in that
macro routine. The macro routine is included in the expanded source module at the
location of the macro call.

If a parameter is assigned a value only in the macro call or in both the macro call
and the MAC statement, the value in the macro call is used. If a parameter is not
assigned a value in the macro call but it was assigned a value in the MAC statement,
that value is used. If it was not assigned a value in either location, its default value is a
null ASCII character string.

If no parameter values are included in a macro call, the macro-name must be the last
entry on the source line, or it must be immediately followed by a comma and an
optional comment.

Format:
[label] Amacro-name I:AP1 -value [, [P, -value]]]

label
Symbolic name that identifies the macro call.

MACRO FACILITY 6-6 AU43

macro-name

Name of the macro routine to be included in the expanded source module; this
name must correspond to a name designated in a MAC macro control statement.

P -value
Value of macro parameter; can be any alphanumeric characters.

NOTE: To include a comma, space, or horizontal tab as part of a parameter value,
specify that character within apostrophes.

In a macro call, parameters are positional;i.e., their values must be specified so that
they correspond to parameters P1 to P9 and PA to PZ. A comma must be specified
for each parameter whose value is not specified. All parameters beyond the last
specified parameter’s value are considered to be omitted.

NOTE: It may be impossible to specify all parameter values on one source line.
Parameter values can be continued on the next line by replacing the last
comma with a semicolon. (See “Assembly Language Source Statement
Formats® in Section 3.)

Example:

This example illustrates an unexpanded source module in which parameters are
assigned values only in a MAC statement, only in a macro call, and in both a MAC
statement and a macro call. The resulting expanded source module illustrates the
inclusion of the macro routine and the appropriate parameter values.

Unexpanded source module:
TITLE MCL

SAMPLE MAC P3=1,P5=8 Designates beginning of macro routine
and assigns values to parameters P3

and P5
DC ?P3,7?P2
* NEWB?P5

FINI ENDM Designates end of macro routine

NUVAL SAMPLE ,2,,,5','5 Macro call that assigns value to
parameter P2, and assigns different
value to parameter P5; i.e., P2
equals 2, and P5 equals 5','S

Expanded source module:

TITLE MCL
bC 1,2 First parameter value was assigned in
MAC statement; second parameter value
was assigned in macro call
* NEWB5','5 Since different values were assigned to

P5 in the MAC statement and in the macro
call, the value in the macro call is
used

MACRO FACILITY 6-7

AU43

Nested Macro Call

A nested macro call is a macro call that occurs within a macro routine. Whenever a
nested macro call is encountered, processing of the current macro routine stops;i.e., all
of its macro parameters are saved, and the nested macro call is processed. The nested
macro call has its own macro parameters. After the nested macro call is processed,
processing of the previous macro routine resumes at the point of termination.

Macro calls may be nested to as many levels as memory permits. Each level consists
of one macro routine that calls another. For example, if macro routine A contains a
macro call to macro routine B, one level of nesting exists. If macro routine B contains a
macro call to macro routine C, two levels of nesting exist.

Example:

This example illustrates an unexpanded source maodule that contains a nested macro
call and the resulting expanded source module.

Unexpanded Source Module

TITLE NSTD
MACROT MAC

NEWA

NEWB

ENDM
MACR02 MAC

NEWX

NEWY

MACRO1 Nested macro call

NEWZ

ENDM

ﬁACROZ Macro call

Expanded Source Module
TITLE NSTD

NEWX
NEWY
NEWA}
NEWB
NEWZ

Contents of nested macro call

Recursive Macro Calls

A recursive macro call is a nested macro call that calls either the routine within
which the call is located or another routine in the nest that eventually calls the original
routine. A recursive macro call must be designed to reach its ENDM statement exactly
once per call to it. An example of a recursive call is the case in which a macro routine
processes parameter 1 and then if parameter 2 is present, calls itself with ?P2 for
parameter 1, ?P3 for parameter 2, etc.; that is, each parameter has been shifted one
position left. A recursive macro call is processed the same as any other nested macro
call. The depth of recursion is limited only by the amount of memory available to the
Macro Preprocessor.

MACRO FACILITY 6-8 AU43

SETA

CONTROLLING EXPANSIONS

When a macro call requests a given macro routine, it need not always result in the
same expansion. Values in that routine may vary, and the statements to be included in
the source module may vary. This flexibility is accomplished by including macro
variables and conditional macro control statements in the macro routine.

Macro Variables

There are two types of macro variables: local and global. A local variable can be
assigned a value only in the macro routine in which it is referenced. A global variable
can be assigned a value anywhere in the source module; e.g., in the macro routine in
which it is referenced, in any other macro routine in the source moduie, or in
statements that constitute the body of the source module.

Variables have fixed names; only their values can be altered. Global variables are
named G1 to G9 and GA to GZ. Local variables are named L1 to L9 and LA to LZ. To
designate in a macro routine that substitution will occur, precede each variable name
with a substitution operator (question mark); e.g., 7G1. When the macro routine is
processed, the Macro Preprocessor will replace each reference to a variable with its
value.

A variable can be assigned an alphanumeric or numeric value by specifying the
SETA or SETN macro control statement, respectively.

SETA Macro Control Statement

The set alphanumeric macro control (SETA) statement assigns an alphanumeric
value to a local or global macro variable. If you assign a value to a variable and then
redefine the variable in a subsequent SETA or SETN statement, the last value specified
is used.?

When assigning a value to a global macro variable, you can specify SETA anywhere
within the source module. When assigning a value to a Jocal macro variable, you must
specify SETA in the macro routine in which the variable is referenced.

Format:
variableASETA value
variable

Name of the local or global macro variable that is being assigned a value; must be L1
to L9, LA to LZ, G1 to G9, or GA to GZ.

value

Must be alphanumeric. (See “Designating Alphanumeric Values™ at the end of this
section.)

Example:

This example illustrates an unexpanded source module in which macro variables are
assigned values in SETA statements. The resulting expanded source module includes
those macro variable values.

2W'.hen_ a nested macro call is encountered, values of local variables, and parameters in the current macro routine are
saved and are still applicable after the nested macro call is processed.

MACRO FACILITY 69 AU43

SETA / SETN

Unexpanded source module:

TITLE VALUE

SAMPLE MAC Designates beginning of macro routine
L4 SETA DE Assigns value to L4
L5 SETA BC Assigns value to L5
L4 SETA 'A'7L5,['2'] Assigns different value to L4
DC ?L4
ENDM Designates end of macro routine
SAMPLE Macro call

Expanded source module:

TITLE VALUE

DC ABC,'2' Last value specified for L4 is used;
apostrophes included only if they
were enclosed within protection
operators

Apostrophes Within SETA Statements

The operand of the SETA statement begins at the first character after the operation
code that is neither a blank, horizontal tab, nor] (close protection) character. The
operand terminates at the end of the statement or at the first blank or horizontal tab
not within apostrophes after the beginning of the operand.

Unprotected apostrophes within the operand of the SETA statement are not
considered part of the variable’s value and are removed from the operand before the
operand’s value is assigned to the macro variable. For example:

G6ASETAAXYZ'A'123 assigns the value XYZA123 to the global variable G6
GTASETAAXYZ['A']123 assigns the value XYZ['A’] 123 to the global variable
GT

SETN Macro Control Statement

The set numeric macro control (SETN) statement assigns a numeric value to a local
or global macro variable. If you assign a value to a variable and then redefine the
variable in a subsequent SETN or SETA statement, the last value specified is used.?

When assigning a value to a global macro variable, you can specify SETN anywhere
within the source module. When assigning a value to a local macro variable, you must
specify SETN in the macro routine in which the variable is referenced.

3When a nested macro call is encountered, values of local variables and parameters in the current macro routine are
saved and are still applicable after the nested macro call is processed.

MACRO FACILITY 6-10 AU43

SETN

Format:
van'ableA_SETN value

variable

Name of the local or global macro variable that is being assigned a numeric value;
must be L1 to L9, LA to LZ, G1 to G9, or GA to GZ.

value
Must be numeric. (See “Designating Numeric Values” at the end of this section.)

The operand of the SETN statement begins at the first character after the operation
code that is neither a blank nor a horizontai tabie. The operand terminates at the end
of the statement or at the first blank or horizontal tab not within apostrophes after the
beginning of the operand. For example:

GLASETNA22+8 assigns the value 30 to the global variable GL.
GAASETNAG6+'AQ’ assigns the value A6 (2036 in hexadecimal) to the global
variable GA.

Example:

This example illustrates an unexpanded source module in which macro variables are
assigned values in SETN statements. The resulting expanded source module includes
those macro variable values.

Unexpanded source module:

TITLE EXMPL
SAMPLE MAC Designates beginning of macro routine
L5 SETN 3 Assigns value to L5
L6 SETN 2*(?L5*?G2)+1 Assigns value to L6

DC ?L6
FINI I.ENDM Designates end of macro routine
G2 SETN 2 Assigns value to G2

SAMPLE Macro call

Expanded source module:

TITLE EXMPL
DC 13

Conditional Macro Control Statements
Conditional macro routine that covers many situations. Depending on the
conditions at a given time, only certain statements are processed.

MACRO FACILITY 6-11 AU43

SETN / FAIL / GOTO / IF

Conditional macro control statements are listed and described below:

FAIL
GOTO
IF
NULL

© O OO

FAIL Macro Control Statement

The FAIL statement is used to ensure that conditions are logically consistent; it
does not affect expansions. The Macro Preprocessor issues a Z error flag for each FAIL
statement.

Format:
[label] AFAIL

label
Symbolic name that identifies FAIL statement.

NOTE:: If an assembly control FAIL statement is desired within a macro routine, it
must be protected.

GOTO Macro Control Statement

The GOTO statement causes the Macro Preprocessor to stop processing the macro
routine or to resume processing at a specified statement. The statement at which
processing will resume can be in any location within the macro routine;i.e., it need not
be subsequent to the GOTO statement.

Format:

*
label] AGOTOA
[1abel] {skip-label}

label
Symbolic name that identifies the GOTO statement.

Causes Macro Preprocessor to stop processing the macro routine; i.e., the current
line is considered an ENDM macro control statement. Processing resumes at the
statement that follows the current macro call.

skip-label

Symbolic name of statement at which Macro Preprocessor should resume
processing.

IF Macro Control Statement

The IF statement causes the Macro Preprocessor to evaluate characters in either one
or two operands to determine if a specified condition exists. If the condition exists, the
Macro Preprocessor stops processing the macro routine or resumes processing at a
specified statement that is subsequent to the IF statement. If the condition does not
exist, the next sequential instruction is processed.

MACRO FACILITY 6-12 AU43

Formats:
Evaluating characters in one operand:

P

[INKN *
(label] AIF ZJ {Aoperand, :skip-label
oD
EV

label

Symbolic name that identifies the IF statement.
[N]P

(Not) positive.
[NIN

(Not) negative.
[N]Z

(Not) zero.
OD

Odd.
EV

Even.
operand

Character(s) being evaluated; must be numeric. (See “Designating Numeric Values™
at the end of this section.)

If condition in IF statement is true, causes Macro Preprocessor to stop processing

macro routine; i.e., the current line is considered an ENDM macro control

statement. Processing resumes at the statement that follows the current macro call.
skip-label

If condition in IF statement is true, designates symbolic name of statement at
which Macro Preprocessor should resume processing.

Comparing characters in two operands:

G *

[label]AIF [N] IFj Aoperand, , operand, ,{ skip-label
label

Symbolic name that identifies the IF statement.
INIG

(Not) greater than.
[N]L

(Not) less than.
[N]E

(Not) equal to.

MACRO FACILITY 6-13 AU43

IF

operand, operand,
Character strings being compared; must be alphanumeric. (See ‘Designating
Alphanumeric Values” at the end of this section.)

Starting with the leftmost character, the Macro Preprocessor compares each
character in operand, to the character in the corresponding position in operand,.
The characters are compared until either a pair of unequal characters is
encountered, or all of the characters have been compared. If the operands are
different lengths, the rightmost characters of the shorter operand are considered to
be ASCII blanks. (Table 2-2 describes the hexadecimal values of ASCII characters.)

If condition in IF statement is true, causes Macro Preprocessor to stop processing
macro routine; i.e., the current line is considered an ENDM macro control
statement. Processing resumes at the statement that follows the current macro call.

skip-label
If condition in IF statement is true, designates symbolic name of statement that
Macro Preprocessor should process next.

NOTE: If an assembly control IF statement is desired within a macro routine, it
must be protected.

Example 1— Evaluating characters in one operand:

Unexpanded Source Module:

TITLE CONDL
BGN MAC
IFOD 1,TAGT
[FAIL]
TAGT DC 1

IFOD 2,TAG]
[FAIL]
TAG1 DC1

FINI ENDM
BGN
Expanded Source Module:
TITLE CONDL
TAG1 DC T

FAIL

MACRO FACILITY 6-14

AU43

IF /| NULL

TAG1 DC 1

Example 2—Comparing characters in two operands:
Unexpanded Source Module:

TITLE TWO
INCL MAC

IFE AB,AB,TAGI
[FAIL]
TAGT DC 1

IFE AB,CD,TAGI
[FAIL]
TAG] DC 1

FINI ENDM

INCL

Expanded Source Module:

TITLE TWO

TAGI DC 1

FAIL
TAGT DC 1

NULL Macro Control Statement

The NULL statement has no effect on the processing of macro routines. Processing
continues with the next sequential instruction.

This statement is often used to define a label referenced by an IF or GOTO
statement.
Format:

[label] ANULL

MACRO FACILITY 6-15 AU43

NULL

label
Name of the label being defined.

NOTE: If an assembly control NULL statement is desired within a macro routine,
it must be protected.

MACRO FUNCTIONS

Macro functions have the following capabilities:

0 Determine number of characters that are in a specified character string (AL
function)
o Convert a numeric value to its hexadecimal equivalent (CH function)
o Search a character string for an embedded character string (IX function)
0 Determine which character within a character string is the first character that is
the first character of another character string (SR function)
o Specify which characters within a character string should be included in the
- source statement (SS function)
o Permit parameters and variables to be referenced by their positions (V function)
o Determine which character within a character string is the first character that is
not in another character string (VR function)

Macro functions can be specified in any location(s) of statements in macro routines.
Within one statement there can be multiple macro functions; these functions can be
nested. Nested macro functions are processed from the innermost function to the
outermost function.

Format of Macro Functions

Macro functions are described alphabetically on the subsequent pages. As indicated
in their formats, each function is preceded by a substitution operator (question mark)
and its arguments are enclosed within one set of parentheses. Most functions require
that you specify either a numeric or an alphanumeric value. Methods of specifying
these values are described at the end of this section under “Designating Numeric
Values” and ‘“‘Designating Alphanumeric Values.”

Macro functions require one, two, or (optionally) three arguments.

First Argument '

The first argument of a macro function begins with the first character following the
open parenthesis, (, after the function name. For a macro function which accepts only
a single argument, the argument is terminated with the first unprotected close
parenthesis,) , not enclosed within apostrophes. For a macro function which accepts
more than one argument, the first argument is terminated by the first unprotected
comma not enclosed within apostrophes.

Examples:
TAL(AXY(5)A) The argument to the AL function is AXY(5)A.
7SS(ABAC’,5' 4) The first argument to the SS function is ABAC’,5".
Middle Argument

The middle argument of a macro function begins with the first character following
the comma which terminated the previous argument and ends with the first
unprotected comma not enclosed within apostrophes.

MACRO FACILITY 6-16 AU43

AL /CH

Example:
?SS(AEIOU(Y),(12-2)/5,3) The middle argument to the SS function is (12-2)/5.

Last Argument

The last argument of a macro function begins with the first character following the
comma which terminated the previous argument. The last argument is terminated by
the first unprotected close parenthesis not within apostrophes following the macro
function name.

Examples:
NX(LMADYPA)P) The last argument to the IX function is A")’P.
?SS(A1B2C3D4,(1+3)/2) The last argument to the SS function is (1+3)/2.
7SS(AB[C,D],[O)]) The last argument to the SS function is [C)].

Length Attribute Macro Function

The length attribute (AL) function causes the Macro Preprocessor to designate the
number of characters that are in a specified character string. If a null ASCII character
string is specified, the Macro Preprocessor returns a zero.

Format:
?7AL(arg)
arg
Character string whose length is to be determined; must be alphanumeric.
Example:

7AL(7L5+7P5)

If variable L5 equals 2AB, and parameter P5 equals 5B, the above function will be
replaced with 6.

Hexadecimal Conversion Macro Function
The hexadecimal conversion (CH) function converts a numeric integer constant to
its hexadecimal equivalent.

Format:
?CH(arg, ,arg,;)

arg,
Numeric value to be converted to hexadecimal.

arg,
Numeric value that specifies the format of the hexadecimal representation, as
described below:

Value of arg, Meaning
Not Specified Hexadecimal integer constant with no insignificant zeros.
0 Value in arg, is converted to an unsigned hexadecimal

integer. The value returned is the ASCII representation of the
significant digits of the unsigned hexadecimal integer.

MACRO FACILITY 6-17 AU43

CH/IX

>0 Hexadecimal integer constant. The value of arg, designates
the number of character positions; can be 1 to 4.
<0 The value specified in arg, designates the number of

character positions; can be -1 to -4. The value in arg, is
converted to an unsigned hexadecimal integer. The value
returned is the ASCII representation of the specified number
of characters.

Examples:

Function

Condition Specified Result

arg, not specified 7CH(10) X'A’

arg, =0 7CH(10,0) A

arg, >0 7CH(10,1) X'A'

arg, 7CH(10,2) X'0A’
?7CH(10,3) X'00A’
7CH(10,4) X'000A’

arg, <0 ?CH(10,-1) A
?CH(10,-2) 0A
7CH(10,-3) 0A
7CH(10,4) 000A

Index Macro Function
The index (IX) function causes the Macro Preprocessor to search a specified
character string for the occurrence of an embedded character string.

Format:
X (arg, ,arg,)

arg,
Character string being searched; must be alphanumeric.

arg,

Embedded character string for which the Macro Preprocessor will search; must be
alphanumeric.

The value returned specifies the character position within arg, of the first
(leftmost) character of the embedded character string. If arg, is not contained within
arg; or arg, is a null ASCII character string (e.g.,), a zero is returned.

Example:

NX(ABCDES ,CDES)

The above statement causes the Macro Preprocessor to search ABCDES5 for the
character string CDES. Since the embedded character string starts in the third character
position of ABCDES, the Macro Preprocessor replaces the index function with a 3.

MACRO FACILITY 6-18 AU43

SR/ SS

Search Macro Function

The search (SR) function causes the Macro Preprocessor to determine which
character of a specified character string is the first (leftmost) character that is also
included in another specified character string.

Format:
?SR(arg, ,arg,)

arg,
Character string that contains character(s) for which the Macro Preprocessor will
look; must be alphanumeric.

arg,
Character string that will be searched in order to locate a certain character; must be
alphanumeric.

The Macro Preprocessor includes in the source module the character position of the
leftmost character in arg; that is also in arg, .

If arg, or arg, is a null ASCII character string, or if no characters in arg; are also in
arg, , zero is returned.

Example 1:
?SR(CHARSUBSTRING,STRING)

The above macro function causes the Macro Preprocessor to determine the leftmost
character- of CHARSUBSTRING that is also in STRING. Since the character R is the
leftmost character of CHARSUBSTRING that is also in STRING and it is in the fourth
character position of CHARSUBSTRING, the macro function is replaced with 4.

Example 2:
?SR(FAB2,'BCA1")

The above macro function causes the Macro Preprocessor to determine the leftmost
character of FAB?2 that is also in '"BCA1’. Since A is the leftmost character in FAB2
that is also in 'BCA1’, and it is in the second character position of FAB2, the macro
function is replaced with 2.

Example 3:
7SR(BA3,7L1)

The above macro function causes the Macro Preprocessor to determine the leftmost
character of BA3 that is also in local variable 1. If L1 equals 23A, A is the first
character that is also in L1. Since A is in the second character position of BA3, the
Macro Preprocessor includes 2 in the source statement.

Substring Macro Function

The substring (SS) function causes the Macro Preprocessor to include in the source
statement a specified number of characters of a specified character string, beginning
with the character that is in a specified character position.

MACRO FACILITY 6-19 AU43

SS/V

Format:
?SS(arg, , arg, [,args])

arg,
Character string that contains the characters to be included in the source statement;
must be alphanumeric.

arg,
Character position of the first character in arg, that is to be included; must be
numeric.

args
Number of characters to be included.

Default: The character whose character position was specified in arg, ,and all
subsequent characters of arg; .

If arg, is a null ASCII character string, arg; is < 0, or the value specified in arg, is
greater than the length of arg,, a null ASCII character string is included in the source
statement.

Example 1:
?SS(7P2,7L5,3)

If P2=ABCDE and L5=2, the above function designates that the source statement
include three characters of ABCDE, starting with the character in the second character
position. BCD would be included.

Example 2:
7SS(?7P2,7L5)

If P2=ABCDE and L5=2, the above function designates that the source statement
include all characters of ABCDE, starting with the character in the second character
position. BCDE would be included.

Example 3:

G6 SETA 7SS(ABAC’,5'4) yields
G6 SETA C',5’, which leaves C,5 in G6.

Vector Orientation Macro Function
The vector orientation (V) function permits macro parameters and macro variables
to be referenced by their positions rather than by their names.

Format:
P

Vil (arg)
G

P
Parameter

MACRO FACILITY 6-20 AU43

V/VR

L
Local variable.
G
Global variable.
arg
Numeric value that identifies a parameter or variable; must be from 1 to 35.

Example:
?SS(?VP(10),2,3)

The above function illustrates usage of the vector orientation function within a
substring (SS) function. The function ?VP(10) identifies parameter PA. If PA=
ABCDE, the above substring function is replaced with BCD.

Verify Macro Function

The verify (VR) function causes the Macro Preprocessor to specify which character
in a specified character string is the first character that is not in another specified
character string.

Format:
?7VR(arg; ,arg,)

arg,
Character string that will be searched; must be alphanumeric.

arg,
Character string that contains the characters for which the Macro Preprocessor is
going to look; must be alphanumeric.

The Macro Preprocessor designates the character position of the leftmost character
in arg; that is not found in arg,. If arg, is a null ASCII character string, or if every
character in arg, occurs in arg, , zero is designated.

Example 1:
?VR(STRINGSUBSTRING,STRINGCHARSTRING)

The above macro function causes the Macro Preprocessor to specify the leftmost
character in STRINGSUBSTRING that is not in STRINGCHARSTRING. Since U is
the leftmost character in STRINGSUBSTRING that is not in STRINGCHARSTRING
and it is in the eighth character position of STRINGSUBSTRING, the Macro
Preprocessor replaces the function with 8.

Example 2:
7VR(?P3,?G5)

If parameter P3 has a value of ABC3D, and global variable G5 has a value of AD3, the
first character of P3 that is not in G5 is B, the second character of P3. Therefore, the
Macro Preprocessor replaces the function with a 2.

MACRO FACILITY 6-21 AUA43

EXAMPLE ILLUSTRATING MACRO FACILITY

Figure 6-1 illustrates a sample unexpanded source module and an Assembler listing

of the resulting expanded source module.

T1TLe

*

ustmac

*INCLUDE IN=L1lWnE MACKO ROUTINES,
*

POLY Mal

*THIS MACKU GENERATES CUDE TO CUMPUTE
KYSXRRN + X*k(N=1) + o0, + X + 1.
*X IS DESIGNATED BY PARAMETER 1,
*Y IS DESIGNATED &Y PARAMETER 2,
*N 1S DESIGNATED vy PARAMETER 3.

*

[x)
LLv
G2 SETN
TESTN 1FZ
x]
FACTOR
(%]
e SETn
6OTU
STOREX STw
ENDM

x

*
FACTOR MAC
*

R1,1

P3 NUMBER OF FACTURS,

262, STUREX COMPLETE?

P11 NOoo oNESTED CALL FUR ANUTHER FACTUR,
?262=1 DECREASE FACTOR COUNTEK,

TESTN

1, 2P2 STORE POLYNOUMIAL VALUE.

xTHIS MACRU GENERATES CUDE wHICH MULTIPLIES ($R1) BY THE
*CONTENTS UF THE LUCATIOw DESIGNATED BY PARAMETER 1, AN
*ADDS 1 TO THE PrOLUCT,

*
MUL
ADY
EnDM
*
*
MOVER MAC
*

r1,2P1
$R1.1

P4=y

*THIS MACRO GENERATES CuULE WHICH PERFURMS A “MEMOkY TGO MEMURY"

*MOVE OF DATaA,

*IF PARAMETER 4 IS

NOUN=ZERO, THE CODE wllLL MUVE BYTES.

*IF PARAMETeR 4 IS ZERy, THE COUE ~ILL MUVE wURDS,., (DEFAULT OPTION),
*PARAMETER | SPECIFIES THt SOURCE ADDRESS,

*PARAMETER 2 SPECIFIES THE DESTINATION ADDRESS,

*PARAMETER 3 SPECIFIES THE NUMBER OF UNLTY> (BYTES Ok wORULS) T0 MOUVE.

*

2P4,8YTMOV BYTES Ok wORLS?

LOR USE LOCAL VARIABLES T0 DeFINE DESIRED OPCUDES,
STr
SAME

LDH
STH

*USE VECTOR FUNCTIUN TU SUBSTITUTE PARKAMETERS.

IFNZ
*
*MOVE WORDS...
LL SETA
LS SETA
6070
*
*MOVE BYTES...
BYTMOUV NULL
LL SETA
LS SETA
X
SAME NULL
()
(]
LAB
LAB
cL

$81,2vP(1)
$82,7VP(2)
=$R1

*NEXT STATEMENT wILL HAVE A UNIGUE LAGBEL.

NXTZL1 L
7Ls

$R3, 381.9R1
$R3, 382, +%K1

*GET UNIT COUNT AS A4 HMEX INTEGEK,

CMR

$R1,=2CH(2VP(3))

Figure 6-1. Sample Unexpanded Source Module and Assembler Listing of Resulting Expanded Source Module

MACRO FACILITY

6-22

AU43

*USE DEFAULT VALUJE OF oLUBAL VARIABLE, 01,

BE >?7G1+2
8 >NXTZLL
*THE FULLOWING WNULL IS FUR TnE ASSEMBLEK,
inuLL]
[*]
(%)
ENDM

*
*
*MAKE USE OF THE IN=LINE MACRO DEFINITIUNS DEFINED ABOVE.
*

RELZRG Loy $R1,2
STR $R1,X
FOLY XeYeS COMPUTE Y=SX*kS+Xkxd+Xxx3eXxn2¢X+], FOR X=2.
*
MOVER A,B,11,1 MUVE 11 BYTES FROM 4 10 b,
*
HLT
X RESY 1
Y RESV 1
A RESV 20
B KESV 290
END USEMAC ,RELZRO
EUF

XASSEMBLER LISTING OF RESULTING EXPANDED SOURCE MODULE

USEMAC L6 ASSEMBLER=0110 PAGE 0001
000001 TITLE USEMAC
000002 *

000003 *INCLUDE IN=LINE MACRO ROUTINES,
000004 *

000005 *

000006 *

000007 *

000008 *

000009 *

000010 *

000011 *MAKE USE OF THE INeLINE MACRC DEFINITIONS DEFINED ABOVE.
000012 *

000013 0000 1C02 RELZRO LOV $R1,2
000014¢ 0001 9F40 O0O01F STk $R1,X
000015 *

000016 0003 1CO1 LDV K1,
000017 *

000018 Ovu4 9840 001C MUL $K1,X
000019 0006 {EO1 ADV $R1,1
000020 *

000021 *

000v22 0007 9840 0019 MUL $R1,X
000023 0009 1E01 ADYV $R1,1
000v2d *

000025 *

000026 00VA 9840 0016 MUL $R1,X
000027 000C 1EO1 ADvV 3R1,1
000028 *

000029 *

000030 0QUOD 9840 0013 MUL SKR1,X
000031 000F {EO1 ADV $Kk1,1
000032 *

000033 *

000v34 0010 9840 0010 MUL BR1,X
000035 0012 1E01 ALV $R1,1
000030 *

000037 0013 G9F40 000E STOREX STR $R1,Y STORE POLYNUMIAL VALUE,
0060038 *

000039 *

000040 *

000041 0015 9uC0 0000 LAY 61,4
000042 Q017 ABCO QO0IF LAB $82,8
000043 0019 8751 CL =$R1

000044 0014 BU9L NXTOO07 Lon $R3,%B1,8R1
000045 0018 B7DE STH $R3,8B2.+8R1

Figure 6-1 (cont). Sample Expanded Source Module and Assembler Listing of Resulting Expanded Source Module

MACRO FACILITY 6-23 AU43

00004e
006047
000048
000049
000050
000051
000052
000053
000054
000055
0000Se
000057
000058

001C
001E
001F

002¢
ovat
0022
0023
0037
0048

0000 ERR COUNT

9970 0008
0902
OFFB

0000

0000

» %

T > < X

CMR
BE

NULL

HLT
RESV
RESV
RESV
RESV
END

$R1,sX'B!
>$+2
>NXT007

1

1

20

20
USEMAC,RELZRO

Figure 6-1 (cont). Sample Expanded Source Module and Assembler Listing of Resulting Expanded Source Module

PROGRAMMING CONSIDERATIONS

1. In an unexpanded source module, each macro control statement and each other
type of statement that contains error flag(s) can comprise up to 74 characters.
Each other line can comprise up to 80 characters. Subsequent characters are
truncated.

Initialized Values of Macro Variables

. Input to the Macro Preprocessor may be either uppercase or lowercase

characters. All lowercase characters in ASCII, hexadecimal, and bit string
constants, and in hexadecimal integer constants remain lowercase characters; all
other lowercase characters within the source module are converted to uppercase.

. When an expanded source module is assembled, the Assembler issues an error

flag for each statement that contains a null ASCII character string.

a0 op

bt

. If insufficient memory exists, memory can be conserved by:

Assigning some or all macro routines to macro libraries.
Limiting the level of nested macro calls.
Limiting the size of macro parameter and variable values.

Reducing attach table size.

Including the OA argument in the load command to the Command Processor.

(See the Program Development Tools manual.)

Specifying in LIBM macro control statement only those macro routines that

will be requested in subsequent macro calls.

Each local macro variable is initialized to be a null ASCII character string, except
for the following:

L1

Unique 3-character string. Each time there is a macro call, the value of L1 is
incremented by 1; can be from 001 to ZZZ. This variable permits a statement in a
macro routine to have a unique label each time the routine is requested in a macro
call; e.g., if the label of a statement is SMP?L1, the label would be SMPO0O1 the first
time the routine is requested, and SMPOO2 the second time the routine is requested.

L2

Numeric value that designates the level of nesting in the current macro call. If the
macro call does not include a nested macro call, L2 equals 0.

L3

Numeric value that designates the number of the last parameter that was assigned a
value in the current macro call. If the macro call does not include any parrmetrers,
L3 equals 0.

MACRO FACILITY

6-24

AU43

L4

Label of the current macro call. If no label is specified, 1.4 equals a null ASCII
character string.

Global macro variable G1 is initialized to equal $. Each other global variable is a
null ASCII character string. These values remain in effect unless they are reassigned in
SETA or SETN macro control statements.

Designating Numeric Values

When an operand or argument requires a numeric value, the value must be from
-32768 to +32767. (See “Truncation/Padding of String Constants” in Section 2 to
determine how characters are truncated, if necessary.) A numeric value can be specified
as follows:

(o]
6}
(6]

Decimal integer constant (e.g., 31764, +4652)

Hexadecimal integer constant (e.g., +X’2F° , X*7000%)

Substitution operator followed by macro variable name whose contents are the
source language representation of a decimal or hexadecimal integer constant
(e.g., 7G3,7L4)

Substitution operator followed by macro parameter name whose contents are
the source language representation of a decimal or hexadecimal integer constant
(e.g., P2)

Substitution operator followed by a macro function that returns a numeric value
Expression that combines any of the above character strings by including
arithmetic operators (e.g., 31764+(?G3))

Designating Alphanumeric Values
When an operand or argument requires an alphanumeric value, you can specify any
type of alphanumeric character string, including the following:

o o0 OO0

Substitution operator followed by macro variable name

Substitution operator followed by macro parameter name

Substitition operator followed by macro function

Expression that combines any of the above character strings by specifying them
adjacent to each other

MACRO FACILITY 6-25

AU43

APPENDIX A

PROGRAMMER’S REFERENCE

INFORMATION

This appendix provides, in a summarized form, information about the internal
representation of the assembly language instructions, the operations they perform, and

other useful data for coding and debugging your program.

SUMMARY OF HARDWARE REGISTERS

Figure A-1 is a list of Level 6 registers and their formats. The length of each register
is shown in bits.

Name

Bit:

Program Counter
(P-Register)

Bit:

Address Registers
(B1 through B7)

Bit:

General Registers
(RT through R7)

Bit:
Mode Control
Register (M1)

Format

0 15
ADDRESS OF CURRENT
INSTRUCTION '

0 15
ANY ADDRESS

0 15
ANY DATA

0 7

T

LbOverf]ow trap (trap vector 6)

for R1 through R7, respectively

Trace trap (trap vector 2)
enabled for JMP and branch

instructions

Figure A-1. Level 6 Hardware Registers

PROGRAMMERS REFERENCE
INFORMATION

AU43

15
System Status
Register LEVEL
(S)
LFInterrupt level of
current program
\——sProcessor identi-
fication (set
automatically)
#] = System in
privileged
state
Bit: O 7891011 12 13 14 15
Indicator e
Register‘ ciB I G Llu
I
L*’ Result of
last compare
_———» 1 = I/0 command
accepted
——— | = Bit test
indicator
1 = Carry
» 1 = Qverflow
Name Format
Bit: O 678 63
Scientific Accumulator
Registers C S M
($S1 through $S3)
l—b Magnitude of the mantissa.
L & Sign (0O=positive, l1=negative)
of the mantissa
& Characteristic (excess 64
power-of-16 exponent) of
the number

Figure A-1 (cont). Level 6 Hardware Registers

PROGRAMMERS REFERENCE
INFORMATION A2

AUA43

Bit:

Scientific Indicator
Register (SI)

Bit:

SIP Mode Register
(M4)

Bit:

SIP Trap Mask Register
(M5)

Result of last

L lLess than
L s Greater than

o Precision error
(trap 22)

s Significance error
(trap 21)

o Exponent underflow
(trap 19)

AL:

Round/Truncate Mode
0 - Truncate
1 - Round

scientific compare:

Memory Length (Length of main memory data
field to or from which data is transferred

via a scientific accumulator (SA))
0 - Two words
1 - Four words

Accumulator Length (Length of scientifi

accumulator data field to or from which

c

data is transferred to/from main memory,

a hardware register, or another SIP

register)
0 - Two words
1 - Four words

L Precision Error Trap Mask

L — ——e» Significance Error Trap Mask

s Exponent Underflow Trap Mask

PROGRAMMERS REFERENCE
INFORMATION

Figure A-1 (cont). Level 6 Hardware Registers

AU43

ASSEMBLY LANGUAGE INTERNAL FORMATS BY TYPE

Each of the seven types (i.e., generic, branch-on-register, etc.) of assembly language
instructions is stored in memory in a predefined format, as shown in Figure A-2.

Bit: jo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generic (GE): 0 0 0 0 0 0 0 O FUNCTION
Branch-on-indicator (BI): 0 0 0 O OPCODE DISPLACEMENT®
. . REGISTER TYPE, DIRECTION,
Shift (SHS and SHL): O | NUMBER |0 0 0 0O DISTANCE
.) REGISTER
Branch-on-register (BR): 0 | NUMBER 0PCODE DISPLACEMENT?
. R . REGISTER
Short value immediate (SI): 0 NUMBER OPCODE VALUE
Input/output (I0): 1.0 0 0} OPCODE SYLLABLE
ADDITIONAL WORD, IF REQUIEED BY ADDRESS
SYLLABLE AS DEFINED BELOW

I0 AND IOH

0
l

EMBEDDED CONTROL WORD
0 00 0000 0]
ADDITIONAL WORD,

CONTROL WORD
ADDRESS SYLLABLE
IF NECESSARY

}l

0 0 O OPCODE ADDRESS SYLLABLE

ADDITIONAL WORD, IF REQUIREDb

I0LD

IMBEDDED CONTROL WORD
000000 0 O]
ADDITIONAL WORD,

CONTROL WORD
ADDRESS SYLLABLE
IF NECESSARYP

!

RANGE ADDRESS

0 0 0 0 0 0 0 O SYLLABLE

ADDITIONAL WORD, IF NECESSARY

Single operand (S0):

0 0 O OPCODE ADDRESS SYLLABLE

ADDITIONAL WORD, IF NECESSARYP

Double operand (DO):

REGISTER

NUMBER OPCODE

ADDRESS SYLLABLE

|
ﬁ i
|
|

ADDITIONAL WORD, IF NECESSARY

a1f the displacement value specified is 0, the location
to be branched to is specified in the next sequential word; if
it is 1, the next sequential word specifies the displacement
(in words) from the address of this instruction; otherwise,
the displacement value specified is the displacement, in
two's complement form, from the current instruction to the
destination,

Figure A-2. Internal Formats of Assembly Language Instructions

PROGRAMMERS REFERENCE
INFORMATION

A4

AU43

bDepending on the form of the address expression used in the
source code, the generated address syllable may occupy one
or two words, as follows:

o If the address expression was of the immediate memory,
immediate operand, or P-relative address forms, the
hexadecimal address of the location specified, the dis-
placement to it, or the value of the operand itself is
contained in the next sequential word or words.

o If the address expression was of the B-relative address
form, the address of the Tocation is derived by per-
forming the operation(s) specified in Table A-3.

o If the address expression was of the register addressing
form, the value or address is contained in the specified
register.

For those instruction types that show register number in bits
1 through 3, this is the number of register specified in the
first operand of the multiple-operand instruction that re-
quires a register in the first operand.

Figure A-2 (Cont). Internal Formats of Assembly Language Instructions

HEXADECIMAL REPRESENTATION OF INSTRUCTIONS

Table A-1 illustrates the hexadecimal representation of the assembly language
instructions as they appear in a printout. These representations are derived from the
formats of the various types described under “Assembly Language internai Formats by
Type,” (Figure A-2.

In the table, when O+addsyl or 0+x is specified, it indicates that the last byte is a
7-bit byte preceded by a binary 0; 8+addsyl or 8+x indicates a 7-bit byte preceded by a
binary 1. In either case, only the last seven bits are significant. addsyl is defined in
Table A-2; x is the displacement in a branch instruction, as defined under ‘“Assembly
Language Internal Formats by Type,” (Figure A-2); d is the shift displacement, in bits.

TABLE A-1. INTERNAL PRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS

First Second Third Fourth
Hexadecimal Hexadecimal Hexadecimal | Hexadecimal
Digit Digit Digit Digit Instruction | Type
0 HLT
1 MCL
2 BRK
0 0 3 RTT GE
4 RTCN
5 RTCF
6 WDTN
0 7 WDTF
2 O+x X BL
2 8+x X BGE
3 0+x X BG
3 8+x X BLE
4 Otx X BOV EI
4 8+x X BNOV
5 0+x X BBT
5 8+x X BBF
6 O+x X BCT
PROGRAMMERS REFERENCE

INFORMATION A-S AU43

TABLE A-1 (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS

First Second Third Fourth
Hexidecimal Hexadecimal Hexadecimal | Hexadecimal
Digit Digit Digit Digit Instruction Type
6 8+x X BCF
7 O+x X BIOT
7 8+x X BIOF
8 0+x X BAL
8 8+x X BAGE
0 9 0+x X BE
9 8+x X BNE
A 0+x X BAG
A 8+x X BALE
B 0+x X BSU
B 8+x X BSE
F 0+x X NOP
F 8+x X B
4 0rx x SBLZ Bl
8+x X SBGEZ
1-3 5 0+x X SBEZ
8+x X SBNEZ
6 0+x X SBGZ
8+x X SBLEZ
4 O+x X SBL
8+x X SBGE
4 5 0+x X SBEQ
8+x X SBNE
6 0+x X SBG
8+x X SBLE
5 4 0+x X SBPE
8+x X SBNPE
6 4 0+x X SBSE
8+x X SBNSE
7 4 0+x X SBEU
8+x X SBNEU
0 d SOL
1 d SCL
2 d SAL
3 d DCL
4 d SOR
5 d SCR
6 d SAR
1-7 0 7 d DCR
8
9 d DOL SHS
A
B d DAL SHL
C
D d DOR
E)
F d DAR
7 O+x X BDEC BR
7 8+x X BINC
PROGRAMMERS REFERENCE

INFORMATION A-6 AU43

TABLE A-1 (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS

First Second Third Fourth
Hexadeciaml Hexadecimal Hexadecimal | Hexadecimal
Digit Digit Digit Digit Instruction | Type
8 O+x X BLZ
8 8+x X BGEZ
9 O+x X BEZ BR
9 8+x X BNEZ
1-7 A 0+x X BGZ
A 8+x X BLEZ
B O+x X BEVN
B 8+x X BODD
C immedvalue LDV
D immedvalue CMV qI
E immedvalue ADV
F immedvalue MLV
0 O+addsyl 10
1 O+addsyl IOH IO
1 8+addsyl IOLD
2 O+addsyl NEG
2 8+addsyl LB
3 8+addsyl JMP
6 O+addsyl CPL
7 O+addsyl CL
7 8+addsyl CLH
8 O+addsyl LBF
8 8 8+addsyl DEC SO
9 Ot+addsyl LBT
9 8+addsyl CMZ
A Ot+addsyl LBS
A 8+addsyl INC
B Ot+addsyl LBC
B 8+addsyl ENT
C O+addsyl STS
C 8+addsyl LDI
D Otaddsyl SDI
D 8+addsyl CMN
E O+addsy! LEV
E 8+addsyl CAD
F O+addsyl SAVE
F 9+addsly RSTR
C O+addsyl SCZQ
C 8 8+addsyl SCZD
D O+addsyl SNGQ
9 8+addsyl SNGD
0 O+addsyl MTM
0 8+addsyl LDH
1 8+addsyl CMH
2 O+addsyl SUB
OF 2 8+addsyl LLH Do
3 O+addsyl DIV
3 8+addsyl LNJ
4 O+addsyl OR
4 8+addsyl ORH
PROGRAMMERS REFERENCE
INFORMATION A7

AU43

TABLE A-1 (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS

First Second Third Fourth
Hexadecimal Hexadecimal Hexadecimal | Hexadecimal
Digit Digit Digit Digit Instruction | Type
9-F 5 O+addsyl AND
5 8+addsyl ANH
6 O+addsyl XOR
6 8+addsyl XOH
7 O+addsyl ST™M
7 8+addsyl STH
8 O+addsyl LDR
9-B 8 8+addsyl SLD
D-F 8 8+addsyl SCM
9-F 9 O+addsyl CMR
9-B 9 8+addsyl SAD DO
D-F 9 8+addsyl SSB
A O+addsyl ADD
A 8+addsyl SRM
9.F B O+addsyl MUL
B 8+addsyl LAB
9-B C O+addsyl SML
D-F C O+addsyl SDV
C 8+addsyl LDB
D 8+addsyl CMB
9-F E O+addsyl SWR
E 8+addsyl SWB
F O+addsyl STR
F 8+addsyl STB
TABLE A-2. ADDRESS SYLLABLES
mmm rrr = 000 rrr = ddd
i=0 i=1 i=0 i=1
000 <location *<location $Bn *$Bn
001 <location.$R1 *Jocation.$R1 $Bn.SR1 *$Bn.$R1
010 <location.$R?2 < Jocation.$R2 $Bn.SR2 *$Bn.$R2
011 <location.$R3 *<location.$R3 $Bn.$R3 *$Bn.$R3
100 location *location $Bn.value *Bn.value
101 reserved reserved { =$R"} $Bk.-$R1 $Bq.+$R1
=$Bn
110 reserved reserved -$Bn $Bk.-$R2 $Bq.+$R2
i { =‘°°““°“} reserved +$Bn | SBK-SR3 | $Bq+SR3
=value

NOTE: An address syllable can be represented as mmmirrr, which are the last seven bits in the
word; n can be any number between 1 and 7 and is equal to rrr for rrr#0; k is a number within the
range 1 through 3 and is equal to rrr for rrr = 1, 2, 3; and q is a number within the range 1 through 3
and is equal to rrr4 for rir = 4, 5, 6, 7. For more imformation about these address expressions, see

“Addressing Techniques” in Section 5.

PROGRAMMERS REFERENCE

INFORMATION

A8

AU43

VALID ADDRESS EXPRESSIONS

Table 4-3 lists all of the valid address expressions and shows graphically how each

derives the effective address of the data to be used in the operation.

The various types of symbolic names, constants, and expressions (other than
address expressions) are described in detail in Section 2.

TABLE A-3. SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS

Address
Addressing Expression Generation of
Technique Form Effective Address
Register =$Rn Rn =EA
Addressing =$Bn Bn =EFA
=$Sn Sn =EA
Immediate | Direct locexpressmn
Memory <
Addressing templabel location = EA
Indirect locexpressmn
*<
templabel location = EA
Indexed locexpressmn 1 1
Direct < SR (2 location + R (2 = EA
templabel 3 - B
Indexed locexpressmn 1 1
Indirect *< SR <2 location + R <2 = EA
templabel 3 3
Immediate =locexpressmn Address of current address
OPefa“‘? =hexstringconstant syllable + 1 = EA
Addressing
_ {intvalexpression}
extvallabel
P-Register intlocexpression
Addressing | Direct {+}
-} templabel internal location = = EA
Indirect intlocexpression
* +}
{- templabel internal location, = EA
B-Register Direct $Bn = EA
Addressing | 1 girect *$Bn Bn, = location
location, = EA
Indexed 1 1
Direct $Bn.§R (2 Bn, + R (2= EA
3 3
Nmem——]
1 B, = location
Indexed *$Bn.SR ¢ 2 1
Indirect 3 location+R (2, = EA
3
Direct + intvalexpression
! Bn_+ value =
Displacement $ n'{extvallabel Bnt+ value = EA
PROGRAMMERS REFERENCE
INFORMATION A9

AU43

TABLE A-3 (CONT). SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS

Addressing
Technique

Address
Expression
Form

Generation of
Effective Address

B-Register
Addressing
(Cont.)

Indirect +
Displacement

intvalexpression
*$Bn. Jextvallabel

Bn +value = location
location, = EA
Nct——

Push

-$Bn

@Bn-1)
EA

B,

o4

Pop

+$Bn

FlF

= EA
B, < (Butl)

Indexed Push

SR

1 1
R{2}<— R 2} -1)
3 3

e

e

R

Indexed Pop

SN

1l

e

i}

A

Short

Displacement

intlocexpression
>4+

—} templabel

location = EA

Special

_ fintvalexpression
~ {extvallabel

Word following the word(s)
containing op code + first
operand address syllable = EA

Interrupt Vector

: int-val expression
$W'{ ext-val-label]

IV + value = EA

NOTE: The symbols used in this table have the following meanings:

S

Contents of . . .
EA - Effective Address

« -

Replaces the . . . (the element pointed at) > -

locexpression ~ location expression (any type)

templabel - temporary label

hexstringconstant - hexadecimal string constant
intvalexpression - internal value expression

int-val-label-internal value label
extvallabel - external value label

intlocexpression - internal location expression

Indirection indicator
Immediate memory addressing
Short displacement addressing
Specified Addressing
Component separator

(indexing and displacement)

All other notations represent standard usage as defined in the preface of this manual or

required Assembler-specific symbols.

PROGRAMMERS REFERENCE

INFORMMTION

A-10

AU43

APPENDIX B

HEXADECIMAL
NUMBERING SYSTEM

Level 6 stores all data in memory in the form of binary digits. However, to save
space in printouts, this data is always shown in its hexadecimal equivalent (unless an
ASCII memory dump is requested). This appendix explains how to convert from
hexadecimal to decimal and vice versa, as well as how to perform hexadecimal
arithmetic operations.

Table B-1 shows the comparison between binary (i.e., base 2), decimal (i.e., base
10), and hexadecimal (i.e., base 16) symbols.

TABLE B-1. COMPARISON OF BINARY, DECIMAL,
AND HEXADECIMAL SYMBOLS

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

In the course of coding your assembly language program, it is possible to define
Jata as a decimal, hexadecimal, or binary number, or an ASCII symbol, as illustrated in
Table B4. However, in memory, all data is stored in binary.

Data that is defined as ASCII in the source program is stored as the binary
equivalent of the ASCII symbol, and shown in the printout as the hexadecimal
equivalent of the stored binary value.

Numeric data, on the other hand, is converted to hexadecimal, and stored as the
binary equivalent of the hexadecimal digit.

Table B-2 illustrates how the value 32 is stored in memory depending on how it is
defined in the source program (i.e., depending on whether it is defined as an ASCII
value, binary value, decimal value, or hexadecimal value.) In addition, it shows how the
stored value would appear in an ASCII or hexadecimal printout.

HEXADECIMAL
NUMBERING SYSTEM B-1 AUA43

TABLE B-2. STORAGE AND PRINTOUT OF THE VALUE 32

Data Type Stored in Memory Hex Printout ASCII Printout
A'32' 0011001100110010 3332 32

X'32' 0000000000110010 0032 2

732’ 0011001000000000 3200 2.

32 (Dec) 00000000001 00000 0020 Space
B’00110010’ 0011001000000000 3200 2.

As you can see in this table, hexadecimal and binary are identical. In addition, it
illustrates how an ASCII symbol is expanded according to Table B-4. Finally, it shows
a decimal value that is first converted to its hexadecimal (i.e., binary) equivalent and
then stored in memory.

The following pages explain how to compute the conversions and how to do
hexadecimal arithmetic.

DECIMAL-TO-HEXADECIMAL CONVERSION

The system automatically converts all decimal data to its binary (i.e., hexadecimal)
equivalent when storing it in memory. It then operates on that binary data.
You can determine how a decimal number will be stored in memory as follows:

1. Divide the decimal number by 16. The remainder becomes the low-order (i.e.,
rightmost) hexadecimal digit.

2. Divide the whole number result of the last division by 16. The remainder
becomes the next-highest-order hexadecimal digit.

3. Continue this process until the whole number result of a division is 0. The
remainder becomes the highest-order (i.e., leftmost) hexadecimal digit.

For example, to determine the hexadecimal equivalent of the decimal number
47,401, do the following:

1. Divide 47,401 by 16.

The result is 2962. The remainder is 9.
2. Divide 2962 by 16.

The result is 185. The remainder is 2.
3. Divide 185 by 16.

The result is 11. The remainder is 9.
4. Divide 11 by 16.

The result is 0. The remainderis 11.

Using Table B-1, you can see that in hexadecimal 11 is represented by B. Thus, the
hexadecimal equivalent of 47401, , is B929.

HEXADECIMAL-TO-DECIMAL CONVERSION

The type of conversion you will most commonly be confronted with will be from
hexadecimal to decimal because, unless you specifically request an ASCII memory
dump, printouts of memory will always be in hexadecimal. To identify ASCII data
readily, look for repetition of the first character in a byte. For example,

3132 3333 3335 3637 XXXX XX...

HEXADECIMAL
NUMBERING SYSTEM B-2 AU43

is a list of ASCII numbers (ie., 1, 2, 3, 3, 3, 5, 6, 7, in the example). In most other

cases,

the hexadecimal symbols will appear to be quite random. If the stored

hexadecimal symbols represent numeric data, you can convert it to decimal as follows:

1.

2.

3.
4.
5.

Multiply the decimal equivalent (see Table B-1) of the high-order (i.e., leftmost)
hexadecimal digit by 16.

Add the decimal equivalent of the next-lowest-order hexadecimal to the result of
step 1.

Multiply the result of step 2 by 16.
Repeat steps 2 and 3 until you reach the last hexadecimal digit.

Simply add the decimal equivalent of the last hexadecimal digit to the result of
the last previous multiplication.

For example, to convert the hexadecimal value 1C8A to its decimal equivalent, do
the following:

.1,

2.

Multiply 1 by 16.
The result is 16.
Add 12 (ie.,C=12,¢).
The result is 28.

. Multiply 28 by 16.

The result is 448.
Add 8.

The result is 456.

. Multiply 456 by 16.

The result is 7296.

. Add 10 (i.e., A=10,,).

The result is 7306.

Thus, the decimal equivalent of 1C8A, ¢ is 7306.

Alternatively, you may use Table B-3 to convert hexadecimal numeric data to its
decimal equivalent.

HEXADECIMAL

TABLE B-3. HEXADECIMAL/DECIMAL CONVERSION

Word
Byte "~ Byte
Hl Decimal | H2 Decimal | H3 Decimal | H4 Decimal
0 0 0 0 0 0 0 0
i 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10

NUMBERING SYSTEM B-3

AU43

TABLE B-3 (CONT). HEXADECIMAL/DECIMAL CONVERSION

Word
Byte Byte
Hl Decimal | H2 Decimal | H3 Decimal | H4 Decimal
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

NOTE: HI is the first hexadecimal digit
H2 is the second hexadecimal digit
H3 is the third hexadecimal digit

H4 is the fourth hexadecimal digit
first and second digits of a byte

If H1 is O through 7, the number is positivé and you compute the decimal equivalent of
the given hexadecimal number by summing the decimal equivalent of H1, H2, H3, and
H4.

NOTE: For a signed integer byte, use H3 and H4 only.

If H1 is 8 through F, the number is negative, and you must find the two’s complement
before using the table. You can compute the two’s complement by subtracting the
hexadecimal number from 10000 (hexadecimal) or by changing all 0’sto 1 and all 1’s
to 0 and then adding a binary 1. You can then find the decimal equivalent directly
from the table, appending a minus sign to the final result.

HEXADECIMAL-TO-ASCII CONVERSION

If the stored data is an ASCII value, it can be translated by converting the
hexadecimal value in the printout to its ASCII equivalent using Table B-4.

For example, the locations that contain the start of your program should have the
following hexadecimal representation:

5449 544C 4520 hhhh hh...

By pairing the digits (e.g, 54) and locating the character in the table where these two
digits intersect, you can ascertain the ASCII equivalent of the stored hexadecimal
value. Remembering that the first hexadecimal digit corresponds to the H1 row and
that the second digit corresponds to the H2 column, the above representation
translates to: TITLEA.

If you wish to ascertain the hexadecimal equivalent of an ASCII character, simply
locate the character in the table and record the HIH?2 values at the top and left of the
table.

HEXADECIMAL
NUMBERING SYSTEM B-4 AU43

TABLE B-4. HEXADECIMAL/ASCIT CONVERSION

Control Characters

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DCI1
DC2
DC3
DC4

HEXADECIMAL
NUMBERING SYSTEM

H1

H2 01 1 2 3 4 5 6 7
0 NUL | DLE | SP 0 @ | P P
1 SOH | DC1 | ! 1 [ATQ]a |q
2 STX DC2 “ 2 B R b I
3 ETX DC3 # 3 C S c s
4 EOT | DC4 $ 4 D| T d t
5 ENQ | NAK | % 5 E U e u
6 ACK | SYN & 6 F \" f v
7 BEL ETB ’ 7 G Wil g w
8 BS CAN | (8 H X | h X
9 HT | EM |) 9 [I Y |1 |y
A LF SUB * : J Z j z
B VT | ESC | + KT [x [
C FF FS R <|L \ 1 :
D CR GS = M|] m }
E SO RS . >I N|[—->1|n M
F SI Us / ? (0] — o DEL
Null
Start of Heading
Start of Text
End of Text
End of Transmission
Enquiry
Acknowledge
Bell
Backspace
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Shift Out
Shift In
Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4

B-5

AU43

NAK Negative Acknowledge

SYN Synchronous Idle
ETB End of Transmission Block
CAN Cancel

EM End of Medium
SUB Substitute

ESC Escape

FS File Separator
GS Group Separator
RS Record Separator
Us Unit Separator
SP Space

DEL Delete
HEXADECIMAL ADDITION

Table B-5 illustrates a hexadecimal addition table. When using this table, whenever
there is a result that has a 1 preceding a hexadecimal value, that 1 represents a carry.
When a carry occurs in an arithmetic operation, the C-bit in the I-register is set to 1;if
the carry results in the high-order digit being lost because the result field is not large
enough to contain the result, the OV-bit in the I-register is set to 1.

TABLE B-5. HEXADECIMAL ADDITION TABLE

1 2 3 14 5|16 7 |8 9 [A |B |C D |E F
1 2 |3 4 |5 6 | 7 8 |9 A |B C |DJ|E |F 10
2 3 14 5 |16 7 18 9 A |B |C D |E F [10 |11
3 4 |5 6 |7 819 A|B |C |D |E |F 10 | 11 | 12
4 S5 |6 7 18 9 1A B |C D |E F |10} 11 |12 | 13
5 6 |7 8 {9 A!B {C |DJ|E |F 10111)12 |13 | 14
6 7 {8 9 A | B |C D | E F [10 | 11 |12 |13 |14 | I5
7 8 |9 A |B C|{D E |F 10)11 |12 |13 {14 |15 | 16
8 9 |A |B |C D | E F 11011 [12 13 |14 |15 |16 |17
9 A |B |C |DVI|E |F 10 } 11 | 12 13 |14 | 15| 16 |17 | 18
AlB |C D | E F |10 (111213 |14 |15 (16| 17 {18 |19
B C |D |E |F 1011 (12113 /14 (15|16 |17 | 18 [19 | 1A
C D |E F [10| 11|12 {13 |14 [15|16 (17 [18 | 19 | 1A | 1B
D}E |F 101112} 13 (141516 |17 |18 |19 | 1A |IB | IC
E}{F (10 |11 12|13} 14 (15|16} 17 (18 |19 |1A| 1B {1C | ID
F 1011 |12 |13 (14 (15 |16 |17 |18 | 19 |1A|1B | IC | 1D | IE

The following example illustrates how the table can be used in hexadecimal

addition:
augend A2B5
addend +494F

The result of adding F and 5 is 14. Therefore, 4 becomes the low-order digit in the
sum; 1 is carried. Then, B+ 4+ 1 =10; as before, O becomes the next-lowest-order
digit, and 1 is carried. Then, 9 + 2 + 1 = C; there is no carry. Finally, A+ 4 =E, with
no carry. The sum of the hexadecimal numbers shown above is EC04.

HEXADECIMAL
NUMBERING SYSTEM B-6

AU43

During this addition, the C-bit in the I-register was set to 1; however (assuming that
the result field allowed a 1-word result), since the addition of the high-order digits did
not result in a carry (which would have meant that the carried digit would have been
lost), the OV-bit was not set to 1 (i.e., it was set to Q).

HEXADECIMAL SUBTRACTION

Hexadecimal subtraction is the opposite of hexadecimal addition. Instead of carries,
it is necessary to borrow. When you borrow a 1 from the next-highest-order digit of a
minuend, it is the equivalent of adding 16 to the minuend of the digit you are
subtracting from. The following example illustrates this concept:

minuend 3A
subtrahend -1B

Since B is higher than A, it is necessary to borrow 1 from the 3, and adding 16 to A
Gi.e., 16 + 10 = 26), and subtracting B (i.e., 11) from the result, obtaining 15 (but since
this is hexadecimal arithmetic, you must change the 15 to F); then, you must subtract
1 from 2 (don’t forget that 1 was borrowed from the 3); the result of this operation is
1F.

HEXADECIMAL MULTIPLICATION

To do hexadecimal multiplication, you can use Table B-6. As when multiplying in
any numbering system, you must record the low-order digit and add the remainder
(i.e., the high-order hexadecimal digit shown in the table) to the result of the
multiplication of the next-lowest-order hexadecimal digit.

TABLE B-6. HEXADECIMAL MULTIPLICATION TABLE

6 7 |8 9 {A|B |C |D
6 |7 8 19 A|B |C |D |E |F
C E|10|12 |14 |16 |18 | 1A} 1C | 1E

les]
T

151 18 [1B | 1E | 21 |24 |27 |2A |2D
18 [1C| 20 | 24 {28 | 2C [30 {34 [38 [3C

5= 7>]
_
[\8)

— - [el}
—_
N
f—
co

1
1

2

3

4

5 14 1E [23|28 | 2D |32 |37 [3C |41 |46 |4B
6 1E| 24 | 2A| 30 [36 | 3C |42 [48 | 4E | 54 |5A
7 15| 1C |23 | 24|31 |38 |3F |46 |4D |54 |SB |62 |69
8 18 [20 [28 (30 38| 40|48 |50 [58 |60 |68 |70 |78
9 1B |24 [2D]| 36 |3F| 48 | 51 [5A |63 |6C |75 |7E |87 _
A 1IE[28 [32|3C |46 |50 5A]64 [6E|78 |82 [8C |96
B | 16 |21 |2C [37 [42 [4D| 58 |63 [6E |79 | 84 | 8F | 9A | A5
C 18 |24 |30 [3c|48 54|60 |6C|78 |8 |90 |oCc]| A8 |B4
D|1a[27 |34 |41 |4E|5B| 68|75 |8 [8F | 9C [A9 | B6 |C3
E|1C|2a]38 46|54 [62][70]7E|8 [9A]| A8 | B6 | C4 [D2
Fl1E|[2D]|3C|4B| 5469|7887 |9 | A5| B4 |C3 | D2 |E1

For example, to multiply the following hexadecimal digits:

multiplicand 2A5
multiplier x 3

Using the table, 3 x5 =F, and there is no remainder. Then, 3x A =1E; E is
recorded, and the remainder (i.e., 1) is saved to be added to the result of the

HEXADECIMAL
NUMBERING SYSTEM B-7 AU43

multiplication of the next digit. So, 3 x 2 =6, plus the remainder of 1 = 7. The result
of this arithmetic operation is 7EF.

HEXADECIMAL DIVISION

Due to the complexity of this type of operation, it is suggested that you convert the
hexadecimal digits to decimal, perform the division, and then convert the answer to
hexadecimal.

HEXADECIMAL
NUMBERING SYSTEM B-8 AU43

APPENDIX C

SAMPLE ASSEMBLY
LANGUAGE PROGRAM

The following sample program illustrates many of the aspects of the assembly
language described in this manual. For a definition of the fields that appear in the
listing, refer to the Program Development Tools manual.

CHKNML Lo ASSEMBLER=-0100 PAGE 0001
000001¢ TITLE CHKNML
000002 * PROGRAM COMPARES TEST RESULTS OF TEST MODULES WHOSE ADDRESSES ARE
000003 * STOREw IN SCOMM TO THE EXPECTED TEST RESULTS AS DESCRIBED IN TABLOC
000004 XVAL TSTMAX
000005 xLOC TABLOC
000006 XLt Z1050L
000007 XxL0C ZIOSKR
000008 XLoc £108C0
000009 0100 COMM xring!
000010 * GET FILENAME AND CHANNEL NO
000011 0000 AB43 FFEF STRT LOR SR2,863,~17
000012 0002 BBA3 LAB SH5,5R3,8R2
000013 0003 BBC3 FFEC Lag 83, 583,20 SET 83 TO LIST FILE AT
000014 0005 9873 LOR $R1,+%B3 SET B3 TU FILENAME
000015 0006 1D0O2 Cry SR1,2
000016 0007 0981 0U7C BNE ERNLST NO LIST FILE ATTACHED
000017 0009 9843 0007 LbR SR1,%K3,7 SET R1 TO CHANNEL NO,
000018 * QPEN LIST FILE
000019 000B CBCO 0079 LAB $B84,L8TDCH
000020 000D D380 0000 X LNJ $BS,<ZI0S0L OPEN ROUTINE
000021 000F 1981 006F BNEZ SR1,EROPEN
000022 * WRITE HEADER MSG
000023 0011 1C1E Lbv SR1, X' E! MSG LENGTH
000024 0012 2C00 LDv SR2,x'0!
000025 0013 BBCO 0081 LAB 383, WHBUFOL MSG ADDRESS
000026 001S CBCO 006F LAY $84,L.STDCB
G00027 0017 D380 000C X LNJ $85,<ZI0SwR WRITE ROUTINE
000028 0019 1981 0066 BNEZ SH1,ERHDR
000029 0018 3CFF Lov $R3,=X'1"
000030 001C 3EO01 TLOOP ADV BRI, X!
000031 001D B970 0000 X CMR 3R3,=TSTMAX CHECKED ALL TEST RESULTS ?
000032 001F 0301 004E BG ENDTST
000033 0021 CCBO 0000 K LDB $84, <ECOMM,3K3
000034 0023 CBC4 001C LAB $B4,384,x'1C" CREATE STATUS BLOCK PTR
000035 0025 F830 0000 X LOR $K7,<TABLCC,.S$K3 GET EXPECTED VALUE
000036 0027 F944 0003 CHMK $R7,38B4,x'3! COMPARE TO ACTUAL STATWD
000037 0029 0973 BE >TLOOP TEST OK = CHECK NEXT TEST
000036 002A EBCO 0074 Lag 5Bo ., ABUF2A
000039 o002C D830 0000 K LOR $RS,<$COMM, $P3
00600406 002€ F3CO 0027 LN 387, DUMPED CONVERT TEST ADDK TO ASCII
000041 0030 EBCO 0077 LAB 386, wBUF2B
000042 0032 0804 LDR ®RS, $84d
000043 0033 F3C0 €022 LKJ $B87,DUMPKHD CONVERT SYML VALUE TO ASCII
000044 0035 CBC4 0001 LAB $B4,5B4. X" 1!
000045 0037 EBCUO 0073 LAB S86,WBUF2C
000046 0039 DbDBOG LDR 5RS5,384
000047 0C3A F3CO 0018 LNJ SB7.DUMPWD CONVERT TEST .NUM TO ASCII
000048 003C CBC4 0001 LAB $B4,8B4.x"1"
000049 003E EBCO 006F LaB $Ho,WBUF2D
000050 0040 DBOU4 LDR $R5, vB64
000051 0041 F3CO 001u LNJ 587, DUMPKD CONVERT SYMV VALUE TO ASCII
000052 0043 C(BC4 0001 LAB $B4,884, X1
000053 0045 EBCO 0068 LAB $Ho, WBUF2E
000054 0047 D804 LDR $R5,884
000055 0048 F3CO 000C LNJ $B7,DUMPRD CONVERT STATUS WORD TO ASCII
000056 * WRITE VALUES
000057 004A ICIE LoV SR1,x'1E" MSG LENGTH
000058 0048 2C00 LoV »R2,%x'0!
600059 004C BBCO 0057 LaB $B83,wBUF20 MSG ADUDRESS
000060 004E CBCO 0036 LAB $B4,LSTDCE

SAMPLE ASSEMBLY
LANGUAGE PROGRAM C-1 AU43

CHKNML Lo

ASSEMELEK=0100

PAGE 0002

000061 0050 D3BC 000U X Lnd $B5,<Z1USwK WRITE ROUTINE
‘000062 0052 1981 002E BNEZ $SR1,LRVAL
006063 0054 83C0 FFC? JMP TLOUP
000064 * ROUTINE ACCEPTYS A VALUE IN RS AND PUTS ITS ASCII EQUIVALENT
000065 * IN THF Tw0 wWURDS PUOINTED TO KY ke
000066 00%6 4CFC DUMPLD LDV SRa,-x'a’ SET COUNTER
000067 0057 CFd0 V0U0 T STR SRU,+%C
000068 0059 7Co0 LOV SR7,X'0"
000069 0054 4Cce0 bA Loy $Rd, x'n!
0000706 00SR 5084 ooL RS, 4
000071 005C 4E30 ADV SR4,X'30!
000072 00SD C940 0000 T CMR SR4, +3F
000073 00SF 0380 T BLE >+$E
000074 0060 4EO7 ADV $Ru,X'CT’
000075 0061 F4S4 £ 13 Oow 5R7,=8R4
000076 0062 BACO FFFS T InC +5L
000077 0064 0600 T BCT >+5%D
000078 0065 7088 oL »R7,8
000079 0066 UFF4 T &8 >=$A
000080 0067 EFde 0000, $D §TR $R6,38B6.X'0"
000081 0069 FFde 0001 STR SK7,58b0,X'1"
000082 006t 8387 4 JmpP 87 RETURM T0 CALLER
000083 006C 0000 $C [Z'v!
000064 006D 0039 $F DC 2'0039"
000085 * WRITE END TESTY
000086 006E 1CULA ENDTST Lbv $R1,x'A? MSG LENGTH
000087 006F 2C00 Lov PR, X'0
000088 0070 BBCO 0043 LAB BH3, wBUF Q3 MSG ADDRESS
000089 0072 CBCO 0012 LAB $B4,LSTOCE
000090 0074, D380 0000 X LMJ 385, <2I08KR WRITE ROUTINE
‘000091 0076 1981 000B BNEZ $R1,EREND
000092 * CLOSE LIST FILE
000093 0078 CBCO 0060C LAB $B4,LSTDCB
000094 007A D380 0000 X LNJ &H85,<210SCO CLOSE ROUTINE
000095 007C 1981 0006 BNEZ $R1,ERCLS
000096 007E 0000 HLT
000097 007F 0000 EROPEN KT
000098 0080 0000 ERHDR HLT
000099 0081 0000 EkvaAL HLT
000100 0082 0000 EREND HLT
000101 0083 000C ERCLS HLT
000102 0084 0000 ERNLST HLT
000103 0085 0000 LSTDCH RESV 16,0
000104 0095 412v WBUF L1 DC 'A tloc tsyrm tnum tval tswd'
0096 746C
0097 oFe63
0098 2020
0099 7473
0094 7960
0098 2020
009C 7det
009D 756D
009E 2020
009F 7476
0040 616C
00a1 2020
0082 7473
00A3 7764
000105 0044 4120 WBUF20 Dc ‘A
000106 00A5 2020 nBUF 24 D ! !
CHKNML Lé ASSEMBLER=0100 PAGE 0003
0046 2020
00A7 2020
600107 00A8 2020 WBUF 2B [¥]8 ' '
0049 2020
00aA 2020
000108 00AB 2020 WBUF2C oc ' '
00AC 2020
00AU 202y
000109 O0CAE 2029 WRBUF2D DC ! '
00AF 2020
00B0 2020
000110 o00B1 2020 WHUF 2E ocC ' '
00B2 2020
00B3 2020
000111 oO0B4 4i2v WwBUF03 bC 'A end test'
00RS 656E
00B6 6420
0087 TueS
0068 7374
000112 0089 END CHKNML
"0000 ERR CUUNT
SAMPLE ASSEMBLY
LANGUAGE PROGRAM C2 AU43

APPENDIX D

DEBUGGING ASSEMBLY
LANGUAGE PROGRAMS

There are two ways to debug and correct programs written in assembly language.
One is by using the Debugger (see the Utility Programs manual); the other is by reading
and interpreting the contents of memory through a memory dump (which can be
obtained with the disk/memory transfer utilities, also described in the Utility Programs
manual).

DEBUGGER

This utility program is intended for use during program development phases as a
tool for program testing and error detection.

The Debugger operates in interactive mode, maintaining a dialogue with the console
operator. It gives him visibility of all memory locations and addressable registers, and
the ability to modify the contents of either. The ability to perform memory searches is
provided, as well as the ability to display memory areas in both hexadecimal and ASCII
notations.

See the Utility Programs manual for a detailed description of the Debugger.

READING AND INTERPRETING MEMORY DUMPS

The remainder of this appendix describes how to read and interpret the contents of
memory as they appear in a memory dump (see Figure D-1).

It is possible to interpret the hexadecimal portion of the dump illustrated in
Figure D-1, as follows: '

1. Since the ASCII portion of the dump shows no meaningful data, it is apparent
that the assembler language program contains no string constants in the locations
illustrated. Therefore, the hexadecimal digits probably represent assembly
language instructions.

2. Break each word down into its binary equivalent. For example, C840 in location
003C becomes 1100 1000 0100 0000.

3. Using Table A-1, we find that C indicates that the instruction is probably a
double operand (DO) instruction.

4. Continuing to use Table A-1, we find that the 8 plus a binary 0 in the eighth bit
position indicates that the instruction is probably LDR.

003B/ 23FB C840 1B4A ABCO 1B49 B802 B970 5154 #..@0.Jd...I....QT
0043/ 0983 83C8 0095 2C02 88D4 88D4 B2A2 3D20 .eceeesncscese™
S——~ e e —— —TTT

HEXADECIMAL PORTION ASCil PORTION (DOTS
(.) INDICATE THAT
THE ASCIl EQUIVALENT

ADDRESS (IN HEXADECIMAL) OF THE HEXADECIMAL
OF THE FIRST HEXADECIMAL DIGIT IS A NONPRINT-
WORD (4-DIGIT BLOCK) IN ABLE CHARACTER)
THE HEXADECIMAL PORTION

OF THE DUMP

Figure D-1. ASCII/Hexadecimal Memory Dump

DEBUGGING ASSEMBLY
LANGUAGE PROGRAMS D-1 AU43

. By checking the table under “Assembly Language Internal Formats by Type™ in

Appendix A, it is possible to interpret the contents of the binary representation
illustrated in step 2, above. That is, bits 1-3 identify the first operand register; in
this case $R4 (the LDR instruction requires that the first operand register be an
R-register.

Then, using Table A-2, it is possible to interpret the contents of the address
syllable portion of the binary data shown in step 2; i.e., 100 0000. Using the
table, the binary data corresponds to the columns as follows: mmmirrr. Thus,
mmm = 100, i =0, and rrr = 000. In that block, we find that the second operand
is in the form of a location label.

We now know that the instruction is: LDR $R4]label. Thus, the address
expression is the P + Displacement form of addressing.

Checking the description of that form of addressing in Section 5 (see
“Addressing Techniques™), we see that the displacement between the address of
this instruction plus 1 and the address of the label is loaded into the next
consecutive word (i.e., location 003D). In this dump, the displacement is 1 B4A.

. The effective address of the data to be loaded into $R4 is in location 1B86 (i.e.,

(3C £ 1) + 1B4A)).

Following is a complete list, by address, of the instructions shown in Figure D-1.
You can perfect your ability to read memory dumps by interpreting the dump and
comparing your results to those listed below. The procedure, until you become
proficient, is basically as described above. After you have had the opportunity to read
and interpret dumps several times, many of the steps can be skipped, as you will be
able to interpret the data without checking all of the tables and descriptions identified
above. As you can see by the nine steps described above, it is imperative that you
understand the addressing techniques described in Section 5 (including how they are
stored in memory), and how to interpret the address syllable.

Location Instruction/Meaning

003B

Has no meaning in the context in which it appears; it is probably an
address associated with the instruction in location 003A.

003C LDR $R4 label

003D Displacement between this location and the location containing the
label identified in the LDR instruction.

003E LAB $B2,label

003F Displacement between this location and the location containing the
label identified in the LAB instruction.

0040 LDR $§R3,5B2

0041 CMR $R3="QT’

0042 Value to be compared to the contents of $R3 in the CMR instruction.

0043 BNE $B3

0044 JMP *label

0045 Displacement between this location and the location containing the
effective address (see “Indirect P-Relative Addressing™ in Section 5).

0046 LDV $R2,X"20’

0047 DEC =$R4

0048 DEC =$R4

0049 LLH $R3,*B2.SR2

004A CMV $R3,X"20’

DEBUGGING ASSEMBLY

LANGUAGE PROGRAMS D-2

AU43

APPENDIX E

SOURCE CODE ERROR
NOTIFICATION
BY ASSEMBLER

Columns 1 through 4 of the Assembler listing can contain up to four alphabetic
characters (flags) which indicate possible errors in the source language statement.
Columns 5-10 contain a six-digit decimal number corresponding to a sequential count
of the source statements read. The error flags that can be produced by the Assembler

are as follows:

FLAG

NXcH»nxmOovOoOzZzsrmdmg O

SOURCE CODE ERROR

MEANING

Operand field format error

Numeric conversion error

Out of range short displacement

Illegal address expression

Illegal forward reference

Improper header

Label field format error

Multiply-defined symbol

No matching left parenthesis

Illegal operation code

Assembler control statement operand error
Address <0 or 232K

Illegal register reference

Improper statement format

Truncation warning constant/string constant
Undefined symbol

Expression too complex

Conditional assembly error

NOTIFICATION BY ASSEMBLER E-1

AU43

APPENDIX F

SOURCE CODE ERROR

NOTIFICATION

BY MACRO PREPROCESSOR

The Macro Preprocessor issues error flags for nonfatal errors in the source code only
if the IC argument was specified in the load command to the Command Processor. (See
“Input to Command Processor Before Macro Preprocessor is Loaded™ in the Program
Development Tools manual.) If the IC argument was specified, each statement that
contains a nonfatal error appears in the expanded source module as a comment and is

preceded by the appropriate error flag(s).

An error flag is an alphabetic character that denotes the cause of an error. There can
be up to four error flags per statement; subsequent errors are not designated. In a
listing, column 1 contains an asterisk, columns 2 through 5 contain the error flag(s),
column 6 is blank, and subsequent columns contain the source statement and other
pertinent information. Error flags that can be produced by the Macro Preprocessor are

listed below.

Error Flag

NXx<<-Hnozgt"<"—"mAO»

Meaning

Operand field format error

Numeric conversion error

Illegal expression

Invalid macro routine, MAC statement, or ENDM statement
Macro function error

Label field format error

Multiple inline macro routines were assigned the same name
No matching left parenthesis

Illegal operation code

Improper statement format

Truncation warning

Variable/parameter error in macro call or MAC statement
Expression too complex

Conditional processing error

SOURCE CODE ERROR NOTIFICATION

BY MACRO PREPROCESSOR

F-1

AUA43

APPENDIX G
RESERVED SYMBOLIC NAMES

The following is an alphabetic list of all symbolic names (labels and identifiers) that
have been defined within the BES Assembler and may not be redefined by the user.

Reserved

Symbolic

Name Definition

$ Current location

$AF Address format

$B1,$B2,..$B7 Base registers 1 through 7

$IvV Interrupt vector for current priority level
$M1,$M2,...$M7 Mode control registers 1 through 7

$R1,5R2,..$R7 General registers 1 through 7; index registers 1 through 3
$S1,$S2,3S3 Scientific registers 1 through 3

All reserved symbols added to future versions of Level 6 Assemblers will begin with a
dollar sign ($). It is therefore recommended that user-defined labels not begin with $.

RESERVED SYMBOLIC NAMES G-1 AU43

INDEX

ADD
ADD, 5-24

ADDITION
HEXADECIMAL ADDITION, B-6
A HEXADECIMAL ADDITION TABLE
(TBL) , B-6

ADDRESS

ADDRESS EXPRESSIONS, 2-12

ADDRESS SYLLABLE (TBL), A-8

ADDRESS (Bn) REGISTERS, 1-4
SPECTIALIZED ADDRESS
EXPRESSIONS, 5-22

SUMMARY OF VALID FORMS OF
ADDRESS EXPRESSIONS (TBL), A-1l

ADDRESSING
ADDRESSING TECHNIQUES, 5-7
B-RELATIVE ADDRESSING, 5-14
B-RELATIVE POP ADDRESSING, 5-19
B-RELATIVE PUSH ADDRESSING, 5-19
DIRECT B-RELATIVE ADDRESSING, 5-14
DIRECT B-RELATIVE PLUS DISPLACEMENT
ADDRESSING, 5-17
DIRECT IMMEDIATE MEMORY
ADDRESSING, 5-8
DIRECT P-RELATIVE ADDRESSING, 5-12
IMMEDIATE MEMORY ADDRESSING, 5-7
IMMEDIATE OPERAND ADDRESSING, 5-10
INDEXED B-RELATIVE POP
ADDRESSING, 5-20
INDEXED B-RELATIVE PUSH
ADDRESSING, 5-20
INDEXED DIRECT B-RELATIVE
ADDRESSING, 5-16
INDEXED DIRECT IMMEDIATE MEMORY
ADDRESSING, 5-19
INDEXED INDIRECT B-RELATIVE
ADDRESSING, 5-16
INDEXED INDIRECT IMMEDIATE MEMORY
ADDRESSING, 5-10
INDIRECT B-RELATIVE ADDRESSING,
5-15
INDIRECT B-RELATIVE PLUS
DISPLACEMENT ADDRESSING, 5-17
INDIRECT IMMEDIATE MEMORY
ADDRESSING, 5-9

ARITHMETIC
ARITHMETIC OPERATIONS, 5-1

ASCII
ASCII STRING CONSTANTS, 2-4

ASCII/HEXADECIMAL
ASCII/HEXADECIMAL MEMORY DUMP
(FIG), D-1

ASSEMBLER
ASSEMBLER CONTROL STATEMENTS,
4-1, 4-3
ASSEMBLER FUNCTIONS (FIG), 1-1
ASSEMBLER-RELATED UTILITY
PROGRAM, 3-3
BES ASSEMBLER, 3-3

ASSEMBLY

ASSEMBLY LANGUAGE INSTRUCTION
TYPES, 5-3

ASSEMBLY LANGUAGE INSTRUCTIONS,
5-1, 5-24

ASSEMBLY LANGUAGE INTERNAL
FORMATS BY TYPE, A-4

ASSEMBLY LANGUAGE SOURCE
STATEMENT FORMATS, 3-1

ASSEMBLY LANGUAGES, 1-1

DEBUGGING ASSEMBLY LANGUAGE
PROGRAMS, D-1

ELEMENTS OF BES ASSEMBLY
LANGUAGE, 2-1

INTERNAL FORMATS OF ASSEMBLY
LANGUAGE INSTRUCTIONS (FIG), A-4
INTERNAL REPRESENTATION OF ASSEMBLY
LANGUAGE INSTRUCTIONS (TBL), A-5

SAMPLE ASSEMBLY LANGUAGE

PROGRAM, C-1

ASSEMBLY~CONTROL
ASSEMBLY-CONTROLLING
STATEMENTS, 4-1
CONDITIONAL ASSEMBLY-CONTROL
STATEMENTS, 4-2

INDIRECT P-RELATIVE ADDRESSING, 5-13 | BAG

INTERRUPT VECTOR ADDRESSING, 5-23
P-RELATIVE ADDRESSING, 5-12
REGISTER ADDRESSING, 5-7

SHORT DISPLACEMENT ADDRESSING, 5-22

ADV
ADV, 5-24

ANH
ANH, 5-25

B

B, 5-26

BAG, 5-27
BAGE

BAGE, 5-27
BAL

BAL, 5-28
BALE

BALE, 5-28

i-1 AU43

BBF
BBF, 5-29

BBT
BBT, 5-29

BCF
BCF, 5-30

BCT
BCT, 5-30

BDEC
BDEC, 5-31

BE
BE, 5-31

BEVN
BEVN, 5-32

BEZ
BEZ, 5-32

BG
BG, 5-33

BGE
BGE, 5-33.

BGEZ
BGEZ, 5-33

BGZ
BGZ, 5-34

BI
BRANCH ON-INDICATOR (BI)
INSTRUCTIONS, 5-3

BINARY
COMPARISON OF BINARY DECIMAL AND
HEXADECIMAL SYMBOLS (TBL), B-1

BINC
BINC, 5-34

BIOF
BIOF, 5-35

BIOT
BIOT, 5-35

BIT
BIT STRING CONSTANTS, 2-5

INDEX

B-RELATIVE ADDRESSING

B-RELATIVE ADDRESSING, 5-14
B-RELATIVE POP ADDRESSING, 5-19

B~-RELATIVE PUSH ADDRESSING,

DIRECT B-RELATIVE ADDRESSING,

DIRECT B-RELATIVE PLUS

DISPLACEMENT ADDRESSING,
INDEXED B-RELATIVE POP

ADDRESSING,
INDEXED B-RELATIVE PUSH
ADDRESSING,
INDEXED DIRECT B-RELATIVE
ADDRESSING,

5-20
5-20

5-16

5-17

INDEXED INDIRECT B-RELATIVE

ADDRESSING,
INDIRECT B-RELATIVE
ADDRESSING,
INDIRECT B-RELATIVE PLUS
DISPLACEMENT ADDRESSING,

BOOLEAN OPERATIONS, 5-1

BL

BL, 5-36
BLE

BLE, 5-36
BLEZ

BLEZ, 5-37
BLZ

BL%Z, 5-37
BNE

BNE, 5-37
BNEZ

BNEZ, 5-38
BNOV

BNOV, 5-38
BODD

BODD, 5-39
BOOLEAN
BOV

BOV, 5-39
BR

BRANCH-ON-REGISTER (BR)

INSTRUCTIONS,

BRANCH

BRANCH OPERATIONS, 5-2

5-16

5-15

BRANCH-ON~INDICATOR

BRANCH-ON-INDICATOR (BI)
INSTRUCTIONS, 5-3

5-4

5-17

5-19

5-14

AU43

INDEX

BRANCH-ON-REGISTER CONDITIONAL
BRANCH-ON-REGISTER (BR) CONDITIONAL ASSEMBLY-CONTROL
INSTRUCTIONS, 5-4 STATEMENTS, 4-2
BRK CONSTANTS
BRK, 5-40 ASCII STRING CONSTANTS, 2-4
BIT STRING CONSTANTS, 2-5
BSE CONSTANTS, 2-3
BSE, 5-40 DECIMAL INTEGER CONSTANTS, 2-6
FIXED-POINT CONSTANTS, 2-6
BSU FLOATING-POINT CONSTANTS, 2-7
BSU, 5-41 HEXADECIMAL INTEGER CONSTANTS, 2-6
HEXADECIMAL STRING CONSTANTS, 2-4
CAD INTEGER CONSTANTS, 2-6
CAD, 5-41 STRING CONSTANTS, 2-4
TRUNCATION/PADDING OF STRING
CALL CONSTANTS, 2-5
CALL, 4-3
CONTROL
CALLING ASSEMBLER CONTROL STATEMENTS,
CALLING EXTERNAL PROCEDURES, 3-2 4-1, 4-3
CALLING SYSTEM SERVICES, 3-2 CONTROL OPERATIONS, 5-2
CL CONVERSION
CL, 5-42 DECIMAL-TO-HEXADECIMAL
CONVERSION, B-2
CLH HEXADECIMAL~-TO-DECIMAL
CLH, 5-42 CONVERSION, B-2
HEXADECIMAL-TO-ASCII CONVERSION,
CLST B-4
CLST, 4-4
COUNTER
CMB PROGRAM COUNTER (P-) REGISTER, 1-4
CMB, 5-43
CPL
CMH CPL, 5-47
CMH, 5-43
CTRL
CMN CTRL, 4-4
' CMN, 5-44
DAL
CMR : DAL, 5-47
CMR, 5-45
DAR
CMV DAR, 5-48
CMV, 5-45
DATA
CMZ LEVEL 6 DATA REPRESENTATIONS, 1-1
CMZ, 5-46 FLOATING-POINT DATA, 1-4
SIGNED INTEGER DATA, 1-2
CODES UNSIGNED DATA, 1-3
MNEMONIC CODES, 2-1
DATA-DEFINING
COMM : DATA-DEFINING STATEMENTS, 4-1
COMM, 4-4
DC
COMMON DC, 4-5
COMMON LOCATION EXPRESSIONS, 2-11
DCL
COMPARE DCL, 5-48
COMPARE OPERATIONS, 5-2

i-3 AUA43

DCR
DCR, 5-49

DEBUGGER
DEBUGGER, D-1

DEBUGGING
DEBUGGING ASSEMBLY LANGUAGE
PROGRAMS, D-1

DEC
DEC, 5-50

DECIMAL
COMPARISON OF BINARY DECIMAL AND
HEXADECIMAL SYMBOLS (TBL), B-1
DECIMAL INTEGER CONSTANTS, 2-6

DECIMAL-TO-HEXADECIMAL
DECIMAL-TO-HEXADECIMAL
CONVERSION, B-2

DEFINING
DEFINING BES SYMBOLIC NAMES
(TBL) , 2-3

DISPLACEMENT ADDRESSING
DIRECT B-RELATIVE PLUS DISPLACEMENT
ADDRESSING, 5-17
INDIRECT B-RELATIVE PLUS
DISPLACEMENT ADDRESSING, 5-17
SHORT DISPLACEMENT ADDRESSING, 5-22

DIV
DIV, 5-50

DIVISION
HEXADECIMAL DIVISION, B-8

DO
DOUBLE OPERAND (DO)
INSTRUCTIONS, 5-4

DOL
DOL, 5-51

DOR
DOR, 5-52

DUMP
ASCII/HEXADECIMAL MEMORY DUMP
(FIG), D-1

DUMPS
READING AND INTERPRETING MEMORY
DUMPS, D-1

ELEMENTS
ELEMENTS OF GCOS/BES ASSEMBLY
LANGUAGE, 1-2

INDEX

END
END, 4-6

ENDM
ENDM MACRO CONTROL STATEMENT, 6-2

ENT
ENT, 5-53

EQU
EQU, 4-6

ERROR NOTIFICATION
SOURCE CODE ERROR NOTIFICATION
BY ASSEMBLER, E-1
SOURCE CODE ERROR NOTIFICATION
BY MACRO PREPROCESSOR, F-1

EXPRESSIONS
ADDRESS EXPRESSIONS, 2-12
COMMON LOCATION EXPRESSIONS, 2-11
EXPRESSIONS, 2-8
EXTERNAL LOCATION EXPRESSIONS, 2-11
INTERNAL LOCATION EXPRESSIONS, 2-10
INTERNAL VALUE EXPRESSIONS, 2-9
LOCATION AND VALUE
EXPRESSIONS, 2-9
LOCATION EXPRESSIONS, 2-10
SPECIALIZED ADDRESS EXPRESSIONS,
5-22
VALID ADDRESS EXPRESSIONS, A-9

EXTERNAL
CALLING EXTERNAL PROCEDURES, 3-2
EXTERNAL LOCATION EXPRESSIONS,
2-11

FAIL
FAIL, 4-7
FAIL MACRO CONTROL STATEMENT, 6-12

FORMATS
ASSEMBLY LANGUAGE INTERNAL
FORMATS BY TYPE, A-4
ASSEMBLY LANGUAGE SOURCE
STATEMENT FORMATS, 3-1

FUNCTIONS

ASSEMBLER FUNCTIONS (FIG), 1-1
GE

GENERIC (GE) INSTRUCTIONS, 5-5
GENERAL

GENERAL (Rn) REGISTERS, 1-5
GENERIC

GENERIC (GE) INSTRUCTIONS, 5-5
GO TO

GO TO MACRO CONTROL STATEMENT,

6-12

AU43

HARDWARE
HARDWARE REGISTERS, 1-4
HARDWARE CONSIDERATIONS, 1-4
SUMMARY OF HARDWARE REGISTERS, A-1

HEXADECIMAL

COMPARISON OF BINARY DECIMAL AND
HEXADECIMAL SYMBOLS (TBL), B-1

HEXADECIMAL ADDITION, B-6

HEXADECIMAL DIVISION, B-8

HEXADECIMAL INTEGER CONSTANTS, 2-6

HEXADECIMAL MULTIPLICATION, B-7

HEXADECIMAL NUMBERING SYSTEM, B-1

HEXADECIMAL REPRESENTATION OF
INSTRUCTIONS, A-5

HEXADECIMAL STRING CONSTANTS, 2-4

HEXADECIMAL SUBTRACTION, B-7

HEXADECIMAL-TO-ASCIT
HEXADECIMAL-TO-ASCII CONVERSION,
B-4

HEXADECIMAL-TO-DECIMAL
HEXADECIMAL-TO-DECIMAL CONVERSION,
B-2

HLT
HLT, 5-53

IDENTIFIERS
IDENTIFIERS, 2-2

IF
IF, 4-7
IF MACRO CONTROI STATEMENT, 6-12

INC
INC, 5-53

INDEXED ADDRESSING
INDEXED B-RELATIVE POP
ADDRESSING, 5-20
INDEXED B-RELATIVE PUSH
ADDRESSING, 5-20
INDEXED DIRECT B-RELATIVE
ADDRESSING, 5-16
INDEXED DIRECT IMMEDIATE MEMORY
ADDRESSING, 5-9
INDEXED INDIRECT B-RELATIVE
ADDRESSING, 5-16
INDEXED INDIRECT IMMEDIATE MEMORY
ADDRESSING, 5-10

INDICATOR
INDICATOR (I-) REGISTER, 1-6

INDEX

INDIRECT ADDRESSING
INDEXED INDIRECT B-RELATIVE
ADDRESSING, 5-16
INDEXED INDIRECT IMMEDIATE MEMORY
ADDRESSING, 5-10
INDIRECT B-RELATIVE
ADDRESSING, 5-15
INDIRECT B-RELATIVE PLUS
DISPLACEMENT ADDRESSING, 5-17
INDIRECT IMMEDIATE MEMORY
ADDRESSING, 5-9
INDIRECT P-RELATIVE
ADDRESSING, 5-13

INPUT/OUTPUT
INPUT/OUTPUT OPERATIONS, 5-2
INPUT/OUTPUT (IO) INSTRUCTIONS,
5-5

INSTRUCTION TYPES
ASSEMBLY LANGUAGE INSTRUCTION
TYPES, 5-3

INSTRUCTIONS

ASSEMBLY LANGUAGE INSTRUCTIONS,
5-1, 5-24

BRANCH-ON-INDICATOR (BI)
INSTRUCTIONS, 5-3

BRANCH-ON-REGISTER (BR)
INSTRUCTIONS, 5-4

DOUBLE OPERAND (DO)
INSTRUCTIONS, 5-4

GENERIC (GE) INSTRUCTIONS, 5-5

HEXADECIMAL ‘REPRESENTATION OF
INSTRUCTIONS, A-5

INPUT/OUTPUT (IO)

INSTRUCTIONS, 5-5

INTERNAL FORMATS OF ASSEMBLY
LANGUAGE INSTRUCTIONS (FIG), A-4

INTERNAI, REPRESENTATION OF
ASSEMBLY LANGUAGE INSTRUCTIONS
(TBL), A-5

SHIFT (SHS AND SHL)
INSTRUCTIONS, 5-5

SHORT-VALUE-IMMEDIATE (SI)
INSTRUCTIONS, 5-6

SINGLE OPERAND (SO)
INSTRUCTIONS, 5-6

INTEGER
DECIMAIL INTEGER CONSTANTS, 2-6
HEXADECIMAL, INTEGER CONSTANTS, 2-6
INTEGER CONSTANTS, 2-6
SIGNED INTEGER DATA, 1-2

INTRODUCTION
INTRODUCTION, 1-1

AU43

I0
INPUT/OUTPUT (IO) INSTRUCTIONS, 5-5
10, 5-54

I0OH
IOH, 5-55

~ IOLD
IOLD, 5-56

I-REGISTER

INDICATOR (I-) REGISTER, 1-6
JMP

JMP, 5-57
LAB

LAB, 5-57

LABELS
LABELS, 2-2
RESERVED LABELS, 2-3
USER-DEFINED LABLES, 2-2
LB
LB, 5-58
LBC
LBC, 5-58
LBF
LBF, 5-59
LBS
LBS, 5-60
LBT
LBT, 5-61
LDB
LDB, 5-61
LDH
LDH, 5-62
LDI
LDI, 5-63
LDR
LDR, 5-63
LDV
LDV, 5-64
LEV
LEV, 5-64
LIBM

LIBM MACRO CONTROL STATEMENTS, 6-6
LIST
LIST, 4-8

LIST-CONTROLLING STATEMENTS, 4-1

INDEX

i-6

LLH
LLH, 5-66
LNJ
LNJ, 5-67

LOAD
LOAD OPERATIONS, 5-2
LOCATION EXPRESSIONS
COMMON LOCATION EXPRESSIONS, 2-11
EXTERNAL LOCATION EXPRESSIONS,
2-11
INTERNAL LOCATION EXPRESSIONS,
2-10
LOCATION AND VALUE
EXPRESSIONS, 2-9

MI
MODE CONTROL (1) REGISTER, 1-5
MACRO

CONDITIONAL MACRO CONTROL
STATEMENTS, 6-11

CONTENTS OF MACRO ROUTINE, 6-2
CREATING A MACRO ROUTINE, 6-2

ENDM MACRO CONTROL STATEMENT, 6-2
EXAMPLE ILLUSTRATING MACRO
FACILITY, 6-22

FAIL MACRO CONTROL STATEMENT, 6-12
FORMAT OF MACRO FUNCTIONS, 6-16

GO TO MACRO CONTROL STATEMENT,
6-12

HEXADECIMAIL CONVERSION MACRO
FUNCTION, 6-17

IF MACRO CONTROL STATEMENT,
INDEX MACRO FUNCTION, 6-18
INITIALIZED VALUES OF MACRO
VARIABLES, 6-24

MAC MACRO -CONTROL STATEMENT,
INCLUDING PARAMETERS, 6-3

MAC MACRO CONTROL STATEMENT,
WITHOUT PARAMETERS, 6-2

MACRO CALLS, 6-6

MACRO FACILITY,

MACRO FUNCTIONS,

MACRO ROUTINES, 6-1

MACRO VARIABLES, 6-9

NEXTED MACRO CALL, 6-8

NULL MACRO CONTROIL STATEMENT,
RECURSIVE MACRO CALL, 6-8
SEARCH MACRO FUNCTION, 6-19
SETA MACRO CONTROL STATEMENT, 6-9
SETN MACRO CONTROL STATEMENT, 6-10
SITUATING MACRO ROUTINES, 6-5
SPECIALIZING A MACRO ROUTINE BY
PARAMETER SUBSTITUTION, 6-2
SUBSTRING MACRO FUNCTION, 6-19
VECTOR ORIENTATION MACRO
FUNCTION, 6-20
VERIFY MACRO FUNCTION,

6-12

6-1
6-16

6-15

6-21

AU43

MAC
MAC MACRO CONTROL STATEMENT,
INCLUDING PARAMETERS, 6-3
MAC MACRO CONTROL STATEMENT,
WITHOUT PARAMETERS, 6-1

MCL
MCL, 5-67

MEMORY DUMP
ASCII/HEXADECIMAL MEMORY DUMP
(FIG), D-1
READING AND INTERPRETING MEMORY
DUMPS, D-1

MLV
MLV, 5-67

MNEMONIC
MNEMONIC CODES, 2-1

MODE CONTROL
MODE CONTROL (M1l) REGISTER, 1-5

MODIFY
MODIFY OPERATIONS, 5-2

MTM
MTM, 5-68

MUL
MUL, 5-69

MULTIPLICATION
HEXADECIMAL MULTIPLICATION, B-7

NEG
NEG, 5-69

NLST
NLST, 4-9

NOP
NOP, 5-70

NORMALIZATION
NORMALIZATION, 2-8

NULL
NULL, 4-9
NULL MACRO CONTROL STATEMENT, 6-15

OPERATIONS
ARITHMETIC OPERATIONS, 5-1
BOOLEAN OPERATIONS, 5-1
BRANCH OPERATIONS 5-2
COMPARE OPERATIONS, 5-2
CONTROL OPERATIONS, 5-2
INPUT/OUTPUT OPERATIONS, 5-2

INDEX

OPERATIONS (CONT)
LOAD OPERATIONS, 5-2
MODIFY OPERATIONS, 5-2
SCIENTIFIC OPERATIONS, 5-3
SHIFT OPERATIONS, 5-3
STORE OPERATIONS, 5-3
SWAP OPERATIONS, 5-3

ORDER OF STATEMENTS
ORDER OF STATEMENTS IN SOURCE
PROGRAM, 3-2
ORDER OF STATEMENTS WITHIN A
SOURCE MODULE, 6-1

OR
OR, 5-70

ORG
ORG, 4-9

ORH
ORH, 5-71

PADDING STRING CONSTANTS
TRUNCATION/PADDING OF STRING
CONSTANTS, 2-5

P-
PROGRAM COUNTER (P-) REGISTER, 1-4

P-RELATIVE ADDRESSING
DIRECT P-RELATIVE ADDRESSING, 5-12
INDIRECT P-RELATIVE
ADDRESSING, 5-13
P-RELATIVE ADDRESSING, 5-12

POS ADDRESSING
B-RELATIVE POP ADDRESSING, 5-19
INDEXED B-RELATIVE POP
ADDRESSING, 5-20

PROCEDURES
CALLING EXTERNAL PROCEDURES, 3-2

PROGRAM (S)

ASSEMBLER-RELATED UTILITY
PROGRAM, 3-3

DEBUGGING ASSEMBLY LANGUAGE
PROGRAMS, D-1

ORDER OF STATEMENTS IN SOURCE
PROGRAM, 3-2

SAMPLE ASSEMBLY LANGUAGE
PROGRAM, C-1

PROGRAM-LINKING
PROGRAM-LINKING STATEMENTS, 4-2

PROGRAMMING CONSIDERATIONS
PROGRAMMING CONSIDERATIONS, 3-1

AUA43

SCIENTIFIC INSTRUCTION PROCESSOR
(SIP) PROGRAMMING CONSIDERATIONS,
3-3

PROTECTION
PROTECTION OPERATORS, 6-4

PUSH ADDRESSING
B-RELATIVE PUSH ADDRESSING, 5-19
INDEXED-B-RELATIVE PUSH
ADDRESSING, 5-20

REFERENCES
PROGRAMMER'S REFERENCE INFORMATION,
A-1
REFERENCES, 2-13

REGISTER(S)
ADDRESS (Bn) REGISTERS, 1-4
GENERAL (Rn) REGISTERS, 1-5
HARDWARE REGISTERS, 1-4
INDICATOR (I-) REGISTER, 1l6-
MODE CONTROL (M1l) REGISTER, 1-5
PROGRAM COUNTER (P-) REGISTER, 1-4
REGISTER ADDRESSING, 5-7
SUMMARY OF HARDWARE REGISTERS, A-1
SYSTEM STATUS (S-) REGISTER, 1-5

REPRESENTATION
DATA REPRESENTATION, 1-1
HEXADECIMAL REPRESENTATION OF
INSTRUCTIONS, A-5
INTERNAL REPRESENTATION OF ASSEMBLY
LANGUAGE INSTRUCTIONS (TBL), A-5

RESERVED
RESERVED LABELS, 2-3
RESERVED SYMBOLIC NAMES,6-1

RESV
RESV, 4-10

Rn
GENERAL (Rn) REGISTERS, 1-5

RSTR
RSTR, 5-72

RTCF
RTCF, 5-73

RTCN
RTCN, 5-73

RTT
RTT, 5-73

SAD
SAD, 5-74

INDEX

SAL
SAL, 5-75

SAR
SAR, 5-75

SAVE
SAVE, 5-76

SBE
SBE, 5-77

SBEU
SBEU, 5-77

SBEZ
SBEZ, 5-78

SBG
SBG, 5-78

SBGE
SBGE, 5-79

SBGEZ
SBGEZ, 5-79

SBGZ
SBGZ, 5-80

SBL
SBL, 5-80

SBLE
SBLE, 5-81

SBLEZ
SBLEZ, 5-81

SBLZ
SBLZ, 5-~82

SBNE
SBNE, 5-82

SBNEU
SBNEU, 5-83

SBNEZ
SBNEZ, 5-83

SBNPE
SBNPE, 5-84

SBNPSE
SBNPSE, 5-84

SBPE
SBPE, 5-85

SBSE
SBSE, 5-85

AU43

INDEX

SCIENTIFIC

SCIENTIFIC ACCUMULATOR (Sn)
REGISTERS, 1-6

SCIENTIFIC INDICATOR (SI) REGISTER,
1-6

SCIENTIFIC INFORMATION PROCESSOR
(SIP) REGISTERS, 1-6

SOFTWARE SIMULATION OF THE SCIENTIFI
INFORMATION PROCESSOR, 1-8

SCL
SCL, 5-86
SCM
scM, 5-87
SCR
SCR, 5-86
SCZD
SCZibh, 5-88

SCzQ
sCzQ, 5-89
SDI
SDI, 5-89
SDhV
sov, 5-91
SETA
SETA MACRO CONTROL STATEMENT, 6-9
SETN
SETN MACRO CONTROL STATEMENT, 6-11
SHIFT
SHIFT OPERATIONS, 5-3
SHIFT (SHS AND SHL) INSTRUCTIONS,
5-5

SHL
SHIFT (SHS AND SHL) INSTRUCTIONS,
5-5

SHORT DISPLACEMENT ADDRESSING
SHORT DISPLACEMENT ADDRESSING, 5-22
SHORT-VALUE-IMMEDIATE
SHORT-VALUE-IMMEDIATE (SI)
INSTRUCTIONS, 5-6

SHS
SHIFT (SHS AND SHL)
INSTRUCTIONS, 5-5

ST
SHORT-VALUE-IMMEDIATE (SI)
INSTRUCTIONS, 5-6

SIGNED
SIGNED INTEGER DATA, 1-2

SIP
SCIENTIFIC INFORMATION PROCESSOR
(SIP) REGISTERS, 1-6
SCIENTIFIC INSTRUCTION PROCESSOR
(SIP) PROGRAMMING CONSIDERATIONS,
3-3
SIP MODE (M4) REGISTER, 1-7
SIP TRAP MASK (M5) REGISTER, 1-7
S~
SYSTEM STATUS (S-) REGISTER, 1-5

SLD
SLD, 5-91

SML
SML, 5-92
SNGD
SNGD, 5-93
SNGQ
SNGQ' 5_93
SOFTWARE SIMULATION
SOFTWARE SIMULATION OF THE
SCIENTIFIC INFORMATION
PROCESSOR, 1-8

SOL
SOL, 5-94
SOR
SOR, 5-94
SOURCE
ASSEMBLY LANGUAGE SOURCE
STATEMENT FORMATS, 3-1
ORDER OF STATEMENTS IN SOURCE
PROGRAM, 3-2
SOURCE CODE ERROR NOTIFICATION
BY ASSEMBLER, E-1
SOURCE CODE ERROR NOTIFICATION
BY MACRO PREPROCESSOR, F-1

SPECIALIZED ADDRESS EXPRESSION

SPECIALIZED ADDRESS
EXPRESSIONS, 5-22

AU43

SRM
SRM,

SSB
SSB,

SST
SsT,

SSwW
SSW,

STATUS
SYSTEM STATUS (S-) REGISTER, 1-5

STB
STB, 5-98
STH
STH, 5-99

STM
STM, 5-100

STORAGE-ALLOCATION
STORAGE-ALLOCATION STATEMENTS, 4-2
STORE
STORE OPERATIONS, 5-3
STR
STR, 5-100
STRING CONSTANTS
ASCII STRING CONSTANTS, 2-4
BIT STRING CONSTANTS, 2-5
HEXADECIMAL STRING CONSTANTS,
STRING CONSTANTS, 2-4
TRUNCATION/PADDING OF STRING
CONSTANTS, 2-5

2-4

STS
sTs, 5-101

SUB
suB, 5-101

SUBTRACTION
HEXADECIMAL SUBTRACTION, B-7

SWAP
SWAP OPERATIONS, 5-3
SWB
SWB, 5-102
SWR

SWR, 5-102

INDEX

SYMBOLIC NAMES
DEFINING BES SYMBOLIC NAMES
(TBL), 2-3
RESERVED SYMBOLIC NAMES,
SYMBOLIC NAMES, 2-1

6-1

SYMBOL-DEFINING
SYMBOL-DEFINING STATEMENTS, 4-2
SYMBOLS
COMPARISON OF BINARY DECIMAL AND
HEXADECIMAL SYMBOLS (TBL), B-1

SYSTEM SERVICES

CALLING SYSTEM SERVICES, 3-2
TEXT

TEXT, 4-10
TITLE

TITLE, 4-10

TRUNCATION
TRUNCATION/PADDING STRING
CONSTANTS, 2-5

UNSIGNED DATA
UNSIGNED DATA, 1-3

USER-DEFINED LABELS
USER-DEFINED LABELS, 2-2
UTILITY PROGRAM
ASSEMBLER-RELATED UTILITY
PROGRAM, 3-3

VALUE EXPRESSIONS
INTERNAL VALUE EXPRESSIONS,
LOCATION AND VALUE
EXPRESSIONS, 2-9

2-9

WDTF
WDTF, 5-103

WDTN
WDTN, 5-103

XDEF
XDEF,

XLOC
XLoC,

XOH
XOH, 5-103
XOR
XOR, 5-104
XVAL

XVAL, 4-12

AU43

LU AMLUINAT LN

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

SERIES 60 (LEVEL 6)
TITLE | GCOS/BES2
ASSEMBLY LANGUAGE

ERRORS IN PUBLICATION

ORDER NO.

AU43, REV. 0

DATED

JULY 1976

—

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

as required. If you require a written reply, check here and furnish complete mailing address below.

[> Your comments. will be promptly investigated by appropriate technical personnel and action will be taken D

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail

Postage Stamp Not Necessary if Mailed in the United States

ATTENTION: PUBLICATIONS, MS 486

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET

WALTHAM, MA 02154

Honeywell

Honeywell

Honeywell Information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

16047, 2876, Printed in U.S.A,

AUA43, Rev. 0

