

SUBJECT

SERIES 60 (LEVEL 6)

Geos 6 PROGRAM PREPARATION

Detailed Description of Series 60 (Level 6) GCOS 6 Program Preparation
Procedures

SPECIAL INSTRUCTIONS

This manual supersedes CB01, Rev. 0, dated January 1978. Change bars
indicate new and changed information; asterisks denote deletions.

SOFTWARE SUPPORTED

This publication supports Release 0110 of the Series 60 (Level 6) GeOS 6 MOD
400 Operating System; see the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later releases
supported by this manual.

ORDER NUMBER

CB01, Rev. 1 June 1978

Honeywell

Preface

This manual describes program preparation for Series 60 (Level 6) GCOS.
Unless stated otherwise herein, the term GCOS refers to the GCOS 6 software;
the tenn Level 6 refers to the Series 60 (Level 6) hardware on which the software
executes.

Section 1 provides an overview of the program preparation sequence. This
section summarizes how to access files via pathnames, and describes in detail
the suffixes that are appended to file names. It is important that you understand
these concepts before proceeding with the manual.

Section 2 describes how to load the Editor, and includes detailed descriptions
of directives that control execution of the Editor.

Section 3 describes how to load the Macro Preprocessor, Assembler,
I FORTRAN Compiler, COBOL Compilers, and RPG Compiler. The Macro

Preprocessor and Assembler are described in the Assembly Language Reference
manual; the FORTRAN, COBOL, and RPG Compilers, and their respective
languages are described in the FORTRAN Reference manual, Intermediate
COBOL Reference manual, Entry-Level COBOL Reference manual, and RPG
Reference manual, respectively.

I Appendix A describes assembly language program independence.

© 1978, Honeywelnnformation Systems Inc. File No.: 1S33 CB01

, MANUAL DIRECTORY

The following publications comprise the GeOS 6 manual set. The Manual
Directory in the latestGCOS 6 MOD 400 Systems Concepts manual (Order No.
CB20) lists the current revision number and addenda (if any) for each manual in
the set.

Order
No. Manual Title

CB01
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CB10
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB27
CB28
CB30
CB31
CB32
CB33
CB34
CB35
CB36
CB37
CB38
CB39

CB40
CB41
CB42
CB43

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 SortlMerge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference Guide
Level 61Level 6 File Transmission Facility User's Guide
Level 61Level62 File Transmission Facility User's Guide
Level 61Level 64 (Native) File Transmission Facility User's Guide
Level61Level 66 File Transmission Facility User's Guide
Level61Series 20012000 File Transmission Facility User's Guide
Level61BSC 278013780 File Transmission Facility User's Guide
Level 61Level 64 (Emulator) File Transmission Facility User's
Guide
IBM 278013780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's Guide
Terminal Concentration Facility User's Guide

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04
AT97
FQ41

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's Guide

iii

•

I

CBOl

Section 1. Overview
Symbols Used in This Manual
File System Pathnames

Definition of a File
Definition of a Directory
Directory or File Name Construction .. .
Pathname Construction

Absolute Pathname
Relative Pathname and Working

Directory
Device Pathnames
Device Files (Other than Disk

and Tape
Tape Fil~s
Disk Device Files

SuffIX Conventions

Section 2. Editor
Conventions Used in Editor Directive

Formats
Methods of Specifying Addresses

Designating a Line Number as an
Address

Designating the Position of a Line
Relative to the "Current" Line
as an Address

Designating Contents of Line as
an Address

Compound Addresses
Referencing a Series of Lines

Loading the Editor

I Sum~~:!c~~i~~~ .~~~~~~~~ .~~~ .~~~~~~ ..
Creating a Source Unit
Changing an Existing Source Unit
Input Mode Description and Directives

Append Directive
Change Directive
Insert Directive

Edit Mode Description and Directives
Delete Directive
Print Directive
Quit Directive
Read Directive
Substitute Directive
Write Directive

Advanced Usage of the Editor
I General Advanced Editor Directives

Exclude Directive
Execute Directive
Global Directive
New Current Line Directive
Print Line Number Directive

1-3
1-3
1-3
1-3
1-4
1-4
1-5

1-5
1-5

1-6
1-6
1-6
1-6

2-1
2-3

2-3

2-3

2-4
2-6
2-6
2-8

2-8
2-11
2-11
2-11
2-12
2-14
2-15
2-17
2-18
2-19
2-21
2-22
2-25
2-27
2-29
2-29
2-29
2-30
2-31
2-32
2-33

v

Contents

Print with Line Number Directive ...
Auxiliary Buffer Directives and Escape

Sequences
Accept Single Line from Operator

Terminal
Buffer Status Directive
Change Buffer Directive
Change Origin of Text During

Edit Mode
Change Origin of Text During

Input Mode
Copy Directive
Copy-Append Directive "
Move Directive
Move-Append Directive

Editor Debugging Directives
Hexadecimal Dump Directive
ZREGEXP Directive

Editor Programming Directives
Address Prefix Directive
GO TO Directive
If Empty Directive
If Not Empty Directive
If Line Directive
If Not Line Directive
If Range Directive
If Not Range Directive
Search Directive
Search Not Directive
Label Directive
Type Directive (T)

Programming Considerations

Section 3. Language Processors
Loading and Executing the Macro

Preprocessor
Loading and Executing the Assembler
Loading and Executing the FORTRAN

Compiler
Loading and Executing the Entry-Level

COBOL Compiler
Loading and Executing the Intermediate

COBOL Compiler (COBOLI)
COBOL COpy Files

Loading and Executing the RPG
Compiler

Appendix A. Assembly Language
Program Independence

Assembly Language Program Hardware
Independence

Self-Modifying Procedures

2-34

2-35 1
2-36
2-36
2-37

2-38 1
2-40
2-41
2-42
2-43
2-44
2-45 I
2-45
2-46
2-46
2-46
2-47
2-48
2-49
2-49
2-49
2-50
2-50
2-50
2-51
2-51
2-52
2-52

3-1
3-2

3-6

3-9

3-10
3-12

3-12

A-I
A-I

CBOI

Writing Source Programs That Can Be
Executed in Both SAF and LAF

. Configurations A-I
SAFILAF Independence by Assembly ... A-3
SAFILAF Independence by Loading. A-3
Differences Between SAF and LAF A-3
General Rules for Writing SLIC

Programs A-4
Procedures for Writing Specific Parts

of a SLIC Program. A-4
Addressing Mode. A-4
Data Structures Containing

Pointers A-5
Data Management Structures

(FIBs) A-5
Argument Lists and Pointer Arrays .. A-5
Request Blocks (RBS) A-6
Individual Pointers A-7
Hardware-Defined Structures A-7
Immediate Memory Address

Operands A-7
Absolute Addresses A-7

vi

1-1
1-2

3-1

3-2
A-1

A-2

1-1
2-1

Figures

Program Preparation Procedure ... 1-2
Tree Structure and Pathname

Examples 1-5
Source Listing of Source Unit to be

Cross-Referenced 3-4
Sample Cross-Reference Listing ... 3-5
Methods of Achieving SAF/LAF

Independence A-2
Valid Combinations of

Compilation Units for Linking A-2

Tables

Designating File Names 1-8
Summary of Editor Dir~ctives and I

Escape Sequences 2-9

CBOl

'" ,>7>'

Section 1

Overview

System-supplied software contains the procedures that are necessary to create a source unit,
assemble or compile the source unit to form an object unit, and to convert it into a executable
format (including error detection and correction) or to apply a patch. These tasks are described
in subsequent sections of this manual and in the Program Execution and Checkout manual.

Program preparation can be performed after a system is built as described in the System
Building manual. The equipment required for program preparation is described in the "Equip­
ment Requirements" section of the Systems Concepts manual.

The program preparation process is described below and illustrated in Figure 1-1.

Source units can be created via punched cards or the Editor. A source unit comprises source
statements written in assembly language, FORTRAN, COBOL, or RPG. If desired, source units
can be altered by the Editor. Source units are converted to object units by a language processor
(e.g., the Assembler, FORTRAN Compiler, COBOL Compiler, or RPG Compiler). If assembly
language source statements contain one or more macro calls, the source text must be processed
by the Macro Preprocessor before it can be processed by the Assembler. The Macro Preprocessor
replaces each macro call with a sequence of statements known as a macro routine. Macro
Preprocessor output is called an expanded source unit. To obtain a list of all symbolic names in
an assembly language source unit, and to determine whether any ofthe symbols are undefined,
multiply defined, or defined and not used, the -CROSS_REF argument (short form is -XREF) of
the ASSEM command is used. If necessary, corrections can be made by using the Editor.
Separately assembled and/or compiled object units must be linked by the Linker to form a bound
unit. A bound unit comprises a root, or a root and one or more overlays. A root is the portion of a
bound unit that is loaded into memory when the loader is requested to load a bound unit. 1 An
overlay is loaded into memory whenever it is required. Details of using the Linker are given in
the Program Execution and Checkout manual.

For detailed information about program execution, including execution control and program
modification during execution, program debugging, patches and dumping memory, see the
Program Execution and Checkout manual.

Notes:
1. If you are going to perform program preparation and checkout while simultane­

ously executing other online tasks, you must be familiar with the System
Concepts manual.

2. Throughout this manual there are references to the create group, enter group
request, spawn group, and enter batch request commands; these commands
are described in the Commands manual.

'The root is loaded when an -EFN argument is specified in a create group or spawn group command or the root pathname
is supplied to the command processor (see the Commands manual).

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-1 CBOI

I

I

I

r-....... ./
SOURCE
UNIT

T
EDITOR

1 r
""" r---... ./

SOURCE
UNIT

MACRO r- FORTRAN - r- COBOL r--PREPRDCESSOR COMPILER COMPILERS

1 -......, -.......,

r-....... ../ ~ ./ r-....... ./ r-.......
EXPANDED SOURCE OBJECT OBJECT
SOURCE UNIT UNIT UNIT
UNIT

- T

• •
ASSEMBLER

~

~ ./
OBJECT
UNIT

T
LINKER -

r---... ./
BOUND
UNIT

'-... ./

Figure 1-1. Program Preparation Procedure

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-2

/~- ",

~/

RPG
COMPILER

./

../

CB01

(

SYMBOLS USED IN THIS MANUAL

D
EJ

(

D
c:J

UPPERCASE
CHARACTERS

lowercase
characters

brackets []

braces { }

ellipses ...

Processing; indicates any kind of processing function.

Online storage of information; e.g., diskette, cartridge disk, or stor­
age module.

Input from card reader.

Document; e.g., printer output.

Manual input; i.e., operator terminal or another terminal.

Mandatory; indicates that the designated flow of information, type of
processing, input, or output is required.

Reserved words or symbols; must be entered or used exactly as shown.

Symbolic name or value; you must supply the exact value.

Optional information.

An enclosed entry must be selected.

There may be multiple entries of the immediately preceding type of
information.

FILE SYSTEM PATHNAMES

The fIle system is a tree-structured hierarchy through which each volume of storage is
identified to the system. The basic element of this structure is the file. A special file called a
directory contains information·about other fIles.

DEFINrr/ON OF A FILE

A fIle is any unit of storage outside the central processor, which can supply data to or receive
data from a task. A file can be a peripheral device such as a printer, card reader, or terminal; or it
can be a collection of data stored within a directory structure on a magnetic (tape or disk) storage
device. A source unit, object unit, listing, or bound unit is stored as a source unit file, object unit
file, list file, or bound unit file, respectively.

DEFINrr/ON OF A DIRECTORY

A directory is a file that contains information about other "subordinate" storage system
entries, which in turn may represent other directories or data files. An entry named in a
directory is subordinate to that directory, and is "contained" within it. The information in the
containing directory describes physical and logical attributes of the subordinate files.

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-3 CB01

I

The directory at the base of a tree structure is the root directory. Its name is the same as the
nam~ (volume id) of the volume where it resides.

When first created, a volume has only a root directory. Later, names and attributes of
subordinate directories can be created within this directory.

All references to directories and files begin either explicitly or implicitly with a root directory
name.

DIRECTORY OR FILE NAME CONSTRUCTION

A directory or file name can consist of the following ASCII characters:

• Letters (A through Z)

• Decimal digits (0 through 9)

• Underscore character (_)

• Period (.)

• Dollar sign ($)

I Each name must begin with a letter or the dollar sign ($). Lowercase letters are equivalent to
the corresponding uppercase letters. The underscore is used to join two or more words that the
system is to interpret as one name; e.g., DATE_TIME. The period separates a name from its
alphabetic or numeric SUff'lX characters. For example, in the name of a COBOL source file called
COBPROG.C, COBPROG is any user-specified name, and C is the required suffix, indicating to
the system that this is a COBOL source file.

The length of a root directory name or volume identifier can be one (nonblank) to six
characters. A directory (other than root) or file name can have one (nonblank) to twelve
characters. A specified file name must provide for any possible suffix that might be appended by
the system so that its resultant overall length does not exceed 12 characters.

PATHNAME CONSTRUCTION

A pathname is a string comprising one or more directory names and possibly one file name.
All subordinate names of directories and files within a directory must be unique. The pathname
describes the access path to the entity to be acted on. A pathname begins with a root directory
name, followed by zero, one or more directory names, and possibly a file name, in order of their
hierarchy.

The progressive relationship among pathname elements in the hierarchy is indicated by the
following symbols:

• Circumflex (A) - Denotes a root directory only, and must precede the root directory name,
with no intervening space (e.g., A VOLOll).

• Greater-than symbol (» - Indicates movement in the hierarchy away from the root;
connects two directory names or a directory name and a file ·name. It can also be the first
character in a pathname, in which case it IS immediately subordinate to the root directory
of the system volume. Each successvie symbol in the string indicates a change of one
directory level; the name immediately following the symbol is at the next subordinate
level to the name immediately preceding it. Reading a pathname from left to right shows
the access through the tree structure, away from the root, to the last element in the
pathname. For example, if the root directory VOLOll contains the directory name Dffi1,
the pathname for DIR1 is A VOLOll> DIRl. However, if directory DIR1 in turn contains
the file FILEA, then the pathname for FILEA is A VOL011> DIR1> FILEA. The> symbol
is never followed by a space, nor preceded by a space except as the first character in a
pathname.

• The less-than symbol (<) - Indicates movement in the hierarchy toward the root, and a
change of one level in that direction. Additional < symbols show successive level changes.

The last element in a pathname is the name of the entity that is to be acted on, and may denote
either a directory name or file name, according to the action to be taken.

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-4 CB01

(/

Total length of any pathname, including all hierarchical symbols, cannot exceed 59 charac­
ters, except that a working directory pathname cannot exceed 44 characters.

ABSOLUTE PATHNAME

An absolute pathname begins with a directory name preceded by a circumflex (") or a greater­
than symbol (». With a circumflex, this pathname is a full pathname; with a greater-than
symbol, the first element is immediately subordinate to the root directory of the system volume.

RELATIVE PATHNAME AND WORKING DIRECTORY

A relative pathname is one that does not begin with the circumflex or greater-than symbol. For
a relative pathname that does not begin with a less-than symbol, the first (or only) name in the
pathname identifies a directory or file immediately subordinate to a directory known as the
working directory. The working directory is your current position in the file system hierarchy.

The simplest form of a relative pathname has only one element, the name of the desired entry
in the working directory.

Figure 1-2 contains examples of relative pathnames and the full pathnames they represent.
The working directory pathname is

>UDD>PROJl>USERA

and the system was initialized from the volume SYSOl. Below the pathname is the cor­
responding tree structure.

Relative
Pathname

DELTA
OLD> DELTA
<USERB> ALPHA
< <PROJ2> USERA> DELTA
<

Full
Pathname

"SYSOl>UDD>PROJ1>USERA>DELTA
"SYSOl>UDD>PROJl>USERA>OLD>DELTA
"SYSOl>UDD>PROJl>USERB>ALPHA
"SYSOl>UDD> PROJ2>USERA>DELTA
1\ SYSOl>UDD>PROJl

OLD H DELTA

Figure 1-2. Tree Structure and Pathname Examples

DEVICE PATHNAMES

Reference to any device is through the symbolic peripheral device (SPD) directory, which is
subordinate to the system root.

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-5 CB01

DEVICE FILES (OTHER THAN DISK AND TAPE)

The general form of a device file pathname is:

>SPD>dev_name

where dev _name is the symbolic name defined for the card reader, punch, printer, or terminal
device during system building.

Device files are always reserved for exclusive use (i.e., the reserving task group has read and
write access, but other users are not allowed to share the file).

Tape Files

The general form of a tape file (device) pathname is:

>SPD>dev _name [>volid[>filenamel]

where dev _name is the symbolic name defined for the tape device during system building, volid
is the name of the tape volume, and filename is the name of the file on the volume.

Tape devices are always reserved for exclusive use (i.e., the reserving task group has read and
write access, but other users are not allowed to share the file).

Disk Device Files

The general form of a disk device-level access pathname is:

>SPD>dev _name[>volidl

where dev _name is the symbolic name defined for the disk device during system building and
volid is the name of the disk volume.

This pathname format is used only when access to the entire volume is required (such as
during a volume copy or a volume dump).

If the volid is not supplied, reservation of the disk is exclusive (i.e., the reserving task group
has read and write access, but other users are not allowed to share the file). This pathname form
is used when creating a new volume.

If the volid is specified, reservation is read/share (i.e., the reserving task group has read access
only; other users may read and write). This pathname is used when dumping select portions of a
volume without regard to the hierarchical file system tree structure.

The following are examples of device pathnames.

Peripheral Device

Exclusive line printer
Exclusive tape volume
File on an exclusive tape volume
Exclusive diskette
Nonexclusive cartridge disk volume

SUFFIX CONVENTIONS

Pathname

>SPD>LPTOl
>SPD> MT902> VOL3
>SPD> MT902> VOL3> FILEA
>SPD>DSK02
>SPD> RCDOl> V23X

During program preparation, it is convenient to identify output file(s) with the name of the
input file.

When you create a source unit, you must append the appropriate suffix identification charac­
ter to the name of the file that will contain the source unit. The suffix designates the type of text
that constitutes the source unit; i.e., .A, assembly language; .C, COBOL; .F, FORTRAN; .R,
RPG; .P, Macro Preprocessor input.

When you specify a file name in a command to load a program preparation task or in a
directive to a task (except for the Editor), do not include a suffIX in the file name. Suffixes are
appended to the specified base name by the Macro Preprocessor, Assembler, FORTRAN Com­

I piler, COBOL Compilers, RPG Compiler, and Linker, as described below.

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-6 CB01

Note:
In the following descriptions there are references to specific commands. In each case,
the referenced command is the command that loads the task being described. The
LINKER command is described in the Program Execution and Checkout manual.
The other referenced commands are described in Section 3 of this manual.

The Editor requires that when you specify in Editor directives the file names of Editor input
and output files, you specify the complete file name, including the SUfflX that denotes the
contents of the file; Le., .A, assembly language; .C, COBOL: .F, FORTRAN; .R, RPG; .P, Macro
Preprocessor input, and .IN .A, Macro Preprocessor "include" file. The Editor does not append a
suffix to its input or output file names.

The Macro Preprocessor requires that the name of its input file contain a .P suffix. When you
specify in the MACROP command the name of the input file, omit the .P suffix. If there is an
"include" file, that file name must contain a .IN.A suffix. The Macro Preprocessor forms the
name of its output file by appending .A to the specified base name.

The Assembler requires that the name of its input file contain a .A suffix. When you specify in
the ASSEM command the name of the input file, omit the .A suffix. The Assembler forms the
name ofits object unit file by appendhfg .0 to the specified base name. The Assembler forms the
name of its list file by appending .Lto the specified base name. Ifa list file is designated (Le., the
-COUT argument is specified in the ASSEM command), the Assembler does not append a SUfflX
to the specified name.

The FORTRAN Compiler requires that the name ofits input file contain a .F suffix. When you
specify in the FORTRAN command the name of the input file, omit the.F SufflX. The compiler
forms the name of its object unit or assembly output file by appending.O or .A, respectively, to
the specified base name.

Note:
This procedure applies in the absence of a SUBROUTINE, FUNCTION or PROGRAM
source statement. If one of these statements has been used, the name specified in
the statement (i.e., not the file name) is used as the name of the object unit.

If a list file is designated (i.e., the -COUT argument is specified in the FORTRAN command), the
compiler does not append a SUfflX to the specified name; otherwise, the compiler forms the name
of its list file by appending .L to the specified base name.

The COBOL Compilers require that the name of the input file contain a.C suffix. When you
specify in the COBOL or COBOLI command the name of the input file, omit the .C suffix. The
compiler forms the name of its object unit output file by appending .0 to the specified base name.
If a list file is designated (Le., the -COUT argument is specified in the COBOL/COBOLI
command), the compiler does not append a suffix to the specified name; otherwise, the compiler
forms the name of its list file by appending .L to the specified base name.

The RPG Compiler requires that the name of its input file contain a .R suffix. When you
specify in the RPG command the name of the input file, omit the.R suffix. The compiler forms
the name of each object unit file by appending.O to flXed compiler-generated base names. In
addition, the compiler generates a Linker command file to link these object files. The compiler
forms the Linker command file name by appending .Q to the specified input file name. If a list
file is designated (Le., the -COUT argument is specified in the RPG command), the compiler does
not append a suffix to the specified name; otherwise, the compiler forms the name of its list file
by appending .L to the specified base name.

The Linker (see Program Execution and Checkout manual) requires that each of its input file
names contain a .0 suffix. When you specify a file name in a link directive, omit the .0 suffix. In
the LINKER command you specify the name of the file that will contain the bound unit; the
Linker will not append a suffix to the bound unit name. If a list file is designated (Le., the -COUT
argument is specified in the LINKER command), the Linker does not append a SUfflX to the
specified name; otherwise, the Linker forms the name of its list file (Linker maps) by appending
.M to the specified bound unit name.

It is important to note that only the Macro Preprocessor, Assembler, FORTRAN Compiler,
COBOL Compilers, RPG Compiler, and Linker append suffixes to specified file names.

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-7 CBOI

I
I

I

I

I

Table 1-1 summarizes how file names are designated.

TABLE 1-1. DESIGNATING FILE NAMES

Program Preparation
Task Input File(s) Output File(s)

Editor Specify file name, including any re- Specify file name, including any required
quired SuffIX. SUfiIX.

Macro Preprocessor Omit suffix. Macro Preprocessor Omit SUff"IX. Macro Preprocessor appends
appends .P to specified file name. If .A to specified input file name(s).
there is an "include" file, the Macro
Preprocessor appends .IN.A to the
specified file name.

Assembler Omit suffix. Assembler appends .A Omit SUfiIX. Assembler appends .0 to spec-
to specified file name. ified input file name to form the name of

the object unit file, and .L to specified input
file name to form the name of the list file if
the -COUT argument was not specified in
the ASSEM command. a

FORTRAN Compiler Omit SUff"IX. FORTRAN Compiler FORTRAN Compiler appends .0 to spec-
appends .F to specified file name. ified object unit file name b, .A to specified

file name of assembly language file, and .L
to specified input file name to form the
name of the list file if the -COUT argument
was not specified in the FORTRAN Com-
mand. a

COBOL Compilers Omit SuffIX. COBOL Compilers ap- Omit SUfiIX. COBOL Compilers append .0
pend .C to specified file name. to specified object unit file name and .L

to specified input fIle name to form the
name of the list file ifthe -COUT argument
was not specified in the COBOL/COBOLI
command. a

RPG Compiler On:ii.t SufiIX. RPG Compiler appends Omit SufiIX. The RPG compiler generates
.R to specified file name. multiple object unit output files. The suffix

.0 is appended to each compiler-generated
base name. The compiler appends .Q to the
input file name to form the name of the
Linker command fIle. The compiler appends
.L to specified input file name to form the
name of the list file if the -COUT argument
was not specified in the RPG command. a

Linker Omit suffix. Linker appends .0 to Omit SufiIX. The Linker appends .M to spec-
each specified file name. ified bound unit file name to form the name

of the list file if the -COUT argument was
not specified in the LINKER command.
The Linker does not append a suffix to the
name designated in the -COUT argument.

"The language processor does not append a suffix to the name designated in the -COUT argument.
bExcept when a SUBROUTINE, FUNCTION or PROGRAM statement appears in the source file.

OVERVIEW OF THE PROGRAM
PREPARATION SEQUENCE 1-8 CBOI

, '-- /

(~/

Section 2

Editor

The Editor creates and/or alters character text that constitutes files; the files usually are
source unit files. The statements in a source unit file can be written in FORTRAN, COBOL,
RPG, or assembly language. Throughout this section it is assumed that source unit files are
being edited.

Editing is controlled by directives entered to the Editor through the device specified in the
in_path argument of the enter batch request or enter group request command. This device can
be reassigned in the command that loads the Editor.

All editing is done in a temporary work area called the current buffer. When the Editor is
invoked, the Editor creates a current buffer. To save Editor output, you must.write the source
unit contents of the current buffer to a file.

During a singLe execution of the Editor, the Editor can operate in input and/or edit mode.
During input mode, you an create a source unit and/or add one or more specified lines to an
existing source unit. During edit mode, you can locate and change single characters, words or a
string of characters, read the contents of a file into the current buffer so that the line(s) can be
edited, write lines from the cun:ent buffer to a file, and terminate execution of the Editor.

Notes:
1. During a single execution of the Editor, you can create .and/or change any number

of files. You must delete the contents of the current buffer before you begin to
edit another file, unless you want that file to comprise the same information
that was in the previous file(s).

2. At any time during execution of the Editor you can request a typeout that will I
indicate whether input or edit mode is in effect. Each time !? is entered, the
following typeout is issued:

{ INPUT} MODE
EDIT

Editor processing can be interrupted by:

• Pressing the QUIT, INTERRUPT, or BREAK key on the user terminal, or

• Entering aCaBgroup-id on the operator terminal, where group-id is the two-character
group identification code associated with the group containing the task to be interrupted.

A **BREAK** message appears on the user's terminal when the system interrupts the
Editor. If the PI (program interrupt) command is entered, output is suppressed and the task
returns to directive input level. See the Commands manual for a detailed description of the
break function.

Each Editor directive's name and function is listed in Table 2-1, later in this section. They are
described in detail in "Input Mode Description and Directives," "Edit Mode Description and
Directives," and "Advanced Usage of the Editor," later in this section. Directives described in
the input and edit mode subsections operate within the current buffer.

CONVENTIONS USED IN EDITOR DIRECTIVE FORMATS

Most Editor directives consist of only a directive name, a directive name preceded by one or
two addresses, or a directive name optionally preceded by one or two addresses and followed by
text and termination escape characters (!F) that designate the end of the directive and cause
the Editor to switch from input mode to edit mode. These formats are illustrated below. Note
that if a directive includes text, the text may be specified beginning immediately after the
directive name (see format 4) or beginning on the next line (see format 5).

EDITOR 2-1 CB01

I
I

*

I

.*

I
I

FORMAT 1:

dirname

FORMAT 2:

adr 1 dirname

FORMAT 3:

adr 1 {: l adr 2 dirname

FORMAT 4:

[.dr,[U adr~ }urname[text1!F

FORMAT 5:

[text]

!F
Notes:

1. Spaces are not permitted, except in the following circumstances:
a. Spaces are permitted in expressions constituting addresses ..
b. A space is permitted after the execute, read, and write directive names

(these directives are described later in this section).
2. /One or two addresses may be specified without a directive name; if no directive

name is specified, the last (or only) addressed line will be printed (see "Print
Directive" later in this section).

When a single address is specified, the Editor references the specified line in the current buffer.
When two addresses are specified within a single directive, the Editor references a specified
series of lines in the current buffer; the lines that are referenced depends on whether the
addresses are separated by a comma or a semicolon (see "Referencing a Series of Lines" later in
this section). If an Editor directive format designates that either a single address or a pair of
addresses may be entered, you can enter that directive and omit one or both addresses; their
default value(s) will be used. Address default values are described later in this section under
each directive's argument descriptions.

Multiple Editor directives can be entered on a single line; it is not necessary to separate each
directive with a delimiter, but one or more spaces can be specified, as illustrated below:

Directives not separated by delimiters:
dirnamedirname
, f " ll!.._. _______ Second directive

- First directive

Directives separated by delimiters:
dirname dirname adr 1 dirname

, ·t . '. f -~ Third directive
_. Second directive

'--------------First directive

EDITOR 2-2 CBOI

A comment can be included at the end of a directive line (Le., at the end of the last or only
directive); the comment must be preceded by a quotation mark n, as illustrated below:

adr1 dimame dimame"comment

To include a comment after an input mode directive, specify the comment after the terminator !F;
otherwise, the comment is included as text.

adr,[U adr,]] <funame[textl!F"comment

'------Directive comment
'--------------Directive

If a terminal is the directive input device, press RETURN at the end of each line.

METHODS OF SPECIFYING ADDRESSES

Each address can be specified by one of the following methods or by a combination of these
methods:

• Number of line.

• Position of line relative to the "current" line.

• Contents of the line.

DESIGNATING A LINE NUMBER AS AN ADDRESS

Each line in the current buffer can be referenced by a decimal number that indicates the
current position of the line within the buffer.! The first line in the buffer is line 1; subsequent
lines are numbered sequentially in ascending order. Multiple decimal numbers separated by
plus or minus signs can be specified to represent a line number.

Example:

10
5+5

Each of the above expressions request line number 10. The last line can be referenced by its line
number or by the character $.

Editor directives may cause lines to be added to or deleted from the current buffer. Each time
this occurs, all succeeding lines are renumbered. For example, if line 15 is deleted, line 16
becomes 15, and each subsequent line number is decremented by l.

If an address designates a line that is not in the current buffer, an error message is issued.

DESIGNATING THE POSITION OF A LINE RELATIVE TO THE "CURRENT" LINE AS AN
ADDRESS

Most Editor directives affect either the current line or a line a designated number of positions
from the current line. If the last Editor directive entered was an input directive (i.e., input mode
was in effect), the current line is the last line added or read by the Editor (regardless of whether
the condition specified in the directive was met); ifthe last Editor directive entered was an edit
directive (edit mode was in effect), the current line is the last line of text edited. The current line
can be referenced by specifying a period (.).

Note:
If you do not know which line is the current line, you can obtain a typeout of the line
number of the current line by specifying the print line number directive, which is
described under "Advanced Usage of the Editor" later in this section.

You can reference lines relative to the current line by specifying an address that consists of a

ITo detennine the line number of a specified line in the current buffer, enter the print line number directive; to
detennine the line number and contents of specified line(s) in the buffer, enter the print with line number directive.
(These directives are described under "Advanced Usage of the Editor," later in this section.)

EDITOR 2-3 CBOI

I

I

I

I

I

period followed by one or more signed decimal numbers. For example, the address. + 1 specifies
the line immediately following the current line, the address. -1 specifies the line immediately
preceding the current line, and .+5+5-3 specifies the seventh line after the current line.

When specifying an increment to the current line number, you can omit the plus (+) sign; e.g.,
.5 is interpreted as . +5. When specifying a decrement to the current line number, you can omit
the period; e.g., -3 is interpreted as .-3, and .5+5-3 is interpreted as .+7.

DESIGNATING CONTENTS OF LINE AS AN ADDRESS

You can designate that the Editor reference the first line that contains a specified character or
a specified sequence of characters by designating those characters in an expression as an
address. An expression comprises one or more AS~II characters, which must be delimited by
slashes (e.g.,/ASCII charactersl).

The Editor will search the lines in the current buffer until it finds the first occurrence of the
specified expression; unless specified otherwise,2 the expression can be in any position within
the line. The Editor searches from the line immediately following the current line (Le., . + 1)
through the last line in the buffer; if a line containing the specified expression has not been
found, the Editor then searches line 1 to the current line.

Example:

IBBB/dirname

In the above directive format, the address is the expression BBB. The specified directive name
will cause the Editor to search as may lines as necessary for the first occurrence of BBB. The
contents of the source unit being searched are listed below. (The numbers within parentheses
represent line numbers.)

(1) AAA
(2) BBB
(3) CCC (current line)
(4) BBB

The specified directive will cause the Editor to reference line number 4, since this is the first
line after the current line that contains the expression BBB.
When the following ASCII characters are included in expressions, they have special mean-

ings:

Character

*
1\

$

&

line feed
(hex OA)
(see Note 3)

Notes:

Description

Requests expressions that contains any number (or none) of the immediately
preceding character(s).
When designated as the first character of an expression, requests lines that begin
with the specified expression (excluding the character 1\).

When specified as the last character of an expression, requests lines that end with
the specified expression (excluding the character $).
Can be any character on any line; specify one period per character (e.g., .. means
any two characters on any line).
Can be used in the string expression of a substitute directive to indicate that the
string of characters preceding or following & are to be concatenated to the target
string of the search. See the description of the substitute directive later in this
section.
The occurrence of a line feed in the string expression determines the point in the
resulting line at which the line is to be split into two lines. See the substitute
directive for further details.

1. The special meanings of the above characters, I (which delimits an expression),

2J! a c~ex .is designated. as the fIrst character of the e~pression, the expression must be the fIrst expreBBion on the
lme; If $ IS deSIgnated as the last character of the expreSSIOn, the expression must be the last expression on the line.
Usage of these special characters is described below.

EDITOR 2-4 CBOl

(/

and !? (which causes a typeout of the mode currently in effect) can be removed
by preceding the special character with !C. For example, !C!? causes !? to be
interpreted as text rather than as a request for a typeout of the mode that is
in effect.

2. The characters. and $ can be specified as line numbers or as special characters in
expressions; the Editor can interpret their meaning from the way they are
used.

3. For the Editor, two hexadecimal characters can be interpreted as one ASCII byte
by using the escape sequence !Hxx, where xx are the two hex characters.
However, this feature must be used with care since some of the hexadecimal
characters may be confused with control or special characters in ASCII
strings. The following is a list of the hexadecimal characters whose use is
considered restricted:

OA is the line feed character; in a string expression, it is interpreted as a
request for advancement to a new line.

2E and AE in a regular expression are treated as "."
26 and A6 in a string expression are treated as "&"
2A and AA in a regular expression are treated as "*,,
24 at the end of a regular expression is interpreted as "end-of-line ($)"
5E at the beginning of a regular expression becomes "beginning-of-line
(/\)"

Rather than attempting to substitute in an expression using the above characters,
it is preferable to execute a change directive, reentering the line using hexa­
decimal and ASCII characters for the entire line.

Examples:

Following are some examples of expressions specified as addresses in Editor directives.
Following each expression is a description of the line/character(s) in the current buffer for
which the Editor will search. In each case, the Editor searches the lines sequentially, starting
with the line immediately following the current line to the end of the file, and then from line
one through the current line.

Expression

IA!

IABCI

IAB*CI

IIN .. TOI
IIN.*TOI

1/\ ABCI

IABC$I
IABC!C$I

1/\ ABC.*DEF$I

1.*1

Description

Locates the first line that contains the expression A in any position in that
line.
Locates the first line that contains the expression ABC in any position on
that line.
Locates the first line that contains the expression AC or A followed by any
number of B's and a C.
Locates a line that contains IN and TO separated by any two characters.
Locates a line that contains IN and TO, in that order, with any or no
characters between those two words.
Locates a line that begins with the expression ABC.
Locates a line that ends with the expression ABC.
Locates a line that contains the expression ABC$. ABC$ can be in any
character positions, since the character $ was preceded by !C.
Locates a line that begins with ABC and ends with DEF; there may be any
number of characters between ABC and DEF.
Locates any line.

The Editor remembers the last expression designated as an address. That expression can be
reinvoked in a subsequent Editor directive by specifying a null expression (e.g., /I).

Example:

IABC/dirname - Expression ABC is specified as an address.
2dirname - Second line in buffer is specified as address.

EDITOR 2-5 CBOI

I

I

Iidimame - Specifies ABC as an address, since ABC was the last expression designated as an
address.

An address can be specified as an expression followed by one or more signed decimal integers.

Example:

Each of the following three expressions requests the second line after the line that contains
ABC.

IABC/2
IABC/+2
IABC/+5-3

COMPOUND ADDRESSES

An address can be formed by combining the methods described above. If a compound address
contains a line number, the line number must be the first element of the address.

The first element of the compound address determines the starting location from which the
Editor will search for the designated expression. If the first element is a line number, the Editor
searches for the expression starting with the line that immediately follows the specified line
number. (Ordinarily, the Editor searches starting with the line that immediately follows the
current line.)

Example 1:

10/ABCI

This address causes the Editor to search the lines in the current buffer, starting with line 11,
for the characters ABC.

Example 2:

.-8/ABCI

This address causes the Editor to search the lines in the current buffer, starting with eight
lines before the current line, for the characters ABC.

Example 3:

IABCIIDEFI

This address causes the Editor to search for the first line containing DEF that occurs after a
line containing ABC.

Each expression in a compound address can be followed by a signed decimal integer.

Example:

IABC/-10IDEF/5

This address causes the Editor to search for the first occurrence of the character string DEF
that is within 10 lines before the first line that contains ABC. After DEF is found, the current
line is the fifth line after the line containing the match for DEF.

REFERENCING A SERIES OF UNES

An Editor directive that permits two addresses to be specified causes the Editor to reference a
series of lines in the buffer. The addresses can be separated by a comma or a semicolon. If the
second address is relative to the current line (plus or minus), both the addresses and the plus or
minus sign determine which lines will be referenced by the Editor; otherwise, only the addresses
are relevant.

If the addresses are separated by a comma, the Editor references the line at the first address
through the line at the second address, inclusive. The current line remains unchanged until
after the directive is executed; the current line then becomes the line specified by the second
address.

If the addresses are separated by a semicolon, the line referenced by the first address becomes
the current line and then the value of the second address is calculated.

EDITOR 2-6 CBOI

Example 1:

1,5dimame

These addresses specify lines 1 through 5, inclusive. After the directive is executed, line 5
becomes the current line.

Example 2:

1,$dirname

These addresses specify line 1 through the last line in the buffer, inclusive. After the directive
is executed, the last line becomes the CUlTent line.

Example 3:

.1,/ABCI

These addresses specify the line immediately following the current line through the first line
that contains ABC. The first line that contains ABC then becomes the CUlTent line.

Example 4:

.1,.2dimame

The contents of a sample source unit are listed below. The numbers within parentheses
represent line numbers.

(1) ABC
(2) DEF (culTent line)
(3) GHI
(4) ABC
(5) XYZ
(6) ABC

The above addresses specify the line immediately following the CUlTent line through the
second line after the current line. The Editor will reference lines 3 and 4. Line 4 will then
become the CUlTent line.

Example 5:

.1;.2dimame

These addresses are the same as those in Example 4, but in this example they are separated by
a semicolon. If the contents of the sample source unit are the same as in Example 4, this
directive causes the Editor to reference lines 3, 4, and 5. This first address specifies the line
immediately after the CUlTent line; i.e., line 3. Line 3 then becomes the current line. The
second address specifies that the Editor reference through the second line after the (new)
current line; i.e., lines 4 and 5.

The same series of lines can be requested by specifying their addresses in more than one way,
using different delimiters.

Example 6:

IABCI jABCI +3dirname
IABC/;. +3dirname

The contents of a sample source unit are listed below. The numbers within parentheses
represent line numbers.

(1) ABC
(2) DOD (current line)
(3) EEE
(4) FFF
(5) GGG
(6)HHH

The first series of addresses specifies that the Editor reference the first line that contains ABC
(i.e., line 1) through the third line after that line (i.e., lines 2,3, and 4). Line 4 will then become
the current line.

EDITOR 2-7 CBOI

I

I

ED

The second series of addresses specifies that the Editor reference the first line that contains
ABC (i.e., line 1), make that line the current line, and then reference three lines from the
"new" current line (Le., lines 2, 3, and 4). Line 4 will then become the current line.

LOADING THE EDITOR

To load the Editor, enter the ED command, which is described below.

After the Editor is loaded, there is a typeout to the error-out file of the revision number, in the
format: ED nnnn

FORMAT:

ED [ctLarg]

ARGUMENT DESCRIPTIONS:
ctLarg

Control arguments; none or any number of the following control arguments may be entered,
in any order:

-IN path
Pathname of the device through which Editor directives will be entered; can be the
operator terminal or another terminal, card reader, or disk. Error messages are written to
the error-out file. Editor error messages are described in the System Messages manual.
Default: Device specified in the in_path argument of the enter batch request or enter
group request command.

{-LINE_LEN n}
-LLn

Maximum number of characters that can be on each directive line or data line. Must be
from 20 through 256, decimal. Additional charcters are truncated.
Default: 80 characters.

{~~OMPT}
If the input device is a terminal, there is a typeout ofE? whenever the Editor is ready to
accept another directive.

SUMMARY OF EDITOR DIRECTIVES AND ESCAPE SEQUENCES

Table 2-1 lists each Editor directive name and escape sequence, summarizes its function, and
designates the topic in this section under which the directive/escape sequence is described. The
topics refer to the following level headings: "Input Mode Description and Directives," "Edit
Mode Description and Directives," and the following subsections of "Advanced Usage of the
Editor": "General Advanced Editor Directives," "Auxiliary Buffer Directives and Escape
Sequences," "Editor Debugging Directives," and "Editor Programming Directives."

EDITOR 2-8 CBOI

ED

TABLE 2-1. SUMMARY OF EDITOR DIRECTIVES AND ESCAPE SEQUENCES

Directive
Name/Escape
Sequence

A

B

C

D

E

G

I

K

M

N

P

Q

R

S

T

v

w

x

ZDUMP

ZREGEXP

!B

!C

EDITOR

Function Topic Under Which Described

Add line(s) after specified address. Append directive (input mode)

Make specified auxiliary buffer the cur- Change buffer directive (advanced usage -
rent buffer. auxiliary buffers)

Delete specified line(s) and insert other Change directive (input mode)
line(s).

Delete specified line(s) from current Delete directive (edit mode)
buffer.

Execute command other than Editor Execute directive (advanced usage-
without exiting from Editor. general)

Search for specified line(s) that contain
specified character string.

Add line(s) before a specified address.

Copy line(s) in current buffer to specified
auxiliary buffer. Do not delete lines from
current buffer. Overlay existing line(s) in
auxiliary buffer.

Move line(s) from current buffer to spec­
ified auxiliary buffer; delete the lines from
current buffer and overlay existing line(s)
in auxiliary buffer.

Global directive (advanced usage -
general)

Insert directive (input mode).

Copy directive (advanced usage - auxil­
iary buffers)

Move directive (advanced) usage - auxil­
iary buffers)

Designate different line as the current line. New current line directive (advanced
usage - general)

Print specified line(s) in current buffer. Print directive (edit mode)

Conditionally terminate execution of Quit directive (edit mode)
Editor.

Read text from file to current buffer. Read directive (edit mode)

Substitute character stirng with another Substitute directive (edit mode)
character string.

Display a line of text on user-out file sub- Type directive (advanced usage -
sequent input/output will be on the next programming)
line.

Search for specified line(s) that do not con- Exclude directive (advanced usage -
tain specified character string. general)

Write specified line(s) from current buffer Write directive (edi~ mode)
to specified file.

Request status of auxiliary buffers.

Print contents of specified line(s).

Display last specified expression.

Buffer status directive (advanced usage­
auxiliary buffers)

Hexadecimal dump directive (advanced
usage - debugging)

ZREGEXP directive (advanced usage -
debugging)

Change origin oftext to specified auxiliary phange origin of text during input/edit
buffer or execute specified auxiliary mode (advanced usage - auxiliary buffers)
buffer.

Remove meaning of following special
character.

2-9 CBOI

ED

TABLE 2-1 (CONT). SUMMARY OF EDITOR DIRECTIVES AND ESCAPE SEQUENCES

Directive
NamelEscape
Sequence

!F

!Hxx

!K

!M

!P

!Q

!R

!T

!?

address#

addresses#

"#

address" #

addresses" #

*

"*

>

?

EDITOR

Function

Terminate an input mode directive.

Interpret two following hexadecimal char-
acters as one ASCII byte.

Topic Under Which Described

(Input mode)

Copy line(s) in current buffer to specified Copy-append directive (advanced usage -
auxiliary buffer; do not delete existing auxiliary buffers)
line(s) in auxiliary buffer.

Move line(s) from current buffer to spec- Move-append directive (advanced usage­
ified auxiliary buffer; delete the line(s) from auxiliary buffers)
current buffer and append them to existing
line(s) in auxiliary buffer.

Type line number and contents of specified Print with line number directive (advanced
line(s) in current buffer. usage - general)

Unconditionally terminate execution of Quite directive (edit mode)
Editor.

Accept single line from operator terminal. Accept single line from operator terminal
directive (advanced usage - auxiliary
buffers)

Display a line of text on user-out file; sub- Type directive (advanced usage - pro­
sequent input/output will be on the same gramming)
line.

Cause typeout indicating whether input or
edit mode is in effect.

If current buffer contains data, execute If empty directive (advanced usage
specified directive(s). programming)

If current line is specified line, execute If line directive (advanced usage
specified directive(s). programming)

If current line is within specified lines, ex- If range directive (advanced usage -
ecute specified directive(s). programming)

If current buffer does not contain data ex- If not empty directive (advanced usage -
ecute specified directive(s). programming)

If current line is not specified line, execute If not line directive (advanced usage -
spe'cified directive(s). programming)

If current line is not within specified lines, If not range directive (advanced usage -
execute specified directive(s). programming)

If specified expression is within specified Search directive (advanced usage -
lines, execute specified directive(s). programming)

If specified expression is not within spec- Search not directive (advanced usage -
ified lines, execute"specified directive(s). programming)

Define location to which Editor can be Label directive (advanced usage -
directed for subsequent directive(s). programming)

Type line number of specified line in cur- Print line number directive (advanced
rent buffer. usage - general)

Accept subsequent directive(s) from spec- Go to directive (advanced usage -
ified location in current buffer or interac- programming)
tively.

If specified line is in current buffer, ex- Address prefix directive (advanced usage -
ecute specified directive(s). programming)

2-10 CB01

/"' --

(

:i
~

CREATING A SOURCE UNIT

To create a source unit, take the steps listed below. Input mode directives are described under
"Input Mode Description and Directives" later in this section. Each of the directives referenced
below is described under "Edit Mode Description and Directives" later in this section.

1. Change the working directory to a user volume by specifying the change working direc­
tory command (see the Commands manual).

2. Load the Editor, if it is not already loaded. (See "Loading the Editor" earlier in this
section.)

3. If there already are lines in the current buffer, delete unwanted lines by specifying the
delete directive.

4. Enter the appropriate input directive and text to be input.

5. Make changes, if necessary, by entering the appropriate input and/or edit directive(s).

6. Write the contents of the current buffer to a file by using the write directive.

7. (Optional) Exit from the Editor by entering the quit directive.

CHANGING AN EXISTING SOURCE UNIT

To change an existing source unit, take the steps listed below. Input mode directives are
described under "Input Mode Description and Directives" later in this section. Each of the
directives referenced below is described under "Edit Mode Description and Directives" later in
this section.

1. Change the working directory to a user volume by specifying the change working direc­
tory command (see the Commands manual).

2. Load the Editor, if it is not already loaded. (See "Loading the Editor" earlier in this
section.)

3. If there already are lines in the current buffer, delete unwanted lines by specifying the
delete directive.

4.

5.

Use the read directive to read into the current buffer the source unit to be edited.

Enter the appropriate edit and/or input directive(s).

6. Write the contents of the current buffer to the file from which the lines were read or to a
different file by using the write directive.

7. (Optional) Exit from the Editor by entering the quit directive.

INPUT MODE DESCRIPTION AND DIRECTIVES

During input mode, you can create a source unit or add lines to an existing source unit by
entering through the directive input device one or more input directives.

Input directives have the following capabilities:

• Add lines after a specified address (append directive).

• Delete specified lines and insert other specified lines (change directive).

• Add lines before a specified address (insert directive).

You can create a source unit by using the append or insert directive. You can add lines to an
existing source unit by using any or all of the above directives.

Each input directive must have one of the following formats:

FORMAT 1:

EDITOR 2-11 CBOI

*

I

I

I

I
I

A

[text]

!F'["comment]

FORMAT 2:

[adr{l:l adr~]dimame[text11F"r'oommentl

If directives are being entered through the operator terminal or another terminal, the directive
name may be immediately followed by a carriage return, which in turn is followed by the text
(i.e., the lines to be included in the source unit), or the first line of text can be on the same line as
the directive name, and additional lines (if any) can be on the subsequent lines. The text can be
any number of lines of ASCII characters. The maximum number of characters per line is.
determined by the value specified in the -LINE_LEN n argument of the ED command. The last
line of text must be followed by the escape sequence !F3 to terminate input mode; otherwise, the
next Editor directive is interpreted as additional text. The escape sequence !F can be entered at
the end of the last line of text or in the first character position of the next line. The next directive
can begin in the next character position or on the next line.

Notes:
1. To enter a blank from the operator terminal, as the first character on a line,

precede it with an!C sequence.
2. The characters!F can be included as text by preceding them with !C; in this case, !F

does not designate the end of the text.

Input directives are described in detail on the following pages. In the examples, numbers in
parentheses are reference!,! to line numbers and do not appear in memory or in text.

APPEND DIRECTIVE

The append directive puts one or more specified lines into the current buffer after a specified
address. Ifmultiple lines are specified, they are put into the buffer in the order in which they
were entered. The append directive can be used to create a source unit or to add lines to an
existing source unit.

After the append directive is executed, the current line is the last line appended. The
appended line(s) are given line numbers and subsequent lines, if any, are renumbered.

FORMAT 1:

[adr]A
text

!F

FORMAT 2:

[adr]Atext!F

3When entering directives from a card reader, the punch for an exclamation point is 12-8-7.

EDITOR 2-12 CBOI

(..

(j

ARGUMENT DESCRIPTION:
adr

A

Identifies the address of the line immediately after which the specified line(s) will be
inserted.
Default: Current line. If the buffer is empty, the current line is line number o.

Note:
If you are creating a new source unit, there is no need to specify an address.

Example 1:
Creating a new source unit
In this example, the buffer is empty.

A
WWW
XXX
yyy
ZZZ
!F

This append directive puts lines WWW, XXX, YYY, and ZZZ into the current buffer. Since the
buffer is empty, it is not necessary to specify an address. The lines will be inserted, in the order
in which they were entered, starting at line 1. The lines put into the buffer constitute a new
source unit which can then be edited and/or written to a file.

Example 2:
Adding lines to an existing source unit

/TTT/A
UUU
!F
3A
WWW
XXX
!F

These append directives put line UUU into the buffer immediately after the first line that
contains TTT, and lines WWW and XXX into the buffer immediately after the third line.

The contents of the buffer are:

(1) TIT
(2)VVV

After the first append directive is executed, the buffer will contain:

(1) TIT
(2) UUU (current line)
(3)VVV

After the second append directive is executed, the buffer will contain:

(1) TTT
(2)UUU
(3)VVV
(4)WWW
(5) XXX (current line)

EDITOR 2-13 CB01

*

c

CHANGE DIRECTIVE

The change directive deletes a single line or a series of lines in the current buffer and then
inserts the text specified between the directive name and the insert terminator IF.

* After the change directive is executed, the current line is the last line of inserted text. The

I

I
I

I
*­
tic

inserted line(s) are given line numbers and subsequent lines, if any, are renumbered.

FORMAT 1:

text

IF

FORMAT 2:

ARGUMENT DESCRIPTIONS:
adr i

Address of the first or only line to be deleted and replaced.
Default: Current line.

adr2

Address of the last line to be deleted and replaced.
Default: Only the line identified by adr I is deleted and changed.

Note:
If both adr i and adr2 are omitted, only the current line is deleted and replaced.

In the following examples, the contents of the current buffer are:

(1)AAA
(2) BBB
(3) CCC (current line)
(4)DDD
(5) EEE

Example 1:

2C
XXX
yyy
IF

This change directive deletes the second line and replaces it with lines XXX and YYY.
Subsequent lines are renumbered.

After the change directive is executed, the buffer will contain:

(l)AAA

EDITOR 2-14 CB01

(

(2) XXX
(3) YYY (current line)
(4) CCC
(5) DDD
(6) EEE

Example 2:

IBBB/,.lC
XXX
YYY
ZZZ!F

C / I

This change directive deletes the first line that contains BBB (line 2) through the line
immediately after the current line (line 4) and replaces them with lines XXX, YYY, and ZZZ,
respectively.

After the change directive is executed, the buffer will contain:

(l)AAA
(2) XXX
(3) YYY
(4) ZZZ (current line)
(5) EEE

Example 3:

.,5C
XXX
!F

or
.,$C
XXX
!F

Each of the above change directives deletes the current line through line 5 and replaces them
with a single line containing XXX.

After the change directive is executed, the buffer will contain:

(1) AAA
(2) BBB
(3) XXX (current line)

INSERT DIRECTIVE

The insert directive inserts one or more specified lines into the current buffer before a specified
address. Ifmultiple lines are specified, they are inserted in the order in which they were entered.
The insert directive can be used to create a source unit or to add lines to an existing source unit.

After the insert directive is executed, the current line is the last line inserted. The inserted
line(s) are given line numbers, and subsequent lines, if any, are renumbered.

FORMAT 1:

[adr]I
text

!F

EDITOR 2-15 CB01

I

FORMAT 2:

[adr]Itext!F

ARGUMENT DESCRIPTION: .
adr

Address of the line immediately before which the specified line(s) will be inserted.
Default: Current line.

Note:
If you are creating a new source unit, there is no need to specify an address.

Example 1:
In this example, the current buffer is empty.

I
AAA
BBB
CCC
DDD
!F

This insert directive creates in the current buffer a new source unit comprising lines AAA,
BBB, CCC, and DDD, respectively. The lines can then be edited and/or written to a file.

In Examples 2, 3, and 4, the contents of the current buffer are:

(l)AAA
(2) BBB
(3) CCC
(4) DDD (current line)

Example 2:

~21

XXX
!F

This insert directive designates that a line containing XXX be inserted two lines before the
current line.

After the insert directive is executed, the current buffer will contain:

(1) AAA
(2) XXX (current line)
(3) BBB
(4) CCC
(5) DDD

Example 3:

/AAAlI
H!C!FH
KKK
!F

EDITOR 2-16 CBOI

I

This insert directive designates that lines H!FH and KKK be inserted into the current buffer
immediately before the first line that contains AAA. Note that when !F is part of the text, it is
preceded by !C; when !F delimits the last line of text, it is not preceded by !C.

After the insert directive is executed, the buffer will contain:

(1) H!FH
(2) KKK (current line)
(3)AAA
(4) BBB
(5) CCC
(6) DDD

Example 4:

I
XXX
!F

This insert directive designates that a line containing XXX be inserted immediately before
the current line.

After the insert directive is executed, the current buffer will contain:

(1) AAA
(2) BBB
(3) CCC
(4) XXX (current line)
(5) DDD

EDrr MODE DESCRIPTION AND DIRECTIVES

During edit mode you can create a source unit or edit an existing source unit.

Edit mode directives have the following capabilities:

• Substitute a designated string of characters in specified line(s) with another specified
string of characters (substitute directive).

• Read text from specified file into the current buffer (read directive). I
• Delete specified line(s) from the current buffer (delete directive).

• Print on the user-out file specified line(s) in the current buffer (print directive). I
• Write specified line(s) from the current buffer to specified file (write directive).

• Terminate execution of the Editor (quit directive).
Notes:

1. To edit an existing source unit, the read directive must be previously specified.
2. Until you are familiar with the Editor, it is recommended that you enter print

directives frequently so you can determine the status of the lines being
edited.

3. To save the results of an edited or newly created source unit, you must specify the
write directive before you terminate execution of the Editor.

Most edit mode directives have one of the following formats:

FORMAT 1:

dimame["comment]

EDITOR 2-17 CB01

*

I

I

D

FORMAT 2:

adr Idirname["commentl

FORMAT 3:

adr1 {:} adr2dirname["commentl

Edit mode directives are described alphabetically on the following pages. In the examples,
numbers in parentheses are references to line numbers and do not appear in memory or in text.

DELETE DIRECTIVE

The delete directive deletes a single line or consecutive lines from the current buffer.

Mter the delete directive is executed, each subsequent line in the buffer is renumbered, and
the current line is the line that immediately follows the last line deleted or the last line in the
buffer if the previous "last line" was deleted.

FORMAT:

[adr,[I:1 adrJ]D
ARGUMENT DESCRIPTIONS:
adr1

Address of the first or only line to be deleted.
Default: Current line.

adr2
Address of the last line to be deleted.
Default: Only the line identified by adr1 is deleted.

Note:
If both adr1 and adr2 are omitted, only the current line is deleted.

In the following examples, the contents of the current buffer are:

(1) AAA
(2) BBB (current line)
(3) CCC
(4) DDD
(5) EEE

Example 1:

1,3D

This delete directive deletes lines 1 through 3. After this delete directive is executed, the
current buffer will contain:

(1) DDD (current line)
(2) EEE

Example 2:

ICCC/D

EDITOR 2-18 CB01

In this delete directive, adr 1 is CCC and adr 2 is not specified, so the only line that will be deleted
is the first line that contains CCC.

After this delete directive is executed, the current buffer will contain:

(l)AAA
(2) BBB
(3) DDD (current line)
(4) EEE

Example 3:

.,3D

This delete directive deletes the current line through line 3.

After this delete directive is executed, the current buffer will contain:

(1) AAA
(2) DDD (current line)
(3) EEE

Example 4:

D

This delete directive does not include any addresses, so only the current line, line number 2, is
deleted.

After this directive is executed, the current buffer will contain:

(1)AAA
(2) CCC (current line)
(3) DDD
(4) EEE

PRINT DIRECTIVE

The print directive causes a printout of a single line or consecutive lines in the current buffer.

I

*

You can specifY the addressees) of the line(s) to be printed, or you can request a printout of the
first line that contains a specified expression. The printout is issued to the user-out file; i.e., the I
file designated in the -OUT ouLpath argument of the enter batch request or enter group request
command, unless that file was reassigned in the file out (FO) command. If the typeout occurs on I
the operator terminal, each line of text is preceded by the group identification characters.

After the print directive is executed, the current line is the last (or only) line printed.

·FORMAT 1:
Format including directive name P:

ARGUMENT DESCRIPTIONS:
adr 1

Address of the first or only line to be printed.
Default: Current line.

EDITOR 2-19 CBOI

I

I

p

adr2
Address of the last line to be printed.
Default: Only the line identified by adr 1 is printed.
Note:

Ifboth adr1 and adr2 are omitted and P is specified, only the current line is printed.

FORMAT 2:
Format excluding directive name P:

ARGUMENT DESCRIPTIONS:
adrt

If adr 2 is not specified, adr t designates the address of the only line to be printed.

adr2
Address of only line to be printed.
Note:

If both adr1 and adr2 are specified, only adr2 is printed.

In the following examples, the contents of the current buffer are:

(l)AAABBB
(2) CCCDDD (current line)
(3) EEEFFF
(4)GGGHHH

Example 1:

1,$P

This print directive causes a typeout of each line in the current buffer.

AAABBB
CCCDDD
EEEFFF
GGGHHH

After this directive is executed, the current line is line number 4.

Example 2:

P

This print directive causes a typeout of only the current line.

CCCDDD

After this directive is executed, the current line still is line number 2.

Example 3:

4P

EDITOR 2-20 CBOI

(

•

P/Q

This print directive causes a typeout of line number 4.

GGGHHH

After this directive is executed, the current line is line number 4.

Example 4:

.,4P

This print directive causes a typeout of the current line (line number 2) through line number 4:

CCCDDD
EEEFFF
GGGHHH

After this directive is executed, the current line is line number 4.

Example 5:

/AAA/

This print directive causes a typeout of the first line that contains AAA.

AAABBB

After this directive is executed, the current line is line number 1.

Example 6:

3D/AAA/

This example illustrates a directive line that contains both a delete directive and a print
directive in which only an expression is designated.

This directive line deletes line number 3 and causes a typeout of the first line that contains
AAA. After the directives are executed, the current buffer will contain:

(1)AAABBB
(2) CCCDDD
(3)GGGHHH

There will be a typeout of line number 1, and that line will be the current line.

QUIT DIRECTIVE

The quit directive is used to exit from the Editor. Quit must be specified at the end of the
editing session. This directive must be the last or only directive on a line. Ifthe directive input
device is the operator terminal or another terminal, the quit directive must be immediately
followed by a carriage return.

Quit is executed conditionally or unconditionally, depending on which quit format is
specified. In a conditional quit request (Format 1, below), if a buffer has a pathname associated
with it via a read or write directive and the contents of the buffer have been modified but not
written to a file before the quit directive is entered, a warning message is issued and quit is not
executed. After the message, any Editor directive(s), including write, may be entered. Ifwrite is

EDITOR 2-21 CB01

I

I

I

I

I

Q/R

not specified and quit is reentered, the quit directive is executed and changes specified in
previous Editor directives are not saved. In an unconditional quit request (Format 2, below),
modified buffers are not chec;ked before quit is executed.

FORMAT 1:

Q

FORMAT 2:

!Q

Example:

A

Append directive puts specified lines into current buffer.

AAABBB
CCCDDD
EEEFFF

Lines that will be put into current buffer.

!F

Designates the end of the insertion.

2D

Deletes the ,second line of text (e.g., CCCDDD).

WFIRST

Writes all lines in buffer to file named FIRST.

Q

Returns control from the Editor to the command processor.

READ DIRECTIVE

I The read directive reads text from a specified ASCII variable sequential file into the current
buffer.

The read directive must be the only or last directive on a line.

After the read directive is executed, the current line is the last line read from the file.

FORMAT:

[adr]R[path]

ARGUMENT DESCRIPTIONS:
adr

EDrroR 2-22 CBOI

R

Address of a line in the current buffer; the contents of the specified file will be appended
after this line.
Default: Last line in the buffer; if the buffer is empty, the file is appended starting at the
first line in the buffer.

path
Pathname of the ASCII file to be read into the current buffer. (Methods of specifying
pathnames are described in Section 1.) The pathname may be preceded by any number of
blank spaces.

I
I

Default: Pathname specified in the latest read or write directive associated with the current I
buffer. To determine which pathname was specified last, specify the buffer status directive,
which is described under "Advanced Usage of the Editor" later in this section. If the path
parameter is not specified and a pathname was not previously specified, an error message is
issued.

Example 1:

RSTART

This read directive reads into the current buffer the contents of a file whose simple pathname *
is START. Since an address is not specified, the lines are read into the buffer after the last line
that currently is in the buffer.

The contents of START are:

(l)AAA
(2) BBB
(3) CCC

If the buffer is empty, after the read directive is executed the current buffer will contain:

(l)AAA
(2) BBB
(3) CCC (current line)

If the buffer already contains,

(l)XXX
(2) YYY
(3) ZZZ

After the read directive is executed, the current buffer will contain:

(l)XXX
(2) YYY
(3) ZZZ
(4)AAA
(5) BBB
(6) CCC (current line)

Example 2:

/CCCIRNEW

EDITOR 2-23 CBOI

R

This read directive designates that the contents of the file whose simple pathname is NEW be
read into the current buffer after the first line in the current buffer that contains CCC.

The contents of the current buffer are:

(1) AAA
(2) BBB (current line)
(3) CCC
(4) CCC

The contents of NEW are:

(1) XXX
(2) ZZZ

After the read directive is executed, the current buffer will contain:

(1) AAA
(2)BBB
(3) CCC
(4) XXX
(5) ZZZ (current line)
(6) CCC

Example 3:

This example illustrates the read directive used in conjunction with append and write
directives.

A Causes subsequent lines to be put into the current buffer.
AAA
BBB
CCC

!F

Designates the end of the insert.

WNOW

R

Writes the contents of the current buffer to the file whose simple pathname is NOW.

Reads into the current buffer, after the last line in the buffer, the contents of NOW; NOW is
the pathname specified in the last write directive.

After the read directive is executed, the current buffer will contain:

AAA
BBB
CCC
AAA
BBB
CCC (current line)

EDITOR 2-24 CBOI

/

j

s

SUBSTrrUTE DIRECTIVE

The substitute directive replaces each occurrence of a specified string of characters in a single
line or in a sequence of lines with another specified string of characters.

A,fter this directive is executed, the current line is the last line referenced by the Editor.

FORMAT:

[adr.Q:l adrJ]Slregext>string/

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be searched for the specified string of characters.
Default: Current line.

adr2
Address of the last line to be searched for the specified string of characters.
Default: adrl.

Note:
If both adr1 and adr2 are omitted, only the current line is searched.

Delimiter; can be any character that is not in regexp or string. However, the same delimiter
must be used in each of the three locations where a delimiter is required.

regexp
String of characters for which the Editor is searching; each occurrence of this character
string within the specified addresses will be replaced with the character(s) specified in the
argument "string."
Default: The last regexp specified. This can be determined by entering the ZREGEXP
directive, which is described under "Editor Debugging Directives," later in this section.

string
String of characters that will replace each occurrence of regexp.

Notes:
1. If string contains the character" &" in any position, each occurrence ofregexp to be

replaced will be replaced with regexp included in string, in place of "&." For
example, if regexp is "in" and string is "&to," each occurrence of "in" becomes
"into." To ignore the special meaning of "&," precede it with !C.

2. The occurrence of a line feed in the string expression determines the new line
character; i.e., point in the resulting line at which the line is to be split into
two lines.

EDITOR

Example 1:

Sf ABGDEFf ABC linefeed DEFf

This substitute directive searches the current line and (1) replaces each
occurrence of ABGDEF with ABCDEF and (2) causes the character string to
be split between two lines. ABC will be on the first line, and DEF will be on
the second line.

2-25 CBOI

I

I

I

s

Example 2:

The contents of the current buffer are:

(1)E
(2) NTE
(3) R
(4) YOUR

1,3Sllinefeedi I

After this substitute directive is entered, the current buffer will contain:

(l)ENTERYOUR

In the following examples, the contents of the current buffer are:

(1)AAACCC
(2) BBBAAA (current line)
(3)CCCBBB
(4)DDDAAA

Example 1:

2,4S/AAA/XXXI

This substitute directive searches lines 2 through 4 and replaces each occurrence of AAA with
xxx. .
After this directive is executed, the current buffer will contain:

(l)AAACCC
(2)BBBXXX
(3)CCCBBB
(4) DDDXXX (current line)

Example 2:

.,4S-CCC-UUU-

This substitute directive searches the current line (line 2) through line number 4 and replaces
each occurrence of CCC with UUU.

After this directive is executed, the current buffer will contain:

(l)AAACCC
(2)BBBAAA
(3)UUUBBB
(4) DDDAAA (current line)

Example 3:

-1,1DDD/SII&JJJI

This substitute directive searches one line before the current line (line 1) through the fIrSt line
that contains DDD (line 4) and replaces each occurrence of DDD with DDDJJJ.

EDITOR 2-26 CBOI

i",.

. After this directive is executed, the current buffer will contain:

(l)AAACCC
(2)BBBAAA
(3)CCCBBB
(4) DDDJJJAAA (current line)

Example 4:

IBBB/S//xXXI

s/w

This substitute directive searches the first line after the current line through the current line
(line 2) and changes the first occurrence of BBB to XXX.

After this directive is executed, the current buffer will contain:

(l)AAACCC
(2)BBBAAA
(3) CCCXXX (current line)
(4)DDDAAA

WRrrE DIRECTIVE

The write directive causes a single line or a series oflines in the current buffer to be written to *
a specified file. If the file does not already exist, a new file is created with the specified file name.
If the named file does exist and currently contains other data, the line(s) written to the file via *
the write directive replace the existing contents. *

To save the results of previously specified Editor directives, you must specify the write
directive before you terminate execution of the Editor (i.e., write must be specified before quit).

The write directive must be the last directive on a line.

After the write directive is executed, the specified line(s) remain in the current buffer; a copy
of them is written to the specified file.

FORMAT:

[adr{!:l adr~]W[pathl
ARGUMENT DESCRIPTIONS:
adr t

Address of the first line to be written to a specified file.
Default: First line in the current buffer.

adr2
Address of the last line to be written to a specified file.
Default: Last line in the current buffer.

Note:
Ifboth adr t and adr2 are omitted, all lines in the current buffer are written to the
specified file.

path
Pathname of the file to which the specified line(s) will be written (Methods of specifying
pathnames are described in Section 1.) The pathname may be preceded by any number of
spaces.

Default: Pathname specified in the latest read or write directive associated with the current
buffer. If a pathname was not previously specified, an error message is issued.

EDITOR 2-27 CBOI

I

I

w

Example 1:

WIDENT

This write directive writes all lines in the current buffer to a file whose simple pathname is
IDENT.

Example 2:

1,3W

This write directive writes lines 1 through 3 to the file specified in the last read or write
directive.

This example illustrates usage of the above directive in a sample Editor session. In this
example, there is a file named EXIST that contains the following lines:

(l)AAA
(2) BBB
(3) eee
(4)DDD

REXIST

Reads into the current buffer the contents of the file named EXIST. The current buffer will
contain:

(1) AAA
(2) BBB
(3) eee
(4) DDD (current line)

1,$SlAAA/XXXJ

Searches each line in the current buffer and changes each occurrence of AAA to XXX. The
buffer will contain:

(1) XXX
(2) BBB
(3)eee
(4) DDD (current line)

1,3W

Q

Writes lines 1 through 3 to the file specified in the last read or write directive; i.e., EXIST.
EXIST will contain:

(l)XXX
(2) BBB
(3) eee

Terminates execution of the Editor.

EDITOR 2-28 CBOI

f

v

ADVANCED USAGE OF THE EDITOR

The directives described on the previous pages permit you to create a source unit and perform
basic editing. The following subsections describe Editor directives that perform general
advanced functions, permit usage of auxiliary buffers, perform debugging, and perform pro­
gramming functions. Within each subsection the directives are summarized and then described
in detail alphabetically.

GENERAL ADVANCED EDITOR DIRECTIVES

The general advanced Editor directives have the following capabilities:

• Permit execution of a command instead of Editor directives without exiting from the
Editor (execute directive).

• Print the line number of a specified line in the current buffer (print line number directive).

• Print the line number and contents of specified line(s) in the current buffer (print with line
number directive).

• Cause another specified directive to act on only those lines that contain a specified
character string (global directive).

• Cause another specified directive to act on only those lines that do not contain a specified
character string (exclude directive).

• Make a different line the current line (new current line directive).

EXCLUDE DIRECTIVE

The exclude directive (V) can be used in conjunction with delete, print, print line number, and
print with line number directives so that the specified directive acts on only those lines that do
not contain a specified character string.

After the exclude directive is executed, the current line is the last line searched by the Editor;
i.e., the line specified in adr2 (see below).

FORMAT:

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be searched.
Default: First line in the current buffer.

adr2

x

Address of the last line to be searched.
Default: Last line in the current buffer.

Note:
If both adr1 and adr2 are omitted, all lines in the buffer are searched.

Directive name with which the exclude directive is being used; must be one of the following:

D
VD deletes line(s) that do not contain regexp.

P
VP prints the contents of line(s) that do not contain regexp.

EDITOR 2-29 CBOI

I

I

I

I

I

I

VIE

IP
VIP prints the line number(s) and contents of line(s) that do not contain regexp.

V = prints the line number(s) of line(s) that do not contain regexp.

I
Delimiter; can be any character that does not occur in regexp. The same delimiter must be
used before and after regexp.

regexp
String of characters for which the Editor will search; only lines that do not contain regexp
will be acted upon by the Editor during execution of the directive name specified in
parameter x.

In the following examples, the contents of the current buffer are:

(1) JJJKKK (current line)
(2)LLLMMM
(3)NNNPPP
(4) RRRJJJ

Example 1:

1,3VIP/JJJI

This exclude print with line number directive causes the Editor to search lines 1 through 3
and to print the line number and contents of each line that does not contain JJJ.

Typeout:

2 LLLMMM
3 NNNPPP

Current line: 3

Example 2:

VD*JJJ*

This exclude delete directive deletes each line that does not contain JJJ; since no addresses are
specified, each line in the current buffer is searched.

After this directive is executed, the current buffer will contain:

(l)JJJKKK
(2) RRRJJJ (current line)

EXECUTE DIRECTIVE

The execute directive permits you to execute a command instead of Editor directives without
exiting from the Editor; i.e., you can enter any command and then continue to use the Editor. For
example, the execute directive can be used to designate a printer as the Editor output file.
Otherwise, if you want a printout of Editor output, the printout is issued to the user terminal,
which is the original user-out file. If the user-out file is a line printer and a quit directive is
entered to exit from the Editor, the user-out file remains set to the printer.

The execute directive must be the last directive on a line.

EDITOR 2-30 CBOI

(

The current line is not affected by execute directives.

FORMAT:

Ecommand

ARGUMENT DESCRIPl'ION:
command

Any command (see the Commands manual).

Example:

E FO>SPD>LPl'OO

E/G

This execute directive includes a file out (FO) command, which sets the user-out file to the line I
printer whose pathname is >SPD> LPTOO.

GLOBAL DIRECTIVE

The global directive can be used in conjunction with delete, print, print line number, and print
with line number directives so that the specified directive acts on only those lines that contain a
specified character string.

After the global directive is executed, the current line is the last line searched by the Editor.

FORMAT:

[adr,[U adrJ] Gxlregexll'

ARGUMENT DESCRIPl'IONS:
adr1

Address of the first line to be searched.
Default: First line in the current buffer.

adr2

x

Address of the last line to be searched.
Default: Last line in the current buffer.

Note:
If both adr 1 and adr2 are omitted, all lines in the current buffer are searched.

Directive name with which the global is being used; must be one of the following:

D
Deletes all line(s) in the specified range containing regexp.

P
Prints the contents of line(s) containing regexp.

!P

Prints the line number(s) and contents ofline(s) containing regexp (see "Print With Line
Number Directive" later in this section).

Prints the line number(s) ofline(s) containing regexp (see "Print Line Number Directive"
later in this section).

EDITOR 2-31 CB01

I

I

I

GIN

I
Delimiter; can be any character that does not occur in regexp. The same delimiter must be
used before and after regexp.

regexp
String of characters for which the Editor will search; only lines that contain regexp will be
acted upon by the directive name specified in the parameter x. '

In the following examples, the contents of the current buffer are:

(l)JJJKKK
(2)LLLMMM
(3)NNNPPP
(4) RRRJJJ

Example 1:

1,3G!P/JJJI

This global print with line number directive causes the Editor to search lines 1 through 3 and
print the line number and contents of each line that contains JJJ.

Typeout:

1 JJJKKK

Current line: 3

Example 2:

GD*JJJ*

This global delete directive deletes each line that contains JJJ; since no addresses are
specified, all lines in the buffer are searched.

After this directive is executed, the current buffer will contain:

(l)LLLMMM
(2) NNNPPP (current line)

NEW CURRENT LINE DIRECTIVE

The new current line directive (N) causes the specified line to become the new current linE\,
The contents of the new current line are not printed after the directive is executed.

FORMAT:

adrN

ARGUMENT DESCRIPTION:
adr

Specifies the line that is to be the new current line.

Example:

ICCCIN

EDrro~ 2-32 CBOI

i ..

(j

If the following condition exists prior to execution of the N directive:

AAA (current line)
BBB
CCC
DDD

The situation will be as follows after the N directive is executed:

AAA
BBB
CCC (current line)
DDD

PRINT LINE NUMBER DIRECTIVE

N/=

The print line number directive causes a typeout of the line number of a specified line in the
current buffer.

The typeout is issued to the user-out file; i.e., the file designated in the -OUT ouLpath I'
argument of the enter batch request or enter group request command, unless that file was
reassigned. *

After this directive is executed, the current line is the line whose line number was typed.

FORMAT:

[adr] =

ARGUMENT DESCRIPTION:
adr

Address of the line whose line number is to be typed.
Default: Current line.

In the following examples the contents of the current buffer are:

(1) AAABBB (current line)
(2) CCCDDD
(3) CCCEEE

Example 1:

/CCC/=

This print line number directive causes a typeout of the line number of the first line that
contains CCC.

Typeout:

2

Current line: 2

Example 2:

EDITOR 2-33 CBOI

= /!P

This print line number directive causes a typeout of the line number of the current line.

Typeout:

1

Current line: 1 .

PRINT WITH LINE NUMBER DIRECTIVE

Ie The print with line number directive (lP) causes a typeout of the line number and contents of a
I single line or consecutive lines in the current buffer. The typeout is issued to the user-out file;

i.e., the file designated in the -OUT ouLpath argument of the enter batch request or enter group * request command, unless that file was reassigned. If the typeout occurs on the operator terminal
or another terminal, each line of text is preceded by the group identification characters.

I
*

I

After this directive is executed, the current line is the last line whose line number and
contents were typed.

FORMAT:

[adr{/:ladrJ }p
ARGUMENT DESCRIPTIONS:
adr1

Address of the first line whose line number and contents are to be typed.
Default: Current line.

adr2
Address of the last line whose line number and contents are to be typed.
Default: Address specified for adr l'
Note:

Ifboth adr 1 and adr 2 are omitted, there is a typeout of the line number and contents of
the current line.

In the following examples, the contents of the current buffer are:

(l)AAA
(2) BBB (current line)
(3) CCC
(4)DDD

Example 1:

1,$IP

This print with line number directive causes a typeout of the line number and contents of each
line in the current buffer.

Typeout:

1 AAA
2 BBB
3 CCC
4 DDD

EDITOR 2-34 CBOI

''"'- ./

!P

Current line: 4

Example 2:

!P

This print with line number directive causes a typeout of the line number and contents of only
the current line.

Typeout:

2 BBB

Current line: 2

AUXIUARY BUFFER DIRECTIVES AND ESCAPE SEQUENCES

In the previous pages of this section, it was assumed that there is only a single buffer, the
current buffer. The current buffer must be used, but one or more additional buffers, called
auxiliary buffers, also can be used. There are five auxiliary buffers available for use.

The most common usage of auxiliary buffers is for moving or copying text from one part of a
file to another.

I

I

To make available an auxiliary buffer and to put lines into it, specify the move, move-append, I
copy, or copy-append directive, which are described below.

Lines cannot be written directly from an auxiliary buffer to a file; the auxiliary buffer must be
designated in the change buffer directive as the current buffer or the lines must be read back to
the current buffer via the escape sequence !B, which is described under "Change Origin of Text
During Input Mode," later in this section. Lines can be written from the current buffer to a file
via the write directive (see "Write Directive" earlier in this section).

You can determine the status of each buffer currently in use by specifying the buffer status
directive.

Auxiliary buffer directives have the following functions:

• Move line(s) from current buffer to specified auxiliary buffer; lines in current buffer are
deleted.
- Lines overlay existing lines, if any, in auxiliary buffer (move directive.)
- Lines appended to existing lines, if any, in auxiliary buffer (move-append directive).

• Copy line(s) in current buffer to specified auxiliary buffer; lines in current buffer are not
deleted.
- Delete existing lines in auxiliary buffer (copy directive)

. - Do not delete lines in auxiliary buffer (copy-append directive)

• Make specified auxiliary buffer the-current buffer (change buffer directive).

• Cause Editor to accept subsequent text from a specified auxiliary buffer.
- During input mode (change origin of text during input mode).
- During edit mode (change origin of text during edit mode)

• Cause Editor to accept a line from operator terminal (accept single line from operator
terminal).

• Determine status of each buffer in use (buffer status directive).

EDITOR 2-35 CBOI

I

!R/X

ACCEPT SINGLE LINE FROM OPERATOR TERMINAL

The escape sequence !R pennits a single line of directives or text to be entered through the
user tenninal. !R nonnally is used when Editor directives are being executed from a buffer.
When the Editor encounters !R, the entire escape sequence is removed from the input stream
and replaced with the line read from the user-in rue.

FORMAT:

!R

Example:

TIENTER YOUR NAME/
A~R~

The above directives are in the buffer that is being executed.

There will be the following typeout on the tenninal:

ENTER YOUR NAME

You will respond with your name; Le., Jane Jones.

Following the current line in the current buffer will be:

Jane Jones

BUFFER STATUS DIRECTIVE

The buffer status directive (X) causes a typeout of the status of each buffer currently in use.
The current line is not changed.

FORMAT:

X

The following infonnation is designated:

• Name of each buffer. The original current buffer always is named o.
• Number of lines in each buffer.

• Indicator as to which buffer is the current buffer; the name of the current buffer is preceded
by ->.

Ifa buffer has been read into and/or written from, the typeout includes the pathname specified
in the last read or write.

If the contents of the current buffer have been modified (Le., in the typeout, MOD is
designated before its. name), all of the following conditions must exist: .

• Lines from an existing rue have been read into the current buffer via a read directive or the
contents of the current buffer have been written to a file.

• The contents of the buffer were modified via one,or more Editor directives.

• The contents of the buffer have not been written to a file.

EDITOR 2-36 CBOl

(' ~

Each typeout has the following format:

number of lines ->[MOD]

[number of lines [MOD]

Example:

(buffer-name) [pathname]

(buffer-name) [pathname]]

X/B

This example illustrates usage of the buffer status directive. The file USE, which is in the
working directory ~ comprises the following lines:

(1) AAA (current line)
(2) BBB
(3)CCC
(4)DDD

RUSE

Reads the contents of USE into the current buffer, which is named o.

1,$S*BBB*XXX*

Searches the first line through the last line in the current buffer and changes each
occurrence ofBBB to xxx. After this directive is executed, the current buffer will contain:

(1) AAA
(2) XXX
(3) CCC
(4)DDD

3,4M2

X

Moves lines 3 and 4 of the current buffer into auxiliary buffer 2. After this directive is
executed~ the current buffer will contain:

(1)AAA
(2) XXX

Auxiliary buffer 2 will contain:

(1) CCC
(2)DDD

Requests the status of each buffer currently in use. The following typeout will be issued:

2 -> MOD (0) USE
2 (2)

CHANGE BUFFER DIRECTIVE

The change buffer directive designates that a specified auxiliary buffer is to become the
current buffer. The previously designated current buffer becomes an auxiliary buffer.

EDITOR 2-37 CBOI

I

*

I

BI !B

After this directive is executed, lines can be written from the new current buffer to a file.

FORMAT:

Bx

ARGUMENT DESCRIPl'ION:
x

Buffer name. The name must be 1 to 16 ASCII characters. Ifthe name comprises more than
a single character, the name must be enclosed within parentheses; otherwise, the
parentheses are optional. The original current buffer name is O. This name can never be
altered. An auxiliary buffer name, once specified, cannot be altered during the current
Editor session. .

Example:

B3

This directive designates that auxiliary buffer 3 is the current buffer. If desired, lines can now
be written from this buffer to a file.

CHANGE ORIGIN OF TEXT DURING EDIT MODE

The escape sequence IB causes the Editor to read subsequent directives from a specified
auxiliary buffer. IB can be specified within an expression, pathname, text to be typed. (i.e., in the
type directive), er as a directive. When the Editor encounters this sequence in an expression,
pathname, or text, the entire escape sequence is removed from the input stream and replaced
with the first line of the specified buffer; iflB is a directive, the input stream is replaced with the
entire literal contents of the specified buffer. If another IB escape sequence is encountered while
accepting input from buffer x, the newly encountered escape sequence will also be replaced by
the contents of its named buffer.

The buffer to which the input stream is redirected may contain Editor requests, literal text or
both. If the Editor is executing a request obtained from an auxiliary buffer and an error occurs,
the usual error comment is suppressed and the remaining contents of that buffer are skipped.
Control returns to the statement immediately following the IB escape sequence which called the
auxiliary buffer. For example, if one thinks of the escape sequence IB(X) as a subroutine call
statement, the failure to match a regular expression specified by some request in buffer x may be
thought of as a return statement. Once the last commands in the auxiliary buffer have been
processed, control returns to the statement immediately following the IB escape sequence that
called the auxiliary buffer.

FORMAT:

IBx

ARGUMENT DESCRIPl'ION:
x

Name of the buffer that contains subsequent Editor text. The buffer name must be 1
through 16 ASCII characters. If the buffer name comprises more than a single character,
the name must be enclosed within parentheses; otherwise, the parentheses are optional.

Example 1 - IB As a Directive:

IB(TEST)

EDITOR 2-38 CBOl

I

!B

In this example, the contents of the current buffer and the auxiliary buffer named TEST are:

Current buffer:

(l)A
(2) B
(3) A
(4) D
(5) E

Auxiliary buffer:

1,$SIAlXJ

This substitute directive designates that in the current buffer all occurrences of A be replaced
with X. After the substitute directive is executed, the current buffer will contain:

(l)X
(2) B
(3) X
(4) D
(5) E

The auxiliary buffer named TEST will contain:

1,$S/A/XI

Example 2 - !B Within an Expression:

2S1 AAAI!B21

This substitute directive designates that in the second line of the current buffer, each
occurrence of AAA should be replaced with the first line of auxiliary buffer 2.

The contents of the current buffer and auxiliary buffer 2 are:

Current buffer:

(l)AAABBB
(2)CCCAAA
(3)XXXYYY

Auxiliary buffer 2:

DDD
EEE

After the substitute directive is executed, the current buffer contains:

(l)AAABBB
(2)CCCDDD
(3)XXXYYY

Example 3 - !B Within Text to be Typed:

T/!B21

EDITOR 2-39 CBOI

I

I

!B

This type directive (which is described later in this section) requests that the rJI'st line of
auxiliary buffer B2 be displayed on the user-out file.

CHANGE ORIGIN OF TEXT DURING INPUT MODE

The escape sequence !B can appear within text of an input directive, causing the Editor to
accept subsequent text from a specified auxiliary buffer.

When the EditOr encounters !B, the entire escape sequence is removed from the input stream
and replaced with the literal contents of the specified buffer. If another !B escape sequence is
encountered after accepting text from the specified buffer, the newly encountered escape
sequence also will be replaced with the contents of the named buffer.

FORMAT:

[text]!Bx [[text]!B] ...

ARGUMENT DESCRIPTIONS:
x

Name of the buffer that contains subsequent Editor text. The buffer name must be 1
through 16 ASCn characters. If the buffer name comprises more than a single character,
the name must be enclosed within parentheses; otherwise, the parentheses are optional.

Example:

IDII
!B(TEST)!F

In this example, the contents of the current buffer and the auxiliary buffer named TEST are:

Auxiliary buffer:

(l)X
(2) Y
(3) Z

Current buffer:

(1) A
(2) B
(3) C
(4) D
(5) E

This insert directive designates that the contents of the auxiliary buffer named TEST be
inserted into the current buffer before the line that contains D.

After the insert directive is executed, the current buffer will contain:

(l)A
(2) B
(3) C
(4) X
(5) Y
(6) Z

EDITOR 2-40 CBOl

:,,~,

(7) D
(8) E

The auxiliary buffer named TEST will contain:

(l)X
(2) Y
(3) Z

COPY DIRECTIVE

!B/K

The copy directive writes into a specified auxiliary buffer a single line or consecutive lines
that are in the current buffer. The lines in the current buffer are not deleted; i.e., the lines are in
both the current and the auxiliary buffers. Any lines previously in the auxiliary buffer are
destroyed during execution of the copy directive.

After the copy directive is executed, the current line in the current buffer is the line immedi­
ately after the last line moved to the auxiliary buffer. There is no current line in the auxiliary
buffer until that auxiliary buffer is changed to the current buffer via a change buffer directive.

FORMAT:

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be written into the specified auxiliary buffer.
Default: Current line.

adr2
Address of the last line to be written into the specified auxiliary buffer.
Default: adr 1.

Note:
Ifboth adr 1 and adr 2 are omitted, only the current line is written into the specified
auxiliary buffer.

x

Name of the auxiliary buffer into which the specified line(s) will be written. The name must
be 1 through 16 ASCII characters. If the name comprises more than a single character, the
name must be enclosed within parentheses; otherwise, the parentheses are optional.

Example:

1,3K(52)

This copy directive copies into auxiliary buffer 52 lines 1 through 3 in the current buffer.

The contents of the current buffer are:

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

EDITOR 2-41 CB01

I

i
I

K/!K

After the copy directive is executed, the contents of the current buffer are unchanged, but the
current line is line number 4. Auxiliary buffer 52 will contain:

(l)FmST
(2) SECOND
(3) THIRD

There will be no current line in the auxiliary buffer.

COPY-APPEND DIRECTIVE

The copy-append directive (!K) writes a line or lines from the current buffer to an auxiliary
buffer without destroying the contents of the auxiliary buffer. The lines copied from the current
buffer are appended to the contents of the auxiliary buffer. The lines written are also retained in
the current buffer.

After the copy-append directive is executed, the current line in the current buffer is the line
immediately after the last line written to the auxiliary buffer or the last line in the buffer. There
is no current line in the auxiliary buffer.

FORMAT:

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be written to the specified auxiliary buffer.
Default: Current line.

adr2

x

Address of the last line to be written to the specified auxiliary buffer.
Default: adr l'

Note:
If both addresses are omitted, only the current line is written to the auxiliary
buffer.

Name of the auxiliary buffer into which the specified line(s) will be written. The name must
be from 1 to 16 ASCII characters. If the name is more than one character, it must be enclosed
within parentheses; otherwise, parentheses are optional.

Example:

1,3!K(ABUF)

·1 This directive appends lines 1 through 3 of the current buffer to the contents of auxiliary
buffer ABUF. Thus, if the current buffer and ABUF contain the following lines prior to
execution:

Current

(1) AAA (current line)
(2) BBB
(3) CCC
(4)DDD

EDITOR

ABUF

MMM
NNN

2-42 CBOI

(
They will contain the following after execution:

Current

(1)AAA
(2) BBB
(3) CCC
(4) DDD (current line)

MOVE DIRECTIVE

ABUF

MMM
NNN
AAA
BBB
CCC

!K/M

The move directive moves a single line or consecutive lines from the current buffer to a
specified auxiliary buffer; the lines no longer exist in the current buffer. If the auxiliary buffer
already contains lines, those lines are overlaid.

After the move directive is executed, the current line in the current buffer is the line after the
last line moved to the auxiliary buffer or the last line in the buffer. There is no current line in the I
auxiliary buffer.

FORMAT:

[O&,[U adrJ]Mx I
ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be moved from current buffer to auxiliary buffer.
Default: Current line.

adr2
Address of the last line to be moved from current buffer to auxiliary buffer.
Default: adr 1•

Note:
Ifboth adr 1 and adr2 are omitted, only the current line is moved from the current
buffer to the auxiliary buffer.

x
Name of the auxiliary buffer to which the specified line(s) will be moved. The name must be
1 through 16 ASCII characters. Ifthe name comprises more than a single character, the
name must be enclosed within parentheses; otherwise, the parentheses are optional.

Example:

1,3M5

This move directive moves lines 1 through 3 from the current buffer to the auxiliary buffer
named 5. In this example, the contents of the current buffer are:

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

After the move directive is executed, the current buffer will contain:

(1) FOURTH (current line)

EDITOR 2-43 CBOI

M/!M

Auxiliary buffer 5 will contain:

(1) FmST
(2) SECOND
(3) THIRD

MOVE-APPEND DIRECTIVE

I The move-append directive (!M) moves one or more lines of text from the current buffer to the
specified auxiliary buffer. The lines are appended to the existing contents of the auxiliary
buffer; the existing contents of the auxiliary buffer are not overlaid. If the auxiliary buffer

I contains no text, the lines are placed in the auxiliary buffer starting at line 1. The lines moved
are deleted from the current buffer.

FORMAT: I [adr,[U adr,J}Mx
ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be moved from the current buffer to the auxiliary buffer.
Default: Current line.

adr2
Address of the last line to be moved from the current buffer to the auxiliary buffer.
Default: adr 1.

Note:
Ifboth adr 1 and adr 2 are omitted, only the current line is moved from the current
buffer to the auxiliary buffer.

x
Name of the auxiliary buffer to which the specified line(s) will be moved. The name must be
1 through 16 ASCII characters. A name of more than one character must be enclosed in
parentheses; otherwise, parentheses are optional.

Example:

1,3!M(SOOZ)

This directive appends lines 1 through 3 to the contents of auxiliary buffer SOOZ. If the
contents of the buffers are as follows prior to the move:

Current

(1) FmST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

SOOZ

AAAAA
BBBBB

The buffers will contain the following after the move:

Current sooz
(1) FOURTH (current line) AAAAA

BBBBB
FIRST

EDITOR 2-44 CBOI

(

(~/

SECOND
THIRD

EDITOR DEBUGGING DIRECTIVES

The functions of Editor debugging directives are listed below.

!M / 88l!!J1IP

~D

• Print contents of specified line(s) on the user terminal (hexadecimal dump directive).

• Display, on the user-out file, the last specified regular expression (ZREGEXP directive).

HEXADECIMAL DUMP DIRECTIVE

The hexadecimal dump directive (ZDUMP) prints the contents of specified line(s) on the user's
terminal in both hexadecimal and ASCII formats. The output format consists of the line
number, the length (number of characters) expressed in hexadecimal, eight words in hexa­
decimal format, and eight words in ASCII format.

The display of each buffer line is separated from following displays by a blank line. If a buffer
line is too long to be displayed on a single line, it is continued on the next line, with no blank line
separatiQn.

After this directive is executed, the current line is the last (or only) line printed.

FORMAT:

[adr.[1:1 adrJ]ZDUMP
ARGUMENT DESCRIPTION:
adrl

Address of the first buffer line to be dumped.
Default: Current line.

adr2
Address of the last buffer line to be dumped.
Default: adr l'

Note:
If both addresses are omitted, only the current line will be dumped.

Example:

The contents of lines 1 and 2 of the current buffer are:

(1) START EDIT
(2) VDEF ZFVER,X'3031

1,2ZDUMP

This hexadecimal dump directive produces the following output at the user's terminal:

0001 OOOA 5354 4152 5420 4544 4954 START EDIT

0002 0012 5644 4546 205A 4656 4552 2C58 2733 3033 VDEF ZFVER,X I 303

3127 II

Thus, 0001 indicates line number 1; OOOA indicates a length of 10 characters (A1J; followed by
the hexadecimal equivalent of START EDIT. A blank line is followed by the dump ofline 2, with
a length of 18 characters (1216), Because nine words are required to fully dump the line, the output
continues on the next line of the terminal, with no blank line intervening.

EDITOR 2-45 CBOI

I

I

I
*

I

*

'"2:~
ZREGEXP DIRECTIVE

The ZREGEXP directive displays, on the user-out file, the last specified expression. The
current line is not changed.

FORMAT:

ZREGEXP

Example:

S/ABCIDEFI
ZREGEXP

This ZREGEXP directive displays the last specified expression; i.e., IABC/.

EOn-OR PROGRAMMING DIRECTIVES

Editor programming directives cause conditional execution of subsequent directives, change
the location of subsequent Editor input, and display a line of text on the user-out file. Pro­
gramming directives can be in the directive input file (specified in the -IN path argument of the
ED command) or an auxiliary buffer, or they can be entered through a terminal.

Each conditional directive includes one or more other Editor directives. The directives must
be on a single line. If the specified condition exists, the subsequent imbedded directive(s) are
executed. The following conditions can be tested:

• Does specified line exist (address prefIX directive).

• Does current buffer contain data (if empty and if not empty directives).

• Is current line a specified line (if line and if not line directives).

• Is current line within specified lines (if range and if not range directives).

• Is specified expression within specified lines (search and search not directives).

Programming directives also have the following capabilities:

• Change location from which Editor accepts subsequent directives (go to directive).

• Define location that can be the endpoint of a go to directive Oabel directive).

• Display a line of text on the user-out file (type directive).
Note:

If a directive format comprises multiple directives, the directives may be
separated by spaces for readability.

ADDRESS PREFIX DIRECTIVE

If a specified line exists in the current buffer, directives in the address prefix directive line are
executed; otherwise, they are not.

FORMAT:

?adr {:} directive [directive] ...

ARGUMENT DESCRIPTIONS:
adr

Address of the line for which the Editor will search.

EDrrOR 2-46 CBOI

(/

? / >

Note:
If adr is immediately followed by a semicolon, adr becomes the current line. If adr
is immediately followed by a comma, the current line is not changed.

directive
Any Editor directive(s); they are executed only if the specified line is found.

Example 1:

?8;P

This address prefix directive specifies that if there is a line 8 in the current buffer, print the
contents of that line; that line will become the current line.

Example 2:

In this example, the contents of the current buffer are:

(1) DEFGHI
(2)ABCXYZ
(3) ABCGGG (current line)

?/ABC/;S/ABCIDEF

This address prefix directive designates that if there is a line that contains ABC, make that
line the current line, and in that line replace each occurrence of ABC with DEF.

After this directive is executed, the current buffer will contain:

(1) DEFGHI
(2) DEFXYZ (current line)
(3)ABCGGG

GO TO DIRECTIVE

The go to directive changes the location from which the Editor accepts subsequent directives.

If the go to directive is encountered in the buffer that is currently being executed, the Editor
accepts subsequent directives from a specified location in that buffer. The location must have
been previously defined in a label directive.

If the go to directive is entered interactively, only directives in the current directive line are
accessed.

FORMAT:

> label

ARGUMENT DESCRIPTION:
label

Location to which control is transferred; the Editor accepts subsequent directives from this
location.

If the label comprises multiple characters, they must be enclosed within parentheses;
otherwise, the parentheses are optional.

EDrrOR 2-47 CBOI

o

Example 1:

In this example, the contents of the current buffer are:

(1) EAST ROCKAWAY, NY
(2) LONG BEACH, NY
(3) BRIGHTON, MASS
(4) ANDOVER, MASS
(5) HEWLETT, NY

Buffer 2 contains the following directives:

: (REPEAT) 1,$P

1,$S/MASS$IMASSACHUSETTS/P

1,$SINY/NEW YORKI>REPEAT

Example 2:

:A?/ABC/;S/ABCIDEF/P>A

Assigns label REPEAT to print directive line.

Substitutes each occurrence of MASS at the
end of a line with MASSACHUSETTS and
prints the contents of the last line in the buffer
(Le., line number 5).

Note:
When the Editor searches the buffer the
second time and does not find
MASS at the end of a line, control
returns to the previous buffer or to
the terminal.

Substitutes each occurrence of NY with NEW
YORK and prints the contents of all lines (Le., .
lines 1 through 5).

If the above directive is entered interactively, the actions listed below take place. The
information to the right of each action indicates how the action is requested in the above
directive line.

Assign label A to directive line.

If ABC exists, take the subsequent actions.

Change the current line to the location of ABC.

Replace each occurrence of ABC with DEF.

Print the current line.

:A
?/ABCI

; preceding the substitute directive

S/ABC/DEFI

P

Go to line A (Le., reexecute the same directive line) > A

After all lines containing ABC have been acted upon (Le., each occurrence of ABC has been
replaced with DEF and the resulting lines printed), control returns to the next directive
entered interactively.

IF EMPTY DIRECTIVE

If the current buffer is empty, the directive(s) in the if empty directive line are executed;
otherwise, they are not.

EDITOR 2-48 CBOI

(

1\ # / # / adr# / adr 1\ #

FORMAT:

/\ #directive [directive] ...

ARGUMENT DESCRIPTION:
directive

Any Editor directive(s); they are executed only if the current buffer does not contain data.

IF NOT EMPTY DIRECTIVE

If the current buffer contains data, the directive(s) in the if not empty directive line are
executed; otherwise, they are not.

FORMAT:

#directive [directive] ...

ARGUMENT DESCRIPTION:
directive

Any Editor directive(s); they are executed only if the current buffer contains data.

IF LINE DIRECTIVE

If the current line is the specified line, the ifline directive(s) are executed; otherwise, they are
not.

FORMAT:

adr#directive [directive] ...

ARGUMENT DESCRIPTIONS:
adr

Address of the line being checked to see if it is the current line.

directive
Any Editor directive(s); they are executed only if the specified line is the current line.

IF NOT LINE DIRECTIVE

If the current line is not the specified line, the if not line directive(s) are executed; otherwise,
they are not.

FORMAT:

adr /\ #directive [directive] ...

ARGUMENT DESCRIPTIONS:
adr

Address of the line being checked to see if it is the current line.

directive
Any Editor directive(s); they are executed only if the specified line is not the current line.

EDITOR 2-49 CBOI

Addresses# I Addresses /\ # I *

IF RANGE DIRECTIVE

If the current line is within specified lines, directive(s) on the if range directive line are
executed; otherwise, they are not.

FORMAT:

adr1 {:} adr2#directive [directive]

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be searched.

adr2
Address of the last line to be searched.

directive
Any Editor directive(s); they are executed only if the current line is within addresses adr 1

through adr 2.

IF NOT RANGE DIRECTIVE

If the current line is not within specified lines, directive(s) on the ifnot range directive line are
executed; otherwise, they are not.

FORMAT:

adr1 {:} adr2/\ #directive [directive] ...

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be searched.

adr2
Address of the last line to be searched.

directive
Any Editor directive(s); they are executed only if the current line is not within addresses adr 1

through adr 2.

Example:

1,10/\ #S/yes/no/

This ifnot range directive specifies that if the current line is not within lines one through ten,
in the current line substitute each occurrence of "yes" with "no."

SEARCH DIRECTIVE

If a specified expression is within specified lines, directive(s) on the search directive line are
executed; otherwise, they are not.

FORMAT:

adr1 {:} adr2*/regexp/directive [directive] ...

EDrrOR 2-50 CBOI

(/

ARGUMENT DESCRIPTIONS:
adr1

Address of the first line to be searched for the regular expression.
Default: Current line.

adr2
Address of the last line to be searched for the regular expression.
Default: adr1•

Note:
If both adr1 and adr2 are omitted, only the current line is searched.

regexp
String of characters for which the Editor is searching.

directive

/ //:

Any Editor directive(s); they are executed only if the specified expression is within the
specified addresses.

SEARCH NOT DIRECTIVE

If a specified expression is not within specified lines, directive(s) on the search not directive
line are executed; otherwise, they are not.

FORMAT:

adr1 {~} adr2" */regexp/directive [directive] ...

ARGUMENT DESCRIPTIONS:
adr 1

Address of the first line to be searched for the regular expression.
Default: Current line.

adr2
Address of the last line to be searched for the regular expression.
Default: adr1•

Note:
Ifboth adr1 and adr2 are omitted, the directives are executed only if the regular
expression is not in the current line.

regexp
String of characters for which the Editor is searching.

directive
Any Editor directive(s); they are execlited only if the specified expression is not within the
specified addresses.

LABEL DIRECTIVE

The label (:) directive defines a location to which the Editor can be directed (via a go to
directive) for subsequent directives. If a g() to directive is entered interactively, only the current
directive line is searched for the label. The label directive must be specified at the beginning of a
line.

FORMAT:

:labeldirective [directive] ...

EDITOR 2-51 CB01

*

: / T

ARGUMENT DESCRIPTION:
label

Location that can be the argument value of a go to statement; i.e., a location to which control
can be transferred. Ifmultiple characters constitute the label, they must be enclosed within
parentheses; otherwise, parentheses are optional.

directive
Any Editor directive(s); they are executed when control passes to the specified label.

TYPE DIRECTIVE (T)

The type directive displays a line of text on the user-out file. If the optional exclamation point (!)
is specified in the directive format, the next input or output will appear immediately after the
typeout, on the same line; otherwise, the next typeouts are on subsequent lines.

FORMAT:

[!]T/text/

ARGUMENT DESCRIPTIONS:
/

Delimiter; can be any nonblank character, but the same character must be used in each
place where a delimiter is required.

text
Text to be displayed.
Default: One blank line.

Example 1:

'V/IDENTIFICATION NUMBER!

This type directive prints IDENTIFICATION NUMBER. Since the optional exclamation
point was not specified, subsequent input or output will appear on subsequent lines.

Example 2:

IT/IDENTIFICATION NUMBER !B2/

This type directive prints IDENTIFICATION NUMBER and the contents of auxiliary buffer
B2. IfB2 contains FOR THIS YEAR, the typeout will be: IDENTIFICATION NUMBER FOR
THIS YEAR. Since the directive name T was immediately preceded by an exclamation point,
the next input or output will appear immediately after the printout, on the same line.

PROGRAMMING CONSIDERATIONS

1. A tab feature exists within program preparation. Tabbing causes embedded tab char­
acters to be replaced with the appropriate number of spaces so that printed output on a
printer, operator terminal, or other terminal has "tab stops" at character position 11 and
at every subsequent 10 character positions. Tab characters can be entered into source
lines by pressing CTRL I on the terminal device while entering insert and/or substitute
directive(s). CTRL I is a nonprinting tab character that has a hexadecimal value of 09.
Tabbing is not apparent until a printout occurs.

2. The Editor uses a minimum of two temporary work files in the working directory. These
files are created by the Editor when the Editor is invoked; they exist only during the

EDITOR 2-52 CBOI

(

current execution of the Editor. A minimum of20 diskette or 10 cartridge sectors must be
available in the working directory for temporary work files. Additional temporary files
are created for each auxiliary buffer used; the number of temporary files is limited by the
space available in the working directory.

3. A quit directive must be entered so that the Editor will close and release temporary work
files created in the working directory.

4. If you specify a buffer name comprising more than a single character and omit the
parentheses, only the first character is considered the buffer name; subsequent characters
are treated as directives.

5. If a file manager error (190223, lack of space) or a physical error (190107) is encountered,
use the quit (Q) directive to exit from the Editor, and restart after the problem has been
corrected. Attempting to recover by other means (such as the escape sequences) may cause
unspecified results. If an error occurs while processing a work file (this situation is
indicated by an error message that is not followed by a file name), the Editor may
terminate processing and a fatal error message is issued.

EDITOR 2-53 CB01

(

,;:';:Il10

(

Section 3

Language Processors

This section describes how to load each language processor.

LOADING AND EXECUTING THE MACRO PREPROCESSOR

To load and execute the Macro Preprocessor, enter the MACROP command, which is described
below.

After the Macro Preprocessor is loaded, there is a typeout to the error-out file of the revision
number, in the following format:

MACROP-nnnn-mmlddlhh!mm I
where nnnn is a release identification and mmlddlhhmm is the Macro Preprocessor link date
and time (mm-month, dd-day, hh-hour, mm-minutes).

Macro Preprocessor output is generated as the file path.A in the working directory.
Note:

Path is the simple pathname, excluding the SuffIX appended by the Macro Preprocessor.

FORMAT:

MACROP path [ctLarg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the unexpanded source unit file to be processed by the Macro Preprocessor.
Omit the SuffIX.

ctLarg
Control arguments; none or any number of the following control arguments may be entered,
in any order:

{-INCLUDE_CONTROLS}
-IC

Instructs the Macro Preprocessor to incorporate as comment statements in the expanded
source output all macro control statements and inline macro definitions.
Default: Exclusion of such comments from the expanded source output.

{-MACRO_CALLS}
-MC

Instructs the Macro Preprocessor to incorporate all macro call statements as comment
statements in the expanded source output.
Default: Exclusion of such comments from the expanded source output.

{-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of memory that the Macro
Preprocessor may use for work space. nn must be from 01 through 64.
Default: 2K words (204810)

LANGUAGE PROCESSORS 3-1 CBOI

I

I

*

I
*

I

MACROP/ASSEM

Notes:
1. The Macro Preprocessor always issues a typeout, of the number of errors

found, to the error-out file.
2. If an unexpanded source statement contains an error, the Macro Pre­

processor flags the statement, converts it to a comment statement, and
writes it to the expanded source file.

LOADING AND EXECUTING THE ASSEMBLER

To load and execute the Assembler, enter the ASSEM command which is described below.

After the Assembler is loaded, there is a typeout to the error-out file of the revision number, in
the following format:

ASSEM-nnnn-mm/dd/hhmm

where nnnn is a release identification and mm/dd/hhmm is the Assembler link date and time
(mm-month, dd-day, hh-hour, mm-minutes).

FORMAT:

ASSEM path [ctLarg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the source unit file to be assembled. Omit the suftlx.

ctLarg
Control arguments; none or any number of the following control arguments may be entered,
in any order.

-COUT ouLpath /
Listing will be written to the file oq.Cpath; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.

Note:
Path is the simple pathname, excluding the suffix appended by the Assembler.

{-LAF I
-SAF
-SLIC

Addressing mode in which the source unit will be assembled. -LAF designates long­
address form; -SAF designates short-address form. -SLIC designates that the source unit
will be able to execute in either SM or LAF.
Default: The mode configuration in which the Assembler is executing (must be SAF or
LAF).

{-LIST_ERRS}
-LE

Specifies that only those source lines containing assembly errors, together with their
error codes, are to be listed.
Default: If omitted, and -NL is not specified, the complete source program is listed,
including error codes, if any.

LANGUAGE PROCESSORS 3-2 CBOI

(

(/

{-NO_LIST}
-NL

Suppresses source listing.
Default: Source listing produced.

Suppresses object text unit output.

ASSEM

Default: Object text unit is generated as the file path.O in the working directory.
Note:

Path is the simple pathname, excluding the suffix appended by the Assembler.

{-SIZEnn}
-SZ nn

nn designates the maximum number of 1024-word memory blocks that may be used for
the Assembler's symbol table and for producing a cross-reference listing, if requested. nn I
must be numeric and be from 01 through 64.
Default: lK words (102410)

{-XREF } I
-CROSS_REF

Produces a cross-reference listing, even if -NL or -LE is specified. The listing is appended
to the source listing. If there is no source listing, the cross-reference list will be produced
anyway. Figure 3-1 illustrates the source listing ofa sample source unit and Figure 3-2
illustrates the cross-reference listing of that unit.

Notes:
1. Files created and used during current execution of the component (ASSEM

with -CROSS_REF or -XREF) are released upon termination of the
execution.

2. The Assembler creates a file named path.W in the working directory. This
file is deleted by the Assembler when the cross-reference listing is
produced.

3. The Assembler always issues a typeout, of the number of errors found, to
the error-out file.

LANGUAGE PROCESSORS 3-3 CBO!

I

I

ASSEM

BUBBLE 101577 BUBBLE SORT

0000
0009

0000 9BCO 0009
0002 ABCO 0000
0004 1COO
0005 B872
0006 B902
0007 0385
0008 lCOI
0009 8E02
OOOA BF42 FFFF
OOOC ADD1
0000 0278
OOOE 89EI
OOOF 19F3
00 I 0 8385

OOOA

-SLJ C 1978/04/11 0842: 01.2 ASSEMBLER-O 110-04/11/0837 GCOS6 M:JD400-S 110-03/0 5/ 1100

TITLE BUBBLE.'101577' BUBBLE SORT
<THIS SUBROUTINE-DOES A SIMPLE BUBBLE SORT OF WHATEVER
<SINGLE PRECISION BINARY INTEGERS ARE IN COMMON BLOCK. DATA.
<THE SORT LEAVES THE DATA IN THE COMMON BLOCK IN ASCENDING
<NUMERICAL SEQUENCE. - -

-<USAGE IS LNJ SB5.BUBBLE

<THIS PROGRAM WILL EXECUTE IN BOTH SAF AND LAF ADDRESS MODES.
<HENCE ASSEMBLED IN SLIC MODE.

•
LODATA EQU DATA
HIDATA EQU DATA+9
BUBBLE LAB SBI.HIDATA
LINE2 LAB SB2.LODATA

LDV SRI.O
LINE4 LOR SR3.+SB2

CMR SR3.SB2
BLE >LINEIO
LDV SRI'!
SWR SR3.SB2
STR SR3.SB2.-1

LINEIO CMB 5B2.=$BI
BL >LlNE4
CHZ -SBI
BNEZ SRI.>LINE2
JI<P SS5

<
DATA COMM 10

ORG DATA

PAGE 0001

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031

0000
0000
0001

1234
0063
A3DE
4184
0440
FCAB
0000
0022
OFA3
8000

DC X'1234',QQB(15,O),Z'A3DE',lOO+'A',AND(Z'2FF',X'444 1),-853

0002
0003
0004
0005

000032 0006
0007
0008
0009

000033 OOOA
0000 ERR COUNT
00152 ~ORD SY~BOL

DC 0.HAX(-55.X'22').4003.-X'8000'

END BUBBLE

TABLE

Figure 3-1. Source Listing of Source Unit to be Cross Referenced

LANGUAGE PROCESSORS 3-4 CBOI

,,­
f

(

bUBBLE 10 1577 BUBBLE SORT -SLIC 1978/04/11 0842:01.2 ASSEMBlER-OllO-04/1l/0837 GCOS6I'OD400-S110-03/05/1100

SBI
5B2
Sti5
SRI ****
SR3 **'1\:*

N BUBBLE 1.
O~ TA 29
HID~T' 13
L1~E 1 0 23
lJNE2 15
LINE4 17
LODATA 12

I I III

7 LABELS
25 REFERENCES
33 RECORDS

0 u Fl~GS
0 M FLAGS
I N FLAGS

Legend:

1.
15
27
I.
17

12
I.
19
26
2"
IS

23
17

20
I~

25
18

2.
21

13 30

IV

I - Optional error flag:

21 22 23

22

M - Designated label occurs more than once in the label field in
the source unit; i.e., the label is multiply defined.

U - Designated label is not defined; **** is also included in the
definition field.

N - Designated label is defined but not referenced.
II - Identifiers (e.g., registers) and an .alphabetical list of all labels

in the assembly language source unit. Identifiers do not have to
be defined and are never flagged.

III - Number of the line in which the symbolic name is defined in the
source unit. Asterisks (****) indicate that the symbolic name was
not defined in this source unit.

IV - Number of each line that contains a reference to the symbolic name.
number U FLAGS - Number of undefined symbols.
number M FLAGS - Number of flags for multiply-defined symbols.
number N FLAGS - Number of symbols defined but not used.

Figure 3-2. Sample Cross-Reference Listing

LANGUAGE PROCESSORS 3-5

ASSEM

PAGE 0002 I

CBOI

I

I

FORTRAN

LOADING AND EXECUTING THE FORTRAN COMPILER

To load and execute the FORTRAN Compiler, enter the FORTRAN command, which is
described below.

After the FORTRAN Compiler is loaded, it issues a component identification to the error-out
file in the following format.

FORTRAN nnnn mm/dd/hhmm

where nnnn is a release identification and mm/dd/hhmm is the compiler link date and time
(mm-month, dd-day, hh-hour, mm-minutes).

FORMAT:

FORTRAN path [ctLarg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the source unit file to be compiled. Omit the suffix (.F).

ctLarg
Control arguments; none or any number of the following control arguments may be entered,
in any order:
-AS

Output is assembly language text contained in the file path. A. This file can be used with
the -SAF option as input to the Assembler. Modifications may be required to assemble the
file with the -LAF option (see the Assembly Language Reference manual).
Default: If omitted and -NO is not specified, an object text unit is produced as file path.O.

·COUT out-path
Listing will be written to the file ouLpath; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.

-FS
The compiler will not define the size of the work area when compiling a subroutine, nor
will it cause the implicit initialization of the work area when the subroutine is executed.
See note 3, below.

-HS
The source unit comprises Hollerith code or the source unit was created using a Series
200/2000 or Model 716 Central Processor.

{-LIST--ERRS}
-LE

Specifies that only those source lines containing compilation errors, together with their
error codes, are to be listed.
Default: If omitted, and -NL is not specified, the complete source program is listed,
including error codes, if any.

List object output. Object text listings in assembly language format will be interspersed
with source text listings.
Default: Object text is not listed.

LANGUAGE PROCESSORS 3-6 CBOI

" , '- ./

(

FORTRAN

Note:
This argument is not meaningful when used with the -AS argument.

{ -NO~IST}
-NL

Suppress all listings.
Default: If omitted and if -LE is not specified, the complete source program is listed,
including error codes, if any.

Generation of the object text unit is suppressed. (This option should not be used in
conjunction with -AS.)
Default: If omitted and -AS is not specified, an object text unit is produced as file path.O.

-SI
One word is allocated for each integer and logical variable.
Default: Two words are allocated for each integer and logical variable.

Note:
This argument affects space allocation only. The range of values of integer and
logical variables is the same regardless of whether the argument is
specified.

{-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of memory that the compiler
can use for tables. If the requested amount of memory is not available, the compiler will
use the available amount of memory.
Default: Available memory in the task group's memory pool; up to approximately 1700
words is used. There must. be at least 1K words available.

-UC
Suppress generation of embedded links to any subroutines referenced by a CALL state­
ment, and to functions other than intrinsic functions.

-UZ
Suppress generation of embedded links to system subroutines (i.e., all subroutines begin­
ning with the letters ZF).

-WRKn
Establishes the size in words of the object time workspace for FORTRAN programs. "n"
specifies the number of words and must be a one- to four-digit decimal number from 1 to
9999. See Note 3 below.
Default: 356 words.

Specifies that long address form (LAF) object text is to be generated.
Default: Short address form (SAF) object text is generated.

Note:
This argument is not meaningful when used with the -AS argument.

LANGUAGE PROCESSORS 3-7 CBOl·

I

I

FORTRAN

Notes:
1. Either LO or NL may be specified, but not both. Ifneither is specified, the compiler

produces a listing of the source text and diagnostics.
2. The FORTRAN Compiler always issues a typeout, of the number of errors found,

to the error-out file.
3. Most FORTRAN programs call input/output routines and intrinsic functions, the

majority of which utilize a workspace. Prior to the invocation of anyone of
these modules (routines or functions) the workspace must be initialized. The
FORTRAN Compiler automatically generates a workspace declaration and
the prologue code for initialization of the workspace in each main program
and each subprogram for which the -FS argument is not specified (the -FS
argument is ignored if specified for a main program). Use of the -FS argu­
ment implies that the subprogram either does not need the workspace or
depends upon another program to declare and initialize the workspace.
To avoid execution time errors involving use of the workspace, the declara­
tions of workspace in modules linked together in a bound unit must be
identical. Therefore, if you want to create general purpose subroutines to be
used in applications which require workspace areas of various sizes, you
should compile the subroutines with the -FS argument.
In some applications, variations in the workspace size may be necessary to
increase of decrease the default input/output buffer space of 128 words. The
-WRK arugment is used to make this modification. For details, refer to the
FORTRAN Reference manual.

4. The compiler is designed for batch compilations. That is, many source modules can
be passed to the compiler under one file name and each source module will be
compiled separately. The compiler expects an END statement in each source
module, followed by either an end-file or a new source module. In addition,
the SI, WRK, FS and HS arguments can be passed to the compiler as part of
the source module, rather than as arguments of the FORTRAN command.
Arguments specified in the FORTRAN command apply to all source modules
in the batch. Including these arguments in the source module permits them
to be varied on a module-by-module basis. To include these arguments in a
source module, enter each as a special comment immediately following the
PROGRAM, SUBROUTINE or FUNCTION statement for the module. The
general form is:

C*OPT= {~=n} , FS
HS

For example,
C*OPT= WRK=400

Note that the work area size argument requires an equals sign when it is specified as part of
a source module. More than one argument may be specified, but each requires a separate
comment line.

LANGUAGE PROCESSORS 3-8 CBOI

(

COBOL

LOADING AND EXECUTING THE ENTRY-LEVEL COBOL COMPILER

To load and execute the Entry-Level COBOL Compiler, enter the COBOL command, which is
described below.

After the Entry-Level COBOL Compiler is loaded, there is a typeout to the error-out file of the
revision number, in the following format:

COBOL nnnn mm/dd/hhmm

where nn is a release identification, mm/dd/hhmm is the compiler link date and time (mm­
month, dd-day, hh-hour, mm-minutes).

FORMAT:

COBOL path [ctLarg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the source unit file to be compiled. Omit the SUfiIX. The name must be the same
as that specified in the PROGRAM-ID clause of the COBOL source program.

ctLarg
Control arguments; none or any number of the following control arguments may be entered,
in any order:
-COUT ouLpath

Listing will be written to the file ouLpath; a SufiIX is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.
If a file other than the printer is requested, the file must already exist.

Note:
Path is the simple pathname, excluding the suffix appended by the COBOL
Compiler.

-DB
Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.

Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.

Note:
Path is the simple pathname, excluding the SUfiIX appended by the COBOL Compiler.

{-SIZE nn}
-SZ nn

Requests nn additionall024-word blocks of memory for compiler tables. nn must be from
04 to 64. The additional memory specified in the argument is used instead of the original
table size, and permits the COBOL Compiler to improve performance when compiling
large programs. If you request more memory than is available, the compiler uses the
available amount of memory. If specified, at least 3072 words must be available; other­
wise, the compiler will use the default memory size (3000 words). If this argument is not
specified, the compiler has approximately 3000 words of memory for table space.

LANGUAGE PROCESSORS 3-9 CBOI

*

:1

I

*

I

I

I

COBOUCOBOLI

Note:
The following control arguments are listing options. Only one listing option
may be specified at a time. Further, if no listing option is chosen and -NL is
not specified, the complete source program (along with any error codes) is
listed. This is the default for all listing options shown here.

-LD
List data map, source text, errors, and file map.

t-LIST--ERRS}
-LE

Specifies that only the error list is to be printed.

List source text, data map, errors, file map, and object code.

{-NO~IST}
-NL

Suppress all listings.
-XREF

Specifies that a cross-reference listing is to be produced. A listing option other than -NL
must be specified.

Note:
The Entry-Level COBOL Compiler always issues a typeout, of the number of
errors found, to the error-out file.

LOADING AND EXECUTING THE INTERMEDIATE COBOL COMPILER (COBOLl)

To load and execute the Intermediate COBOL Compiler, enter the COBOLI command, which
is described below.

After the Intermediate COBOL Compiler is loaded, there is a typeout to the error-out file of
the revision number, in the following format:

COBOLI nnnn mmlddJhhmm
where nnnn is a release identification, mmlddJhhmm is the compiler link date and time (mm­
month, dd-day, hh-hour, mm-minutes).

FORMAT:

COBOLI path [ctLarg]

ARGUMENT DESCRIPTIONS:
path

Pathname ofthe source unit file to be compiled. Omit the suffix. The name must be the same
as that specified in the PROGRAM-ID clause of the COBOL source program.

LANGUAGE PROCESSORS 3-10 CBOI

/

COBOLI

ctLarg
Control arguments; none or any number of the following control arguments may be entered,
in any order:
-COUT out_path

Listing will be written to the file ouLpath; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.
If a file other than the printer is requested, the file must already exist.

-DB

Note:
Path is the simple pathname, excluding the suffix appwded by the Intermediate
COBOL Compiler.

Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.

Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.

Note:
Path is the simple pathname, excluding the suffix appended by the COBOL
Compiler.

{-SIZE nn}
-SZ nn

Requests nn additional1024-word blocks of memory for compiler tables. nn must be from
15 to 64. The additional memory specified in this argument is used instead of the original
table size, and permits the COBOL Compiler to improve performance when compiling
large programs. If you request more memory than is available, the compiler uses the
available amount of memory. If specified, at least 15,000 words must be available;
otherwise, the compiler will use the default memory. If this argument is not specified, the
compiler has approximately 14,000 words of memory for table space.

-LD

Note:
The following control arguments are listing options. Only one listing option
may be specified at a time. Further, if no listing option is chosen and -NL is
not specified, the complete source program (along with any error codes) is
listed. This is the default for all listing options shown here.

List data map, source text, errors and file map.

Specifies that only the error list is to be printed.

List source text, data map, errors, file map, and object code.

LANGUAGE PROCESSORS 3-11 CBOI

*

*

I

I

*

I

I

COBOLIIRPG

-XREF
Specifies that a cross-reference listing is to be produced. A listing option other than -NL must
be specified.

{-NO_LIST}
-NL

Suppress all listings.
Note:

The Intermediate COBOL Compiler always issues a typeout, of the number of
errors found, to the error-out file.

COBOL COpy FILES

An Intermediate COBOL source program may contain statements in the form: COPY text­
name. The COBOL Compiler treats the text-name as a file name and appends the suflix ".IN.C".
This restricts the user-created portion of the text name to seven characters (i.e., overall file
name length cannot exceed twelve characters).

When a file containing text is requested, the compiler searches up to three directories for
text-name .IN.C in the following order:

• the current working directory

• > VDD>account> INCLUDE, where "account" would be the user identification account
field

• >LDD>INCLUDE

If the file is not found in any of these directories, an error message is produced and the COPY
statement is bypassed by the compiler.-

LOADING AND EXECUTING THE RPG COMPILER

To load and execute the RPG Compiler, enter the RPG command, which is described below.

After the RPG Compiler is loaded, there is a typeout to the error-out file of the revision
number, in the following format:

RPGnnnn

FORMAT:

RPG path [ctLarg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the source unit file to be compiled, without the suflix ".R". The SUffIX .R is
automatically appended before the search for the source unit file.

ctLarg
Control arguments; none or any number ofthe following control arguments may be entered,
in any order:

LANGUAGE PROCESSORS 3-12 CBOI

{

RPG

Listing will be written to the file ouLpath; ouLpath may specify the line printer. A suffix
is not automatically appended to the ouLpath. If this argument is omitted, the listing
will be written to the file source.L in the working directory, where "source" is the simple
name of the source unit file to be compiled. In either case, the file can later be written to a
line printer by using the print utility command.

List data map and object text in addition to the source text, diagnostics, and Linker
commands.

Suppress all listings.

Suppress object unit output.
Default: Object units are produced in the working directory as a number offiles, each with
a ".0" SUffIX and a compiler-generated base name. Ifa particular.O file already exists in
the working directory, it is overlaid by the output of the current compilation.

{-SIZE nn}
-SZnn

nn designates the maximum number of 1024-word blocks of memory that the RPG
Compiler may use for tables; nn must be from 04 to 28.
Default: 03

Notes:
1. Either LO or NL may be specified, but not both. If neither is specified, the

compiler produces a listing of the source text, diagnostics and the
Linker command file.

2. The RPG Compiler always writes the number of diagnostics produced to the
error-out file.

LANGUAGE PROCESSORS 3-13 CB01

I
I

I

I

I

*

I

C

Appendix A

Assembly Language
Program Independence

ASSEMBLY LANGUAGE PROGRAM HARDWARE INDEPENDENCE

If an assembly language program written for a model 6/30 is to be used on a model 6/40 or 6/50, I
the program must be written to be program independent of the hardware model. The additional
features in the larger model 6/40 and model 6/5(1 that must be considered are instruction I
prefetching that affects self-modifying procedures and long address form (LAF). The GCOS 6
MOD 400 Linker produces SAF, LAF, or SAF-LAF Independent Code (SLIC) bound units.

SELF-MODIFYING PROCEDURES

Use of a self-modifying procedure should be carefully considered for two reasons: (1) a I
self-modifying procedure cannot be made reentrant, and (2) the instruction, as modified, might
not be executed because of the instruction prefetching feature of the models 6/40 and 6/50. With I
instruction prefetching, an arbitrary number of words are prefetched in parallel with the
execution of the current instruction. The prefetch buffer is emptied only when a transfer of
control occurs. If an instruction is stored in a word that previously was prefetched, the prefetch I
buffer is not cleared and the prefetched instruction will be executed as it was prior to modification.

However, if a self-modifying procedure must be used, the program must contain code to
remove the prefetched instruction after modification is complete but before the modified code is
executed. This can be done by executing an unconditional branch of the form:

B $+2 FLUSH THE PREFETCH

WRITING SOURCE PROGRAMS THAT CAN BE EXECUTED IN BOTH
SAF AND LAF CONFIGURATIONS

There are two methods for writing a source program so that it can be executed in both SAF and
LAF configurations: SAF/LAF independence by assembly, which produces a program that is
assembled differently for each type of configuration, and SAFILAF independence by loading,
which produces a program that is assembled and linked in the same way but is loaded differ­
ently. For the second method, SAF/LAF Independent Code (SLIC) is used to create the source
program.

A SLIC program consists entirely of Assembler control statements, assembly instructions,
and macro calls, all of which are described in the Assembly Language Reference manual. These
items must be selected and combined according to the rules and restrictions described in the
following text. SLIC is the code that results from procedure.

As shown by Figure A-I, a program can run on a SAF and LAF configuration, if all the
compilation units are SLIC compilation units and linking is done by a GCOS 6 MOD 400 Linker.
When requested, the Assembler produces SLIe compilation units. However, the Assembler does I
not check that the code conform to the SLIC rules and restrictions. If the code does not conform,
the results of the program are unpredictable.

The valid ways in which SAF and SLIC compilation units and LAF and SLIC compilation
units can be linked into bound units are shown in Figure A-2.

The following system service macro calls should not be used in a program written in SAF/LAF
independent code (SLIC):

$CRB $PRBLK $TRB $MGCRB $MGCRT
$CRBD $RBD $TRBD $MGffiB $MGIRT
$IORB $SRB $WAITL $MGRRB $MGRRT
$IORBD $SRBD $WLIST

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-I CBOI

I

I

I

I

I

I

I

I

SOURCE r- ASSEMBLER r GCOS 6 MOD 400 r-- SAF
PROGRAM (-SAF) UNKER

T
LOADER CONFIGURATION (-SAF)

t
COMPILATION BOUND LOAD
UNITS UNITS UNITS

ASSEMBLER rL GCOS6 I l LAF
""- LINKER f-- LOADER r--(-LAF) (-LAFI CONFIGURATION

a. SAF/LAF Independence at Assembly

BOUND
UNITS

SOURCE
I-- ASSEMBLER r-- GCOS 6 MOD 400 1 r-- SAF

PROGRAM (-SUC) UNKER LOADER CONFIGURATION
(SUC)

t I
COMPLIATION LOAD
UNITS UNITS

1 LAF
"- LOADER -- CONFIGURATION

b. SAF/LAF Independence at Loading

Figure A-I. Methods of Achieving SAF/LAF Independence

SOURCE r-PROGRAM

SOURCE r---PROGRAM

SOURCE --PROGRAM

SOURCE --PROGRAM

SOURCE --PROGRAM

SAF COMPILATION
ASSEMBLER UNITS
(-SAF) I-

ASSEMBLER 1-" GCOS 6 MOD 400
(-SUC) UNKER

SUC COMPILATION
UNITS

ASSEMBLER
~

GCOS6
(-SUC) UNKER

ASSEMBLER
(-LAFI

LAF CONFIGURATION
UNITS

T
BOUND
UNITS

T
BOUND
UNITS

SUC ONLY COMPILATION UNITS

ASSEMBLER -- GCOS6 --(-SLIC) LINKER

LOADER

LOADER

LOADER

T
LOAD
UNITS

T
LOAD
UNITS

~

SAF
CONFIGURATION

LAF
CONFIGURATION

SAF OR LAF
CONFIGURATION

Figure A-2. Valid Combinations of Compilation Units for Linking

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-2

/'"

I
."~ <4

/

CBOl

(

~ ..

SAFILAF INDEPENDENCE BY ASSEMBLY

An assembly language program assembled to execute under a SAF system can be converted to
execute under a LAF system by simply reassembling the program for execution on the LAF
system. Reassembly is usually possible provided that the following rules are observed when the
program is written.

1. The program must be written so it will assemble without errors in either configuration;
e.g., a short displacement branch must satisfy the conditons -64.,,;d.,,;1 or 2.,,;d.,,;63 words
on the LAF configuration as well as on the SAF configuration.

2. All memory locations should be referenced by their symbolic names. The assembly
language label $AF can also be used in expressions to correctly reference the desired
memory location; however, the $AF reference should be used with care since its use
requires a good understanding of how the hardware operates. I

3. Offsets to elements of a data structure containing pointers must be defined symbolically.
When the data structure actually exists in another program, the assembly language label
$AF can be used in an equate statement to provide the proper template.

4. All constants used in index computation to reference arrays of structures containing
pointers must be symbolically defined.
For example: if the span of an array element is "a" words plus "b" addresses, then the
constant should be defined by the expression a + b* $AF. This constant can then be used to
compute an index register value which is in tum used in a LAB instruction to set a base
register to the beginning of the desired occurrence of the array element.

5. All fields that are to contain pointers must be defined as address constants or a reserve of
$AF words. Such fields must be referenced by their symbolic names.

6. All external procedure calling sequences that modify their argument list must be
designed to operate correctly, through the use of $AF, whether assembled for a SAF or
LAF configuration.

7. The size of a common block that contains pointers must be specified by an expression
involving the label $AF to give the correct size, whether the program is assembled for a
SAF or LAF configuration.

S. All address manipulation must be performed using base registers (B1-B7). The L1\J3
instruction with base plus displacement or base plus index addressing is useful for
address manipulation.

SAFILAF INDEPENDENCE BY LOADING

This section contains rules for writing assembly language programs that can be executed
(without reassembly or relinking, but with suitable modifications by the loader) in either a SAF
or LAF configuration. That is, the source language program can be assembled and linked into a
bound unit. This bound unit can then be loaded and executed on either a SAF or LAF confIguration.

DIFFERENCES BETWEEN SAF AND LAF

Memory is allocated and most memory addresses are determined by the Assembler or a
compiler. SAF and LAF differ in their definition and use of memory addresses. This difference
affects the following items:

1. Instructions or data whose size (space allocated) depends on thE:! addressing mode; that is,

a. Instructions that use IMA operands (and certain instructions whose operands are
base registers and that use IMO operands). I

b. Declarations of memory addresses as data; that is, address constants or address
variables.

2. Data whose location in memory depends on the addressing mode; in particular, data
structures whose address or format is determined by hardware specifications, such as
interrupt and trap vector and save areas (IV, TV, ISA, TSA).

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-3 CBOI

I
I
I

*

I

3. References to such instructions or data. The significant instances of this are:

a. References to (sequences of) instructions using IMA operands.

b. References to data strucqs containing pointers.

c. References to data structures defined by hardware.
Such references are resolved by (1) the Assembler or compiler (for most internal or
common references), (2) the Linker (for some internal references, some common
references, and external references), or (3) the loader (for some external references and for
relocation).

4. Memory addresses, whether in instructions or in data declarations, that contain values
prior to the start of execution. The significan~ instances of this are:

a. IMA operands and instructions whose operands are base registers and that use IMO
operands.

b. Declarations of pointers with initial values; that is, address constants
(DC <locationexpression).

These memory addresses must be examined because the value of the memory address
must be resolved in a single word for SAF and in two words for LAF.

5. Addressing formats and instructions whose execution is different in the two addressing
modes. Specifically, the addressing formats for indexing with or without pre-decrement or
post-increment (the .$R, .+$R, .-$R types) and for push and pop (+$B and -$B) operate
differently when used with the five base register instructions:

LDB, STB, CMB, SWB, CMN

. GENERAL RULES FOR WRITING SLIC PROGRAMS

1. Allocate two words for all memory addresses, whether they are instruction operands or
data declarations. That is, generate or assemble essentially in LAF. This ensures that
sufficient space is allocated to execute in LAF. (The Assembler will set $AF equal to 2
when invoked with the -SLIC control argument.)

2. When loading a SLIC program for execution in SAF, the loader will:

a. Replace a sequence of (two word) pointers in an argument list or a pointer array by a
sequence of one-word pointers followed by an equal number of one word NOPs. That
is, the sequence is compressed into consecutive words. Adjustment of references to
such argument lists and pointer arrays is not performed. In the case of an argument
list, the control word is also adjusted appropriately.

b. Replace an individual (two word) memory address, whether an instruction operand or
a data item;by a single-word memory address followed by a one-word NOP. That is,
the value is moved into the first of the two words. References to the leftmost of the two
words work for both SAF and LAF execution.

PROCEDURES FOR WRITING SPECIFIC PARTS OF A SLIC PROGRAM

The following procedures for writing specific parts of a SLIC program are derived from the
general rules described previously. Methods for handling data structures, pointers, argument
lists, and other commonly used items are described.

ADDRESSING MODE

Invoke the language processor with the -SLIC argument. For the Assembler, this sets $AF
equal to 2. Assembly language programs should use the ARGLST and PTRA Y Assembler
control statements to define argument lists and pointer arrays, respectively. The CALL state­
ment will also generate any appropriately identified argument list. Individual pointers should
be dermed as address constants or by a RESV statement with the reserved label $AF.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-4 CBOI

(

c

DATA STRUCTURES CONTAINING POINTERS

The techniques used for declaring, allocating space for, and referencing data structures
containing pointers differ somewhat, depending on the kind of data structure. The most com­
monly used data structures containing pointers are classified as follows:

• Data management structures (FIBs).

• Argument lists (in calls) and pointer arrays.

• Request blocks (RBs).

• Individual pointers.

• Hardware defined structures.

For Fills, two words are allocated for each pointer whether execution is to be in SAF or LAF.
For argument lists, pointer arrays, and request blocks, one word is allocated for each pointer
when execution is to be in SAF or two words are allocated when execution is to be in LAF.

For argument lists and pointer arrays in a SLIC program, the loader compresses the sequence
of two-word pointers into consecutive single-word pointers for execution in SAF. For request
blocks, the loader does not compress the structure .

•
With this approach, software - including the Monitor - has to deal with only one form for a I

given system data structure. For FIBs (and individual pointers), there is only one form,
regardless of the addressing mode in which the program is executing. For argument lists,
pointer arrays, request blocks, and hardware defined structures, a program executing in a given
addressing mode receives only the form corresponding to that address mode.

An individual pointer must always be addressed by its first (or only) word. This is how the
hardware works, and is why the loader moves the value into the first word when loading for
execution in SAF. (Elements of an argument list or a pointer array, other than the first, cannot
be referenced symbolically, as noted later.)

References to a pointer should be with instructions that explicitly operate on addresses; e.g.,
LDB. Other instructions, such as those that always operate upon two-word items, should be used
carefully in a SLIe program. For example, arithmetic operations cannot be performed because
when they are executed in SAF, the value of a pointer appears in the high-order position (first of
the two words), not in the low-order position (second of the two words) appropriate for arithmetic.

DATA MANAGEMENT STRUCTURES (FIBS)

Data management structures (FIBs) must be allocated with two words for each pointer in
them. A FIB is not compressed when loaded for execution in SAF; but the loader does move the
value of the pointer from the second word into the first.

This kind of structure can be declared symbolically. Honeywell supplies the declaration as a
macro for use in assembly language programs.

Data items, including pointers, can be referred to symbolically via the declaration. Refer to a
data item by the label assigned to it or by an expression not using $AF.

When referring to pointers with base register instructions, do not use the indexed, push, or pop
addressing formats. These addressing formats will not work with this kind of structure, because
the formats index, increment, or decrement by one word units when they are executed in SAF.

An initial value can be declared for any data item, including pointers.

ARGUMENT LISTS AND POINTER ARRAYS

When argument lists and pointer arrays are used as system data structures (e.g., in inter-program
communication), a standard form is required. Argument lists and pointer arrays use one-word
(consecutive) pointers when they are executed in SAF. They must be allocated with two-word
pointers in a SLIC program, so that it can be executed in LAF. However, they are compressed by
the loader when they are loaded for execution in SAF. This permits them to be declared with
initial values - in particular, it minimizes the need to assign values to arguments at execution
time.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-5 CBOl

I

I

I

I

I

Thus, when a SLIC program executes in SAF, the pointers in an argument list or a pointer
array occupy consecutive words, and the remainder of the structure is initialized to a sequence of
one-word NOPs.

Although this kind of structure can be declared with initial values (because it will be altered
appropriately by the loader for execution in SAF), it should be referenced only by base register
instructions because the addresses of the pointers in it depend on the addressing mode used at
execution time.

Assembly language programs should define argument lists via the CALL statement or
through use of the ARGLST Assembler control statement. Pointer arrays should be defmed by
the PTRA Y Assembler control statement.

The first pointer of an argument list or pointer array and the control word of an argument list
can be referred to symbolically. When a SLIC program is loaded for execution in SAF, the
pointers are compressed from a sequence of two-word values into a sequence of one-word
(consecutive) values. As a result, references to other data items in this kind of structure must be
computed at execution time.

I Refer to a pointer in this kind of structure only with base register instructions with indexed,
push, or pop addressing formats. These addressing formats will work because they index,
increment, or decrement by one-word units when executing in SAF and two-word units when
executing in LAF. For example, suppose there are n elements (arguments or elements of a
pointer array), and the location named N contains the desired element number in the range 1 to
n. Let register B7 point either to the argument list's control word or directly to the first word of
the pointer array. Then, a convenient way of referring to the desired element is:

I

I

I

For argument lists

LAB
LDR
LDB

$B1, $B7.1
$R1,N
$B2, $Bl.-$R1

For arrays

LAB
LDR
LDB

$B1, $B7
$R1, N
$B2, $Bl.-$R1

If the element number is known at assembly time, rather than being a variable as assumed in
the code sequences above, then the references to N can be replaced by an immediate memory
operand (= N) or the LDR may be replaced by an LDV ifN ~ 127. Do not use the base register plus
displacement addressing format (as in LDB $B2,$Bl.N -1), because that addressing format does
not adjust for addressing mode.

REQUEST BLOCKS (RSS)

A request block must be allocated with two words for each pointer in it when it is executed in
LAF, but only one word for each pointer when it is executed in SAF. In a SLIC program, the
two-word allocation is not compressed by the loader for execution in SAF.

A request block cannot be declared symbolically in a SLIC program. Since it has one-word
pointers when it is executed in SAF and two-word pointers when it is executed in LAF, the same
declaration cannot be used for execution in both addressing modes. This kind of structure must
be constructed (have values placed in it) at execution time.

Data items (including pointers) in request blocks cannot, in general, be referred to symboli­
cally. Since pointers occupy a different number of words in the two addressing modes, addresses
within the structure are not known at assembly time. References to data items in a request block
must be computed at execution time.

A convenient technique for constructing a request block is to step through it item by item,
using the automatic incrementation addressing formats. When pointers are referenced, base
register instructions can· be used with the indexed, push, or pop addressing formats. These
instructions work on either addressing mode because they use one-word units when executed in
SAF and two-word units when executed in LAF. Do not use the LAB instruction with indexing,
incrementation, or decrementation, since the LAB uses one-word units in both addressing
modes.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-6 CBOl

("- .. ".

An initial value cannot be declared for a data item in a request block.

INDIVIDUAL POINTERS

An individual pointer ("DC <location-expression" in assembly language) can be declared
symbolically. Each pointer must be declared as an individual data item.

An individual pointer should be referred to by its label. However, as is the case in SAF/LAF
independence by assembly, an individual pointer can also be referred to by a location expression
involving the use of $AF.

I

When referring to an individual pointer (with a base register instruction), do not use the t I
indexed, push, or pop addressing formats.

An initial value can be declared for an individual pointer. Thus, a SLIC program can contain
individual address constants (as well as address constants in FIBs, argument lists, and pointer
arrays).

HARDWARE-DEFINED STRUCTURES

Certain data structures are defined by the hardware. These structures have one-word
pointers when executing in SAF, and two-word pointers when executing in LAF. Structures of
this kind are:

• Base register areas used with SA VE and RSTR instructions. The same mask should be used
to restore registers as was used to save them, and the save area must have two words
reserved for each base register to be saved.

• Trap and interrupt vectors and save areas:
User programs must refere~ce trap save areas in the same way that request blocks are
referenced; i.e., the addresses needed must be computed at execution time. Only the
Monitor is allowed to access the trap vectors, interrupt vectors, and interrupt save areas. I

• Queue frames and stack headers:
Queue frames and stack headers are treated the same as request blocks for the purpose of
creating a SLIC program.

IMMEDIATE MEMORY ADDRESS OPERANDS

An immediate memory address (IMA) operand ("< location-expression" in assembly I
language) cannot be followed by other fields of the instruction because the loader would not
move those other fields when loading for execution in SAF. The loader places the value of the
IMA operand only into the first word, and sets the second word to a NOP.

This constraint applies to the following instructions:

• Input/output instructions - 10, 10H, and 10LD.

• Bit instructions - LB, LBC, LBF, LBS, and LBT;

these instructions cannot be masked, but can be indexed if they use the lMA operand
field.

• SAVE, RSTR, SRM.

Other instructions either do not allow lMA operands or have only one possible address
operand and do not have control fields following, so they can be used without restriction.

ABSOLUTE ADDRESSES

Only the Monitor and certain system programs such as Debug need to reference absolute I
memory locations. If any of these programs are written as SLIC programs, all absolute addresses
must be generated at execution time.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE A-7 CBOI

•

ABSOLUTE
ABSOLUTE ADDRESSES, A-7
ABSOLUTE PATHNAME, 1-5

ACCEPT
ACCEPT SINGLE LINE FROM OPERATOR

TERMINAL, 2-36

ADDRESS
ADDRESS PREFIX DIRECTIVE, 2-46
DESIGNATING CONTENTS OF LINE AS AN

ADDRESS, 2-4
DESIGNATING A LINE NUMBER AS AN

ADDRESS, 2-4
DESIGNATING POSITION OF LINE

RELATIVE TO CURRENT LINE AS AN
ADDRESS, 2-3

IMMEDIATE MEMORY ADDRESS
OPERANDS, A-7

ADDRESSES
ABSOLUTE ADDRESSES, A-7
COMPOUND ADDRESSES, 2-6

INDEX

BLOCKS
REQUEST BLOCKS (RBS), A-6

BUFFER
AUXILIARY BUFFER DIRECTIVES AND .

ESCAPE SEQUENCES, 2-35
BUFFER STATUS DIRECTIVE, 2-36
CHANGE BUFFER DIRECTIVE, 2-37

COBOL
COBOL COpy FILES, 3-12
LOADING AND EXECUTING THE

ENTRY-LEVEL COBOL COMPILER, 3-9
LOADING AND EXECUTING THE

INTERMEDIATE COBOL COMPILER, 3-10

COMPILATION
VALID COMBINATIONS OF COMPILATION

UNITS FOR LINKING (FIG), A-2

COMPILER

METHODS OF SPECIFYING ADDRESSES, 2-3

LOADING AND EXECUTING THE
ENTRY-LEVEL COBOL COMPILER, 3-9

LOADING AND EXECUTING THE
INTERMEDIATE COBOL COMPILER, 3-10

LOADING AND EXECUTING THE FORTRAN
COMPILER, 3-6

ADDRESSING
ADDRESSING MODE, A-4

ADVANCED
ADVANCED USAGE OF THE EDITOR, 2-29
GENERAL ADVANCED EDITOR

DIRECTIVES, 2-29

APPEND
APPEND DIRECTIVE, 2-12

ARGUMENT
ARGUMENT LISTS AND POINTER

ARRAYS, A-5

ARRAYS
ARGUMENT LISTS AND POINTER

ARRAYS, A-5

ASSEMBLER
LOADING EXECUTING THE

ASSEMBLER, 3-2

ASSEMBLY
ASSEMBLY LANGUAGE PROGRAM HARDWARE

INDEPENDENCE, A-I
ASSEMBLY LANGUAGE PROGRAM

INDEPENDENCE, A-I
SAF/LAF INDEPENDENCE BY

ASSEMBLY, A-3

AUXILIARY
AUXILIARY BUFFER DIRECTIVES AND

ESCAPE SEQUENCES, 2-35

7/78

LOADING AND EXECUTING THE RPG
COMPILER, 3-12

COMPOUND
COMPOUND ADDRESSES, 2-6

CONVENTIONS
CONVENTIONS USED IN EDITOR

DIRECTIVE FORMATS, 2-1
SUFFIX CONVENTIONS, 1-6

COPY
COBOL COpy FILES, 3-12
COpy DIRECTIVE, 2-41

COPY-APPEND
COPY-APPEND DIRECTIVE, 2-42

CREATING
CREATING A SOURCE UNIT, 2-11

CROSS-REFERENCE
SAMPLE CROSS-REFERENCE

LISTING, 3-5

CROSS-REFERENCED
SOURCE LISTING OF SOURCE UNIT TO

BE CROSS-REFERENCED, 3-4

CURRENT

i-I

DESIGNATING POSITION OF LINE
RELATIVE TO CURRENT LINE AS AN
ADDRESS, 2-3

NEW CURRENT LINE DIRECTIVE, 2-32

CBOI

INDEX

DATA
DATA MANAGEMENT STRUCTURES

(FIBS), A-5
DATA STRUCTURES CONTAINING

POINTERS, A-5

DEBUGGING
EDITOR DEBUGGING DIRECTIVES, 2-45

DEFINITION
DEFINITION OF A DIRECTORY, 1-3
DEFINITION DF A FILE, 1-3

DELETE
DELETE DIRECTIVE, 2-18

DESIGNATING
DESIGNATING A LINE NUMBER AS AN

ADDRESS, 2-4
DESIGNATING CONTENTS OF LINE AS AN

ADDRESS, 2-4
DESIGNATING FILE NAMES, 1-8
DESIGNATING POSITION OF LINE

RELATIVE TO CURRENT LINE AS
AN ADDRESS, 2-3

DEVICE
DEVICE FILES (OTHER THAN DISK AND

TAPE), 1-6
DEVICE PATHNAMES, 1-5
DISK DEVICE FILES, 1-6

DISK
DEVICE FILES (OTHER THAN DISK AND

TAPE), 1-6
DISK DEVICE FILES, 1-6

DUMP
HEXADECIMAL DUMP DIRECTIVE, 2-45

EDIT
CHANGE ORIGIN OF TEXT DURING EDIT

MODE, 2-38
EDIT MODE DESCRIPTION AND

DIRECTIVES, 2-17

EDITOR

7/78

ADVANCED USAGE OF THE EDITOR, 2-29
CONVENTIONS USED IN EDITOR

DIRECTIVE FORMATS, 2-1
EDITOR, 2-1
EDITOR DEBUGGING DIRECTIVES, 2-45
EDITOR PROGRAMMING DIRECTIVES, 2-46
GENERAL ADVANCED EDITOR

DIRECTIVES, 2-29
LOADING THE EDITOR, 2-8
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES (TBL 2-1), 2-9
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES, 2-8

EMPTY
IF EMPTY DIRECTIVE, 2-48
IF NOT EMPTY DIRECTIVE, 2-49

ENTRY-LEVEL
LOADING AND EXECUTING THE

ENTRY-LEVEL COBOL COMPILER, 3-9

ESCAPE
AUXILIARY BUFFER DIRECTIVES AND

ESCAPE SEQUENCES, 2-35
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES (TBL 2-1), 2-9
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES, 2-8

EXAMPLES
TREE STRUCTURE AND PATHNAME

EXAMPLES, 1-5

EXCLUDE
EXCLUDE DIRECTIVE, 2-29

EXECUTE
EXECUTE DIRECTIVE, 2-30

EXECUTING
LOADING AND EXECUTING THE

ENTRY-LEVEL COBOL COMPILER, 3-9
LOADING AND EXECUTING THE FORTRAN

COMPILER, 3-6
LOADING AND EXECUTING THE

INTERMEDIATE COBOL COMPILER, 3-10
LOADING AND EXECUTING THE MACRO

PREPROCESSOR, 3-1
LOADING AND EXECUTING THE RPG

COMPILER, 3-12
LOADING EXECUTING THE ASSEMBLER, 3-2

FIBS
DATA MANAGEMENT STRUCTURES

(FIBS), A-5

FILE
DEFINITION OF A FILE, 1-3
DESIGNATING FILE NAMES, 1-8
DIRECTORY OR FILE NAME

CONSTRUCTION, 1-4
FILE SYSTEM PATHNAMES, 1-3

FILES
COBOL COpy FILES, 3-12
DEVICE FILES (OTHER THAN DISK

AND TAPE), 1-6
DISK DEVICE FILES, 1-6
TAPE FILES, 1-6

FORMATS

i-2

CONVENTIONS USED IN EDITOR
DIRECTIVE FORMATS, 2-1

CB01

(
FORTRAN

LOADING .AND EXECUTING THE FORTRAN
COMPILER, 3-6

GENERAL
GENERAL ADVANCED EDITOR

DIRECTIVES, 2-29
GENERAL RULES FOR WRITING SLIC

PROGRAMS, A-4

GLOBAL
GLOBAL DIRECTIVE, 2-31

GO
GO TO DIRECTIVE, 2-47

HARDWARE
ASSEMBLY LANGUAGE PROGRAM HARDWARE

INDEPENDENCE, A-1

HARDWARE-DEFINED
HARDWARE-DEFINED STRUCTURES, A-7

HEXADECIMAL

IF

HEXADECIMAL DUMP DIRECTIVE, 2-45

IF EMPTY DIRECTIVE, 2-48
IF LINE DIRECTIVE, 2-49
IF NOT EMPTY DIRECTIVE, 2-49
IF NOT LINE DIRECTIVE, 2-49
IF NOT RANGE DIRECTIVE, 2-50
IF RANGE DIRECTIVE, 2-50

INPUT
CHANGE ORIGIN OF TEXT DURING INPUT

MODE, 2-40
INPUT MODE DESCRIPTION AND

DIRECTIVES, 2-11

INSERT
INSERT DIRECTIVE, 2-15

LABEL

LAF

LABEL DIRECTIVE, 2-51

DIFFERENCES BETWEEN SAF AND
LAF, A-3

LANGUAGE
ASSEMBLY LANGUAGE PROGRAM HARDWARE

INDEPENDENCE, A-1
ASSEMBLY LANGUAGE PROGRAM

INDEPENDENCE, A-1
LANGUAGE PROCESSORS, 3-1

7/78

INDEX

LINE
ACCEPT SINGLE LINE FROM OPERATOR

TERMINAL, 2-36
DESIGNATING A LINE NUMBER AS AN

ADDRESS, 2-4
DESIGNATING CONTENTS OF LINE AS

AN ADDRESS, 2-4
DESIGNATING POSITION OF LINE

RELATIVE TO CURRENT LINE AS AN
ADDRESS, 2-3

IF LINE DIRECTIVE, 2-49
IF NOT LINE DIRECTIVE, 2-49
NEW CURRENT LINE DIRECTIVE, 2-32
PRINT LINE NUMBER DIRECTIVE, 2-33
PRINT WITH LINE NUMBER

DIRECTIVE, 2-34

LINES
REFERENCING A SERIES OF LINES, 2-6

LINKING
VALID COMBINATIONS OF COMPILATION

UNITS FOR LINKING, A-2

LISTING
SAMPLE CROSS-REFERENCE

LISTING, 3-5
SOURCE LISTING OF SOURCE UNIT TO BE

CROSS-REFERENCED, 3-4

LISTS
ARGUMENT LISTS AND POINTER

ARRAYS, A-5

LOADING
LOADING AND EXECUTING THE

ENTRY-LEVEL COBOL COMPILER, 3-9
LOADING AND EXECUTING THE FORTRAN

COMPILER, 3-6
LOADING AND EXECUTING THE

INTERMEDIATE COBOL COMPILER, 3-10
LOADING AND EXECUTING THE MACRO

PREPROCESSOR, 3-1
LOADING AND EXECUTING THE RPG

COMPILER, 3-12
LOADING EXECUTING THE ASSEMBLER, 3-2
LOADING THE EDITOR, 2-8
SAF/LAF INDEPENDENCE BY

LOADING, A-3

MEMORY
IMMEDIATE MEMORY ADDRESS

OPERANDS, A-7

METHODS

i-3

METHODS OF ACHIEVING SAF/LAF
INDEPENDENCE, A-2

METHODS OF SPECIFYING
ADDRESSES, 2-3

CB01

MODE
ADDRESSING MODE, A-4
CHANGE ORIGIN OF TEXT DURING EDIT

MODE, 2-38
CHANGE ORIGIN OF TEXT DURING INPUT

MODE, 2-40
EDIT MODE DESCRIPTION AND

DIRECTIVES, 2-17
INPUT MODE DESCRIPTION AND

DIRECTIVES, 2-11

MOVE
MOVE DIRECTIVE, 2-43

MOVE-APPEND
MOVE-APPEND DIRECTIVE, 2-44

NAME
DIRECTORY OR FILE NAME

CONSTRUCTION, 1-4

NAMES
DESIGNATING FILE NAMES, 1-8

NUMBER
DESIGNATING A LINE NUMBER AS AN

ADDRESS, 2-4
PRINT LINE NUMBER DIRECTIVE, 2-33
PRINT WITH LINE NUMBER

DIRECTIVE, 2-34

OPERANDS
IMMEDIATE MEMORY ADDRESS

OPERANDS, A-7

OPERATOR
ACCEPT SINGLE LINE FROM OPERATOR

TERMINAL, 2-36

PATHNAME
ABSOLUTE PATHNAME, 1-5
PATHNAME CONSTRUCTION, 1-4
RELATIVE PATHNAME AND WORKING

DIRECTORY, 1-5
TREE STRUCTURE AND PATHNAME

EXAMPLES, 1-5

PATHNAMES
DEVICE PATHNAMES, 1-5
FILE SYSTEM PATHNAMES, 1-3

POINTER
ARGUMENT LISTS AND POINTER

ARRAYS, A-5

POINTERS
DATA STRUCTURES CONTAINING

POINTERS, A-5
INDIVIDUAL POINTERS, A-7

PREFIX
ADDRESS PREFIX DIRECTIVE, 2-46

7/78

INDEX

PREPARATION
PROGRAM PREPARATION PROCEDURE, 1-2

PREPROCESSOR
LOADING AND EXECUTING THE MACRO

PREPROCESSOR, 3-1

PRINT
PRINT DIRECTIVE, 2-19
PRINT LINE NUMBER DIRECTIVE, 2-33
PRINT WITH LINE NUMBER

DIRECTIVE, 2-34

PROCEDURE
PROGRAM PREPARATION PROCEDURE, 1-2

PROCEDURES
PROCEDURES FOR WRITING SPECIFIC

PARTS OF A SLIC PROGRAM, A-4
SELF-MODIFYING PROC~DURES, A-I

PROCESSORS
LANGUAGE PROCESSORS, 3-1

PROGRAM
ASSEMBLY LANGUAGE PROGRAM HARDWARE

INDEPENDENCE, A-I
ASSEMBLY LANGUAGE PROGRAM

INDEPENDENCE, A-I
PROCEDURES FOR WRITING SPECIFIC

PARTS OF A SLIC PROGRAM, A-4
PROGRAM PREPARATION PROCEDURE, 1-2

PROGRAMMING
EDITOR PROGRAMMING DIRECTIVES, 2-46
PROGRAMMING CONSIDERATIONS, 2-52

PROGRAMS
GENERAL RULES FOR WRITING SLIC

PROGRAMS, A-4

QUIT
QUIT DIRECTIVE, 2-21

RANGE

RBS

IF NOT RANGE DIRECTIVE, 2-50
IF RANGE DIRECTIVE, 2-50

REQUEST BLOCKS (RBS), A-6

READ
READ DIRECTIVE, 2-22

RELATIVE
RELATIVE PATHNAME AND WORKING

DIRECTORY, 1-5

REQUEST
REQUEST BLOCKS (RBS), A-6

i-4 CBOI

INDEX

RPG
LOADING AND EXECUTING THE RPG

COMPILER, 3-12

RULES

SAF

GENERAL RULES FOR WRITING SLIC
PROGRAMS, A-4

DIFFERENCES BETWEEN SAF AND
LAF, A-3

SAF/LAF
METHODS OF ACHIEVING SAF/LAF

INDEPENDENCE, A-2
SAF/LAF INDEPENDENCE BY

ASSEMBLY, A-3
SAF/LAF INDEPENDENCE BY

LOADING, A-3
WRITING PROGRAMS THAT CAN BE

EXECUTED IN BOTH SAF AND LAF
CONFIGURATIONS

SAMPLE
SAMPLE CROSS-REFERENCE

LISTING, 3-5

SEARCH
SEARCH DIRECTIVE, 2-50
SEARCH NOT DIRECTIVE, 2-51

SELF-MODIFYING
SELF-MODIFYING PROCEDURES, A-I

SEQUENCES
AUXILIARY BUFFER DIRECTIVES AND

ESCAPE SEQUENCES, 2-35
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES, 2-8

SERIES
REFERENCING A SERIES OF LINES, 2-6

SLIC
GENERAL RULES FOR WRITING SLIC

PROGRAMS, A-4
PROCEDURES FOR WRITING SPECIFIC

PARTS OF A SLIC PROGRAM, A-4

SOURCE
CHANGING AN EXISTING SOURCE

UNIT, 2-11
CREATING A SOURCE UNIT, 2-11
SOURCE LISTING OF SOURCE UNIT TO BE

CROSS-REFERENCED, 3-4
WRITING SOURCE PROGRAMS THAT CAN BE

EXECUTED IN BOTH SAF AND LAF
CONFIGURATIONS

SPECIFYING

STRUCTURE
TREE STRUCTURE AND PATHNAME

EXAMPLES, 1-5

STRUCTURES
DATA MANAGEMENT STRUCTURES

(FIBS), A-5
DATA STRUCTURES CONTAINING

POINTERS, A-5
HARDWARE-DEFINED STRUCTURES, A-7

SUBSTITUTE
SUBSTITUTE DIRECTIVE, 2-25

SUFFIX
SUFFIX CONVENTIONS, 1-6

SUMMARY
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES, 2-9
SUMMARY OF EDITOR DIRECTIVES AND

ESCAPE SEQUENCES, 2-8

SYMBOLS
SYMBOLS USED IN THIS MANUAL, 1-3

SYSTEM
FILE SYSTEM PATHNAMES, 1-3

TAPE
TAPE FILES, 1-6

TERMINAL
ACCEPT SINGLE LINE FROM OPERATOR

TERMINAL, 2-36

TEXT
CHANGE ORIGIN OF TEXT DURING EDIT

MODE, 2-38
CHANGE ORIGIN OF TEXT DURING INPUT

MODE, 2-40

TREE
TREE STRUCTURE AND PATHNAME

EXAMPLES, 1-5

TYPE
TYPE DIRECTIVE (T), 2-52

UNIT
CHANGING AN EXISTING SOURCE

UNIT, 2-11
CREATING A SOURCE UNIT, 2-11
SOURCE LISTING OF SOURCE UNIT TO

BE CROSS-REFERENCED, 3-4

UNITS
VALID COMBINATIONS OF COMPILATION

UNITS FOR LINKING, A-2

METHODS OF SPECIFYING ADDRESSES, 2-3 USAGE
ADVANCED USAGE OF THE EDITOR, 2-29

STATUS
BUFFER STATUS DIRECTIVE, 2-36

7/78 i-5 CB01

WORKING
RELATIVE PATHNAME AND WORKING

DIRECTORY, 1-5

WRITE
WRITE DIRECTIVE, 2-27

WRITING
GENERAL RULES FOR WRITING SLIC

PROGRAMS, A-4
PROCEDURES FOR WRITING SPECIFIC

PARTS OF A SLIC PROGRAM, A-4

ZREGEXP
ZREGEXP DIRECTIVE, 2-46

7/78

INDEX

..

i-6 CB01

I ,
l?
Z
o
...J
« . ~
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 6)
GCOS 6 PROGRAM PREPARATION

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No.1 CBOl, REV. 1

DATED I JUNE 1978

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 II as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ _ OATE ______________ _

TITLE __ _

COMPANV ______________________________________ _

ADDRE~ __ _

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I
I w
I z

. I ::.i

I ~

~--'--------------------------------- ic~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid BV:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

1 0

I c5
I u.

J
I
I
I
I
I
I
I
I
I

w
z
::.i
(!)
z

--~g

Honeywell

I «
19
,~

I ,
I
I
I
J ,
I
I
I
I
I
I
I,

)~

I
I
I
I
I

c

.-----------____ ~.~~"I'i'~\."''''''ll'II'!I

Honeywell
Hone~ell Information Systems

In the U.S.A.: 200 Smitli Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20940, 3.5678, Printed in U.S.A.

.............. ,.

CB01, Rev. 1

