- Section 2
FILE CONCEPTS

In this section: See page

INEFOGUELION s s on cosws s wiwaas P S b R .o
Disk File CONVENETONS cui v vuwaws vaaas s sesiossasnassnseess R
DAFECEOTTBS i vivmwuisivmmivaiuss e i o deaeieein we i R R
ROOL BireCLorys o cuusmsweununmes v swasvwesis N T T e
System Root Directory....ceeevsene i OE TR S R
User ROOt DirBCIOryeucisacessssvanrsmnsnnanuasssronossnsssssnoen
Intermediate DireCtOrieSseeseesnacsssssnanennnsss T T T
Working DireCtOry.eeeieessaasisnessanacavsassnssssrraasstatsrenans
Disk Directory and File LOCALiONS:veassersvessssstssvonsssisrannns
Disk Directory and File Naming ConventionS..eeeesiiatsnacarsornnoes
PathNamMES s eaeaesoarseeosettoncosnsononsnsssacossnsarssnesarsinsnns
Symbols Used 1n PathnamesS.eueeeessnecasssssoorssrsssroascrssssnns
Absolute and Relative PathnamesS..eeseserrvnccessoasevonsanarsnnns
Disk Device Pathname ConstruCtiONeeeecsrssnscrserireneesnsirnnnes
L..lnks.llllltll.lllbl.oclllbn.allll.l!llIli.llt..ll!!pn.illltll--l
Automatic Disk Volume Recognition.ieeecenesrsvecsersosnacacinnnnee
Disk File COmMENtS.esrecesrsrenesarsnssaansssaseessserrvnnssnas e
Disk File DrganizatioNecesssssescansrsooes inensnoensanesnes I, B
UFAS Sequential Disk File Organization..ecevreececccrrnass craraae
UFAS Relative Disk File Organization....... vieaeee e N sonn
UFAS Indexed Disk File Organizationeesecierrraceciaannns R
UFAS Random Disk File Organization..... B R A R AR A .
UFAS Dynamic Disk File Organization......... R A R S
Non-UFAS Relative Disk File OrganizationS.....eeeess e R e
PIPBS vuwmnas o £ovs 095 S8 palb s e i @s o ois s ivleieate W
ATLErnate TROeXBS i . caam i sne o i v seai somuiae G B e
Disk File SEPUCLUr@ civisoveivviisaviis snnaaas NI B e
Disk File Protection.ceivecanennnaannas CETERRE S TR SRR e
ACCESS CONErolauieesanisanonersassasonnnasicsissosssssnssnnnvsss
File Concurrency COntroleessissasstsssesscsssssssassnasnsnannnss
Access Control/Concurrency Control RelationshiPeivececcosseaaaass
Shared File Protection (Record Locking)eesseosisosansocasossnnss
Multivolume Disk FIl€S..vsivesrnesosrossnnaastasrnncsnsssssnsassnss
MUTEivolume SeLS . iverivrvessnarrasnnorsnnsasssinsssasssssnannnns

LU S A I R N RO N TR AN I DY R |

1
LM PRI R P PR R P b bt b ok ol ok ok i o ok ok et i = (OO0~ =~ T N DO B L) LD

NP O-SNOOTNHE =2 OOOOUDODON-I-NOOOMMNO

NI'\)NMNNNNNNNNNNNNT}NNNNNNNNNNMMNMNNM

€Z03-02 2-1

File Concepts

In this section (cont): See page
Dk Fi 1€ BUFFErINGcwenwam seewswen s anen WA bk S e e e T O
FiNE ACCESS LOVELST am sivanca nwne en smivsa ain 65 ot saaasinte siu v iusesn sinaio s 2-38
BUFERP PODN S wuwnvrsion smwreus nviemaas sen b 6 (e suevmim e 2-38
MaEgnetic Tape FiTe COnVERLTONSwm e vompe s oo sue s ieiae s 2-38
Magnetic Tape File Organization..e.ceieeecenciroccaasosenannsnnnnns 2-38
Magnetic Tape File and VOIUME NEMES.....cceueiecnansssncasnnnosnna 2-38
Magnetic Tape Device Pathname ConsStruCtiON.usseseseecsescsarassonns 2-39
UnTabeled Tape: PAtRNAMES cowvis saras wyes s o es oo s s vis s 2-38
Labeled Tape PAthNAMBS..isssieisanis v uaveiaas assoeniaseaisdiiias 2-40
Automatic Magnetic Tape Yolume ReCOGNItiON.ecceesenencsoscnasnnnns 2-40
Magnetic Tape BUffering.iieeeceecseesaeacnaocaassnonnssannnassns i 2-40
Unit Record Device File ConventionS.eeessesnnnns R Rl R i e 2-41
Unit Record Device Pathname ConstruCtioNeeeevessvessarsnnsean veeee 2-41
Unit Record Device BUfferingeeeecieseceacensesaassossarsnoesss censs 2-41
Unit Record Read OperationSeeeeivece. crrreseassssestrssesnaaanss 2-4]
Unit Record Write OperationS.eeeeresvrsrnsosnsnssonnassnsnsaassss 2-43
REmote: File: AECESSas we swmaimnn wimisswioswinssaimaisie ainis T Y B R e .o 2-44
Remote File Catalogeeeceaacsrnes Cerresssearrsrsa e e teienaaass 2-44

Initiating Remote File Access OPEratIENS ensmnuan eaisasiaies ey LoE
Remicte File! ACERES SBEUFTE Ve vrermmsna saseewmen saesmaessnmens Lo0T

Summary This section describes the functions proviced by the File
System. It discusses the File System conventions used with
disk, magnetic tape, and unit record device files, and describes
the remote file access capability.

2-2 CZ03-02

File Concepts

INTRODUCTION

File A file is a logical unit of data composed of a collection of
. records. The principa) external devices available for storing
files are: :

e Disk devices (for example, diskettes, cartridge disks,
cartridge module disks, fixed (sealed) disks, and mass
storage units)

e Magnetic tape units (for example, 1/2-inch tapes'and
L/4-inch cartridge tapes). :

Yolume The media residing on the external devices are referred to as
volumes (for example, disk volume, tape volume).

various conventions have been established to identify and locate
files stored on disk and magnetic tape. These conventions
facilitate the orderly and efficient use of the data stored on
the volumes.

Unit Record Unit record devices (such as card readers, card punches,

Devices printers, and terminals) also use the file concepts. However,
since unit record devices cannot be used to store files, there
is less need to establish conventions for identification and
location, A unit record file is simply the data that is read or
written at any one time (for example, a line entered at a
terminal),

DISK FILE CONVENTIONS

You must be able to specify an access path to any given file on
a disk volume that contains multiple files. Files must
therefore be oprganized on the volume in some predictable
fashion, The File System provides a set of volume organization
conventions by which the system can locate any element that
resides on the vclume.

The principle elements of this organization, aside from the
files themselves, are directories. The access path to any given
element on a volume is known as a pathname.

€203-02 2-3

File Concepts

Directories

Files on disk devices are logically arranged by the File System
in a tree-structured hierarchy. The basic elements of this
hierarchy -are special files known as directories. The
directories are used to point to the location of data files,
which are the endpoints of the tree structure.

A directory on a disk volume is an index that contains the names
and starting locations (sector numbers on the volume) of files
or other directories (or both). The elements in the directory
are said to be "contained in" or "subordinate to" the

directory. Therefore, the organization of a disk volume is a
multilevel structure. The complexity of the access path to any
given element in the structure depends on the number of
directories between the root and the desired element.

A sample directory structure is illustrated in Figure 2-1. The
base directory on a volume is termed a root directory. In
Figure 2-1 the root directory is vOLOl. Root directery VOLO1
contains two subordinate directories, DIR1 and DIRZ.
Directories DIR!1 and DIRZ, in turn, contain data files FILEA,
FILEB, FILEC, and FILED.

The root directory and other special types of directories are
describec in the following paragraphs.

voLot
I
DIR1 DiR2
T
I]
FiLEA FILEB FILEC FILED

B4-317

Figure 2-1. Example of Disk Directory Structure

2-4

CZ03-02

F1le Concepts

Root Directory

The File System maintains a tree structure for each disk mounted
at any given time. At the base of each tree structure is a
directory known as the root directory. This is the directory
that ultimately contains every element that resides on the
volume, either immediately or indirectly subordinate to it. The
root directory name is the same as the volume identifier of the
volume on which it resides. The directory VOLOl in Figure 2-1
is the root directory on the disk volume VOLO1.

System Root Directory

Dne or more disk root directories can be known to the system at
any time during its operation. One of these, the System Root
Directory (SRD), is required at all times. The absolute access
paths of files in the SRD can start with two greater-than signs
(>>). The volume used by the operator tc initialize the system
pestablishes the SRD. The boot volume must contain the SRD; it
also normally contains system programs, commands, and other
routinely used elements. The SRD must contain a number of
directories and files that the system needs to perform its
functions, including Z3EXECUTIVEL, SID, AID, HIS, and USER_REG.
For more information, refer to the System Building and
Administration manual.

User Root Directory

The File System can recognize one User Root Directory (URD),
which you define through the Change System Directories command
with the -RDOT argument. Files in the URD can have absolute
access paths that start with a single "greater-than" character.
The URD contains items such as UDD, LDD, MDD, FORMS, PROGS, and
TRANS. For more information, refer to the System Building and
Administration manual.

The URD and SRD can reside on different volumes or on the same
volume. The installation can also have user volumes created to
meet the instailation's own particular needs. These volumes may
contain user application programs and their associated data
files, application program source and object code files, listing
files, and anything else a user might want to store temporarily
or permanently.

Refer to "Links" later in this section for information on
another way to distribute software (system or user) onto more
than one volume. .

€z03-02

2-5

File Concepts

intermediate Directories

Deleting
Directories

Wnen you first create (format and name) a volume under the File
System, it contains only a root directory. Within this
directory, you can create any adcitional directories reguired to
satisfy the needs of the installation.

Consider, for example, a volume that is tec contain data used by
twc application projects, each of which has several users
associated with it. Each user has one or more files of interest
to him or her. The volume has been initialized and contains a
root directory name. Tw0 directories can be created subordinate
to the root directory, each identifiea by the project name.
Then, subordinate to these directories, & directory can be
created for each user associatec with each project.

The data files are all contained within the personal
directories. This sample directory structure is i1lustrated in

Figure 2-2.

voLoY
| 1
| 1
APP1 APP2
[| [I—l
smitH | | Jones | |FosTer EVANS [|BROPHY

=

FILE A FILEB

84818

Figure 2-2. Sample Directeory Structure

When the need for a user-created cirectory no longer exists, the
directory can be deleted from the File System (deleted from the
disk). The space it occupies, as well as the space occupied by
its attributes in the immediately superior directory, is then
available for reuse. A directory must be empty before it can be
deleted. A1l cirectories and files subordinate to the one tc be
deleted must have been previously deleted by explicit commands.

Cz203-02

File Concepts

Working Directory

The File System always starts at a root directory when it
searches for a disk file or a directory. At times the search
for an element residing on a disk volume may traverse a number
of intermediate directory levels before the desired element is
located, and the File System must be supplied with the names of
all the directories it must pass on the way.

Frequently all files of interest to a user doing work on the
system are contained in a single directory that is three or four
levels deep in the hierarchy. It is convenient to be able to
refer to files in relation to a directory at some arbitrary
Tevel in the hierarchy rather than in relation to the root
directery. The File System allows this to be done by
recognizing a special kind of directory known as a working
directory.

A working directory establishes a reference point that enables
you to specify the name of a file or another directory in terms
of its position relative to the working directory. If the
access path of the working directory is made known to the File
System, and if the desired element 15 contained in that
directory, the element can be specified by just its name. The
File System concatenates this name with the names of the
elements of the working .directory's access path to form the
complete access path to the element,

Disk Directory and File Locations

The File System has total control over the physical location of
space allocated to directories and files. You need never be
concerned about where a directory or file resides on a volume.
When a volume is first initialized, space is allocated to
elements in essentially the order in which they are created.
But, after the volume has been in use for some time, elements
may have been deleted and the space they occupied made
reusable. Then, when a new element is created, it is allocated
the first available space. If more space is needed, it is
obtained from the next free area.

CZD3-02 2-7

File Concepts

Disk Directory and File Naming Conventions

Allowable
Characters

Characters
CO-FE

Uppercase
and
Lowercase

Forming
Names

Each disk directory and file name in the File System can consist
of the following American Standard Code for Information
Interchange (ASCII) characters:

e Uppercase and lowercase primary character set alphabetics
(A-Z, a-2)

e Digits (0-9)

e Underscore (_)
Hyphen (-)

e Period (.)

e Apostrophe (')

e Uppercase and lowercase characters whose hexadecimal
equivalents are from CO-FE (Western European Latin alphabet,
also called the extended character set).

The characters in the extended character set cannot be used in
volume identifiers. :

If the terminal is not capable of processing 8-bit data,
characters from the extended character set are displayed as
periods aor as their 7-bit equivalents.

When volumes, files, and directories are created, their
identifiers are stored on disk exactly as entered, in uppercase
and lowercase characters. For both the primary and extended
character sets, the system considers uppercase and lowercase
characters to be equivalent (for example, "DATA", "Data", and
"data" all refer to the same file).

The first character of any name must not be the character FF
(hexadecimal). The underscore character can be used to join two
or more words that are to be interpreted as a single name (for
example, DATE_TIME). The period character and one or more
following alphabetic or numeric characters are normally
interpreted as a suffix to a file name. This convention 15
followed, for example, by a compiler when it generates a file
that is to be listed. The compiler identifies this file by
creating a name of the form FILEA.L.

2-8

C203-02

File Concepts

Name Length

Unique Names

Pathnames

Length

The name of a root directory (the volume identifier) can be from
one through six characters in length. The names of other
directories and files can be from 1 through 12 characters in
length. The length of a file name must be such that any
system-supplied suffix does not result in a name containing more
than 12 characters.

Within the system at any given time, the access path to every
element must be unique. This requirement leads to the following
rules for naming files:

e Only one volume with a given volume identifier can be
mounted at any given time. (The system notifies you of an
attempt to mount a volume having the same name as one
already mounted.)

e Within a given directory, every immediately subordinate
directory or file name must be unique. (The Create
Directory and Create File commands notify you of an attempt
to add a duplicate name.)

Note that uppercase/lowercase differences do not constitute
uniqueness. As previously mentioned, "DATA", "Data", and "data"
all refer to the samé file.

The access path to any File System entity (directory or file)
begins with a root directory name and proceeds through zero or
more subdirectory Tevels to the desired entity. The series of
directory names (and a file name if a file is the target entity)
is known as the entity's pathname. The construction of a
pathname is described below.

The total length of any pathname, including all symbols, cannot
exceed 57 characters. A working directory pathname, however,
cannot exceed 44 characters.

The last (or only) element in a pathname is the name of the
entity upon which action is to be taken. This element can be a
device name, directory name, or file name, depending on the
function to be performed. For example, in the Create Directory
command a pathname specifies the name of & directory to be
created. The last element of this pathname is interpreted by
the command as a directory name; any names preceding the final
name are names of superior directories leading tc it. An
analogous situation occurs in the Create File command, except
that in this case the final pathname element is the name of a
file to be created.

Cz03-02

2-9

File Concepts

Symbols Used in Pathnames

">

>name

name>name

The following paragraphs describe the symbols used to construct
pathnames.

A circumflex (~) is used at the beginning of a pathname to
jdentify the name of a disk volume root directory (for example,
~YOLO11).,

A circumflex preceding a "'greater-than" sign (~>) is used at the
beginning of a pathname to identify the root directory of the
current working directory (for example, “>DIRI>FILEA is
equivalent te ~VOLOLI1>DIRID>FILEA if the current working
directory is on VOLO1ll}.

A "greater-than" sign (>) is used at the beginning of a pathname
and between the names in a pathname.

When used at the beginning of a pathname, the element whose name
follows the > symbo) is immediately subordinate to the root
directory of the user-root volume (it resides under the URD).
Honeywell Bull supplied programs assume the URD contains the
UDD, LDD, FORMS, MDD, PROGS, and TRANS directories.

The correct way to refer to a directory in the URD is to precede
the directory name by one "greater-than” sign (for example
>UbD}) .

When used between names in a pathname the > symbol indicates
movement in the hierarchy away from the root directory. The
symbol is used to ccnnect two directory names or a directory
name and a file name. Each occurrence of the > symbol denotes a
chance of one hierarchical ievel. The element to the right of
the symbol is immediately subordinate to the element on the
left.

Reading a pathname from left to right thus indicates movement
through the tree structure in a direction away from the root
directery. For example, if the roct ~VOLOll contains a
directory named DIR1, the pathmame cf DIR1 is ~VOLO11>DIR1. 1If
the directory named DIR1 in turn contains a file named FILEA,
the pathname of FILEA is ~VOLO11>DIRL>FILEA

CZ03-02

File Concepts

2>

space

Summary

Two consecutive "greater-than" signs (>>) are used at the begin-
ning of a pathname to specify entities that are subordinate to
the SRD. Honeywell Bull supplied programs assume the SRD con-
tains the I3EXECUTIVEL, SID, AID, HIS, and USER_REG directories.

The correct way to refer to a directory in the SRD is to precede
the directory name by two "greater-than" signs (for example
>>S1D).

SYSLIB! and SYSLIBZ can reside in either the SRD or the URD.

A "less-than" sign (<) is used at the beginning of a pathname to
indicate movement from the working directory toward the root
directory. Consecutive symbols can be used to indicate changes
of more than one level; each occurrence represents one level
change. One or more "less-than" symbecls may precede only a
pathname that assumes a directory without actually referring to
it explicitly. Such a pathname is called a relative pathname.

An ASCII space character (hexadecimal 20) is used to indicate
the end of an encoded pathname in a program. When represented
in memory, & pathname must end with a space character.

The use of these symbols at the beginning of a pathname can be
summarized as follows:

Symbol Meaning

“volume Any volume or root directory

~2) Under root of current working directory volume
> Under URD root

3> Under SRD root

< Movement away from current working directory

toward volume root

CZ03-02

File Concepts

Absolute and Relative Pathnames

Full
Pathname

Absolute
Pathname

Relative
Pathname

A full pathname is one that begins with a circumfiex. A full
pathname contains all necessary elements to describe a unique
access path to a File System entity, regardless of the type and
location of the device on which it resides or where your working
or assumed directory is. You use-a full pathname tc locate
directories and files that reside on a device other than that on
which the system volume {the volume from which the system was
initialized) is mounted.

The File System uses a full pathname when referring to a
directory or file. However, it is frequently unnecessary for
you to specify all of these eiements. The File System can
supply some of them when the missing elements are known to it
and the abbreviated pathname is used in the appropriate
context. An understanding of these conditions and contexts
requires an understanding of absolute and relative pathnames.

An absolute pathname is one that begins with a circumflex (*)
or one or more "greater-than" symbols (>).

If an absolute pathname begins with a circumflex, it is a full
pathname.

If an absolute pathname begins with one “greater-than" symbal,
the first element named in the pathname is assumed to be
immediately subordindte to the URD.

1T the pathname begins with two "greater-than" symbois, the
first element named in the pathname is assumed to be directly
subordinate to the SRD.

A relative pathname is a shortened version of the absolute
pathname and assumes the working directory (or a higher
directory in the structure) without explicitly referring to it.
A relative pathname is one that begins either with a file or
directory name or with one or mere "less-than" symbols.

If the pathname begins with a name (for example, DIR1>FILEA or
FILEB), the name (CIR1 or FILEB) is immediately subordinate to
the working directory.

If a relative pathname begins with a "less-than" symbol (for
example, <FOSTER), the name following the “"less-than" symbol
identifies an element that is immediately subordinate not to the
working directory, but to the directory to which the working
directory is immediately subordinate. If the pathname begins
with two "less-than" symbols (for example, <<APPZ), APPZ2 is
immediately subordinate to a directory two levels higher than
the working directory. :

€z03-02

File Concepts

Simple
Pathname

A relative pathname contains one or more names. 1f it contains
more than one name, each name except the last must be a
directory name, the first being immediately subordinate to the
current working directory level (or to a higher level, as
specified by one or more "less-than" symbols), the second
immediately subordinate to the first, and so on. The last or
only name can be a directory name or a file name, depending on
the function being performed.

A simple pathname is a special case of the relative pathname.
A simple pathname consists of only one name: the name of the
desired element that is immediately subordinate to the working
or assumed directory.

You can refer to a file or directory that is on the same volume
(but not subordinate to the working directory) by using an
absolute pathname or by using any of the described forms of a
relative pathname.

Figure 2-3 shows some relative pathnames and the full pathnames
they represent when the working directory pathname is
>PROJ1I>USERA,

€Z03-02

2-13.

File Cencepts

BOX NUMBER RELATIVE PATHNAME? FULL PATHNAME
1 DELTA ASYSO1>PROJ1>USERAS>DELTA
2 QOLD>DELTA ASYS01>PROJ1>USERA>OLD>DELTA
3 <USERB>ALPHA ~SYS01>PARACJT1 > USERB>ALPHA
4 < <PROJI>USERASDELTA "5¥501>PROJZ>USERA>DELTA
5 < . *SYS$Q1>PROJY
SYS01
5
PROJ! PROJ2
USERA®? USERB USERA
1 3 4 .
DELTA ALPHA DELTA
oLD
2
DELTA

2ASSUME CURRENT WORKING DIRECTORY IS " 5YS01 >PROJ >USERA.

B4-319

Figure 2—5. Sample Pathnames

Cz03-0z

File Concepts

Disk Device Pathname Construction

Exclusive
Reservaticn

Read/Share
Reservation

A special pathname convention is used to specify an entire disk
volume. (This pathname convention is typically used in volume
copy, create, and dump requests.) The special pathname consists
of an exclamation point (!) followed by the symbolic device name
and, optionally, the name of the disk volume. The general form
of the disk device pathname is:

tdev_name[>vol_id]

where dev_name is the symbolic device name defined for the disk
device at system building time, and vol_id is the File System
name of the disk volume, without the circumflex (for example:
IMSMOO>VOLO1) .

If the vol_id is not supplied, reservation of the disk is
exclusive (meaning that the reserving task group has read and
write access but other users are not allowed to share the
volume). This pathname form is used when a new volume is being
created.

If the vol_id is specified, reservation is read/share (meaning
that the reserving task group has read access only, other users
may read and write). This pathname form is used when copying a
volume, when referencing the system volume, or when dumping
selected portions of a volume without regard for the
hierarchical File System tree structure,

C203-02

File Concepts

Links

Links are names you create through the Link Name command to
refer to files anc directories in other volumes or directories
as if they were in your working directory (or any other
specified directory). Instead of copying a file from one
directory to another, you can link to it. You can also 1ink to
devices or to other links.

For example, once you have established a 1ink between the name A
(in a given directory) and the pathname ~VOLID>MYDIRMMYFILE, you
can perform file operations using the link-name A as if it were
the pathname. Instead of having to issue the command:

MFA ~VYOLID>MYDIR>MYFILE -RECOVER
you can issue the command:
MFA A -RECOVER

{Assuming you have defined A as a link-name in your current
working directory.)

For additional information concerning the Link Name and Unlink
Name commands, refer to the Commands manual.

Automatic Disk Volume Recognition

The automatic velume recognition facility dynamically notes the
mounzing of a disk volume. This feature allows the File System
to record the root directory name in a device table. All
references to disk files and directories begin, explicitly or
implicitly, with a root directory name; therefore, every mounted
file is automatically accessible to the File System software.

Disk File Comments

You can include a comment as a file attribute when creating or
modifying a file, directory, or index. A file comment can range
from 1 to 72 ASCI] characters in length, surrounded by quotes.
The List Names (LS) and Peruse Directory (PD) commands display
comments. You create or revise a comment with the -COMMENT
argument of the Create File (CR), Create Index (CX}, Create
Directory (CD), Modify File Attributes (MFA), or Modify
Directory Attributes (MDA) command.

You can allow muitiple comments to be appiied to a single file
by assigning a record type to a file comment with the
~COMMENT_TYPE argument of the above commands.

CZ03-02

File Concepts

Disk File Organization

Since no one disk file organization can meet the needs of all
users at all times, the system supports several different
organizations, each of which is well suited to a particular
application. Most of the supported organizations are based on
the concept of & control interval (a unit of transfer between
memory and disk) and are referred to as Unified File Access
System (UFAS) files. UFAS file organizations provide file
processing compatibility with other Honeywell Bull systems.

You establish the organization of a data file when you Create
the file through the Create File command or program call. You
read and write the file using commands, statements, and
macrocalls provided by the compilers and Assembler.

The following paragraphs summarize the disk file organizations.
Refer to the pata File Organizations and Formats manual for
detailed descriptions of each organization.

UFAS Sequential Disk File Organization

Logical records are normally read from or written to a
sequential file in consecutive order. Records must be written
sequentially although the file can be positioned for writing
through the use ¢f a simple key. Records can be read, modified,
or deleted directly when you specify their exact control
interval and record address (simple key). Records cannot be
inserted; they can be appended to the end of a file. Fixed- or
variable-length records can be used. If a record is deleted,
the position it occupied cannot be reused.

UFAS Relative Disk File Organization

A relative disk file can contain fixed- or variable-length
records. If variable-length records are used, they occupy
fixed-length slots (and the size of the largest record must be
specified). Both sequential and direct access are supported; in
direct access, simple and relative keys can be used. A record
can be updated (rewritten), deleted, or appended to the file.

1f a record is deleted, the pesition it occupied can be used for
a new record. A file can be created directly if you specify
relative record numbers in random sequence.

€z03-02 2-17

File Concepts

UFAS Indexed Disk File Organization

In an indexed disk file organization each logical record
contains a fixed-size key fielc that cccupies a fixed position.
Records are logically ordered by key value; they can be accessed
sequentially in key sequence or directly by key value. Fixed-
or variable-length records can be used. Variable-length records
occupy variable-length slots. A record can be updated, deleted,
or inserted in key sequence into available free space. When no
space is available to insert a record in key sequence, the
record is placed in an overflow area. When the file is
initially loaded, the records must be supplied in sequence by
key value.

UFAS Random Disk File Drganization

In a random disk file organization records are accessed directly
or seguentially. Variable-length records occupy variable-length
slots. Direct access of records is performed through CALC keys,
which are fixed in size and located within each record. Records
are positioned according to a technigque involving an arithmetic
derivation of their CALC keys. This derivation is called a
hashing algorithm (and is carried out by the system).
Insertions, updates, and deleticns are handled according to key
value. When the file is initially loaded, records can be
supplied in random key value sequence:

UFAS Dynamic Disk File Organization

A dynamic disk file can contain fixed- or variable-length
records and supports inventory informaticn to describe available
space. The main purpose of this file organization is to provide
an efficient storage organization for records to be accessed
through alternate indexes (explained below). Records are
accessed sequentially or directly. Variabie-iength records
cccupy variable-length slots. Records can be accessed
indirectly through alternate indexes or directly by specifying
their exact control interval and record address (simple key).
Records are inserted into the file according to inventory
information on a "bast fit" basis. When the file is initially
loaded, records can be supplied in rancom key value sequence.

2-18 Cz03-02

File Concepts

Non-UFAS Relative Disk File Organizations

Fixed
Relative

String
Relative

Pipes

Non-UFAS relative disk file organizations are not compatible
with other Honeywell Bull systems. These file organizations
have fewer functional capabilities than UFAS files but require
little or no space overhead. The non-UFAS file organizations
are fixed relative and string relative.

A fixed relative disk file can contain only fixed-length
records. All records in the file are considered active; the
file cannot contain deletable records. A fixed relative file
can be accessed directly or sequentially. New records can be
inserted anywhere in the file.

A string relative disk file can contain variable-iength

records. All records in the file are considered active. A
string relative file can be accessed directly or sequentially.
The ASCII line feed character (hex 0A) is automatically appended
to the end of each record.

A DOS compatible string relative file is also available. It
supports all the capabilities of a standard string relative
file, but includes the ASCII carriage return and 1ine feed
characters (hex DAOD) at the end of each record.

A pipe is a special kind of UFAS sequential file that is used
for synchronizing and passing information among multiple
cooperating tasks, Pipes are accessed (Reserved, Opened, Read,
Writter, Closed, and Removed) just as im any other sequential
file. Pipes provide a synchronization and queuing facility, and
offer a convenient way of organizing and distributing work.

One or more tasks write into the pipe while others read from
it., If the pipe is empty but open for writing, Read requests
are suspended until data (a logical record) is available. A
Read implicitly deletes the logical record just read from the
pipe. When the pipe is empty and no longer open for writing,
Read actions return the normal end-of-file status.

€z203-02

2-19

File Concepts

Alternate Indexes

File Types

Access

Indexes as
Keys

Dynamic
Files

Key Types

Alternate indexes allow you to define any number of alternate
record keys to provide any number of different logical orderings
of keyed records within a single disk file. In effect,
alternate indexes provide cifferent orderings (views) of the
same data. The same data file can be viewed in many different
ways by having more than one alternate index. For example, an
application could have a UFAS relative file containing employee
informaticn with alternate indexes for employee numbers,
employee names, and social security numbers. You could access
such a file as a relative file, as an indexed file ordered by
employee numbers, as an indexed file ordered by empioyee names,
or as an indexed file ordered by social security numbers.

The alternate index capability exists in addition to the normal
access mode based on type of file. You can establish an
alternate index for any UFAS relative, indexed, random, or
dynamic disk file.

A file with more than one index can be accessed in a number of
ways. The manner in which the file is reserved (through the Get
File command) determines how the file is accessed. If the data
file itself is reserved, the Tile can be accessed normally
faccording to file organization) or by a key that is supported
by one of the indexes. When the data file is reserved through
an alternate index, the contents of the file can be accessed as
a standard indexed file.

Additionally, if more than one index exists, the indexes can be
usec as alternate keys to refer to the data. When an alternate
index is used for file reservation, that index is used as the
primary key. The remaining indexes can be used as alternate
keys. Any ingex can be selected as a primary index. When one
index is used to access the file, it and the other indexes are
automatically updated as the file is updated.

UFAS cynamic disk files contain inventory information to manage
available file space. Therefcre, in highly volatile file
envirenments that include many insert and delete operations,
dynamic disk files are the ideal data files to be used with
alternate indexes.

Character string, signed binary, signed unpacked decimal, and
signed or unsigned packed decimal! key types can be used. 3ingle
component keys, ordered in ascending or descending sequence, are
supported. Duplicate keys (more than one recorcd in a file with
the same key value) are supported on an index-by-index basis.

2-20

€z03-02

Frii€ WOILEPLS

Index
Creation

An alternate index is created with the Create Index command.
Arguments of this command specify the name of the index and the
name of the data file with which it is to be associated. The
system creates the index on the same directory as the data file
and, unless otherwise specified, with the same control finterval
size as that of the data file.

Refer to the Data File Organizations and Formats manual for
further information.

Disk File Structure

Record

Control
Interval

A disk file is a logical unit of data composed of a collection
of records. The unit of transfer between memory and disk is
called a control interval.

A record is a user-created collection of logically related data
fields. Records are treated as units and can be fixed or
variable in length.

A control interval is the unit that is transferred between
memory and disk. The size of a control interval is user-
specified (a multiple of 256 bytes) and remains constant for the
file. A UFAS file is composed of control intervals that are
numbered, starting at one. The control interval also determines
the buffer size (which must be a multiple .of the control
interval size).

Disk File Protection

The File System provides facilities that enable you to control
the access to files and directories, to control the concurrent
access to files, and to control the contention for records
within shared files.

CZ03-02

2-21

File Concepts

Access Control

File Access
Types

Directory
Access Types

Access control is an optional File System feature that allows
the creator of a file or directory to specify which users (if
any) are tc be granted access to the file cr directory and what
types of access these users are to be granted.

There are twe general forms of access contrel: Access Control
Lists (ACLs) and Commor Access Control Lists (CACLs). ACLs
apply directly to a file or directory; CACLs apply equally to
all immediately subordinate entries in a directory. Entries in
the ACLs and CACLs are managed through Set Access, Delete
Access, and List Access commands.

Access control is a file or directory attribute. The File
System maintains in each directory a list of users and the type
of access edach user is allowed. If a directory does not contain
such & list, the items contained within it are not protected and
are accessible to all users. (Access control applies only to
disk files and directories. Tape files and other device-type
files such as terminals and card readers cannot be protected
through the access control facility.)

Access types for files are read, write, and execute. These
access types allow the following operations:

e Read: Peruse a file, but not change it.
e Write: Read, modify, create, or delete a file.
e Cxecute: Execute a program.

Access types for directories are list, modify, and create.
These access types allow the following operations:

e List: List the contents cf a directory.

e Modify: Modify the contents of a file in a directory, but
not create or delete a file.

e Create: List, modify, create, or delete files and
subdirectories in the directory.

A null access type applies to both files and directories. Null
access indicates that no access is 1o be granted.

2-22

€Z203-02

File Concepts

User Id

Access control assumes that access to the system is controlled
by a login process in which every user has a unique user id.
This user id is composed of three elements that are specified at
login and that remain unchanged during the time the user is
logged in. The three elements are: ‘

person.account.mode
person

Name of individual who may access the system.
account

Name of account to which work is charged.
mode

Further identification of the user {optional). Can name
the mode in which the user is working (for example,
interactive, absentee, or operator).

The elements of the user id canm consist only of the ASCII
uppercase and lowercase alphabetic characters (A-Z, a-z), digits
(0-9), underscores (_), dollar signs (%), apostrophes (') and
the uppercase and lowercase graphics whose hexadecimal
equivalents are CO-FE (extended character set). Apostrophes and
the characters whose hexadecimal equivalents are CO-FE can be
used only in the person and account elements. For both the
primary and extended character sets, uppercase and lowercase
characters are equivalent (for example, JOHN.SYSTEM.AB is the
same user id as JohN.sySTEM.ab).

The elements are separated with periods (.). When referencing
user ids, you can replace any or all elements by asterisks (*);
for example:

* ,account.mode

perscn.account.*
k ko

When an asterisk appears in an element position, it is
interpreted to mean any value that may exist. No test is
performed to match this element of the user id. For example, if
two persons (Smith and Jones) are registered in an account named
FILE_SYS, the user id *.FILE_SYS.* matches either person in any
possible mode. (The user id *.FILE_SYS.* matches all
individuals registered to use FILE_SYS in any moce.)

Cz03-02

2-23

File Caoncepts

Access
Conzrol
File ACL

Directory
ACL

File CACL

Directory
CACL

Checking
Access
Rionts

There are four kinds of access control lists: file ACLs,
directory ACLs, file CACLs, and directory CACLs.Lists 1ist

A file ACL is 2 type of access control 1ist that applies to a
specific file and is considered to be a file attribute. It
contains a- 1ist of those users who can access the file and their
specific access rights (Reac, Write, Execute).

A directory ACL is a type of access control Tist that applies

to a specific directory and is considered to be a directoery
attribute. It contains & 1ist of those users who can access the
directory anc their specific access rights (List, Modify,
Create).

A file CACL is a type of access control 1ist that applies to all
files immediately subordinate to a directory. A file CACL is
considered to be a directory attribute that applies only to
files contained in that directory. A file CACL contains a list
of file users and their specific access rights (Read, Write,
Execute). Use of file CACLs can save disk space and search time
if all or most files in a directory have the same access
requirements. A file CACL does not override individual file
ACLs set on files in the directory.

A directory CACL is a type of access control list that applies
to all directories immediately subordinate to & directory. A
directory CACL is considered to be a directory attribute that
applies only to immediately subordinate directories. A
directory CACL contains a list of directory users and their
specific access rights (List, Modify, Create). Use of directory
CACLs can save cisk space and search time when all or most
subdirectories have the same access reguirements. A directory
CACL does not override individual directory ACLs set con the
subdirectories.

The Create Directory command allows a directory CACL tc be
established as a global directory attribute. The directory CACL
is automatically passed down tc subsegquently created subordinate
directories.

When you reserve a file (through the Get File command or system
service macrocall), the File System checks your right to access
that file. You are said to be on the access control 1ist if
your user id matches an entry on the ACL or CACL in any of the
forms noted below.

2-24

£203-02

File Concepts

Universal
Access

Priority

Target File
Access

Operator
Access

Universal access (no access restriction) is implied if neither
an ACL nor a CACL exists for the file being reserved. If either
list is present, it is scanned by access control.

The checking priority is ACL first, CACL second. If a match is
found in the ACL for a fully specified user id (all three
elements explicitly stated), the CACL is not inspected. If a
match is found on a partially specified user id (one or more
elements specified as an asterisk), the CACL is inspected for a
more explicitly stated user id. The following 1ist indicates
the inspection hierarchy of user id formats in order of
decreasing priority. For example, if you are granted access by
an ACL entry in format 3, you can be denied access only by an
ACL or CACL entry in format 1 or 2.

l. person.account.mode

2. person.account.*

3. person.*.mode

4. person.x,*

5. *.account.mode

6. *.account.*

7. *.*.mode

80 *U*O*
Access 1s checked only for the target file or directory; the
dccess rights set on directories that may be traversed in
reaching the target file are not checked. You may be denied
access at some intermediate directory level and still gain
access to a subordinate directory or file.
Access control 1ists do not prevent the system operator from

accessing files and directories. It is suggested that physical
access to the operator terminal be restricted.

Cz03-02

2-25

File Concepts

File Concurrency Control

File
Reservation

Get File
Command

Concurrent Read or Write use of a file among task groups 1s
established by the task group that first reserves the file.
Concurrency contreol performs the following functions:

® Establishes how tasks in the reserving task group intend to
access the file (Read, Write, or Execute).

e Establishes what the reserving task group allows other task’
groups to do with the file. .

If the file is already reserved, a2 task group's concurrency
request (reservation) is denied if its intended access conflicts
with the access permitted by a priocr reserver. The concurrency
request is also denied if what it allows others to do conflicts
with the access already established by another task group. For
example, if a task group reserves the file exclusively, other
task groups are denied access. If a task group permits
read-only access but does not permit write access, other readers
are allowed but writers are denied access.

Concurrency is controlled through the Get File command cr system
service macrocall. The pessible combinations of access intended
for the reserving task group and sharability permitted other
task groups are given in Table 2-1. Table 2-1 also shows the
Get File command arguments that establish the various
concurrencies.

Taple 2-1. Disk File Concurrency Cantrol

Reserving
Task Group Qther Task Groups Get File Arguments
Read only Read only (read share) | -ACCESS R -5HARE R
Read or write -ACCESS R -SHARE W
(readfwrﬁte share)
Read or write | No read, no write -ACCESS W -SHARE N

(exclusive use)
Read only (read share) | -ACCESS W -SHARE R

Read or write -ACCESS W -SHARE W
(read/write share)

2-26

Cz03-02

File Concepts

System Compiler-generated programs, commands, sort operations, and

Concurrency other system software always request exclusive concurrency for
files reserved for users. Since the operator terminal must be
reserved with read/write shared concurrency to allow concurrent
access by many task groups, it cannot be specified as the path
of the -COUT argument of a command that invokes a compiler.

The command-in, user-in, user-out, and error-out files are
associatec with the Menu Processor and Command Processor (refer
to Section 3). If the command-in and user-in files are on disk,
they are reserved with read-only shared concurrency; if assigned
toc & user terminal, they are reserved with exclusive
concurrency. You can use File Out commands to specify the
concurrency with which the user-out and error-out files are to
be reserved.

Access Control/Concwrrency Control Relationship

In an environment that employs access control, users must have
certain minimum types of access privilege to obtain the specific
type of concurrency centrol they specify in Get File commands or
system service macrocalls.

Table Z-2 summarizes the relationship between access control and
concurrency control for disk files, disk directories, and disk
volumes. (Note that access control does not exist for other
types of devices.) :

Table 2-2. Access Control/Concurrency Control Relatianship

Object Desired Concurrenty Minimum Access
Disk files Read Read
Read/write Read/write
Disk directories | Exclusive use List/modify
Nonexclusive use List
Disk volumes Read or read/write | Modify access to root
directory

CZ03-02 2-27

File Concepts

Shared File Protection {Record Locking)

Need for
Locks

Record
Locking
Funczion

Lock Lists

Record locking is a File System option that provides
interference protection so that cooperating users can share and
update file data. For example, with record locking in effect
there can be many task groups running COBOL applications that
Read, Write, and Update record data in the same file or same set
of files.

User applications often employ standard data management services
to lock records as they access them. The purpose of the locks
is to prevent other users from simultaneously getting access to
these records. If other users could access the records, they
might get information that is only partially updated or, as a
result of some programming decision or error condition, may soon
be removed from the file. Also, if there were no locks, two
users could update the same records at the same time. In this
situation the second updater would inadvertently remove any
modifications made by the first updater.

For reasons such as these, record locking is a necessary feature
in most file sharing environments. Moreover, in many file

sharing environments it is important that mare than one lock be
simultaneously maintained. For example, an "update" transaction
to a parts inventory file may involve multiple record updates--
subtracting from some records and adding to others. These

multiple record locks may even involve access to multiple files.

Note that record locking is not necessary to prevent a file from
being physically corrupted by several applications performing
multiple writes. Whether or not record locking is present, the
File System maintains indexes and record chains properly so that
the file structure is consistent. However, without record
Tocking there is no synchronization, and the file data can be
logicaily corrupted by two or meore users who update the same
data records. Also, without record locking, data can be viewed
in a partially updated or inconsistent state.

The record-locking option provides synchronization mechanisms to
lock out record data as it is accessed, thereby making the data
inaccessible to other applications until it is explicitly
uniocked via a cleanpoint call (a call to the ZCLEAN utility inm
higher-level languages, or $CLPNT macrocall in Assembly
language).

The File System locks records by maintaining lists that describe
which file control intervals are locked, who has them locked,
and who is waiting for them to be unlocked.

2-28

CZ03-02

File Loncepts

Deadlock

Standard
Locking

Extended
Locking

To Set
Locking

The File System also provides a mechanism to recognize {and
signal) whenever a deadlock condition occurs. A typical example
of a deadlock is when one user owns (has locked) record A and
wants to lock record B while another user alreacy has record B
locked and is waiting for record A to be unlocked.

Two methods of record locking are available. These are standard
record locking (-LOCK) and extended record locking (-LOCKX).
With standard record locking, if a file is open to allow update
operations, records are locked on an exclusive basis. Read,
Write, Rewrite and Delete-record calls automatically lock the
records accessed until they are explicitly unlocked with a
cleanpoint call.

Extended record locking provides record locking on a shared-read
or exclusive-write basis, which allows many simultaneous readers
but only one writer at a time. Readers will wait until a writer
finishes (issues a cleanpoint call) and vice versa. Read-record
operations set read locks; write-record, rewrite-record, and
delete-record operations set write locks.

Since, with extended record locking, the type of lock is
determined dynamically at each access reguest rather than once
at open time, more readers can access more file data at the same
time. Using -LOCKX will improve performance if requests
commonly involve reading or searching through large amounts of
data. It is especially useful in situations which involve few
updates or update conflicts.

Because readers can gain access to to records they can
supsequently update, increasing the possibility of deadlock
errors, extended record locking requires the -RECOVER argument
(see "File Recovery" in Sectijon 6). If two or more readers
attempt to update the same data, -LOCKX can issue rollback calls
to recover the file data to a known consistent state.

You can set standard record locking (-LOCK) or extended record
locking (-LOCKX) as a permanent file attribute when you create
the file, with the Create File (CR) command, or modify its
attributes, with the Modify File Attributes (MFA) command. You
can also set standard record locking temporarily when you
reserve the file for processing with the Get File (GET)

command. You can change from locking to no locking as a
permanent file attribute with the -NO_LOCK or -NO_LOCKX argument
of the MFA command.

C203-02

2-29

File Concepts

Dirty
Reader

No-Wait
Option

Programming
Hints

A file having the -LOCK or -LOCKX attribute can be reserved
without record locking through the -NO_LOCK argument of the Get
File command. This is a special "Dirty Reader" ogption that lets
you read data even though the data may be locked or may be in
the process of being updated by scme other user. The
consistency and integrity of any data read is not guaranteed.
The "Dirty Reader" option is available only on & logical file
number (LFN) basis. The associated LFN is read-only. ignores
any existing record 1ocks, and cannct set any 1ocks. (LFNs are
internal file identifiers asscciated with file pathnames at the
command or source program level; refer to "Legical File Numpers"
in Section 5 for further information.)

A file with the -LCCK or -LOCKX attribute can aiso be reserved
with the No-Wait option through the -NO_WAIT argument of the Get
File command. If the No-Wait option is specified, the File
System returns an error status rather than causing you to wait
for a record to be unlocked. The No-Wait option is available
cnly on an LFN basis.

When using record locking, you should be aware of the following
points:

e To efficiently use record locking, your applications must be
written to be transaction-oriented so that records are not
lecked for a long period cf time (for example, while waiting
for terminal I/0) and so that as few recorcs as possible are
locked to satisfy the request.

e You should consider using other file integrity features
(described in Section 6), especially file recovery. which
allows data to be reset (rolled back) to the state it was in
at the start of tne transaction. In many situations, file
recovery is a necessary feature to maintain data integrity
in the event of system failure, record deadlock, application
failure, terminal failure, and so forth.

e To cdevelop an efficient multiuser application that shares
and updates data in standard files, you must examine where
and how the application is accessing file data and design
the file structure carefully. In addition, you must pay
careful attention to error conditions involving data
recevery and program or transaction restarts.

e Applications that receive a deadlock notification must be
prepared to back out of the current "transaction" and free
up the locks they concurrently own. If the file is
recoverable, this is done through the roilback call (a call
to the ZCROLL utility in higher-level languages; a $ROLBK
macrocall in Assembly language).

Z2-30

C203-02

File Concepts

& When a record is locked, the entire control interval in
which the record is contained becomes locked. When defining
control interval size, you should consider not only 1/0
transfer size and memory buffer usage, but also the number
of records that may be locked out.

e [T the No-Wait option is selected, central processor time
must be given up 50 that other users who have the record
locked get a chance to unlock it. You may need to add a
"“suspend for time interval"™ function to applications using
the No-Wait option to allow other task groups enough time to
finish their 1/0 and unlock records (issue a cleanpoint
call).

e Closing a file, issuing a cleanpoint call, or issuing a
roliback call frees up a1l records locked by the task group
since the last cleanpoint., If a task group abort occurs,
the system issues a rollback call automatically as part of
the task group cleanup process. Likewise, if a system
failure occurs, the operator will issue the Recover command
after the system is restarted. When this command is issued,
the File System (in effect) performs a rollback call for all
task groups that were active at the time of the failure.

Multivolume Disk Files

File Section

File Set

In most applications a disk file resides on a single volume.
However, there may be situations in which you want to extend a
file over more than one physical volume. The need for
multivolume files could arise from any of the following:

e You want an endless sequential file capability similar to
that available with magnetic tape.

¢ You want to define a single file too large to be contained
on ¢one volume.

e You want to improve access time to a file by spreading the
file data over several volumes and/or separating the index
portion of an indexed file from the data portion and placing
the portions on separate volumes.

A multivelume file is treated as a collection of file sections.
A file section is that part of the file that is contained on one
volume.

A file set is all of the sections making up the multivolume
file.

Cz03-02

2-31

File Concepts

Multivolume Sets

‘Dniine
Multivolume
Set

Online
Multivolume
File i

A multivolume set is a disk file that resides on more than one
volume. A volume is identified as oeing part of a multivolume
set when the volume is created through the Create Volume
command.

Each multivclume set has a root vclume (in which the set begins)
and a numper of additional volumes. All volumes that are part
of the set are tcalled members.

The name of a multivolume set is independent of the names of the
volumes it contains. A volume is established as a member of a
set when the set name and a sequential member number are
specified at volume creation. The root volume is always member
number 1.

There are two types of multivolume sets: online and serial.
Online multivolume sets are used for all nonsequential
multivolume files. They may also be used for sequential
multivolume files. Serial multivolume sets are an alternative
for large sequential files. They are also used for files that
require an endless sequential capability similar te that of
magnetic tape. '

The types of multivolume sets and files are described in detail
below.

A veclume is designated as part of an online multivolume set at
yolume creation. An online multivolume set has the following
characteristics:

e All members of the set must be mounted and available while
the set is in use.

e Member volumes, other than the root volume, can be used
independently of other members in the set to contain
single-volume files and directories.

A file is designated an online multivolume file when it is
created under a cirectory in the root volume of an online
multivolume set. An online multiveolume file has the following
characteristics: :

e Can have any UFAS file organization.
e Can be located by any type of pathname.
e Can skip set members when continuing to another volume.

2-32

C203-02

File Concepts

Figure 2-4 illustrates the combination of files and volumes used
by a sample online multivolume set. Multivolume files FILEA,
FILEB, and FILEC must begin on VOL1. FILEX, FILEY, and FILEZ
are single-volume files because they do not begin on VOL1. The
pathnames used to access the files are shown at the bottom of

the figure.

VOoL1

vOoL2 vOoL3 VOL4

ROOT VOLUME MEMEBER MEMBER MEMBER
~VOL1>FILEA ~VOL3>FILEX ~AVOL4>FILEY
~VOL2>FILEB ~VOL4>FILEZ

~VOL3>FILEC

Serial
Multivolume
Set

86-020-1

Figure 2-4. Example of Online Multivolume Set

A volume is designated as part of a serial multivolume set at
volume creation. A serial multivolume set has the following

characteristics:

e No member of the set need be mounted until the data on it is
required for processing.

e Any member of the set, including the root volume, can be
used independently of other members of the set to contain
single-volume files and directeries.

Cz03-02

2-33

File Concepts

Serial

Multivolume

File

A file is designated as a seria! multivolume file when it is
created in the root directory of a volume in a serial
multivclume set. A serial multivolume file has the following
characteristics:

e Must be a UFAS sequential file.

e Must be cataloged in the root directory of the volume on
which it starts. More than one serial multivolume file can
belong to a set, and each such file can begin on a different
volume if desired.

e Must be located through a pathname of the form
~volid>filename.

e Must continue serially from cne volume to the next (cannot
skip set members).

Figure 2-5 illustrates the combination of files and volumes used
in a sample serial multivolume set. Serial multivolume file A
begins in vOL1. Serial muitivolume file B begins in YOLZ. Both
continue in other volumes of the set. Files C, D, and E are
single-volume files. The pathnames by which the files are
located are shown at the bottom of the figure.

VoLl voLz VOL3 vaL4
A] 5]
/
23— pg o g b]
FIRST VOLUME SECOND THIRD FOURTH
OF THE SET MEMBERA MEMBER MEMBER
~VOLDA AVOL2B ~AVOL3)C ~YOLAD
~AVOLSE

86-026-

Figure 2-5, Example of Serial Multivolume Set

2-34

CZ03-02

File Concepts

Disk File Buffering

A buffer is a memory storage area used to compensate for a
difference in the rate of data flow, or time of occurrence of
events, during transmission of data from one device to another.
Buffering is the process of allocating and scheduling the use of
buffers. In some applications, overlap of input operations and
processing can be achieved by anticipatory buffering, where the
next block of data is read into the program's memory area before
it is needed. The program can then process reccrds from block n
while block n+l 15 being read into the memory area.

File Access Levels

Buffer Pools

Disk files can be processed at either block or record level. In
block level access, data is transferred directly between the
file and a buffer in your program. Your program must perform
all buffer management cperations. In record level access, the
system assigns disk files to buffer pools when your program
opens the files. The system buffering facilities are used to
perform all buffer management operations.

when a file is opened for Read, Write, Rewrite, or Delete
operations, the File System assigns the file to a particular
buffer pool. A buffer pool is a collection of buffers that

_provides a methoc of conserving memory for disk file access.

Buffer pools are designed to:

e Reduce the amount of memory required for buffers by al)
USers.

Reduce the number of 1/0 operations in & random access
environment.

e Provide more flexibility for shared file applications.

A1l buffers in a pool are the same size. Any number of files
with matching control interval sizes can be assigned to the same
buffer pool. A particular file, however, can be assigned to
only one pool.,

Each buffer in a buffer pool can store a disk control interval.
When an application program issues a read instruction and the
desired record is not in any buffer in the buffer pool, the next
empty buffer in the pool is filled with the control interval
containing the record. When all buffers in the pool are filled,
an active buffer is selected for the next different control
interval according to a least-recent-usage algorithm,

C203-02

Z2-35

File Concepts

Buffer Poog!
Creation

Public
Pools

Private
Pools

File-
Specific
Pools

In addition to conserving memory when disk files are accessed,
buffer pools sliminate the need for each user to define private
buffer areas. One or more system-wide buffer pools should be
created at system startup (through a startup EC file: see
Section 3). Users whc have special buffering requirements can
create their own buffer pools for files they reserve
exclusively.,

Each buffer pool is created as either a public or a private
buffer pool, and can be considered file-specific or general.
Buffer pools are createc by the Create Buffer Pool command and
deleted by the Delete Buffer Pool command. When creating a
buffer pool, you specify the number of buffers it is to contain,
the buffer size, and (optionally) the name of the buffer pool.

Public buffer pocls are those created by the cperator or the
system startup EC file. Public buffer pools reside in system
memory and are available to all files and task groups. A disx
file is assigned tc a public poo! if its contrel interval size
(specified in the command that creates the file) matches the
pool's buffer size.

In many environmehts. three or four public buffer pools
corresponding to three or four common file control interval
sizes are sufficient for all performance and buffering needs.

If the system volume is associated with the disk cache
processor, heavily used directories, as well as files that are
read sequentially, are likely to be resident in the disk cache
buffer. Buffer pools for these directories and files may not be
needed.

Private buffer pools can be created by each user. Private
buffer pools reside in the task group's memory Space anc are
available only for disk files reserved exclusively by that task
group. A disk file is assigned to a private pool if the file is
reserved for exclusive use and its control interval size
(specified in the command that creates the file) matches the
pool's buffer size. Private buffer pools should be created only
if necessary to meet specific buffering .needs. Public buffer
pools should be sufficient in most cases.

When you reserve a disk file with the Get File command, you can
specify the number of buffers (using the -BUF argument) to be
used when accessing the file. When the file is opened, a buffer
pool is automatically created for use only by that file. This
file specific pool is created in the task group's memory if the
file is reserved exclusively, or in system memcry if the file is
reserved as shareatle. The -BUF argument shouid be used
carefully since it prevents a file from being assigned tc a
public or private buffer pool.

2-3€

€z03-02

riie WONnLEpPLS

Buffer Pool
Optimizing

The File System collects a set of statistics on the use of each
buffer pool. The installation can use this information to
optimize disk I/0 operations. Buffer pool statistics are
obtained through the Buffer Pool Status and Buffer Peool
Information commands. The Buffer Pool Status command provides a
summary of the public or private buffer pool status. The Buffer
Pool Information command provides a detailed status report on a
particular buffer pool.

The installation should analyze applications and their
associated file usage to fully utilize the advantages offered by
buffer pools. Only a limited number of control interval sizes
should be allowed for user files. In general, buffer and
control interval sizes should be chosen to evenly distribute
high and low activity files over the various buffer pools, thus
reducing the amount of contention in the pools. The initial
determinations wil) provide an acceptable level of performance
and provide the basis for further anpalysis.

The Adjust Buffer Pool command can be used to temporarily alter
the number of buffers in a private buffer pool. Once the most
efficient buffer poal size has been established, it should be
permanently fixed through the Create Buffer Pool (CBP) and
Delete Buffer Pool (DBP) commands. In general, the system
START_UP.EC file should specify a CBP command for directory 1/0,
with the -DIR argument, and for space allocation, with the
-ALLOC argument. Also include one or more CBP commands for
commonly accessed disk files. This will result in higher
performance, less system memory fragmentation and more memory
available to users. This may require configuration of a larger
system memory pool and smaller user memory pools.

Cz03-02

2-37

File Concepts

MAGNETIC TAPE FILE CONVENTIONS

The magnetic tape file conventicns discussed in the following
paragraphs include file organization, naming conventions,
pathnames, and buffering operations.

Magnetic Tape File Organization

The following information app]wes only to 1l/2-inch, S-track
maagnetic tapes.

Magnetic tape supports cnly the seguential file organization.
fixed- cr variable-length records can be used. Records cannot
be inserted, deleted, or modified, but they can be appended to
the end of the file. The tape can be positioned forward or
backward any number of records.

Blocks The unit of transfer between memory and a tape file is a block.
Block size varies depending on the number of records and whether
the records are fixec or variable in length.

A block 'can be treated as one logical record called an
"undefined" record. An undefined record is read or written
without being blocked, unblocked, or otherwise altered by data
management. Spanned records (those that span across two or more
blocks} are supported. No recorc positioning is allowed with
spanned records. :

Labeled A labeled tape is one that conforms to the current tape standard

Tapes for volume and file labels issued by the American National
Standard Institute (ANSI). The foilowing types of labeled tapes
are supported:

Single-volume, single-file
Multivolume, single-file
Single-volume, multifile
Multivolume, muitifile.

00

Unlabeled The following types of unlabeled tapes are supported:

Tapes <
Single-volume, single-file

e Single-volume, multifile.

2-38 Cz03-0z

File Concepts

Magnetic Tape File and Volume Names

Allowable
Characters

Forming
Names

Name Length

Each tape file and volume name in the File System can consist of
the following ASCII characters: Uppercase alphabetics (A
through Z), lowercase alphabetics (a through z), digits (0
through 8), exclamation point (!), double quotation marks ("),
dollar sign ($), percent sign (%), ampersand (&), apostrophe
('), left parenthesis ({), richt parenthesis ()), asterisk (*},
plus sign (+), comma (,), hyphen (-), period (.), slash (/),
colon (:), semicolon (;), less-than sign (<), egqual sign (=),
question mark (?), and underscore {_).

Any of the characters defined above can be used as the first
character of a file or volume name. The underscore character
can be used as a substitute for a space. If a lowercase
alphabetic character is used, it is converted to its uppercase
counterpart ("DATA", "Data" and "data" all refer to the same
file).

The name of a tape volume can be from 1 through & characters in
length. Tape file names can be from 1 through 17 characters.

Magnetic Tape Device Pathname Construction

As previously mentioned, magnetic tape volumes can be labeled or
unlabeled (refer to "Magnetic Tape File Organizations" above).

Unlabeled Tape Pathnames

You must use a tape device pathname when referring to an
unlabeled tape. The general form of a tape device file pathname

is:
!dev_name

where dev_name is the symbolic name defined for the tape device
at system building time.

cz03-02

2-39

File Concepts

Labeled Tape Pathnames

You can refer to labelec tapes either by the tape device
pathname convention or by the tape volume id convention.

Tape Device The tape device file pathname convention is:
File
Idev_name>voi_id[>filename]

where dev-name is the name of the tape device as specified at
system building time, vol_id is the name of the tape volume, and
filename is the name of the file on the volume. This convention
requires that the volume be mounted on the specified device.

Tape Volume The tape volume id convention is:
Id
’ ~vol_id[>filename]

where vol_id is the name of the tape volume and filename is the
name of the file on the volume. This convention allows the
volume to be mounted on any available tape device.

Automatic Magnetic Tape Yolume Recognition

Automatic volume recognition dynamically nctes the mounting of a
tape volume. This feature allows the File System to record the

volume identification in a device table, thus making every tape

volume accessible to the File System software.

Magnetic Tape Buffering

The -BUF argument of the Get File command can be used with
magnetic tape files to reserve one or twc buffers. If -BUF 1is
not used, the File System attempts to allocate two buffers. If
two buffers are allocated, the File System does "double
buffering.” When the tape file is being read, the File System
unblocks one buffer while an anticipatory read is done into the
other buffer. Similarly, when the tape file is being written,
the File System blocks records into one buffer while a
previously filled bleck is written out of the other buffer.
This allows application code to execute in parallel with I1/0
transfers.

2-40 €203-02

File Concepts

UNIT RECORD DEVICE FILE CONVENTIONS

Unit record devices (card readers, card punches, printers,
terminals, and paper tape reader/punches) are used cnly for
reading and writing data. They are not used for storing data,
and thus do not require conventions for file identification and
location.

Unit Record Device Pathname Construction

The pathname of a unit record device consists of the symbolic
device name defined at system building time preceded by an
exclamation point (!). The pathname format is:

ldev_name

where dev_name is the symbolic device name of the unit record
device.

Unit Record Device Buffering

A1l printers and most interactive terminals are provided with
one File System buffer. (The operator terminal cannot be
buffered.) By providing a File System buffer, application code
can execute in parallel with I/0 transfers.

Tab Stops A1l printers and all terminals (except the operator terminal)
have a tabbing capability through software that converts the tab
into spaces. Default tabulation stops are set at position 11
and at every tenth position thereafter for the 1ine ilength of
the device.

Unit Record Read Operations

When an application task issues a logical read to a File System
buffered device, one of the following actions occurs:

e If the buffer is full from a prior anticipatory read, the
data in the buffer is transferred intc the application
task's area and a physical 1/0 transfer (an anticipatory
read) is performed in parallel with continued execution.

e If the buffer is not full, task execution stalls until the
anticipatory read is completed.

The timing of the initial anticipatory read performed for the
card reader is different from that of the interactive terminals;
for other read actions it is the same.

CZ03-02 2-41

File Concepts

Card Reader

Interactive
Termina’

File Status

Synchronous
Read

Buffer
5tatus

COBOL
Programs

Immediately after the Open is complete, the File System performs
an asynchronous anticipatory read into the system buffer while
tne application continues executicn. A1l Open calls are
synchronous.

The anticipatory read allows an application to control input
from more than one interactive terminal, each of which
represents a data entry terminal. By testing the status of the
system buffer befere & Read or by checking for the appropriate
status return after a Read, the application will not be stalled
if the terminal operator is not present at the time of the Read
request. Instead, tne application can continue to poll other
terminals.

Immediately after the Open is complete, a physical connection is
made while the application continues execution. Depending upcn
the language the application is written in (for example, FORTRAN
or Assembly language), it may be abie to check the status of the
Open to see if a Read can be issued without stailing applicaticn
execution. The File System issues an asynchronous anticipatory
physical read when the status check following the physical
connect is complete. The file status remains busy until the
ohysical read is done and the system buffer is full. At this
noint, the file status is "not busy" (the anticipatory read is
successfully completed), and the application can issue a Read
with the assurance of receiving data immediately.

I7 at any point after the Open is issued, the application issues
a Read before the physical connect and anticipatory read have
been completed, the Read is synchronous and further central
processor execution is stalled on the application until the
anticipatory reac is complete.

To avoid stalling on a Read or to avoid status check looping to
test the input buffer status, applications should put themselves
in the wait state, %hus making tne central processor available
for lower priority tasks.

After the Open, an zpplication written in CCOBOL must issue Read
ragquests. The application will be put in the wait state if it
iz executing 1/0 statements in synchronous mcde. Otherwise, the
COBOL run-time packzge performs stztus checks and returns a 91
status until successful completion., The program can either loap
cn the Read or corntinue other processing.

Cz03-C2

F11€ LONCEPLS

Unit Record Write Operations

Status Check

Write with
Read

Tabs

Errors

A buffered write operation to a unit record device works on
behalf of the application program in the same logical manner as
a read operation., The program is permitted to execute in
parallel with the physical I/0 transfer to the device. To
achieve this parallel processing, no special operation occurs on
an Open call and no distinction is made between interactive and
noninteractive devices.

Each Write call is completed by moving data from the application
buffer to the File System's buffer (performing any detabbing, if
requested), initiating the transfer, and returning control to
the application program. If the program performs a second Write
while the system buffer is still in use for a previous transfer,
the application is stalled until the buffer is available and new
data is moved into it again. The application can avoid stalling
execution when writing to an interactive terminal by dcing one
of the following:

e Checking the status of the system buffer before issuing the
Write to see if the interactive terminal is still in use.

e Testing for a particular status return after the Write.

If a Write call is issued while data is being entered into the
system buffer (because of a Read), the following sequence of
events takes place:

e The Read is allowed to complete.
o Input data is saved in the system buffer.
e A synchronous Write is reissued by the File System.

e Output data is transferred directly from the application
buffer.

Note that tab characters are not expanded into spaces.

If a physical 1/0 error occurs while data is being transferred
from the system buffer to the device, you must be aware that the
error occurred on the previous write operation. Furthermore, if
any type of error occurs, the application program may need to
have saved (or be able to retrieve) the data record so that it

can be repeated.

Cz03-02

2-43

File Concepts

REMOTE FILE ACCESS

Statements

Commands

Remote file access is a File System facility that al’ows
applications to access remcte data as if it were local. Remote
objects such as files, volumes, magnetic tapes, and printers
physically reside in some otner computer system (node) but,
through remote file access, appear to be attached tc your
system. The remote file access facility captures references to
remote objects and interfaces with the appropriate networking
software (DSA for example) to get the desired function performed
remotely.

when accessing data at another node, you may employ any File
System function through macrocails or higher-level language I1/0
statements. No special naming conventions are necessary. You
supply the same kind of pathname you would to access locatl

data. The File System checks to see if the object identified in
the pathname is online (located on your node). If the object is
not online, the File System checks a remote file catalog to see
if the object is located at some other computer node.

The Remcte File Catalog command is used to manage catalog
information. This command allows a system cperator or
administrator to define, update, and display information about
remote and local objects, nodes, and networking software.

The Remote File Access command is used to initiate the remote
file access facility. This command allows the system operator
or administrator to start the facility, retrieve network status
information, and open and close connections between nodes,

Remote File Catalog

Remote
Objects

Each node has its own remote file catalog to identify objects it
can reference through remote file access. The catalog contains
only those objects of interest to the node. A remote file
catalog contains information about both remote and local
objects.

Remote object information consists of a Jist of remote volumes
and devices along with the node at which they are currently
located. The File System allows you to define your own names
for remote objects. For example, the line printer known as
LPT0D4 in NODE3 can be cataloged as LPTOl in NODEl. Any
reference to LPTOL in NODEl will result in a search of the
catalog and subsequent use of the printer through the remote
file access services. The catalog can be updated dynamically by
an operator or system administrator to configure new remote
devices or to recenfigure existing ones.

2-44

C203-02

rile LUNcepLs

Local
Objects

Yolume Iden-
tification

Local object information consists of a 1ist of your volumes and
devices that can be accessed from other nodes. This information
is used by the other nodes to verify the existence of what is to
them a remote object. 1t enables the File System to
automatically update the catalog when volumes are moved from one
system to another.

Disk volumes can be exchanged or moved from one node to another.
The remote file catalog contains enough information to uniquely
identify a remote disk volume and to recognize when it has moved
to another node. This information consists of:

e A Node of Birth (NOB) field identifying where the volume was
originally cataloged for remote access.

e A Date of Birth (DOB) field identifying the date and time
the volume was originally cataloged for remote access.

e A Node of Residence (NOR) field identifying the node where
the volume is currently lccated (cataloged as a local
object). '

e A Node Migration Number (NMN) field identifying the number
of times a volume has moved from one node to another.

The remote file catalog maintains the relationship between a
Tocal name, its current location (NOR), and the actual name.
When a volume is moved to another node, only its NOR is changed,
no change is made to the local name.

When a node connection is established, the two systems involved
exchange local object information. A node ignores any volume
information received that is out of date with respect to what it
already has in its catalog. If a node has been off-line for
some time, any ol¢ information it has will be discarded and any
new information it received will be factored in.

CZ03-02

2-45

File Concepts

Catalag Establishing a remote file catalog i1s usually a one-time
Creatiaon operation. The steps involved in setting up the catalog are as
follows:

1. Create the catalog.

You create the catalog by using the Remote File Catalog
(RFC) command with the -CAT argument. This step is
performed cnly once.

2. Catalog a node for remote access.

You define the nodes with which you are to communicate by
using the RFC command with the -NODE argument. This step is
repeated once for each node.

3. Catalog a local object to be accessed remotely.,

You define a jocal cbject that is to be accessed from cther
nodes by using the RFC command followed by the local
pathname of the object. This step is repeated once for each
local object toc be addressed remotely. Any device to be
cataloged must be configured on your system. A disk volume
to be cataloged must be mounted.

&, Enable the remote file access facility.

You invoke the remote file access facility by using the
Remote File Access (RFA) command with the -STARTUP

argument. This step configures anc initializes the facility
for communicating between nodes. It must be performed at
the local node and esach remote node whose objects are to be
cataloged.

5. Establish communication with a remote node.

You establish communication with the remote node by using
the RFA command with the -OPEN argument. This step must
also be performed at =ach remote node whose objects are to
be cataloged.

€. Catalog a remote object to be accessed locally.

You define a remote object that is to be accessed from your
node by using the RFC command followed by the local name to
be used to reference the object and the name of the node at
which the object is located. [f you wish tc define a local
name that is different from the name of the object as it is
xnown at the remote node, you must use the -RO8J argument.
This step is repeated once for esach remote cbject tc be
addressed loca'ly. Note that communication must have been
established with the remote node thrcugh the RFA command.

2-46 €z03-02

File Concepts

Initiating Remote File Access Operations

Once a remote file catalog is set up, only two steps must be
performed on a day-to-day basis before you can access remote
devices and data (assuming that the network is up).

1. Enable the remote file access facility.

You and the nodes with which you are to communicate must
issue the RFA command with the -STARTUP argument.

2. Open the remote nodes.

You must issue the RFA command with the -OPEN argument for
each node with which you are to communicate. Those nodes
that are to access objects at your node must also issue the
RFA command with the -OPEN argument.

After you have enabled the remote access facility and opened the
remote nodes, you can perform any operation on the remote data
that you would perform on local data. Whether you use system
commands or your own application programs, the data will appear
to be Tocated at your node.

Remote File Access Security:

Access
Control
Lists

Record
Locking

The following paragraphs describe the way in which the remote
file access facility handles access control, record locking, and
data commitment.

Access control lists define which users have access to data and
what kind of access they have. When files are accessed
remotely, the same level of file protection exists as when files
are accessed locally. If a file is protected by an access
control list, no local or remote user can access the file unless
the user is given permission through the access contrel Tist.

Record lecking prevents other users from simultaneously
getting access to records that you are accessing. In many
applications record tocking involves multiple reccrd locks on
multiple files and, in networking environments, may involve
Tocks to multiple files in multiple ncdes.

A typical deadlock condition can occur if one user has locked
some records and is trying to lock others while ancther user has
these other records locked and is trying to lock the records
already locked by the first user. The File System on your
computer node knows about the recorc locks on local data files
and is able to detect deadlocks. Since the File System does not
know about record locks on remote data files, it prevents
deadlocks from occurring by using a time stamp algorithm.

€703-02

2-47

“ile Concepts

Data
Commitment

Users are assigned time stamps when they start to access remote
data. The time stamps are passed tc remotfe nodes by the remote
file access facility. At a remote noce, a user may only wait
for records that are held by younger users (users whose time
stamp 1s later). If tne application attempts to lock a record
<hat is already locked by an older user (a user whose time stamp
is earlier), it receives a "deadlock has occurred" return
status. The application must then abort, backtrack, or

restart. If a record is held by a user who is local to that
node, the local user is always considered the younger.

For purposes of data integrity, an application that accesses and
updates remote (and local) data may be structured in phases
known as commitment units. The end of a commitment unit s &
point at which the user is willing to commit changes to the data
base. This type of applicaticn is said to be transaction
oriented. It may complete successfully (commit) at a program-
defined commitment point or it may fail (abort), in which case
any updated data must be returnec to its initial pre-transaction
state. To ensure reliability, the transaction must either
complete in its entirety or not complete at all.

In remote file access, data commitments are performed in two
phases: precommit and commit.

e Precommit - A1l data is recorded on disk with an indicator
to show that the data is in-a precommitted state. This step
is done locally. Remote file access then sends messages to
precommit data at all remote nodes.

e Commit - Once messages have been received from all affected
remote nodes, indicating that all data is in the precommit
state, local data is committed (unlocked and made available
to other users). Another round of messages is then sent via
the remote file access facility to commit data in the remote
nodes.

If a system or node failure occurs in any intermediate step,
there is enough information available so that, on restart, a
decision can be made to commit or recover the data. More
detailed information on file recovery 1s presented in Section 5.

€203-02

