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Summary This section describes the MOD 400 execution ervironment. It
discusses task groups and tasks, memary management, segmented
demand paging, memcry pocls, and bound units.
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INTRODUCTION

System control of user applications and system functions is
accomplished within the framework of the task group. A task
group consists of a set of related tasks. The most simple case
of a task is the execution of code produced by one compilation
or assembly of a source program (after the code is linked and
loaded).

A task group is both the owner of system resources and the
context in which system control of tasking is accomplished. A
task can be characterized as the execution of a sequence of
instructions that has a starting point and an ending point, and
performs some identifiable function. It is the unit of
execution of the Executive, and its execution must be requested
through the Executive software.

The source ianguage from which task code is derived can be any
of the languages supported by the Executive. Socurce code is
compiled (or assembled) and linked te form bound units
consisting of a root and zero or more overlays. (Refer to
"Bound Unit Characteristics” later in this section for more
information.)

TASK GROUPS AND TASKS

You can configure a system dedicated to interactive applications
or to a combination of interactive and absentee applications.
This flexibility of configuration is based on the concept of the
task group as the owner of the system resources it requires for
execution.

By defining more than one application .task group to run
concurrently, you are utilizing multiprogramming. You can step
through an application in sequence by causing tasks in the group
to be executed one at a time, or you can multitask an
application by causing tasks within the group to be executed
concurrently.

CZ03-02 4-3
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Multiprogramming

Since multiple applications can be icaded ‘n memory at the same
time, contending for system resources, the system bu‘lder must
define an environment for each application so that the
application knows the 1imits of its resources. This defined
environment is czlled a task group., and its domain includes one
or more tasks, a memcry pool, files, peripheral devices, and
priority levels.

By defining the total system environment to cernsist of more than
one task group, the system builder divides up the resources so
that more than one application can run concurrently. To do this
the system builader diviges the memory not occupied by the
Executive into cne or more user memory pools. Users assign task
groups to memory pcools at group creaticn time. Task code of a
task group is loaced into this task group's pool: the task
obtains dynamic memory from that pool.

Task Step Control

By using the resources of one task aroup repetitively, you can
run an application as a sequence cof job or program steps. To do
this, you invoke the Spawn Group command tc create a task group
that uses the Command Processor (whose function is to .process
system-level commands). VYou can enter commands through task
groups whose lead task is the Menu Processor or the Command
Processcr.,

Cne method of sequencing application steps is to have this
spawned group issue a Spawn Task command for each task to be
executed. This command causes a task to be lcaded, executed,
and then deleted. Provided the Command Processor is instructed
to wait for completion of esach spawned task, the tasks in the
group can be executed in sequence. For example:

ST 1 -EFN REP_DATA -WAIT

tSpawn task to gather report data and wait for it to
complete)

ST 1 -EFN PR_RPT -WAIT

(Spawn task to print report and wait for it to complete)
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Multitasking

Synchron-
jization

A variation of step control can be used to attain multitasking
within one task group. Consider the situation in which the
Command Processor is the lead task and reads a file containing
Spawn Task commands. The Command Processor does not wait for
the execution of the individual tasks; rather it continues to
spawn tasks until it reads an end-of-file or &Q directive. The
spawned tasks are loaded and run concurrently in this task
group, contending among themselves for the resources belonging
to the group. For example:

ST 1 -EFN REP_DATA

(Spawn task to gather report data)
ST 1 -EFN PR_RPT

(Spawn task to print report)

This method can be used only if a synchronization mechanism such
as a semaphore is employed to ensure that PR_RPT does not run
until REP_DATA has finished (refer to "Semaphores" in Section 5
for further information).

In a multiprocessor system it is possible that the PR_RPT
program will be started before REP_DATA has finished gathering
its data. In any system, each task is given a certain amount of
time to execute, after which it must wait for some event, If
the task exceeds this amount of time, the system schedules it to
resume after other tasks. It is possible that REP_DATA could be
stopped before it has finished collecting the data and that
PR_RPT could be started. For reasons such as these, a
synchronization mechanism is a necessity.

C203-02
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Lead Task

The Command Processor must be the lead task of an absentee task
group so that it can reac the EC file containing the desired
commands. However, the Command Processor does not have to be
the lead task of an interactive task group. An application
consisting of one task could execute in a task group whose lead
task is the application task.

If the application regquires step control or multitasking and you
do not need to use commands for control, you can generate a task
graoup whose lead task contains the Assembly language system
service macrocalls whose functions are analogous to the Creats
Group, Create Task, Spawn Group, and Spawn Task commands.

These situaticns are illustrative and do not exhaust the various
ways in which you can control program execution.

Application Design Benefits of Task Group Use

Designing an application around a task group provides intertask
communication and Executive control of multiple unrelated task
aroups.

Intertask Communication

The tasks in a task group execute asynchronously under control
cf the Executive. Tasks within a group can use control
structures supplied with each task request for intertask
communication.

Asynchronous tasks provide effective software response to
information received from real-time external sources, such as
cormunications or process control systems. Usually, the task (a
1ine protocol handier) that is activated to handle the interrupt
from the external scurce has a higher priority and a shorter
execution time than the task that processes the information.

The task that respends to the interrupt will use the Executive
to request the execution of the processing task, supplying along
with the reguest a control structure containing a pointer to the
new information to be processed. The Executive responds to the
request by activating the requested task or by gueuing the
request if other reguests for the execution of the task are
still pending.
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System Control

Job/Step
Sequencing

Respurce Use

Job
Independence

Communications applications can use & high priority task to
respond to data interrupts and determine which processing task
should handle the data. This higher priority task uses the
system to queue requests for the processing task, thereby
accommodating peak-load conditions in which data is received
faster than it can be processed.

In a process control system, the real-time clock might provide
the interrupt that causes the higher priority task to scan and
update temperature, thickness, or raw material level sensors
that monitor the physical status of the process. This
infermation is passed to a processing task with a lower priority
that determines the necessary adjustments based on the new

data. A third task, having a priority between the other twao,
could be requested to make whatever changes are required (for
example, to change the flow rate of material entering the
process by closing a valve).

of Task Groups

System control of an application based on the use of multiple
task groups is important for several reasons. First, these
applications can be thought of as consisting of multiple
unrelated "jobs" (task groups) made up of one or more "job
steps" (tasks). The sequence of task execution can be
controlled by the system (Command Processor) as it processes
synchronously supplied commands instead of responding only to
externally supplied interrupts. The next "step" is started only
when the previous step terminates. (You must ensure that the
steps will be carried out in order.)

If any one set of tasks does not fully use the available
processing time, the system can make more efficient use of
resources by rotating their use on the basis of interrupts and

priority level assignments.

The use of independent task groups that are subject to system
control prevents one task group from adversely affecting
another. If an error occurs in cone task group, this group can
be aborted while the others continue to execute.

C203-02
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Generating Task Groups and Tasks

Generation
Commands

The system provices tasking facilities regardless of the source
code in which the application is written. Once generated, all
tasks are supject to the same system contraols, whether written
in COB0L, FORTRAN, BASIC, Pascal, C, Ada, or Assembly language.

Some languages (such as COBOL and BASIC) dc not provide for
tasking as part of the programming language's capabilities. In
these cases, the generation of tasks consisting of code written
in those languages is done through commands.

Although tasks written in languages such as Assembly language
and FORTRAN can be generated at the control language level,
these languages have a facility for generating task groups and
tasks without recourse to commands. Assembly language programs
use system service macrocalls; FORTRAN programs use tasking
routines,

From the overall system viewpcint, the acticns of the control
language in the generation of task groups and tasks are much
more visible than the same capabilities in Assembly language and
will be considered next.

As shown in Table 4-1, commands submitted by the operatcr and
commands submitted by other users share some of the task group
generation functions and also perform unigue functions. The
control commands are divided into three groups:

1. Commands tnat perform the same function whether submitted by
the operator or another user.

Z. Commands that can be entered only by the operator.

3. Commands contained within the content of an existing task
group request.

4-8
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Table 4-1, Task Group and Task Functions Possible
From Interactive and Absentee Modes
User Commands Opérator Commands
Function Interactive | Absentee Interactive | Absentee
Create Group Yes No Yes Yes
Enter Group Request Yes Yes Yes Yes
Delete Group Yes No Yes Yes
Abort Group Yes No Yes Yes
Spawn Group Yes No Yes Yes
Bye Yes Yes ‘No No
Suspend Group Only operator commands Yes Yes
exist for these :
Activate Group functions. Yes Yes
Abort Group Reguest Yes Yes
Create Group Request Queue Yes Yes
Create Task Yes Yes Only user commands
exist for these

Delete Task Yes Yes functions.
Enter Task Reguest Yes Yes
Spawn Task Yes Yes

NOTE:

absentee mode.

The Command Processor executes in interactive and/or

CZ03-02
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Characteristics of Task Groups and Tasks

Task groups and individual tasks can be originated in either of
two ways: by creation or by spawning. The choice depends on
applicaticn design considerations as wel!l as the intended
functions.

There are important differences between tasks (and task groups)
that are generated by a create function and those originated by
a spawn function. Created task groups and tasks are permanent;
they remain available in memory until explicitly removed.
Spawnec task groups and tasks are transitcry; they perform a
function and disappear.

Created task groups and tasks are passive; they must be
explicitly requested to execute in order to perform their
intended function. Spawned task groups and tasks cannot be
requested. The spawning of a task group or task is equivalent
to a create-request-delete sequence of control language
commands. In a spawn operation, the task group or task is
defined, provided with system resources and control structures,
executes, terminates, and has its resources deallocated, all in
one continuous process.

Task code may cause extensive action in its own behalf, as when
application task code requests a system service or the execution
of another task while awaiting the completion of the requested
task. Each task that requests ancther supplies the address of a
control structure through which the issuing task and the
requested task can communicate, and which the Executive uses to
coordinate task processing.
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Task Group Identification

Each task group has a unique identifier. Honeywell Bull
supplied system task group identifiers begin with a $. 2s shown

below:
Task
Group 1D Function

$H Honeywell Bull-supplied user task group
3L Listener

$P Deferred print

$s | System task group

Group-1Id The identifier for a user task group in the Create Group or

Spawn Group command is a 2-character name that should not have

the dollar sign ($) as its first character. The identifier (or
group-id) can be indicated or implied in commands to designate

what task group is to be acted upon. The operator can include

the task group identifier when responding to operator terminal

messages from the task group.
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MEMORY MANAGEMENT AND PROTECTION

Segmentation

Segment Size

The system (hardware and scftware) provides a memory management
and protecticon facility that performs the following functions:

e Allocates memory to guarantee each task group (user) its own
address space,

e Protects multiple users from each other and the system from
the users.

The hardware used to prcvide memory management ancd protection is
called & memory management unit. The type of memory management
unit varies according to the king of processor. DPS 6 systems
use either the Basic Memcry Management Unit (BMMU) or the
Extended Memory Management Unit (EMMU). Each of these memory
management units is based on the concept of segmentation.

The memory management unit maps a segmented address space onto
physical memory. The unit of memory allocation is a segment, A
segment is a variaply sized area of memory that usually consists
of & logical entity such as a procedure. The system memory
management and protecticon facility treats all addresses
generated by the central processor as segment-relative
addresses. It maps the-segment-relative addresses through the
memory management unit tc absolute physical addresses.

No segment.can be less than 512 bytes in length. Segment size
is always a multiple of 512 bytes.

Segmentation With Basic Memory Management Unit

The BMMU supports up to 31 segments, 16 of which can be up to 8K
bytes (K=1024) in size and 15 of which can be up to 128K bytes
in size. The segments that can be up to 8K bytes are called
"small segments"; those that can be up 12BK bytes are called
"large segments." The 16 small segments are numbered from 0.0
through O0.F; the 15 large segments are numbered from 1 through
F. All small segments, and often some large segments, are
reserved for system use: the actual number reserved is
established at system generatiaon.

The BMMU provides a total of 2 million bytes of segmented
address space for each task.

4-12
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Each segment is described by a 4-byte segment descriptor that
contains the segment's starting physical address, its length (in
units of 512 bytes), and its access rights for each ring (refer
to "Segment Ring Protection" below).

Although you can assign any of the large segments to a bound
unit when it is linked, the availability c¢f a segment depends on
the system configuration. Therefore, most applications simply
let the system assign segment numbers. The identity of the
segments available to you should be obtained from the system
administrator.

Segmentation With Extended Memory Management Unit

The EMMU supports up to 256 segments, each of which can be up to
128K bytes in size. The segments are numbered from 00 through
FF. Segments 00 through 7F are reserved for system use:

segments 80 through FF are available for user tasks.

The EMMU provides a total of 32 million bytes of segmented
address space for each task.

Each segment is described by a Z-byte segment descriptor that
contains the segment's starting physical address, its length (in
units of 512 bytes), and its access rights for each ring.

Segment Ring Protection

Task
Execution

Access
Checking

Access to memory segments is controlled through the memory
management unit. The memory management unit assigns each
executing task to a ring of privilege. (Rings may be thought of
as concentric circles, like a target. The innermost circle,
ring 0, has the most privilege.) During the linking of a bound
unit, you can assign access attributes to each bound unit to
indicate whether a task executing in a particular ring of
privilege can read, write, and/or execute in the code or data
segment of the bound unit. However, it is recommended that you
use the system defaults.

System tasks execute in ring O (privileged state). User tasks
can execute in rings 2 and 3. Ring 0 is most privileged, and
ring 3 is least privileged. The ring in which a user task
executes is defined by the type of memory pocl to which the task
has been assigned (refer to "Ring Access Rights" later in this
section).

Every attempted access to a segment is checked for legitimacy.

The system compares the ring number of the executing task with

the access attributes of the segment to be accessed. An access
violation trap occurs if a user application attempts to access

one c¢f its segments without having the proper access rights.

€z03-02
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MEMORY POOLS

At system startup the Configuration Load Manager (CLM) reads a
file of directives, sets up memory pocls from the supplied
specifications, and indicates to the Loader wnat system and
user-written software is to be resident for the life of the
system. On the DPS 6/22, the Autoconfigurator creates the
file. On other systems, the system builder can use the line
editor to create the file.

After the system has been in ogperation for & while, experience
may show the desirability of reconfiguring the pool sizes so
that they meet user requirements more precisely. The system
builder can hand-tailor the MEMPOOL and SWAPPOOL directives in
the CLM file using the line editor. Refer to the System
Building and Administration manual for information on the CLM
directives.

The system supports the following types of memory pools:

e System pool - Contains the system task group and all
globally shared elements. There is only one system pool per
system. .

e Swap pool - Provides an environment in which segments can be
swapped out to disk to make room for competing users, and in
which the memory requirements of individual users do not
have to be predetermined. Systems with EMMUs should have
all of user memory as one swap pool. Systems with BMMUs
should have all of user memory as multiple swap pools.

e Independent pocl - Provides an environment suitable for
applications with well-defined memory requirements, all of
whose tasks must must be in memory at the same time. There
can be multipie independent pools in the system.

Swap and independent pools allow applications running on systems
with a BMMU to access more than 2 million bytes of physical
memory .

If multiple swap or independent paols are configured, Listener
can coptionaliy ensure an even distribution of task groups among
memory pools by assigning each new user to the memory pool with
the fewest task groups.

Sharing Memory Pools

Swap and independent pools will be shared if users assign more
than one task group to the same pool. As the tasks execute,
they contend for the same memory space. Tasks running in an
independent pocl should be designed so that tney can be
suspendec or take some alternative action when no additional
memory is available. :
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Memory Pool Attributes

Protection

Containment

Privilege

Memory pools can have ane or more of the following attributes:
protection, containment, privilege, serial-usage, and ring
access rights.

When a memory pool has the protection attribute, it cannot be
written into by a task running in another pool. The Executive
uses the memory management unit to prevent all write intrusions
by foreign tasks. A task attempting to write into a protected
pool receives an error notification from the Executive,

Protection applies to memory pools and not to task groups.
Groups sharing a a memory pool are protected from each other
only in the swap pool. Tasks within a group are not protected
from each other.

A1l pools are automatically generated as protected: this
attribute cannot be changed.

When a memory pool has the containment attribute, tasks running
in the pool cannot write outside the pool area. The Executive
uses the memory management unit to prevent all tasks from
writing outside the pool. A task attempting to write cutside of
a contained pool receives an error notification from the
Executive.

The system pool cannot be contained. Swap and independent pools
are automatically generated as contained; this attribute cannot
be changed.

When a memory pool has the privilege attribute, any task running

in that pool can execute privileged instructions. The following
Assembly language instructions are privileged:

ASD I0 LEV WDTF
CNFG I0H RTCF WDTN
HLT IOLD RTCN

If the pool does not have the privilege attribute, any task
attempting to execute one of the above instructions will trap.

The system pool is always privileged; this attribute cannot be
changed. Swap and independent pools are unprivileged; this
attribute can be changed in the CLM MEMPOOL directive.

CZ03-02
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Serial Usage

When a memory pool has the serial-usage attribute, it can be
used by only one task group at a time.

The system and swap pools are generated without the serial-usage
attribute; this specificaticn cannot be changed. Independent
pools can be specified in the CLM MEMPOOL directive as having
the serial-usage attribute.

Ring Access Rights

Atcessing
Memory

System Pool

User Groups

Each type of memcry paol is automatically assigned a ring access
designation. There are four rings, numbered O through 3. Rings
0 and 1 are privileged rings; rings 2 and 3 are unprivileged.,
Tasks acquire the ring attripbute of the pool to which their task
group 1s assigned. The pools and their associated rings are:

Fool Ring
System 0
Swap : 3
[ndependent L or 2

Independent pools have ring 1 access if they are privileged and
ring 2 access if they are not privileged.

Ring access is used with segment ring protection to determine
the ability of a task to access memory (refer tec “"Segment Ring
Protection" earlier in this section). A task whose ring access
is 3 can only access memory protected at ring 3. A task whose
ring access is 2 can only access memory protected at rings 2 and
3. A task whose ring access is 1 can access memery protected at
rings 1. 2, and 3. A task whose ring acecess is 0 can access
memory protected at rings 0, 1, 2, and 3.

The following paragraphs describe each type of memary pool in
greater detail.

The system pool contains the system task group ($5), certain
file control! structures, and system elements that are to be
shared, Its maximum size is 4 million bytes. The system pool
is protected, privileged, and not contained. Tasks running in
this pool have ring 0 access.

User task groups cannot be created in the system pool. User
tasks cannot execute in the system pool with ring { access.

€z03-02
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System
Group

System
Elements

Swap Pools

Size

Virtual
View

The system task group cannot be aborted or suspended. Since it
never terminates, it cannot be requested. The system group
always has read and write access to all of memory. It handles
all system dialog (including operator commands) through the
CLM-designated operator terminal.

The file control structures in the system pool are the File
Description Blocks (FDBs) and the buffers for shareable files.
Other system elements in this pool include:

Current function invoked by an operator command.

Extended Trap Save Areas (TSAs) needed during processing.
Control blocks for all tasks (TCBs) and task groups (GCBs).
Globally shareable bound units.

File System directory and file definition blocks.

Public buffer pools.

Memory control blocks for swap pool segments.

A swap pool is a privileged, protected, and contained pool in
which segments can be swapped ocut to disk in order to make
physical memery available to competing users. Swap pool memory
management can move segments to physical memory in order to
eliminate fragmentation and consolidate available memory space.

Swap pools suppor£ both interactive and absentee processing.

The size of a swap pool, plus the size of the Executive and its
structures, cannot exceed 2 million bytes in a system having a
BMMU and 16 million bytes in a system having an EMMU. On
systems with a BMMU, the system builder can configure multiple
swap pools. On systems with an EMMU, all of user memory should
be one swap pool.

A swap pool is a separate virtual view of the system. That is,
each task in a swap pool can view that portion of the pool
relating to itself and can view all of the global system space.
Tasks running in the swap pool have ring 3 access.

€203-02
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Swapped Out

Swapped In

Task In
Memory

Protection

Segment
Assignments

The system acquires space for a given segment from whatever
pertion of free swap pool memory is available. If not enough
space is available for the needed segment, the system attempts
to obtain memory by swapping out lower priority tasks in the
same pcol that are waiting on an event. If this acticn does not
produce enough memory, the reguesting task is swapped out until
sufficient space becomes available. A task is swapped out under
cne of the following ctonditions:

e If it is waiting on an event that is of potentially long
duration and swap pool! memory is required by a competing
task.

e If memory is required to roll in a higher priority task.
e If the task has been suspended by the operator.

A task is swapped back in when the swap pool memory is
available. The task may be swapped in immediately, it may be
swapped in after tasks waiting on events of long duration are
swapped out, or it may be swapped in after lower priority tasks
are swapped out. A task i5 swapped back in when any event on
which it was waiting has compieted-or when it is reactivated by
an gperator.

The entire context of a task in the task group must be in memory
for the task to execute. Other tasks in the task group need not
be in memory. However, thrashing may cccur if too many users
dre assigned to too small a swap pool. :

A task in a swap pool can overwrite shared data designated for
writing. A task cannot overwrite another task, ancther task's
data, or shareable read-anly data. Further, tasks in a swap
pool can only read (not write) system structures.

Tasks running in & swap pool have lcgical elements (for example,
bound units) eguated with segments. The Executive aligns the
logical elements on segment boundaries. This configuration is
represented in Figure 4-1,

SEGMENTS
. 1.0 2.0 3.0 4.0 5.0 6.0
SYSTEM GROUP DATA GROUP WORK EOUND
PCOL GAP SPACE SPACE UNIT

Figure 4-1. Sample Swap Pool Group Segment Assignments
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Each task group in the swap pool has group global space that
cannot be accessed by any other group. Each task in a swap pool
group can have task private space that cannot be accessed by any
other task. For further information refer to "Swap Pool Task
Address Space" later in this section.

Independent Pools

An independent pocl is protected and contained; it can be
privileged or not and serial-usage or not. Tasks running in an
independent pool have ring 2 access if the pool is unprivileged
and ring 1 access if it is privileged.

Independent pools support both interactive and absentee
processing.

Size The size of an independent pool, plus the size of the Executive
and its structures, cannot exceed 2 million bytes in a system
having a BMMU and 16 million bytes in a system having an EMMU.
On larger systems, multiple independent pools can be configured.

It is important that the memory requirements of the group(s)
using an independent pocl be estimated carefully because the
entire context of a task group must be in memory for a task in
the group to execute. It is possible that task group memory
requirements may exceed the size of the.memory pool because of
memory fragmentation.

Protection Note that even with protection and containment, a task in an
independent memory pool can accidentally overwrite code or data
belonging to its own or another group in the pool.

Yirtual View Each independent pool is a separate virtual view of the system.
That is, each task in an independent pool can view that portion
of the poo! relating to itself and can view all of the globa)l
system space., Thus, a task in an independent pool can reference
a memory location in that pool and in system global space.

Use Independent pools are designed for applications that you may not
want to execute in a swap pool.
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Seament The system al*gns user memory pools on segment boundaries
Assignments (multiples of 512 bytes). This configuration is shown in
Figure 4-2.
SEGMENTS
. s 1.0 2.0 3.0 4.0 5.0
SYSTEM INDEPENDENT INDEPENDENT
POOL GAP POOL GAP POOL

Figure 4-2, Sample Independent Pool Group Segment Assignments

Selecting Memory Pool Types

The different types of memory pools provide you with the means
to respona to the unique demands of multiple application
programs. Through the use of memory peools, you can exercise
control over memory usage and, at the same time, provide
individual task groups with specialized protection.

The degree to which the system can efficiently and effectively
nandle the concurrent execution of multipie task groups depencs
on the number and type of memory pocls available for use. The
following points should be kept in mind:

e All systems must have a system pool.

e [n systems with a BMMU, all user memory should be devoted to
multiple swap pools. '

e In systems with an EMMU, all user memcry should be one large
swap pool.

e One or more independent pools can be selected for
applications that you do not want to run in & swap pool.

Default If you do not configure any memecry pocls, you will be provided
Memory Pog! with one swap pool whose size is all of memory, less the amount
of memory occupied by the system pool.
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Memory Pool Layout

To obtain efficient use of memory and of the memory management
unit, the CLM sorts the memory pools specified in a
configuration as follows:

1. The system pool is configured in the first available memory
after the system data structures., The system poo) cannot
exceed 4 million bytes.,

2. If swap pools are configured, they follow the system pool.

3. Independent pools are configured after all swap pools.

Fixed System Area

After the\configuration process is complete, the following
software components and data structures are lIpcated in the fixed
system area of memory:

Basic Executive plus resident overlays

User-written or vendor-supplied extensions to the Executive
Device drivers

Intermediate request blocks needed for task groups

Trap save areas

Overlay area(s) for system software

File control structures.

The fixed system area is static. Uniike the other memory areas
whose contents can vary dynamically, its structure remains the
same for the 1ife of the system. Almost a1l code Toaded into
this area is reentrant so that a single copy of the code is
available to multiple users, thus minimizing memery
requirements.
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BOUND UNIT CHARACTERISTICS

Task code is derived from programs written in a source language
and compiled or assembled to form object units (also called
compilation units). One or more object units are 1inked to form
a bound unit that is placed on a file. The bound unit is an
executable program that can be loaded into memory. A task
represents the execution of a bound unit.

General Bound Unit Characteristics

Linker

Actions

Address
Soace

Bound units have the following general characteristics:

e Fach bound unit consists of & root segment and any related
gverlays.

e A load element is composed of one or more object units.

e The initial load element is called the root; it must be
resident when the bound unit is being executed.

e A lcad element that replaces another load element when
loaded into memory is called an overlay.

You can direct the Linker to perform the following actions on
bound units: -

e Map the code and data into the same load element or into
separate elements. If the bound unit is to be reentrant,
the code and data must be in separate lcad elements.

e Specify ring access rights. If the bound unit is to be
reentrant, the default access attributes are ring 3 read and
execute access for both code and data, ring 0 write access
for the code segment, and ring 3 write access for the data
segment.

e Associate a specific segment number or numbers with a bound
unit. Normally, the Linker assigns default segment
numbers. If you assign segment numbers at link time, you
must be careful to avoid segment conflicts in the
configuration and application environment in which the bound
unit is to run so as to avoid inefficient loading.

Your physical address space is not necessarily contiguous.
Memory requirements are satisfied on a segment basis rather than
on a user basis.

Note that for systems with a BMMU, you have a maximum of 11l
large segments availatle when constructing a task's address
space. Frequently, fewer large segments will be available,
depending on the system configuration.
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Shareable Bound Units

The use of shareable bound units is a way of minimizing
appiication task group memory requirements while making
reentrant code available to multiple tasks. Unlike permanently
resident bound units that are loaded during system
configuration, shareable bound units are transient in memory and
are loaded during processing. A usage counter is incremented
each time a request is made for the bound unit, and decremented
each time a request is completed. The unit remains in memory as
long as a task is using the code. As soon as the usage counter
is decremented to zero, the space occupied by the bound unit is
returned to avajlable status.

Shareable Bound Units In Swap Pools

If a bound unit is shareable only within a swap pool, its root
segment descriptor is placed in a portion of memory where it is
accessible to all tasks in that pool. The bound unit should
have no fixed overlays; floatable overlays can be shared if an
OAT is used. (See "Bound Unit Overlays" later in this

section.) To be recognized as shareable by the Loader, and to
be loaded intc a user memory area, the bound unit must have been
linked using the SHARE directive.

Additionally, task private segments are shared if the task
forks. (A task forks if it issues a Create Task or Spawn Task
command with an entry point address rather than a pathname
definition.) Forked tasks share the same segments; they have
the same access to and copy of the forked segments until one
task modifies its address space. (Address space defines a
task's boundaries in a swap pool. Refer to "Swap Pool Task
Address Space” later in this section.)

Shareable Bound Units in Independent Pools

In an independent pool, bound units can be shareable by tasks
within a task group or can be shareable by all task groups.
Shareability is established when the bound unit is linked. To
be shareable by tasks and task groups within a pool, the bound
unit must be linkec with the SHARE directive. Bound units
linked with the SHARE directive are loaded into the reguesting

task group's memory pool.
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Globally Shareable Bound Units

To be shareable by task groups in other poocls (globaily
shareable), the bound unit must be linked with the GSHARE
directive., Bound units linked with the GSHARE directive are
Toaded into the system pool. Since system pool memory is a
critical resource, the use of globally shareable bound units
requires careful planning and control. If all of user memory is
one large swap pcol, the SHARE directive has the same effect as
the GSHARE directive, and does not clutter up the system pool.

Operator commands can be used to load and unload globally
shareable bound units.

Shareabie Bound Units And Executive Extensions

Shareable bound units and the Executive extensions that are
loaded through LDBU directives when the system is configured
differ in one major respect. Executive extensiocns can be
accessed symbclically by any task, but a shareable bound unit
must be dccessed as a bound unit.

When an Executive extension is Joaded during system
configuration and is made permanently resident by an LDBU
directive, its symbols are included in the system symbol table.
Since a shareable bound unit is transient and is loaded after
the system has been configured, no entry is made for it in the
system symbol table. For this reason, it must be accessed as a
bound unit. Table 4-2 compares permanently resident Executive
extensions and transient shareable bound units.
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Table 4-2. Comparison of Executive Extensions and

Shareable Bound Units

Executive Shareable Bound

Characteristics Extension Units
Multiple users Yes Yes
Permanently resident Yes No
(fixed system area)

Temporarily resident No Yes

(system or user pool)

Symbels in system table Yes No

Accessed symbolically Yes No

Have overlays No Yes -

(See Note 2)
Called by bound unit name NO Yes
NOTES: 1. If the extension is an Assembly language bound
- unit, it may have within it sections of code or

control structures controlled by semaphores that
would be accessible to other Assembly language
tasks (refer to "Semaphores" in Section & for
further information).

2. Overlays are not shareable unless Overlay Area
Tables (OATs) are used (refer to "Bound Unit
Overlays" below).

3. The Executive does not “"remember" extensions by

their names. A request for an extension by name
results in another copy being brought inte
MEMory.

Bound Unit Search Rules

The Loader uses search rules to locate a bound unit to be
loaded. The Loader starts the search in response to a command
containing an argument naming the bound unit to be loaded.

€C103-02
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The rules that requiate the search process define three
directory pathnames and the sequence in which they are used
during & search. The pathname sequence is5 as follows:

1. User task group working directory.

2. System cirectory -LIB1 arcument of the Change System
Directory command.

3. System directory -LIB2 argument of the Change System
Directory command.

The Change System Directory command can be used to change
pathnames associated with system directory arguments -LIB1 and
-LIBZ. The pathname of a user's working directory is
established through a Change Working Directory commanc or
through the -WD argument of the Enter Group Request or Spawn
Group command. For login users, the -WD argument of the Spawn
Group command issued by the Listener is taken from the -HD
argument in the Login command line.

Bound Unit Overlays

In smaller systems., you may need to minimize the amount of
memory required to execute a bound unit containing application
code. You can accomplish this by directing the Linker to create
the bound unit as a series of overlays (separately loadable
pieces) so that the entire bound unit does not have to be
resident at one time. Each bound unit consists of a root and,
opticnally, cne or more related overlays. The system loads the
bound unit root automatically when the bound unit is invoked.
Overlay loading is controlled by the application itself. The
maximum number of overlays is 65,536. The use of overlays
requires careful planning so that reguired code is not lost or
repetitively loaded.

Two types of overlays are available for your use: nonfloatable
and floatable. In addition, you can use overlay areas to
control the placement of flpatable overlays.

Nonfloatable and Floatable DOveriays

Cverlays can be loaded at a fixed displacement from the base of
the root (nonfloatable overlay) or into a block of memory
allocated explicitly by you or implicitly by the system
(floatable overlay).
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Nonflpatable

Floatable

A nonfloatable overlay is loaded into the same memory location
relative to the root each time it is reguested. Object units
whose code is to be loaded as nonfloatable overlays must be
defined as fixed overlays by the Linker OVLY directive. When
the root of a bound unit having fixed overlays is loaded, the
Loader allocates a container (segment or memory block) large
enough to hold the root and 211 of its fixed overlays.

Assembly language programs can use system service macrocalls to
Yoad and execute nonfloatable overlays. COBOL programs can use
CALL/CANCEL statements to control nonfloatable overlays.
FORTRANA and Pascal provide overlay handlers as part of the
run-time libraries. BASIC programs must 1ink a user-written
Assembly language overlay manager with the application program,
since the BASIC language does not supply this functionality.

A floatable overlay is linked without having a fixed relative
location to the base of the root. It can be loaded into any
available memory location. Floatable overlays must meet the
following criteria:

1. The overlay must not contain external definitions referenced
by the root or another overlay.

2. The overlay must not make displacement references to the
root or any other overlay. .

3. The overlay must not contain external dﬁsp1acement
references that are not resolved by the Linker.

The application program can use one Or more areas of available
memory for the placement of floatable overlays. The program can
deal with memory management in one of the following ways:

1. Allow the system to place the overlay in an available memory
block allocated from the user's independent memory pool or,
if loaded in a swap pool, from group work space. (Group
work space is a segment common to all tasks in a group.
Refer to "Swap Pool Task Address Space" later in this
section.)

2. Create a set of overlay areas using system service
macrocalls, and allow the system to manage the areas and
locate the requested overlays. In an independent memory
pool, the overlay areas are created from a memory block in
the pool. In a swap pool, the segment(s) allocated for the
root are expanded to contain the created overlay area.
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Linking

3. Perform its own memory management by linking a user-written
Assambly language overlay manager with the root of the bound
unit., In an independent memory pool, you may choose to have
the overlay occupy part or all of a memory block. In a swap
poct, you may choose to have the overlay occupy part or ail
of a segment.

Floatable and nonfloatable overlays are defined through the
Linker. When using the Linker, forward references can be made
tc symbols defined in object units to be linked iater {the rules
for floatable overlays must be observed). Backward references
can be made to symbols previously defined, provided the defined
symbols were not purged from the Linker symbel tabie by a Linker
BASE or PURGE directive. Since the specification ef the BASE
directive removes from the Linker sympol table all previously
defined and unprotected symbols that are at locations equal to
or greater than the location designated in the BASE directive,
you must take one of the follewing actions:

e Define all symbols that are to be preserved in & part of the
root that is not overlaid.

e Protect the symbols to be preserved by using the Linker
PROTECT directive.

A flcatable overlay can refer to fixed addresses in the root, in
a nonfloatable overlay, or in itself, but cannot refer to
addresses in another floatable overlay.

When a root or overlay of a bound unit is loaded, the Loader
gxamines the attribute tables associated with the bound unit if
an alternate entry point is specified. The Loader tries to
resolve any references to symbols that remain unresclved by
searching the system symbol table (that is, the resident bound
unit attribute table). The Loader cannot resolve any references
to symbcls that do not exist in the symbol table. (Linker
symbol tables do not exist at lecad time.)

Figure 4-3 shows the relative location in memory of memory pool
AA. Figure 4-4 is the layout of overlays in memory pool AA.
When the root is lcaded, the largest contiguous amount of memory
necessary to accommodate the root and all nonfloatable overlays
is allocatec. Except for space for any fipatable overlays, no .
other memory requests need be made. In Figure 4-4, this memory
area begins at the base of the root and continues to the end of
object unit CBJD. The root consists of object units 0BJ1 and
0BJ2. When lcaded, 0OBJS of overlay ABLE will replace the
previously loaded OBJZ code of the root. Similarly, the overlay
Tocations were specified so that OBJC of overlay ZEBRA will
replace part cf OBJB.
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Figure 4-3. 'Relative Location in Memory of Memory Pool AA
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Figure 4-4.

Overlays in Memory Pool AA
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Qverlay Areas

Only flcatabie overlays can be associated with overlay areas.
Overlay areas are a mechanism that allows you to contreol the
placement of flcatable overlays without being regquired to write
your own overlay manager.

Overlay areas are fixed size areas of memory whose use is
corntrolled through an Cverlay Area Table (OAT). If the bound
unit is shareable, the cveriays can be shared with other tasks
in the task group or with tasks in other task groups. QOverlays
can also be shared if the bound unit is replicated through the
-SHARE argument of the Create Task command.

You create an OAT through tne Create Overlay Area Table system

service macrocall. You reserve an overlay area and execute the
overiay through an Overlay Reserve and Execute macrocall. You

exit from the overlay through an Overlay Release macrocall.

As an example of cverlay area use, assume that you desire to
share both the root and the overlays of a shareable bcund unit
whose structure is shown in Figure 4-5,

ROOT

— — — — — [ — —

{ 1 i H

DVERLAY QOVERLAY OVERLAY QVERLAY
A E E [}

86-027

Figure 4-5, Sample Bound Unit Structure for Overlay Area Use

Assume further that tasks 1, 2, and 3 (of the same or another
task group) are executing the shareable bound unit and that

task 1 has encountered a create OAT function while executing the
root.
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When the create OAT function is encountered, an overlay area
(contrclled by the OAT) is created for the task group. 1n this
example, the overlay area has three entries. each entry being
512 bytes long. There is no direct relationship petween the
number of overlays to be shared and the number of entries in the
overlay area. The entries in an overlay area are of equal

size. You must create overlay areas large enough to contain the
largest overlay {overlay D in this example). The overlay area
reserved is depicted below.

ENTRY 1 ENTRY 2 ENTRY 3
512 512 512
BYTES BYTES BYTES

When task 2 (or task 3) executes the same create OAT reguest
(that 1s, when it executes the root), the task is given the
address of the OAT already existing in memory.

Assume that task 1 issues an Overlay Reserve macrocall to
reserve an overlay area defined by the OAT and to load overlay A
in that area. The code and/or data composing overlay A will be
loaded in the first free overlay area, and task 1 will be given
access to this area. At this instant the status of the overilay
area is as follows: ) :

ENTRY 1 ENTRY 2 ENTRY 2
OVERLAY A
USAGE = 1 USAGE = O USAGE = 0

TASK 1

When tasks 2 and 3 now perform the request for overlay A, they
will be given access to the existing copy of the overlay. At
this instant, the status of the overlay area is as follows:

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A
USAGE = 3 USAGE = 0 USAGE = 0

TASKS 1,2,3

£z03-02
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Task 2 now reguests overlay 0., Sirce a task canncot have mere
than one cverlay in an overlay area at any time, tasx Z must

explicitly release overlay A pefore requesting the lpading cf
overlay D. The result of releasing overlay A and reguesting

overlay D is as follows:

ENTRY 1 ENTRY 2 ENTRY 3
OVERLAY A OVERLAY D

USAGE = 2 USAGE = 1 USAGE = D
TASKS 1,3 TASK 2

A reguest by task 2 for overtay C will result in the foliowing
situation:

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A OVERLAY D CVERLAY C
USAGE = 1 USAGE = 1 USAGE = 1

TASK 1 TASK 2 TASK 3

[f there were another task in the group (for exampie, task 4},
and the task were to request overlay B, it would have to wait
until one of the overlay aresas was freed (by an Overlay Release
macrocall). If task 4 reguested overlay A, C, or D, the task
would be given access to the loaded copy of the cverlay.

Note that at any given instant several OATs. controlling several
different overiay areas, may exist. Even if a task is sharing
overlays in different overlay areas, it cannot reference more
than one overlay area at any given time. The task must release
an overiay ir an OAT prior to reguesting an area for another.

You use an Overlay Area Release macrocall tc exit frem an
overlay. When this call is executed, the count of the number of
users of the overlay is decremented in the defining OAT. When
the count drops to zero, the overlay area is marked as available
gnd can be reused by an Cverlay Reserve and Execute function.
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Bound Unit Allocation

Initial
Bound Unit

Attach
Bound Unit

Create
Segment

Fach task is associated with at least one bound unit. The
initial bound unit with which a task is associated is specified
at the time the task is created or spawned. At this time, the
segment is created/allocated in memory, and the root is loaded
in this segment.

[f the bound unit was designated as shareable at link time and
is currently residing in memcry, no loading takes place. The
requesting task shares the bound unit already in memory, and the
bound unit user count is increased by cne. If the bound unit is
not in memory, 1t is locaded.

Execution of a task begins with the specified bound unit.
During the execution of this bound unit, the Assembly language
user can employ system service macrocalls to load or attach
another bound unit. Loading or attaching a bound unit causes
the allocation and loading of the segment containing the root of
the reguested bound unit. (The difference between loading and
attaching is that locading returns the entry point of the root
segment to the issuing task, while attaching starts the
execution of the bound unit root segment at the entry point.)
Up to eight bound unit units can be attached. In BMMU systems,
the availability of seament descriptors may limit you to fewer
than eight attached bound units.

During its execution, & task can issue a system service -
macrocall tc request the creatien of a segment to be associated
with the task's initial bound unit or any other of its
attached/loaded bound units. The macrocall can either specify a
segment number or allow the system to select the number *n
accerdance with the specified size.

Memory Allocation

The allocation of memory for a bound unit depends on whether the
bounc unit is nonshareable or shareable.

For a nonshareable bound unit, each logical segment is uniquely
mapped tc a physical segment in memory. Unless the task is
forked or the segment is in an OAT, two or more tasks wishing to
concurrently use a nonshareable bound unit each receive a Copy
of the bound unit.

Cz03-02
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Segment
Numbers

If mecre than one task is executing a pool-sharsable bound unit,
only one copy of the secment contzining the root is allocated 1in
the peol. A1l tasks use this singie copy. OQOverlays of the
bound unit can be shareg if an QAT 1s used. If the bound unit
was separated into a code element and a data element, only the
code element is shared. Except for forked tasks, each user has
a separate copy of the data element.

The Memary Manager assigns a segment number (or numbers) based
on the segment descriptors available to the task that initially
locads the bound unit. Cencurrent users must access the bound
unit under the same segment numbers. If the segment utilization
of the second and subsequent tasks that attempt to load the
shareable bound unit conflicts with its segment number or
assignment, an error is returned when the tasks attempt to load
the bound unit. In this case, the tasks are nct given
addressability to the shareable bound unit.

Memory Deallocation

Assembly language users can explicitly deallocate a user-created
segment by issuing a Delete Segment macrocall., Users can
deallocate bound units by issuing a Detach Bound Unit macrocall
for any but the initially assigned bound unit. A segment can be
implicitly deallocated from physical memory as the result of the
task being deleted or swapped ocut. It is reallocated when the
task is swapped back in. ’

Overlay areas and defining 0ATs are deallocated when the last
usage of a shareable bound unit has terminated.
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SWAP POOL TASK ADDRESS SPACE

Bound Unit

Task address space defines a task's boundaries in the swap pool;
that is, its visibility within the collection of tasks executing
in the pgol. The following elements constitute a task's address
space:

Bound unit

User stack area

Dynamically created segments
Group work space

Group system space

System global space.

During its execution 1ife, a task executes one or more bound
units, The initial bound unit to be executed is the one
specified when the task is created or spawned. In Assembly
language programs, other bound units {if any) can be attached or
loaded through the Bound Unit Attach or Bound Unit Load
macrocalls. :

User Stack Area

The user stack area is available to users as a work area through
the hardware stack instructions.

Dynamicaily Created Segments

During execution, a task can extend its address space by
creating segments. Assembly language programs use the Create
Segment macrocall for this purpose. These dynamically created
segments become part of the issuing task's address space.

CZ03-02
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Group Work Space

The group work space is common to al! tasks in 2 given task
group. Assembly language programs can obtain blocks cof memory
from the group work space when they issue Get Memory
macrocalls. A1l tasks in the task group have read, write, and
execute access to the group work space.

The group work space can occupy up to two 128K-byte segments.
The group work space grows dynamically, as regquests for memory
are issued. In both BMMU and EMMU systems, the maximum size is
256K bytes. However, this maximum is reduced tc 128K bytes if
the adjacent segment descriptor has been allocated.

Group System Space

One group system space is provided for each task group. The
system control structures used to support a task group and its
member tasks (for example, file control blecks, bound unit
descriptors for nonshareable bound units, logical file tables,
and logical resource tables) are allocated from the group system
space.

The group system space can occupy up to two 128K-byte segments.
The group system space grows dynamically, as requests for memory
are issued. In both BMMU and EMMU systems, the maximum size is -
256K bytes. However, this maximum is recduced tc 128K bytes if
the adjacent segment descriptor has been allocated.

System Giobal Space

System global space consists of the fixed system area
(permanently configured memory) and the system memory pool. A
task's address space includes the segments reguired for system
global space. System code and data are distributed in the task
address space.

System Representation of Task Address Space

Figures 4-€ and 4-7 are examples of the mechanism used by the
system to represent a task's address space. Figure 4-6 is an
example of a system having a BMMU; Figure 4-7 is an example of a
system having an EMMU.
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Task Address Space In System With Basic Memory Management Unit
The following points should be noted when using Figure 4-6.
1. The layout of memory is logical, not physical.

2. The layout applies only to this example; it is possible to
generate systems whose layout is different from that shown
in Figure 4-6.

3. The segments available to you for your bound units are 6
through F. If the group system space regquirements are 1ess
than or equal to 128K-bytes, segment 3 can be used. If the
group work space requirement is less than or equal to 128K
bytes, segment 5 may be used.

4. Cne copy of segments 0.0 through 1 exists in the system in
this example. These segments contain the system global
space. All tasks in the system can access these segments.

5. Segments 6 through F are unique to the task unless they are
being shared. If one of these segments is being shared,
each task sharing the segment accesses the same copy of the
segment. When a segment number is assigned by the Memory
‘Manager, the lowest available segment (or segments for
objects of size greater than 128K bytes) beginning with the
Group Work Space (GWS) segment plus 2 (segment 6 1n this
example) will be used. If all segments from GWS+2 through
large segment F have been used, the segments GWS+1
(segment & in this example) and GSS+1 (segment 3 in this
example) are alleocated in that order, if available.

6. Only one copy of the group work space segment (segment 4 in
this example) exists per task group. A1l tasks in the task
group have unlimited access to this segment. Only one copy
of the segment that contains group system space (segment 2
in this example) exists per task group. All tasks in the
task group have read and execute access to this segment.
Both the group work space and the group system space
segments are dynamically expanded as demands are made on
them. FEach space can grow to a maximum of 256K bytes if the
adjacent ascending segment descriptor (segment 3 for the
group system space and segment 5 for the group work space in
this example) has not previocusly been allocated tc contain a
task private segment.
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GROUP_WORK_SPACE (GWS)

RESERVED FOR GWS EXPANSICN
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®Can be used by user tasks if GSS/GWS
never exceeds 128K bytes.

Figure 4-6.

Task Address Space in BMMU System
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Task Address Space In System With Extended Memory Management Unit

The
]-.

Za

following points should be noted when using Figure &-7.
The layout of memory is logical, not physical.
The layout applies only to this example; it is possible to

generate systems whose layout is different from that shown
in Figure 4-7.

. The segments available tc you for your bound units are 80

through FF.

One copy of segments 00 through 7F exists in the system in
this example. These segments contain the system giobal
space. Al) tasks in the system can access these segments.

Segments 80 through FF are unigue to the task unless they
are being shared. If one of these segments is being shared,
each task sharing the segment accesses the same copy of the
segment. When a segment number is assigned by the Memory
Manager. the lowest available segment (or segments for
objects of size greater than 128K bytes) beginning with
segment 80 will be used.

Only one copy of the group work space segment (segment 46 in
this example) exists per task-group. All tasks in the task
group have unlimited access to this segment. Only one copy
of the segment that contains group system space (segment 44
in this example) exists per task group. All tasks in the
task group have read and execute access to this segment.
Both the group work space and the group system space
segments are dynamically expanded as demands are made on
them. Each space can grow to a maximum of 256K bytes if the
adjacent ascending segment descriptor has not been
previously allocated to contain a task private segment.
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SEGMENT MAIN MEMORY
NUMBER (LOGICAL REPRESENTATION)
00 EXECUTIVE CODE
‘Cl AND DATA
02 PERMANENTLY
03 CONFIGURED
04 CCDE AND DATA
05 SYSTEM
06 POOL
Q7
44 GROUP SYSTEM SPACE (GSS) o
45 RESERVED FOR GSS EXPANSION
46 GROUP WORK SPACE (GWS i
47 RESERVED FOR GWS EXPANSION
80
81 USER-DEFINED
5 SEGMENTS
FF
°Can be used by user tasks if GSS/GHS
never exceeds 128K bytes.

Figure 4-7. Task Address Space in EMMU System
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