Section 5
TASK EXECUTION

In this section: See page
Introduction........ e R R SR R SRR e e we O
Central Processor ;nterrupt Priority LEVElS.uesssssreecssossrancanns 5-3
Interrupt Save Ar€8..iiescccssocsanaas R e e B e T e e e 5-5
Task Dispatchingeasnmsswsas v s sse s s sweeeseyess e« e ssen s o 5-6
Monoprocessor Task Dispatching...... Gl SRS R speeey e DD
Multiprocessor Task Dispatchingeeeeeseass. R e SRR ees  DRD
Timeslicing..... P RGeS SR B e L e e e 5-7
Trap Hend - inGassssenssiviniess tianisrevesias e o SRR R 5-8
System Features Affecting Task EXeCUtiON.eseeecesocsvrancarssonneans 5-9
Priority Level ASSiGNMENLS.eeussscaersanssssssosnsarroassnsssnnnnns 5-9
Assigning Priority Levels to Devices amd System TaskS....oovenes 5-9
Assigning Priority Levels to Application TaskS.e.eecesnasnnnnans 5-13
Logical ResSOUrce NUMDErS.euersssseaecesasrrracacasssorernacssanns 5-13
Device Logical RESOUTCE NUMDEBIS.wuceeeesnosaoasrsrronsssanssocns 5-14
Application Task Logical Resource Numbers.....cciiansscncerrrenns 5-14
Logical File NUMbErS. e eeeeeiierencsaseasnsonsassesassccsanrroves 5-15
Task and Resource Coordination...ccseusesnssssrrvsesssnacacsassnnne 5-15
TaAsK REOUESTES o ue vamawsaeass o is s beeanis s vee s mm s e s ee i 5-15
SEMAPNDBIES: cuv s vwses ssossines shinbadsseses s senses TR 1
Task Handlingcuses ossvaseeis v ss @ @pyeewianoin pves e svEsisones DEAD
Task Priority LEVElS.eieisonasarssssnnaannans L R e e 5-18
Task Activalion:.iwiiessiiiaiesin sssesus SR e R e R e 5-19
Task TerminatioNeeeseaeeasseaaanaas e R -
Task StAlPS.ivecaenuinseacsssssoscsssarsaasssssnssncaansrsnoncs T 5-20
Intertask and Intratask Group CommunicationNessessosascansssenenannne 5-21
ReqUESE BlOCKSeeesssssccstsssnessssssnnnncssssstrssnssssnnaassasrres 5-21
COMNON FiTESsaavsnssonnaosorsnancssssvonscaassssasassssnnssnsssssss D21
Message Facility.................................................. 5-22
Creating MailboXeS.eeaueernrans T g R .
Activating Message Facility Task.................. ...... R
Message Facility Command Interfac@.iescecesnsrvrcrsnnrsenanasine 5-24
Message Facility Macrocall InterfacBsieececscsrocessrsssenssnennns 5-25

C203-02 5+1



Task Execution

In this section (cont): See page

Deferred Processing FacilitieSeewvwmmn eniasiasi svowwavvimvennis o 5-26
Ceferring Task Group RequestS.ieieeeuicerveraesassssvansrosnaansnsss 5-27
Creating Task Group Request QUEUES.cviesvessrsorssasrsrasasanses 5-27
Queuing Task Group RequesStSeireereacssrsasssosssssasrssranasenss 5-27
BeEferring Print Reguests v ciaiinyines dnivini i aassveviinesvavanse 928
Creating Print Reguest MailbOXES.uuceevomessarooraarrussonsans 5-28

Creating the Print DaemOn..uveveveercasssssaassrrssnassosnennasss 5-28
Queuing Print Requests....... AT R, S8 S SR iy K 5-28
Queuing and Transcribing RePOrLS . eeecsnrvoncrorrossanerasenranss 5-29
Crealing RepORt DUBUBS i wmmmmemismsisemen abmsmmsains (eemspm e e P 5-29
Queuing Report REQUESES...ieciverocerversonnaas R A W WA 5-30
Transcribing RepOrtS.vecisisvcnanacaen SRR AT A S e 5-30
Summary This section describes the processing of priority levels,

including context saving of interrupted tasks and the assignment
of priority levels and logica! rescurce numbers to tasks. This
section also describes task communication and coordination as
well as deferred processing.

5-2 Cz203-02



Task Execution

INTRODUCTION

A task can be characterized as the execution of a sequence of
instructions that has a starting point and an ending point, and
performs some identifiable function. A task can initiate
another task for execution or terminate itself by calling the
task management commands or macrocalls. Multiple tasks can
operate independently of and asynchronously to each other.

Cach application, system, or device driver task operates at an
interrupt priority level, one of the 64 priority levels provided
for each central processor by the hardware and firmware.

CENTRAL PROCESSOR INTERRUPT PRIORITY LEVELS

‘Number of
Levels

Activity
Indicators

Interrupts

4171 system tasks, device drivers, and application tasks are
assigned interrupt priority levels that indicate the oraer of
their execution. This order of execution may be changed due to
timeslicing (see below) or because this is a multiprocessor
system.

Control of the central processor is given te the highest active
interrupt level. However, in multiprocessor systems, a task at
a lower priority may execute at the same time as a task of
higher priority since each task is executing on a different
central processor.

Each central processor provides 64 potential interrupt priority
levels that are used by the hardware to order the processing of
events. These levels are numbered from the highest priority
(level 0) to the lowest priority (level 63). Levels O through
5, 62, and 63 are reserved. The intervening levels (6 through
61} are assigned to logital resources (that is., devices and
tasks). '

The determination of which priority level is to receive central
processor time is based on a linear scan of the level activity
indicators. The level activitv indicators are maintained by the
nardware in four contiguous dedicated memory locations in each
central processor (see Figure 5-1). Each bit that is "on"
denotes an active priority level; each bit that is "off" denotes
an inactive level.

Bits can be set "on" by software or by harcware events

‘(interrupts). Most interrupting hardware devices are associated

with priority levels during system configuration (by directives
in the CLM_USER file).

€z03-02

5-3



Task Execution

Available
Levels

Interrupt
Processing

MEMORY
LOCATION T
CPSSXADEEB'?U 0,1,2 3.4 5678 8 1011 12,13 14 15
o020 0120 D_hl L L 4 1 L L L I 1 '
002t o2 16 e INTERAURT PRIORITY
e LEVEL NUMBER
0022 0122 3z 47
L o PSR T i i i 1 i i L
0023 0123 | Ve — ——— 63

NOTE: |F THE BIT CORRESPONDING TO AN INDIVIDUAL
LEVEL !5 "ON". THAT LEVEL IS ACTIVE. IF THE
2T 15 “'OFF", THE LEVEL IS SUSPENDED.

B6-023

Figure 5-1. Format of Level Activity Indicators for Each
Central Processor

The three highest priority levels have dedicated assignments of
special hardware/firmware functions such as incipient power
failure, watchdog timer runout, and trap save area overflow.
Friority level 3 is reserved as an inhibit level, level 4 is
reserved for the timeslice clock, and level 5 is dedicated to .
the real-time clock. Succeeding levels are user-configurable as
device levels. Following these are five levels reserved for
system use. Except for levels 62 and €3, the remaining levels
can be used for application tasks. Level 62 is reserved for
system use. Level 63 is reserved for an always active software
idle lToop or, in multiprocessor systems, for the task
dispatcher.

When a given priority level is the highest active ilevel, it
receives all available central processer time until it is
interrupted by a higher priority level or until it relinquishes
control by suspending itself (setting its level activity
indicator off). If a priority level is interrupted by & higher
priority level, its level activity indicator remains on and it
will resume execution of the interrupted logical resource when
it again becomes the highest priority levei.

Each time a priority level change occurs, the hardware/firmware
saves the central processor context of the task running at the
previously highest active level and restores the central
processor context of the task running at the new highest active
level. Interrupting a task, saving the context of a task,
seiecting and starting the highest priority level task, and
restoring the context of a task are done without software
involvement.

5-4

€203-02



Task Execution

INTERRUPT SAVE AREA

Task Context The context of a level (task) can include the contents of the

Interrupt
Vectors

program counter, S-register, B-registers, [-register,
K-registers, R-registers, M-registers, SIP registers, and CIP
registers. The context is stored for each central processor in
a block of memory known as an Interrupt Save Area (ISA).

The hardware/firmware context save/restore function finds the
appropriate ISA through & pointer supplied in the interrupt
vector for that level. The interrupt vectors are a set of
contiguous memory locations containing an entry for each
potentially active priority level and ordered by ascending
priority level number. Figure 5-2 illustrates the order of the
priority levels, their corresponding interrupt vectors, and the
format of an ISA.

INTERRUPT
SAVE AREA
INTERRUPT FOR PRIDRITY
VECTORS LEWELE
FUNCTIONS PRIDRITY ADCESS 154 0 T5A FOINTER
LEVEL E———
ADDRESS 154 1 INTERRUPT DEVICE ID
POWER FAILURE © ADDRESS 154 2 INTERRLUPT SAVE MK
e
WATCHDOOG TIMER QUNOUT I SEENOTE INTEARUPT SAVE MSK
TRAP SAVE AREA OVERFLOW 2 ADDRESS I5A 4 INTERRUPT SAVE M5K
INHIEIT LEVEL 3 ADDRESS 1SA G PROGRAM COUNTER
RESERVED 4 ADDRESS 154 € 5-AEGISTER
REAL TIME CLOTK 5 B7.REGISTER
SYSTEM BOOTSTRAR DEVICE [ B&-REGISTER
RESERVED B1-REGISTER
HESERVED E I-AEGISTER
APPLICATION TASKS . RT-AEGISTER
E——
ADDRESS 154 63
RY-REGISTER
IOLE LEVEL B3 W1 REGISTER
MI-REGISTER
SIP CONTEXT
CIF CONTEXT
NOTE  Tor “inrubat’ ewel Ipoanty (ewvel 31 coes not have 105 gan 154, a1 points 1o toe 1SA -
ot The pririy (el |rom wiich ¢ vwas steced 86-024

Figure 5-2. Order of Interrupt Vectors and Format of Interrupt
Save Areas for Each Centra) Processor

Cz03-02

5-5



Task Execution

TASK DISPATCHING

The way in which a task receives central processor time depends
on whether the system has one or more than one central
processor.

In a monoprocessor system, tasks are dispatched according te
their priority level. The task at the highest priority level
receives all available central procassor time until it is
interrupted by a task with a higher priority level or until it
suspends itself. Im a multiprocessor system, all tasks are
dispatched from a general ready queue. The tasks are placed in
the queue according to their priority level, with higher
priority tasks at the top of the queue. The level at which a
task executes stays the same, but the central processor in which
it executes may vary.

Monoprocessor Task Dispatching

When a task in a monoprocessor system is at the highest active
priority level, it receives al!l available central processor time
until it is interrupted by a task at a higher priority level,
until it relinquishes control by suspending itself, or until it

. has control taken away from it due to timeslicing (see below).

If a task is interrupted by a higher priority task, it will
resume execution when it again becomes the task at the highest
priority level.

when more than cne task is assigned the same priority level, a
system software task at a higher level regulates in round-robin
fashion the sharing of the level between tasks. Thus a task
does not block a level when the task is timesliced (refer to
"Timeslicing" below) or when it is put in a waiting state after
a request to wait, wait on 1ist. reguest semaphore, OF
terminate, or after a system service macrocall that waits for a
data transfer. Instead, the context of another task on the same
Tevel will be linked to the level interrupt vector.

Muitiprocessor Task Dispatching

In a multiprocessor system, the Executive maintains a queue of
ready tasks ordered by priority level. This queue is called the
general ready queue. The Executive dispatches the task at the
top of the queue whenever a central processor becomes free to
provide service. A dispatcher task runs at level &3 in each
central processor and dispatches a task whenever it receives
central processor time. The dispatcheér tasks attempt to balance
the load so that high priority tasks are serviced before low
priority tasks, and al! processors are used as fully as
pessible.

5-6

Cz03-02



Task Execution

TIMESLICING

The technique of timeslicing minimizes the ability of user
tasks, that use large amounts of central processor time. to
interfere with interactive users ¢f the system. Timeslicing
uses a sampling technique to monitor all tasks at user levels.
Configuration of timeslicing is automatic. All user levels
execute in a timesliced manrer. Timeslicing options are
ciscussed in the System Building and Administration manual.

Each running user task is monitored by the scftware timeslicer
logic. Each user task is given a CPU time allecation (a time
slice), the amount of which has been determined by system
software and is governed by tne arguments (default or explicit)
associated with the DSLICE bound unit.

While a user task is running, timeslicing software is counting
down the task's time slice allpcation,

When a task's time slice allocation becomes exhausted, the
timeslice software, in general, will dequeue the sliced task and
then decide whether to democte the sliced task one level or to
place the sliced task behind all other tasks ready to run on its
current level. In either event, the system software will
establish a new time slice allowance for the task. This
allowance will be in effect when the task next runs.

If a task voluntarily waits (a synchronous 1/0 order, for
example) while it still has time remaining on its current time
s1ice, the reason for the wait is evaluated by system software.
If the wait is for a "long" interval, thereby making CPU time
available to competing tasks, the task will be promoted to (or
stay assigned to) its native level when it next runs. If the
wait is for a "short" interval, thereby 1imiting the CPU time
available to other tasks, the task will be given priority for
completing its remaining slice when it next runs, but will then
become & candidate for possible demotion.

The result is that all tasks are facilitated in using a given
time slice., but those that voluntarily wait for "long" intervals
become candidates for promotion, and those that wait for "short"
intervals (or do not voluntarily wait at all) become cancidates
for demotion.

Cz03-02

5-7



Task Execution

TRAP HANDLI

Trap Ciasses

User Traps

NG

The hardware provides a means by which certain events that occur
during the execution c¢f a task can be "trapped", with centrol
npeing passed to software routines designed specifically to cover
the condition causing the trap. Events such as the execution of
a system moniter call, or the detection of a program error,
hardware error, arithmetic overflow, or uninstalled optional
instructicn cause traps (control transfers to designated
software routines) to occur.

Traps are dividea into two classes: (1) standard system traps,
for which routines are supplied with the system, and (2)
user-specific traps, for which users supply their own routines
(handlers). '

An application program can designate which user-specific traps
are to be handled by using the enable/disanle user trap
macrocalls (refer to the System Programmer's Guide - Volume II
for details). If an enabled trap occurs in the user program,
the Trap Manager transfers control to the connected trap handier
for the condition causing the trap. A trap that is enabled is
loca'! to a task. Such a trap neither affects nor is affected by
the handling cf the same trap in another task, even witnin the
same task group.

Any trap that occurs when its handler is not enabled, or that
does not have a handler to process it, causes the executing task
to be aborted.

5-8

€203-02



Task Execution

SYSTEM FEATURES AFFECTING TASK EXECUTION

While the system does monitor resource use within a task group
and among task groups. tasks and task groups must cooperate in
their use of system resources to ensure smooth operation of the
application.

Priority Level Assignments

Priority levels 6 through 61 are available for assignment to
system. device driver, and application tasks. The system
buiider establishes the priorities of system and driver tasks
during configuration. (On the DPS €/22, the Autoconfigurator
establishes these priorities.) You assign the priorities of
application tasks when you create task groups. Priority levels
with low numeric values have higher priority than those with
high numeric values. The procedures for establiishing priorities
are described below.

Assigning Priority Levels to Devices and System Tasks

Reserved
Levels

The system builder specifies hardware interrupt priority levels
through an argument of the DEVICE directive in the CLM_USER
fite. (The Autoconfigurator is used on the DPS 6/22.) When-the
system builder specifies a particular type of device, the
appropriate Honeywell Bull written device driver is loaded as
part of the system. The three priority levels following the
last one assigned to a configured device are used by system
tasks and cannot be assigned to application tasks.

One example of priority level assignment is shown in Table 5-1.
Levels O through 5 are assigned by the system and are not
available to any user. The operator terminal is assigned to
level 8; however, the system builder can assign any appropriate
Tevel to the operator terminal through a DEVICE directive. (The
operator terminal must be at a lower (numerically higher) level
than the Communications Supervisor.) At initialization, the
system bootstrap device is assigned to level 6. This assignment
remains in effect unless changed by a DEVICE directive.

CZ03-02

5-9



Task Execution

Peripheral
Devices

Assignable
Levels

Peripheral devices may be assigned to levels on both central
processors in a multiprocessor system. This assignment is done
automatically by the system.

Table 5-1 ingicates Input/Qutput (1/0) devices, and not device
drivers, to stress that sach peripheral device must have at
least one level assigned to it. Except for communications
devices, peripheral devices cannot share a level. If there are
two printers, each must-be assigned a unique level even though
there is only one copy of the associated I/C driver. ’
Communications configurations require at least one nonshareable
level dedicated to processing communications interrupts. This
level must be higher than any level assigned to a communications
device.

Communications devices can share a level. For example, four
teleprinters (TTYs) and one Visual Information Projection (VIP)
terminal can be configured to share one level or to use up to
five levels. The priorities in Table 5-1 provide maximum
throughput because devices with high transfer rates are assigned
higher pricrities than devices with low transfer rates.

Theoretically, the system builder could assign a level number as
high as 58 to a device., In this case, levels 59 and 60 would pe
used by the system and only level 61 would be available for user
task groups. In practice, however, the system builder would
want to reserve more than one level for user task groups,
especially for a system with a large number of devices. If
priority levels 6 and 7 are assigned as shown in Table 5-1, the
theoretical range of levels assignable through CLM COMM
directives is 8 througn 58, For a device associated with a COMM
directive, the range is 9 through 58. .

CZ03-02



Task Execution

Table 5-1. Sample Priority Level Assignments for Tasks and Devices
{Sheet 1 of 2)
Physical | Base
Pricrity | Priority
Level Level Use Comments

0 N/A Power failure handler Levels 0 through 5

1 N/A Watchdog timer runout are automatically

a N/A TSA overflow assigned by the

3 N/A Inhibit interrupts system,

4 N/A Reserved

h N/A Real-time clock

6 N/A System bootstrap Set to level 6 at

device system initializa-
tion but can be
changed.

7 N/A Communications Must be higher

Supervisor level than any
communications
device.

8 N/A Operator terminal Can be assigned
any available
level.

g N/A TTY device Communications

8 N/A TTY device devices can share

g N/A TTY device priority levels.

10 N/A Removable cartridge disk The priority level

10 N/A Fixed cartridge disk for a pair of
fixed/removable
disks must be the
same.

11 N/A Diskette

12 - N/A Diskette

13 N/A Diskette

14 N/A Line printer

15 N/A Card reader

CZ03-02



Tasx Executicn

Table 5-1. Sample Priority Leve! Assignments for Tasks and Devices
(Sheet 2 of Z)}

Physical | Base
Priority | Priority
Level Level Use Comments
16 N/A Reserved by system The three levels
17 N/A Reserved by system following the last
18 N/A Reserved by system device-assigned
lavel are used by
the system.
18 C Task group A
2C 1 Task group B
10 Task group n
62 N/A Reserved by system
63 N/A System idle lcop or Always active.
task dispatcher

€z203-02



Task Execution

Assigning Priority Levels to Application Tasks

Base
Priority
Level

Physicatl
Level

Recommended
Priorities

You assign priority levels to user task groups and tasks when
you create or spawn them. The command to generate a task group
contains an argument that specifies the base priority level for
the task group. The base priority level is relative to the
highest number priority level assigned to a configured device.

when a task group is assigned a base priority level of zero, the
lead task of the group executes at the physical interrupt
priority level that is three level numbers above the highest
level number assigned to a configured device. When other tasks
in the same task group are created or spawned, they are given
level numbers relative to the base priority level assigned to
the task group.

The physical interrupt level at which a task executes is the sum
of the following:

1. The highest level number assigned to a configured device
ptus 4.

2. The base prigrity level number of the task group
3. The relative priority level of the task within that group.
This sum hust not exceed 61.

Interactive user tasks are usually given higher priorities
(lower level numbers) than absentee user tasks. Tasks that are
1/0-bound should be run at a higher priority than tasks that are
Central Processor (CP) bound. This permits I/0-bound tasks,
which run in short bursts, to issue I/0 data transfer orders as
needed, wait for I1/0 completion and, while in the wait state,
relinquish control of the central processor to CP-bound tasks.
Otherwise, if the CP-bound tasks have a higher priority, the I/0
devices would be idle while I/0-bound tasks waited to receive
central processor time. (Timeslicing minimizes the ability of
CP-bound tasks to interfere with interactive and 1/0 bound
tasks.)

Logical Resource Numbers

A Logical Resource Number (LRN) is an internal identifier used
to refer to task code and devices independently of their
physical priority levels. Use of LRNs makes Assembly language
application task code independent of priority levels so that, if
circumstances require a change in priority levels, the task code
does not have to be reassembled.

Cz03-02

5-13



Task Execution

Device Logical Resource Numbers

The system uses DEVICE directives to assign LRN values. Device
LRNs may have values from 2 through 252, and from 256 through
4002. LRN 0 is used for the operator terminal; LRN 1 i5 used
for the bootstrap device; and LRNs 4003 through 4095 are
reserved for other sysiem uses. Figure 5-3 is an example cf
LRN assignments for devices and system tasks.

LRN : Use

0 Operator terminal

1 System disk

2 Reserved

3 System disk companion (if ary)

4 User aspect of dual-purpose operator terminal
5 Other devices

Figure 5-3. Example of LRN Assignments for
System Tasks and Devices

Application Task Logical Resource Numbers

LRN assignments to application program tasks within each task
group are not dependent on the system configuration on which the
application task group is running. You can assign LRNs or have
the system select the highest numbered LRN available at task

creation.
Assigning _RNs are assigned tc task code within an Assembly language
LRNs application program through specification of the Create Group

and Create Task macrocalls as well as the macrocalls that build
data structures (310RB, $TRB, and so forth). LRNs can be
assigned at the control language level through the commands for
the creation of task groups and tasks.

-14 €z03-02

5]



Task Execution

LRN Values

Non-LRN
Tasks

An LRN for an application task can have any value from 0 through
4095. Within a task group, the LRN for each task must be
unique. More than one LRN can be associated with the same
priority level (for example, two tasks at level 23 can have LRNs
of 28 and 29, respectively).

Two kinds of tasks do not have LRNs:

e The lead task of any task group
® Any spawned task.

Logical File Numbers

Assigning
LFNs

LFN vValues

Logical file numbers (LFNs) are internal file identifiers
associated with file pathnames at the source language program
level or at command level. LFNs can be used to reduce program
dependence on actual file pathnames (which are likely to vary).

LFNs can be associated with file pathnames in Assembly language
or COBOL programs, or through Create File, Get File, and
Associate commancs.

An LFN can have any value from O through 4095.

Task and Resource Coordination

Task Reguests

Tasks can be coordinated in either of two ways:

e Through the use of tasking requests
e Through the use of semaphores.

One task can request another to execute asynchronously with it,
or the requesting task can later wait for the completion of the
requested task. Both tasks have access to the request block
provided by the requesting task, and can use it to pass
arguments between them.

Cz03-02

5-15



Task Execution

Semaphores

Resource
Ceerdination

Semaphore
Macrocails

Semaphores support an application-cesigned agreement among tasks
to cecordinate the use of a resource such as task code or 2
file. A semaphore is defined by a task within a task group and
is avaiiable only to the tasks within that group. Use of
semaphores in an application is essential if the application has
multiple tasks an¢ is sharing data in memory.

For each resource to be controiled, you define a semaphore and
give it a 2-character (ASCII) name. The semaphore name is 4
system symbol recegnized by the system control software; it is
not a program symbol that needs Linker resolution,

In controlling resources, the agreement is that each requestor
of a resource whose usé must be coordinated issues appropriate
system service macrocalls to the named semaphore to request ar
release the resource. The task that defines the semaphore
assigns the semaphore's initial value. The system control
software maintains the current value of the semaphore s¢ as to
coordinate requesters of the resource being controlled. A
requester obtains use of a resource if the semaphore value is
greater than zerc at the time ¢f the request. I1f the value is
zero or negative, the reguester is either suspended (waiting for
the resource) or noctified that no resource i5 availacle,
depending on how the request was made.

System service macrocalls are used to:
e Define a semaphore and give an initial value ($DFSM).

o Reserve & semaphore-controlled resource (SRSYSM). This
macrocall subtracts a resource or queues a waiter for the
resource (that is. it decrements the current-value
counter)., $RSVSM suspends the regquesting task until the
resource is ready.

e Release a semaphore-controlled resource ($RLSM). This
macrocall adds a resource or activates the first waiter on
the semaphore queue (that is, it increments the
current-value counter). :

e Request the reservation of a semaphore-controlied resource
($RQSM). This macrocall queues a request block (SRB) if the
resource is not available (that is, it decrements the
current-value counter). The requesting task must test the
queued SRB subsequent to the request in order to determine
when the resource i1s granted. The reguesting task continues
executing until it executes & SRSVSM macrocall; then it
waits.

e Delete a semaphore ($DLSM).

5-16

€z03-02



Task Execution

Example A semaphore i5 & gating mechanism. The initial value you give
to it depends on the type- of control you want to exercise. For
example, assume that you want to restrict access to a particular
resource to one user at a time. The mechanism would work in the
following way:

1. Task A defines a semaphore by issuing the macrocall:
$DFSM 22

Omission of the value argument causes the initial value to
be set at 1. :

2. Task B now issues a $RSVSM macrocall. The counter is
decremented to 0. Task B gets the resource for itself,
knowing that no other task using the semaphore mechanism is
now using or can obtain the resource.

3. Task C issues a $RSVSM macrocall. The counter is
decremented to -1. Task C is suspended and put on the
semaphore queue in first-in/ first-out order (because Task B
is still using the resource).

4, Task B issues a -$RLSM macrocall when it finishes with the
resource. The counter is incremented to 0. Task C now gets
the resource. After Task C issues the $RLSM macrocall, the
value again becomes 1.

Use of resources by more than one user at a time can be arranged
by adjusting the initial value of the semaphore. For example,

an initial value of 2 allows two users, a value of 4 allows four
users, and so on. The value chosen as the initial value of the
semaphore depends on the nature of the resource and its intended

UsSe.

If it is undesirable for a task to be suspended while a resource
is in use, the $RQSM macrocall can be used instead of $RSVSM to
reserve a resource. $RQSM is an asynchronous reservation
request ($RSVSM is a synchroncus request) that causes a request
block to be queued for the resource so that the issuing task can
do other processing before the needed resource is available.

CZ03-02 5-17



Task Execution

TASK HANDLING

Task Priority

Device
Drivers

More than one task can be concurrently active. In a
multiprogramming environment, a task in each of several task
groups can be active and compete for system resources. Another
possibility is a multitasking application where several tasks
executing under one task group can be active to compete for
system resources among themselves and with tasks from other task
groups.

A FORTRAN or Assembly language program can include requests to
activate several tasks anc synchronize their execution; these
requested tasks can execute concurrently. A COBOL, BASIC, C,
Pascal, or Ada program executes as a single task, but can
include commands to activate other tasks.

Leveis

For the system to sequence the execution of tasks, each task
must be assigned a priority level. In monoprocessor systems,
task competition for the central processor resource is governed
by the hardware/firmware linear priority scan of level activity
indicators. Tasks on the same priority level execute serially
in the order in which they are requested. In multiprocessor
systems, tasks are ordered in a software queue according to
their priority levels. The task at the top of the gueue is
dispatched when a protessor becomes free. When it is assigned
to a processor, the task executes at the same priority level as
it would on a monoprocessor system.

The highest priority active task receives all available central
processor time until it waits, exceeds the timeslice value,
terminates, or is suspended. In both monoprocessor and
multiprocessor systems, the task can be interrupted by a higher
priority task.

It should be noted that all device drivers are considered to be
tasks in the above sense. Using the File System, buffered
device drivers can execute concurrently with tasks. Drivers
executé on the central processor priority levels assignec to
individual devices and thus have their own contexts. The device
drivers provided in the system are written in reentrant code,
are capable of servicing multiple devices, and execute on any
central processor in a multiprocessor system.

Cz03-02



Task Execution

Task Activation

A user task becomes active when a Spawn Task or Enter Task
Reguest command is issued for it. The Spawn Task command can
request that the invecation of the task be delayed until a
specified time interval has elapsed. FORTRAN programs can cause
a task to become active through the START and TRNON statements.
Assembly language programs can issue a $RQTSK OR $SPTSK
macrocall to activate a user task. Any application program can
issue a command to spawn or request a task by calling the ZXEXCL
run-time routine.

When you want more than one task to execute concurrently, you
must specify each task in a Create Task or Spawn Task command
{(or system service macrocall).

The procedural code for a requested task is either in a unique
bound unit or in-a bound unit shared with a task that was
previously created. When & task is requested, the system
searches for its identifying LRN in the table of LRNs associated
with the task group under which the task is executing.. The
system activates the task, if it is not already active.

Task Termination

To terminate, tasks of Assembly language programs must contain a
Request to Terminate ($TRMRQ) macrocall. Compilers provide this
call in the object text. $TRMRQ is executed after the task
completes execution.

Cz03-0z

5-19



Task Execution

TASK STATES

Dormant

Active

Wait

Suspend

Tasks can exist in any of the Togical states described below.

A task is in the dormant state when there is no current regquest
for it. A task enters the dormant state if it is created but
never requested, or when a terminate request is issued against
jt. A task remains dormant until & request is placed against it
or it is deleted. If deleted, it is erased, memory is reused,
and the task cannot be reactivated.

A task is in the active state when it is executing or when it is
ready to execute if its priority leve! becomes the highest
active level in a central processor. A task remains active
until it waits, terminates, or is suspended. Tasks in the
general ready queue are active.

A task is in the wait state when it is not executing. [t may
have caused its own execution to be interrupted until (1) the
compietion of an event such as the completion of a requested
task, or (2) a timer reguest is satisfied, or (3) a task
releases a semaphore. A waiting task loses its position in the
priority level round-robin gueue.

An 1/0 order tc disk, magnetic tape, the operator terminal, or
an unbuffered card reader usually results in a wait condition.
Task code written in FORTRAN or Assembly language will also wait
in the following circumstances: (1) a write order is issued to
an interactive terminal or to a printer when a previous write
has not completed, (2) a read order is issued before the
transfer of the current message from an interactive terminal is
complete (the RETURN key is not pressed). In COBOL, these
circumstances result in a wait if the program is executing its
1/0 statements in synchronous mode; otherwise, if in
asynchronous mode, a status code value of 91 is returned with no
waiting.

A task is in the suspend state when it is removed from execution
by an external human action (for example, the operator entering
2 Suspend Group command or a user interrupting a program with a
Break action). The task is activated through another human
action (for example, the operator enters an Activate Group
cotmand or a user enters a command after the Break action).

5-20

€203-02



Task Execution

INTERTASK AND INTRATASK GROUP COMMUNICATION

Information can be passed among task groups and tasks by means
of request blocks, common files, and the message facility.

Request Blocks

Common Files

Pipes

Task code written in Assembly language can pass information to
other Assembly language tasks in the same task group by using
variable-length request blocks. The request blocks can contain
data or pointers to information structures. A1l request blocks
must be in common address space 50 that they can be shared by
the tasks. (Refer to the System Programmer's Guide for details
on building request blocks.) Higher level languages cannot use
request blocks directly; they require called subroutines written
in Assembly language.

Tasks within the same task group and tasks within different task
groups can communicate through disk files. The concurrency
status must be the same for all tasks using the files. The
requesting tasks must have access rights to the files.

A pipe is a special type of sequential file that also provides
synchronization and queuing facilities to cooperating tasks.
Pipes are used by tasks in different task groups (applications)
er in the same task group, to communicate with each other.

Cz03-02

5-21



Task Execution

Message Facility

The message facility allows twe or more task groups (users) ar
two or mere tasks within a task group to communicate with one
another. This communication is accomplished through ccntainers
called mailboxes. Messages (requests) sent to a task or task
group are queued in a maiibox and are degueued when received.

Toc control the sending and receiving of messages, the message
facility provices a number of macrocalls and commands. One set
of macrocalls (Initiate, Send, and Terminate Message Group)
allows a message (a reguest) to be sent t0 & mailbox; another
set of macrocalls (Accept, Keceive, and Terminate Message Group)
allows a message to be received from & mailpoox. Commands are
provided to allow you to send, receive, 1ist, and cancel
messages (requests). The Mail ccmmand is provided to allow you
to send messages (mail) to ancther user's mailbox and to display
mail in your own mailbox.

Deferred processing of print and task group reguests is carried,
out through the use of the message facility. ODeferred
processing is described later in this section.

Before the message facility commands or macrccalls can be used,
and before the deferred processing of print.and task grcup
requests can be initiated, you {or the operator) must create the
mailboxes and-activate the message facility task. '

The paragraphs below describe mailbox creatiorn, the activation
of the message facility task, and the cdmmand and macrocall
interfaces.

€Z03-02



Task Execution

Creating Mailboxes

Setting
Access

Three steps are invelved in the construction of mailboxes. You
must (1) create the mailbox root directory, (2) create the
mailboxes, and {3) set access controls on the created
mailboxes. (Refer to the Commands manual for details.)

The mailbox root directory is the directory that is to contain
the simple names of the mailboxes.

The system assumes that the mailbox root directory is in the
SMDD directory. (An MDD directory is supplied on the system
root volume.) You, however, are free to create your own mailbox
root directory through the Create Directory command.

Each mailbox is created through the Create Mailbox command.
This command creates a directory corresponding to the mailbox
name and a file {$MBX) within that directory defining the
mailbox attributes.

To prevent unauthorized use of the message queues, you should
set access controls as follows:

e Senders must be given list access on the directory defining
the mailbox.

e Receivers must be given read access on the $MBX file for a
given mailbox.

Individual mailboxes can be deleted using Delete Mailbox
commands.

Activating Message Facility Task

The Start Mail operator command activates the message facility.
This command contains an optional argument used to set the name
of the mailbox root directory to other than the default
directory pathname (>MDD).

Cz03-02

5-23



Task Execution

Message Facility

Mail Command

SMM and AMM
Commands

Command Interface

The commands that can be used to send/receive messages (mail)
are Mail (MAIL), Send Messsage Mailbox (SMM), and Accept Message
Maiibox (AMM). Cormands are alsc provided to 1ist and delete
messages. '

The Mail command (also referred to as the local mail facility)
is used to send and receive multiline messages to/from the
maiibox whose name (id) is the same as the person id of the
receiving user. A message sent by a Mail command is gqueued in
the mailoox and displayed only if the receiving user issues a
Mail cemmand.

To send a mail message, you issue the Mail command, specifying
the mailbox id (person id) of the user to receive the message.
The message to be sent can be lccated in a file (named by an
argument of the command) or it can be entered after the Mai)
command has been invoked.

To receive mail messages, you issue the Mail command without
arguments. The contents of your mailbox are displayzd when the
command is executed., If you reguest deletion of the messages,
they are deletec from the maiibox after being displaved.
Ctherwise, the messages remain in the mailbox. :

The Send Message Mailbox (SMM) and Accept Message Mailbox (AMM)
commands (also referred to as the local message facility) are
used for single-line messages that must pe viewed immediately or
at a specified time. The AMM command is used to specify that
messages sent by the SMM command be displayed when received or
at the time specified in the SMM command.

To send a message, you issue the SMM command, specifying the
person id (mailbox) to whicn the message is to be sent. You
include the message in the command line. You can include the
-TIME argument to specify a delivery time for the message. You
can send a broadcast message by specifying * in place of the
mailbox in the SMM command. The message will be sent to all
iogged-on users who have issued an AMM command indicating their
willingness to accept messages. '

Tec receive messages, you jissue the AMM command. Messages
already in your mailbox are displayed. Subsequent messages are
displayed when placed in your mailbox. Messages whose date and
time for display have not been reached are not displayed.
Messages are deleted from your mailbox as soon as they are
displayed.

5-24

€203-02



Task Execution

Senders can use both the Mail and SMM commands. A receiving
user who issues a Mail command receives both types of messages.
If you issue an AMM command, you receive only messages sent by
the SMM command, unless you specified the -IMBX * argument,

Only when this argument is specified will you receive both types
of messages via the AMM command.

The -IMBX argument alsc allows you to specify by name

(person id) the sending user from whom you will accept messages
for immediate dispiay. Messages sent by cther senders are
stored in your mailbox. The -AMBX argument allows you to obtain
messaces from mailboxes other than the one associated with your
person id,

Message Facility Macrocall Interface

Send Message

You can use the message facility on the Assembly language level
by using the macrocall interface. To permit the sending and
receivirg of messages, the message facility provides the
following macrocalls:

Initiate Message Group ($MINIT)
Send (SMSEND)

Accept Message Group ($MACPT)
Receive (SMRECY)

Terminate Message Group ($MTMG)
Count Message Group ($MCMG)
Carcel Enclosure Level ($MCME).

The information associated with these macrocalls can be passed
by means of reguest blocks.

A task group that wishes to send a message to a mailbox must
issue a $MINIT macrocall to open the send-message session. The
mailbox is identified by a name entered in the request block.

As a result of this macrocall, the message facility returns a
message id, unique to the task group, to identify the message to
the other macrocalls (that is, the send).

The task group then issues one or more $MSEND macrocalls to send
message data. The send-message session is closed by the $MTMG
macrccall or, alternatively, by the $MSEND macrocall. The
serding task group can issue the $MCME macrocall to delete the
last record of an incomplete gquarantine unit or the entire
incomplete quarantine unit. (A quarantine unit is the smallest
amount of transmitted data available to a receiving task

group.) Receipt of the message can be deferred by the sender.

CZ03-02

5-25



Task Executicn

Receive A task group wishing to receive a messace from a mailbox issues

Message a SMACPT macrocall to open the receive-message sessicn. The
mailbox is identified as described above for the SMINIT
macrocall, and the message facility returns a message id to be
used by the SMRECY and $MTMG macrocalls.

The task group then issues one or more $MRECV macrocalls to
receive message data. The receive-message sessjcn must be
closed with a SMTMG macrocall.,

The message may be accepted on the following selection criteria:

e First available message

e Sequence number

e Submitter name

e Submitter name and sequence number.

The receiving task group can request the message in record sizes
other than those in which the message was sent. The receiving
task group delimits the amount of received data by range or
enclosure level.

Effective The message facility can be used most effectively by two task

Use groups wishing to communicate if they both simultaneously send
and receive a message. To accomplish this, each of the task
groups should issue the $MINIT macrocall to open the send-
message session and the 3$MACPT macrocall to open the receive-
message session. In this case, the quarantine unit is the
vehicle used to exchange data between the two task groups.

DEFERRED PROCESSING FACILITIES

The system's deferred processing facilities are supported by the
message facility (refer to "Message Facility" above). In
deferred processing, the messages are requests.

Deferring the execution of interactive and absentee task group
requests makes it possible for you to gain greater control over
the processing sequence. Deferring print requests allows you to
obtain program independence from the availability of print
devices. Queuing and later transcribing reports provides a
spooling capability that places printing and punching outside of
program context.

5-26 Cz03-02



Task Execution

‘Deferring Task Group Requests

When placing an interactive or absentee task group request, you
can have the request entered in a disk queue and can postpone
any action being taken on the reguest until a specified time.
When the reguest gqueue structures are on disk, memory space is
conserved and the data in the queues can be recovered in the
event of a system failure (refer to Section 6).

Assuming that an interactive and/or absentee task group has been
created, two steps are reguired to defer group requests. The
operator must create the request queues (mailboxes), and you
must issue task group requests with optional arguments
specifying the time each request is to be activated.

Creating Task Group Request Queues

The operator uses the Create Group Reguest Queue command to
create queue structures in which requests issued to a given task
group will be stored. The operator must also issue a Start Mail
command if one had not been previously issued.

Queuing Task Group Regquests

You queue task group requests by issuing an Enter Group Request
command. You can postpone action being taken on a request by
specifying the -DFR (defer for interval) or -TIME (defer until
date/time) arguments. '

Once the operator has issued a Create Group Request Queue
command for a task group, all further requests for that group
are queued whether or not the requests are being deferred.

If the operator does not issue a Create Group Request Queue
command, you can stiil submit group requests but will not be
able to defer the requests.

C203-02 5-27



Task Execution

Deferring Print Requests

The system provices a deferred printing capability under which
your requests for printing specified files are gqueued in memory
or disk mailboxes. -The actual transcription of the files is
done at a later time, under the control of an cperator-created
system task group cé&lled a daemon.

After you submit a deferred print request, you can resume normal
activities, log off, or reboot the system without losing the
reguest.

The three steps involved in deferred print processing are (1)
creating the mailboxes, (2) activating the daemen, and (3)
queuing the print reguests. The information in the following
paragraphs is conceptual. Detailed procedures for deferrea
printing are given in the System User's Guide.

Creating Print Request Mailboxes

The operator establishes the mailboxes that are to contain the
queued print requests. The mailboxes can be in memory or on
disk. The mailbox rnames must be in the form 3PR.Qn (n is an
integer from 1 through 9 that identifies the relative pricrity
of the queue, with 1 peing the highest priority and 9 the
lowest). '

Creating the Print Daemon

The operator is responsible for defining and activating the
daemon to process the print requests.

To create a daemon task group, the operator issues a Start Mail
command (if one was not already issued), a Create Group command
naming the daemon to be created, and an Enter Group Reguest
command identifying the mailboxes to be used for gqueuing the
requests and the devices to be used for printing.

Multiple daemon task groups can be run concurrently, using
common or separate sets of mailboxes and printers.

Queuing Print Requests

Once the daemon task group is active, you can queue, print, or
punch requests by issuing Deferred Print commands. You can
employ the -TIME argument to defer the printing of a file until
a specified date ana time.

5-28 €z03-02



Task Execution

Queuing and Transcribing Reports

Any file in print or punch format (i.e., any report file) can be
queued and subsequently transcribed to an available printer or
card punch. Report gqueuing and transcription is a spooling
capability that provides automatic and manual report
transcription, time-of-day printing or punching, and an
automatic setup function that includes a sample transcription
file (template).

The report gqueuing and transcription facilities control report
transcription outside the context of the program. Reporting
procedures for identical software can be totally different in
different situations without requiring reprogramming.

Report queuing and transcription have three major aspects:
creating a report queue, queuing a transcription request, and
transcribing a report.

Creating Report Queues

Report Queue
Profile

A report gueue is a directory that allows you to place a report
transcription request in a queue and subsequently transcribe the
report. Report queues are created, modified, and deleted
through Report Queue Maintenance (RQM) commands. The
characteristics of the report queues are determined when the
queue is created:; the contents are determined when a report
transcription request is placed in the gueue.

When the report queue is created, a report queue profile file is -
built. The report gueue profile file designates the
characteristics of reports whose transcription requests will be
entered in the report queue. The report characteristics
include:

Name of form descriptor

Format of reports to be queued (print or punch)
Transcription mode (automatic or manual)

Column number at which printing is to begin

Line at which printing is to begin (head of form)
Number of print Tines per inch

Number of copies of report

Time at which report is to be transcribed
Heading line

Destination Tine.

The report queue profile file is complete when the report queue
is created; however, various aspects of the profile can be
overridden when the report transcription request is gueued.

Cz03-02

5-29



Task Execution

GQueuing -Report Requests

The name of a report to be supsequently printed or punched is
placed in a report queue through the Queue Report (QRPT)
command. This command also associates with the report a
specialized report queue profile file that governs the details
of the report transcription. Once a request has beer gueued, it
remains queued until the file has been transcribed or the
request pathname has been deleted through a report queue
maintenance renew or delete function.

Transcribing Reports

Previousiy gQueued reports are written to a printer or card punch
through the Unspool (UNSP) command. A single UNSP command can
unspool ail current and future requests. The printing or
punching characteristics are determined by the report queue
profile file created through the ROM command, the specialized
repor: queue profile file created by the ORPT command, the
user's activities, and the arguments specified in the UNSP
command.

The UNSP command defines the report gueue and the hard copy
device to be used. After the command is executed, the
"specialized report file (if any) is deleted from the report
queue. All reports whose profile matches the specified profile
are unspooled in a single invocation of UNSP,

The report queue profile file can specify that the reoort is to
be transcribed automatically or manually.

Automatic Automatic transcription is used when constant monitoring of a

Mode report gueue is desired. When there is nc transcription
activity in pregress, the unspool reoutine suspends itself for
l1-minute intervals. When transcription of the queue is
activated, each report in the queue is printed immediately
untess one of the following is true:

e Manual mode was specified in the controlling brnfi]e.

e Tne specified time of day for report transcription has nct
been reached (or exceeded).

Manual Mode Manual mode is used to transcribe reports in a nonautomated
fashion. When you require the reports, you issue the UNSP
command. Al reports on the queue are transcribed immediately,
regardless of time or mode. When the queue is empty, UNSP
terminates.

5-30 CZ03-02



