(ﬁ/” HEWLETT

PACKARD

HP 92832A
Pascal/1000

Reference Manual

Pascal/1000

Reference Manual

(ﬁp HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY
Data Systems Division Library Index No.
11000 Wolfe Road 2RTE.320.92832-90001 MANUAL PART NO. 92832-90001
Cupertino, California 95014 Printed in U.S.A. May 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain the latest replacement pages and write-in instructions to be merged into the
manual, including an updated copy of this Printing History page.

To replenish stock, this manual will be reprinted as necessary. Each such reprinting will incorporate all past Updates,
however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the
same edition with its user-inserted update information.

To determine the specific manual edition and update which is compatible with vour current software revision code, refer to
the appropriate Software Numbering Catalog.

First Edition May 1980

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

ii

Preface

When Niklaus Wirth invented a new computer language in 1968, he named
it in honor of Blaise Pascal, one of the great philosophers of the
17th century. 1In addition to inventing one of the first calculating
machines, Blaise Pascal made important contributions to mathematics,
physics, and linguistics.

Wirth designed Pascal primarily as a vehicle for teaching programming
as a discipline based on the fundamental concepts of structure and
logical integrity. However, the range of basic capabilities built
into Pascal made it suitable for wider use. Pascal has been
successfully implemented on a wide variety of computers, from
microprocessors to mainframes, and has been proven to be both
reliable and efficient for a variety of programming tasks.

Pascal/1000 provides all of the capabilities of the language as
originally designed by Wirth, as well as several significant
extensions which take advantage of HP 1000 system capabilities.

Information contained in this manual closely conforms to the proposed
"standard" Pascal under consideration by the American National
Standards Institute (ANSI) ana the British Standards Institute (BSI).
The HP extensions added to the "standard" Pascal are noted as such to
facilitate program transportability.

1ii/iv

TABLE OF CONTENTS

Chapter 1
General Information

IntrodUCtion ... seeeeeercencenseosossoscssaccscsanncnss
Extensions To Standard Pascal.....ceeeeceecocsaocnnoss
Summary Of The Pascal/1000 Program. «v..ceeeecececocnscse
Reference Manual Organization.ceeeeeeececonecees
Program VOCaAbUlary. ceeeeeeececoccococccssnsanosncncss

Chapter 2
General Form

INtrodUuCEion ...t eeieeteeeceocccececcosococoscsasansnes
BasSiC SYMDOlS.iuececuncancnsocencasesscsoccnsoesoscsss
Reserved WOrdS . ..eeeeeececaseocosansaosenooscssnsssnsse
IdentifierS . cuieeeeeseecenccsceossvcscocosscosssasasesnse
Predefined Identifiers. ..cceeeceeeecccccccocccccccnscs
Predefined Symbolic ConstantsS. cceeeeceeeeesnocococsns
Predefined TyPeS....eeieeeceeeoocssescacsasnccanas
Predeclared Variableseieeeeeeceeccococccecass
Predefined Procedures and FunctionsS.eeeeeeceees
DIreCtivesS. it eeeeeeeeeecsoonasoosacosnnscoscoces

NumberS¢o..o-ococ.oo.oo.oo.ooo.o-oo.oooooa.o.aaol.oo.

strings.oooo....ooo..'.onouoooo.a..Qooo....oo..on.o.a

Comments..D............O...
Separators. ...ceeeeececncses
Compiler OptionsS....ceeee..

® S © 0 00 00 0600000000000 0000000
® 6 0 600 0600600600600 0006000000000

S 6 00 6000006060000 00000000 0e000

Chapter 3
Compilation Units

Introduction... ceceeeeecesse
Main Program Unit...eeeceoeeecenecececoaceacescecconss
Program Heading. cc.eveeceeocoecoocncacoosccsoasssanss
Main Program BloCK. seveeececeeececencacaccecnccnnes
SUbProgram UNit ..ceeeeeeeeeeececosoosssoscnccsoscsnsssosnse
Subprogram Unit Program Heading.ceeeeeeececcess
Subprogram Unit BlOCK ... eeeeeeoeeoeeoceoconooncnns
Segment Unit....oiieieeeeeeeeeceosooconcooosesnssssness
Segment Unit Program Heading. cee.eeeeeereonooceones
Segment Unit BloOCK. tovieeenneneneoeooncoceoooooness
Loading Segment Overlays at RUn TiMe. ..ceeeecsccscss

® 6 0 00606 00 0000006000600 000900000

.

Page

e
i
N

NN NODNNNNDNNNODNODNNONN
|
o~Nwo oot Ul

WW WwWWwwwwwwww
|
= OoWwW SO o W

Table of Contents

Chapter 4
Declarations

Program Heading. cceeeeeecocccescososscseccssssssccsssnsccsces
Declaration Part....ccceeececencsscccsasscsoscosccoscssosssss
Label Declaration..cceececeeecc scccocssosccssocccsccsss
Constant Definition....cceeeecececeeccccccssccscossnssosns
Simple CONSLANtS. ccvecovosococscscccssssascsccsccscss
Structured CONStaANtS. .ccsccsesoccssoscsoossscsssssssse
Array Constant. s cceeeeoecccesccesosacsccsscsssnss
Record Constant. ccceeeesescoosccscrsscconsoanccsse

Set Onstant ... ceeeeveeoenoscscsscsscscccscscsncs

Type Definition.ceeeeeeceecceecccecocccsosocccosascanss
Predefined TYPeS. .ceeeosccossocscsscsscccccssssscss

BOOLlEaAN. s seveeeesevesececesosssssccsnassasssssses
Char. iceveeeeeeeocecsececoooososssssonssansosasanscs
INnteger. cococececosoosonescosccsccscssssscocscsnsoscssscs
REeAl. . ivuveueeneeocacsocososcosasossssnssnssasonscsscs
LONgreal.. ccveeeeccocasscsoccsosssoscossscssssscscsce
= < I
User-Defined TyPeS. .coeeceecsces cocsccsosccccsosssonscse
EnuUMer atiON . .ceeecececeascoosocnscscsssccoroesssocse
SUDrange..ceecececescescscsccssscssccscssncssonnosss
POINteY o vvvseeecoccevoncsecssacscsassscssssaccsscoccs
Structured TYPeS.cececscceccccccsoscccsocscscsssassossce
ALTAY ¢ coceeseacsasaoossosscsssscsossscscsscsosssssccscs
RECOIA. i oceeeoccscssosassanssssosscscscnssscssanscs
el . iieeereceoccoscscasosssossscsosnssnssncscscscssscsse

.
FlleGOOOOOOQOOOIOOQOOO....I...O‘OOI...OO0.0..OO.

Packed Type MOdifier...ececcecceececcosacosocscsocccccs
Variable DeclaratiOnN..cccecevsecesccsccoscosscocosscssccocss
Routine DeclaratiON..ccosececcsceacnccscosssscsscscsccasce
Routine Heading. cceeescocoscscccccsccosccscsscssccss
Formal Parameter LiSt..ccceececscsccscocccsncscnccs
Value ParameterS. cecececeessccscsscccscsscsscsnsscssossse
variable ParameterS. ceceevcccsccooscossosncscsssse
Procedure and Function ParameterS..ceccecssscsse
Parameter List Compatibility..cceeccecccccccecnne
Function RESUlES..cecevesesncsccsccccsscscsccssscccse
Routine Declaration Part.ceceecececccccoccosccccsscsss
ROULINE BOAY. cceeecncscorsocrosonccssccossscscsassoacnce
Level-]l ROULINES ... ceceeseccosacsssossnccccccsssccsase
Alias OPtiON..eeeeecccococceoscoosccscsscscosncssss
DireCtivVeS. cueeeeeeeesoeassoesosasanascscsncsesocsssss
FORWARD . ceosecescseccceascacsscscssosssoesscsccsscccssnsss
EXTERNAL. ccecceccccccceocscsoscscssoncscsoscsscsscssscs

Recursive ROULINES. ceeeecveccccccecsesosossoscnssese

ScopeOOOOococ.oooo.oo‘o.o.0'0.0.’00.0..-ooooooloooooo.

vi

{ |
HFOLWWOWOdJdOUdWWWwWNH -

o

O A At e el el
[}

i
ol e
o

4-11
4-12
4-13
4-14
4-14
4-18
4-20
4-21
4-21
4-22
4-24
4-24
4-25
4-25
4-26
4-26
4-27
4-27
4-27
4-28
4-28
4-28
4-29
4-29
4-30
4-30
4-31

Table of Contents

Chapter 5
Executable Parts

Statements. ..c.cieiecececscccoccceccecscscscesscsnsecsnoss D=1
Statement LabelsS..ccceeecoeccccccccsccscsceccasasasnes H=3
Assignment Statement. ,.ceeeecceecsccccecccscsccosaces D=4
Procedure Statement..c.ccccceccecccoccscoscosocossosecs D=6
Compound Statement..ceceececcececesscocssscocsnsossssses 5=8
IF Statement. ..cvoeeeeececcceccsccensscsocsssosssscas D=1
CASE Statement. ..cceeceececcccceccscosecscssosssssece D=1
WHILE Statement....cccceeecccceccccsacscccscsascccnee D
REPEAT Statement. ...ececceceececcccccscnccccecsccsss O=17
FOR Statement.....cccee0cevcccccccccscoccscscscscsssces H=-19
WITH Statement..ccceeeccececccccecccccccososcsssccncsss D=22
GOTO Statement...ceeeceecocsocrescsccncscscsossccsss OD=24
Empty Statement. ...ceeeeeeteecccccncccoccssccnnscsecs H=25

EXPreSSiONS. ceeeseecencecscosnscsoscscsossoscoscsssssccass HD=26
OPerandsS..ccveeeeeccscccsccccossosscsscscsscscssscsnanes D=26

Literals. cueeeeeeesceosccenoesosonsnsssassansases 5=26
SYymbolic CONStaANtS. cceeeccecoccsccooccsnsssocssseses =28
Variables. . veeeeeeeeecececccecossascsssccsncscsas 5=29
SeleCtoOrS. seseeeeeecacccsocccacsanocssaonssensnnsass 5=30
Array SUbSCriptS. .ceceeceeccoscccoaccsssasesssess 5=31
Field SelectiOnN..cceee ceeevceovecasocscassacsnss H-31
Pointer Dereferencing....ccceeececeecccocccscsas 5-32
File Buffer SelectiON...cccceceeccescesoccccacess 5=32
OperatOl’.'S. ® 0 00060 0606000060006 06000606000006000000000000e0000 5—33
Arithmetic OpPeratorS..ccceeeeees eoeoscososesssnsss 5=-35
Boolean OperatorS....ceveeceecccecsossoccssscscossess 5=37
Set OperatorsS. cceeeesecesccecssccssoosssaosoassansss 5—38
Relational OperatorS..cceececce cseoccescscsscess 5=41
Function ReferencesS. .cceeeceececcccscccccscsccssss H—43
Constant EXPressionS... ceeecececccecocssosccscssasss 5-45
Type Compatibility. .ceeceeeeeeseececesensocccsceasnae DHD=47
Identical TYPeS. cecesocecscccsscsoscsnscnseassosses H—47
Compatible TYPeS. ceeveeeecsscssssocscscscsosoases 5H—47
Assignment Compatible TypeS....ceceeeecscscceses 5-48
Expression Compatibility. ..ceeeesecssosecsesecsss 5-49
Special CaseS. cvceeeveccecscscocosscsnnccesocsancsss H—49

vii

Table of Contents

Chapter 6
Files

LOogical FileS. .ceeececccscscscscsscesosscnsssssssscscscscs
Sequential FileS..ceeeccecccecscocsoosnsssossnsssssase
TexXt FileS..iveeeeeeceeoccccccccocscocaccscnnnns
Direct-ACcCess FileS..ieeeeeeeesncccosososcsnsssssscsccscs
Iogical File CharacteristiCS. cceeececcscccssssocnss
File Buffer Variable.. ... cceceeeececccaccscscnes
Current Position Pointereeeevecescccccccsocs

Mode Or State. .cecececeeccscoscosossssncssncsoncs
Physical FileS. ..iveeeeeececoececocccccccsoscoaonncnacs
OPening FilleS..eeeeeeeceesosoeceascssssassonsssossnnscns

Reset...ooo.ooo.ooao...-00.oco0.0-0‘000-...‘.0.0‘0.

| J T Y T R S S I
[N S o

Rewriteoooo'oﬁooo..o-o...‘.o...o.o...00.‘.000......

Appendoco..0‘.00;0.0-;..0-..-o......o.ooooooo.oo..

Associating Logical and Physical FilesS.....ccccoccee.
Associating Files in the RU Command. ..ccecoeccceens
Associating Files Through the String Parameter.....
Scratch FileS. i.iceueecescecccsoccceccccccccncscncans
Relationship Between Logical Files and FMP Files...

Brief Summary Oof FMP File TYPeS..ccecceccccsccancs
Sequential FileS..ioeeeeccosecssscoscncosscococcss
Direct-AccesSs FileS.ieecececessccescnsscscccsces O
Interactive File I/0. ceeeeecccescescssasssssosssnsss 6-15
Sequential File OperationS. ..cececececccscscscsacossess 0-16

.

[
openﬁboﬁoooolooooo'ooo..'0o.ool.o..-o...aoo.o.oooc.
.

.

-

N

NN Rk kXA koK N K- 2 N2 e W W«)W) We e e W e)]
1 |
e OOWOSNOUTULE bW WW
w

] 1
=
& W

Get(f)'00.‘0...00....00.0uaoo.o..oo.oo-oo-oo.ooocoo 6-16
Read(f)O00.00.’0'.0-'9000..a.on.-."‘ooooo.’ooooooo 6-17
Put(f)ooooaoooooo..-.o..ooocoooaooooooo’ooooo.oooo’ 6_19

WAt (£) e vevovoseencoocccsccccscsascscssssccnssnnses 6-20
Text File OpPerationS...c.ccecececscccccssccssocsses 0=22
Get(f) & Put(f) With Text FileS...ceceeesoceeees 6=22

Read (f,v) With Text FileS..vceeecescecnccoceecsas 6-22

Write (f,v) With Text FileS..ecceveeccecconeseses 6-25
REAAIN(£,V) ¢ eeve ceececcooccsccoccccscscssssassoss 0-28
WEiteIn(f,V) ceeecceceasoacocsccocssasscscssnnsesss 0-30

Page (£) e eeeeessssnecacsceacossccsssssscscsseassss 0-31
Prompt (£ ,vl,cceyVN) eeeeeeaonceocacosasonnsnsscas 0-31
overprint (£,vl,.ce/VN)eeeeocecaccsccsosscscansooess 6-32
LinepoS(f) cveeeceeesecooccssessssscsosassssoesesnes 06-32

EOIN .o eeeeeeesoecoecoccoossoscssssscssnasssses 0-33
Direct-Access File OperationS..cccececsccscsesccacssss 0-34
SEEK(£)eveeceesocsocoossccsnsoncsassosssscassonsosss 0-34
Readdir and Writedir...eeeeeeeececcscccssescnseacsas 60-34
POSition and MaXpPOS. eeccecececccscscasssssssssccsses 0-35
CloSing FileS..eeeeeceeccsscscsccsccossscsasossssossesses 60-35
Brief Summary of Procedures and Functions......ccecc.. 6-36

viii

Table of Contents

Chapter 7
Standard Procedures and Functions

1
ot bdbwWNO N

File Handling ProcedUIeS. ce.v ceseeecvessoccocsscsosces
Append...‘-.....I‘.“.l".’......‘ ® & & 06 & 5 5 0 0 0

Close... ® ® 0 060600606 060005060600 00000009000

oo o0 0 0 0

® o6 5 00 06006 06000 009000

Getocoooooo-ooo.’.-.o-oococo.oo.oo..o.o..oooooooo..

Openoo.ooo..oo.o..ooo.o.‘oooco."u

OVerprint............-............

Pageooooooaoooo.ocoon.o.o.o.oo.ooooooo.ooc.o

Prompt..cceececcscccccescs
PUt ... ceceecececceccccacscosnncnncae
ReAd.veceeseececososnsccccsnse
Readdir. ..eceeeeeeeceees
Readln..ceeececeacancsn
ReSet.ieeevececcooccccns
ReWIrite ., iiieeeeeeocones
S€eK. tiieeencecsrcccces
WEite. ceeeeececeoccncns
Writedir. ¢ceeeecececesns
WEiteln.e.eeeeeeeooocsccocecosassscscnaonsccosssnosss
Dynamic Allocation And De-allocation ProcedureéS......
OVeIVieW. tevseeecocennn
NeW. coeeeeeeoeoosaoscosnsnses
DiSPOSE . ve seveesasonces
Mark.eeeeeeeosocecaanane

@ 069 060 000 00009 00 000

o0 000000

oo o600 00

® 600 0606000000000 0006000000000

® ® 0 06606 060 000 0000009000

® ® 0 ® 06000 000 068 000 00 0000080000

® 6 0 060600600 0560060000000 0 000000600

® ®© 6 06860 0606 06 060066060 006060006 000000 00

® 6 © 560 00 0606 0600 0000 0008000000000

® ® 6 56066 0606 06 0600 0606 00000 06000000000

® @ 00 606 0 060 06060 0600600000 000900000

® 060 606 060606 0060600600060 0600060000000

=]

[}
= 0w o

® 6 0606 0 0 0600 006 06060060 0000080000000

-

® 0 56 06 06060600060 0600000000000 000

Nl N NN NNNSNNNNCNNNNNS Y
[}

® ® 0 0 060606 060 0606 060600 0600000000000

RO
e
NN

® © 606 0 006 006005 060060 0600600600 00000 7

® 6 5 06 060 060606 0606 0600000000000 00000 7_14

RELEASE eeeeeecooacsossosssssoasosecssnsssccssssssssses [1-15
Transfer ProCedUreS. coeeeeeeceecacececocsnscccsssssnass 1-16
PACK.: coeeveccoceossscocasoscsnsscsccssesscsasssscnse 1-16
UNPACK + e e eeovvoecooansscacancsscassssssscssosssnssasss 1-18
Additional ProcedUreS. cccecececsesececccscsocsssnssssnssse 1-20
HAlt . cieeeenueeoooooneconosooascoccooosscsscsssscscsensss 1-20
Arithmetic FUNCLIONS. ceveeeevcecvocscosscnsasoccsssnsss [1-21
ADS . vt vevccoosoecssocsosonsecsossssascscssssssssocnses [1-21
SAL e ceeeeoeccacooacecsooosesscsssassccsscssscsscsnsnse [1=22
SOL L. eeeeeoeocococoocscccscnscossscncssosssscassesascse 1-22
EXD e oesooosocososenosseosnecsecocscsecssssossacasescssss [1-22

Lnoonoooo..o.oooobooooo

.
.
.

.
<
|
N
[\ 8]

® ® 680 0606 006 000 060006000 00000

.
.
.

.
~3
|
N
w

Sinlcoso ® © 065 060606 0006 060 060000 6600000060000 000000000

ArCtanooocnootnoooo.ooo
PredicateS.oonaooooao.ooo.o.0.00.....0..0..0.00000
Oddo-oooooo...oo..o.o'c

® & 66 6 00 060 00 00068 000000600000 7—23

«
* L]
* »
] L]
~N
(I
NN
> >

8 e 8 0660 0606 06060 0060 0060006006000

EOf . it iiieecocococacsosacssanseasscsescsascsssnssnsse 1—24
EBOLN . it eeeeeeeoeoocococcasocsocscccssscscsssoncssnse =24
Tr ansfer FUNCLIiONS. cveeeeeeeccesccocccscossacconcssnssee 1-25
TIUNC. ceveeeocoscooococscs sossoscsssssscsssssesscssanecs 1=25
ROUNA te e teneeveocecasoocossoscccsocssscscccssssasnsans 1=25
Ordinal FUNCELIiONS cv: cveveecccsccccccnocnocscocscsnsassocss 1-26
O A e s i eeeoeeecsoosasssocsessesessoscssssassssecsssnnes 1-26
CRr s i et veecvecocasoseosossosossaaasssscascsscssansssss 1-27
SUCC e v v seeesncoceassasssossssesssssssscssssssssanses 1-27
PLed...eeeecooososoooooscssseosscssscsasssssansasascsses 128

ix

Table of Contents

File Handling Functions. ,.c.. e ceecececcccseconasocnes 1-29
LiNePOS. v eeeeoeeocecccsecscccoscsscssnscsosssssssssssnss 1=29
POS1tiON. eeeeveecocccocsecacasccscsassssssscncssaseas 1-29
MAXPOS s eveeecececassccssscsscesssscssscssssosscscancnecs 1=29

Chapter 8
Implementation Considerations

Data AllocatiOnN. cceeecececoscecoscscssscssnsocssssasssas 8
Allocation for Scalar VariableS...ccccecececececees 8
Allocation for Structured vVariableS. cece cecececceeces 8
Allocation for Elements of Packed Structures....... 8
Examples of Packed and Unpacked Structures......... 8-

Memory Configuration.cceceeeeecceososssosoccsssosesscssnses 8
BaSE PAQgC..ccececccsscccscccscccsscssascscsscsscsscssas 3

8

Main Area-oo.......o.n-.o...oo.o.0.000.-0...oo-ooo.

Segment OVerlay Arf@A... cecceececscovssosscscsssassss 8-15
INAGE AL €A .uee coeoevecoccscsccssccscnssssnsssssensess 8-1D
Heap /StaCK . eoeeeeeooeeaceacocscoonssncsssossassnseass 8-15
Data MAanNAgemMeNt...ceeeeeeecceccsscocessnsscnssssssssse 8-16
Stack Management. c..ceeeccecsccoscnacccsnsscccccass 8-17
Heap ManagemMeNt..eeeeeceecossoscccsscocsessssossssessses 8-17
Overview of Heap OrganizationN...c.ccceeeeceececesecs 8-18

Heap Initialization. ...ceceeeceecceccecscsscscsssess 8-21

NEW.9no'o.oo....on.ooooo..oo-.ro.o.ou.au.oo..o.o 8-22
DISPOSE‘-.00..oolooooooooooo.ocoooooooto‘.o.o.oo 8—25
MARK..00......"...‘...O.“....O...O..-..O...’.. 8—28

RELEASE. ¢ evevovcsecacaosanasesocsccsssssnssasesses 8-30
EMA Heap Management - SHEAP 25. .cccerscccoccccccssse 8-32
short Versions of Heap Management Routines......... 8-33

Efficiency ConsiderationS..cececececsecesecocsccscossss 8-35
DAt@ ACCESS. eveesocoeoeseansecssccssssosssccssssssnss 8-35

Accessing Variables and ParametersS......eeecee.. 8-35

Passing PAarameterS..cceeccecscecccsecsscscnssnccssss 8-36

Packed vs. Unpacked Dat@.ceceecceccscesecsocscseasss 8-39

Heap 1 vS. HEAD 2. cevceecsseccscosossssecsesoseas B8—43
EXPreSSiONS. ceececeesscccscsssssasossssssscsassscece 08-43

Partial Evaluation...ccceeeesococcsoccssssscecess 8-43

COmMmMON SUbEXPreSSiONS.c.eceessceccscscccccccescss 9S—-44

NUMEriC DAta TYPESeeeeesesscocsccssssscsonscssss J—44

Range CheCKing. .ceceeeeeeecesoscscsscsesosscocseceass 8-44

SEtS . teeeccceoscscscccssccssssscsssccscscscscscasa J—44
StatementS .v. coeeececoccoscscccscsoscsccsscsscsssscnsses B—45
WITH. ceeeeeoceccecscacascononoaonnocsssssssssccccsea 8—45
FOR: ¢ teeeeccecccecocsocsocssoccocsscsscscscssssssssses 8—45
CASE:. ceoveccosossococcssccosssasssssscsscscsnnssssnes 98—-45

Pfocedures and FunctiOnS........................... 8-46
ReCUISion.........o-.-....‘.........\-........... 8—46
Space ConSiderationS. 606 000000000 0000000000000 8_46
Time COl’lSiderationS....-g.....-................. 8"46

Table of Contents

Direct Calling SEqUENCE .c. svesoccscsvsosssossoses B8-47
FMP vs. Pascal/ll000 I/0..ccececceccccscsscssssocosses 8—48
Reducing the Size of a Loaded Program....cceecee.s. 8-48

Short Versions of Library Routines.....c.eeee.... 8-48

Using Segmentation tO Save SpPaC€...coccecesssess B8-49

Putting Globals in the HeaP...cecevecoccccessss. 8-49
Structured CONStantS. .eeeeeeeesvcsscosscccssoosseoes 8-49

Chapter 9
How To Use Pascal/1000

Compiling A PLOJILAM. cceeecoccooeossocssssssoccsssacscss
The MONitoOr. ci.vc.eeecacecccccccsccoscssscsosossssscssces
File Verification. cceeceeerscccccsccoscscscassossssssnse
Scheduling MESSAgeS. csc ecssscssccccccccscsccsoscccscscs

Insufficient WOIKSPACE. eee cesoesceccscossoccsscccscscsas

LiStinNg. cceceeeececcsecscsacsacccsscscsososscsosossssncscccsss

Loading A PrOgramM. ceeeeeevsescsccssccsoscccsssasossssssosss

RUNNING A PrOgram. coeecoscscccssccscscsassocsnsosscosssne

PYPLEETY
\

=0 O
FNEN

O
\

H

'S

Er:ors.a..o.-..c-oo...o.a.0...Coo...o-olo.aoooooooo'.o

Compile—Time EXIrOrS. eceeecascessscococsccscscscoccssccs
RUN-TiME ELIOCS. .ceeeececocccsccossossssssnsscnnses I—15
Debugging TOOLlS .eeeeececessoccscccscccsssssacsssssscses I-15
Range ChecCKing. .ceeeeeosceesscocasssccssscsssccsses I—15
Procedure And Function Tracing.ececceceecsscscsccocses 9I-16
Mixed Listing. ® 6 0606600600600 0606000606006 00600600000r050000000 9"20
Interactive DebUgQging. ceeeececccecccssscsssccccccsss 9I—22
Inter facing Pascal With Non-Pascal Routines......ce... 9-22
Calling Non-Pascal Routines From Pascal Routines... 9-22
Calling Pascal Routines From Non-Pascal Routines... 9-22
Calling Pascal Routines From Non-Pascal Programs... 9-23
Pascal And FORTRAN. ccceveceavcocencssscscnacsoscsossocss 9I-23
Pascal And IMAGE. cceevececoccccrocaososssssssscnccases 9I-26
EXEC CAllS. ieeeeeceecacocoaasonconascccssnsassoscssscss I—29
Encoding the CallsS., cveeeeeeccoscocsosccssscssscssess 9I-29
No-Abort Bit and Erfror RELUINS....ceveescsscssoasecss 9I-32

X}
i
-
RS

Table of Contents

Appendix A
Syntax Diagrams

Syntax Diagramsoc.to.oo.00IO-.o.o.ooooooo.coooo.-.. A-l

Appendix B
Run-Time Errors and Warnings

PrOgram EI YOI S. coeesscscscsceccsscscoscsccnoncsescesesss
I/0 Errors and WarNingsS. cceeeececocsocesossscnscsess
FMP Bl LOCS. cveeseecossncascososcocsssossccscoscscssscss
EMA ErrOCS. teuveeeseoccosccsccoancoossacsocsconssccscsess
SegMEeNt Bl FOIS. ceeecerocs eooesoscssososcccosscsacsss

wmol:mw
L N N

Appendix C
Compile-Time Errors

Appendix D
Compiler Options

Appendix E
Program to Program Communication

Appendix F
User-Callable Pascal/1000 Library Routines

Appendix G
Pascal/1000 Cross-Referencer

Cross-Reference Table Constant .ceeeeececoscssccscccses
Order of IdentifierS..cceeeecececccsccccccoscosscnssssscs
PAJINg . ceeeececccsocoscoesacccccsonnscscssescascsccscs
Using the Cross-Reference Generator....eeeceeeeesees
Errors and WarningsS. .eceececeoesecssossscscocscsscscss
EMA VerSiON. teeececececccccsccssscccccossscscasasscss
Sample Cross-Reference Table..cceeeececconoccscssces

|

omma?mmm
W N NN

xii

Table of Contents

List of Illustrations

Figure 1-1. Pascal/l000 Language ConstructsS. ...ccceee
Figure 3-1. Structure of a Sample Pascal/1000 Program
Figure 8-1. Pascal/l1000 Memory Configuration.........
Figure 8-2. Main ArC3 .cceceeececsccscccasssssssoncacsccsecse
Figure 8-3. Heap Management Declarations and Routines
Figure 8-4. Heap/Stack Area After Initialization.....
Figure 8-5. Allocation of a Three-Word variable......
Figure 8-6. Allocation of a Four-Word Variable.......
Figure 8-7. Disposing a Four-Word Variable...........
Figure 8-8. Allocation of a One-Word Variable........
Figure 8-9. Creating a New Mark RegiON..ceeeececcecss
Figure 8-10. Releasing a Mark RegiON...cececcccccccces
Figure 8-11. Definitions Used by Short Heap Management

Routines. ® 60 060 00000 0 0600 0000000060008 000

List of Tables

Table 1-1. Pascal/l000 Program Vocabulary.....eceeeeee
Table 2-1, Special SymboOlS. .cciveceeecccccccscssscses
Table 2-2. Reserved WOrdS.ceecescccocesocossnscossocccces
Table 5 1. Pascal’s OpPeratoOrS.....ceeeececeecccscanas
Table 6-1. Results of the Procedure Read (file one,
VALiable) v eeeeeeeeeeooooeonnssoonnonnas
Table 6-2. Results of the Procedure Read (file two,
Str_variable).eeeeeeceeoesnescnccnsnans
Table 6-3. Field-Width Parameter Default values.
Table 6-4. Procedure and Function File Restrictions..
Table 7-1. System Routines Called to Calculate
Function ValueS ..ceeceeeeesosassconnncnse
Table 8-1. Allocations for Scalar VariableS...ececeeseo
Table 8-2. Allocations for Structured Vvariables......
Table 8-3. Allocations for Elements of Packed
StruCtUreS . ceeceeceveccscccososccsasasccs
Table 8-4. Pascal/1l000 variable and Parameter Access.
Table 8-5. Pascal/l1000 pParameter Passing and Access..
Table 8-6. Packed and Unpacked Data ACCESS. cecceecesss
Table 8-7. Overhead Times for Routines With .ENTR vs.

SDIRECTS Calling SequenceS. .ecccecssocss

xiii/xiv

Chapter 1
General Information

Introduction

Pascal /1000 is a high-~level, block structured programming language.
It can be used for program development on HP 1000 computer systems.
It is implemented with the HP Pascal/1000 compiler, which translates
Pascal source code to RTE Assembly code, which is then automatically
assembled to produce the object code. Pascal/1000 object programs can
be executed on HP 1000 computer systems operating under the HP Real
Time Executive operating system (e.g.,RTE-L and RTE~IVB). Pascal/1000
fully implements the "standard" language defined by Niklaus Wirth as
well as important HP extensions which take full advantage of the HP
1000 computer system capabilities.

Pascal /1000 combines good control structures and powerful data
structuring with simplicity of use. It is easy to learn and programs

written in it are easy to read and debug. A great deal of
compile~time and run-time checking can be done to promote program
correctness, Its logical, block-structured organization facilitates

documentation, modification and maintenance of programs,., Pascal/1000
is compatible with HP 1000 software subsystems, such as IMAGE /1000,
GRAPHICS/1000, and DS/1000.

Extensions to Standard Pascal

Pascal/1000 1is a superset of "standard" Pascal as defined by Jensen
and Wirth in the Pascal User Manual and Report (second edition),
published by Springer and Verlag, 1976.

To avoid unintentional inclusion of Pascal/l000 extensions 1in a
program that must be transportable to a system that executes only
"standard" Pascal, the Pascal/1000 compiler includes an option for
flagging any feature 1in a Pascal/1000 program that is not part of
"standard" Pascal.

Pascal /1000 extensions include:

1. Double-precision floating point data types.

2. Additional predefined I/0O procedures.

3. Separate routine compilation with load-time 1linking of modules
(In "standard" Pascal, the entire program must be compiled at the

same time)., Segmentation can be accomplished in a simple and
straightforward manner.

General Information

4. The CASE statement can have subrange labels and an OTHERWISE
clause.

5. Constant-valued expressions are allowed 1in most places that
constants are allowed in "standard" Pascal.

6. Structured constants allow arrays, records, and sets to be easily
initialized.

7. Declarations may be in any order, except that LABEL must be first
if it is used at all. More than one of each declaration section
is allowed, except LABEL (such as two or more sections of TYPE,
CONST, and/or VAR declarations).

8. 1Identifiers may be up to a source 1line in length with all
characters significant (as opposed to only the first eight in
"standard" Pascal).

9. A function may return any type of data (including arrays,
records, or sets), except files or data types containing files.

10. MARK and RELEASE procedures supplement the "standard" Pascal
facilities for dynamic memory management.

11. A program may call external EXEC, FMP, Pascal, FORTRAN, or
Assembly language routines.

12. The heap and stack can reside in logical address space, or in the
Extended Memory Area (EMA) for Pascal programs running under
RTE-IVB.

Summary of the Pascal/1000 Program

A Pascal/1000 program may be viewed as a description of actions to be
performed on data in a precise, unambiguous way.

The data is represented by constants and variables. Each constant or
variable in the program must be defined in a CONSTANT DEFINITION
SECTION or declared in a VARIABLE DECLARATION SECTION before it is
used. The CONSTANT DEFINITION SECTION associates values with
identifiers. The VARIABLE DECLARATION SECTION associates data types
with identifiers. A DATA TYPE may be predefined or user-defined.
Each user-defined data type must be defined in a TYPE DEFINITION
SECTION where the set of values which may be assumed by a variable of
that type is described before it is used.

A data type may be SIMPLE (variables of that type have only one
component), or STRUCTURED (variables of that type have multiple
components) .

1-2

General Information

Five simple types are predefined by the compiler and are known as
STANDARD TYPES. They are: REAL and LONGREAL (subsets of the
arithmetic set of real numbers), INTEGER (a subset of the arithmetic
set of integers), CHAR (the characters defined by the eight-bit ASCII
character set) and BOOLEAN (the values true and false).

Other simple types may be defined by the programmer in the type
definition section. These are known as USER-DEFINED TYPES and are
defined by ENUMERATION in one of two ways. One is to list all
allowable values for a variable of that type. The other is to
declare it to be a SUBRANGE of a previously defined ORDINAL type by
specifying the 1limits of the subrange. The ordinal type may be
BOOLEAN, INTEGER, CHAR, a user-defined enumeration type or a subrange

type.

STRUCTURED TYPES are defined by describing a structuring method and
the type of each component. 1In Pascal, there are four methods of
structuring: ARRAY, RECORD, SET, and FILE STRUCTURES.

The components of an ARRAY STRUCTURE (called ELEMENTS) are all of the
same type, and the number of elements must be specified when the
array is defined. An array element is accessed by an ARRAY SELECTOR,

which consists of the identifier associated with the array and an
ARRAY INDEX of an ordinal type. Since the time needed to access an
array element is independent of its position in the array, the array

is a RANDOM ACCESS STRUCTURE.

The components of a RECORD STRUCTURE (called FIELDS) may be of
different types. A field 1is accessed by a FIELD SELECTOR, which
consists of the identifier associated with the record and the
identifier associated with the field of the record. A record is also
a random access structure.

A record may contain one or more VARIANTS. These allow a single
record to have several possible structures, each differing in number
and/or type of components. A record containing a variant part may
also contain a TAG FIELD associated with that variant.

The components of a SET STRUCTURE are SET ELEMENTS which define a
BASE TYPE. The base type must be a scalar or subrange type. A
variable of a set type takes values which are subsets of the base
type elements. (In the terms of mathematical set theory, a set type
defines the POWER SET of the set elements; that is, the set of all
possible subsets of them, including the empty set.)

A FILE STRUCTURE is a collection of components of the same type. The
number of components is not specified when the file is defined. At
any one time, only one component may be accessed. Before a file can
be wused, it must be opened; that 1is, made available for accessing.
The file can be opened by one of several predefined procedures, and
the procedure used to open the file determines how that file may be
accessed.

General Information

If a file 1is opened for either read or write access only, it is a
SEQUENTIAL FILE. Components of a sequential file are made available
by progressing sequentially through the file. The size of a
sequential file is altered by appending components at its end.

If a file is opened for both read and write access, it is a DIRECT
ACCESS file. Components of a direct access file need not be accessed
sequentially. The size of a direct access file is altered by
appending components at its end.

Variables which are explicitly declared in a VARIABLE DECLARATION
SECTION are known as STATIC DATA STRUCTURES. A static data structure
does not change during program execution, Data structures generated
by executable statements are known as DYNAMIC DATA STRUCTURES. Their
structure is determined by POINTERS. Each pointer is allowed to refer
to variables of only one type or to the value NIL, in which case it
points to no variable. Since a pointer need not refer to the same
variable throughout program execution, a dynamic data structure may
change during program execution.

STATEMENTS are the executable parts of the program. They either
manipulate data or affect the program’s flow of control. Statements
may be SIMPLE or STRUCTURED. A simple statement is one which contains
no other statement. The simple statements are the EMPTY, GOTO,
ASSIGNMENT, and PROCEDURE CALL STATEMENTS.

An empty statement contains no characters. It may contain SEPARATORS
(the blank character, end-of-~line marker, or comment).

A GOTO statement contains a LABEL and unconditionally transfers
control to the statement associated with that label. A label must be
declared in the LABEL DECLARATION SECTION and be associated with only
one statement in its scope.

A procedure call statement contains a procedure identifier and causes
program control to be transferred to that PROCEDURE. A procedure
contains an optional declaration section and a COMPOUND STATEMENT
(together these form a BLOCK). After the compound statement has been
executed, program control returns to the statement following the
procedure call statement.

An assignment statement contains a variable and an EXPRESSION.
Expressions consist of variables, constants, sets, OPERATORS and
FUNCTION CALLS. An operator describes a mapping from the operand
type(s) to the result type. Four types of operators are defined in
Pascal /1000: ARITHMETIC OPERATORS (addition, subtraction, unary
negation, multiplication, division using real numbers, division using
integers, and modulus), BOOLEAN OPERATORS (and, negation, and
ipclusive or), SET OPERATORS (union, 1intersection, and set
dif ference), and RELATIONAL OPERATORS (equality, inequality,
ordering, set membership, and set inclusion). Functions are similar
to procedures in that control is transferred to a function, but after
the function has been executed, control 1is returned to the function
call and the value is assigned to the function identifier.

1-4

General Information

A structured statement contains one or more simple or structured
statements. There are four types of structured statements: COMPOUND,
CONDITIONAL, REPETITIVE and WITH STATEMENTS.

A compound statement is a group of simple or compound statements that
have been combined to form a single statement. This allows many
separate statements to be treated as a single statement.

The conditional statements are the IF STATEMENT and the CASE
STATEMENT. The IF statement contains a BOOLEAN EXPRESSION (an
expression which evaluates to a Boolean value), and one or two
statements. The Boolean expression is evaluated, and if the result
is true the first statement is executed. If a second statement 1is
included, and the Boolean expression is evaluated as false, the
second statement will be executed.

The CASE statement contains a CASE SELECTOR, one or more statements
(each statement preceded by a CASE LABEL LIST), and an optional
OTHERWISE clause. The case selector, which is an expression, is
evaluated. Its value may be in at most one case label list -~ none
of them may overlap. iIf the value is in a case label 1list, the
statement following that 1list is executed. If the value is in no
case 1label list and there is an OTHERWISE clause, the statements of
the OTHERWISE clause are executed. If the value is in no case label
list and there is no OTHERWISE clause, an error results.

Statements may be consecutively executed several times through the

use of repetitive statements. The WHILE, REPEAT, and FOR STATEMENTS
are the repetitive statements.

The WHILE statement contains one Boolean expression and one
statement. The Boolean expression is evaluated first. If the Boolean
expression is evaluated as false, the included statement is never
executed. If the Boolean expression 1is evaluated as true, the
included statement is executed and the Boolean expression is again
evaluated. This test-execute cycle is continued until the Boolean
expression is evaluated as false.

The REPEAT statement contains one or more included statements and a
Boolean expression. The statements are first executed and then the
Boolean expression is evaluated. If the Boolean expression 1is
evaluated as true, the REPEAT statement is exited. If the Boolean
expression is evaluated as false, the included statements are again
executed. This execute-~test cycle continues until the Boolean
expression is evaluated as true,

The FOR statement contains a statement, a CONTROL VARIABLE, and a
range of values which the control variable may assume., The control
variable 1is assigned the initial value of the range and the included
statement is executed repetitively while the control variable remains
within that range. After each execution of the included statement,
the control variable is incremented or decremented.

General Information

The WITH statement is wused with records and contains one or more
record identifiers, and a statement. Within the statement, fields of
the specified records can be accessed by their field selectors alone.

Reference Manual Organization

The remaining chapters of this manual contain the reference material
for Pascal/l1000. Chapters 2 through 7 are organized according to the
Pascal/1000 constructs. Figure 1-1 shows the topics covered in these
chapters and the major headings in each chapter.

The general form of the Pascal/l1000 program acceptable to the
compiler 1is described in Chapter 2. The <compilation units in
Pascal /1000 are discussed in Chapter 3. Declarations and definitions
of the objects to be used by a program or routine are described in
Chapter 4. The executable parts of a program, routine, or subprogram
are described in Chapter 5. Program interfacing with outside objects
is accomplished via input/output files. These files are described in
Chapter 6. Routines that are predefined to perform common tasks are
called procedures. If a routine requires a return value, it is called
a function. Standard procedures and functions are described in
Chapter 7.

Chapter B8 presents a detailed discussion of system implementation
considerations.

Chapter 9 provides program development information. 1Included are
procedures for program creation, compilation, and execution. Also
provided are error messages, program debugging, and selected
applications.,

General Information

PASCAL/1000

FORM
(Chapter 2)

EXECUTABLE PARTS
(Chapter 5) INPUT/OUTPUT
FILES

(Chapter 6)

Character Set
Basic Symbols
Reserved Words
Identifiers

Statements
A ssignment
Procedure Call

Predefined Identifiers IF
Numbers CASE STANDARD
Strings WHILE PROCEDURES
Comments REPEAT AND
Semicolons FOR FUNCTIONS
Compiler Options WITH (Chapter 7)
GOTO
COMPOUND
COMPILATION UNITS EMPTY
(Chapter 3)
Programs Expressions Operands
Segments » literals
Subprograms symbolic constants
variables
DECLARATIONS Qualifiers
(Chapter 4) array subscription

field selection
pointer dereferencing
file buffer selection

Label

Constant Variable
Simple Operators
Structured Routine arithmetic
Boolean
relational
set operators
Predefined User-~Defined Structured
Boolean Enumeration Ar ray
Integer Subr ange Record
Real Set
Longreal File
Char
Tex t
String
Pointer

Figure 1-1., Pascal/l000 Language Constructs.

General Information

Program Vocabulary

A tabulation of the Pascal/1000 program vocabulary is given in Table
1-1. In the table, all reserved words, predefined data types, and
key words are given in capital letters, although that would not be
necessary 1in an actual program. The vocabulary item being described
is in bolder type. Vocabulary items that are extensions to
"Standard" Pascal are flagged with a ».

1-8

General Information

Table 1-1. Pascal/1000 Program Vocabulary Items

PROGRAM VOCABULARY ITEMS

PROGRAM, PROCEDURE, AND FUNCTION STATEMENTS

PROGRAM name (input, output, otherfile1, otherfile2);

PROCEDURE name (VAR num, den: INTEGERY);
FUNCTION name (value: REAL): REAL;

DECLARATIONS

LABEL 2

CONST
pi = 3.1415926;
multiplier = 0.8598;
i=—-10;
j =20
k = i+j;
TYPE
SUB1 = 1.5
SuB2 = 10..20;
MATRIX = ARRAY[SUB1, SUB2] OF REAL;

VAR
rpm : INTEGER;
oiltemp, watertemp : REAL;
charging : BOOLEAN;
P : PACKED ARRAY [i . . j]l OF SUBHt,

GENERAL PROGRAM STATEMENTS
BEGIN

END
REPEAT

*

UNTIL m > n;

FORn := 1 TO m DO
or
FOR n := 50 DOWNTO m DO

WHILE m < n DO

IF condition
THEN action
ELSE other action

CASE expression OF
list of values:
action;
list of values:
action;
list of values:
action;
» OTHERWISE
default action;
END;

variable := expression
GOTO i
WITH recordident DO

{comment}
or
(* comment *)

Identifies extension to Wirth Pascal.

USES

Identifies program by name and specifies the logical names of the standard files
and/or any user-defined files it uses.

Identifies procedure by name, which may be followed by a list of parameters.

Identifies function by name, along with parameter(s) used, followed by the type of
function.

Declares a label to be used in the program as the destination point of a GOTO.
Defines the names and values of constants used.

Defines data types, such as arrays, records, sets, files, scalars, and subranges.

Declares the names and types of variables used in the program.

Delimits a series of program statements, such as the executable part of a program,
procedure, function, or the statements following FOR-DO, WHILE-DO, or IF-THEN-
ELSE statements.

Delimits a series of program statements that are executed repeatedly until the condi-
tion specified in the UNTIL statement becomes true.

Sets up repeated execution of one or more statements until the specified condition
(n = m in this example) is satisfied.

Sets up repeated execution of one or more statements while the specified condition
(m <n in this example) continues to be true.

Sets up execution of alternate actions contingent upon result of one or a series of IF
condition tests.

Sets up execution of one of several actions according to the value of a scalar or sub-
range expression.

Assigns the value of the expression to the variable.
Causes a direct transfer to the statement labelled with the integer constant i.

Identifies a series of records whose fields can be accessed without having to re-
specify the record variable names.

Braces or (* and *) provide delimiters for comments.

1-9

General Information

Table 1-1. Pascal/1000 Program Vocabulary Items (Continued)

PROGRAM VOCABULARY ITEMS USES

ARITHMETIC OPERATORS

NOTE: In general, if both operands are of type integer, type real, or type longreal, the result is of that type. If one of the operands is
real or longreal, the result is of that type.

result := valuel + value2

result := valuel — value2

result := muitiplicand * multiplier
result := dividend/divisor

result := dividend DIV divisor
result := number MOD divisor

BOOLEAN OPERATORS

NOT empty
finished AND empty
coffee OR tea

SET OPERATORS

[..]

[apples] + [sugar] = [apples, sugar]
[paper,pen] — [pen] = [paper]
[h2,0] * [h2,cl] = [h2]

[apples] <= [apples, apricots, oranges, peaches]
[apples, appricots, peaches] >= [apricots]

pen IN [pen,paper,ink]
licecream] < > [ice,cream]

[1

RELATIONAL OPERATORS (produce Boolean results)

dividend < 0

result <= mininumber
number = result — 0.456
press1 < > press2
oiltemp >= 220
watertemp > 220

STANDARD ARITHMETIC FUNCTIONS

abs (x)
sqr (x)
sin (x}
cos (x)

exp (x)

In (x)
sqrt (x)
arctan (x)

STANDARD PREDICATE FUNCTIONS

odd (x)
eof (f)
eoln (f)

STANDARD TRANSFER FUNCTIONS

trunc (x)

round (x)

Addition of real, longreal, or integer values.

Subtraction of real, longreal, or integer values.

Multiplication of real, longreal, or integer values.

Division of real, longreal, or integer values. The result is always real or longreal.
Division of integer values with integer result in which any fractional part is truncated.
Gives remainder of an integer number after division by an integer divisor.

Negation of Boolean operand.
Logical AND.
Logical OR.

Brackets function as set delimiters.

Set union operator (+) and set equality (=).

Set difference operator (—) and set equality (=).
Set intersection operator (*) and set equality (=).
First set is contained in (<=) the second set.
First set contains (>=) the second set.

Tests whether an element is included in a set.
First set is not equal to the second set.

Empty set.

Less than (<).

Less than or equal to (<=).
Equal to (=).

Unequal to (< >).

Greater than or equal to (>=).
Greater than (>).

Computes absolute value of real, longreal, or integer x with result of same type as x.
Computes square of real, longreal, or integer x with result of the same type as x.
Computes sine of x radians for real, longreal, or integer x with real or longreal result.

Computes cosine of x radians for real, longreal, or integer x with real or longreal
result.

Computes base e exponential value of real, longreal, or integer x with real or longreal
result.

Computes base e logarithm of real, longreal, or integer x with real or longreal result.
Computes square root of real, longreal, or integer x with real or longreat result.

Computes arc tangent of real, longreal, or integer x with reat or longreal result in
radians.

Tests integer x with result true if x is odd and false otherwise.
Indicates whether file f is at the end of a file.
Indicates whether text file f is at the end of a line.

Converts real or longreal x to an integer result which is the integral part of x (deletes
fractional part of x).

Converts real or longreal x to an integer result that is the value of x rounded to the
nearest integer.

General Information

Table 1-1. Pascal/1000 Program Vocabulary Items (Continued)

PROGRAM VOCABULARY ITEMS USES
STANDARD ORDINAL FUNCTIONS

ord (x)
chr (x)

succ (x)
pred (x)
linepos (f)

position (f)

maxpos (f)

INPUT AND OUTPUT PROCEDURES

read (fn,p1,p2,...pn)
readin (fn,p1,p2,...pn)

readdir (fkv1,..., vn)
write (fn,p1,p2,...pn)
writeln (fn,p1,p2,...pn)

» writedir (f,k,v1, ...,vn)

FILE HANDLING PROCEDURES

rewrite (f)

» append (f)

reset (f)
put (f)
get ()

» close (f)

open (f)
» seek (f,k)

DYNAMIC ALLOCATION PROCEDURES

new (p)

new (p,t1,....tn)
dispose (p)
dispose (p,t1,....tn)

» mark (p)
release (p)

¥ Identifies extension to Wirth Pascal.

Returns an integer result that is the ordinal number of x in its defined list of values.

Returns the character value whose ordinal number is equal to the value of the integer
expression x, if there is such a value.

Returns a value whose crdinal number is one greater than that of the ordinal value of
expression x, if there is such a value.

Returns a vaiue whose ordinal number is one less than that of the ordinal value of
expression x, if there is such a value.

Returns an integer number of characters read from, or written to, textfile f, since the
last eoln.

Returns an integer representing the current position of the file buffer in direct access
file f, starting from 1. This is the index of the next component which will be read or
written by a call to read or write.

Returns an integer representing the position of the last element of direct access file
f which may ever be accessed.

Reads input data or text from a named file (fn).

Similar to read, but for text files only with skipping to the start of the next line after the
last-specified parameter has been read in the current line.

Reads values v1 through vn from direct access file f, starting at component k.
Writes output data or text to a named file.

Similar to write, but for text files only with addition of an end-of-line marker after the
last parameter.

Writes values v1 through vn to direct access file f, starting at component k.

Opens file f for writing, with index positioned to the first component; any previously
existing information in the file is discarded.

Opens file f for writing, with index positioned just beyond the last-written component
for addition of components to f.

Opens file f for reading, with index positioned at the first component.
Writes the value of buffer variable 1 to file f and advances to the next component.

Advances, then assigns the value of the current file f component to buffer variable {1
if the component exists, and advances to the next component; if the component does
not exist, the eof condition is set for f.

Closes file f. A second parameter can be used to cause the closed file to be either
saved or purged.

Opens non-text file for direct access, positioned at the first component.
Positions direct access file f at component k. If k > component bound of f, eof is set.

Allocates new variable v and assigns a pointer to v to the pointer variable p.
Allocates a variable of record type with tag fields t1,...,tn.
Releases storage such that it is available for re-use by a subsequent call to new.

Releases storage for variable previously allocated using the new (p,t1,...,tn)
procedure.

Marks the state of the heap in the variable p, which may be of any pointer type.

Restores the state of the heap to the value in the variable p. This has the effect of dis-
posing of all heap objects created by the new procedure since p was marked.

General Information

¥ /dentifies extension to Wirth Pascal.

1-12

Table 1-1. Pascal/1000 Program Vocabulary Items (Continued)

PROGRAM VOCABULARY ITEMS
DATA TRANSFER AND MISCELLANEOUS PROCEDURES

pack (a,i,z)

unpack (z,a,i)

hait ()

page (f)

» prompt (fn,p1,p2,...,pn)
overprint (fn,p1,p2,...,pn)

USES

Packs array a into array z, using index factor i.

Unpacks array z into array a, using index factor i.

Causes abnormal termination of program with display of integer i,
Causes skipping to the top of a new page when text file f is printed.
Similar to writeln, but no line marker is written.

Similar to writeln, but the next line prints over the current line.

Chapter 2
General Form

Introduction

The general form of source code acceptable to the Pascal/1000
compiler is described in this chapter. The compiler accepts as input
a sequence of lines from one or more source code files, These lines
are processed as a stream of characters organized into the following
groups:

basic symbols
reserved words
identifiers
number s

strings

comments
compiler options
separators

Basic Symbols

The basic symbols consist of letters, digits, and special symbols.

The letters include both upper and lower case letters A through Z.
The Pascal /1000 compiler does not distinguish between upper and lower
case letters (with the exception of characters within a string).

The digits are 0 through 9.

The special symbols are characters (or character groups) that have
special meaning in Pascal/1000. These symbols are shown in Table 2-1
which gives their syntactic significance.

Reserved Words

Reserved words are symbols that have special meaning in Pascal/1000.
They are indivisible and cannot be used as identifiers. They may
however, be used within comments., A list of reserved words with
brief descriptions is given in Table 2,2,

General Form

2-2

SYMBOL

+

0
1

Table 2-1. Special Symbols

DESCRIPTION
Add. Arithmetic operator, set union.
Subtract/Negate. Arithmetic operator, set difference.
Multiply. Arithmetic operator, set intersection.
Real divide. Arithmetic operator.
Equality. Boolean Operator.
Less than. Boolean operator.
Less than or equal to. Subset of. Boolean operator.
Not equal. Boolean operator.
Greater than or equal to. Superset of. Boolean operator.
Greater than. Boolean operator.

indicates an expression group or a parameter list.

Set, structured constant, and array index delimiters.
Argument, structured constant, and enumeration separator.
Statement separator, parameter separator.

Field selector. Decimal point. End of program, subprogram, or
segment delimiter.

Case or statement label delimiter. Field width delimiter. Identifier list delimiter.
Indicates pointer dereferencing or file buffer accessing.

Assignment.

Subrange.

String delimiter.

Indicates non-printing character in string constant.

Compiler option delimiter.

Allowed in identifiers (but not as first character).

Comment delimiters.

Comment delimiters.

WORD(s)
AND
ARRAY

BEGIN,END

CASE,OF, OTHERWISE

CONST

DIV

FILE

FOR,TO,DOWNTO,DO

FUNCTION
GOTO
IF,THEN,ELSE
IN

LABEL

MOD

NIL

NOT

OR

PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT,UNTIL
SET

TYPE

VAR
WHILE,DO

WITH,DO

General Form

Table 2-2. Reserved Words

DESCRIPTION
Boolean conjunction operator.
A structured type.
Delimit a compound statement.
A conditional statement.
Indicates constant definition section.
Integer division operator.
A structured type.
A repetitive statement.
Indicates a function declaration.
Control transfer statement.
A conditional statement.
Set inclusion operator.
Indicates label definition section.
Integer modulus operator.
Special pointer value.
Boolean negation operator.
Boolean disjunction operator.
Controls storage allocation for structured types.
Indicates a procedure declaration.
Program heading.
A structured type.
A repetitive statement.
A structured type.
Indicates a type definition section.
Indicates a variable declaration section.
A repetitive statement.

Opens record scope(s).

2-3

General Form

Identifiers

Identifiers are used to denote constants, types, variables,
procedures, functions, and programs. They consist of a sequence of
characters which can be upper or lower case letters, digits, or the
underscore character (_). The first character must be a letter.

Syntax: identifier letter N > >
(_4_—\
kp letter —J
N> digit L

__,<:>___J

An identifier may be up to a source 1line in length, with up to 150
significant characters. The number of significant characters in
identifiers can be changed to any value between 1 and 150 with the
IDSIZE compiler option. The default is 150 significant characters.

Since upper and 1lower case letters are not distinguished within
identifiers, the following identifiers all refer to the same object.

Ident

IDENT
and ident

A reserved word cannot be used as an identifier; however, the
sequence of characters which make up a reserved word can be used
within an identifier . For example,

modern
arrayptr
divisor

are all valid identifier names.

Each 1identifier must be unique within its scope (i.e., within the
procedure, function, record, or program in which they are declared).

All identifiers must be defined before they are used, except that a
pointer type identifier may refer to a type which is defined later in
the same declaration section and a program parameter may refer to a
file variable which is declared in the program declaration part.

Further information on identifier definition and scope can be found
in Chapter 4.

2--4

General Form

Examples

The following are legal identifiers:

total
voltage
counter

ok

final score
try496

a l_and_a_z

The following are not legal identifiers:

1l or 2 {begins with a number }
test case {contains a space }
partg {contains an illegal symbol}
array {is a reserved word }
_first_word {begins with an underscore }

Predefined Identifiers

The following identifiers are predefined 1in Pascal/1000. This does
not prevent the user from redefining them.

Predefined Symbolic Constants (refer to EXPRESSIONS in Chapter 5).
Symbol Type

- - - - .4

FALSE BOOLEAN
TRUE BOOLEAN
MAXINT INTEGER
MININT INTEGER

Predefined Types (refer to TYPE DEFINITIONS in Chapter 4).

Symbol Type

- - - - - -

INTEGER MININT, .MAXINT

REAL Subset of the real numbers.

LONGREAL Subset of the real numbers with extended precision,
BOOLEAN (FALSE,TRUE) .

CHAR The 8-bit ASCII character set.

TEXT FILE OF CHAR (with additional attributes).

General Form

Predeclared Variables (refer to TEXT FILES in Chapter 6).

Symbol Ty pe

o —-— - - —— -

INPUT TEXT
OUTPUT TEXT

Predefined Procedures and Functions (refer to Chapter 7).

abs eoln odd pred reset succ
arctan exp open prompt rewrite trunc
append get ord put round unpack
chr halt overprint read seek write
close 1n pack readdir sin writedir
cos mark page readln sqr writeln
dispose maxpos position release sqrt
eof new

Directives

The following predefined identifiers are referred to as directives,

EXTERNAL
FORWARD

Directives indicate to the compiler where the body of a procedure or
function 1is to be found. The directive EXTERNAL is used when the

body is external to the program (separately compiled or assembled).
FORWARD indicates that the body is in the current compilation unit
but not immediately following the procedure heading. (See Chapter 4.)

Numbers

The usual decimal notation is used for numbers, which are constants
of the data types INTEGER, REAL, and LONGREAL.

Further information on numeric constants can be found in Chapter 5.

Strings

Sequences of characters enclosed by single quote marks are called
strings. A string consisting of a single character is a constant of
the standard type CHAR.

Both printing and non-printing ASCII characters may appear in string
and character constants,

Further information on string and character constants can be found in
Chapter 5.

2-6

General Form

Comments

Comments are sequences of characters used to document a program. The
comments are ignored by the compiler and may appear anywhere in a
program where a blank can appear.

A corment is a sequence of characters surrounded by the delimiters
{” and “}” or “(*° and “*) . cComments do not have to be on lines by
themselves and are permitted to cross line boundaries.

If the comment begins with “(*” it must be terminated using “xy) 7,
Ssimilarly, if it begins with “{ it must be terminated with "}°.

Comments using the same type of delimiters cannot be nested.
For example, the compiler would interpret the sequence of characters
{this comment {ends here} not here}

as the comment "this comment {ends here" and would generate syntax
errors when the characters "not here}" were encountered.

The comment
{this comment (*contains a comment*) and ends here}

would be acceptable to the compiler, but the included comment must be
completely contained by the outer comment. Therefore, the sequence
of characters

{this comment (*contains a comment} but not entirely*)
will generate syntax errors.
Examples of comments:

{Increment the count by the number of elements found}

(*Program to find the averages of
input numbers¥*)

Separators

Separators are used to separate reserved words, identifiers, numbers,
strings, and special symbols. They consist of blanks, comments,
compiler options and the end of a line. At least one separator must
appear between any pair of such symbols (although any number are
permitted) and no separator may appear within a symbol.

General Form

Compiler Options

Compiler options direct the action of the compiler in processing the
source program. They may be inserted between any two identifiers,
numbers, strings or special symbols. Refer to Appendix D for
descriptions of the compiler options.

Below is a list of all compiler options:

ALIAS KEEPASMB SUBPROGRAM
ANSI LINESIZE SUBTITLE
ASMB LIST TABLES
AUTOPAGE LIST CODE TITLE
BUFFERS MIX TRACE
CODE PAGE VISIBLE
DIRECT PARTIAL_EVAL WIDTH
EMA PASCAL

ERRORE XIT RANGE

HEAP RECURS IVE

HEAP PARMS SEGMENT

IDSIZE STATS

INCLUDE

IMAGE

Chapter 3
Compilation Units

Introduction

A Pascal /1000 program may be subdivided into the following
compilation units which are compiled separately:

1) main program unit
2) subprogram unit(s)
3) segment unit(s)

Every preogram must have a main program unit, A program may be

segmented (i.e., contain segment units). The main program unit and
its segment units (if any) may each be combined with subprogram
units, Since subprcgram and segment units are optional, many

Pascal/1000 programs will contain only a main program unit.
Separately-compiled units can aid program development. If errors
have been found and corrected in a program unit, only that unit needs
to be recompiled. The entire program is then reloaded.

The main program unit together with its subprogram units (along with
any non-Pascal and librar routines) constitute the main area. A
segment wunit together wit its subprogram units (along with any
non-Pascal and library routines) constitute a segment overlay. Refer

to Memory Configuration in Chapter 8 for further details.

At load time, the loader combines the compilation units of a program.
Commands to the 1loader specify which subprogram units are to be
combined with the main program unit to form the main area, and which
subprogram units are to be combined with each segment unit to form a
segment overlay. The result is a disk-resident absolute module. Refer
to Loading a Program in Chapter 9. Figure 3-1 shows the structure of
a Pascal/1000 program.

Note: A distinction should be made here between the terms "routine"
and "subprogram unit". A routine is either a procedure or a
function that is included in a compilation unit. A subprogram
unit 1is a compilation unit that contains routines and is
combined by the loader with either the main program unit or a
segment unit.

Compilation Units

MAIN AREA
MAIN PROGRAM
UNIT
SUBPROGRAM
UNIT No. 0.1
SEGMENT SEGMENT
UNIT No. 1 UNIT No. 2 SEGMENT
UNIT No. 3
SUBPROGRAM SUBPROGRAM
UNIT No. 1.1 UNIT No. 2.1
SEGMENT OVERLAY No. 3
SUBPROGRAM

SEGMENT OVERLAY No. 2

Figure 3-1: Structure of a sample Pascal /1000 program.

In this program the main program unit and segment unit #1 have
each been combined at load time with a subprogram unit, segment
unit #2 has been combined with two subprogram units, and
segment unit #3 has not been combined with any subprogram
units, At run time, the main area remains in memory, and each
segment overlay is loaded from the disk into memory as
required.

Note: Non-Pascal and library routines in the main area and
each segment overlay are not shown,

Compilation Units

Main Program Unit

A Pascal/l1000 main program unit consists of a program heading and a
main program block followed by a period. As mentioned above, a main
program unit often constitutes the entire program.

Syntax:

program _—-’rprogram headingH block ‘_.Q——-p

Example of a simple program:

PROGRAM adder (input, output); {Program heading}

{Block}
TYPE

INT = -32768..32767;

VAR
numl, num2, total : INT;

FUNCTION sum
(x, vy + INT) : INT;

BEGIN
sum := X + Y;
END;

BEGIN
prompt (‘Enter numbers: °);
readln (numl, num2);
total := sum (numl, num2);
writeln (“Their sum is 7,
total);
END. {pPeriod}

Compilation Units
Program Heading

A program heading associates an identifier with the program and
specifies a list of the program parameters.

Syntax:

program
heading

PROGRAM identifier |}

identifier

The program identifier is the name by which the program is known to
the operating system, It has no other significance within the
program, except that it must be different in the first five
characters from the name of any segment unit, or any level-l routine.

Each program parameter is an identifier of type FILE. The files
named by these identifiers are used by the program to interface to
its external environment. The identifiers may name any combination of
the predefined files (input and output) and user-defined files. The
same identifier may not appear more than once in the parameter list.

The order and number of the program parameters listed in the program
heading is significant since there must be a one~to-one
correspondence between the parameters in the heading and the
parameters in the run string when the program is run.

The program parameter 1list is an exception to the rule that
identifiers must be declared before being used. The identifiers of
any such user-defined files must be declared in the declaration
section of the main program block.
Examples of program headings:

PROGRAM test;

PROGRAM area (input, output);

PROGRAM lister (data, output);

PROGRAM file_merge (master_file, updates_file, new_master);

Compilation Units
Main Program Block

A main program block consists of a declaration section followed by a
compound statement. The "global area" (or "globals") of a program
consists of the constants and types that are defined and the labels
and variables that are declared in the declaration section of the
main program block. The procedure and functions of the main program
are declared after the global area. The declaration section is
described in detail in Chapter 4.

The compound statement of the main program block is referred to as
the program body. Execution begins with this statement whenever the
program is run. The compound statement is described in detail in
Chapter 5.

Example:

PROGRAM circle (data, output); {Program heading }

{Block }

CONST {Declaration section }
pi = 3.14159; {Global Area

TYPE
COUNT = 0..10;

VAR

data « TEXT;
radius : REAL;
number :+ COUNT;

FUNCTION area {Level~1 function}
(r : REAL) : REAL;

BEGIN
area := pi*r*r;
END;

BEGIN {Compound statement }
number := 0;
reset (data);
REPEAT
number := number + 1;
read (data, radius);
writeln (‘The area of circle %7,
number:2, ° is °,
area (radius):10:2);
UNTIL number = 10;
END. {Period }

Compilation Units

Subprogram Unit

A subprogram unit contains a collection of level-1l routines that are
compiled together. Subprogram units allow a user to group together
logically-related procedures and functions. Each subprogram unit is
combined with either the main program unit or a segment unit at load
time by the loader (see Figure 3-1). Refer to Loading a Program in
Chapter 9 for a description of how to load a subprogram.

A subprogram unit is similar to a main program unit; it consists of a
program heading and a block followed by a period. The block of a
subprogram unit, however, does not contain a compound statement, and
a subprogram unit must include the SUBPROGRAM compiler option before
the program heading.

It 1is important to note that a subprogram unit is not the same as a
library. While the unit can be searched by the loader (refer to
Loading a Program in Chapter 9), its level-1 routines cannot be
selectively extracted; 1i.e., 1if any one routine in the unit is
required, the entire unit will be loaded.

Subprogram Unit Program Heading

The program heading of a subprogram unit associates an identifier
with the unit and contains the program parameters. Its syntax is the
same as that of the program heading of the main program unit.

The subprogram identifier is the name by which the subprogram unit is
known to “the operating system. It has no significance within the

program.

The parameter identifiers are the names of the program parameters.
Since these are the same files listed in the program heading of the
main program unit, the identifiers in the program headings of the
subprogram unit and the main program unit must agree in name, order,
number, and type. The only case where it is not necessary to list the
program files in the program heading of a subprogram unit is when the
unit does not refer to any of the program files or any global label,
constant, or variable.

Examples:

Main program heading Subprogram unit program heading

- ——— —————— - o —————— ——— - - — — - - — S} - ——— - -

PROGRAM main; PROGRAM sub;

PROGRAM main (input, output); PROGRAM sub (input, output);

PROGRAM main (filel, file2, PROGRAM sub (filel, file2,
output); output);

PROGRAM main (filel, file2, PROGRAM sub; {No program files or
file3, filed); globals referenced}

3-6

Compilation Units

Subprogram Unit Block

The block of a subprogram unit differs from the block of the main
program unit in that it consists only of a declaration section; it
contains no compound statement. The declaration section of the
subprogram block consists of global definitions, declarations, and
the subprogram unit s level-l procedures and functions.

Storage for each global 1is allocated only once 1in the program,
although its declaration is repeated for each compilation unit. If a
compilation unit refers to any global label, constant, variable, or
program parameter, then the entire global area must be reproduced
exactly in that unit. No other declarations (except those within
routines) are allowed in the unit. This is required to ensure the
proper alignment of these global objects among the compilation units.
Thus, the only case where the global area can be omitted in its
entirety is when none of these global objects are used in the
subprogram.

The INCLUDE compiler option is useful for reproducing globals in
compilation units.

Example: The source of the global declarations is kept in a file
named GLOBAL:

$ INCLUDE “GLOBAL "~ $

The declarations of the subprogram unit’s 1level-l procedures and
functions follow the global area. These routines are accessible from
every compilation unit of the program. An external declaration must
be made for any routine that 1is called but not declared in the
compilation unit.

3-7

Compilation Units

Example:

$SUBPROGRAMS

TYPE

COMPLEX =

RECORD

re :

im :
END;

(X, v, z :

BEGIN
zZ.re :
Z.im

END;

(X, vy, z :

PROGRAM imag inary;

REAL;
REAL;

PROCEDURE cadd
COMPLEX) ;

r

PROCEDURE csub
COMPLEX) ;

X.Ie + y.re
X.im + y.im

-.

-e

{Compiler option}

{Subprogram unit program heading}

{Global type definition}

{Level-1 procedure}

{Level-1 procedure}

BEGIN
zZ.re := x.re - y.re;!
z.im := x.im -~ y.im;
END;
{Period}
Note that the final period follows the semicolon that ends
the final 1level-=l routine, and that there 1is no compound

statement.

Compilation Units

Segment Unit

Segmentation allows a program to run in a partition that is smaller
than the size of the program, since only part of the executable code
is in memory at any time. A segment is loaded into memory only when
needed for execution. When a program is run, the main area is first
loaded from disk into memory where it will remain throughout the
execution of the program. If a program is segmented, then at the
start of each execution, all of its segment overlays initially remain
on the disk. During run time the program must load each segment
overlay into memory whenever that overlay is required. Only one
overlay can be 1in memory at one time. When a segment overlay is
loaded it replaces whatever overlay was already in memory.

A segment unit must begin with the SEGMENT compiler option.
Otherwise, it 1is syntactically the same as a subprogram unit; it
consists of a program heading and a block followed by a period. The
block does not contain a compound statement.

Segment Unit Program Heading

A segment program heading differs from a subprogram program heading
only in that the segment identifier has significance outside of the
segment; the name 1is used by other compilation units to load the
segment overlay at run time, The segment identifier must be
different in the first five characters from the name of the program,
any other segment unit, or any level-l routine.

Other than the above difference, the program heading of a segment is
the same as that for a subprogram.

Compilation Units

Segment Unit Block

A segment block differs from a main program block in that it consists
only of a declaration section; it contains no compound statement, It
is syntactically similar to a subprogram block. Refer to Subprogram
Block in this chapter.

Example:

SSEGMENTS {Compiler option}
PROGRAM Extrema; {Segment unit program heading}

TYPE {Global type definition}
INT = -32768..32767;

VAR {Global variable declaration}
X : INT;

FUNCTION Most {Level-1 function}
(y, z ¢+ INT) : INT;

FUNCTION Least {Level~1 function}
(y, z : INT) : INT;

. {Period}

Note that the final period follows the semicolon that ends the
final level-l routine, and that there is no compound statement.

3-10

Compilation Units
Loading Segment Overlays at Run Time

A segment wunit together with any subprogram units, non-Pascal
routines, and library routines with which it is combined at load time
constitute a segment overlay. The program must ensure that a segment

overlay has already been 1loaded before any of its routines are
invoked.

Loading a segment overlay 1is accomplished with a call to the
Pascal /1000 library procedure @SGLD. @SGLD loads the segment overlay,
then control returns to the statement following the call to @SGLD. No
level-1 routine contained in the segment overlay is 1invoked by
procedure @SGLD. Once the segment overlay has been loaded at run
time, any of its routines can be called from the main area, and any
routine in the main area can be called from the overlay until the
overlay 1is replaced by another overlay. Since @SLGD is not a valid
Pascal /1000 identifier, the ALIAS compiler option must be used to
rename the routine. A string containing the upper case representation
of the first five characters of the segment identifier is passed as a
value parameter to @SGLD.

TYPE
STRINGS = PACKED ARRAY [l1..5] OF CHAR;

PROCEDURE load_segment
$ALIAS “@SGLD '$
(segment name : STRINGS);
EXTERNAL;

To load segment overlay Extrema (from previous example), the
following call is required:
load_segment (EXTRE’)

After this <call, the functions Most and Least can be invoked until
segment overlay Extrema is replaced.

Because only one segment overlay can be in memory at one time, a
segment overlay should not call @SGLD to load another overlay. @SGLD

should be called only from the main program unit and its subprogram
units,

3-11/3-12

Chapter 4
Declarations

In Pascal/1000 every program object must have an identifier
associated with it. This 1includes the program itself, types,
variables, constants, procedures, and functions.

Some identifiers are predefined in. Pascal/1000 (see Chapter 2),
although they may be redefined by the user. All identifiers that are
not predefined must be defined before they are used. There are two
exceptions to this rule: program parameters (see Chapter 3) and
pointer types (see below). Labels (which strictly speaking are not
identifiers) must also be declared before they are used.

This chapter describes the syntax and effects of the declaration
sections for all program objects.

Program Heading

The program heading associates an identifier with the program and
specifies a list of the program parameters.

Syntax:

program 4 ——
heading —>(PROGRAN)—s{ isenter |

identifier

The program heading is described in Chapter 3.

Declarations

Declaration Part

Each program heading (as well as PROCEDURE or FUNCTION declaration,
to be described below) is followed by a declaration part.

Syntax:

declaration
part

structured
constant

-l OO —

identifier ; J

The LABEL declaration (if any) must come first. CONST, TYPE, and VAR
sections may follow, in any order, and may be repeated as often as
required. This is an extension of Pascal/1000; "standard" Ppascal

allows zero or one occurrence of CONST, TYPE, and VAR and requires
that they appear in that order.

PROCEDURE and FUNCTION declarations may follow and may be repeated as

often as required. This is not an extension and is permitted in
"standard" Pascal.

4-2

Declarations

Label Declaration

A label declaration is used to specify 1labels which will be used to
mark statements. A label is used with the GOTO statement to transfer
control to a marked statement. This is the only valid use of a label.

integer

Syntax:

label
declaration

A label is an integer in the range 0 to 9999.
The labels 6 and 00000000006 are identical.
Example:

LABEL
0, 00000000006, 28, 496, 8128, 9999;

Constant Definition

A constant definition introduces an identifier as a synonym for a
constant value. The identifier may then be used in place of that
value. The value of a symbolic constant cannot be changed by a
subsequent constant definition or by an assignment statement.

Syntax:

constant

declaration CONST identifier = constant

structured
constant

Simple Constants

A simple constant is a constant expression of an unstructured type
(e.g. INTEGER, BOOLEAN, CHAR, REAL, LONGREAL, subrange, or enumerated
type) or a string constant. The constant expression may contain other
previously defined simple constants.

Declarations

Example:
CONST
pagesize = 60;
headsize = 10;
lines = pagesize - headsize;
debug = true;
pi = 3.14;
neg pi = -pi;
star = "*x7,
title = ‘A Simple Test Program’;

Structured Constants

A structured constant is a constant of a structured type (e.g. SET,
RECORD, or ARRAY). The definition consists of a previously defined
type identifier followed by a 1list of wvalues. Values for all
elements of the structured type must be specified and must have a
type identical to the type of the corresponding element. Structured
constants can be used to initialize wvariables of structured types.
The individual elements of a structured constant are also available

as constants. Note that structured constants are a Pascal/l1000
extension.

Syntax:

structured ¢
constant ~ idéntifier —’@ ~ . @

constant
L constant OF L structured

constant

kl‘ field identifier : constant

structured
constant

(e
N4]
constant :)

constant

Declarations

Array Constant

The definition of an ARRAY constant consists of the ARRAY type

identifier followed by the list of values which are to be included in
the constant array.

S Y ntax:
MNe
U
array array —
’ type _@ constan
constant identifier
constant @ structured
constant

Examples:

COLOR_STRING
COLOR_ARRAY

TYPE
BOOLEAN_TABLE = ARRAY {1..5] OF BOOLEAN;
TABLE = ARRAY [1..100] OF INTEGER;
ROW = ARRAY [l1..5] OF INTEGER;
MATRIX = ARRAY [l..5] OF ROW;
COLOR = (red, yellow, blue);

PACKED ARRAY ([1l..6] OF CHAR;
ARRAY [COLOR] OF COLOR_STRING;

CONST
true_values
init_valuesl
init values2
identity

BOOLEAN_TABLE ([true, true, true, true, truel;
TABLE [100 OF 0];
TABLE [60 OF 0, 40 OF 1];
MATRIX [ROW [1, O, O, O, O],

ROW [0, 1, 0, 0, 0},

ROW .{0, O, 1, O, O],

ROW [0, O, O, 1, 0],

ROW .[0, O, O, O, 1]];
colors = COLOR_ARRAY [COLOR_STRING [’RED’, 3 OF ° I,
COLOR_STRING ['YELLOW °],
COLOR_STRING ['BLUE", 2 OF ~ “11;

’

Notice that in the last example, where the array element was an ARRAY
OF CHAR, that a combination of strings and characters can be used.
This is the only case where the constant (string) is permitted to be
of a type different than the element type (CHAR).

Declarations

Record Constant

The definition of a RECORD constant consists of the RECORD type
identifier followed by a list of the values to be assigned to the
fields of the constant record. Each value is preceeded by the name
of the field which it initializes. All fields must be initialized
and may be specified in any order, except that a tag field (if
present) must be initialized before any variant fields. Once the tag
is initialized only the variant fields associated with that value of
the tag may be 1initialized. If a variant 1is present, but no tag
exists (a tagless variant), then the first variant field initialized
selects the variant as if a tag had been initialized.

Syntax:

record record _’@
type @_'
constant identefier (

field identifier : constant

structuved ___)
constant
Examples:
TYPE
COUNTER_RECORD = RECORD
pages: INTEGER;
lines: INTEGER;
characters: INTEGER;
END;
REPORT RECORD = RECORD
- revision: CHAR;
price: REAL;
info: COUNTER_RECORD;

CASE secret: BOOLEAN OF
true: (code: INTEGER):;
END;

CONST
no_count = COUNTER_RECORD [pages: 0, characters: 0, lines: 0];
big_report = REPORT_RECORD
[revision: C 7,
price: 27.50,
info: COUNTER RECORD
[pag€s: 6, lines: 28, characters: 496],
secret: true,
code: 81281];

Declarations

Set Constant

The definition of a SET constant consists of the SET type identifier

followed by the 1list of values which are to be included in the
constant set.

Syntax:

set set —(] —>
> type | | U
constant | identifier &

constant

constant

Examples:

TYPE
DIGITS = SET OF 0..9;
CHARSET = SET OF CHAR;

CONST
all digits = DIGITS [0..9];
odd digits = pIGITS [l, 3, 5, 7, 9];
letters = CHARSET [“a’..’z ", "A".."271;
no_chars = CHARSET []:

Type Definition

Every literal, constant, variable, function, and expression is of one
and only one type. The type defines a set of attributes:

a. The set of permissible operations that may be performed on an
object of that type.

b. The set of values that an object of that type may assume.
c. The amount of storage that variables of that type require.

The type of a 1literal is an inherent property of the literal.
Pascal/1000 also predefines several commonly-used types, although
these may be redefined by the user. All other types must be defined
before they can be associated with a variable, constant, or function
(with one exception, see Pointer Type below).

The set of permissible operations for the predefined and gser—degined
types is discussed in detail in Chapter 5 and summarized briefly
below.

Declarations

Syntax:

type TYPE identifier G ’
declaration e P

type identifier]— >

X

type ——

O—{ = /
type identifier J

PACKED

%

RECORD field list END /

SET @ type)

4-8

Declarations

Predefined Types

Boolean

The Boolean type is predefined as:

TYPE
BOOLEAN = (false, true);

Variables of type Boolean normally are represented in the low order
bit of one 16-bit word. The operators defined for Boolean operands

and the operations that result in Boolean values are summarized
below.

a. Assignment operator (:=)

b. Boolean operators (AND, OR, NOT)

c. Relational operators (K, <=, =, <, >=, >, IN)

d. Predefined functions (eoln, eof, odd, ord, pred, succ)

Char

The CHAR type comprises the ASCII 8-bit character set.

Variables of type CHAR are normally represented in the low order
8-bit byte of one 1l6-bit word. The operators defined for CHAR

operands and the operations that result in CHAR values are summarized
below.

a. Assignment operator (:=)
b. Relational operators (£, <=, =, <, >=, >, IN)
c. Predefined functions (chr, ord, pred, succ)

Integer

The INTEGER type is predefined as a subrange of the negative and
positive integers:

CONST
minint = -2147483648;
maxint = 2147483647;
TYPE

INTEGER = minint..maxint;

Minint and maxint are predefined constants. Variables of type INTEGER
are normally represented in two 16-bit words. The operators defined

for INTEGER operands and the operations that result in INTEGER values
are summarized below.

a. Assignment operator (:=)

b. Relational operators (£, <=, =, <>, >, >=, IN)

c. Arithmentic operators (+, -, *, /, DIV, MOD)

d. Predefined functions (abs, arctan, chr, cos, exp, linepos, 1ln,
maxpos, odd, ord, position, pred, round,
sin, sqr, sqrt, succ, trunc)

Declarations

Real

The REAL type is predefined as a subset of the real numbers. This
subset covers the range:

-1.70141E+38 to -1.4693683E-39
0.0

1.4693679E-39 to 1.70141E+38

Variables of type REAL are represented in two 1l6-bit words and have

an accuracy of approximately 6.9 decimal digits. The operators
defined for REAL operands and the operations that result in REAL
values are summarized below.

a. Assignment operator (:=)

b. Relational operators (£, <=, =, <, >=, >)

c. Arithmetic operators (+, -, *, /)

d. Predefined functions (abs, arctan, cos, exp, ln, round, sin,
sqgr, sqrt, trunc)

Longreal

The LONGREAL type 1is predefined as a subset of the real numbers.
This subset covers the range:

-1.70141183460469231L.+38 to -1.46936793852785946L-39
0.0

1.46936793852785938L-39 to 1.70141183460469227L+38

Variables of type LONGREAL are represented in four 16-bit words and
have an accuracy of approximately 16.5 decimal digits. The operators
defined for LONGREAL operands and the operations that result in
LONGREAL values are summarized below.

a. Assignment operator (:=)

b. Relational operators (K, <=, =, <, >=, >)

C. Arithmetic operators (+, -, *, /)

d. Predefined functions (abs, arctan, cos, exp, 1ln, round, sin,

sqr, sqrt, trunc)

Note that the LONGREAL type is a Pascal/l000 extension and is not
found in "standard" Pascal.

4-10

Declarations

Text

The type TEXT is predefined as:

TYPE
TEXT = FILE OF CHAR;

with some additional special attributes, and is provided for doing
common types of character- and line-oriented input and output.
Variables of type TEXT are termed "text files". Each component of a
text file is of type CHAR, but the sequence of characters in a text
file is divided into lines. All operations applicable to a FILE OF
CHAR can be performed on text files. Certain additional operations
are also applicable.

One of the special attributes of text files is the ability to perform
conversion from the internal form of certain types to an ASCII
character representation and vice versa.

The procedure READ, when applied to a text file, can convert from an
ASCII character representation to the internal form of:

a. CHAR

b. INTEGER

C. REAL

d. LONGREAL (Pascal /1000 extension)
e. subrange of INTEGER

f. PACKED ARRAY OF CHAR (Pascal/1000 extension)

The procedure WRITE, when applied to a text file, can convert from
the internal form to an ASCII character representation of:

a. CHAR

b. INTEGER

Cc. REAL

d. LONGREAL (Pascal /1000 extension)
e. subrange of INTEGER

f. PACKED ARRAY OF CHAR (Pascal/1000 extension)
g. BOOLEAN

with additional information controlling the formatting of the ASCII
character representation.

Further information on the special attributes of text files will be
found in Chapter 7.

User-Defined Types
Enumeration
An enumerated type defines an ordered set of values by enumeration of

the identifiers which denote these values. The ogdgring of tpe values
is determined by the sequence in which the identifiers are listed.

4-11

Declarations

Syntax:

enumeration
type

identifier

In Pascal/1000 the enumerated identifiers are defined as constants,
the first being assigned the integer value zero, and the others

receiving successive integer values in the order of their
specification.

An enumerated type may contain up to 32768 elements.

Variables of an enumerated type are normally represented as one
1l6-bit word. The operators defined for enumerated type operands and

the operations that result in enumerated type values are summarized
below.

a. Assignment operator (:=)
b. Relational operators (K, <=, =, <, >=, >, IN)
Cc. Predefined functions (ord, pred, succ)

Example:

TYPE

DAYS = (sunday, monday, tuesday, wednesday,
thursday, friday, saturday);
FRUIT = (apple, banana, cherry, grape, orange, pear);
COLOR = (red, orange, yellow, green, blue, indigo, violet);
FOREST_ANIMALS = (lions, tigers, bears);

Subrange

A subrange type is a sequential subset of another type, referred to
as the base type. A subrange type is defined by specifying two
elements of the base type as upper and lower bounds of the subrange.

Syntax:

subrange
O

where the lower bound is less than or equal to the upper bound.

A variable of a subrange type possesses all the attributes of the
base type with the following exceptions:

a. Its values are restricted to the specified closed range.

b. Smaller amounts of storage may be required by variables which
are components of a PACKED type.

4-12

Declarations

Subrange types may only be defined over the predefined types BOOLEAN,
CHAR, INTEGER, and user-defined enumeration or subrange types.

Example:

TYPE
WEEKDAYS
DAY OF_YEAR

monday..friday;
1..366;

INTEGER subrange variables have the special property that they will
be represented by one 16-bit word if the bounds 1lie within the
subrange -32768..32767.

INTEGER Number of words allocated for
Subr ange a variable of that subrange

-1000..1000
64000..70000
0..40000
-32768..32767

N -

Pointer

There are two types of variables in Pascal/1000: statically-allocated
and dynamically-allocated. Statically-allocated variables exist
during the entire invocation of the program, procedure, or function
in which they were declared, and are referred to by their
identifiers.

In contrast, variables may also be created dynamically during
execution. These variables are not referred to by their identifiers
(for they have none), but are referred to through pointers which
point to them. The creation of dynamic variables is discussed in
Chapters 7 and 8.

Thus a pointer "points®" to a dynamically-allocated variable. The
pointer is associated with a base type (any type except FILE or an
ARRAY or RECORD type containing a FILE), and may point only to
dynamic variables of that type.

Syntax:

ponte ()

The pointer value NIL is a member of every pointer type; it points to
no dynamic variable.

Declarations

Variables of type POINTER normally are represented in either one or
two 16-bit words (See the HEAP compiler option). The operators
defined for POINTER operands and the operations that result in
POINTER values are summarized below.

a. Assignment operator (:=)
b. Relational operators (=,
c. Dereference operator (")

d. Predefined procedures and functions (new, dispose, mark, release)

>

<>)

Pointers are an exception to the rule that identifiers must be
defined before they are used. (Program parameters are the only other
exception to this rule.) The base type of a pointer need not be
defined before it is used in a pointer definition. This allows two
disjoint types to contain pointers to each other, as in the examples
below.

Examples:

TYPE

PTR1 = "REC1;

PTR2 = "REC2;

REC1 = RECORD
f1, £f2: INTEGER;
link: PTR2;

END;
REC2 = RECORD

f1, £2: REAL;
link: PTR1;
END;

Structured Types
Array

An ARRAY type 1is a data structure consisting of a fixed number of
elements which are all of the same type, called the "element" type.
The elements are enumerated by an "index" type. The ARRAY type
definition specifies both the element type and the index type.

Syntax:

array
type

4-14

Declarations

Syntax (Cont.):

index
type

=

®
type identifier N

A ~ordinal type

identifier j
BOOLEAN ~

CHAR -

An "ordinal type identifer" is an identifier previously defined as an
enumeration or subrange type.

Elements can be of any type, including FILE, RECORD, and ARRAY.

Variables of type ARRAY are normally represented as a seguence of
16-bit words.

number of words = (words per element) * (number of elements)

The operators defined for ARRAY type operands and the operations that
result in ARRAY type values are summarized below.

a. Assignment operator (:=)

b. Relational operators for strings only (see below)
(<, <=, =, <Oy >=,)

c. Predefined procedures (pack, unpack)

Declarations

Examples:

TYPE
ARECORD = RECORD

name: PACKED ARRAY [1..30] OF CHAR;
age: 1..100;
END;

LIST = ARRAY [1l..100] OF INTEGER;
STRANGE = ARRAY [BOOLEAN] OF CHAR;
FLAG = ARRAY [(red, white, blue)] OF 1..50;
FILES = ARRAY [1..10] OF TEXT;
PEOPLE = ARRAY ([0..999] OF ARECORD;
Strings -- As a special case, an array of the form

{ PACKED } ARRAY [m..n] OF CHAR

is referred to as a "string"™. The array may be either packed or
unpacked and the two types are compatible. A packed string can be
assigned to or compared with an unpacked string. Assignment requires
that the target string be the same 1length or longer than the source
string; the target will be blank padded if necessary. Comparison will
cause the shorter string to be blank padded to the length of the
longer string before the comparison occurs. This is a Pascal/1000

extension. "Standard" Pascal permits only one type of string. 1Its
form is:

PACKED ARRAY [l..n] OF CHAR

A Pascal/1000 string constant has the form of a packed string.

4-16

Declarations

Multiply-Dimensioned Arrays -- If more than one index type is
specified or the elements of the array are themselves arrays, then
the array is said to be multiply-dimensioned. There is no arbitrary
limit on the maximum number of array dimensions.

Examples:

TYPE

{ equivalent definitions of MATRIX }
MATRIX = ARRAY [0..9] OF ARRAY [0..9] OF INTEGER;
MATRIX ARRAY [0..9, 0..9] OF INTEGER;

SPACE

ARRAY [0..9] OF MATRIX;

{ equivalent definitions of TRUTH }
TRUTH = ARRAY [l..20] OF
ARRAY [l1..5] OF
ARRAY [l..10] OF BOOLEAN;

TRUTH = ARRAY [l..20] OF

ARRAY [1..5, 1..10] OF BOOLEAN;
TRUTH = ARRAY [1l..20, 1l..5] OF

ARRAY [1..10] OF BOOLEAN;
TRUTH = ARRAY [1..20, 1..5, 1..10] OF BOOLEAN;

Similarly, the elements of such arrays can be indexed in different
(but equivalent) ways:

VAR
m: MATRIX;
s: SPACE;

m[2, 5] is equivalent to m[2][5];
s{2, 3, 9] is equivalent to s[2][3][9] or s[2, 3][9] or s{21[3, 9]}

Multiply-dimensioned arrays have the additional property that each
dimension can be treated as an object.

mf[2, 5] is an element of the second "row" of "m"

m[2] is the second "row" of "m"

m is the entire array

s[2, 3, 9] is an element of the third "row" of the second "plane"
of "s"

s[2, 3] is the third "row" of the second "plane" of "s"

s[2] is the second "plane" of "s"

s is the entire array

Array "rows" and "planes" can be assigned to identical "rows" and
"planes", and passed as parameters to identical "rows" and "planes".
This can be generalized to any number of dimensions.

Declarations

Record

A RECORD type is a data structure consisting of a number of elements
which are not necessarily of the same type. The RECORD type
definition specifies for each element, called a "field", its type and

its field identifier. The elements of records are accessed using
these field identifiers.

Syntax:
oo @D
O
field list Q)

| field identifier .

\ /

type
identifier

field
identifier

field
list

A RECORD type definition may contain a "variant" part. This enables
variables of type RECORD, although of identical type, to exhibit
structures that differ in the number and type of their component
parts. The "variant" part may contain an optional "tag" field. The
value of the tag field indicates which of the variants is currently
valid. If a tag field is not specified, then determination of which
variant 1is currently valid 1is left to the programmer. (Actually
Pascal/1000 does not check the tag field when a variant field is
used. The responsibility for proper access of variants is always
left to the programmer).

Each 1label in the variant CASE declaration must be of the same type
as the tag type and subrange labels are not allowed (as they are in a
CASE statement). Fields of type FILE or types which contain files
are not permitted in the variant part of a RECORD. The label
OTHERWISE is not allowed in the variant CASE declaration.

Variables of type RECORD are normally represented as a sequence of
l16-bit words. The total number is the sum of the number of words
required for the fixed part (and optional tag) plus the number of
words required by the largest variant (if any).

The operator defined for RECORD types and the operation that results
in a RECORD type value is:

Assignment operator (:=)

Declarations

Examples:

Record with fixed part only:

TYPE
TRI ANGLE = RECORD
base,
height: INTEGER;
END;

Record with variant part only (with tag field):

TYPE
WORD_TYPE = (int, chr);
WORD = RECORD

CASE word_tag: WORD_TYPE OF
int: (number: INTEGER);
chr: (chars : PACKED ARRAY {1..2) OF CHAR):

END;

Record with fixed and variant part (without tag):

TYPE
POLYS = (circle, square, rectangle, triangle);
POLYGON = RECORD

poly_color: (red, yellow, blue);

CASE POLYS OF
circle: (radius: INTEGER);
square: (side: INTEGER);
rectangle: (length, width: INTEGER);
triangle: (base, height: INTEGER) ;

END;
Record with nested variant part:

TYPE
NAME STRING PACKED ARRAY ([1..30] OF CHAR;

DATE INFO = PACKED RECORD
- mo: (jan, feb, mar, apr, may., jun,
jul, aug, sep, oct, nov, dec);
da: 1..31;
yr: 1900..2100;
END;
MARITAL_STATUS = (married, single, divorced) ;
PERSON INFO = RECORD
- name: NAME_STRING;
born: DATQ_INFO;
CASE status: MARITAL_STATUS OF
married,
divorced: (when: DATE_INFO;
CASE has kids: BOOLEAN OF
true:” (how_many: 1..50);

END;

Declarations

Set

A SET type defines a powerset (set of all subsets) of an enumeration
or subrange type called the "base" type.

Syntax:

set

type—>CED—(oP)

The base type of a set may contain up to 32767 elements.

Variables of type SET are normally represented as a series of Boolean
values (each 1 bit) which indicate the presence or absence in the set
of each element of the base type. The amount of storage required for
a variable of type SET is determined as follows:

For a SET of 16 or less elements:

One 16-bit word,
For a SET of more than 16 elements:
((number of elements + 15) DIV 16 + 1) 16-bit words

The operators defined for SET operands and the operations that result
in SET values are summarized below.

a. Assignment operator (=)

b. Union operator (+)

C. Intersection operator (*)

d. Difference operator (-)

€., Subset relational operator (<=)

f Superset relational operator (>=)

9. Equality relational Operators (=, <)
h. Element inclusion (IN)

Examples:

TYPE
CHARSET = SET OF CHAR;
FRUIT = (apple, banana, cherry, peach, pear, pineapple);
FRUITSET = SET OF FRUIT;
SOMEFRUIT = SET OF apple..cherry;
CENTURY20 = SET OF 1901..2000;

4

20

Declarations

File

A FILE type definition specifies a data structure consisting of a
sequence of components which are all of the same type. Files are
usually associated with peripheral storage devices, and their length
is not specified in the program.

Syntax:

B (D@D

The component type of a FILE can be any type except FILE or a type
which contains a file.

The operations allowed on variables of type FILE are described in
Chapter 7.

Examples:

TYPE
PERSON = RECORD
name: PACKED ARRAY [l1..30] OF CHAR;
age: 1..100;
END;
BIT_VECTOR = ARRAY [1..100] OF BOOLEAN;
PERSON_FILE = FILE OF PERSON;
DATA FILE = FILE OF INTEGER

VECTOR_FILE = FILE OF BIT_VECTOR;

Packed Type Modifier

The representation of a variable in Pascal/1000 is usually determined
by the compiler. Ease of access is given priority over storage
compactness, For example, Boolean variables occupy a lé6-bit word
instead of a single bit, and character variables occupy a l6-bit word
instead of an 8-bit byte.

There are times, however, when the programmer needs smaller amounts
of storage allocated to certain data items, even if this requires
less efficient access. The programmer can indicate this to the
compiler by prefixing the definition of a structured type with the
symbol PACKED.

Syntax: packed —
type @ :I record type
array type
set type
file type

Declarations

Non-structured components of PACKED structured types are allocated
the smallest amount of storage required to represent all the possible

values of each component in a manner consistent with the following
rules.

a. A component which requires more than one l6-bit word of storage
will begin on a 16-bit word boundary.

b. A component which requires one 16-bit word or less of storage
will not cross a word boundary.

c. A component which is a set of more than 16 elements will use a

whole number of words, even if all of the last word is not
required by the set.

Structured components of a structured type are not affected by the
PACKED type modifier.

The operations allowed on data of a PACKED data type are the same as
those allowed for data that is not PACKED, with the exception that
components of a packed structure cannot be passed as VAR
(call-by-reference parameters). This exception applies as well to
the standard procedures READ and READLN.

The standard procedures PACK and UNPACK can be used to assign

components from a unpacked array to a packed array, and vice-versa
(See Chapter 7).

Variable Declaration

A variable declaration introduces an identifier as a variable of a
specified type.

Syntax:

identifier

variable
declaration

Each variable is a statically-declared object which occupies storage
and is accessible for the duration of the program, procedure, or
function in which it is declared.

Every declaration of a file variable F with type FILE OF T implies

the declaration (by the compiler) of a buffer variable of type T.
This variable, denoted F", is used to access the components of the
file F.

4-22

Examples:

VAR
{ predefined types
pagecount,
linecount,
charcount:
currentgrade:
average:
standard_deviation:
debugging, done:
terminal file:
some_files:
many numbers:
many_chars:
many_truths:

Declarations

INTEGER;

CHAR;

REAL;

LONGREAL;

BOOLEAN;

TEXT;

ARRAY [0..4] OF TEXT;

ARRAY [-1000..1000] OF INTEGER;
PACKED ARRAY [1..10000] OF CHAR;
ARRAY [0..1999] OF BOOLEAN;

{ user-defined types }

today, tomorrow:
beware of:
ordinal date:
first recl:
friends:

shape:

temp shape:
we_have:
number_right:
personnel file:
have_seen:
saved shapes:
stores_have:

DAYS:

FOREST_ANIMALS;

DAY OF_YEAR;

PTRI;

PEOPLE;

POLYGON;

"POLYGON;

FRUITSET:;

0..100;

PERSON_FILE;

SET OF FOREST_ANIMALS;
FILE OF POLYGON;

ARRAY [1..200] OF FRUITSET;

4-23

Declarations

Routine Declaration

A routine is a named block that is activated by referring to its
identifier. A routine can be either a procedure or a function.
Procedures serve to define parts of programs which can be activated
by procedure statements. Functions serve to define parts of programs
which compute a single value of any type (except FILE or any type
containing a FILE) for use in evaluating an expression. A function
is activated by using the function identifier within an expression.

I ‘ procedure heading I

function heading

Syntax:

routine
declaration

directive

The routine heading specifies the identifier to be associated with
the routine, any parameters to the routine, and the type of the
result if the routine is a function. The routine block contains a
declaration part which specifies the labels, constants, types,
variables, and routines which are local to the routine being

declared, and a compound statement (body) describing the executable
statements of the routine,

Routine Heading

The heading of a procedure or function defines the manner in which
the routine interacts with other routines and the main program.

Syntax:

procedure

heading ——»(_PROCEDURE)—#{ _identifier |——#{ formal parameter list |———

function

. _—{ FUNCTION }—-Dl identifier l»—blformal parameter list ° type identifier
heading

The identifier following the reserved word PROCEDURE or FUNCTION is
the name by which the routine is known in the source code. Certain

restrictions apply to level-l routine names. These are discussed in
section Level-1 Routines of this Chapter.

Declarations
Formal Parameter List

This 1is a 1list of the formal parameters of the routine. When the
routine 1is activated, a list of actual parameters is provided, and
these are substituted (as specified below) for the corresponding
formal parameters. The correspondence is established by the ordering
of the parameters in the list. The list of actual parameters must ke
compatible with the formal parameter list. This compatibility is
described in section Parameter List Compatibility.

Syntax:

formal
parameter -
list

identifier

type identifier

procedure heading

function heading

There are four kinds of parameters: value, variable, procedure and
function. 1In this chapter, whatever is true for a parameter is also
true for each parameter in the same parameter group (i.e. what is
true for x of x,y,z:REAL is also true for y and z).

Value Parameters

The actual parameter corresponding to a formal value parameter must
be an expression (of which a variable is a simple case) which is
assignment compatible with the type of the formal value parameter.
The corresponding formal parameter represents a local variable in the
activated routine. As its initial value, this local variable receives
the value of the expression used as the actual parameter. The routine

may change the value of this local variable without affecting the
actual parameter.

A formal value parameter of type "string" is compatible with an
actual parameter of type "“string" which has the same or fewer
elements. If the actual parameter has fewer elements, the extra
elements of the formal parameter will be blank filled.

Components of a packed type can only be passed as value parameters.

In programs wusing HEAP 2, the size of an actual value parameter in
EMA cannot be more than 1023 16-bit words of memory.

Declarations

Variable Parameters

A variable parameter is often referred to as a "call-by-reference"
parameter. The actual parameter corresponding to a formal variable
parameter must be a variable. The corresponding formal parameter must
be preceded be the reserved word VAR and it represents the actual
parameter in the activated routine. Any operation performed on the
formal parameter is performed directly on the actual parameter.

File parameters and parameters containing files may only be passed as
variable parameters.

Procedure and Function Parameters

A formal parameter can be a routine heading. The corresponding
actual parameter is the routine identifier of a routine with a
compatible parameter list. The formal routine parameter represents
the actual routine during the activation of the called routine in
which it appears as a parameter.

Example of program using functions as parameters:

PROGRAM sample (input, output);

VAR
test: BOOLEAN;

FUNCTION chekl (x, y, z: REAL): BOOLEAN;

BEGIN
{perform some type of validity check on x, y, z
and return appropriate value{

END;

FUNCTION chek2 (x, y, 2z: REAL): BOOLEAN;
BEGIN
{perform an alternate validity check on x, y, 2z
and return appropriate value}
END;

PROCEDURE read_data (FUNCTION check (a, b, c: REAL): BOOLEAN);
VAR p, q, r: REAL;
BEGIN
{read and validate data}
readln (p, 9, r);
IF check (p, 9, r) THEN ...
END;

BEGIN {main program}
IF test THEN read_data (chekl)
ELSE read_data (chek2);

¢ o0

END.

4-26

Declarations

Parameter List Compatibility

An actual and formal parameter list are compatible if they contain
the same number of parameters and the corresponding parameters match.
Parameters match when:

a. They are both value parameters of assignment compatible types.
b. They are both variable parameters of identical type.

c. They are both procedure parameters with compatible parameter
lists.

d. They are both function parameters with compatible parameter
lists and identical result types.

Function Results

The heading of a function specifies the function identifier, the
formal parameters of the function, and the function type. The type of

a function may be any type, except a file type or a type containing a
file.

Within the function body there must be at least one assignment
statement assigning a value to the function identifier.

Syntax:

function

~ | function identifier > selector = | expression
assignment

This assignment statement is a simple statement that determines the
function result. The selector can be used when the type of the
function result 1is a structured type. For more information on the
use of selectors, refer to section Expressions of Chapter 5.

A compile-time error occurs if the body of the function does not
contain an assignment to the function identifier.

Routine Declaration Part

The declaration part of a procedure or function contains the
declarations of 1local constants, types, labels, variables, and

routines. The routine declaration part has the same form as the
program declaration part.

Declarations

Routine Body

The body of a procedure or function is a compound statement which
describes the operations on global, intermediate, and 1local
identifiers. The syntax for constructing a routine body is the same
as that for constructing a program body and is discussed in detail in
Chapter 5. If the routine is a function, there must be an assignment

Statement within the body which assigns a value to the function
identifier.

Level-1 Routines

Level-l routines, are routines that are not declared within any other
routine. The Pascal/1000 compiler creates entry points for level-1
routines so they are accessible from outside the compilation unit in
which they are declared. Because of this the operating system
requires that 1level-l routines must have names which are unique
within the first five characters. The program name must also be
unique, within the first five characters, with respect to all level-l
routine names. Level-l routines can be made "local"™ to a compilation
unit (not entry points) with the VISIBLE compiler option and are then
not subject to the five character uniqueness limitation.

Alias

The ALIAS compiler option allows a routine to be referred to by a
name in the source code that is different from the name used in the
object code. Some examples of the necessary uses of ALIAS are:

a. Using library routines which have names which are not legal
Pascal/1000 identifers (see EXTERNAL directive).

b. Changing the name of a 1level-l routine so that it will be
unique within the first five characters.

C. Defining several routines with different parameter lists to
represent the same routine (e.g. the EXEC system routine).

Only level-l routines can be given an ALIAS. Such a routine then has
two names. Each is recognized in its own domain. In the heading

PROCEDURE try test_1; $ALIAS ‘TRY1l'$

the name try test_1 is recognized as the routine’s name in the
Pascal /1000 source code, and TRYl is the name used for all references
to the routine in the code generated by the compiler. Nowhere in the
source code may the name TRYl be used to refer to the routine.
Further information on ALIAS and VISIBLE may be found in Appendix D.

4-28

Declarations

Examples:

a. TYPE
NAME_TYPE = PACKED ARRAY ([1..5] OF CHAR;
PROCEDURE load_segment $ALIAS “@SGLD " $
(name: NAME_TYPE); EXTERNAL;

b. PROCEDURE try test_l; SALIAS 'TRY1’S
PROCEDURE try test_2; S$ALIAS 'TRY2'$

c. TYPE

INT = -32768..32767;
NAME_TYPE = PACKED ARRAY[1..5] of CHAR;
TIME_ARRAY = PACKED ARRAY[l..5] of INT;

PROCEDURE execll $ALIAS “EXEC’$
(VAR code: INT; time:TIME_ARRAY);

PROCEDURE execl12 S$SALIAS “EXEC’S
(VAR icode:INT; name:NAME_TYPE; resl,mult,of st :INT);

Directives

All routines must be declared before they are called. If the
routine’s block does not immediately follow the routine heading then

a directive must be used to inform the compiler of the location of
the block.

FORWARD

calls to a routine may precede the full definition of the routine if
a FORWARD declaration comes before the first call to the routine. A
FORWARD declaration consists of the routine heading followed by the
predefined identifier "FORWARD". The routine must be fully declared
before the end of the current scope. In the routine heading of the
full declaration only the word PROCEDURE or FUNCTION followed by the
routine identifier is allowed. The parameter list (and result type
in the case of functions) may not be respecified.

Example:

FUNCTION exclusive_or (x,y: BOOLEAN): BOOLEAN;
FORWARD ;

.
.

FUNCTION exclusive_or;
BEGIN

exclusive_or := (x AND NOT y) OR (NOT x AND y);
END;

Declarations

EXTERNAL

External routines are routines that are declared outside of the
compilation unit in which they are called. External routines may be a
part of the operating system, part of a 1library, part of a
Pascal/1000 subprogram or segment, or a routine written in FORTRAN or
ASSEMBLY. Before a routine of this type can be called, an EXTERNAL
declaration must be made. This declaration consists of the routine
heading, including formal parameter 1list and result type (for
functions only), followed by the predefined identifier "EXTERNAL".

Example:

PROCEDURE external routine (VAR a, b, c: REAL);
EXTERNAL;

Only level-1l routines can be declared external.

Recursive Routines

A routine that calls itself 1is a recursive routine. Use of the
routine’s identifier within the routine’s body indicates recursive
execution of the routine. It is also possible for a routine R to call
a routine Q which in turn calls routine R. This is called indirect
recursion and is often a place where the FORWARD directive is useful.
Any Pascal procedure or function may be called recursively if the

RECURSIVE compiler option is ON at the time the routine is first
declared (See Appendix D).

Recursion is accomplished by generating new 1local variables

dynamically when a routine is called recursively. This is discussed
further in section Data Management of Chapter 8.

Example;
{ calculate factorial recursively }

FUNCTION factorial (n: INTEGER) : INTEGER;
BEGIN
IF n = 0 THEN
factorial :
ELSE
factorial := n * factorial(n-1);

1

END;

4-30

Declarations

Scope

Certain objects in a Pascal/1000 program are associated with a
"SCOPE". These objects are:

a. labels

b. constants

c. types

d. variables

e. formal parameters
f. routines

The scope of an object is the part of the program in which an object

can be used. 1In Pascal/l1000 an object’s scope is defined from its
point of declaration or definition.

The precise scope rules for Pascal /1000 are:

a. The scope of an object extends over the whole of the program,
procedure, function, or record definition in which it is
declared, with the exception noted in (b).

b. An object defined at some outer level of scope is inaccessible

from an inner level if the same identifier is used to define a
new object.

C. No two identifiers may have the same spelling in a scope. Once

an identifier 1is wused or defined in a scope it may not be
redefined. ‘

d. The definition of an object must precede its use, with the
exception of pointer-type identifiers, program parameters, and
forward-declared procedures or functions.

Within a routine declaration, the declaration part specifies local
labels, constants, types, variables, and routines. The body of the
routine specifies the actions of the routine. Operations in the body
may use variables, constants, labels, types, and parameters that are:

a. Global objects: declared in the program level declaration part.
b. Intermediate objects: declared in an enclosing routine

declaration part (including parameters to the enclosing
routine).

c. Local objects: declared in the routine’s declaration part
(including parameters to the routine).

Declarations

Example:

PROGRAM levels;

{"global" label, constant, type, and variable definitions and }
{declarations can use predefined types and constants }

PROCEDURE procl|(a, b, c: INTEGER);

{procl local labels, constants, types, and variables}
{can use global types and constants }

PROCEDURE proc2|(x, y, z: REAL);

{proc2 local labels, constants, types, and variables}
{can use procl and global types and constants }

BEGIN {proc2}

{can use proc2 }
{can use proc2: local labels, constants, types, variables,}

and parameters x,y,z }
{can use procl }
{can use procl: local labels, constants, types, variables,}
{ and parameters a,b,c }
{can use global labels, constants, types, and variables }

END; {proc2}

BEGIN {procl}
{can use procl }

{can use procl: local labels, constants, types, variables,}
and parameters a,b,c

{can use proc2 }
{can use global labels, constants, types, and variables }
END; {procl}

BEGIN {program levels}
{can use global labels, constants, types, and variables}
{can use procl }
END.

Chapter 5
Executable Parts

The executable part, or body, of a program, procedure, or function is
a compound statement containing a seguence of Pascal statements.
Without a body, the program or routine would perform no useful work.

"

Syntax:

compound
statement

When control is passed to the program or routine, the statements in
the body are executed in the order specified. However, certain
statements may alter this normal flow of control in order to achieve
effects such as conditional branching, 1looping, or invoking a
procedure or function. After the last statement in the body of a
routine has executed, control is returned to the point in the program
from which the routine was called. After the program’s last
statement has executed, the program terminates.

Statements

A statement is a sequence of symbols, reserved words, and
expressions, used to perform a specific set of actions on a program s
data, or control the prcgram s flow.

The following can be performed using Pascal statements:

a) assign a value to a variable (Assignment statement)

b) invoke a procedure (Procedure statement)
c) choose a certain set of actions based on certain
conditions (IF and CASE statements)
d) repeat a set of actions (WHILE, REPEAT, FOR statements)
e) allow record fields to appear without naming
the record (WITH statement)
f) transfer control to another part of the program (GOTO)
g) treat a group of statements as one (Compound statement)
h) do nothing (Empty statement)

Executable Parts

Syntax

e ()

C

statement

selector

II variable identifier l
function identifier

procedure identifier

actual parameter list

expression

integer

expression

expression

expression

statement list

REPEAT

UNTIL

variable identifier

expression

expression

A
v
v,

END
statement o~
expression >
A

statement

statement

Executable Parts

The assignment, procedure, GOTO, and empty statements are commonly
called "simple statements". The IF, CASE, WHILE, REPEAT, FOR, and
WITH statements are referred to as "structured statements" because
they may themselves contain other statements. Pascal/1000 puts no
restrictions on the number of structured statements that may be
nested, nor on the number of statements in a body.

Statement Labels

A statement label may be associated with any statement in a program
or routine body.

The appearance of a label before a statement serves to associate it
with the statement.

The label must have appeared in the LABEL declaration section of the

program or routine in which it is defined. The label is used as the
object of a GOTO statement.

Example:

PROCEDURE show_labels;
LABEL 500, 501;

TYPE

INDEX = 1..10;
VAR

1: INDEX;

target: INTEGER;
a: ARRAY [INDEX] OF INTEGER;
BEGIN {show_labels}
FOR i := 1 TO 10 DO
IF target = a [i] THEN
GOTO 500;
writeln (° Not found’);
GOTO 501;
500:
writeln (° Found’);
501:
END; {show_labels}

Executable Parts

Assignment Statement

The assignment statement is used to replace the old value of a
variable with a new value. The new value is computed from an
expression prior to the assignment.

Syntax:

variable identifier

assignment
statement

selector expression

function identifier

The wvariable can be of any type except a file type, or a structure
containing a file.

The variable’s type and the result type of the expression must be
"assignment compatible" (refer to Type Compatibility). This means
the types must be identical except for a few cases in which either an
implicit conversion is done, or a run-time check is performed which
verifies that the value of the expression is assignable to the
variable. These conversions are further discussed under Arithmetic
Operators, Set Operators, and Relational Operators.

The function identifier is subject to the same restrictions as
variables. In addition, the function identifier may be assigned a
value only within the body of the function or within the body of a

routine enclosed by the function. An assignment in the function’s
body must always be made.

If the function returns a structured type, it is sufficient to assign

a value to only one of its components. If this is done note that the
rest of the structure remains undefined.

In Pascal/1000 an additional restriction exists for HEAP 2 (EMA)
programs: a variable, or component of a variable, in the heap
requiring 1024 or more 16-bit words of memory cannot be assigned. 1In
order to assign a large structure such as this, it must be done one
component (< 1024 words) at a time.

Executable Parts

Example:

FUNCTION show_assign: INTEGER;

TYPE

= RECORD

: INTEGER;
: REAL;

1..3;
ARRAY [INDEX] OF INTEGER;

L)
2
=}
a3]
"
[}

TABLE [10, 20, 30];
REC [f:2; g:3.0];

Q
ot
hon

: INTEGER;
: TABLE;
INDEX;
REC;

" INTEGER;

FUNCTION show_structured: REC;

BEGIN
show structured.f := 20; {assign part of the record }
show™structured := cr; {assign the whole record }
show assign := 50; {assign to an outer function}

END; ’{show_structured}

BEGIN
{Assign to a:}
s := 5; {simple variable }
a := ct; {array variable }
a [i] := s + 5; {subscripted array variable }
r := cr; {record variable }
r.f := 5; {selected record variable }
p := pl; {pointer variable }
p” :=r.f - a [i]; {dereferenced pointer variable}
show assign := p”; { function result variable }

Executable Parts

Procedure Statement

The procedure statement transfers control to a procedure. After the
procecdure has executed, control 1is returned to the statement
following the procedure call.

Syntax:

procedure — -
statement procedure identifier l—b{actual parameter Iustw———b

The procedure identifier must be the name of either a predefined
procedure or a procedure declared previously in a procedure
declaration. The declaration may be an actual declaration (i.e.
heading plus body), a forward declaration, an external declaration,
or it may be the declaration of a procedural parameter.

If the formal declaration of the procedure includes a parameter list,

the procedure statement must supply actual parameters to be
substituted for the formal parameters in the body of the routine. The
actual parameter list must agree in number, order and type with the

formal list. There are four kinds of parameters, each of which has
different effects and compatibility requirements (refer to Routine
Declarations in Chapter 4).

Pascal/1000 provides several compiler options and directives
associated with procedures that affect such things as:

a) procedure ‘s calling sequence (SDIRECTS)

b) external name (SALIASS)

c) recursive attribute (SRECURSIVES)

d) error return (SERROREXITS)

e) location of the procedure’s body (FORWARD, EXTERNAL)
f) parameter addressing (SHEAPPARMSS)

These are discussed in Routine Declarations (Chapter 4), and in
Compiler Options (Appendix D).

Executable Parts

Example:

PROGRAM show_call (output);

PROCEDURE external proc {an external declaration }
(el: INTEGER;
e2: REAL); EXTERNAL;

PROCEDURE forward _proc {a forward declaration }
(£E1: INTEGER;
f2: REAL); FORWARD;

PROCEDURE actual {an actual procedure declaration}
(al: INTEGER;
a2: REAL);

BEGIN
IF a2 < al THEN
actual (al, a2-al) {a recursive call }
END;
PROCEDURE outer {another actual declaration }

(a: INTEGER;

PROCEDURE proc
(pl: INTEGER;
P2: REAL));

PROCEDURE inner; {a nested procedure }
BEGIN
actual (50, 50.0);
END;
BEGIN {Calling:}
writeln (output, “Hi"); {a predefined procedure }
actual (2, 4.0); {a procedure whose body has been seen}
inner; {an inner procedure }
external (2, 4.0); {an external procedure }
proc (2, 4.0); {a procedural parameter }
END; {outer}
PROCEDURE forward; {the actual declaration for a forward
procedure }
BEGIN {call a routine with procedural
parameters: }
outer (10, external); {external, }
outer (20, forward); {forward, }
outer (30, actual); {and actual procedures }
END;

BEGIN {show_pall}
forward (3, 5.0);
END. {show_call}

Executable Parts

Compound Statement

The compound statement is wused as a means of treating a group of
statements as a single statement. ‘

Syntax: ‘
Stemant ll
statement
statement

The statements within the BEGIN. ..END block are executed in the order
written. The compound statement has two primary uses:

1) The body of a procedure, function, or program is a compound
statement.

2) Structured statements may themselves contain other statements.
Usually where a sub-statement is allowed, the syntax calls for
a single statement. The compound statement may be used in
these places in the event that several statements need to be
executed instead of just one.

Compound statements can be used as part of IF, CASE, WHILE, REPEAT,
FOR, and WITH statements. They can also be used inside of other
compound statements to logically group statements together. There

are two places in the language, however, where a compound statement
is allowed but unnecessary. Neither of the following groups of
statements need be bracketed by BEGIN...END.

1) The statements between REPEAT and UNTIL.

2) The statements between OTHERWISE and the END of the CASE
statement.

Examples:

PROCEDURE check_min;
BEGIN
IF min > max THEN
BEGIN)
error (- min is
min := 0;
END;
END;

BEGIN
BEGIN
start part 1;
finish part 1;
END; - -

BEGIN
start_part_2;
finish_part_2;

END;

END;

Executable Parts

{This
{ compound
{Compound } {statement
wrong); {statement is} {is
{part of IF } {the
{statement } {procedure’s
{body
{Nested compound statements }

{for logically grouping statements}

}
}
}
}
}
}
}

Executable Parts

IF Statement

The IF statement is used to perform one of two possible actions based
on a given condition.

Syntax:

IF statement expression THEN s’tatementJ >
ELSE statement

The expression must be of type Boolean. The statements may be any
Pascal statements, including other IF statements.

When the IF statement 1is executed, the Boolean expression 1is
evaluated to either true or false. One of three actions is then
performed:

1) 1f the value was true, the statement following the THEN is
executed.

2) 1f the value was false and ELSE was specified, the statement
following the ELSE is executed.

3) If the value was false and no ELSE was specified, no action is
taken.

After one of the above has been performed, execution resumes at the
statement following the entire IF statement.

The following IF statements are equivalent:

IF a = b THEN

IF a = b THEN BEGIN
IF ¢ = d THEN IF ¢ = 4 THEN
a:=c¢ a := C
ELSE ELSE
a := e; a := e;
END;

That 1is, ELSE parts that syntactically appear to belong to more than
one IF statement are always associated with the nearest IF statement.

Note that a semicolon may not separate the statement after the THEN
and the ELSE part of the same IF statement.

5-10

Executable Parts

A common use of the IF statement is to select an action based on
several choices, similar to the use of the CASE statement. This may
be expressed in the following form:

IF el THEN

ELSE IF e2 THEN
ELSE IF e3 THEN

ELSE

This form is often useful where CASE statements cannot be used (CASE
selectors cannot be of type real or any string type, for example).

Unless the PARTIAL EVAL compiler option is off, the Boolean
expression is evaluated using partial, or "shortcircuit" evaluation.
(refer to Boolean Operators) Partial evaluation usually results in
more efficient code, but it is is also a great convenience to the
programmer. For example, the statement:

IF index IN [lower..upper] THEN
IF ptr_array [index] <> nll THEN
IF ptr _array [index] "™ = 5 THEN
found it := true;

can, with partial evaluation turned on, be written as:

IF (index IN {lower..upper])

AND (ptr_array [index] <> nil)

AND (ptr_array [index]”™ = 5) THEN
found_it := true;

In the first example, nested IF statements are required in order to
prevent run-time errors from occurring: if index is not between lower
and upper, then the reference to ptr _array [index] would fail; 1f
index is valid, but ptr_array [index] is nil, then ptr _array [index]
would fail. Using partial evaluation, the nested IF ‘s are unnecessary
because evaluation of the Boolean expression stops when the result is
known. Thus if index is 1invalid, the expression (ptr_array [index]
<> nil) is never evaluated, preventing a range violation. L1kew1se,
if ptr_array [index] is nil, the expression (ptr_array (index]” = 5)
is never evaluated, preventing a pointer violation.

It should be noted, however, that not all Pascal compilers do partial
evaluation, and programs relying on this feature may not work when
compiled with another compiler.

5-11

Executable Parts

Example:

VAR' '
1,]:
s,t:
found: BOOLEAN;

BEGIN
{ .

INTEGER;

LA] }
IF i

0 THEN writeln (°1i

IF found THEN
writeln ('Found it’)
ELSE .

writeln (°still looking’);

IF i j THEN
writeln (“i

3%
ELSE IF i < j THEN |
writeln (i < j°7)
ELSE {i > j}
writeln (i > j°);

IF s = ‘RED’ THEN
i :=1
ELSE IF s = ‘GREEN’ THEN
i := 2
ELSE IF s = ‘BLUE’ THEN
i =3
END.

PROGRAM show_if (input, output);

PACKED ARRAY [l1..5] OF CHAR;

0°)

o
’

{IF with no ELSE

{IF with an ELSE part

{select among different}
{Boolean expressions }

{This is similar to a

}
{CASE statement for a }
{string expression }

}
}

5-12

Executable Parts

CASE Statement

Like the IF statement, the CASE statement is used to select a certain
action based upon the value of an expression. Instead of the type
Boolean, however, the expression may be of any enumeration or
subrange type, including Boolean, integer, character, and
user-defined enumeration and subrange types.

Syntax:

;bl otherwise statement

- END

The expression, called the selector, is used to select which
statement is to be executed. Each constant expression in the lists
of labels must be compatible with the type of the selector. A label
may only appear in one list, and separate ranges may not overlap.

The statement associated with the label list containing the value
matching the selector is executed. The statement associated with the

OTHERWISE 1is executed if the selector doesn’t match any of the
labels. More precisely, when a CASE statement is executed,

1) The selector expression is evaluated.

2) If the value appears in a label list within the CASE statement,
the statement associated with that list is executed. Execution
then resumes at the statement following the CASE statement.

3) If the value does not appear in any label list, then either:

a) If OTHERWISE is specified, the statements between the
OTHERWISE and the END are executed, and execution resumes
at the statement following the CASE statement.

or b) If OTHERWISE is not specified, an error will occur.

CASE statements may be nested to any level.

Executable Parts

Examples:

PROCEDURE scanner;
BEGIN
get_next_char;
CASE current_char OF
a’..’z",
IAI IZI:

scan_word;

‘07..79":
scan_number;

OTHERWISE
scan_special;

END;
END;

FUNCTION octal digit

(d: DIGIT): BOOLEAN; {TYPE DIGIT = 0..9}
BEGIN
CASE d OF
0..7: octal_digit := true;
8..9: octal digit := false;
END; -
END;

FUNCTION op
(operator: OPERATORS {TYPE OPERATORS= (plus,minus,times,divide)}

operandl,
operand2: REAL)
¢ REAL;
BEGIN
CASE operator OF
plus: op := operandl + operand2;
minus: op := operandl - operand2;
times: op := operandl * operand2;
divide: op := operandl / operand 2;
END;
END;

5-14

Another example:

Executable Parts

PROGRAM show_case;
TYPE
COLOR =
BASICS = red. .blue;
COMPOUND = orange. .purple;

VAR
c: COLOR;

FUNCTION new_color

(colorl,
color2: COLOR)
: COLOR;
BEGIN
CASE colorl OF
red:
CASE color2 OF
red: new_color :=
yellow: new color :=
blue: new_color :=
OTHERWISE new_color =
END;
yellow:
CASE color2 OF
red: new_color :=
yellow: new_color :=
blue: new_color :=
OTHERWISE new_color :=
END;
blue:
CASE color2 OF
red: new color :=
yellow: new_color :=
blue: new_color :=
OTHERWISE new color :=
END; -
OTHERWISE new_color := none;
END;
END; {new_color}
BEGIN {show_case}

€ := new_color (red, yellow);
END. {show_case}

(red, yellow, blue, orange, green, purple, none);

red;
orange;
purple;
none;

orange;
yellow;
green;
none;

purple;
green;
blue;
none;

5-15

Executable Parts

WHILE Statement

The WHILE statement is used to execute a statement repeatedly as long
as a given condition is true,

Syntax:

WHILE)
WHILE expression @
statement - J

When a WHILE statement is executed, the expression, or "condition",
is evaluated, and must result in a Boolean value. Each time the
expression evaluates to a true value, the statement is executed and
the expression 1is re-evaluated. When the expression results in a
false value, execution 1is resumed at the statement following the
WHILE statement.

The statement:
WHILE condition DO statement

is equivalent to both of the following:

IF condition THEN BEGIN 1: IF condition THEN BEGIN
statement; statement;
WHILE condition DO statement GOTO 1;

END; END;

Partial evaluation 1is used in evaluating the condition, unless the
PARTIAL_EVAL compiler option is turned off.

Note that the statement should at some point modify data such that
the condition will evaluate to false. Otherwise the statement will
be repeated indefinitely.

Examples:

WHILE index <= limit DO BEGIN
writeln (real array [index]);
index := index + 1;

END;

read (f, ch);

WHILE NOT eof (f) DO BEGIN
writeln (ch);
read (f, ch);

END;

Executable Parts

REPEAT Statement

The REPEAT statement is used to execute a group of statements
repeatedly until a given condition is true.

—

Syntax:

REPEAT

statement expression

Wwhen a REPEAT statement executes, the statement sequence is first
executed and then the expression 1is evaluated. Each time the
expression is evaluated to a false value, the statement sequence is
executed again and the expression 1is re-evaluated. When the
expression results in a true value, execution resumes at the
statement following the REPEAT statement.

The statement:
REPEAT
statement;
UNTIL condition

is equivalent to both of the following:

BEGIN l: statement;
statement; IF NOT condition THEN GOTO 1;
IF NOT condition THEN BEGIN
REPEAT
statement
UNTIL condition
END
END;

Partial evaluation is used in evaluating the expression, unless the
PARTIAL_EVAL compiler option is turned off.

Note that the statement should at some point modify data such that
the condition will evaluate to a true value. Otherwise the statement
sequence will be repeated indefinitely.

Executable Parts

Examples:

REPEAT

read (num file, value);

sum := sum + value;

count := count + 1;

average := sum / count;

writeln (‘value =", value, average
UNTIL eof (num _file) OR (count >= 100);

REPEAT
writeln (real array [index]);
index := index + 1;

UNTIL index > limit:

5-18

’
s average)

Executable Parts

FOR Statement

The FOR statement is used to execute a statement once for each value
in a range, specified by initial and final expressions. A variable,
called the “control variable", is assigned each value of the range
before the corresponding iteration of the statement.

Syntax:

FOR variabte identifier = expression
statement

statement

The control variable must be a local variable, and it also must be an
entire variable, meaning it may not be a selected variable (array
component, record component, heap variable, or file buffer). In
addition, the control variable may be a local formal value parameter,
but may not be a formal variable parameter.

Within the FOR loop, the control variable 1is protected from
assignment at compile-time, and may not be passed as a variable
parameter. It also may not appear as the control variable for a
second FOR loop nested within the first. If the value of the variable
is changed by some other means during the execution of the loop, the

effect on the number of times the statement is executed is undefined.

The range of values assumed by the control variable is specified by
two expressions, the "initial"™ and "final" expressions, which must be
of an assignment compatible type with that of the control variable.
These expressions are evaluated only once, before any assignment is
made to the control variable. So the statement sequence

i = 5;

FOR i := pred (i) TO succ (i) DO writeln ('i=",1i:0);
will write: instead of:

i=4 i=4

i=5 i=5

i=6

The statement 1is not executed if the initial expression is greater
than the final (less than the final in the case of a FOR...DOWNTO
statement). An assignment is made to the control variable only if the
statement is executed. Thus the following statement sequence writes
nothing, and leaves i containing the value 5.

5-19

Executable Parts
i:=5;
FOR i := succ (i) TO pred (i) DO writeln (i);

If the FOR loop is exited using a GOTO statement, the value of the
control variable outside the loop is the same as it was before the
GOTO statement. The control variable is undefined, however, after a

FOR loop is terminated normally.

The FOR statement

FOR control _var := initial TO final DO
statement

is equivalent to the statement

BEGIN
templ := initial; {evaluate the two expressions }
temp2 := final; { (not evaluated for each iteration)}

IF templ <= temp2 THEN BEGIN
control var := templ;
statement;

{assign only if going thru loop}

WHILE control var <> temp2 DO BEGIN
control var := succ (control _var); {increment}
statement;

END;

END
ELSE BEGIN
{don“t go thru the loop at all }
{leave control variable value as it was before loop}
END;
END

Executable Parts

The FOR statement

FOR control var := initial DOWNTO final DO
statement

is equivalent to the statement

BEGIN
templ := initial; {evaluate the two expressions} .
temp2 := final; { (not evaluated for each iteration)}

IF templ >= temp2 THEN BEGIN

control var := templ; f{assign only if going thru the loop}
statement;

WHILE control_var <> temp2 DO BEGIN
control var := pred (control var); {decrement}

statement;
END;
END
ELSE BEGIN
{don“t go thru the loop at all. }
{leave control variable as it was before the loop}
END;
END

Examples:

FOR color := red TO blge DO)
writeln (’Color is °, color_to_string (color));

FOR 1 := 10 DOWNTO 0 DO
writeln (i);
writeln (“Blast Off ");

FOR i := (a[j] * 15) TO (f(x) DIV 40) DO
IF odd (i) THEN
x [i] := cos (i)
ELSE
x [1i] := sin (i);

5-21

Executable Parts

WITH Statement

The WITH statement is used to allow fields of a record to be accessed
without mentioning the record itself.

Syntax:

WITH
statement

expression

Each record expression 1in the list is either a record variable, a
record constant, or a reference to a function which returns a record.
Within the WITH statement, any field of any of the records in the
list may be accessed by using only its field name, instead of the
normal field selection notation using the period between the record
and the field name. The following statements are equivalent:

WITH rec DO BEGIN BEGIN
fieldl := el; rec.fieldl := el;
writeln (fieldl*field2); writeln (rec.fieldl
END; * rec.field2);
END;

The record expressions are evaluated once and only once for the WITH

statement. This evaluation occurs before the component statement is
executed, so, if f is a field, then the statement sequence

i = il; p := pl;

WITH a[i] DO BEGIN WITH p”~ DO BEGIN
writeln (f); or writeln (£);
i:=12; P := p2;
writeln (f) writeln (f)

END; END;

produces the same effect as:

writeln (a[il].f); or writeln (pl):
writeln (af[il}l.f); writeln (pl .f);

5-22

Executable Parts

Records having identical field names may appear 1in the same WITH

statement, with the following interpretation resolving the ambiguity:
the statement

WITH recordl, record2, ..., recordn DO BEGIN
statement;
END;

is equivalent to

WITH recordl DO BEGIN
WITH record2 DO BEGIN
WITH recordn DO BEGIN
statement;
END;
END;
END;

Thus if field f is a member of both recordl and record2, a reference

to f within the statement above would be interpreted as a reference
to "record2.f".

Also, this means that if r and f are records, and £ is a field of r,
then the statement

WITH r DO BEGIN
WITH r.f DO BEGIN
statement;
END;
END;

can be written as

WITH r, £ DO BEGIN
statement;
END;

If a local or global identifier has the same name as a field of a
record appearing in a WITH statement, then the appearance of the
identifier within the WITH statement is always a reference to the
record field, making the local or global identifier inaccessible in
the statement.

5-23

Executable Parts

GOTO Statement

The GOTO statement is used in conjunction with a statement label to
transfer control from one part of the program to the statement
associated with the label.

Syntax:

otorent

The GOTO statement must appear in the same body as the label
definition, or in any of the routines which are enclosed by the block
containing the label declaration. The latter case is referred to as
an "out-of-block" GOTO. OQut-of-block GOTO statements should be used
with care as normal procedure or function termination is bypassed.
This can have two effects which may be undesirable:

1) 1f the routine 1is recursive, the current activation is left
active. This means that on termination, the stack is not
popped, and a subsequent activation of the routine will be a
recursive one, So the program will work correctly, but may not
be as efficient as it could be since stack space may be
exhausted sooner than would normally be the case, and recursion
overhead must be paid for every activation of the routine.

2) If the routine has any local files, their automatic closing
before return 1is bypassed. This can be handled explicity by
the programmer, if desired, by closing all files prior to the
GOTO.

Further, both of these effects apply not only to the routine
containing the GOTO, but also to any intermediate routines enclosing
that routine which are also enclosed by the block in which the label
is defined.

In standard Pascal, GOTO s may not lead into a component statement of
a structured statement from outside that statement or from another
component statement of that statement. For example, it is illegal to
branch to the ELSE part of an IF statement from either the THEN part,
or from outside the IF statement. Pascal/1000, however, does not
prohibit these GOTO paths, but it is recommended that programs not be
written which rely on this fact, as other implementations may be
stricter.

GOTO statements may lead from a subprogram or segment unit into the
main body of the program.

Executable Parts

Example:

PROCEDURE show_goto;
LABEL 500, 501;

BEGIN

FOR i := 1 TO 10 DO IF target = a[i] THEN GOTO 500;
writeln (° Not found’);

GOTO 501;
500

writeln (° Found’);
501:

END; {show g oto}

Empty Statement

The empty statement is denoted by no symbol and performs no action.
It is often useful for indicating that no action is to be taken.

For example the two statements below
IF i IN [2..4, 6..10]

CASE i OF
THEN {do nothing}

0: start; ELSE continue;

1l: continue;

2..4:;

5: report error;

6..10:;

11: stop;

OTHERWISE fatal _error;
END;

explicitly specify no action when i contains 2,3,4,6,7,8,9, or 10.

Executable Parts

Expressions

An expression is a construct composed of operators and operands, used
to compute a value of some type. An operator defines an action to be
performed on its operands. An operand may be an arithmetic, Boolean,
relational, or set operator, or it may be a reference to a function.

Operands denote the objects which operators will use in obtaining a
value, and may be literals, symbolic constants, or variables.

An expression’s type is known when it is written and never changes.
An expression’s value, however, may not be known until the expression
is evaluated and may be different for each evaluation.

Operands

An operand may be acted upon by an operator. An operand is a literal
symbolic constant, variable or the value of another expression.

Literals

A literal is a representation of one of the possible values of a
certain type. The literal must conform to certain syntax rules for

literals of that type. Literals in Pascal may be integer, real, or
string literals.

Integer Literals--The usual decimal notation is used for numbers of
type INTEGER. Spaces may not appear within an integer literal.
Integers can only be represented in decimal notation.

integer

100 1 2000000000 32768

Syntax:

Examples:

Real Literals--Literals of the types REAL and LONGREAL are
represented with decimal digits, a decimal point, and an optional
scale factor.

Syntax:

integer

Executable Parts

The letter E (L) preceding a scale factor specifies an exponent of
the form "times 10 to the power of" and indicates a constant of type
REAL (LONGREAL) . Lowercase "e" and "1" are legal. Decimal points
must be preceded and followed by at least one digit. A number
containing a decimal point and no scale factor is of type REAL.
Spaces may not appear in numbers.

Examples:
0.1 5E-3 5L-3 496 .28 87.35e+8 87.357535312L+8
String Literals--Sequences of characters enclosed by single quote
marks are called strings. A string consisting of a single character
is a constant of the type CHAR. Strings of two or more characters
are constants of the type:
PACKED ARRAY [l..n] OF CHAR

Syntax:

Printable ASCII characters appear in strings in the normal manner
with the exception of the single guote mark (). If the single quote
mark is to be included in a string it must appear twice.

Non-printing ASCII characters may be included in strings by using an
extended string syntax employing the sharp sign (#). In this
notation, the sharp sign is used to encode an ASCII control character
when followed by a non-numeric character, or to encode any character
by giving its decimal value (in the range 0 to 255). This notation is
a Pascal/1000 extension, and is not allowed in standard Pascal.

Examples:

e {this represents the single quote character}
'Al

“This is a string’

Doq"t touch this string’

#27°that was an ESC char, and this is also’#[

‘this string has five bells #g#g#g#747 in it~

Fxecutable Parts

Symbolic Constants

A symbolic constant 1is an identifier that represents a literal,
constant expression, or structured constant. It may also represent a
component of a structured constant if it appears with tne appropriate

selector. The identifiers defined in an enumeration type definition
are also symbolic constants.

Syntax:

symbollc constant identifier I——oi selector }——v
constant

The 1identifier 1is associated with a value in the CONST declaration
section. This declaraticn also deterrmines the constant ‘s data tyre.
The constant may be used in places where expressions are expected.
It may also be used in TYPE definitions and other CONST definitions.
A symbolic constant cannot appear on the 1left hand side of an

assignment statement, as an actual variable parameter, or as a FOR
loocp control variable.

Examples:

PROGRAM show_constants (output);

CONET
medal name_length = 6;

TYPE

MEDAL = (gold, silver, bronze);

MEDAL NAME = PACKED ARRAY [l..medal_name_length] OF CHAR;
TREANSLATE = ARRAY [MEDAL] OF MEDAL_NAME;
CONST

medals = TRANSLATE [MEDAL_NAME [‘gold '],

MEDAL_NAME [silver’],
MEDAL_NAME [“bronze '] 1];
VAR
m: MEDAL;
mecal table: TRANSLATE;

BEGIN
medal table := medals; {Use an entire constant}
m := gold; { Enumerated constant}
writeln (medals [gold]) {Use a selected constant}
END.

5-28

Executable Parts
Variables

A variable is an identifier that represents a non-constant, or
changeable, data item. Before it is used, it must be declared and
associated with a certain data type in the VAR declaration (refer to
Declarations in Chapter 4). The variable identifier may denote a
simple variable, such as an integer or character, or it may be a
structured variable, such as an array or record. In either case, it
is called an ‘"entire variable". A variable may also denote a
component of a structured variable if it appears with the appropriate

selector. Such a variable is called a "component variable" or a
"selected variable".

Syntax:

Variab|e—0[variable identifierH selector J———->

Examples:

Entire variables:

i {simple variable }
a {structured (array) variable}
r {record variable }
P {pointer variable }
fl {file variable }

Selected variables:

al[i} {indexed variable (array component) }
r.f {field variable ftecord component) }
p- {referenced variable (pointer object) }
£1° {buffer variable (file component) }
m~.n.[5] {indexed field of a referenced record }

Executable Parts

Selectors

A selector specifies a particular component of a structured variable.
It may be applied to a structured variable or symbolic constant, or
to a reference to a function which has a structured return type.

Syntax: selector — s
o Y
O)
O
O— == 0

For the examples in this section, assume that the following have been
defined.

TYPE
DIM_1 ARRAY = ARRAY [1..10] OF REAL;
DIM_2_ARRAY = ARRAY [1..20] OF DIM_l ARRAY;
SMALL_REC_PTR = "SMALL_REC;

SMALL_REC = RECORD
s,
t: CHAR;
u: DIM_1 ARRAY;
END;
INT FILE = FILE OF INTEGER;
REC_PTR = "REC;

REC = RECORD
f: INTEGER;
g: SMALL REC;
n: DIM_l_ ARRAY;
q: REC_PTR;
ff: INT FILE;
END; -
REC_ARRAY = ARRAY [l..3] OF REC;
CONST
csr = SMALL_REC [s: ‘a’,
t: B,
u: DIM_1 ARRAY [1, 2, 8 OF 3.0]];
VAR
i: 1..3;

a: DIM_1 ARRAY;
aa: DIM_2_ARRAY;
r: REC;

£l: INT_FILE;

P: REC_PTR;

ra: REC_ARRAY;

FUNCTION func (fp: INTEGER): SMALL_REC; EXTERNAL;
FUNCTION pfunc: SMALL_REC_PTR; EXTERNAL;

5-30

Executable Parts

Array Subscripts

Array components are selected using subscripts, denoted by square
brackets ([]) and an expression. The subscript expression must be
compatible with the index type appearing in the array’'s type
definition. If the expression is a constant expression, its value is
checked at compile time to make sure its value lies in the range
specified in the index type. If the expression is non-constant, the
value is checked at run time, unless the RANGE compiler option is
turned off. The array denotation appearing before the brackets may
itself be a selected variable, constant, or function reference.

Examples:

al[l0]

a[(i*25 MOD 3 + 1)]

aall, 20} { These are }
aafl}[20] { equivalent }
aall]

csr.ufl]

r.nfi]

func 12) .u[2]

Field Selection

A field of a record is selected by following the record with a period
and the name of the field. The record appearing before the period
may itself be a selected variable, constant, or function reference,
The WITH statement may be used to "open the scope" of the record,

making it unnecessary to mention the record when accessing its
fields.

Examples:
WITH ra[i}, g DO BEGIN
r.t f := 5;
r.g.s s := ‘CQ°;
rafi].£f END;
CcSI.s

func (2) .s

Executable Parts

Pointer Dereferencing

A pointer points to, or "references" a variable in the heap. To
access this variable, the pointer is followed by the carat (7)
character. At run time, unless the RANGE compiler option is turned
off, the value of the pointer is checked to make sure it isn’t nil
before accessing the heap variable. The pointer may itself be a
selected variable, or function reference. It may not be a selected
constant, as the only pointer constant is nil.

Example§:
p ~
r.q
ra[i}] .q”
rafil.q".q"
pfunc”

File Buffer Selection

Every file in a program has implicitly associated with it a "buffer
variable". This is the variable through which data is passed to or
from a file. The file component at the current position of the file
can be read into the buffer variable or the next item to be written
to the file may be assigned to the variable and then written. The
buf fer variable, which is of the same type as the file’s base type,
is denoted by following the file with the carat (") character. The
file appearing before the carat may itself be a selected variable,
but may not be a selected constant or a selected function reference.

Examples:

£1°
r.f£f°

5-32

Executable Parts

Operators

Operators are used within expressions to specify certain actions on
one or more operands, and to create a new value. The value is
determined by the operator, its operands, and the definition of the

effect of the operator. With each operator are associated the
following:

1) number, order, and type of operands
2) result type

3) precedence

Operator precedences are used in determining the order of evaluation
of elements in an expression.

Precedence Operators

4 NOT

3 *, /, DIV, MOD, AND
2 +, -, OR

1l <, <=, <, =, >=, >

A sequence of operators with differing precedences is evaluated such
that the higher-precedence operators are evaluated first. Since * has

a higher precedence than +, these expressions are evaluated
identically:

(x +y * 2) and (x + (y * z))

A sequence of operators with equal precedence are evaluated in a

"left-associative" manner . For example, these expressions are
evaluated identically:

(x +y + 2) and ((x + y) + 2)

If an operator is commutative, the compiler may choose to evaluate
the right operand first in order to produce more efficient code.

The order of evaluation of operators within a parenthesized

expression is unaffected by the precedence of any operators outside
the parentheses.

Operators may either be predefined or user -defined. Predefined
operators are the arithmetic, boolean, set, and relational operators,
and the predefined functions. User-defined operators are references
to user-written functions, routines that compute and return a value.
The value resulting from any operation may in turn be used as an
operand for another operator.

The type of each operand is governed by a set of compatibility rules,
defined in the Type Compatibility section.

Executable Parts

Table 5-1 contains the predefined operators (excluding functions) and

their meanings.

e e . +

| Operator:| Meaning: |

| = e e e e e |

] + | numeric UNARY PLUS and ADDITION; set UNION |

| | |

| - | numeric UNARY MINUS and SUBTRACTION; set DIFFERENCE :

| I

| *] numeric MULTIPLICATION; set INTERSECTION II

I |

| / | numeric DIVISION :

| |

| DIV | integer DIVISION I

| | |

| MOD | integer MODULUS :

| |

I | |

| | |

| AND | logical AND :

| |

I OR | logical INCLUSIVE OR ?

I |

I NOT | logical NEGATION :

| I

| I !

| < | numeric, string, enumeration LESS THAN :

| |

| <= | numeric, string, enumeration LESS THAN OR EQUAL; |

i | set SUBSET %

| |

| = | numeric, string, enumeration, set, pointer EQUALITY {

I |

| <> | numeric, string, enumeration, set, pointer INEQUALITY‘

| |

| >= | numeric, string, enumeration GREATER THAN OR EQUAL; |

| I set SUPERSET :

| I

| > | numeric, string, enumeration GREATER THAN :

| |

I IN | set MEMBERSHIP :

I |

o e e e et +
.Table 5-1. Pascal’s Operators

5-34

Executable Parts

Arithmetic Operators

pascal defines a set of operators that perform integer and real
arithmetic. These operators take numeric operands and produce a
numeric result. A numeric type is the type REAL, LONGREAL, INTEGER,

or any INTEGER subrange. Each numeric type has a "rank", defined as
follows:

Type Rank
LONGREAL 4
REAL 3
2-word INTEGER 2
l-word INTEGER 1

The rank of the type of the result value of an operator is the same
as the highest rank of all the operand types. Operands having types
whose ranks are less than the rank of the result type are converted
prior to the operation such that they have a type with a rank equal
to that of the result type. For example, if i is an INTEGER and x is
a REAL in the expression (x + i), then i is converted to REAL before
the addition. 1In short, the two operands to an arithmetic operator
must be "expression compatible" (refer to Type Compatibility).

If one operand the other operand then the

is of type: is of type: result is of type:
l1-word INTEGER 2-word INTEGER 2-word INTEGER
INTEGER REAL REAL
INTEGER LONGREAL LONGREAL
REAL LONGREAL LONGREAL

Real division is an exception to this rule. If both operands are
INTEGERs, then both are converted to REAL prior to the division.

A unary operator results in a value of the same type as its operand.

Unary + --The result of the unary + operator is the value of its
operand. The operand may have any numeric type.

Unary - --The result of the unary - operator is its operand’s negated
value. The operand may have any numeric type.

Addition (+), Subtraction (-), and Multiplication (*) --The result of
these operations 1is the sum (+), difference (-), or product (*) of
the operator ‘s two operands. The operands may have any numeric types.

Real division (/) --The real division operator calculates a value
equal to the quotient of its two operands, which may have any numeric
types. I1f both operands are of type INTEGER, then the result is of
type REAL.

Executable Parts

Integer division

sign of the result

i DIV j
i MOD j

Both operands must

(DIV), and Integer modulus (MOD.) --DIV calculates
the truncated quotient of two integers. The sign of the result is
positive if the operands’ signs are the same, and negative otherwise,
The MOD operator computes the

is the same

trunc (i/3j)
i~ ((i DIV

be INTEGERS

Examples: Result:
5 + 2
5 -2
5 % 2 10
5.0 / 2.0 2.5
5/ 2 2.5
5.0L0 / 2 2.5L0
5 DIV 2 +2
5 DIV (-2) -2
-5 DIV 2 -2
-5 DIV (-2) +2
5 MOD 2 +1
5 MOD (-2) +1
-5 MOD 2 -1
-5 MOD (-2) -1

5-36

modulus function of two integers. The
as the sign of the first operand.

3) * 3)

for both DIV and MOD.

Executable Parts
Boolean Operators

The Boolean operators perform logical functions on Boolean operators
and result in a Boolean value.

NOT (logical negation) -- The NOT operator takes one Boolean operand
and produces the Boolean result equal to the inverse of the operand.
a NOT a
T F
F T

AND (logical and), OR (logical inclusive or.) --The AND (OR) operator
is used to perform the logical and (inclusive or) operation on two

Boolean operands. The result is a Boolean value defined by the truth
table:

foi]
O
o
"
4
w)
on
[+1)
O
7o)
g

Les BLes IS I
M3
mmm
w3 33

Boolean expressions are evaluated using either partial or full
evaluation, depending on the setting of the PARTIAL_EVAL compiler
option. Under partial evaluation, expr2 in

exprl AND expr2 and exprl OR expr2

is not evaluated if exprl is false (true in the second case). This
results in more efficient code and in many cases eliminates the need
for nested IF statements (refer to IF statement). Not all Pascal
compilers do partial evaluation, and programs relying on this feature
may not work when compiled with another compiler.

Partial evaluation 1is performed only for the operators AND and OR.

Relational operators with Boolean operands are always fully
evaluated.

AND, OR, and NOT cannot be used on operands of non-Boolean types,
notably INTEGERs.

Executable Parts

Set Operators

Three infix operators are defined in Pascal which manipulate two
expressions having compatible set types and result in a third set.

Union (+) --The union operator creates a set whose members are all of
those elements present in the first set operand plus those in the
second, including members present in both sets.

Dif ference (-) --The difference operator creates a set whose members

are those elements which are members of the first set but are not
members of the second set.

Intersection (*) --The intersection operator creates a set whose
members are all of those members present in both of its operand sets.

The two operands of a set operator must be expression compatible
(refer to Type Compatibility). "width" is a convenient term for the
distance between the 1lower and upper bounds of a set’s base type.
Sets with the same width have base types whose lower and upper bounds
are identical. One set is wider than a second set if every element
in the second can be represented in the first. The set

wide: SET OF -100..100
is wider than the set
narrow: SET OF 1..10

The result of a set operation is a set whose lower bound is the
minimum of the 1lower bounds of its two operands, and whose upper
bound 1is the maximum of the two upper bounds. Before the operatign
is performed, if either operand has a width other than the result’s
width, it is automatically widened prior to the operation.

Given:
VAR where TYPE
neg: MINUS; MINUS = SET OF -10..-1;
pos: PLUS; PLUS = SET OF 1..10;
crs: CROSS; CROSS = SET OF -5..5;

then the result of the expression (neg + pos) is a set whose base
type 1is the range -10..10. The base type of the set resulting from
(crs + pos) is the range -5,.10.

5-38

Executable Parts

Narrowing of sets is also automatic for set assignments and actual
value parameters. Compile- and run-time range checks are performed

to verify that the narrowing of a set does not discard any elements.
For example, in the assignment

Crs := Crs + pos

the result of the union is of type SET OF -5..10 and thus must be
narrowed to SET OF -5..5. A run-time error will occur if the result
has as members any of the numbers in the range 6..10.

Set Constructor--Another construct, the set constructor, is
considered to be an operator and it too creates a set.
Syntax:

set

»(1)}
J ~ 2y
/"
expression

constructor]

type
identifier

expression

Executable Parts

Each expression in the constructor is entered into the set. Every
element between two expressions may be included by using the range
(..) symbol between the two. The type identifier preceding the left
bracket is used to specify exactly what type of set is to be created.
If it is not supplied, one of three possibilities will occur,
depending on the type T of the elements in the set:

l) If T is INTEGER, then the set created is of type

SET OF 0..255

Both compile- and run-time checks are performed, if necessary
to ensure that specified elements are 1in this range. Thus the
set [25, 0, 255] is legal, but [-1, 256] is not.

2) If T is any other ordinal type, the set created is a set whose
base type is the entire ordinal type. The set [‘A°, “T7], for
example, has the type SET OF CHAR;

3) If the empty set [] is specified the type of the set will be
determined from context.

The type identifier, then, 1is needed to construct integer sets
outside the range 0..255. But it is also desirable to specify the
type for sets over other subrange types for efficiency reasons. The
set UPPER CASE [A°.. T’] requires much less storage than the set
JA°A°..°T"]7 and has a corresponding savings in manipulation time.

Examples: Result: Type of Result:
.[1..5] + [5,10] [1..5,10] SET OF 0..255
PLUS .[1,5] * PLUS [5,10] PLU§ [5 PLUS
[fa”..’2"] - [a’, z") ['b"..7y"] SET OF CHAR

3-40

Executable Parts

Relational Operators

Relational operators are used to compare two operands and return a
Boolean result. The operands may be INTEGERs, REALs, LONGREALs,
Booleans, sets, or pointers. Relationals appear between two
expressions, which must be compatible, and always result in a value
of type Boolean. The relational operators are:

(less than)

(less than or equal)
(equal)

(not equal)

(greater than or equal)
(greater than)

(set membership)

]]

HY VAL AN
v

2

Oordinal Relationals --The relationals that can be used with operands
of type INTEGER, BOOLEAN, CHAR, .or any enumeration or subrange type,
are <, <=, =, <>, >=, and >. These operators carry the normal
definition of ordering for numeric types, and CHAR relationals are
defined by the ASCII collating sequence. The order of enumerated
constants is defined by the order in which the constant identifiers

are listed in the type definition. Thus the predefinition of BOOLEAN
as '

TYPE BOOLEAN = (false, true);

means that false < true. An expression having an ordinal type may
also appear as the first operand of the IN operator.

Some Boolean functions may be performed using the relational
operators with Boolean operands, as shown in the truth tables below:
(note that false < true). In particular, <= is the implication

operator, = 1is equivalence, and <> is exclusive or. (T = true, F =
false.)
a b a<b a<=b a=b a<>b a>=b a>b

mm 3
Mo
I WL
HEE g
g3 o

ms3mm
HamH
b rmm e

Numeric operands are converted if necessary to a type of higher rank
using the rules mentioned in the Arithmetic Operators section.

5-41

Executable Parts

String Relationals --Arrays of characters can be compared using the
operators =,<>,<,<=,>, or >=, If either string is shorter than the
other, it is padded on the right with blanks before the comparison.
Both packed and unpacked strings can be compared. If one string is
packed and the other unpacked, the unpacked one is packed prior to
the comparison. Thus a string comparison may involve both a blank

filling and packing or unpacking operation as well as the actual
comparison.

Pointer Relationals --Pointers can only be compared using the
relationals = and <>, Two pointers are equal if they point to exactly
the same object, and are not equal otherwise. Pointers of any type
may be compared to the constant nil. Pointers can only be compared

to other pointers, and their two pointer types must have identical
base types.

Set Relationals --Two sets can be compared for equality and
inequality with = and <>. 1In addition, the <= operator is used to
denote the subset operation, and »>= denotes the superset operation.
One set is a subset of a second if every element in the first set is
also a member of the second set., Also, if this is true, then the
second set is said to be a superset of the first. Sets are "widened"
if necessary (as described in the Set Operators section) before the
relational operation. The < and > operators are not allowed on sets.

The 1IN operation is used to determine whether or not an element is a
member of a set. The second operand has the type SET OF T, and the
first operand has an ordinal type compatible with T. To test the
negative of the IN operator, the following form is used:

NOT (element IN set)

Heap variables (dynamic variables in Heap 2 programs) that occupy
1024 or more words cannot be compared using relational operators.

w
|

42

Executable Parts

Examples:

PROGRAM show relational;
TYPE -
CCLOR = (red, yellow, blue);
VAR
a,b,c: BOOLEAN;
P,g: "“POOLEAN;
s,t: SET CF COLOR;
col: COLOR;
BEGIN

(S0,]

2
2

nou

5.0L+1;
ND (b OR (NOT c AND (b <= a))):
col > red;
P = g) AND (p <> nil) THEN p~ := a = b;
s <> t;
s <= t;
col IN {[yellow, blue];
NOT (red IN s);

>
<
A

jof

CoOoDUoO-UoDoOUD
5]
o~ i

1]

ENC.

Function References

A reference to a function can be thought of as an operator, whose
operands are the actual parameters passed to the function.

Syntax:

function —’I function identifier Hactual parameter list }—b{ selector }——»
reference

The result, whose type is defined in the function heading, is treated
identically to the result of any other operator, and may be used
inside an expression. Actual parameters must match the function’s
formal parameters in number, order, and type (refer to Routine
Declarations).

If the function’s type is structured, then components of the result
value may be accessed using an appropriate selector. Care must be
taken to avoid 1inefficient use of this construct. It is usually
better to copy the result of a structured function into a local
variable before accessing.

Functions may be recursive.

Executable Parts

Example:

PROGRAM show_function (INPUT,OUTPUT);

VAR
n,
coef,
answer: INTEGER;

FUNCTION fact (p: INTEGER) : INTEGER;

BEGIN
IF p > 1
THEM fact := p * fact (p-1)
FLSE fact := 1

END;

FUNCTION binomial _coef (n, r: INTEGER) : INTEGER;

BEGIN

binomial coef := fact (n) DIV (fact (r) * fect (n-r))
END;

BECIN {show_function}
read(n);
FOR coef := 0 TO n DO
writeln (binomial_coef (n, coef))
END. {show_function}

5-44

Executable Parts

Constant Expressions

A constant expression is one that the compiler is able to evaluate at
compile time. 1In the syntax diagrams in Appendix A, every reference
to the non-terminal "constant" is calling for a constant expression
(these are Pascal/1000 extensions; standard Pascal allows only signed
and unsigned 1literals and constant identifiers). The syntax is no
different from ordinary expressions, but there are restrictions on
the operators and operands of a constant expression. Allowed in
constant expressions are the following:

Operators
+ (unary and binary)

- (unary and binary)
*

/
DIV
MOD

Predefined functions:
pred
succ
ord
chr
odd
abs (except for REAL or LONGREAL operands)

Oper ands
integer literals
real and longreal literals
string literals
previously-defined constant identifiers

Other operators, such as the relationals, Boolean operators, and
other predefined functions are not allowed. Neither are selected
constants (e.g., ‘table[5] where table is a structured constant).

Structured constants are not constant expressions, and can only
appear in CONST declarations.

Constant expressions are called for in CONST declarations, subrange

definitions, the variant part of a field list, structured constants,
and case statement label lists,

5-45

Executable Parts

Examples:

CONST
pi = +3.14159;
pi_sqr = pi * pi;
num_symbols = 5;

TYPE
SYM_ARRAY = ARRAY [l..num_symbols+l] OF CHAR;

CONST ,
syms = SYM ARRAY [succ(2) OF 'A
abs (-3) OF B

’
’l
1:

VAR i: INTEGER;
BEGIN

CASE i OF

num_symbols * 2: BEGIN

END;

num_symbols DIV 2: BEGIN
END;
END;
END

Executable Parts

Type Compatibility

Pascal

defines a set of compatibility requirements for the operands

of each operator, based both on the operator itself, and the types of
its operands.

Relative to each other, two types in Pascal are either

identical,

compatible,

assignment compatible,
expression compatible,
incompatible

Identical Types

Two types are identical if either of the following is true

1)

2)

their types have the same type identifier.

if Tl and T2 are their two type identifiers, and they have been
equivalenced by a definition of the form

TYPE Tl = T2

Compatible Types

Two types Tl and T2 are compatible if any of the following are true

1)

2)

3)

4)

Tl and T2 are identical types.

TL and T2 are subranges of the same base type, or Tl is a
subrange of T2 or T2 is a subrange of Tl.

Tl and T2 are set types with compatible base types.

Tl and T2 are string types (need not match in length or packing
representation - Pascal/1000 extension).

5-47

Executable Parts

Assignment Compatible Types

T2 1is assignment compatible with Tl (that is, a value of type T2 can
be assigned to a variable of type Tl) if one of the following are

true:

1) 11

and T2 are identical types which are not files nor

structures that contain files.

2) T1
3)T1
4) 11

5 T1
is

6) .T1

is REAL and T2 is INTEGER or an INTEGER subrange.
is LONGREAL and T2 is INTEGER or an INTEGER subrange.
is LONGREAL and T2 is REAL.

and T2 are compatible ordinal types and the value of type T2
in the closed interval specified by the type T1.

and T2 are compatible set types and all the members of the

value of type T2 are in the closed interval specified by the
base type of T1.

7) 11

and T2 are strings and the length of T2 is less than or

equal to the length of T1.

For operations which require assignment compatibility, a compile- or

run-time

a)

h)

error will be produced if either:

Tl and T2 are compatible ordinal types and the value of type
T2 is not in the closed interval specified by the type Tl.

Tl and T2 are compatible set types and any member of the
value of type T2 is not in the closed interval specified by
the base type of the type Tl.

For operations which require assignment compatibility, the following

implicit

a)
b)
c)
d)
e)
£)
9)

5-48

conversions are performed prior to the operation:

l-word INTEGER values are converted to 2-word INTEGER values.
2-word INTEGER values are converted to l-word INTEGER values.
INTEGER values are converted to REALS.

INTEGER values are converted to LONGREALS.

REAL values are converted to LONGREALS.

Set values are widened or narrowed to the type TI.

Unpacked strings are converted to packed strings, and vice
versa, and shorter strings are converted to longer strings
and filled on the right with blanks.

Executable Parts

Expression Compatibility

Two types Tl and T2 are expression compatible if either of the
following are true,

a) Tl is assignment compatible with T2

b) T2 is assignment compatible with Tl

Special Cases

The pointer constant nil is both compatible and assignment compatible
with any pointer type.

The empty set [] is both compatible and assignment compatible with
any set type.

5-49/5-50

Chapter 6
Files

Although files are declared in the variable declaration section, they
are very different from other variables. Their main purpose is to
allow the program to communicate with its environment.

Unlike other variables, any information stored in a file by a
Pascal /1000 program is located on a peripheral device, not in the
program’s partition or EMA. This is accomplished by associating the
file identifier with a file NAMR, or logical unit number. Several
file identifiers may be associated in this way allowing the program
to accept input or send output to several file NAMR’s or logical unit
numbers. This association may be changed when the program is run, as
well as during program execution.

There are two major file types; logical and physical files. A logical
file is any file named in a Pascal/1000 program. There are various
types of 1logical files; they differ both in the type of their
components and in the way their components may be accessed. A
physical file is any RTE file, identified by a file NAMR or a logical
unit number. To direct normal program input and output to a file or
device, the logical files are associated with physical files.

Logical Files

All files used in a Pascal/1000 program are referred to as logical
files. Each logical file has a Pascal/1000 identifier associated
with 1it. The logical file structure consists of a sequence of
components of the same type. These components may be of a simple
type, such as INTEGER, REAL, or CHAR, or they may be of structured
types, such as arrays or records. The components cannot be of type
FILE or a structured type which contains a file.

The identifiers associated with the file and the component type are
declared in a variable declaration section. All files used in the
program, except files INPUT and OUTPUT, must be declared before they
are used. The files INPUT and OUTPUT are predefined:

VAR
INPUT, OUTPUT : TEXT;

and can be accessed in any routine or program body if declared in the
program heading.

Files

Examples of logical files:

TYPE
string = PACKED ARRAY [1. .70] OF CHAR;
person = RECORD
name : string;
age_in _years : 0..120;
employee number : 0..5000
END;
VAR
people file : FILE OF person:
string file : FILE OF string;
int_file : FILE OF CHAR;
num_file : FILE OF INTEGER

A logical file is made available or "opened" through the predefined
procedures open, reset, rewrite or append. The file must be opened
before it can be accessed. (Exceptions are the files INPUT and
OUTPUT, which are opened at the beginning of program execution.) The
procedure used determines how the file components may be accessed.

Sequential Files

Sequential files are logical files which have been opened through the
procedure reset, rewrite, or append. Components in these files must
be accessed in sequence. Sequential files may take up less space than
direct-access files since they use only the amount of space necessary
to store their components. However, access time can be slower. For
large files, a great deal of time is wasted accessing unwanted
components if the component required is at the end of the file. Once
written, a sequential file can be changed by either rewriting the
entire file, or by appending new information to it.

Text Files

TEXT files are sequential files which have been previously declared
to be of type TEXT.

For example:
VAR
in_file : TEXT;
out_file : TEXT;
More information on Text File Declaration is contained in Chapter 4,
They are similar to sequential files of type CHAR, but are further

structured into 1lines. The file buffer of a text file is of type
CHAR.

6-2

Files

Direct-Access Files

Direct access files are logical files opened through the procedure
open.

The components of direct-access files are accessed differently from
the components of sequential files. Some examples:

If a sequential file is in the read-only state, the next component
available for reading in the file will be the one directly following
the component 1last made available. They are made available in a
sequential order. In direct-access files, however, a component can be
made available for reading anywhere within the file, regardless of
the position of the component last made available.

If a sequential file is in the write-only state, no component
occurring before the current position can be changed. To correct an
error, the file would have to be closed, reopened by the function
rewrite (which would destroy all contents) and completely rewritten.
Direct access files allow single components to be accessed and
changed anywhere in the file, regardless of the current position.

A sequential file can be either in the read-only or write-only state,
but not in the read-write state. Components of a direct-access file
can be read from and written to.

A sequential file has no limit on the number of components. There is
a maximum number of components in a direct-access file. The number
depends on the size of the components and can be obtained using the
maxpos function.

Logical File Characteristics

Every logical file is associated with a file buffer variable, current
position pointer, and a state.

File Buffer Variable

The file buffer variable is of the same type as the file’s component
type. It is denoted:

fﬁ
where f is the identifier associated with the file.

The file buffer variable is used to access the component to be read
from or written to the file.

Once the file has been opened, the file buffer may be accessed by the
program as a variable of the file component type.

Files

The contents of a file buffer may be assigned to a variable through
the assignment statement. For example:

variable_id := file_identifier”

would assign the contents of the file buffer to "variable_id". Note:
The variable must be of a type which is assignment compatible with
file’s component type. (Files of the predeclared type TEXT have file
buffers variable that are assignment compatible with variables of the
predeclared type CHAR.)

Example:

TYPE
book _info = RECORD
title : PACKED ARRAY {1..50] OF CHAR;

author : PACKED ARRAY [l..50] OF CHAR;
number : 1..32000;
status : (on_shelf,checked out,lost,ordered)
END; -
VAR

book : book_info;
book_file : FILE OF book_info;

book := book file”;

Current Position Pointer

The current position pointer marks a component of the file. It is
used with the file buffer to access components of the file.

Mode or State

At any time, a logical file may be in one of four states; read-only,
write-only, read-write, or closed.

Physical Files

A physical file is a disc file or device in the environment external
to the Pascal/l000 program. It is identified by an RTE NAMR (which
may be a logical wunit number). Physical files are accessed in
Pascal/1000 by associating this NAMR with a logical file identifier.
A Pascal/1000 program makes no distinction between the two kinds of
physical files, disc files or devices.

Files
Opening Files

Although a file is recognized by the program after its declaration in
a variable declaration section, it cannot be accessed until it has
been opened. There are four predefined procedures which can be used
to open a file. A file opened by the procedures rewrite, reset, or
append, is a sequential file. A file opened by the procedure open is
a direct-access file,

Reset

A file opened by the procedure reset (f) can be read by a Pascal/1000
program until the file is closed. It is opened in a read-only state,
for sequential access, and no information can be written to it.

1f parameter f is omitted, the file INPUT is assumed.

After the procedure reset(f) is called, if the file f is not empty,
the current position points to the first component, the file buffer
is assigned the value of the first component, and the function eof (f)
returns FALSE. If the file is empty, the contents f~ is not defined
and eof (f) returns TRUE.

A second parameter may be included in the procedure call. This is a

string parameter described in Associating Files Through The String
Parameter in this chapter.

The third parameter is also optional and of type string. The string
may contain any of the following strings separated by commas.

CCTL - specifies the text file f has carriage control. If £ has
not been declared as a text file, an error will occur.

NOCCTL - specifies the text file f has no carriage control., If £
is not a text file, an error will occur.

SHARED - specifies the file may be open to more than one program.

EXCLUS - specifies the file may by open only to one program at a

time.

If file f is a text file in the write-only state, the defaults are
EXCLUS and CCTL. Otherwise, the defaults are EXCLUS and NOCCTL.

NOTE: The strings CCTL, NOCCTL, SHARED and EXCLUS must be upper case.
A sample file opened by procedure reset (f) is shown below .

File example_file contains four components. It is in the closed state.

example_file: | | I I I |

Files

After the call
reset (example file)

the file is in the read-only state containing the same number of
components, the function eof (f) returns FALSE.

current position

|
: | Pl I P |

The file buffer, example_file“, will contain the first element.

Rewrite

When a file f 1is opened by procedure rewrite(f), it is in the
write-only state. Rewrite (f) discards any previously existing
components of the file (the file is then empty) and the current
position points to the first component of the file. The content of
the file buffer f£" is undefined, and the function eof (£) returns
TRUE. A second parameter may be included in the procedure call. This
parameter 1is described in Association Files Through The String
Parameter in the Chapter.

If the parameter f is omitted, the file OUTPUT is assumed.
A sample file opened with procedure rewrite is shown below.

File example file is a file containing five components. It is in the
closed state’,

file example file:| +~-===+ +=eee- L e I et I +

bl Il Pl i |

|
| I I I (I |
T S S, + - R — + Hmm———t

After procedure call
rewrite(example_file)

the file now is empty (contains no components) and is in the
write-only state.

current position

file example file: |

Files

A third parameter may also be included. It is interpreted as it is
by reset.

Append

A file opened by the procedure append (f) is in the write-only state.
The file opened by procedure append is similar to that opened be
procedure rewrite(f). However, the components in this file are not
discarded. The content of the file buffer £~ is undefined and the
function eof (f) returns TRUE. The current position pointer is moved
to 3just beyond the last component. Anything written to the file at
this point will be appended to what previously existed in the file.

A second parameter may be included in the procedure call. This is a
a string parameter that will be described in Associating Files
Through The String Parameter in this chapter. A sample file opened
with procedure append is shown below.

A third parameter may also be included. This parameter is

interpreted as it is by reset. File example_file contains three
components. It is in the closed state.

example file: | | [| |

After the procedure call

append (example file)
the file still has the same number of components and is in the
write-only state. It can be written into after the last component.
The function eof (f) will return TRUE.

current position

& ———

|
example_file: ‘ | | I |
|

Append is a Pascal/l1000 extension.

6-7

Files

Open

The procedure open(f) allows the file to be read from and written to.
The file is said to be a direct-access file and is in the read-write
state. The current-p051t10n pointer is at the first component. The

file buffer is undefined immediately after the call to open. The
function eof (f) returns FALSE.

A second parameter may be included in the call to open. 1In the
procedure call,

open(f,s)
string s is 1nterpreted as described in Associating Files Through The
String Parameter in this chapter. A third parameter as descrlbed w1th

the procedure reset may also be used. Use of the strings 'CCTL and
‘NOCCTL “, however, will cause an error.

Example:

Before the call to open, file open_ex contained three elements.,

|

file open ex | | I I |
- I
I

It is in the closed state and its file buffer is undefined.
After the call
open (open_ex)

the file is in the read-write state, the file buffer remgins
undefined, and the current-position pointer is moved to the first
component .

current position

Qe

file open_ex

Open is a Pascal/l1000 extension.

Files

Associating Logical and Physical Files

A physical file may be associated with a logical file in one of three
ways:

1. I1f the 1logical file appears as a parameter in the program
heading, an external name is bound to that file when the program
is invoked, through the run string.

2. An external name may be supplied as a second parameter to the
predeclared procedures append, open, reset and rewrite.

3. If no external name is supplied, a logical file will be bound to
a scratch file by the use of append, open, reset, or rewrite.

Associating Files in the RU Command

File identifiers listed in the program heading are program
parameters. All such files are associated with physical files at run
time through the parameters of the RU command.

For example, a program with the heading:
PROGRAM file_example (INPUT, OUTPUT)

may be run by the following RU command:
:RU,FILE_,1,1

If the logical unit number 1 is associated with the user ‘s terminal,
the program file_example will accept any input from that terminal and
display any output on that terminal.

The RU command allows the programmer to change the association

between files 1listed as program parameters and physical files each
time the program is run.

The number of files which can be associated in this way is limited by
the maximum length of the RU command, which is 80 characters.

For example, the RU command:
RU,MANYF’lyl,l,l'l' 1'1, l' 1, 1' l'l

will allow a maximum of twelve formal files to be associated with
logical unit number 1.

The correspondence between logical files listed as program parameters
and physical files passed through the RU command is positional. The
first external name is bound to the first program parameter, the
second external name to the second program parameter, and so on,
until one or the other of the lists is exhausted.

Files

The binding of a 1logical file to a physical file is done when a
procedure call to append, open, reset, or rewrite is executed. For
this reason, if the number of program parameter files exceeds the
number of files in the RU command, a run-time error occurs when an
attempt is made to open the file. If the number of files in the RU

command 1is greater then the number of program parameter files, no
error occurs.

For example, if a program with the heading:
PROGRAM example (INPUT, OUTPUT, data_file);
is called with the RU command:

RU,EXAMP,1,1,DFILE:LW:RL,PFILE:LW:RL

no error will occur and the last parameter, PFILE:LW:RL, in the RU
string is ignored.

In a program with heading and declarations:

PROGRAM testcase (INPUT,filel, file2,file3,filed,file5);

TYPE
employee =RECORD
name:ARRAY [l1..30] OF CHAR;
age: INTEGER;

sex :CHAR;
department :ARRAY [1l..30] OF CHAR;
END;
VAR
filel,file2:FILE OF INTEGER;
file3: TEXT;

file4:FILE OF LONGREAL;
file5:FILE OF employee;
file6:FILE OF CHAR;

The files 1INPUT, filel, file2, file3, file4, and file5 mgst ?e
associated with external files or 1logical unit numbers specified in
the RU command.

A compile-time error will occur if file OUTPUT is referred to within
the program. The file file6 may be associated with a physical file
through the use of the string parameter.

NOTE: File identifiers are listed as program parameters before being
defined. This is one of two places where identifiers may
appear before being declared in the program's variable
declaration section.

6-10

Files

Associating Files Through the String Parameter

Another method of associating logical and physical files is through
the string parameter. This method involves the use of the optional
second parameter in the predefined procedures reset, rewrite, open
and append.

The second parameter of the procedures reset, rewrite, open and
append is a string which names a physical file (NAMR) to be
associated with the logical file named by the first parameter. Note:
Since the parameter is a string, any single quotes appearing in the
file NAMR must appear in the string as two single quotes. Since upper
and lower cases are significant in strings, all characters should be
upper case in the string parameter to satisfy FMP requirements.

For example:
OPEN (direct_access_file, 'STFIL::JA")

will open the previously declared logical file, "direct_access file"

and associate that logical file with the physical file STFIL located
on the cartridge JA.

reset (integer_file,’1")

will open the previously declared logical file "integer_file" and
associate that logical file with logical unit number 1.

The string parameter allows the user to both specify and later change
the association between logical and physical files within a program.
If a 1logical file 1is opened through a procedure using a second
parameter, any previous association between that logical file and a
physical file 1is no longer in effect. The physical file is closed
and a new physical file (named by the second parameter) is opened and
associated with the logical file.

6-11

Files

For example: -

PROGRAM change file;

TYPE
small integer =0..50;
VAR -
logical file:FILE OF small integer;
BEGIN -
reset (logical file, 'FILEl1); {logical file is now associated}
. - {with physical file-FILCl. }
reset (logical file, 'FILE2"); {the association between }
. {logical file and FILEl is }
. {broken, logical file is now }
. {associated with™a new file }
. {FILE2. }
rewrite (logical file, "FILEl1"); {the association between }
) - {logical file and FILEl }
. {is reestablished. }
END.,

Scratch Files

If neither of the two methods for associating logical and physical
files 1is wused, the logical file 1is automatically associated with a
scratch file.

This scratch file 1is placed on the first available cartridge and
listed in the cartridge directory. It is given a unique name by
Pascal/1000. Scratch file names fall within the ranges of PASCO00 to
PASC99, and PAOl00 to PA9999. The compiler will first attempt to use
the file name PASC00. If the name 1is not unique, the range of names
is searched until a unique name is found.

Scratch files exist only during program execution unless the string

SAVE 1is 1included as a second parameter in the predefined procedure
close (see CLOSING FILES).

6-12

Files

Example:

from RTE:
:RU,SORT,DATA: : 50 ,SDATA

in Pascal/1000:

PROGRAM sort (unsorted, sorted); { Want to pass 2 files }
{ to this program

Nt

VAR
scratchl: FILE OF REAL; { A local file }
unsorted, { 2 formal files }
sorted: TEXT;
BEGIN
reset (unsorted); { opens DATA: :50 }
rewrite (sorted); { opens SDATA }
open (scratchl); { opens scratch file }
. { associate files with }
. { specific physical files }
reset (unsorted, ‘NWDATA::GR');
rewrite (sorted, ‘17); { Associate file with terminal }
open (scratchl, “SCR1l::50°); { opens SCR1l::50 }

.
-

END.

Relationship Between Logical Files and FMP Files

Brief Summary of FMP File Types

Ty pe Description

A non-disc device.

0
1 A fixed length, 128 word record, non-extendable, random
access file.

2 a fixed length, user defined record length, non-extendable,
random access file.

3 A variable length, variable record length, ex tendable,
sequential access file.

4 Ssame as 3, but usually contains ASCII data.

5 Same as 3, but usually contains relocatable binary code.

6 Same as 3, but usually contains a program in memory image
format.

7 Same as 3, but usually conatins absolute binary code.

>7 Same as 3, but contents are user defined.

For more information, refer to the RTE-IVB Programmers Reference
Manual.

Files

Sequential Files

Any FMP file type may be accessed as a sequential file, with the
exception that the procedure append may not be used with type 1 or 2
files,

If the physical file does not exist, and a file name (instead of an
LU number) is listed as a second parameter to the procedure rewrite
or append, the file is created using the type and size specified. If
the type is missing, it will default to 3, and if the size if
missing, it will default to 24 blocks.

Direct-Access Files

A direct-access file must be a type 1 or 2 file. If the size of the
file’s component type is 128 words, a type 1 file is used, and a type
2 is used in all other cases. If the procedure open attempts to make
available a type other than 1 or 2, by either accessing an existing
file or by having a NAMR specified as the second parameter, an error
will occur.

If the file does not exist, it is created with the type as specified
by the NAMR provided, or if omitted, it is determined by the
component size. The size of the file is either specified in the
NAMR, or if the size is omitted, it defaults to the number of blocks
necessary to contain 1024 records,

Logical file Type of Physical File Resultant Type of File

sequential | non-existant | 3, with 24 blocks
| logical unit number |
I 1 (1) | 1
I 2 (1) I 2
I3 | 3
| 4 | 4
I 5 | 5
| 6 | 6
|7 |7
direct | non-existant | 1 or 2, with 1024
| | records (2)
| logical unit number | error (3)
| 1 I 1
| 2 | 2
| 3 | error (3)
| 4 | error (3)
| 5 | error (3)
| 6 | error (3)
|7 | error (3)

e e 2 2 2 2 2 2 2 2 - -+ 2 2t 3+ 2 - 4 -+ 5 &+ 2+

6-14

Files

Notes:

1. If used with append, the following error will occur:

*** PASCAL I/0 ERROR ON FILE XXXXX
FILE CANNOT BE TYPE 1 OR 2

2. If the size of the component type (which is the record length) is
128 words, the type is 1, otherwise, the type is 2.

3. The following error will occur:

*** PASCAL I1/0 ERROR ON FILE XXXXX
FILE MUST BE TYPE 1 OR 2

Interactive File 1/O

The following should be taken into consideration when wusing
interactive file 1/0:

- If a string that contains an odd number of characters is read
from a terminal, an additional blank will be appended to the

sting. This is because FMGR will only accept an even number of
characters.

- When input is being read from a terminal, a carriage return yith
no preceding characters will be interpreted as an end-of-file.
This can be detected and corrected by using the statement:

WHILE eof (f) DO reset(f.);

where f is the identifier associated with the file being read.

Files

Sequential File Operations

Once a file has been opened it can be accessed by the program. There
are four predefined procedures in Pascal /1000 which can be used to
access the components of a file. They are the procedures get (f),
put(f), read(f,v) and write(f,v), where f is a file, and v is a
variable of a type compatible with the file’s components.

Manipulation of files accessed using these procedures is described
below.

Get(f)
The Procedure get(f) will

1. Advance the current-position pointer one component.

2. Assign that component to the file buffer.

If the component placed in the file buffer is the last component of
the file, the function eof (f) will return TRUE the next time get (f)
is called. If the file was not opened in the read-only or read/write
state, or if the eof(f) was true prior to the procedure call, an
error will occur.

For example:

The file "example file" is a character file whic@ has previogsk

been filled with the three character components ‘a‘’, ‘b’, and ‘c”.

The following figures show the results of a call to the procedure
reset, and subsequent get (example_file) procedure calls.

reset (example_file)

\
| 4=—emm b e + e + state : read-only ..
example file | | a | | b | | ¢ | file buffer contents : ‘a
| 4=——e + Fe—eeet e + eof(f) : FALSE
get(example file)
I
v
| +===m=4 e + e + state : read-only L,
example file | | a | | b | | ¢ | file buffer contents : ‘b
| 4=——— + e + e + eof (f.) : FALSE

Files

get (example file)

| +==——- + - + Ae———— + state : read-only
example file | | a | | b | | ¢ | file buffer contents : ‘c’

I e I + - + eof (f) : FALSE

get(example file)
-
v

| 4= + - + A + state : read-only
example file | | a | | b | | ¢ | file buffer contents : undefined

| 4= + Aee——— + - + eof(f) : TRUE

Read (f,v)

For a file f, and a variable v of a type compatible with the type of
the file’s components, the procedure call

read (f ,v)
will
1) assign the contents of the file buffer to variable v,
2) advance the current-position pointer one component, and
3) assign that component to the file buf fer.

Since steps 2 and 3 are the same action performed by the procedure
get, the statements,

ve=f";
get (f.)

are equivalent to the procedure call
read (£ ,v)
If file £ is omitted, then the file INPUT is assumed.
As with the procedure get (f), errors will occur if the file was not

opened in the read-only or read/write state, or if eof(f) was TRUE
prior to the call to read (f,v).

The procedure read(f,v) may contain additional parameters vl,...,vn

where vl1,...,vn are of a type assignment compatible with the file's
components.

Files

The procedure call
read(f,vl,...,vn)
is equivalent to

read (£ ,vl1l);
read (£ ,v2);

read(f,vn)

Heap variables 1024 words or larger cannot be parameters for read.

Files

Put(f)

The procedure call
put (f)

will

1. assign the contents of the file buffer into the current
component of £, and

2. advance the current position pointer to the next component,

Following the procedure call, the contents of the file buffer is
undef ined. An error occurs if the file was not in a write-only or
read/write state prior to the procedure call.

For example:

The file "file_example" is an INTEGER file. The following figures
show the results of the procedure call rewrite(file_example) and
several calls to the procedure put.

rewrite(file_example)
I
v
file example | state : write-only
- | eof (f) : TRUE
|

file_example” :=3
put (file example) state : write-only
- | eof (f) : TRUE

file_example b 3

file_example” :=5
put(file_example); state : write-only
| eof(f) : TRUE

file_example I 1 3 1 1 5 |

Files

Write (f,v)

For a file £, and a variable v of a type compatible with the
components of £, the procedure call

write(£f,v)
will
1) assign the contents of the variable v to the file buffer.

2) assign the contents of the file buffer into the current
component of £, and

3) advance the current-position pointer to the next component.

Since steps 2 and 3 perform the same action as the procedure put, the
procedure call

write (£,v)
is equivalent to

£7i=v;
put(£f);

If the file f 1is not included in the procedure call, then f is
assumed to be OQUTPUT.

An error will occur if the file was not in a write-only or read/write
state prior to the procedure call.

The procedure write(f,vl) may also contain additional'parameters,
v2,...,vn, of a type assignment compatible with the file's component
type. The procedure call

write(f,vl,...,vn)
is equivalent to

write (f,vl);

write (£, vn)

Example: The program make_integer_file reads integer
interactively and stores them into integer files.

Files

values

PROGRAM make_integer_file(INPUT,out_file,OUTPUT):

VAR
temp variable:INTEGER;
Out_file:FILE OF INTEGER;

BEGIN
rewrite(out file);
read (temp_variable);
WHILE temp_variable > 0 DO
BEGIN
write(out file, temp variable);
read(temp_variable) ;™
END; 3
writeln(end condition encountered-file-closed)
END.

The following RU command, and integers when entered from LU 1 will
produce a system file ‘IDATA °~ which contains five integer components.

RU, MAKE_,1,IDATA,l
8

163

51

4502

3

0

Heap variables 1024 words or larger cannot be parameters for
write.

Example of sequential file manipulation.

Program compute mean reads in real inputs from several files. It then

computes the mean and puts the results in an answer file.

6-21

Files

PROGRAM compute_mean(inl,in2,in3,out);

VAR
inl,in2,in3 ,out : FILE OF REAL;
vl,v2,v3,mean : REAL;

BEGIN { compute mean }
{ Oopen each file. }
reset (inl); reset(in2); reset(in3);
rewrite(out);
{ Read the first number from each file.}
read(inl,vl); read(in2,v2); read (in3,v3);
WHILE NOT eof(inl) AND NOT eof (in2) AND NOT eof(in3) DO
BEGIN
{ Compute and write the mean.}
mean := (vl+v2+v3)/3;
write(out ,mean);
{ Read the next number from each file.}
read(inl,vl); read(in2,v2); read (in3,v3);
END;
END. { compute_mean }

Text File Operations

Text files may be used as parameters with any of the procedures used
to access non-text sequential files: get(f), put(f), read(f) and
write(f). In addition, several standard procedures can be used
exclusively with text files. These are readln, writeln, page, prompt
and overprint, as well as several functions, eoln and maxpos.
Manipulation of text files by these procedures are described below.

Get(f) & Put(f) With Text Files

- The procedures get (f.) and put(f) will perform similar actions on text

and non-text files. However, additional caution must be used when
using text files. 1In addition to testing for the eof(f) status, the
end-of-line status must be tested to insure the content of the file
buf fer is meaningful. This can be done by the Boolean function
eoln (f) which returns TRUE when the end-of-line is reached.

Read(f,v) With Text Files

Although the text files contain only components of type CHAR, the
variable v, in the procedure call read(f,v) may be of type INTEGER,
REAL, LONGREAL, strings, a subrange of integer, or CHAR. This is
because the procedure does an implicit conversion from the ASCII form

which appears in the text file to the actual form stored in the
variable.

If v is a variable of type CHAR, the procedure call

read (£ ,v)

6-22

Files

is equivalent to

v :=f";
get (f);

If a read is performed when the end-of-line has been reached, the
blank character “ will be stored into the character variable.

If variables of types REAL, LONGREAL, INTEGER, or INTEGER subrange,
are included as parameters in the procedure read, the file will be
searched for characters which satisfy the syntax of these variables.
For example, if the variable is of type integer, an attempt will be
made to find a sequence of digits which form a number within the
range of integers. If the sequence of digits is not found, or if the
sequence of digits form a number which is not contained in the range
of integers, an error will occur.

Any preceding blanks or end-of-lines are skipped.

After the procedure call, the file buffer will contain the next
character immediately following the characters read.

The following table shows the results of the procedure call
read (file_one, variable)

on several sequences of characters.

o o e e — +
sequence of characters contained	variable	result gtored in
in file one following current	type	variable
position pointer	l	
et e et	——m—mm————	—mmmmm e
(space) (space.)1.850 } REAL : 1.850 ‘		
I

| (space) (linemarker.) (space)l1l.850 | LONGREAL: 1.850 =
| |

| 10000 (space)l0 % INTEGER } 10000 =
|

| 8135(end-of-line) | INTEGER | 8135 ;
| | |

| 54 (end-of-1line) 36 | INTEGER : 54 :
| |

| 1.583E7 | REAL | 1.583x10(7) :
| | |

| 1.583E+7 | LONGREAL| 1.583x10(7) :
I I |

o e e e o e e o e e e e +

Table 6-1. Results of the Procedure Read(file_pne,variable).

Files

Variables of Type String

If a variable of ¢type string is included as a parameter in the
procedure read, the number of characters needed to fill the variable
are read.

Any preceding end-of-lines are skipped.

If an end-of-line 1is encountered before the string is filled, the
remaining characters in the string are filled with blanks.

The following table shows the result of the procedure call
read(file_two,str_variable)
where str_variable has been previously defined to be of type
str_variable : PACKED ARRAY [l..5] OF CHAR
sequence of characters

in file_two following
current position pointer

result stored in |
str_variable]

(space)Pascal/1000 ° pasc |
“ pas ° |

|

(end-of-line)Pascal/1000 Pasca ‘

|
|
|
|
|
|
| (space)Pas (end-of-1ine)cal/1000
|
I
|
+

Table 6-2. Results of the Procedure Read (€ile_two,str_variable).

Additional parameters

The procedure read(f) may contain several variable parameters.

The procedure call
read (f ,vl,...,vn)

is equivalent to
read(f,vl);

read (f ,vn)

6-24

Files

Write(f,v) With Text Files

When used with text files, the procedure write(f,v) uses the variable
identifiers occurring as "write parameters". The program output can
be formatted through the use of these write parameters to display
program results in a more readable format.

Write parameters have three dif ferent forms

1. variable_identifier

2. variable_identifier:m

3. variable_identifier:m:n
where m and n are field-width parameters.
If no formatting is desired, the first form is used. The variable
may be a number, character, Boolean value or string. The field-width
parameter m in this case will be defaulted depending upon the type of
the variable. Table 6-3 shows the default values.

Table 6-3. Field-width Parameter Default Values

+
| PARAMETER TYPE | DEFAULT FIELD WIDTH "M" I
| = e |
CHAR	1
string	length of string
INTEGER	12
REAL I 13	
LONGREAL	23
BOOLEAN	5 I
o o e e o o o o e e i o e T 0 +

Examples
The statements
int_var:=20;
write('This string contains”);
write(int var); .
write(’ characters’);
will produce output of the form,
This string contains 20 characters
The statement

’

FOR char_var:="a’ to 'k’ DO
write (char_var);

will produce output of the form,

abcdefghi jk

Files

If formatting is desired, the write parameters can be used to adjust
the space in which a variable is written. For variables of type
INTEGER, CHAR, or string, only the first field-width parameter can be
specified. The second form of the write parameter is used.

The field-width parameter m is an integer specifying the number of
characters which will be used to represent the variable in the text
file. If m is greater than the number of characters actually needed,
the additional characters will be represented as blanks preceding the
variable value. If m is less than the number of characters actually
needed, the field-width parameter is ignored, and the necessary
number of characters is assumed, except for strings and Booleans,
where only the first m characters are printed.

Both field-width parameters m and n can be used to format real
variables, If the parameter n is present, a fixed-point
representation with n digits after the decimal point is obtained. 1If
n is 0 the decimal point will be omitted. Under no circumstances will
more significant digits be written than are contained in the internal
representation. If n is less than the number of significant digits in
the internal representation, the number will be rounded off. When the
field-width parameter n is missing, a floating point representation
consisting of a coefficient and scale factor will be chosen.

Several adjustments may be made by the compiler if the write
parameter is specified to be written in more characters than are left
on the output line. If the field width is less than the maximum line
length, the field will be moved to a new line, otherwise, the field
will be divided. A run-time warning will be issued if either of these
adjustments occurs.

When the file name is omitted from the write statement, the
previously defined file OUTPUT is assumed.

The write statement may contain more than one write parameter. In
this case

Write (f ,pll o o 'pn);
is equivalent to
write(f,pl);

write(f,pn);

Files

Example:

The following procedures print the results of a test listing output
in a tabular format.

PROCEDURE head;
TYPE
pretty array = PACKED ARRAY [l..66] OF CHAR;
CONST
array_of_stars = pretty_array [66 OF "*'];
header = pretty_array [20 of “*°, RESULTS TEST #XR1077,27 OF °*’};
BEGIN
writeln(array_of_stars);
writeln(header.));
writeln(array of_ stars);

writeln;
wrlteln(array _of _stars);
write ('* TIME * NUMBER OF s
writeln(“* RESULTS WITHIN * DATA RECEIVED *');
write (“* * INTERRUPTS “);
writeln('* RANGE * FROM PT # 55 *);
writeln(array_of_stars);

END;

PROCEDURE out_result(str : string; real n : REAL;
1nt num : INTEGER; range_. .test : BOOLEAN);

BEGIN
write (str: 9, ‘:4,int num:7, “*“:11,range_test:7);
writeln(* -ll real n:10:5) ;

END;

Sample output:
**
********************RESULTS TEST #XR107***************************

**

**

* TIME * NUMBER OF * RESULTS WITHIN * DATA RECEIVED *
* * INTERRUPTS * RANGE * FROM PT # 55 *
AAK AR RRA AR KRR KRR A RRR AR RRA R AR AR AR AR R AR R AR AR KA AKX KA A AR kA XX KX kK &

12:00 * 1 * TRUE * 1.20000

12:01 * 3 * TRUE * 1.25000

12:02 * 6 * TRUE * 1.32000

12: 03 * 12 * TRUE * 1.22100

12:04 * 2 * TRUE * 1.21200

12:05 * 5 * FALSE * 1.23300

12:06 * 12 * TRUE * 1.22200

12:07 * 13 * FALSE * 1.21200

12:08 * 5 * TRUE * 1.11100

12: 09 * 13 * TRUE * 1.23200

Files

Readin(f,v)

The parameter list for procedure readln(f,v) 1is similar for that of
procedure read. If the file identifier parameter is missing, the
predefined file INPUT is assumed. Several variable parameters of the
types REAL, LONGREAL, INTEGER (or a subrange of INTEGER), or string
can be used.

However, read and readln differ in their use of the end-of-line.
After a call to readln, the current position pointer is positioned
after the end-of-line.

.The procedure fills its variable parameters and then skips to the
next line regardless of what remains on the line.

Readln 1is often used with only a file identifier parameter, or with
noc parameters at all. This will ignore anything remaining on the
current line and skip to the next line of input.

Example:

The 1logical file ‘LWIN2 has already been created and contains five
lines of text.

LWIN2 contains:

1.555565 HELLO THERE 564 234 56 1

.345,678 GREETINGS 3
23.789PASCAL/1000 4
2.5 BLAISE 32767 THIS IS NEVER READ

2.3 XXXXXXXXXXX9999NEITHER IS THIS

Files

The following program reads the lines contained in the text file but

accepts only the values it needs through the use of readln.

PROGRAM READLN_EXAMPLE(OUTPUT);

TYPE

string = PACKED ARRAY [1..12] OF CHAR;
VAR

real var : REAL;

str_var : string;

int var,i : INTEGER;

t file : TEXT;

BEGIN
reset (t_file, 'LWIN2');
FOR i := 1 TO 5 DO
BEGIN
writeln(new line being read’);
readln(t file,real var,str var,int_var);
writeln(Treal var 1s now ,real_var);
writeln(’str var is now ’,str_var);
writeln('int_var is now “,int_var);
writeln;
END;

END.

The results of this program are:

new line being read

real var is now 1.555565E+00
str_var is now HELLO THERE
int_var is now 564

new line being read

real_var is now 3.456780E+02
str_var is now GREETINGS

int_var is now 3

new line being read
real_var is now 2.378900E+01

str_var is now PASCAL/1000
int_var is now 4

new line being read

real_var is now 2.500000E+00
str_var is now BLAISE 327
int_var is now 67

new line being read

real_var is now 2.300000E+00
str_var is now XXXXXXXXXXX
int_var is now 999

6-29

Files

Writeln(f,v)

The procedure writeln is the same as the procedure write except that
it places an end-of-line immediately after writing the values of its
write parameters. As with the procedure write, parameters in writeln
may be of type INTEGER, REAL, LONGREAL, BOOLEAN, string or a subrange
of INTEGER.

The procedure 1is often used without write parameters, This adds a
blank line to the output and may be used to separate lines of output.

The following procedure illustrates the use of writeln.

PROCEDURE display result (book_title:string);
BEGIN -
writeln;
writeln(star array);
writeln; -
write (‘The book you have requested, ‘)
writeln(book title);
CASE book_status OF
checked_out:

BEGIN
writeln(‘is now checked out.’);
write (‘Please check with the librarian”);
writeln(’ at the main desk if you wish’);
writeln(‘to have it reserved.’);

END;

on shelf:

BEGIN ,
write (‘should be on the shelf. Pplease);
writeln(® ask the librarian at the’);
write (“information desk to help you °);
writeln(’locate the book if you cannot ’);
writeln(‘find it.”");

END;

missing:

BEGIN
write(“is currently missing. °);
writeln(“The librarian at the main”’);
write (‘desk may be able to give you’.);
writeln(® more information on its status.’);

END;

lost:

BEGIN
write(‘has been lost. Please check’);
writeln(with the librarian in room’);
write(”124 to see if it has been”);
writeln(reordered’);

END;

END{case};
END;

Files

Results from the preceding procedure:

khhkhkhhkhkhkhkhkhkhkhkhkhkkhhhhkhkhkhkkkhkhkkhkk khkhkkhkhkk kk kkkk khkk khhkk kkhkdhkdk kk k&

.The book you have requested, Programming in Pascal

is now checked out.

Please check with the librarian at the main desk if you wish
tc have it reserved.

khkkhkhhkhkhkkhkhhkhhhkhkkhkkhkkkhkhkhkhkhkhkhkkhkhkhkkhkhhhkhhkkhkhhkhhk khkkkkhk khkkkhk k%

The book you have requested, The Life of B. Pascal
should be on the shelf., Please ask the librarian at the

information desk to help you locate the book if you cannot
find it.

khkkkhkhkkhkhhhkhkhhkhkhkhkhkhhkkkkkk khkkkkhkhkkkkhkhhhkhhkhhkhkhhhkkk khkkk khkkk kk kk %

The book you have requested, Programming With Style
is currently missing. The librarian at the main
desk may be able to give you more information on its status.

khhkhkhkkkkhkkkkhkhhhhkkhhkkhkhkkhhkhk khhkhkhkhkkhhkhkhhhkhhhhhkhkhhhhkhk kkkk khkkhkkkdkkk

The book you have requested, Everyman ‘s PLl
has been lost. Please check with the librarian in room
124 to see if it has been reordered.

kkkkhkhkkkkkhkhhhhkhkhhhkhkhkkhhkhkhkkkdhhkhkhkhkkkhkhhhhkkhhhkhhhhhhkhhhhhkkkhhkkkkx

The following procedures are similar to writeln but have special
ef fects which help in the production of particular types of output.

Page(f)

The procedure page(f) will cause the next element written to text
file f to appear at the top of the next page. Page causes the line
printer to skip to the top of form so it will only effect a printed
listing. If the file f is not a text file an error will occur. If
the procedure call contains no parameters, the predefined file OUTPUT
is assumed. If CCTL is not in effect, an error will occur.

Prompt(f,vl,...,vn)

The procedure prompt(f) writes the contents of any file buffer
associated with text file f to be written tc the file. It can be
thought of as a procedure which flushes the buffer. Unlike writeln,
no end-of-line 1is written to the file after the buffer contents.
Prompt will only be meaningful if the 1listing appears on the
terminal. If the procedure call contains no file parameter f the
predefined file OUTPUT is assumed. The parameters vl,...,vn are
interpreted as for writeln. Prompt is a Pascal/1000 extension.

Files

Overprint(f,vl,...,vn)

The procedure overprint(f) will cause a carriage return, but will
inhibit the line feed. Thus, if the text file is being printed and
the end-of-line is encountered, the 1line following the end-of-line
will be printed over the line preceding it. As with page, overprint
will only be meaningful if the 1listing appears on the line printer.
I1f the procedure call contains no file parameter, the predefined file
OUTPUT is assumed. The parameters vl,...,vn are interpreted as for
writeln. If CCTL is not in effect, an error will occur.

Overprint is a Pascal/l1000 extension.

Linepos(f)

Function 1linepos(f) returns the number of characters read from, or
written to, the file since the 1last end-of-line. The component

currently in the file buffer is not included in this count.

This function is helpful with files whose data is in a fixed format
as in the example below.

File ifile contains information of the form

line n {<employee name> <sex> <age> <social security number>

. (male . .
. or - .
. female) . .
col O col 30 col 40 col 45

A file is needed whose lines have the form:

<employee name> <social security number>

20 o o
30 o o

col O col 30

Files

The following statements will create a physical file LWXXX with the
desired form,

reset (ifile);

rewrite (ofile, "LWXXX");

read(ifile,read_array); {transfer the name }

write (ofile,read array);

WHILE (linepos (ifile) < 45) DO {position to 45th column}
get (ifile);

read (ifile,read array); {transfer the ss number }

write(ofile,read_array);

where "ifile" and "ofile" are text files and read_array is a 30
character string.

Linepos is a Pascal/1000 extension.

Eoln(f)

Function eoln returns a Boolean value indicating whether the
end-of-line status for file f is TRUE or FALSE. It is important to
remember that the end-of-line status will not become TRUE until an
attempt is made to access the file beyond the last component.

Therefore, if the end-of-line status is TRUE before the statement
read (file_identifier,variable);

and variable is of type char, then the undefined contents of the file

buf fer will be stored into variable. For information about the

effects when the variable is of any other type, refer to Read (f,v)

With Text Files in this chapter.

1f the parameter £ is omitted the file INPUT will be assumed.

Files

Direct Access File Operations

In addition to the procedures already defined for non-text sequential
files (get, put, read, write) three additional procedures (seek,
readdir, and writedir) and several additional functions (position and
maxpos) can be used to access direct-access files.,

The following procedures and functions are all Pascal/1000
extensions,

Seek(f)

An important property of direct-access files is the ability to
randomly move the current-position pointer. This means any component
of the file can be accessed without sequentially arriving at its
position in the file. The current-position pointer is moved through
the use of the procedure seek. The call:
seek (f,k)

positions the current-position pointer at component k. File f must
have been previously opened as a direct-access file through the use
of the file procedure open.

No error will occur if the parameter k is a number greater than the
number of the last available component,

Readdir and Writedir

These procedures give the user the ability to seek to a particular
.component of a direct-access file and access that component using one
procedure statement.
Readdir is a combination of procedures seek and read.
.The procedure statement:

readdir (£ ,k,v)

is equivalent to:

seek (£, k);
read (f ,v)

6-34

Files

Writedir is a combination of procedures seek and write.
The procedure statement:

writedir (£ ,k,V)
is equivalent to:

seek (£ ,k);
write (£,v)

More information on these procedures is contained in Chapter 7.

Position and Maxpos

These functions can only be wused with direct-access files.
position(f) returns the integer position of the component pointed to
by the current-position pointer. Immediately after the statement:

seek (f ,k.)
function position(f.) will return the value of k.

Function maxpos(f) returns the last available component in file £.
When the result of function position(f) is greater than the result of
function maxpos (f), eof &) will return TRUE.

These functions are explained in greater detail in Chapter 7.

Closing Files

A file is closed by the procedure close. The file will be in the

closed state and any attempt to access it will produce an error.

Oopening a file will implicitly close any physical file previously
associated with that logical file.

1f any physical file which was not a scratch file was associated with
a logical file the procedure close will save the physical file'unless
the file is purged through the string parameter PURGE . ?he
procedure close(file_name, ‘PURGE ") will purge any physical file

associated by the program with the file "file_name" at the time of
the call.

If the logical file was associated with a scratch file, that scratch

file will be purged unless the string parameter ‘SAVE®~ is included as
a second parameter.

.The procedure close is a pascal/1000 extension.

Files

Brief Summary of Procedures and Functions
The procedures and functions described in this chapter are often
restricted in the type of logical files they may be used with. Table
6-4 summarizes these restrictions.

Table 6-4. Procedure and Function File Restrictions

o e +
I | Sequential | |
| | text | non-text | random access |
| e e e |
put	X X	X	
get	X	X	X
reset	X	X	
rewrite [X	X I		
append	X	X	
close	X	X	X
open			X
seek	I	X	
eof	X] X	X]	
eoln I X I I			
linepos] X			
pos			X
maxpos			X
read	X	X	X
readln	P	I	
readdir			X
write	X	X	X
writeln	X		
writedir			X
page	X I I I		
prompt	X		
overprint	X		I
o e e e +

6-36

Chapter 7
Standard Procedures and Functions

File-Handling Procedures

The following procedures are used to manipulate files from a
Pascal/1000 program. They are explained in greater detail in Chapter

6.
Append
Usage: append (f)
append (f,sl) ;
append (f,sl,s2);
Description

The procedure opens the file as a sequential file in the write-only
state. Any components previously existing in the file remain, and
the current-position pointer is positioned directly after the last
component of the file. The content of the file buffer is undefined.
The function eof(f) will return TRUE.

Parameter Types

The parameter f must be a file which has been previously declared.
It need not be closed before the call 1is made., If the file was open

before the procedure call, it is automatically closed and reopened in
the write-only state.

The string parameters sl and s2 are explained in Chapter 6.

Standard Procedures and Functions

Close

Usage: close(f)
close(£f,s)

Description

The procedure makes the file wunavailable for accessing. Any
association with a system file is dropped. The content of the file
buffer is undefined. The function eof (f) will return TRUE.

Parameter Types

The parameter f must be a file which has been previously declared.
It need not be open before the call is made. If the file was closed
before the procedure call, no error will be produced.

The second parameter is optional and is of type string. This second
parameter can take on one of two values, SAVE or PURGE. If the string
SAVE is used, the file is closed and saved as a permanent file in the
system. If the string PURGE is used, the file is destroyed as it is
closed.

If the file was associated with a system file through the program

header, or through the use of the string parameter s, the string
defaults to SAVE. Otherwise, the default is PURGE.

Get

Usage: get (f)

Description

The procedure advances the current file position, and assigns the
current component to the file buffer. If the component does not
exist, the «content of the file buffer is undefined and eof (f) will
return TRUE. If eof (f) was true before the call, an error will occur.

Parameter Types

The parameter f must be a file which has previously been opened in
the read-only or read-write state.

7-2

standard Procedures and Functions

Open

Usage: open (£f)
open(f,sl)
open(f ,sl,s2)

Description

The procedure open makes the file available in the read-write state.
A file which has been opened through the procedure open is referred

to as a direct-access file. The current-position pointer is
positioned at the first component of the file.

Parameter Types

The parameter f must be a file which has been previously declared.
If the file was open before the procedure call no error will be
produced, and the file will be opened as a direct-access file.

The second and third parameters are explained in Chapter 6.
Overprint
Usage: overprint

overprint (f)

overprint (£,vl,...,vn)

overprint(vl,...,vn)

Description

The procedure overprint causes the next line to print over the
current one when text file f is printed. NOTE: This will only affect
printed copies.

Parameters

The file f, if specified, must have been previously declared as a
text file, and opened as a sequential file. The file must have
carriage control at the time the procedure call is made.

If the parameter f is omitted, the file OUTPUT is assumed.

The optional parameters vl1,...,vn are the same as those for the
procedure writeln,

7-3

Standard Procedures and Functions

Page

Usage: page
page(f)

Description

The procedure page causes skipping to the top of a new page when the
text file f is printed. The number one is placed in the first column
of a 1line and is then recognized by DVR0O0 and DVRO5. NOTE: This
procedure will only have effect on printed copies.

Parameters

The file f must have been previously declared as a text file, and
opened as a sequential file. The file must have carriage control at
the time the procedure call is made.

If the parameter f is omitted, the file QOUTPUT will be assumed.

Prompt

Usage: prompt
prompt (£)
prompt (£,v1l,...,vn)
prompt (vl,...,vn)

Description

The procedure prompt causes the cursor to remain on the same line as
the line that has just been written to the text file f.

Parameters

The file f must have been previously declared as a text file, and
opened as a sequential file. The file must have carriage control at
the time the procedure call is made.

If the parameter f is omitted, the file OUTPUT is assumed.

The parameters vl1,...,vn are the same as those for the procedure
writeln.

Standard Procedures and Functions

Put
Usage: put(f)

Description

The procedure put writes the value of the buffer variable £~ to the
current component of f and advances to the next component. Following
the call, the content of the file buffer is undefined.

Parameter Types

The parameter must be a file which has previously been opened in the
write-only or read-write state.

Read

Usage: read (v)
read (v1l,...,vn)
read (f ,v)

read(f ,vl,...,vn)

Cescription

The procedure read accepts input from a file which has previously
been opened in a read-only state. The input is then assigned to
variables specified as parameters in the procecdure call.

Parameter Types

The parameter f must be a file which has been previously declared and
opened in a read-only state. If file identifier f is not included as
a parameter, the file INPUT is assumed.

The procedure call:
read (£ ,vl,...,vn)
is equivalent to the procedure calls:

read (f ,vl);

.

read(f,vn)
where the variables vl through vn are as explained in Chapter 6.

Heap variables 1024 words or larger cannot be parameters for read,
readdir, or readln,

Standard Procedures and Functions

Readdir

Usage: readdir (f ,k ,v)
readdir (f,k,v1l,...,vn)

Description

The procedure readdir is wused to perform a read operation on a
particular component of a direct-access file,

The procedure statement:
readdir (£ ,k,v)
is equivalent to the statements:

seek (f,k);
read (f,v)

and the procedure statement:
readdir (£ ,k,vl,...,vn)
is equivalent to the statements:

seek (£ ,k);
read (f,vl,...,vn)

Parameters

The parameter f must be a file which has been previously declared and
opened as a direct-access file by the procedure open.

The parameter k must be a positive integer. If it is greater than
the position of the 1last available component of the file, the
function eof (f) will return TRUE.

The variable parameters must be of a type which is assignment-
compatible with the file s component type.

Standard Procedures and Functions

Readin

Usage: readln (vl)
readln(vl,v2,...vn)
readln(£f,vl)
readln(f,vl,v2,...,vn)

Description

The procedure readln is used to read and then skip to the next line.
It is similar to the procedure read used with text files in that
input is received from the file and assigned to the variable
parameter (s). However, once this action has been completed, the
procedure readln will ignore any remaining characters on the line and
the next access to the file will begin on the following line.

Parameters

The parameter f must be a file which has been previously declared as
a text file and opened in the read-only state. If file identifier £
is not included as a parameter, the file INPUT is assumed.

The variables v1 through wvn may be of type CHAR, REAL, LONGREAL,
INTEGER (or a subrange of INTEGER) or string. Their values will be

assigned in the same way as variable parameters or the procedure read
used with text files.

Standard Procedures and Functions

Reset
Usage: reset
reset (f)
reset (f,sl)
reset (£,s1l,s2)
Description

The procedure opens the file as a sequential file in the read-only
state. The current-position pointer is initially positioned at the
first component and then a get is performed.

Parame ter Types

The parameter f must be a file which has been previously declared.
It need not be closed before the call is made. If the file was open
before the procedure call, it is automatically closed and reopened in
the read-only state. If £ is omitted, the file INPUT is assumed.

The second parameter and third parameters are described in Chapter 6.

Rewrite

Usage: rewrite
rewrite(f)
rewrite(£f,sl)
rewrite(f,sl,s2)

Description

The procedure opens the file as a sequential file in the write-only
state. The current-position pointer 1is positioned at the first
component . Any components previously existing in the file are
discarded and the file buffer is undefined. The function eof (f)
returns TRUE.

Parameter Types

The parameter f must be a file which has been previously declared.
It need not be closed before the call is made. If the file was open
before the procedure call, it is automatically closed and reopened in
the write-only state. If parameter f is not included, the file INPUT
is assumed.

The second and third parameters are explained in Chapter 6.

NOTE: If the Pascal file is associated with a system file by the
procedure rewrite, all contents of that system file are
destroyed.

Standard Procedures and Functions

Seek
Usage: seek (f ,k)
Description

The procedure seek positions file f at component k. Component k will
be read by the next call to get or written by the next call to put.
If k 1is greater than the position of the last component in fi{e f,
then eof(f) becomes TRUE. The content of the file buffer, £7, is
undefined following the call to seek.

Parameter Types

The parameter f must be a file which has been previously declared and
opened as a direct-access file,

The parameter k must be a positive integer. It need not be less than
or equal to the position of the 1last component of file f. However,
if k 1is greater than the last possible position in the file, the
function eof(f) will return TRUE, and any attempt to access the file
at that time will produce a run-time error.

Write

Usage: write(p)
write(pl,...,pn)
write(f,p)
write(f,pl,...,pn)

Description
The procedure write places the values of its write parameters into.a
file previously opened as a direct-access file, or sequential file in

the write-only state.

Parameter Types

The parameter f must be a file which has been previously declared and
opened 1in a write-only state. 1If file identifier f is not included
as a parameter, the file QUTPUT is assumed.

Heap variables 1024 words or larger cannot be parameters for write,
writedir, or writeln.

7-9

Standard Procedures and Functions

Writedir

Usage: writedir (£ ,k,v)
writedir (£,k,vl,...,vn)

Description

The procedure writedir is wused to perform a write operation on a
particular component of a direct-access file.

The procedure statement
writedir (£,k,v)
is equivalent to the statements

seek (£ ,k);
write(£f,v)

And the procedure statement
writedir(f£,k,v1l,...,vn)
is equivalent to the statements
seek (£ ,k);

write(£f,vl,...,vn)

Parameter Types

The file parameter f must be a file which has been previously
declared and opened as a direct-access file by the procedure open.

The parameter k must be a positive integer. If it is greater than
the position of the 1last available component of the file, the
function eof (£) will return TRUE.

The variable parameters must be of a type which is assignment-
compatible with the file’s component type.

Standard Procedures and Functions

Writeln

Usage: writeln(p)
writeln (£f,p)
writeln(pl,...,pn)
writeln(f,pl,...,pn)

Description

The procedure writeln places the values of its write parameters into
the text file f, and appends a line marker to the file immediately

following the last character. Writeln will also empty the contents
of the file buffer.

The statement:
Writeln(f,pl, L 2N 4 'pn)
is equivalent to the statements:

write(f,pl,...,pn);
writeln

Parameters

The file identifier £ must be a text file which has previously been

opened. If the parameter f is not included, the predeclared file
OUTPUT is assumed.

The parameters p,pl,...,pn are write parameters as explained in
Chapter 6.

Standard Procedures and Functions

Dynamic Allocation And De-allocation Procedures

Overview

Pascal allows variables to be created during program execution. The
space allocated to dynamic variables can then be deallocated and
later allocated to another variable. Dynamic allocation and
deallocation are useful when variables are needed only temporarily,
and when a program contains data structures whose maximum size may
vary each time the program is run. Examples are temporary buffer
areas and dynamic structures such as linked lists or trees. Dynamic
variables are not explicitly declared and cannot be referred to
directly by identifiers.

The standard procedure NEW is used to create variables dynamically.
When a dynamic variable is no longer needed, the area of memory it
occupies can be deallocated by using the standard procedure dispose.
The area of memory reserved for dynamic variables 1is called the
"heap".

When it is known in advance that a group of dynamic variables may be
needed only temporarily, the state of the heap before these variables
are allocated can be recorded using the procedure mark . The variables
are then allocated as needed using new. When the variables are no
longer needed, the procedure release can be used to return the heap
to the state previously recorded by the mark procedure. The effect of
this is to dispose all variables allocated after the call to mark.

If a program attempts to create a variable when there is not enough
space remaining in the heap to do so, the following message 1s
printed:
*** PASCAL ERROR: HEAP/STACK COLLISION IN LINE XXXX

and the program is aborted.

This section contains descriptions of the standard dynamic allocation
and deallocation procedures. Chapter 9 includes information about
Pascal/1000°s implementation of heap management, and a section

describing a set of alternative short versions of heap procedures
available to the user.

New
Usage: new(p) ;

where p is a variable of type pointer.

7-12

S tandard Procedures and Functions

Description:

The pointer variable p can only point to dynamic variables of a
particular type. Variable p is then said to be bound to this type.

For example, suppose p is to be bound to type T. Then, the following
statements could be used:

TYPE TYPE
T = <type definition>; T = <type definition>;
TPTR = "T; -OR-
VAR
VAR p : "T;
P : TPTR;

When new(p) 1is executed, a section of the heap large enough for a
variable of type T is allocated, and the address is returned in the
pointer variable p. If the heap area resides in the 32K logical
address space (this is the default compiler option S$HEAP 1$) then the

value of p is a one-word address. If the heap resides in EMA (S$SHEAP
28), the value of p is a two-word address.

NOTE: Syntax error 189 will occur if new, dispose, mark or release
is used with the S$HEAP 0$ compiler option.

The new variable is denoted by dereferencing the pointer using the
symbol """ after the pointer identifier. Thus, p~ is used in the same
manner that an identifier for a static variable is used. Pointer
dereferencing is discussed further in Chapter 5.

If type T is a record with wvariants, then the amount of space

allocated 1is the amount required for the fixed part plus the largest
variant.

If type T is a record with variants having tag fields tl, t2, ...,

tn, then tag values can be specified at the time of allocation by
using an alternative form of new:

Usage: new (p,v1l,v2,...,vn);

The tag field constant values vl,...,vn must be listed contiguously
and in the order of their declaration. The amount of memory allocated
to the record is determined by the size of the variants invoked by
these tag values. These values must not be changed since no other
variants of the record can be invoked as long as the record exists in
the heap. The tag field values are used by NEW only to determine the

amount of space needed, and are not assigned to the tag fields by
this procedure.

Standard Procedures and Functions

Dispose

Usage: dispose(p);

where p is a variable of type pointer.
Description:

When dispose(p) is called, the heap area occupied by the variable
pointed to by p is deallocated. The value of p is set to nil,.

If the second form of new was used to allocate p, then the alternate
form of dispose must be used.

Usage: dispose(p,vl,v2,...,vn);

The tag field values should be identical to those specified when the
record was allocated. Dispose(p) will cause a run-time error if
variants of p are in effect that cause the size of p to be different
from its size when it was allocated. This occurs if a tag field
value, specified in the call to new, is changed in such a way that a
larger (or smaller) variant of p is referred to. Note that the tag
values themselves are not checked, but only the object’s size. Care
should be taken to ensure that the program is correct.

An error occurs if the value of the pointer parameter of dispose is
nil or undefined.

Mark

Usage: mark (p);

where p is a variable of type pointer.

Description:

The state of the heap is maintained by Pascal throughout program
execution. The procedure mark uses the pointer variable p to preserve
the current heap state information. The variable p may be any
pointer type and must not be subsequently altered by assignment.

More information may be found in Chapter 9.

7-14

standard Procedures and Functions

Release
Usage: release(p);

where p is a variable of type pointer.

Description:

This procedure restores the state of the heap to its state when p was
marked. This has the effect of disposing all heap variables alloca@ed
since p was marked. The parameter p is set to nil. An error will

occur if the value of p is already nil or is not the result of a
mark (p) .

Standard Procedures and Functions
Transfer Procedures

Pack

The standard procedure PACK assigns the values of elements of an
unpacked array to a packed array.

Usage: pack(a,i,z)

where a is of type ARRAY [m..n] OF t;
i is of a type compatible with the index type of array a.
z is of type PACKED ARRAY [u..v] OF ¢t;

The length of the unpacked array must be greater than or equal to the
length of the packed array.

The procedure successively assigns the values of the elements of
array a, starting with a[i], to the elements of array z, starting

with z[u]. All elements of array z (z[u]l...z{v]) are assigned values
of elements from array a.

The example below uses arrays that have index types compatible with
integer,

Example:
VAR
a : ARRAY [1..10] OF CHAR;
2 : PACKED ARRAY [l..8] OF CHAR;
i : INTEGER;
BEGIN

1 := 1;
pack (a,i,z);

7-16

Standard Procedures and Functions

After pack(a,i,z) is executed, the array z contains values from the
first eight elements of array a. The difference in size between
arrays a and z determines the values of i that can be used. 1In the
above example, the value of i must be 1,2, or 3. If the value of i is
3, then the 3rd through 10th elements of a are assigned to z. If the
value of i is 4 an error will occur when PACK tries to access a[ll]
since PACK attempts to assign values to all eight elements of array

zZ. The value of i must also be greater than or equal to the lower
bound of the unpacked array.

In general the following condition must be true:

1bl <= i <= lenl-len2 + 1

where 1lenl is the number of elements in the unpacked array, 1lbl is

the lower bound of the unpacked array, and len2 is the number of
elements in the packed array.

The program in the previous example has the same result if the
statment "pack(a,i,z)" is replaced by:

FOR j

:= u TO v DO
z[]] :

= a[j-u+i)

In more general terms, the statement "pack (a,i,z)" can be stated:

-

BEGIN
k :=1
FOR jJ := u TO v DO
BEGIN
z[j] := alk];
IF j <> v THEN k:= succ (k)
END;
END;

o ws

-e

where the iterative variable j is the same type as the index type of
array z, the indexing variable k is the same type as the index type

of array a, and i is an expression that is compatible with the index
type of array a.

Note that the index types of arrays a and z do not have to be
compatible.

Standard Procedures and Functions

Unpack

The procedure UNPACK assigns the values of elements of a packed array
to an unpacked array.

Usage: unpack(z,a,i)
where z is of type PACKED ARRAY [u..v] OF t;
a is of type ARRAY [m..n] OF t;
i is a type compatible with the index type of array a.
The procedure successively assigns the values of array z, starting

with z[u], to the elements of array a, ‘starting with afi]. Aall
element values of array z are assigned to elements in array a.

Example:
VAR
a : ARRAY[1l..10] OF CHAR;
z : PACKED ARRAY ([l..8] OF CHAR;
i : INTEGER;
BEGIN
i = 1;

unpack(z,a,i);

END;

After unpack(z,a,i) 1is executed, the elements a[l] through a[8]
contain values from the eight elements of array z. As in the
previous example for pack, the value of i must be 1,2, or 3. If i has
any other value an error occurs when unpack attempts to index array z

beyond the range of its index type. As in the procedure pack, i must
be such that:

1bl <= i <= lenl - len2 + 1
where lenl is the number of elements in array a (the unpacked array),

1bl is the lower bound of array a, and len2 is the number of elements
in array z (the packed array).

Standard Procedures and Functions
In the above program, the statement "unpack(z,a,i)" is equivalent to:

u
u + 1] =2z [3]

In general, the statement "unpack(z,a,i)" is equivalent to:

BEGIN
k := 1i;
FOR j := u TO v DO
BEGIN
alk]l := z([jl;
IF j <> v THEN k := succ (K);
END;
END;

‘where the iterative variable j is the same type as the index type of
array 2z, the indexing variable k is the same type as the index type

of array a, and i is an expression that is compatible with the index
type of array a.

The index types of a and z do not have to be compatible.

Standard Procedures and Functions

Additional Procedures
Halt

The procedure HALT terminates the program.
Usage: halt (n)
where n is an integer expression.

When halt(n) is executed, the integer n is displayed at the same
place run-time errors are displayed. This is the terminal from which
the program was scheduled, or the system console if the program was
not scheduled interactively.

For example, if x is equal to zero in the following program fragment:

.

CONST

div_py_O = 99,
VAR

X,Y = REAL;

3

IF x <> 0.0 THEN

y :=y/x
ELSE
halt (div_py_O);

the message:
PASCAL HALT: 99

will be displayed.

7-20

Standard Procedures and Functions

Arithmetic Functions

There are eight predefined arithmetic functions in Pascal/1000. Each
of these functions is passed an arithmetic expression as a parameter
and returns a numeric value.

The type of the value returned depends on the type of the parameter
passed. The functions abs (absolute value) and sqr (square) return
integer values if integer values are passed to them. The other
arithmetic functions return real values if integer values are passed
to them, All of the functions return a real or longreal value when a
real or longreal parameter is passed.

To compute the wvalues of the functions, Pascal/l1000 uses system
routines and compiler-defined algorithms. For each function the main
routine used to determine the result is listed in Table 7-1. For more
detailed information about the methods used, the user should refer to
the assembler code generated.

Table 7-1. System Routines Called to Calculate Function Values.

INTEGER REAL LONGREAL
abs - - -
sqr .DMP .FMP . TMPY
sgrt SQRT SQRT « SQRT
exp EXP EXP .EXP
In ALOG ALOG .LOG
sin SIN SIN .SIN
cos COoSs COs .COs
arctan ATAN ATAN -ATAN

Errors which occur within system arithmetic routines cause error
messages to be sent to the system log device. Refer to the system
routines to find the error messages generated,

Abs
Usage: abs (x)
Compute the absolute value of x.

Examples: abs(-13) returns 13
abs (-7.11) returns 7.110000E+00

7-21

Standard Procedures and Functions

Sqr
Usage: sqr (x)

2
Compute the value of x squared, (x). If the value to be returned is
greater than the maximum value for that type the largest value of
the type is returned.

Examples: sqr (3) returns 9
sqr(1.198E3) returns 1.435204E+06

Sqrt
Usage: sqrt (x)
1/2

Compute the square root of x,(x). If x < 0 then an error message
is sent to the log device and a value of zero is returned.
Examples: sqrt(64) returns 8.000000E+00

sqrt (13.5E12) returns 3.674235E+06

sqrt (=5) returns 0
Exp

Usage: exp (x)

X
Compute e (base of the natural logarithms) to the power of x(e). If
X < =129 * 1n(2) then an underflow occurs and a value of zero is
returned without an error message. If x > 128 * 1n(2) then an
overflow occurs. An error message is sent to the log device and a
value of zero is returned.

Examples: exp (3) returns 2.008554E+01
exp(8.8E-3) returns 1.008839E+00

Ln
Usage: In(x)

Compute the natural logarithm of x. If x < 0 then a value of zero is
returned and an error message is sent to the log device.

Examples: In(43) returns 3.761200E+00
In(2.121) returns 7.518877E-01

7-22

Standard Procedures and Functions

Sin,Cos

Usage: sin(x)
cos (x)

Compute the sine and cosine of x, where x is interpreted to be in
radians. If x is outside of the range -8192 * pi,.8192 * pi then an

error message is sent to the 1log device and the value zero is
returned.

Examples: sin(0.024) returns 2.399769E-02
cos (1.62) returns -4.918370E+00

Arctan

Usage: arctan(x)

Compute the arctangent of x. The result 1is in radians within the
range -pi/2..pi/2.

Examples: arctan(2) returns 1.107149E+00
arctan(-4.002) returns -1,325935E+00

7-23

Standard Procedures and Functions

Predicates

The following three procedures return Boolean results.

Odd
Usage: odd (x)

where x is an INTEGER (or a subrange of INTEGER).

Description:

The procedure odd returns TRUE if x is odd, and FALSE otherwise.

Examples:

Procedure Statement Result
odd(6) FALSE
odd (-32767) TRUE
0dd (32768) FALSE
odd (0) FALSE

Eof

Usage: eof
eof (£)

where f is file which has previously been declared and opened.
Description:

The function eof (f) returns TRUE if the file £ is not in a read—on}y
state, if a direct-access file is positioned beyond maxpos(f), or if

no component remains for sequential input.

If the parameter f is omitted, the file INPUT is assumed.
Eoln

Usage: eoln
eoln (f)

where f is a file which has previously been declared and opened.
Description:

The function eoln(f) returns TRUE if the text file f is positioned at
the end of a 1line.

If the parameter f is omitted, the file INPUT is assumed.

7-24

Standard Procedures and Functions

Transfer Functions
Trunc

Usage: trunc(x)

Function trunc returns an integer result which is the integral part
of the real or 1longreal expression x. The absolute value of the
result 1is not greater than the absolute value of x. An error will
occur if the result is not within the integer range.

Example: trunc (5.61) returns 5
trunc(-3.38) returns -3
trunc(18.999) returns 18

Round

Usage: round (x)

Function round returns the integer value of the real or longreal

expression x rounded to the nearest integer. If x is positive or
zero then round(x) 1is -equivalent to trunc(x + 0.5); otherwise,
round (x) is equivalent to trunc(x - 0.5). An error will occur if the
result is not in the integer range.
Example: round (3.1) returns 3

round (-6.4) returns -6

round (-4.6) returns =5

Standard Procedures and Functions

Ordinal Functions
Ord

Usage: ord (x)
where x is an expression of ordinal type.

The function ord returns the ordinal number associated with the value
of x. If the result can be contained in one word, a one-word result
is returned, otherwise, a two-word result 1is returned. If the
parame ter evaluates to an integer value, then this value is returned
as the result. If x is of type char, then the result is an integer
value between 0 and 255 determined by the ASCII ordering. If x is of
any other ordinal type (i.e., a predefined or user-defined
enumeration type) then the result is the ordinal number determined by

mapping the values of the type onto consecutive non-negative integers
starting at zero.

Thé predeclared type Boolean, for example, is defined:
TYPE BOOLEAN = (false,true)

thus,
ord(false) returns O
ord (true) returns 1

The same method is used to determine the ordinality of an element in
a user-defined enumeration type. For example, given the declaration:

TYPE color = (red,blue,yellow);
ord (red) returns 0
ord (blue) returns 1

ord(yellow) returns 2

Additional Examples:

Value of x Value of ord (x)
‘a’ 97
IA’ 65
-1 -1
1000 1000

Standard Procedures and Functions

Chr
Usage: chr (x)
where x is an integer expression.

The function chr returns the character value whose ordinal number is
equal to the value of the integer expression x. NO range checking on
the value of x is performed. If the value of x is not within the
range 0..255 then chr(x) yields x as its result. A type compatibility
error occurs if this result is assigned to a variable of type char.

For any character ch, the following is true:

chr (ord (ch)) = ch

Examples:
value of x value of chr (x)
63 27
100 ©r
13 (carriage return)
Succ
Usage: succ (x)

where x is an expression of ordinal type.

The function succ returns as its result a value whose ordinal number
is one greater than that of the expression x. The result is of a
type 1identical to that of x. If no such value exists, no error is
reported at the function call, but a run-time error will occur if the
value is assigned to a variable of the ordinal type.

For Example, given the declaration:
TYPE color = (red, blue, yellow);
the following is true:

succ(red) = blue
succ (yellow) returns a value that is not of type color.

Standard Procedures and Functions

Additional Examples:

Value of x Value of succ(x)
1 2
-5 -4
Ial Ibl
false true

Pred
Usage: pred(x)
where x is an expression of ordinal type.
The function returns as its result a value whose ordinal number is
one less than that of expression x. If no such value exists,_no
error is reported at the function call, but a run-time error will
occur if the value is assigned to a variable of the ordinal type.
Given the declaration:

TYPE day = (monday,tuesday,wednesday) ;

the following is true:

pred (tuesday) = monday
pred (monday) returns a value that is not of type day.

Additional Examples:

Value of x Value of pred(x)
1l 0
73 -6,
‘B’ A
true false

7-28

Standard Procedures and Functions

File Handling Functions

The functions 1linepos, position, and maxpos, enable the program to

determine the current position in a file relative to the end-of-file
and end-of-line.

Linepos

Usage: linepos (f)

where £ if a previously opened text file.

Description:

The function 1linepos returns the integer number of characters read

from or written to the text file f since the last EOLN. This does not
include the character in f£°.

Position
Usage: position(f)
where f is a previously opened file.

Description:

The function position returns the integer index of the current
component of the file f, starting with 1. This component is the next
to be accessed by read or write. The file f may not be a text file.
If the buffer £~ is full, the result if the index of that component.

Maxpos

Usage: maxpos (f)

where f is a previously opened direct-access file.

Description:

Thié function returns the integer index of the last component of the
file f. This index equals the maximum possible number of components

which can be contained in file f£. The number varies for different
files according to component size.

7-29/7-30

Chapter 8
Implementation Considerations

A practical knowledge of the implementation of Pascal /1000 is useful
for efficient programming. This chapter describes data allocation,

memory configuration, data and stack managment , heap management, and
efficient programming.

Data Allocation

The Pascal/1l000 compiler converts source code into assembly language
instructions and data definitions. The space reserved by the data
definitions is used to represent structured constants, and variables.

Type definitions are used only by the compiler and do not result in
data allocation.

The size of the data allocation is determined by the type of the
variable or structured constant. A variable or structured constant
of a PACKED type (refer to Chapter 4) is given data allocations that
optimize space wutilization. An unpacked data type is given an
allocation that allows faster data access.

This section describes the size in bits and words of the data
allocation for a variable or structured constant of a pgrtlcular type
and the boundary alignment conventions for that allocation.

Allocations for structured constants are identical to the allocations
for variables of the same type as the structured constant.

Allocation for Scalar Variables

Table 8-1 shows the allocations for variables of scalar, subrange,
and pointer types. All allocations begin on word boundaries.

Implementation Considerations

Table 8-1. Allocations for Scalar Variables

e B . o e e e +
| Type | size I Notes |
T dm e o e e e e e +
| BOOLEAN | 1 word | FALSE is represented as 0 |
| l | TRUE is represented as 1 |
Fo e T T e e e e e e +
| INTEGER | 2 words | Bit 15 of the first word is the sign bit. |
Fo e Fom i +
Subrange of	1 or 2	Subranges contained in -32768..32767
INTEGER	words	require 1 word to represent variables of
		that type. All other subranges require 2
		words to represent variables of that type.
I	I	
]	Examples:	
		Subrange Allocation]
I	———mmme o	
I	0..8 1 word I	
		-32768..32767 1 word
		10..40000 2 words
		=-70000. .~1 2 words
Fm e L —— o e e e e e +		
Enumeration	1 word	The values are represented internally as
		l-word integers in the subrange 0..(car-
		dinality of the enumeration type - 1)
Fo e Fo e o e e o +		
Subrange of	1 word	Represented by their enumerated value.
Enumeration		
L . N S o e e +		
REAL	2 words	Floating point format.
e T —— S o e e el +		
LONGREAL	4 words	Floating point format.
S et R S F o e e e e +		
CHAR	1 word	The character is represented in the right

| | byte (the left byte contains 0). |
Rl P . o - o e e e +
| Pointer | Lor 2 | 1 word if SHEAP 1$ compiler option used. |
| | words | 2 words if $HEAP 2$ compiler option used. |
R L e e o +

Allocation for Structured Variables

Table 8-2 shows the allocations for variables of array, record, file,
and set types. All allocations begin on word boundaries.

Implementation Considerations

Table 8-2. Allocations for Structured vVariables

T e e e ———————— +
| Unpacked |

| Type | Size

T o e ———_———————— e e
| ARRAY | The size of an array allocation is the sum of the allo-
| | cations of its elements:

| |

| | (product of cardinalities * (allocation of

| | of index types) one element)

| |

| | The elements are stored in row major order.

Fommme e e e e e e e e e o
| RECORD | The size of a record allocation is the sum of the allo-
| | cation of the fixed part and, if any, the allocations

| | of the tag field and the largest variant.

o e e —— +
| FILE | Let b be the number of buffers allocated for the file

| | DCB (as specified by the BUFFER compiler option,

| | default is 1)

| |

| | s be the I/0 line size (as specified by the LINESIZE
| | compiler option, default is 80)

| |

| | Allocation size for a text file (words):

| | 30 + 128*b + (s+1 DIV 2)

| |

| | Allocation size for a non-text file (words):

| | 29 + 128*b + allocation size of base type

T r——— o o e —————_—_———— e = = e o
| SET | Let n be the cardinality of the base type.

| |

] | n Allocation

| | - —————————-

| | <= 16 1 word

| |

| | > 16 1 word to represent n plus the number of

| | <= 32767 words required to represent n bits, i.e.,

| |

| | 1 + (n+l5 DIV 16)

| |

| | If the compiler cannot discern the base type, 17 words

| | (1 word + 16 words to represent 256 elements) are

| | allocated.

| |

| | Each element of the base type is represented by igs

| | corresponding bit of the set variable, with the first

| | element represented by the most significant bit. If

| | the element is not in the set, the bit is 0, and if the
| | element is in the set, the bit is 1.

o o e e e e e e o o e e e o o o o S o o o o R S T T > = o o = o o e o

Implementation Considerations

Allocation for Elements of Packed Structures

Arrays, records, sets, and files may be packed by prefixing the type
definition with "PACKED". This indicates to the compiler that the
non-structured elements of the type are to be packed.

In general, packed variables are allocated as small a space as is
possible, with the following guidelines wused in the interest of
accessibility:

a. Any item requiring a word or less of storage will not cross a
word boundary.

b. Any item requiring a word or more of storage will be aligned on
a word boundary.

The packed attribute of a structured type does not distribute to the
structured elements of the type. For example, the elements of an
array within a packed record are not packed. (They may be packed,
however, by prefixing the array definition with "PACKED").

Implementation Considerations

Table 8-3. Allocations For Elements of Packed Structures.

T T ——— T +
| Type | Allocation |
i T ——— o e e e e e e e e +
| BOOLEAN | size: 1 bit |
| | Alignment: Bit boundary |
T p——— g St +
| INTEGER | Size: 2 words |
| | Alignment: Word boundary |
e —— ey +
Subrange of	Size: Minimum number of bits necessary to
INTEGER	represent each value of the subrange
	Alignment: Bit boundary
o Mg S +	
Enumeration	Size: Minimum number of bits necessary to
	represent the value (cardinality of
	type - 1)
	Alignment: Bit boundary l
S —— e e e e e e e e e e +	
Subrange of	Size: Minimum number of bits necessary to
Enumeration	represent the value (cardinality of
I subrange - 1)	
I	Alignment: Bit boundary
S o e e e e e e e e e +	
REAL	size: 2 words
	Alignment: Word boundary I
e o e o o o e e e +	
LONGREAL	Size: 4 words
I	Alignment: Word boundary
. e ———————— e e +	
CHAR	size: 1 byte (8 bits)
	Alignment: Bit boundary I
S o o e e e o o o o e e +	
Pointer	size: 1 word if SHEAP 1$
	2 words if S$HEAP 2$
	Alignment: Word boundary
o o e e e o o e +	
SET	Let n be the cardinality of the base type. ,
I	

	n <= 16:
	size: n bits
	Alignment: Bit boundary
	16 < n <= 32767: {

| | size: 1 word + m words where m is the number |
| | of words needed to hold n bits. l
| | Alignment: Word boundary |
o SR e e o e e e e e e +

Implementation Considerations

Examples of Packed and Unpacked Structures

Example 1: Assume the following:

TYPE
SUIT = (club,diamond,heart,spade);

VAR
r : REC

O
v

INTEGER;

1..13;

SUIT;

REAL;

CHAR;

AT

BOOLEAN;

LONGREAL;

SET OF SUIT;

ARRAY ({SUIT] OF 1..13;
E t : BOOLEAN OF
true: (k,1,m : CHAR);
false: (n : INTEGER)

) o0 oo os 00 00 0 o0 e e o0 5

Au.HDQ MO 00 To

A

END;

8-6

Implementation Considerations

Variable r is allocated as follows:

10
11
12
13
14
15
16
17
18
19
20
21

22

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R et R i Dttt Sttt Rttt St it e patatat S B TR SE S SEtt
| |
+o—m a _—
I |
e e Rl e S e B et R s ettt ST Lol Ll 3
| b |
e R S et et S e e e T
I c |
e S S s it Tt et ST B e e Tt L et 3
| |
N — d —_—
| |
T e T s Dt ettt sttt T Tl bl Ll Dl et ettt bt
| e |
T S s S T R e Al D et Akt &
| f |
e T e i T e e R B D e B Al S
| g |
e s St T B B S D et e e ettt S Skt o
| |
e -——
| |
+m e h ——
| |
4= -
| |
T et S e e e e e Al Aty
| i |
T T s Rttt aatetet TR Tl Sl ettt Al sty 3
| jlclub] |
e et T e O s bl Stalod Sttt St Sedededs sty
| j [diamond] |
i E T S S i e Satah Sttt STl Sl bt St St bt
| jlheart] |
R s S S S N D St Rataah Rtttk ettt STt S bl bt 2
| j [spade] |
T T T s it e St e e e Al et ettt
| t |
e e s St s Sttt Pl ettt e e St ettt
| k (if t is true) |
T - n (if t is false) el St Statan Rttt Satath Seblel Dbl Sbelh Sl
| 1 (if t is true) |
T S S e el S e R et Al At 2
| unused* (if t is false) m (if t is true) |
D e e e e e S e St i Stth Sttt ettt Sl bt St Sttt 2

*But still allocated.

Implementation Considerations

Example 2: This is the same structured variable as'in.the Qrgvious
example, but now r is packed. Note that field j is not
packed.

TYPE
SUIT = (club,diamond,heart,spade);

VAR
r : PACKED RECORD
a : INTEGER;
: 1..13;
: SUIT;
: REAL;
: CHAR;
: 'A'..'Z':
: BOOLEAN;
¢ LONGREAL;
: SET OF SUIT;
: ARRAY ([SUIT] OF 1..13;
SE t : BOOLEAN OF
true: (k,1,m : CHAR);
false: (n : INTEGER)

b
(o}
d
e
£
g
h
i
j
CA

END;

Implementation Considerations

Packed variable r is allocated as follows:

(S L Y O ¥ H AV

10
11
12
13
14
15
l6
17

18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bt et s SRR SR SN SIS DI SIS SEPT SEUIGE SIS WIS SIS ST T SR
| |
- a ———t
| |
et T SR WU SIS PP UG SIS I WU DEYT DS SHUUIY SUOUCI SUES SIS
| b | o | unused* |
S S P ¥ ¥ W SO S DY SPUQUUGT WUGE AP RUpUS TPRpIPHSS S §
| |
4= d ———+
| |
e Sy Wy 1SS Y IS RO DApUUSIGT WY SPIGY SHSUPT U SULpUPHY SRS RPN SRS
| e | f I g |
T RSRRR J SR S SO OF S QT WU ST S WUV LT DS WP DEPP SIS §

- -——

e h ——

| |
- -——+
| |
R e e R e e st et S S S e e
| i | unused¥* |
e e s E e S e S s T B e e e
I j {club] |
i T S S S S s Tt T R R Sttt
| j [diamond] |
T R U SRS SISpHST SR S S A et Sttt ettt Ll STl Dbk 3
| j [heart] |
s T ST S S e e et Rt Sttt Sttt bt Sttt bl
I j[spade] |
R R Sl S et Ca it Stk Stk matatat Sl S LTl DD Es S bted bt 2
| t | unused* |
e s ST T S e B i e e e e e R L
| k (if t is true) | 1l (if t is true) |
e e e S n (if t is false) ———tmmetm e b=t
| m (if t is true) | unused* (if t is true) |
e s S e s e e e S Rt et Rttt

*But still allocated.

Note that the elements at the array Jj are not packed, but the array

as

a whole is treated as a field of the packed record.

Implementation Considerations

Example 3: This is similar to the previous example, but field j is
now packed.

TYPE
SUIT = (club,diamond,heart,spade);

VAR
r : RECORD

: INTEGER;

1..13;

SUIT;

REAL;

CHAR;

AL 2

BOOLEAN;

LONGREAL;

SET OF SUIT;

PACKED ARRAY [SUIT] OF 1l..13;
E t : BOOLEAN OF
true: (k,1,m CHAR) ;
false: (n : INTEGER)

QUrHITQ MO OO T W

U se o0 00 00 40 90 40 ¢0 e o

A

END;

Implementation Considerations

Variable r is allocated as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R e e R i R Rl T SN St WG ST SN S S WY
1| I
- a -——t
2 | |
R e Bt S e it s Tt WU WU ST S TSP SIS
3| b | c | unused* |
R e B Rt e e Rttt Rt T ye SH: U ST ST SET S Sy
4 | |
+-—- d -———t
5 | |
e s el B R et STl SRR RY SN WU DY ST SR S
6 | e l £ I
Rt el B e i R ST SR SRpUE ST ST WIS TR DUy SEpp
7 | |
e —_———
8 | |
- h -——+
9 | |
S S —— -——
10 | |
R e e L it LT Y I S T SR N N SEY
11 | i | unused* |
R et e o e R s STl SR SR SRR SN SUY SN ST S
12 | j [club] | j [diamond] | j [heart] | j [spade] I
LA e Rt e e R s LT Ts NS DRI SUNpST DI NPT S DI S
13 | t | unused* |
e Rt B L Rt T "SRRI WSUIUY HUIPIGE WY TPNHIY SpUPIIN SIS SHpU SRS
14 | k (if t is true) | 1 (if t is true) |
R Rttt TP B n (if t is false) Stk Skt Sl Setd Sbeled o

15 | m (if t is true) | unused* (if t is true)
e R B e O s St SeTRRUY SR ERPIY WIS DEUUPHST SINpIPHIY DENMPHIN SRR S

*But still allocated.

8-11

Implementation Considerations

Memory Configuration

Memory configuration, as discussed in this section, 1is the
configuration of a partition in which a Pascal/1000 program is
running. Figure 8-1 illustrates the allocation of memory 1in a
partition. .
Heap 0 Heap 1 Heap 2
‘ BASE PAGE BASE PAGE BASE PAGE
MAIN MAIN MAIN
AREA AREA AREA
32K
Segment Segment Segment
Overlay Overlay Overlay
Area Area Area
Image Area Image Area Image Area
A
(UNUSED) HEAP/STACK (MSEG)
AREA
\ _
EMA
HEAP/STACK
AREA
\

Figure 8-1. Pascal/l1000 Memory Configuration

The areas labeled in upper case are always allocated; those labeled
in lower case are optional.

In the heap/stack area, the stack begins at the 1low end of the
heap/stack area and grows toward increasing addresses, and the hea

begins at the high end of the heap/stack area and grows towar

decreasing addresses,

In the Heap 2 configuration, the heap/stack area is allocated in EMA.

8-12

Implementation Considerations

Base Page

The base page is the first logical page of the partition. It
contains the communication area of the operating system, driver

links, trap cells for interrupt processing, and operating system and
user program links.

Main Area

The main area of a Pascal/1000 partition contains the main program
unit, subprogram units that have been combined with the main program
unit, routines not written in Pascal/1000, and library routines.
Figure 8-2 illustrates the configuration of the main area for the
sample program "main". The main program unit is divided into
Separate sections of code and data for each routine and for the main
program.

The code section defines the actions as described in the body of the
routine or program.

The data section for a routine contains the routine’s local
variables, temporaries used in parsing expressions, formal
parameters, return addresses, dynamic link, and entry count. The
dynamic link points to the data section of the previous activation of
a recursively called routine. The entry count stores the current
level of recursion of a recursively called routine. The main data
section contains the global and temporary variables.

The main program unit’s routines are allocated first. If routine B
is declared in routine A (as with proc3 and proc2 in Figure 8-2), the
code and data for B are located before the code and data for A. The
main code and data follow the routines. The remainder of the area is
allocated as the units are relocated. In Figure 8-2 the subprogram
is relocated after the main program. Note that there is no subprogram
main code as subprograms have no body, and there is no subprogr am
main data as the only variables declared in a subprogram are the
global variables which are part of the main data section. The
non-Pascal routine, fortn, was relocated next. The libraries were
then searched to supply the routines used in the main area.

Implementation Considerations

PROGRAM main;
{main data declarations}

PROCEDURE procl;
{procl local declarations}
BEGIN
{procl code}
END;

PROCEDURE proc2;
{proc2 data declarations}
PROCEDURE proc3;
{proc3 data declarations}
BEGIN
{proc3 code}
END;
BEGIN
{proc2 code}
END;

PROCEDURE fortn;
EXTERNAL;
{fortn is a FORTRAN routine}

BEGIN
{main code}
END.

$SSUBPROGRAMS
PROGRAM subprogram;
{redeclaration of global
declarations}
PROCEDURE subl;
{subl data declarations}
BEGIN
{subl code}
END;
PROCEDURE sub2;
{sub2 data declarations}
BEGIN
{sub2 code}
END;

. {End of subprogram}

Figure 8-2.

8-14

MAIN AREA

procl code
procl data

proc3 code
proc3 data

proc2 code
proc2 data

main code
main data

subl code
subl data

sub2 code
sub2 data

b —— — ——— — — — —

library routines

MAIN AREA

Implementation Considerations

Segment Overlay Area

The segment overlay area 1is allocated only for segmented Pascal
programs. The size of this area is the size required for the largest
segment overlay. It is confiqured similarly to the main area except
there 1is no main code or data because a segment unit does not have a
body and the variables in the declaration section are redeclarations
of the global variables. Subprogram units and non-Pascal routines are
present only if they have been combined with the particular overlay.
The 1loader combines with a segment overlay those library routines
that are referenced by the overlay but have not already been combined
in the main area. If a segment overlay is smaller than the segment
overlay area, the remaining space at the end of the area is unused.

Image Area

If the Pascal/l000 program interfaces with the IMAGE/1000 subsystem
then an area of the partition must be set aside for use by IMAGE. The
compiler option $IMAGE n$ allocates n words of IMAGE area before the
heap/stack area.

Heap/Stack

The heap/stack area contains the run-time heap and stack of the

program. The size of this area is determined by the SHEAP n$
compiler option,

where:
n = 0: no heap/stack area (not allocated)
n = 1: heap/stack area in logical memory; allocated at the end

of the partition (default value)
n = 2: heap/stack area in EMA;
These three conditions are illustrated in Figure 8-1.

The heap is used for dynamic data and is described in detail in the
Heap Management section in this chapter. The stack 1is used for
stacking data of recursive routines and is described in detail in the
Stack Management section in this chapter,

The stack and heap "grow" toward each other during run time, the
stack toward increasing addresses and the heap toward decreasing
addresses. Each time data is placed on the stack or heap, a collision

condition 1is checked. If they ever meet or attempt to cross each
other, the run-time error:

*** PASCAL ERROR: HEAP/STACK COLLISION IN LINE XXXX

is displayed and the program will abort.

Implementation Considerations

Data Management

There are three classes of data in Pascal/1000 programs:

l) global data
2) local data
3) dynamic data

Global data is declared in the declaration section of the main
program block and is redeclared in each subprogram and segment unit
(see Chapter 7). Global data is static; storage for the data is
allocated once and remains accessible throughout the execution of the
program. The. scope of global data is the entire program.

The local data of a routine includes the routine’s parameters and
data declared in the declaration section of the routine block (see
Chapter 4). Local data is also static since storage for the data is
allocated once and remains accessible within the routine during each
invocation. The scope of local data is the routine in which the data
is declared. The initial values of local data are unspecified when
the routine is invoked; i.e., no assumptions should be made regarding
values "left over" from the previous invocation,

Dynamic data is allocated and de-allocated in the heap, and is

accessed via pointer variables. Dynamic data is described in detail
below (see HEAP MANAGEMENT) .

8-16

Implementation Considerations

Stack Management

The run-time stack is used by Pascal/1000 programs to save copies of
a routines’s local data during recursive calls. This is the only use
of the stack; it is not used if no recursive calls are made.

The local data of a recursive routine is allocated contiguously in
the code space of the routine. This data, along with the return
address of the routine and a copy of the top of stack pointer,
constitute the "activation record" of the routine.

I1f a routine is invoked recursively, either directly or indirectly,
then the local data values of the previous invocation must be saved
temporarily, since execution of the previous invocation is yet to be
completed. Therefore, at the beginning of each recursive invocation,
a copy of the activation record is first pushed (copied) onto the
stack, thus preserving the data values, the return address, and the
top of stack pointer.

When a routine that was recursively called completes, the copy of its
activation record at the top of the stack is popped off and copied
back into the activation record in the code space. Thus, the state
of the previous invocation is restored.

puring the execution of a routine, references to its local data are
made to the current activation record in the code space. The data on
the stack is referenced only indirectly via VAR parameters. When an
activation record is copied onto the stack, any VAR par ameters
pointing to its data are adjusted to point to the copy on the stack.
Likewise, when the activation record is copied back into the code
space, these VAR parameters are re-adjusted.

Library routines @INH1,@INH2, @GHS1l, @GHS2, @sHs1l, and @Sgsz alloy a
user to initialize the stack and to retrieve and set information
about the stack. See HEAP MANAGEMENT, below.

Heap Management

in order to make the most efficient use of the heap area, it is
helpful to be familiar with the organization of the heap and with the

specific effects of the heap management routines described briefly in
Chapter 7.

Unless otherwise noted, the explanations and diagrams below assume
that the heap resides in the 32K logical wuser address space. The

differences between S$HEAP 1$ and SHEAP 2$ are described at the end of
this section.

8-17

Implementation Considerations

Overview of Heap Organization

The heap consists of "data spaces” and "free spaces". Each data space
is preceded by a "data block", and each free space is preceded by a

"free block",. These blocks contain header information described
below.

A data space and its data block are allocated in the heap by a call
to new. Each data space represents a dynamically-allocated variable.
The pointer variable in the call is set to point to the beginning of
the data space. The data block contains the size (in words) of its
data space. This information is used when the data space is
deallocated using dispose.

A free space and its free block are created from a data space when a

pointer wvariable pointing to the space is used in a call to dispose.
The variable is set to nil.

Every free space in the heap is linked into a "free space list" which
is circularly-linked. This list is used to enable free spaces to be
reallocated as data spaces. Whenever new is called, the free space
list is first searched for a space large enough to be reallocated.
Each free block contains the size (in words) of its free space and a
link (pointer) to the next free block. The Pascal-managed "current
free 1list pointer" curr free always points to the current free list.
A free space list is initialized with a dummy free block containing
zero for the size and a link to itself,

No garbage collection or coalescing of adjacent free spaces is
performed,

If, during a call to new, the current free space list does not
contain a free space of sufficient size, the new data space is
allocated at the current top of the heap.

Calls to mark divide the heap into “"mark regions", each of which is
preceded by a "mark block". Each mark region is independent of the
others and has its own data spaces and free list. Each mark block
contains a pointer to the free list of the previous mark region and a
pointer to the previous mark block.

When new or mark is called for the first time, a dummy mark block
containing two nil pointers is initially allocated at the base of the
heap. Subsequently, whenever mark is called, a new mark block is
allocated at the current top of the heap. The value of curr_free is
saved in the block, along with the pointer to the previous mark
block. Thus, the state of the heap up to and including the last mark
region is preserved. The pointer variable in the mark call is set to
point to the new mark block. The Pascal-managed "current mark block
pointer" curr mark is also set point to the new block. A dummy free
block 1is allocated at the bottom of the new region, and curr_free is
set to point to it.

8-18

Implementation Considerations

When mark is called to begin a new mark region on the heap, previous
mark regions below it are still "active" in the sense that their data
spaces and free spaces are accessible as before. When a data space is
disposed, the resulting free space is always linked into the free
list of its mark region, i.e., the region that contained the disposed
data space. However, new data spaces are allocated by calls to new
only in the current mark region, i.e., the region at the top of the

heap. The user can change the current mark region only by a call to
mark or release,.

When release 1is called with a pointer variable that has previously
been set with a call to mark, the heap is reset to a previous state.
The variable points to a mark block on the heap. From this mark
block the pointer to the free list of the previous mark region is
recovered, to which curr free is reset. The pointer to the previous
mark block is also recovered, to which curr_mark is reset. The
pointer variable of the release call is set to nil. Thus, releasing
a mark region also releases all the mark regions existing above it on
the heap, except that the pointer variables pointing to the mark
blocks above are not set to nil,

After a mark region has been released, none of its data spaces are
accessible. However, pointer variables pointing to them are not set
to nil. Therefore, a subsequent attempt to access one of these data
spaces via a pointer variable will result in a run-time error.

The heap management routines utilize three Pascal/1000 library
routines to initialize, retrieve, and change heap status information.
These routines are:

@INHL (initialize_heap)
@GHS1 (get_heap_stack_info)
@SHS1 (set_heap_stack_info)

Note: @INH2, @GHS2, and @SHS2 are used with the compiler bption
SHeap 2S.

The parameter for these routines must be of the record type INFO_REC
in Figure 8-3 below. The heap management routines will be descr ibed
in terms of the data structures and identifiers in Fiqgure 8-3. The
three 1library routines above can be made available in the user s
program by including the code from Figure 8-3 in the program s
declaration section.

Implementation Considerations

The following description of heap management assumes the default
compiler option SHEAP 1S.

CONST

bsize = 2; {header block size for S$Heap 1$ }
minalloc = bsize DIV 2; {minimum allocation size for S$Heap 1$}

TYPE
SIZE = 0..32767 {data and free space size}
ADDR = 0. .32767; {one-word logical address}

BLOCK_TYPE = (marc, free, data);

BLOCK =
RECORD
CASE BLOCK TYPE OF
marc: (pptr : "BLOCK {ptr to prev free list }
mptr : "BLOCK); {ptr to prev mark block }
free: (fsize : SIZE; {size of free space }
fptr : "BLOCK); {ptr to next free block }
data: (dsize : SIZE) {size of data space }
END;
INFO_REC =
RECORD
tos, {top of stack }
toh, {top of heap }
init tos, {initial top of stack }
init toh, {initial top of heap }
high™ tos, {highest top of stack }
high toh, {highest top of heap }
curr free, {" to curr. free list }
curr_mark : ADDR; {" to curr. mark block}
END;

PROCEDURE get_heap_stack_info
SALIAS "@GHS1'$,
(VAR heap_info : INFO_REC);
EXTERNAL;

PROCEDURE set_heap_stack_info
SALIAS “@SH51°$
(heap_info : INFO_REC);
EXTERNAL;

PROCEDURE %nitialize_beap
SALIAS "Q@QINH1 S;
EXTERNAL;

Figure 8-3. Heap Management Declarations and Routines

8-20

Implementation Considerations

Heap Initialization

The heap is automatically initialized at the time of the first call
to new or mark.' A new mark region is created by allocating a dummy

mark block and a dummy free block. The free space list contains only
the dummy free block.

The state of the heap after initialization 1is shown in Figure 8-4,
Heap diagrams have higher addresses at the bottom, lower addresses at
the top. The heap "grows" toward lower addresses.

~

R
tos,high tos,init tos->| | |
- - U |
| | Lower Addresses
| |
R — +
| |
e
toh, high_toh -——=>] |
.
curr free --->| 0 | <=-+
- O + |
| Kmmm] ===+
~ dmmmm + Higher Addresses
curr mark --->| nil | |
- N S |
init toh --->| nil | v
- Fm et

Figure 8-4. Heap/Stack Area After Initialization

The value of init_toh and init_tos do not change once they have been
set during heap initialization.

The nil values in the mark block indicate that no previous mark
region or free list exists. The size field of a dummy free block is
always 0. The pointer in the free block points to itself, indicating
that the free list in the current mark region is empty.

The actions taken by new, dispose, mark, and release are stated below

and accompanied by examples. In each example, the heap is in the
state that resulted from the preceding example.

Implementation Considerations

The examples use the following variables:

New

TYPE
INT = -32768.'.32767;
A2 = ARRAY [1..2] OF INT;
A3 = ARRAY {1..3]1 OF INT:
A4 = ARRAY [1..4] OF INT:
VAR
Pl : "INT;
p2 : "A2;
p3 : “a3;
P4 : “a4;

mark ptr : "INT;

See Figures 8-5 and 8-6.

For new (p):

l.
2.

e}
|

22

Initialize the heap if necessary.

Search the free 1list in the current mark region for the first
free space that is large enough to hold the new variable (data
space) .

If found: Allocate the variable at the end of the free space and
adjust the length of the free space.

Else: Allocate the variable at the top of the heap if there
is room. If not, report:

*** PASCAL ERROR: HEAP/STACK COLLISION IN LINE Xxxxx
and abort the program.

Set p to point to the variable. Set the word preceding the
variable to the length of the variable in words.

Adjust toh and high toh if necessary.

Implementation Considerations

.

e ————
| |
it
high_toh,toh -=-=>|]
tmm—————
| 3 I new (p3);
e et
| word 1l|<--- p3
tmm———— +
| word 2|
e ———
| word 3|
tom et
curr_free --->| 0 | <==+
o + |
I o s
tom et
curr-mark --->| nil |
e ———t
init_toh -==>| nil |
tom—————

Figure 8-5. Allocation of a 3-word Variable

Implementation Considerations

o —— +
toh, high toh --->| |
- o e =}
| 4 | new (p4);
S +
| | <~-- p4
S S—
| |
e}
| |
ot
| |
S ——
| 3 |
fomm——t
| |<==-- p3
S +
| |
o}
| |
ot
curr free --->| 0 | <=-+
- tm—m——— + |
I
e +
curr mark --->| nil |
- .
init toh =--=>| nil |
- tommm———— +

Figure 8-6. Allocation of a 4-word variable

8-24

Implementation Considerations

Dispose

See Figure 8-7.

For dispose (p):

l'

If p is nil, report:

*** PASCAL ERROR: DISPOSE CALLED WITH A NIL PTR IN LINE XxXxX
and abort the program.

Check if p is between init_toh and toh. If not, report:

*** PASCAL ERROR: DISPOSE CALLED WITH A BAD PTR IN LINE XXXX
and abort the program.

Check 1if the size of variable pointed to by p is egual to the
size of the variable to be disposed. The size can be different if
a record with variants was allocated with tag fields specified in
the call to new, and one or more of the tag field values is
different than the original values. 1In this case, report:

*** PASCAL ERROR: DISPOSE AN INVALID VARIANT IN LINE XXXX

and abort the program.

Insert the data space to be disposed into the free list of the
mark region that contained the variable.

Set p to nil.

Implementation Considerations

toh,high_toh =--->| |

ot
| 4 | <= e +
Fmmm—— o + |
tee| =% | p4d = nil |
I === |

P | | dispose (p4):;

| lm———— | |
I | |
I e i | |
I | |
I e |
| 3 | |
I Sttt + I
I | <-- p3 I
N R et |
I | |
I et |
P | |
| =mmm——— |
curr_free-—+->| 0 | |
tm e — 4 |
R e [+

T p—— +

curr_mark--->| nil |

init_toh———)\ nil |

Figure 8-7. Disposing a 4-word Variable

8-26

Implementation Considerations

Each free space begins with a "free block" consisting of the size of
the block and a pointer to the next free block in the free list. The
free list is circularly linked.

The top-of-heap pointer is not affected by dispose.

A variable is allocated in the free list as shown in Figure 8-8.

LT —— +
toh, high_toh --->| |
e T——,

| 2 R +

tmmmmme + |

| =% | |

| 4mmmmmemt l

I | |

| = + |

I 1 | | new (pl);

I l

P | <===- pl |

| 4=t |

| 3 | |

| 4=y |

P | <===- p3 |

| 4=y |

I | |

| Amm——— |

I I |

| 4=t |

curr free -+->| 0 | |

- tmm et |

I et
tom o ——
curr_mark --->| nil |
et
init_toh -—=>| nil |
T ——

Figure 8-8. Allocation of a l-word Variable

The remainder of the free space is left in the free list and its size
is changed to the new size. If a variable the same size as a free
block is allocated (e.g., if the statement above were "new (p4)")

then the variable is allocated and the free space and free block are
removed from the 1list, returning the heap to the state shown 1in

Figure 8-6.

Implementation Considerations

In general, if the remaining space in the free block is two words or
longer, it is left in the free 1list. This is because two words are
required for a free block. Thus, if a new variable of size n is
allocated in a free space of size n+l (e.g., the statement in Figure
8-8 were "new (p3)"), then the remaining word is not used and cannot

be allocated.

Mark

See Figure 8-9.

For mark (p):

l. 1Initialize the heap if necessary.

2. Check 1if there is room at the top of the heap for a mark block
and a dummy free block (two words each). If not, report:

*** PASCAL ERROR: HEAP/STACK COLLISION IN LINE XXXX

and abort the program,

3. Allocate the new mark block at the top of the heap to begin a new
mark region. Set the first word to the value of the free list
pointer of the previous mark region. Set the second word to
point to the mark block of the previous mark region.

4, Set p to point to the new mark block.

5. Set curr_mark to point to the new mark block.

6. Allocate a dummy free block.

7. sSet curr_free to point to the new dummy free block.

8. Adjust toh and, if necessary, high_toh,.

Implementation Considerations

Fommmm et
toh, high_toh --->| |
e
curr free --->| 0 | <==-+
- S + |
I oo | ot
mark ptr, o +
curr_mark =-=>| *e-e|o-emmmem oo +
- e + |
tomm e | ——=* | [
| o mmm -t I
I I 2 [<==mmmmme - + |
| e + P
S P |
R T S, |1
I b I o
i [P + | | mark (mark_ptr);
I . 1 I -
I I
| P |<{===--p1l | |
B P
I o 3 | (-
I | 4= I
| o | <&====—=p3 | |
I B I
I b | .
| I Rl I
I I I o
T —— |1
I +=> 0 |<===moe—- | ==+
[e — + |
| | e oo e
[P p——
to——— > nil |
e -t
init_toh --->| nil |
e 4

Figure 8-9. Creating a New Mark Region

Remember that new will only search the free list in the current mark
region. The mark block’s pointer to the free list in the previous
mark region is used only by dispose and release.

Calls to new work in the same manner as before except that allocation
takes place only in the new mark region.

Implementation Considerations

Release

See Figure 8-10.

For release (p):

1. If p is nil, report:
*** PASCAL ERROR: RELEASE CALLED WITH A NIL PTR IN LINE xXXX
and abort the program.

2. Check if p is between toh and init_toh. 1If not, report:
*** PASCAL ERROR: RELEASE CALLED WITH A BAD PTR IN LINE xXXxX
and abort the program.

3. Check if p points to a mark region. If not, report:
*** PASCAL ERROR: RELEASE CALLED WITH A BAD PTR IN LINE XXxxX
and abort the program.

4, Set toh. to point to the beginning of the mark region being
released.

5. Set the released mark block’s previous mark .block pointer to
curr_mark.

6. Set curr_free to point to the value of the previous free list
pointer in the released mark block.

7. Set p to nil.

8-30

Implementation Considerations

e e +
high_toh --->| |
e e e 4
I | mark ptr = nil
e + -
| |
Fommmm———
| |
e
toh --=>| |
Y
| 2 R +
Y R —— |
tome| ¥ | |
I | =m—me | |
I | | |
| Fmmmm———} |
| | 1 | | release (mark_ptr);
I te——————t |
| | | <==- pl |
I T — |
| | 3 | |
| A=t |
I	<=-- p3	
	==	
I R		
I it		
curr_free -+-->	0	
==] l		
T I
tmmm
curr_mark --->| nil |
et
init_toh --->| nil |
T

Figure 8-10. Releasing a Mark Region

Although the affect of release is to dispose all variables allocated
in the mark region being released, the pointers to these variables
are not set to nil as is done by dispose.

Implementation Considerations

EMA Heap Management — $Heap 2$

The following changes to the heap management definitions of Figure
8-3 comprise the differences between SHEAP 1$ and S$SHEAP 2$ heap
management routines.

CONST
bsize = 4;] {block size for SHeap 2$}
minsize = bsize DIV 2; {minimum allocation size}
{for SHeap 2$ }
TYPE
SI1IZE = 0. .maxint;
ADDR = 0. .maxint;

PROCEDURE get_heap_stack_info
$ALIAS “@GHS2'$
(VAR heap-info : INFO_REC);
EXTERNAL;

PROCEDURE set_heap_stack_info
SALIAS “@SHS2'$
(heap_info : INFO_REC);
EXTERNAL;

PROCEDURE %nitialize_beap
SALIAS "QINH2'S$;
EXTERNAL;

Pointers are represented as double word integers. Thus, the block
size 1is four words, and the minimum allocation size is 2 words. The
minimum allocation size is the size of the smallest data block that,
when disposed, can be inserted into the free list.

The preceding descriptions of heap management procedures apply for
SHEAP 2$ if in the figures and text, the sizes of pointers, blocks,
and minimum allocation are doubled.

8-32

Implementation Considerations

Short Versions of Heap Management Routines

An alternate set of heap management routines is provided. These
routines are shorter than the standard procedures and are for use in
applications where the memory reclamation features of new and dispose
are not needed. No free lists are maintained by the short routines,
and thus no data block is allocated for each heap variable. These
routines can be used with either the SHEAP 1$ or S$HEAP 2$ compiler
option.

To use the short heap management routines, the library %SHSLB must be
searched at load time before the standard Pascal/1000 library S$PLIB
is searched.

Example:

RE, $PROG
SE,%SHSLB
SE,S$SPLIB
EN

Figure 8-11 shows the definition of type INFO_REC as used by the
short routines in calls to get_heap_stack_info, set _heap_stack_info,
and initialize_heap_stack_info.

TYPE
ADDR = 0..32767; {for Heap 2, ADDR = 0. .maxint}
INFO_REC =
RECORD
tos, {top of stack }
toh, {top of heap }
init tos, {initial tos }
init toh, {initial toh }
high™ tos, {high tos }
high toh, {high toh }
dummy , { not used }
curr mark: ADDR; { "curr.mark block }
END;

Figure 8-11. Definitions Used by Short Heap Management Routines

Heap initialization is not necessary and is not performed by these
procedures.

8-33

Implementation Considerations

For

For

the short version of NEW (p):
If toh - (size of new variable) <= tos then report:
*** PASCAL ERROR: HEAP/STACK COLLISION IN LINE XXXX
and abort the program. Otherwise, set toh to the value of
toh - (size of new variable)
and set p to the value of
toh + 1
the short version of DISPOSE (p):
If p is nil then report:
*** PASCAL ERROR: DISPOSE CALLED WITH A NIL PTR IN LINE XXXX
and abort the program.'
If p < toh then report:
*** PASCAL ERROR: DISPOSE CALLED WITH A BAD PTR IN LINE XXXX
and abort the program.
Otherwise, set p to nil.
the short version of MARK (p):
Set p to the value of toh.
the short version of RELEASE (p):
If p is nil then report:
*** PASCAL ERROR: RELEASE CALLED WITH NIL PTR IN LINE XXxx
and abort the program.’
If p < toh then report:
*** PASCAL ERROR: RELEASE CALLED WITH A BAD PTR IN LINE XxXXX
and abort the program.

Otherwise, set toh to the value of p, and set p to nil.

Implementation Considerations

Efficiency Considerations

This section lists some considerations about the effects of
Pascal /1000 language constructs on program space and execution time.

The programmer usually has many implementation decisions to make,
some of which have to do with programming style, and deciding which
is the clearest and most logical way to do something. These
considerations may be helpful when two methods appear equally
appropriate, or efficiency is particularly important. Also, in some
cases (structured constants for example) there is a trade-off between
ef ficiency and transportability.

Data Access

This section describes the efficiency of various methods of accessing
data.

Accessing Variables and Parameters

variables and parameters may be accessed directly, indirectly through
a one-word address, or indirectly through a two-word address. Direct
addressing of data is the most efficient in time and space, while
indirect accessing through a two-word address is least efficient.

Table 8-4 shows the ways in which variables and parameters are
accessed.

Table 8-4. Pascal/1000 Variable and Parameter Access.

o e e e e e e e o +
{CLASS OF DATA | ACCESS | EXAMPLE “
_______________________ l ___.._____._..._._..__.._' — e - o o ———— i ——— -

|Static variables | | ‘
| Global | direct | LDA g l
| Local | direct | LbA 1 |
| Non-local | direct | LDA nl =
| | |

IDynamic variables | | |
| Heap (1) | short, I | LDA p,I1]
Heap (2)	long, I	JSB .LBPR
		DEF p
	I LDA B,I	
parameters		
value	direct	LDA Vv
Reference (Heap 1)	short, I	LDA r,I
Reference (Heap 2)	long,I	JSB .LBPR
		DEF r
		LDA B,I
o e e e e e o e e +

8-35

Implementation Considerations

Legend:

direct - variable is accessed directly.
short,I - variable is accessed indirectly through a one-word address.
long,1 - variable is accessed indirectly through a two-word address.

Passing Parameters

Table 8-5 illustrates parameter passing and accessing in more detail.

Some considerations:

Value parameters can use a costly amount of space since copies are

made. This is especially important when passing large amounts of
data.

Accessing variable parameters may take more time than accessing
value parameters.

In a HEAP 2 program where no actual parameter corresponds to a VAR

formal parameter, turning HEAPPARMS OFF will save access time and
code space.

If an actual string parameter and its corresponding formal
parameter differ in length, or if one is packed and the other
unpacked, then the actual parameter is converted into a variable
of the type of the formal parameter. This is less efficient than
pPassing a string whose type matches the formal parameter.

8-36

Implementation Considerations

Table 8-5. Pascal/1000 Parameter Passing and Access

___ +
parameter| Calling | Passed | Routine | Routine | Exit |
Type: | Action: | As: | Action: | Access: | Action: |
__ |
Heap |Value | cvtl | short | ctl,rc | direct | none]
1 | | | | | | |
IVar:N | none | short | none | short,I | none l
| :tR | none | short | al | short,I | rad |
| M | none | short | none | short,I | none :

Func	none	short	none	short,I	none
result					
Heap |Value:l | cvtl | short | ctl,rc | direct | none |
2 | :2 | ctl | short | ctl,rc | direct | none :

| | | | | |
jvar:1N | none | stlm | c2wa | long,I | none |
:1R	none	stlm	c2wa,a2	long,I	rad
:2N	none	stl	c2wa	long,1I	none
:2R	none	stl	c2wa,a2	long,lI	rad
] tMN	flwa	short	none	short,I	none
:MR	flwa	short	m2wa,a2	long,I	rad
Func					
Result:N	none	short	none	short,I	none
:R	none	short	m2wa,a2	long,I	rad
o e e e e e e e o e e e e +

8-37

Implementation Considerations

Legend:

Heap 1 - program is compiled with the $HEAP 1$ option

Heap 2 - ©program is compiled with the S$SHEAP 2$ option

value - formal parameter is a value parameter

var - formal parameter is a VAR parameter

Func - Called routine is a function whose result is >2 words
short - l-word address of actual

long - 2-word address of actual

stl - 1l-word address of a 2-word address of actual

stlm - 1l-word address of a 2-word address whose lst word is -1
direct - variable is accessed directly

short,I - access to actual is indirect thru a l-word address
long,I - indirect thru the l-word address result of .MAPR

flwa - find 1l-word address (using .MAPR if necessary)
cvtl convert to a local w/ formal’'s type if necessary;pass local

Conversion is done into a temporary variable when the

o e e +
| actual is: | and formal is: |
f e e e e |
single int	double int
packed string	unpacked string
unpacked string	packed string
short string	long string
bit or byte field of a	corresponding type
packed structure	
o e +
ctl - copy actual to local
rc - range check actual
c2wa -~ copy 2-word address of actual to a local
m2wa ~ make 2-word address from l-word address (first word is -1)
al - adjust l-word address to point into stack if self-pointing
a2 - adjust 2-word address to point into stack if self-pointing
rad - re-adjust address if self-pointing
:1 - actual is accessible with a l-word address
:2 - actual is accessible with a 2-word address
:M - formal is a non-heap var parm (SHEAPPARMS OFFS$)
: - <called routine is non-recursive
: - called routine is recursive

8-38

Implementation Considerations

Packed vs. Unpacked Data

In general, packing a Pascal array or record results in:

- less space allocated for the structure

slower access of some or all elements of the structure

more code to access some or all elements of the structure

The space and time differences vary according to the size and
alignment conditions of the elements, and whether the elements are
accessed with constant or variable offsets. For example:

- compared to a 16-bit integer element, the savings in space of

an element of type 0..32767 (15 bits) 1is not as great as the
savings for an element of type 0..1 (1 bit).

- the access time for an element of a packed structure can be
significantly greater if accessed with a variable offset, that
is, an offset that must be computed at run time. A typical
example is an array subscripted with an expression.

- the access time for an element of a packed structure may only
be slightly greater if it is accessed with a constant offset.

Record fields and arrays subscripted with constant expressions
are examples of constant-offset access,.

.Table 8-6 summarizes the accessing of packed and unpacked data.

Implementation Considerations

Table 8-6. Packed and Unpacked Data Access

wa-inline

inline code to calculate the word address of the
element,

by-inline

inline code to access the byte field using byte
instructions.

b-inline - inline code to extract or deposit the bit field.

library - a call to a library routine which extracts or deposits
a bit field from a particular word (or double-word).

| | Variable | Constant
| | of fset | Of fset
| = o e m
| Unpacked | w-inline | direct
Packed	
I I	
word	w-inline
: byte	by-inline
I	
bit	wa-inline
	and library
I	l
o o e o e e e	
Legend:	
word - element of a packed structure that is word-aligned	
and fills an entire word (or double-word).	
I	
byte - element of a packed structure that is byte-aligned	
and occupies 8 bits.	
bit - element of a packed structure occupying n bits that	
{ can not be classified as either a "word" or a "byte".	
direct - element is accessed directly. No address computation	
is necessary.	
w-=inline - inline code to access the element,	
I	
I	
I	

—a— — - k
e e e e ———————

8-40

. —— ———— — —— —— — — — o, S v o —— i, T =y, e | O ot s i . o S s e e

Implementation Considerations

Example of packed and unpacked data access:

oL W

36

00000 PROGRAM pack;
00000 TYPE
00000 RANGE = 0..3;
00000
00000 { peclare Packed and Unpacked Array types }
00000 INDEX = 1..16;
00000 ARR = ARRAY [INDEX] OF RANGE; {16 l-word elements}
00000 PACKED ARR = PACKED ARRAY [INDEX] OF RANGE;
00000 - {16 2-bit elements }
00000 { peclare Packed and Unpacked Record types }
00000 REC = RECORD
00000 first, {8 l-word fields}
00000 second,
00000 third: RANGE;
00000 ar: ARRAY [l..5] OF RANGE;
00000 END;
00000
00000 PACKED_REC = PACKED RECORD
00000 first,
00000 second, {8 2-bit fields}
00000 third: RANGE;
00000 ar: PACKED ARRAY [l..5] OF RANGE;
00000 END;
00000
00000 VAR { Allocations: }
00000 a: ARR; { 16 words }
00020 pa: PACKED_ARR; { 2 words }
00022 r: REC; { 8 words }
00032 pr: PACKED_REC; { 1 word }
00033 i: INDEX;
00034 X: RANGE;
00035
00035 BEGIN SLIST CODE, RANGE OFF$
00003 {variable offsets for unpacked structures}
00003 x := a [i];

00003 LDA .6+0

00004 ADA @1+27

00005 LDA A.,I

00006 STA @1+28
00007

Implementation Considerations

37 00007 {variable offsets for packed structures}
38 00007 X := pa [i];
00007 cca
00010 ADA @1+27
00011 STA @1+29
00012 JSB @XTR1
00013 DEF *+6
00014 DEF .5+0
00015 DEF @1+16
00016 DEF @1+29
00017 DEF .5+1
00020 DEF .5+1
00021 STA @1+28
39 00022
40 00022
41 00022 {Constant offsets for unpacked structures}
42 00022 x := a [7];
00022 LDA @1+6
00023 STA @1+28
43 00024 X := r,second;
00024 LDA @1+19
00025 STA @1+28
44 00026 X :=r.ar [5];
00026 LDA @1+25
00027 STA @1+28
45 00030
46 00030 {Constant offsets for packed structures}
47 00030 X :=pa [7];
00030 LDA @1+16
00031 LSR 2
00032 AND =D3
00033 STA @1+28
48 00034 x := pa [8];
00034 LDA @1+16
00035 AND =D3
00036 STA @1+28
49 00037 X := pr.second;
00037 LDA @1+26
00040 LSR 12
00041 AND =D3
00042 STA @1+28
50 00043 X := pr.ar [5];
00043 LDA @1+26
00044 AND =D3
00045 STA @1+28

51 00046 $LIST_CODE OFFS$
52 00046 END.

0 Errors detected.
52 Source lines read.
79 Words of program generated.

8-42

Implementation Considerations

Heap 1 vs. Heap 2

Under Heap 2 the access times are slower and more code is emitted to
access:

- dynamic variables,

- VAR parameters, except for non-resursive routines with $SHEAPPARMS
OFFS.

- "Large" function results for recursive functions (large meaning >2
words).

All address calculations for heap items are done using double integer
arithmetic routines, which may be in firmware or software. The
software routines are slower and occupy space in the loaded program.

EMA-addressing routines are 1loaded with the program, which may be
either firmware or software. The software routines are slower and
occupy space in the loaded program.

Heap 2 Heap/Stack routines are larger than the Heap 1 versions.
Recursion is slower for Heap 2 since the stack resides in EMA. Stack

access 1is done with double integer arithmetic and EMA addressing
routines.

.There can be much more memory available for heap and stack with Heap
2.

Heap 2 - amount of EMA space in EMA partition (up to 1.8MB).

Heap 1 - amount of memory left between the end of the program and
the end of the partition (64KB - op sys - program size).

EMA partitions are generally scarcer than normal partitions: ?he swap
time on EMA programs increases with the size of the partition, and
several programs may be swapped out when an EMA program is swapped
in.

Heap 0 (with RECURSIVE OFF) suppresses the invocation (and loading)
of the Heap/Stack initialization routine.

Expressions

This section describes the efficiency of certain expression
evaluations.

Partial Evaluation

- More efficient in space and time than full Boolean evaluation.

Implementation Considerations

Common Subexpressions

The compiler does not eliminate common subexpressions. The
programmer can often do so by using his own temporary variables to
save intermediate results that are used in several places.

Some common subexpressions, those involving the re-calculation of

record addresses, can be easily eliminated by using the WITH
statement.

Numeric Data Types

Using single-word instead of double-word integers where possible
can greatly improve the per formance of your program.

Using exact subranges instead of the full l-word subrange can save
time in various operations. Single-word comparisons, for example,
do not need to check for over flow when comparing two variables of
type 0..10. Overflow must be checked when comparing two variables
of type -32768..32767. Subranges can also be represented in less
space when they are used inside packed structures.

Using REAL variables is wusually faster than using LONGREAL
variables, LONGREALs should be used when a precision greater than
that provided by the type REAL is needed.

Range Checking

Range checking (compiler option RANGE) is extremely useful in
debugging a program. It also adds a significant amount of overhead

that you may eventually want to eliminate when your program is
more stable.

Expressions of the following types are range checked:

enumeration types
subrange types
CHAR

BOOLEAN

pointer types

Expressions are range checked during the following operations:

assignments

array indexing

pointer dereferencing

copying of a value parameter into a local variable

FOR statement (initial value and each successive value)

Sets

8

Sets that fit in one word (16 elements or less) are much more

efficient than multi-word sets. Set operations are performed with
inline AND’s, IOR's, etc. instead of by library routines.

44

Implementation Considerations

- Members of sets and packed Boolean arrays are accessed almost
identically, so effectively the only difference in efficiency
between the two 1is the fact that multi-word sets have an extra
"length" word allocated.

Statements

WITH

- The WITH statement can be used to avoid the repeated calculation
of a record ‘s address when more than one field of the record is to
be accessed. The resulting amount of savings can be quite

significant depending on the number of calculations that were
avoided.

- Sometimes the WITH statement does not save time or space (although
it still saves typing the record ‘s name for each field). This is
the case when there is no address calculation to be done for the
record. For example the WITH statements below do not provide any
greater efficiency to the program:

WITH r DO <statement>;
WITH p~ DO <statement>;

These do:

WITH p~.r DO <statement>;
WITH p~.a[i] DO <statement>;

FOR

- FOR loops using single-integer control variables are much faster
than double-integer = for loops. Range checking is done for both
kinds of loops not only for the initial value of the control
variable, but for each iteration of the 1loop. Thus there is a
great difference between the speed of a range-checked FOR loop and
one that does not check.

CASE

- At the end of the CASE statement, the compiler emits a section of
code that 1is wused in deciding which case 1is to be selected and
executed., This section of code consists of a combination of the
following constructs, depending on which are the most efficient
for the particular cases being considered:

- Element-by-element comparisons
- Jump table
- 1Interval test

The CASE statement 1is an unordered selection process, i.e. the

order in which the comparisons is done is unspgcified. Thus you
should never rely on the comparisons being done in any particular

8-45

Implementation Considerations

order. If a specific order is desired, 1IF statements are more
appropriate.

Procedures and Functions

This section describes ways to make procedures and functions more
efficient,

Recursion

Recursive routines are more costly in terms of space and execution
time than non-recursive routines.

Space Considerations

- Recursive routines are allocated a few more words of space used to
save the environment of a current activation,

- Extra code from the run-time library is loaded with the program to
handle recursion. (This code is always the same size, regardless
of the number of resursive routines in the program.)

- If recursion is off and the heap option is set to 0 for the entire
program, then the Heap/Stack initialization routine is not called,
and thus not loaded with the program.

- Recursive activations of routines cause the stack to grow, thus
reducing the amount of space available in the heap.

Time Considerations

- Routine activation methods can be divided into four categories

according to the overhead for each method. In order of decreasing
speed, they are:

A) Direct activation of a non-recursive routine

B) .ENTR activation of a non-recursive routine

C) Non-recursive activation of a recursive routine
D) Recursive activation of recursive routine

A) The amount of overhead time required for a routine with a
direct calling sequence is less than its .ENTR equivalent when
the number of parameters is small (see below for more on Direct
calling sequences.). This is because parameter address
resolution 1is done as 1inline code rather than in microcode
(.ENTR may also be in software, in which case the difference is

even greater). Recursive routines cannot have direct calling
sequences.

B) The amount of overhead time required for a non-recursive
routine which wuses .(ENTR can be less than a non-recursive
activation of a recursive routine (first time into the routine)
because, even though they perform roughly the same job, .ENTR
is often microcoded.

8-46

Implementation Considerations

C&D) A non-recursive activation of a recursive routine is faster
than a recursive activation of the same routine because its

activation record need not be stacked upon routine entry and
unstacked upon routine exit.

Direct Calling Sequence

The time overhead for routines that are called frequently can be
significantly reduced by employing the DIRECT compiler option. This
option, which 1is only allowed on non-recursive routines, causes

parameter addresses to be resolved by inline code rather than by a
call to the routine .ENTR.

The savings 1is substantial for routines having a small number of
parameters, but above a certain number of parameters, it is faster to
use .ENTR. The cross over point, for microcoded .ENTR, usually occurs
when the number of parameters is small, as shown in the table below.

Table 8-7. Overhead Times for Routines with
.ENTR vs. SDIRECTS$ Calling Sequences
microseconds)

___ +
Number of	.ENTR	SDIRECTS	
Parameters			
		Indirect levels:	Words:
	R et e e e T L L e T e		
I		0: 1: 2:	
R e et e e L D L L Dt et bl			
0	10.1	1.5 1.5 1.5	1l =
	i		

| 1 | 12.6 | 5.6 9.0 12.4 | 6 |
I | | e T | |
| 2] 15.1 | 9.7 | 16.5 23.3 | 11 }
| | | | |

| 3 | 17.6 | 13.8 | 24.0 34.2 | 16 }
| | | | |

| 4 i 20.1] 17.9 | 31.5 45.1 | 21 |
I | | | | |
| 5 | 22.6 | 22,0 | 39.0 56.0 | 26 :
| | | —e———— + |

| 6] 25.1 | 26.1 46 .5 66.9 | 31 |
| | | | |
| 7 | 27.6 | 30.2 54.0 77.8 | 36 l
o e o e 2 e o o o e e o S o S o e B o o o e e e e +

.ENTR overhead =

10.2 + (number of parameters * 2.5) microseconds
code space = 2 words

$DIRECTS overhead =
1.5 + (number of parameters * (4.1 + indirect levels * 3.4))
code space = 1 + (number of parameters * 5) words

8-47

Implementation Considerations

FMP vs. Pascal/1000 1/O

Roughly equivalent in speed.

Pascal I/0 is less space-efficient because of the library routines
that are loaded with the program.

The BUFFERS option can be used to increase I/0O performance.

The LINESIZE option can be used with text files to decrease the
size of the buffer (s) allocated for the file.

NOTE: If FMP calls are used to access a Pascal file, the following

should be taken into consideration:

- For the DCB parameter of the FMP call, specify the Pascal
file variable,

- Pascal-managed file status information is not updated when
using FMP calls directly., This status information is used
by Pascal file-handling routines.

Reducing the Size of a Loaded Program

Short Versions of Library Routines

The program can be loaded with the short version of the run-time
error reporter. This will not print out the long error messages,
but will instead print only error numbers. The name of this module
is %PRERS and it must be relocated in the program before the
library $PLIB is searched.

A. short version of the heap management routines, in the file
‘$SHSLB, can be used to save space in your loaded program. It is
smaller because it does not do any 1linking of free lists or mark
blocks. A call to the procedure dispose serves only tc set that
pointer to nil, and does not free up the space associated with it.
Thus if you do not use dispose, or you use it but do not rely on
reclaimed space, then the short Heap/Stack library can be used.
(Also, a certain amount of savings of space in the heap can be
realized since a header is not allocated for each individual heap
object). Refer to Data Management in this Chapter for more
information about Heap/Stack routine implementation,

8-48

Implementation Considerations

Using Segmentation to Save Space

- Initialization of globals and the heap can be done in a segment.
The price paid for the segment 1load is often negligible compared
to the savings that can be gained in code space.

- If all files are opened in a segment, then the Pascal and FMP
routines required to open files are loaded only in that segment.
Remember, however, that files INPUT and OUTPUT (if specified in
the program heading) are automatically opened in the main. Thus,

in order to realize this savings, the program must use other file
names.

- The run-time error routine can be 1loaded in a segment, A segment
load 1is then required in order to report a run-time error. Refer
to Run-Time Errors (Appendix C) for details.

Putting Globals in the Heap

- Large or infrequently-used globals in Heap 2 programs can be put

in the heap. This makes more room for code in the logical address
space.

Structured Constants
Using structured constants can save time and space in several ways:

- No execution time is spent setting up a structured constant as is
the case for structured variables which are initialized at run
time. The amount of space required for a structured constant is
the same as that required for a structured variable. 1In addition,
structured constants declared in a recursive routine are not
copied to and from the stack for recursive activations of the
routine, saving both stack space and execution time.

- Rather than initializing element by element as required by
Standard Pascal, structured constants can be used to quickly
initialize a structured variable. If the structure is large, it
is often best to declare the constant and perform the
initialization inside of a segment, so that you do not pay a large
space penalty for the existence of both a variable and a constant
structure.

8-49

Implementation Considerations

Structured constants can improve on CASE statements which serve to
map one data type onto another. For example, the functions below

are equivalent:

TYPE
COLOR = (red, blue);
SEADES = (red,blue,purple);

FUNCTION shade
(colorl,
color2: COLOR): SHADES;
BEGIN
CASE colorl OF

red:
CASE color2 OF
red: shade := red;
blue: shade := purple;
END;
blue:
CASE color2 OF
red: shade := purple;
blue: shade := blue;
END;
END;

END;

FUNCTION shade
(colorl,

color2: COLOR): SHADES;

TYPE
ROW = ARRAY [COLOR] OF SHADES;

TRANS_TABLE =
ARRAY [COLOR] OF
ROW;

CONST
table = TRANS_TABLE
[ROW [red, purple],
ROW [purple, bluel};

BEGIN

shade := table [colorl, color2];
END;

Chapter 9
How To Use Pascal/1000

The first sections of this chapter describe how to compile, load, and
run Pascal/1000 programs. The next sections contain information on
error analysis and some of the debugging tools available to the
programmer. The final sections describe the use of various features
of Pascal/1000, including interaction of Pascal with non-Pascal

routines and the IMAGE/1000 Data Base Management System, and using
EXEC calls in a Pascal program.

Compiling A Program
The Monitor

The program PASCL serves as the monitor for a Pascal compilation. Its
functions are to:

1) pParse and verify the correctness of the parameters in the run
string.

2) Schedule the Pascal compiler PCL.

3) Schedule the Pascal cross-referencer PXREF if the compiler
option XREF is specified.

4) schedule the assembler ASMB to generate relocatable code grom
the assembly code created by the compiler if the CODE compiler
option is ON and there are no compilation errors.

5) Save or purge the assembly file, depending on the following:

- If the KEEPASMB compiler option is not specified and there
are no assembly errors, the assembly file is purged.

- Otherwise, the assembly file is saved.

Note that the assembly file is not created by the compiler if
the CODE compiler option is OFF.

How to Use Pascal /1000

PASCL is run with the following command:

:RU,PASCL, [<source>], [<1list>], [K<relocatable>],[<option>]

where: is:

<{source> Namr of the source file., If it is not specified, LU 1
is used.

<list> Namr of the list file. If it is not specified or is 0,

the 1listing is suppressed, and only the source lines
containing errors will be output to LU 1. The initial
heading is also printed on LU 1.

<relocatable> Namr of the relocatable file. If it is not specified
or is 0, code generation is suppressed.

<option> Namr of the option file which contains the number of
pages of EMA to be used for the compiler workspace. If
it is not specified or is 0, a default number (15)
sufficient to compile most small programs is used. 1If

it is 1, the following prompt is 1issued at LU 1 for
the number:

/PASCL: Enter options:
Type in the number of pages of EMA needed.

The namr follows the RTE file naming format. A namr may consist of a
file name, security code, cartridge name, etc., or it may be a
logical unit number. (Refer to Terminal User ‘s Reference Manual.)

The run strings
:ﬁU,PASCL,&TEST
:RU ,PASCL, &TEST, 0
:RU ,PASCL, &TEST, 0,0

are equivalent. They specify that the source file name is &TEST,
that the listing is to be suppressed (equivalent to SLIST OFF$), and
that code generation is to be suppressed (equivalent to $CODE OFFS$).
In other words, the source is to be scanned for compile-time errors
only, and source lines with errors are to be output to LU 1. This run
string is wuseful for fast detection of compilation errors, as the
compiler runs much faster when it is not generating code.

How to Use Pascal/1000

The run strings

:RU ,PASCL

:RU,PASCL, 1

:RU ,PASCL,1,0

:RU ,PASCL,1,0,0
are equivalent. They specify that the source 1is to be accepted a
line at a time from LU l. Each 1line is scanned for compile-time

errors only. Neither a listing nor code is generated.

If COMPL or CLOAD is used to compile and/or load a Pascal program,
the first line of the source must begin with “$PASCAL’.

It is recommended that the file names begin with the following
standard key characters:

File Key Example
source & §TEST
list TEST
relocatable % STEST
option * *TEST

The dash ("-") may be used in place of the list, relocatable, and/or
option namr in the run string. PASCL will construct the appropriate
name based on the source file name. The construction rules are:

1) 1If the source file name begins with the standard key character
"s", then the name constructed will be the source file name
with the "&" replaced by the appropriate standard key
character.

Ex ample:
is equivalent to:

:RU ,PASCL, &MERGE: :CR, "MERGE: :CR, $MERGE: :CR,*MERGE: : CR

Note:

It is not necessarily equivalent to
:RU ,PASCL, $MERGE: :CR, 'MERGE , $MERGE , *MERGE

since CR may not be the first available cartridge.

How to Use Pascal /1000

2) If the source file name does not begin with the standard key
character "&", then the name constructed will be the source
file name with the appropriate standard key character appended
at the left.

Example:
: RU,PASCL, PROGRM: :RM,LIST,-,~-
is equivalent to:
:RU,PASCL, PROGRM: : RM,LIST, $PROGR: :RM, *PROGR: : RM
The name of the assembly file is constructed from the relocatable
namr (not the source file namr) using the above construction rules,
with """ as the standard key character.

Examples:

Relocatable Assembly

file name file name
$TEST “TEST
RELOCA “RELOC

The run string:
¢:RUO,PASCL, &FCOPY ,-,-

produces the assembly file °“FCOPY. This file is saved or purged
after the assembly, as described above.

How to Use Pascal/1000

File Verification

The
the

monitor PASCL verifies the correctness of the files specified in
run string before scheduling the compiler PCL. The following

criteria are used:

Source file

FMP must be able to open the file, otherwise the following
message is output to LU 1, and PASCL is terminated.

/PASCL: Source file: FMP error code = <code>
The file must be of type 3 or 4, otherwise the following
message is output to LU 1 and PASCL is terminated.

/PASCL: Invalid source file: <name>

where <name> is the source namr as it appeared in the run
string.

If the file name does not include the cartridge reference, the
two-character or integer reference will be acded to the name.

List file

If the file already exists, it must be of type 3 or 4, and it
must not be the same file as the source file, otherwise the
following message is output to LU 1, and PASCL is terminated.

/PASCL: Invalid list file: <name>
where <name> is the list namr as it appeared in the run string.

If the file already exists, it will be overlaid by the new
listing.

Relocatable file

If the file already exists, it must be of type 5, and it must
not be the same file as the source file, otherwise the
following message is output to LU 1, and PASCL is terminated.

/PASCL: Invalid relocatable file: <name>

where <name> is the relocatable namr as it appeared in the run
string.

If the file already exists and its name begins with the
standard key character "%", the file will be overlaid by the
new relocatable output. If the file already exists but its
name does not begin with "%", the file will be purged and a new
file (of type 5) will be created with the same name.

How to Use Pascal /1000

Option file
- The file must already exist and be of type 3 or 4, and it must

not be the same file as the source file, otherwise the
following message is output to LU 1, and PASCL is terminated.

/PASCL: Invalid option file: <name>

where <name> is the option namr as it appeared in the run
string.

Assembly file
- If the file already exists, it must be of type 3 or 4, and it
must not be the same file as the source file, otherwise the
following message is output to LU 1, and PASCL is terminated.
/PASCL: Invalid assembly file: <name>

where <name> is created from the relocatable namr.

- The following message is output to LU 1 if the assembly file is
kept.

/PASCL: Assembly file kept: <name>

where <name>, including cartridge reference is created from the
relocatable namr.

Scheduling Messages

The following message is output to LU 1 if the cross-referencer is
scheduled.

/PASCL: PXREF scheduled.

The following message is output to LU 1 if the assembler is
scheduled.

/PASCL: ASMB scheduled.

9-6

How to Use Pascal/1000

If an error occurs when PASCL attempts to schedule PCL, PXREF, or
ASMB, or if the scheduled program is aborted, then the appropriate
one of the following messages is output to LU 1:

/PASCL: PCL schedule error code = <code>

/PASCL: PXREF schedule error code = <code>

/PASCL: ASMB schedule error code = <code>

After one of the above messages, one of the following messages is
output to LU 1, depending on the value of <code>:

CODE MESSAGE

1 /PASCL: Duplicate program name.
2 /PASCL: No ID segments available.
3 /PASCL: Program not found,
4 /PASCL: Program file open error.
5 /PASCL: Program file close error.
6 /PASCL: RP error,
7 /PASCL: Program busy.
8 /PASCL: Program aborted.
9 /PASCL: Insufficient system memory.
Example:
The following 1is an example of the output to LU 1 when PASCL is
run, The source program in file &TOWER contains the compiler
option $KEEPASMBS.
+RU 'PASCL' &TOWER ™
0 Errors detected.
29 Source lines read.
667 words of program generated.
/PASCL: ASMB scheduled.
/ASMB: NO ERRORS TOTAL
/ASMB: S$END
/PASCL: Assembly source kept: " TOWER::RM

Note that the cartridge reference RM was added to the assembly
source file name.

How to Use Pascal /1000

Insufficient Workspace

The compiler will abort if it runs out of workspace, issuing the
message:

/PASCL: Insufficient Workspace.
and either the message
/PASCL: Increase EMA pages in option file to at least n.

where n is the minimum number of pages which will change the amount
of workspace allocated (the program may need even more in order to
compile),

OR the messages

/PASCL: Maximum of n EMA pages are already allocated for workspace.
/PASCL: Partition not large enough to compile this program.

If the 1last two messages appear, the compiler is running in a
partition that is too small , for one of two reasons:

1. The SZ command (see the RTE-IVB Terminal User 's Reference
Manual) was used to make the compiler size smaller than that of
the partition in which it is actually running. 1In this case,
the SZ command can be used to increase the compiler size,
allowing it to run in a partition of the new size or larger.

2. The compiler is already the size of the largest partition. 1In
this case, the system must be reconfigured with larger
partitions and the compiler sized up appropriately.

For more information, see the STATS option (Appendix D) and the
Configuration Guide.

How to Use Pascal/1000

Listing
The 1listing produced by the Pascal/1000 compiler for the source
program below appears on the next page. (The program contains
errors.)
PROGRAM tower;
TYPE
INT = 0..100;
VAR
n: INT;
fl1, £2: TEXT;
PROCEDURE hanoi (n:INT; s, d, i: CHAR);
BEGIN {hanoi}
IF n > 0 THEN BEGIN
hanoi(n - 1, s, i, d);

BEGIN {tower}
reset (f1,
rewrite (f2,
writeln(£f2,
read (f1, m);

l’)g
!

)i .
Number of disks?)

writeln(£f2,
writeln(f2);
hanoi(n, ‘A7, 'c’, 'B");
END. {tower}

writeln(f2, °~ Move disk’, n:3,
hanoi(n - 1, i, 4, s);
END;
END END; {hanoi}

* power of Hanoi solution for’, m:3, ‘disks ’);

‘ from °, a, to ', b);

How to Use Pascal/1000

Pascal/1000 Wed Apr 2, 1980 2:43 pm
Ver. 1/2015 & TOWER: : JA Page 1
1 00000 PROGRAM tower;
2 00000
3 00000 TYPE
4 00000 INT = 0..100;
5 00000
6 00000 vAR
7 00000 n: INT;
8 00001 £1, £2: TEXT;
9 00677
10 00677 PROCEDURE hanoi (n:INT; s, 4, i: CHAR);
11 00000 BEGIN {hanoi}
12 00002 IF n > 0 THEN BEGIN
13 00006 hanoi (n -1, s, i, d); . ,
14 00017 writeln(£2, "Move disk ",n:3,” from “,a,” to °,b);
0 *kkk ~104 “104
15 00017 hanoi(n - 1, i, 4, s);
16 00017 END;
17 00017 END END; {hanoi}
14 *k k% “14 ,6
18 00017
19 00017 BEGIN {tower}
20 00017 reset(fl, “1°);
21 00017 rewrite(f2, "17);
22 00017 writeln(f2, ° Number of disks? ');
23 00017 read (fl, m);
17 *kkk “104
24 00017 , . .
25 00017 writeln (£2, ‘Tower of Hanoi solution for , Mm:3, disks);
23 * k& x “104
26 00017 writeln (£2);
27 00017
28 00017 hanoi(n, ‘A", Cc’, “B”);

29 00017 END. {tower}

6 Errors detected (first 14/last 25).
29 Source lines read.
15 Words of program generated.

Errors in this compilation:
6: illegal symbol

1l4: " ;° expected
104: identifier not declared

9-10

How to Use Pascal/1000

In the 1listing a two-line heading appears at the top of each page.
Beneath ‘Pascal/1000° is the version of the Pascal/1000 compiler
which produced the listing. The date and time at which the listing
was created appears in the first line. Beneath the date is the name
of the source file entered in the run string. The cartridge reference
will be printed whether or not it appeared in the run string. The

security code will always be omitted. Beneath the time is the page
number of the listing.

Each 1line of the source file is echoed on the list file. The numbers
in the leftmost column are the source file line numbers. The numbers
to their right are dependent on whether the source line is part of a
declaration section or body. 1In the declaration section »f a program
(or routine), the number is the octal number of words allucated for
variables since the beginning of the program (or routine). 1In the
body of the program (or routine), the number is the total number of
words of code and data allocated thus far in the compilation unit,
Data space is not added into this total until the end of the
corresponding procedure (or end of the main block in the case of

globals). In any case, the number represents the relative offset from
the start of the compilation unit.

Lines containing errors are followed by error lines. Lines 14, 17,
23, and 25 in the previous example, contained errors. For a detailed

explanation of error 1lines refer to the section Errors in this
Chapter.

The 1last three 1lines after the source give the number of errors
detected, the numbers of the lines where the first and last errors
were found, the number of source lines read, and the number of words
of code generated. When the first error is encountered, code

generation stops, resulting in faster compilation of the rest of the
program.

At the end of the listing, the numbers of the errors encountered

during compilation are listed with descriptions of the errors they
represent.,

The compiler options STATS and TABLES can be used to send additional
information to the list file (refer to Appendix D).

How to Use Pascal/1000

Loading A Program

As described above, the monitor PASCL schedules the assembler to
assemble the code generated by the compiler. The assembler produces
a relocatable code file which must be 1loaded before it can be
executed. The loader links together the various compilation units,
non-Pascal routines, and library routines, and resolves all external

references to produce an absolute load module, which can then be
executed with the RUN command.

This section describes the 1loader commands necessary to load
Pascal /1000 programs of various configurations. For a full
description of the 1loader and its operation, refer to the RTE-IVB
Terminal User “s Reference Manual.

If the loader is run with the command

:RU, LOADR

it expects the commands to be entered interactively. It will prompt
for the commands, one line at a time, with

/LOADR:
The loader can also be run with the command
:RU ,LOADR, <command file namr>

in which case it expects the commands to be in the file named by
<command file namr>.

If the Pascal run-time library ($SPLIB) has not been generated into
your system, the library (LI) command or the search (SE) command must
be used when loading a Pascal program. In the examples below, the LI

commands are unnecessary if the 1library is generated into your
system.

Example 1: Load a Pascal/l1000 program consisting only of a main
program unit named $MAIN. There are no subprograr: units
and no non-Pascal routines.

LI, $PLIB
RE, $MAIN
EN

Example 2: Same as Example: 1, except that subprogram units %$SM1 and
$SM2 are to be combined with the main program unit.

LI, SPLIB
RE, $MAIN
RE, $SM1
RE , $SM2
EN

9-12

How to Use Pascal/1000

Example 3: Same as Example: 2, except that external references in
$MAIN, %SM1l, and %SM2 are satisfied in non-Pascal
routines ®WMLPHA and %BETA.

LI, SPLIB
RE, $MAIN
RE, $SM1
RE, 3SM2
RE, $ALPHA
RE,%¥BETA
EN

Example 4: Same as Example: 3, except that routines %ALPHA and $BETA
are kept in a library named $NPRTN.

LI, $SPLIB
RE, $MAIN
RE, $SM1
RE, $SM2
SEA, SNPRTN
EN

Example 5: Load a segmented Pascal/l1000 program consisting of a main
area and three segment overlays. The main area contains
the main program unit %MAIN and subprogram unit %SUBOL.
Segment overlay 1 contains segment unit $SEGl and
subprogr am unit %SUBll. Segment overlay 2 contains
segment wunit $SEG2 and subprogram units $SUB21 and
¥SUB22, Segment overlay 3 contains segment unit %SEG3.
Refer to Fiqure 3-1 for a diagram of this program’s
structure.

LI, $SPLIB

** Load main program unit
RE, $MAIN

RE, $SUBO1

** L,oad segment unit 1
RE, $SEG1

RE, $SUB11

** Load segment unit 2
RE, 3SEG2

RE, $SUB21

RE, $SUB22

** L,oad segment unit 3
RE, 3SEG3

EN

It is often desirable to have two versions of a progrm loaded at the
same time. If the program is segmented, however, the loader will
Create segments that have their first two characters replaced by
“..”, making them inaccessible from the program. To correct for this
problem, the file %..GER can be relocated in the main. When a call
to @SGLD is made to overlay the segment ABCDE, for example, the
segment ,.CDE will be brought in.

9-13

How to Use Pascal/1l000

Running A Program

When a program has been successfully relocated by the RTE loader, it
is in executable form. To determine the program run string, refer to
the program heading in the source code file. It contains the program
name and parameter list. The parameter 1list gives the Pascal file
names which will be associated with FMGR file names or LU s in the
run string. To run the program, enter the FMGR command RU followed by
the program name, then the FMGR namrs of the files or LU s which are
to correspond to the files in the parameter list.

Example:

If the program heading is
PROGRAM test (input, output):

then the run command can be
RU,TEST,1,1

in which case input is read from and output written to LU 1, or
RUO,TEST ,INFIL,OUTFIL

in which case input is read from the file INFIL and output written
to the file OUTFIL.

Errors

Errors may be flagged during several stages of program development.
Errors resulting from illegal Pascal grammar and logic are
compile-time errors and run-time errors, respectively. Other errors,

such as FMGR errors and RTE loader errors, are not covered in this
manual.

Compile-Time Errors
A compile-time error is one detected by the compiler. When the
Pascal compiler detects an invalid construct in the source code, it

prints an error line following the line containing the error.

An error line contains, in this order:

- The NUMBER of the line on which the previous error occurred (in
the case of the first error, this is zero).

Note: To locate every error in the program, start at the last
one (its line number is printed at the end of the listing)
and work towards the beginning of the program.

Four ASTERISKS (****) which identify a compile-time error line.

A CARET (") pointing to each invalid construct in the line above.

A LIST OF ERROR NUMBERS following each caret. The numbers
correspond to the errors associated with the construct above the
caret,

9-14

How to Use Pascal/1000

The error numbers encountered during compilation are listed, along
with descriptions of the errors they represent, at the end of the
listing (refer to the section The Listing in this Chapter for an
example) . Appendix C contains a complete 1listing of Pascal/1000

compile-time errors. It can also be obtained by listing the file
"PERRS.

Run-Time Errors

Run-time errors are those which occur during program execution. The
Pascal/1000 run-time library detects five types of run-time errors:

Program errors

EMA errors

Input /output errors
FMP errors
Segmentation errors

Pascal/1000 run-time errors are listed at LU 1. Each consists of
three asterisks (***) followed by a brief error description. (Refer

to Appendix B for a 1list of the possible Pascal/1000 run-time
errors.)

Pascal /1000 run-time errors cause the program to abort., 1If this is
undesirable, you may substitute your own run-time error-handling
routines for those provided (see Appendix B).

Debugging Tools

Four tools available for debugging Pascal programs are:

Range-checking

Procedure and function tracing
Mixed listing

System debugger

Range Checking

When the RANGE compiler option is ON (the default), array subscripts,
subrange assignments, and the subranges of routine parameters are
checked at run time. The run-time error,

*** PASCAL ERROR: VALUE OUT OF RANGE IN LINE XXXX

is 1issued when an array subscript is outside its specified bounds,
when a variable is assigned a value outside its specified range of
values, or when an actual parameter value is outside the specified
subr ange of its corresponding formal value parameter. Without
range-checking, an error such as an out-of-bounds array subscript
will go unflagged, and resulting run-time errors or erroneous
solutions may not reflect the error.

How to Use Pascal /1000

Procedure and Function Tracing

In debugging a program it may be wuseful to know which routines are
called and in what order they are called. The compiler option TRACE
and one of the Pascal libraries, $TRACA, $TRACB, or %TRACC can be
used to provide routine entry and exit information when the program
is executed. If $TRACE <lu>$ appears in the source code, the
Pascal /1000 compiler will generate the code necessary to trace
routines wuntil it encounters S$TRACE 0$ or the end of the program.
Trace information will be printed at <lu> (no trace is printed if
<lu> is 0, the default).

Special 1library routines are used to generate the trace information.
These routines are part of the Pascal 1libraries. The command
sequence to the RTE loader must include a command to search one of
the Pascal trace libraries before the command to search the Pascal
run-time library. If the command to search a trace library is absent
or follows the command to search $PLIB, no trace information will be
generated, even if S$TRACE <lu>$ (where <lu> 1is not zero) is in the
program.

Note: Tracing can be turned on and off as needed. Only routines

compiled with a non-zero TRACE option will appear in the TRACE
output.

9-16

How to Use Pascal/1000

Example: This program is used in the
illustrate the trace
libraries.

following examples to
information generated by the different

PROGRAM sample_trace;
$TRACE 4$

TYPE
pos_int = 0..32767;

VAR
value : pos_int;

PROCEDURE one;
BEGIN
END;

PROCEDURE two (value : pos int)

PROCEDURE inside_two(vglue
BEGIN

one;

value := -value; {causes value to go out of range}
END;
BEGIN
inside two (value);
END; -

e we

pos_int);

BEGIN
value := 23
one;
two (value);
END.

-e

9-17

How to Use Pascal/1000

Trace Library A

When trace library $TRACA is used, entry and exit information for
each routine is generated. The following loader command sequence is
used to load program sample_trace with trace library A.

LI, $TRACA
LI,$SPLIB
RE, $SAMPL
EN

The trace information sent to LU 4 when this program executes
consists of:

1 Enter: SAMPL

2 Enter: ONE

2 Exit: ONE

2 Enter: TWO

3 Enter: INSIDE_TWO
4 Enter: ONE

4 Exit: ONE

3 Exit: SAMPL

VVVVVYVVYV

The number at the left of each line of the trace is the length of the
dynamic call chain at that point; that is, the depth into which a
routine is being entered, or from which a routine is being exited.
As illustrated by the abbreviation of the program name,
‘sample trace, to 'SAMPL’, only the first five characters of the
program name appear when it is 1listed in the trace. Up to 50
characters of a procedure or function name can appear. Identifiers

are printed in capital letters in the trace regardless of how they
appear in the source.

Trace Libraries B and C

In the following descriptions, n=20 for trace library $TRACB, and
n=100 for trace library %TRACC.

Under the heading:
** TRACE tree *¥*

is a traceback of the first n of the currently-active routines. The
traceback is only output when the program terminates with a Pascal
run-time error or by executing the halt procedure in the program.
when the number of routines in the traceback exceeds n, the message:

trace overflow...

is 1listed after the first n routines in the traceback. If this
happens with trace library B, the program can be reloaded and run
with trace library C. 1f the program terminates normally, the
traceback will contain only the name of the main program.

9-18

How to Use Pascal/1000

After the traceback, under the heading

** TRACE calls **

is a list of the last n-1 routine entries and exits prior to program
termination,

The following loader command sequence will load program sample_trace
with trace library B:

LI, %TRACB
LI,SPLIB
RE, $SAMPL
EN

The trace information sent to LU 4 when sample_trace executes
consists of:

** TRACE tree **

SAMPL 1

TWO 2
INSIDE 3

** TRACE calls **
--=>>>SAMPL 1l
-=-=>>>0NE 2
<{<<~--~-0ONE 2
—-==>>>TWO 2
===>>>INSIDE 3
~=-=>>>0NE 4
<{K<~---0ONE 4

An arrow pointing to the right indicates routine entry. An arrow
pointing to the 1left indicates routine exit. The first five
characters of the program name and the first six characters of the
routine names are listed. The program and routine names are output
in capital letters regardless of how they appear in the source. The
number on the right is the 1length of the dynamic call chain as
described above for trace library A. If the program terminates with a
MP (memory protect) or DM (dynamic mapping) instruction, or any error
that causes an immediate abort by the operating system, no trace
information will be listed when trace libraries B and C are used.

How to Use Pascal /1000

Mixed Listing

The LIST CODE compiler option is used to get mixed listings of a
Pascal/1000 program or just part of a program. If LIST CODE is ON
(default is OFF), the assembly code generated by the compiler is sent
to the list file. LIST CODE may be turned ON and OFF around Pascal
constructs so that only the assembly code generated for those
constructs is listed, or it may be left OM throughout the program so
that the assembly code for the whole program is listed. The source
line is always listed before the assembly code that is generated for
it.

Example: The program 1list_digits is followed by the mixed listing
created during compilation,

PROGRAM liSt_digitS (OUTPUT) ;
PROCEDURE write_digits;

VAR
i: 0..9;

BEGIN {write_digits}
{turn LIST_CODE on around FOR loop}

SLIST_CODE ON$
FOR i := 0 TO 9 DO BEGIN
write(i:2);
END;
SLIST_CODE OFFS$
END; {write_digits}

BEGIN {list_digits}
write digits;
writeIn;

END. {list_digits}

Pascal/1000
Ver. 1/2015

=
O W N U W

b
w N

14

15

16
17
18
19
20
21
22

How to Use Pascal/1000

Thu Feb 28, 1980
& SAMPL: :HP

00000 PROGRAM list_digits (OUTPUT) ;

00306

00306 PROCEDURE write digits;

00000 -

00000 VAR

00000 i: 0..9;

00001

00001 BEGIN {write digits}

00003 -

00003 {turn LIST_CODE on around FOR loop!}

00003

00003 SLIST_CODE ONS$

00003 FOR i := 0 TO 9 DO BEGIN
00003.8 LDA =D-10
00004 STA .10+1
00005 CLA
00006 STA .10+0

00007 write(i:2);
00007.18 JSB @WRI
00010 DEF *+4
00011 DEF @1+0
00012 DEF .10+0
00013 DEF .540

00014 END;
00014 ISZ .10+1
00015 JMP *+2
00016 JMP .19
00017 LDA .10+0
00020 INA
00021 JSB @CKI
00022 DEF .5+1
00023 DEC 15
00024 sTA .10+0
00025 JMP .18

00026 $LIST CODE OFF$

00026 END; {write_digits}

00054

00054 BEGIN {list digits}

00074 write digits;

00076 writeln;

00101 END. {list_digits}

0 Errors detected.
22 Source lines read.

285 Words of program generated.

2:53 pm
Page 1

How to Use Pascal /1000

Interactive Debugging

The RTE interactive debugger DBUGR can be used to check programs for
logical errors during execution., Using DBUGR, the user may examine
and modify memory and registers, set breakpoints, and trace
instruction execution, A complete mixed 1listing (including symbol
table information) and a load map are recommended for reference when
using DBUGR. Symbol table information will be sent to the list file
if compiler option TABLES is ON (default is OFF). Refer to the
RTE-IVB Terminal User 's Reference Manual for DBUGR instructions.

Interfacing Pascal With Non-Pascal Routines

Pascal programs may call routines written in FORTRAN or assembly
language and vice-versa. The .ENTR calling sequence is used unless
the S$DIRECTS$ option is specified. The use of .ENTR is transparent to
the programmer in Pascal and FORTRAN because those compilers generate
the necessary code needed for using .ENTR. An Assembly language
routine must refer to L(ENTR or perform the equivalent operation
itself, When passing parameters between routines of different
languages, be aware that the parameter values may be represented
differently in different languages.

Calling Non-Pascal Routines From Pascal Routines

A Pascal program, subprogram, or segment which calls a non-Pascal
routine must declare it to be external before calling it. When the
RTE loader is run, the non-Pascal routine must be relocated with the
main area or segment overlay which uses it. If the non-Pascal
routine is in a library, this can be done by searching that library.

Calling Pascal Routines From Non-Pascal Routines

A non-Pascal routine that has been combined with a Pascal/1000 main
program unit can access any level-1 routine in the main area. 1If the
program is segmented, a non-Pascal routine in the main area can
access any level-1l routine in a segment overlay that has been loaded
into memory. A non-Pascal routine 1in a segment overlay that is
already loaded into memory can access any level-l routine in the main
area or 1in the segment overlay. If a Pascal routine is called, the
.ENTR calling sequence must be used, unless the S$DIRECTS$ compiler
option was used for the Pascal routine.

A non-Pascal routine can access global data only through parameters
passed to the routine.

9-22

How to Use Pascal/1000

Calling Pascal Routines From Non-Pascal Programs

Non-Pascal programs can call Pascal routines as long as:

1.

The Pascal routine to be called is declared in a subprogram or
segment unit, not in a main program unit. This subprogram or

segment unit must be relocated with the non-Pascal program at
load time.

In each subprogram or segment unit the compiler option:

SHEAP 0, RECURSIVE OFFS$

must be included to suppress any use of the Pascal heap and
stack.

The Pascal routine can only use its local objects (includipg
routine parameters). No global objects or program parameters 1n
the subprogram or segment unit can be used by the Pascal routine.

Pascal And FORTRAN

The

programmer should be aware of the following differences between

Pascal and FORTRAN when interfacing between them.

Booleans:

In Pascal, the value of true is 1 and the value of false is 0.
In FORTRAN, the value of true is any negative value and the
value of false is any nonnegative value.

Arrays:

In Pascal, there is no limit to the number of array dimensions
allowed. Arrays are stored in row-major order. In FORTRAN, the

number of array dimensions is limited, and arrays are stored in
column-major order.

Files:
A file used by both Pascal and FORTRAN routines must be
declared in Pascal. If a file is opened in a Pascal routine (or
main), both FORTRAN and Pascal routines can write to it or
close it. If a file is opened in a FORTRAN routine (or main),
it can only be written to or closed from FORTRAN. For more

information, refer to the section FMP vs. Pascal/1000 I/O in
Chapter 8.

Pascal Segments and Subprograms:
If the main program is a FORTRAN program, the Pascal segments
and subprograms cannot have any global variables (this includes

file parameters in their headings). Global types and constants
(except structured and string constants) may be declared in the
Pascal compilation units.

How to Use Pascal /1000

COMMON ¢
Pascal cannot directly use variables stored in FORTRAN COMMON.
A Pascal routine within a subprogram, however, can access
common variables in a FORTRAN main. This is shown in the
following example:
FTN4,L
PROGRAM FTN
COMMON FIRST ,SECOND, THIRD
REAL FIRST, SECOND, THIRD
FIRST = 1.0
SECOND = 2.0
THIRD = 3.0
WRITE(1,10) FIRST,SECOND,THIRD
CALL PAS(FIRST)
WRITE(1,20) FIRST,SECOND,THIRD
STOP
10 FORMAT(STEP l: System Common initialized to:’, 3F10.2)
20 FORMAT(‘'STEP 2: Changed in Pascal to: ", 3Fr10.2)
END
ENDS
$SUBPROGRAMS
PROGRAM pasc;
TYPE
SYSTEM COMMON = RECORD
first,
second,

9-24

(
BEGI

L]

END;

PROCEDURE pas

WITH common DO BEGIN

second := 20.0;
third := 30.0;
END;
END;

third : REAL;

VAR common: SYSTEM_COMMON) ;
N

first := 10.0;

How to Use Pascal/1000

EMA parameters:

If a Pascal HEAP 2 (EMA) VAR parameter is passed to a FORTRAN
routine, the corresponding FORTRAN parameter must be a
call-by-reference EMA parameter ., Pascal passes the variable s
double-word address. The order of these words must be reversed
because FORTRAN expects them in reverse order. The program
below demonstrates a method of reversing pointers using a
variant record structure.

SHEAP 2$

PROGRAM demonstrate_pointer_swapping;

TYPE
WORD = -32768..32767;
BUF = ARRAY ([1..100] OF WORD;

BUF_PTR = "BUF;

VAR
pas_ptr : BUF_PTR;

PROCEDURE ftn_routine (parm : BUF_PTR);
EXTERNAL;

FUNCTION swap (EMA ptr : BUF_PTR) : BUF_PTR;

TYPE
FIELD_TYPE = (pointer, words);
VAR
buf rec : RECORD
CASE FIELD_TYPE OF
pointer : (ptr : BUF_PTR);
words : (wl,

w2, : WORD)

END;

temp : word;

BEGIN

WITH buf rec DO BEGIN
ptr = EMA _ptr
temp := wl;
wl = W2
w2 := temp;
swap := ptr;

END;

END; { swap }
BEGIN { main }

new (pas ptr);
ftn_routine (swap(pas_ptr));

END. { main }

9-25

How to Use Pascal/1000

Number formats:

Although real number format is the same in Pascal and FORTRAN
(for instance, 123E45), Pascal uses ‘L° with longreal while
FORTRAN uses 'D°, and Pascal accepts lower case ‘e and ‘1’
while FORTRAN accepts only capital ‘E” and ‘D°.

FORTRAN output can contain the following real values, of which
two are not valid Pascal input:

FORTRAN output:

0.0 Valid Pascal input
.0 Not valid Pascal input
-.0 Not valid Pascal input

Value parameters:

FORTRAN treats Pascal value parameters as though they were VAR
parameters; that is, as though they were passed by reference.

Data Storage:

Data type memory representations may be different between
Pascal and FORTRAN. For more details refer to section Data

Representation of Chapter 8, and the appropriate FORTRAN
reference manual.

Pascal And IMAGE

A Pascal program can use the IMAGE/1000 Data Base Management package.
If the program uses the heap/stack area, space must be reserved for
IMAGE using the compiler option $IMAGE n$, where n is the number of
words to be reserved. The size of n is determined by the complexity
of the data base being accessed. 1In general, n = 2000 will allow
most data bases to be accessed. The most that will ever be requiged
is 10,240 words. 1If the program uses the &HEAP 0$ compiler option
and does not use recursion, then it is not necessary to set aside the

space explicitly. Refer to the IMAGE/1000 Reference Manual for more
information.

9-26

How to Use Pascal/1000

The following example illustrates the use of the two IMAGE

subroutines dbopn and dbget. They appear in Pascal procedures which
check the status of the calls and proceed accordingly.

.

$IMAGE 5000$

CONST
term lu = 1;

TYPE
SINGLE_INTEGER = -32768..32767;
BASE TYPE = PACKED ARRAY [1..16] OF CHAR;
LEVEL_TYPE = PACKED ARRAY [l..6] OF CHAR;
STATUS_TYPE = ARRAY [1..10] OF SINGLE_INTEGER;
DS_NAME_TYPE = PACKED ARRAY [l..6] OF CHAR;
LIST_TYPE = PACKED ARRAY [1..250] OF CHAR;
BUFFER_TYPE = PACKED ARRAY [1..500] OF CHAR;
KEY_TYPE = PACKED ARRAY [1..40] OF CHAR;

{external declaration of IMAGE procedure dbopn}

PROCEDURE dbopn (VAR ibase: BASE_TYPE;
VAR ilevl: LEVEL_TYPE;
VAR imode: SINGLE_INTEGER;
VAR istat: STATUS_TYPE); EXTERNAL;

{Pascal procedure which uses dbopn}

PROCEDURE dbopen (VAR data base: BASE TYPE;

VAR level: LEVEL_TYPE);
CONST

mode = 1;
VAR

status: STATUS TYPE;
BEGIN {dbopen} -

dbopn(data_base, level, mode, status);

IF status([l] <> 0 THEN BEGIN 3 ;
writeln(term lu, "IMAGE ERROR ~, status[l], ~ ON OPEN’);
halt(l); {to stop program}

END;

END; {dbopen}

{external declaration of IMAGE procedure dbget}

PROCEDURE dbget (VAR ibase: BASE_TYPE;
VAR id: DS_NAME_TYPE;
VAR imode: SINGLE_INTEGER;

VAR istat: STATUS TYPE;

VAR list: LIST_TYPE;

VAR ibuf: BUFFER_TYPE;

VAR iarg: KEY_TYPE); EXTERNAL;

How to Use Pascal/1000

{pascal procedure which uses dbget}

PROCEDURE master get (VAR master ds name: DS NAME TYPE;
- VAR key: KEY_TYPE; - -
VAR list: LIST_TYPE;
VAR buffer: BUFFER_TYPE;
VAR found: BOOLEAN);

CONST
mode = 7; {keyed read}

VAR
status: STATUS_TYPE;

BEGIN {master_get}
dbget (cr_base, master_ds_name, mode, status, list, buffer,

key);
CASE status [1] OF
0: found := true;
107: found := false;
OTHERWISE . .) ,
writeln(term_lu, ERROR , status|[l1], ON DBGET);
halt (2);
END;

END;
END; {master_get}

How to Use Pascal/1000

Exec Calls

An executing Pascal/1000 program may request various system services
via a call to the EXEC processor, The specific service that is
requested is encoded in the calling parameters. The use of EXEC
calls provide the following services:

- standard 1/0

- disk track management

- Pprogram management

- system status return

- class 1/0

EXEC calls are described fully in the RTE-IVB Programmer ‘s Reference
Manual. This section describes the interface to EXEC calls that is
provided by Pascal/1000.

Encoding the Calls

An EXEC call may be coded either as a procedure or as a function. 1If
it 1is coded as a function, the return value type must be a one-word
type to return the value of the A register only, or a two-word type
to return the values of both the A and B registers.

The Pascal/1000 compiler does not treat an EXEC call @n any spgcial
manner. Therefore, it 1is possible to call EXEC directly if an
external declaration has been made with a set of formal parameters.

If the S$HEAP 2$ compiler option is wused, then the HEAPPARMS option
must be OFF for EXEC external declarations with VAR parameters.

9-29

How to Use Pascal/1000

Example:

PROGRAM example;
CONST
execll = 11;

TYPE

INT = -32768..32767;

TIME = ARRAY [1l..5] OF INT;
VAR

time_puffer : TIME;

PROCEDURE exec
(icode : INT;
VAR itime : TIME); EXTERNAL;

BEGIN

exec (execll, time_buffer);

END.

It

is usually either necessary or desirable to use aliases for each

EXEC service used in a program for the following reasons:

9-30

The name EXEC represents an entire class of services.. A
program using EXEC calls will be more readable if a descriptive
Pascal/1000 name is given to each service.

Each EXEC service requires a different set of parameters., Some
services (e.g., EXEC 1ll) have optional parameters. Since each
Pascal/1000 routine must have a specific set of parameters
(with respect to order, number, and type) and a specific return
type for functions, a separate external declaration, each
aliased to EXEC, must be used for each set of parameters.

How to Use Pascal/1000

Example:

PROGRAM exec_example;

CONST
exec7 = T;
execll = 11;
TYPE
INT = -32768..32767;
TIME = ARRAY [l..5] OF INT;
VAR
time_buffer : TIME;
current_year : INT;

PROCEDURE suspend $ALIAS “EXEC’$
(icode : INT);
EXTERNAL;

PROCEDURE get_time $ALIAS "EXEC’S
(icode : INT:
VAR itime : TIME);
EXTERNAL;

PROCEDURE get time and year $ALIAS "EXEC '$
(icode™: INT;
VAR itime : TIME;
VAR iyear : INT):;
EXTERNAL;

BEGIN

get_time (execll, time_buffer);

*
.

suspend (exec7?);

END.

get_time_and_year (execll, time_buffer, current_year);

How to Use Pascal /1000

No-Abort Bit and Error Return

Normally, if an EXEC call is successful, control will return to the
first instruction after the <call, as with any other Pascal/1000
procedure or function call. If an error is encountered during the
call, the program will abort.

If this abort is not desired, then bit 15 (the no-abort bit) of the
first parameter (service request code) of the EXEC call can be set to
1. When the no-abort bit is set for an EXEC call encoded as a
procedure call and an error is encountered during the call, control
will return to the first instruction after the call. This is known as
the "error return". Otherwise, if the call succeeded, control will

return to the second instruction after the call. This is known as the
"normal return".

In order for error returns and normal returns to be meaningful in a
Pascal /1000 program, the first statement after a no-abort EXEC
procedure call must be one instruction that is one word in length,
There are two statements in this category:

- GOTO statement

- Procedure statement of a parameterless procedure that was
declared with the $DIRECTS compiler option.

The no-abort bit must not be set for EXEC calls encoded as function
calls, since the concept of error returns is meaningless for
functions.

Example:

How to Use Pascal/1000

PROGRAM exec_program(OUTPUT) ;

CONST

no_abort_bit = -32768; {octal 100000}

exec? = 7 + no_abort bit;
TYPE

INT = -32768..32767;

ASCII_WORD = PACKED ARRAY (1..2] OF CHAR;
PROCEDURE abreg (VAR a_reg, b_reg : ASCII_WORD);

EXTERNAL;

PROCEDURE exec_error;
SRECURSIVE OFF, DIRECTS

VAR
a_reg, b_reg : ASCII_WORD;
BEGIN
abreg (a_reg, b_reg);
writeln (**ERROR IN EXEC CALL - ERROR CODE IS:',a_;eg'b_Feg):
halt(l);
END;

SRECURSIVE ONS

PROCEDURE suspend
(icode : INT);
EXTERNAL;

BEGIN

suspend (exec?);
exec error;

END.

9-33/9-34

Appendix A
Syntax Diagrams

Syntax Diagrams

program PROGRAM identifier |— o : ‘

9
block i

integer

structured
constant

TYPE identifier ° ‘

identifier

procedure heading
function heading

G —+[i }—(ED

statement ..

list

I | block .

directive

Syntax Diagrams

greoacde]g;re '(PROCEDURD—’l identifier |——{ formal parameter list }——

nction
lf.‘ueacctj‘?.'g—ﬂ FUNCTION }——h{ identifier]—-ulformal parameter list °

formal

parameter
list

identifier

type identifier

procedure heading

function heading

actual
parameter
list

|| procedure identifier '

function identifier

Syntax Diagrams

identifier

e O o R :
type identifier -

PACKED

-

RECORD field list END —_A

@@] /
FILE type y,

O
field list ()
(e
"~
field identifier : type

T @k)
CASE identifier OF
Ve (9
identifier m fiola

list

structured
constant | identifier '—‘@ﬁ " .®_’
i Dy

L structured

structured
constant

constant

Syntax Diagrams

e ()

statement (ﬁ

selector

variable identifier
S

expression

L.L procedure identifier]—-DI actual parameter IisT}

integer

statement list

expression

END

THEN

expression

REPEAT

expression

statement list

ELSE

OTHERWISE

statement list

©

UNTIL

statement

expression |

variable identifier

expression

L

statement

statement

range list constant

N
A\

Syntax Diagrams

expression @— - - >
=T _
e

variable identifier

constant identifier a | ! |
i actual
Mentine: [parameter
list

" u 0 9

type N

identifier expression
\-h| expression I[E

, E expression
selector — (

y N

identiier——f teer | — 7 —

digit

il

Syntax Diagrams

integer

string

e integer

;.@_/

comment

compiler
option

identifier

—

Appendix B
Run-Time Errors and Warnings

There are five types of errors which can be detected during the
execution of a Pascal/l1000 program. These are Program errors, I/0
errors, FMP errors, EMA errors, and Segmentation errors.

Program Errors

These errors occur when the program detects a value that it cannot
process or a problem is detected in the management of the heap/stack
area. The error message is of the form:

*** PASCAL ERROR: "ERROR MESSAGE"

Number Error Message

1 UNDEFINED CASE IN LINE xXxxX

2 HEAP/STACK COLLISION IN LINE xxXxX

3 NIL POINTER DEREFERENCED IN LINE X XXX

4 VALUE OUT OF RANGE IN LINE XXXX
91 DISPOSE CALLED WITH A NIL PTR IN LINE XXXX
92 DISPOSED OF AN INVALID VARIANT IN LINE XxxXxX
93 RELEASE CALLED WITH A NIL PTR IN LINE XXXX
94 DISPOSE CALLED WITH A BAD PTR IN LINE XXXX
95 RELEASE CALLED WITH A BAD PTR IN LINE XXXX
99 INSUFFICIENT IMAGE SPACE

Undefined CASE

The 1line number is that of the line of the case statement on which
the final END appears. A case selector had a value which did not

correspond with any case 1label, and no OTHERWISE clause was
specified.

Heap/Stack Collision

The 1line number (if present) is that of the line on which a call to
NEW was made that exhausted the heap area. If no line number
appears, a call to a recursive routine has exhausted the stack area.

Nil Pointer Dereferenced

An attempt was made to use a dynamic variable that did not exist
(i.e. the pointer to it was nil).

Run-Time Errors and Warnings

Value Out of Range

A value to be assigned, used as a pointer or array subscript, or
pPassed as a value parameter, is out of the range of valid values. The
line number is that of the end of the assignment statement, the end

of the pointer or subscript expression, or the end of the routine to
which the argument is being passed.

Dispose Called With a Nil Pointer

Dispose was called with a pointer that did not point to any dynamic
variable (i.e. the pointer was nil).

Disposed of Invalid Variant

The alternate form of dispose was called with tag values that
specified a record with a different size than that specified when the
record was created (with either form of NEW). Pascal/1000 only
detects size mismatch; if the tags specify a variant other than that
specified when NEW was called, but the size of the variant is the
same as that specified by the NEW call, no error will occur.

Release Called With a Nil Pointer

Release was called with a pointer that did not contain the MARKED
state of the HEAP. Release should only be called with a pointer that
was passed to MARK (and not modified since). If release is called
with a pointer created by NEW, no immediate error will occur;
however, the results will be unpredicatable.

Dispose Called With a Bad Pointer

Dispose was called with a pointer that did not point into the heap

area (i.e. the pointer was not initialized with NEW or has been
corrupted).

Release Called With a Bad Pointer

Release was called with a pointer that did not point into the heap
area (i.e. the pointer was not initialized with MARK or has been
corrupted).

Insufficient Image Space

After the program was loaded into a partition, there was not enough
free space remaining between the end of the program and the end of
the partition to meet the IMAGE specification. The program can be

made to run in a larger partition with the Sz command, or the amount
of IMAGE area can be reduced.

A I/0 error occurs when an attempt

Run-Time Errors and Warnings

I/O Errors and Warnings

is made to incorrectly access a

Pascal/1000 logical file, or a physical file is not compatible with a
Pascal /1000 logical file. The error message is of the form:

*** PASCAL I/O ERROR ON FILE XXXXX
"Error Message"

Where "xxxxx" is the name of the Pascal/1000 logical file.

WoONdAUT & WN =

el
Vb WN = O

=
@ ~J O

Er ror Message

UNEXPECTED EOF

FILE MUST BE TEXT

FILE MUST BE DIRECT

BAD RECORD LENGTH

MUST RESET OR OPEN FILE

MUST REWRITE OR OPEN FILE
DIRECT ACCESS READ ERROR
SEQUENTIAL ACCESS READ ERROR
INVALID INTEGER READ

LINE READ WAS TOO LONG
INVALID REAL NUMBER READ

FILE IS NOT CCTL

NO SCRATCH FILE AVAILABLE
MINUS FIELD WIDTH NOT ALLOWED
FILE CANNOT BE TYPE 1 OR 2
FILE MUST BE TYPE 1 OR 2
CANNOT OPEN LU 0 FOR READ ONLY
MISSING FILE NAMR

The warning message is of the form:

*%** PASCAL I/0 WARNING ON FILE XXXXX
"Error Message"

Where "xxxxx" is the name of the Pascal/1000 logical file.

Number

1
2

Error Message

OUTPUT LINE MOVED TO NEXT LINE
OUTPUT LINE SPLIT

Run-Time Errors and Warnings

FMP Errors

A FMP error occurs when an attempt is made to incorrectly access a
physical file. See the appropriate documentation for an explanation
of the error codes. The error message has the form:

*** FMP ERROR nnnn ON FILE XXXXX

Where "nnnn" is the FMP error code and "xxxxx" is the Pascal/1000
logical file name.

EMA Errors

This error occurs when an invalid two-word pointer is dereferenged.
It can only occur in programs compiled with the $HEAP 2$ compiler
option. The error message has the form:

*** PASCAL POINTER ERROR AT XXXXX

Where "xxxxx" is the address in the code, expressed in octal, where
the error occurred.

Segment Errors

This error indicates that a segment was not found by the segment
loader @SGLD. The error message has the form:

*** PASCAL SEGMENT xXxxxX NOT FOUND
Where "xxxxx" is the name of the segment passed to @SGLD.

Error Message Printers

The standard error message printer @PRER in the Pascal library prints
the 1long error messages described above. This routine, however, is
quite 1large since it contains the text of all the messages. 1If a
smaller error routine is desired, the file $PRERS can be relocated,
in the LOADR, before the Pascal library is searched. This short error
routine is about one third the size of the standard error message
printer; it only prints the error number for PROGRAM and I/O errors,
rather than the long descriptive message.

Catching Errors

Normally, the occurrence of a run-time error causes the appropriate
error message to be issued and the program to be terminated. However,

a programmer can choose to have a program catch run-time errors
itself.

Run-Time Errors and Warnings

Each of the six types of run-time errors or warnings normally causes
an error catching routine, @PREP (from the Pascal library), to be
invoked. The version of @PREP in the library simply calls the error
printer routine @PRER and then terminates the program. A program can
catch and handle run-time errors by providing its own version of

@PREP. An appropriate heading for @PREP is of the form:
TYPE
INT = -32768..32767;
ERROR_TYPE = (run, ema, io, fmp, seg, warn);
FILE_NAME = PACKED ARRAY [1..150] OF CHAR;

PROCEDURE handle error
SALIAS “@PREP $
(err_type: ERROR_TYPE; err_number: INT; err_line: INT;
err_file: FILE_NAME; err_flen: INT);

For each ERROR_TYPE the other parameters to @PREP are defined as follows:

err _number:
err_line:
err file:
err_flen:

run:
err_number: The number of the Pascal program error.
err line: The source line number (or zero if not applicable).
err file: Undefined.
err_flen: Undefined.
io:
err_number: The number of the Pascal I/0 error.
err_line: Undefined.
err file: The Pascal logical file name.
err_flen: The length of the file name.
fmp
err number: The FMP error code.
err line: Undefined.
err file: The Pascal logical file name.
err_flen: The length of the file name.
ema:
err_number: Undefined.
err line: The address of the pointer dereference operation.
err file: Undefined.
err_flen: Undefined.
seg:
err_number: Undefined.
err_line: Undefined.
err_file: The segment name.
err_flen: The length of the segment name (always 5).
warn:

The number of the Pascal 1/0 error.
Undefined.

The Pascal logical file name.

The length of the file name.

Run-Time Errors and Warnings

Having processed the error, the user-supplied @PREP can cause the
default error printer to be invoked (which will write a message
describing the error to LU 1) by calling the procedure @PRER with the
same parameters (in the same order) that they were passed to @PREP.
Note that @PRER does not terminate the program; this must be done by
the user-supplied @PREP routine if that is the desired action. Every
attempt is made to ensure that if the user @PREP exits, that the
program will continue "normally"”, essentially ignoring the error.
However, it should be clear that some errors cannot be safely
"ignored" and the results of doing so are unpredictable.

NOTE: In some cases (usually when a file has not been opened) the
file name may not be correct. When this can be detected the length
will be passed as zero. However, it cannot always be detected, so
use of file name information is at the users risk.

A possible use of this mechanism would be to place @PRER in a segment
so that it would not be present during normal execution. However,
replacing @PREP with a version that does a segment load and then
calls @PRER will not work, as the external reference to @PRER will
cause it to be loaded from the library with @PREP (which is what you
were trying to avoid). To make it work, replace @PREP with a version
that does the segment load, and then calls a routine (of yours) in
the segment, which in turn calls @PRER. Obviously the parameters
must be passed to your routine so that it can pass them to @PRER.

NOTE: The user-supplied version of @PREP as well as any routines
which are given access to any of the parameters of @PREP must be
compiled with the S$HEAP 1$ option. '

Appendix C

Compile-Time Errors

Pascal /1000 syntax Errors 1-99

1:
22
3:

o
.

P S N
CONOUERWNKHOWVWRNOWm
9% 00 a0 09 00 00 se 00 00 00 s s 0 g 0 e

error in simple type
identifier expected
“PROGRAM’ expected

"y ° expected

‘s’ expected

illegal symbol

error in parameter list
‘of° expected

“(* expected

error in type

[’ expected

‘1’ expected

‘end * expected

“;* expected

integer expected

‘=’ expected

‘begin’ expected

error in declaration part
error in field list

", expected

“.” expected

string expected

‘.. expected

illegal character in this context
‘", or “;’ expected
expression must be a constant
error in constant

“:=" expected

“THEN® expected

‘UNTIL expected

DO’ expected

TO " or ‘DOWNTO’ expected
error in expression

’

’

external routine must be declared at outermost level
aliased routine must be declared at outermost level

recursive routine may not be direct
actual routine may not have errorexit

negative field width not allowed

Compile-Time Errors

Pascal /1000 Syntax Errors 100-149

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123
124:
125:
126:
127

128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:;
140:
141:
142;
143:
144;
145;
l46:
147
148:
149:

duplicate or invalid external name

identifier redeclared

low bound exceeds high bound

identifier is not of appropriate class

identifier not declared

sign not allowed

scope violation

incompatible subrange types

file not allowed here

type must not be real

tagfield type must be scalar or subrange
incompatible with tagfield type

index type must not be real

index type must be scalar or subrange

base type must not be real

base type must be scalar or subrange

error in type of standard procedure parameter
unsatisfied forward reference

undeclared forward procedure or function

forward declared; repeated parameter list not allowed
function may not return this type

file value parameter not allowed

forward declared; repeated result type not allowed
missing result type in function declaration
decimal position for real only

error in type of standard function parameter
number of parameters does not agree with declaration
missing parameter to standard routine

result type of parameter function conflicts with declaration
type conflict of operands

expression is not of set type

only tests of equality are allowed

strict inclusion not allowed

file comparison not allowed

illegal type of operand(s)

type of operand must be Boolean

set element type must be scalar or subrange

set element types not compatible

type of variable is not array

index type is not compatible with declaration
type of variable is not record

type of variable must be file or pointer

illegal parameter substitution

illegal type of loop control variable

illegal type of expression

type conflict

assignment of files not allowed

label type incompatible with selecting expression
subrange bounds must be scalar

not assignment compatible

Compile-Time Errors

Pascal /1000 Syntax Errors 150-199

150:
151:
152:
153
154:
155;
156:
157:
158:
159
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:.
175:;
176:
177:
178:
179:
180:
181:
182
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:;
195:
196:

assignment to standard function is not allowed
assignment to formal function is not allowed
no such field in this record

type error in read

actual parameter must be a variable

loop control variable must be simple/local variable
multidefined case label

loop control variable may not be assigned to
missing corresponding variant declaration

real or string tagfields not allowed

previous declaration was not forward

again forward declared

type error in write

missing variant in declaration

substitution of standard proc/func not allowed
multidefined label

multideclared label

undeclared label

undefined label

error in base set

value parameter expected

actual parameter cannot be component of packed type
dynamic variables cannot be/contain a file

too many enumerated values

file cannot be textfile

missing file "input" in program heading
missing file "output" in program heading

only variables may be assigned to

invalid expression

function identifier not assignable here

type of expression must be Boolean

no function result defined in the body of the function
program or module cannot be declared forward
program or module cannot be declared external
warning: division by zero

undeclared external file

file must be a textfile

option conflict

option cannot be specified here

heap option must be set to use this routine
recursive option must be set to do recursion
option cannot be respecified

option not recognized

include level too deep

include file cannot be read

option has invalid parameter

‘ON° or ‘OFF’ expected

Compile~Time Errors

Pascal /1000 Syntax Errors 200-500

200: numeric constant too long

205: real constant exceeds range

206: missing fractional part of real

207: missing scale factor of real or longreal
209: overflow or underflow

210: integer constant exceeds range

215: string constant too long

216: string constant exceeds source line
217: null string is invalid

218: non printing character invalid in string
219: invalid non printing character

220: character constant exceeds range

225: label exceeds range

230: structured type identifier expected
231: too few constants

232: too many constants

233;: field(s) not specified

234: field respecified

235: tag not set or set to another variant
236: set type id expected

237: constant of wrong type

250: too many nested scopes of identifiers

251: too many nested blocks of code

252: location counter over flow

253: unexpected end of source file

254: source line too long

255: too many errors on this source line

260: compiler label overflow: break into separate compilations

261: compiler literal pool overflow: expression too complicated '
262: insufficient compiler workspace: increase EMA pages in option file

302: index expression out of bounds

303: value to be assigned is out of bounds
304: element expression out of range

305: actual parameter out of bounds

307: expression out of bounds

398: implementation restriction
399: "non standard" construct

400 or greater: Compiler error, contact your HP representative.

Appendix D
Compiler Options

Compiler options direct the compiler in processing the source
program,

Syntax:

compiler
option

identifier

OFF

integer

string

iy

If no option value is specified, options which expect ON or OFF will
assume ON. Options which require an integer or string value must have
that value specified (with the exception of the PASCAL option). The
trailing $¢ may be omitted, in which case the compiler option is
assumed to stop at the end of the line.

ALIAS <string>

The <string> specifies a name to be used to reference the routine
from a separately-compiled routine. Only the first five characters
will be used if more than five appear. If less than five characters
appear, the string will be blank filled on the right. If this
option is wused it applies only to a single routine, and it must
appear following the reserved word PROCEDURE or FUNCTION and before
the block or directive. If a routine is declared FORWARD, the ALIAS
.option must appear at the FORWARD declaration, not at the actual
declaration. Only level-l routines may be aliased. If VISIBLE is
OFF (see below) the alias will be used in the generated code, but the
routine will not be accessible from separately-compiled routines.

ANSI <ON or OFF>
ON causes a syntax error 399 to be issued for the use of any feature

of Pascal/1000 which is not a part of "standard" Pascal (see Appendix
E). Default: OFF

D-1

Compiler Options

ASMB <string>

The <string> specifies the option string to be passed to the
assembler. For example, $ASMB .'R,L°$ can be used to get an assembled
listing of the emitted code (see KEEPASMB option). If this option is

’ ’

used, it must appear before the program heading. Default: 'R

AUTOPAGE <ON or OFF>

On specifies that each procedure or function is to be listed on a new
page. The page eject 1is performed after each routine has been
compiled, so a nested routine and the body of its enclosing routine
are listed on separate pages. A page eject is not performed between
the global declarations and the first routine. Default: OFF

BUFFERS <integer>

The <integer> (range 1 to 255) specifies the number of 128 word
blocks to make available for the file DCB buffer. This option
applies to all succeeding type definitions involving files (its
applies at variable declarations for the standard file type TEXT).
If the standard files input and/or output appear in the program
heading and the BUFFERS option is to apply to them, it must appear
before the program heading. Default: 1

CODE <ON or OFF>

ON specifies that assembler source code is to be emitted. This option
should be turned OFF with care. When it is OFF the compiler may fail
to emit code that is required by the assembler and/or other pieces of
code that are emitted while CODE is ON. The compiler turns CODE OFF
when the first syntax error is detected (CODE may not be turned back
ON by the user after a syntax error). Default: ON

DIRECT

Specifies that a routine will not use the .ENTR calling sequence. The
call to L.ENTR will not be emitted in the routine code and calls to
the routine will not contain an initial DEF to the return address.
Arguments are still passed with DEF’s (arguments are never passed in
registers). If this option is used, it applies only to a single
routine, and it must appear after the reserved word PROCEDURE or
FUNCTION and before the block or directive. If a routine is declared
FORWARD, the DIRECT option must appear at the FORWARD declaration,
not at the actual declaration. A DIRECT routine cannot be RECURSIVE,
nor can it be passed as a actual parameter (an EXTERNAL routine

declared with RECURSIVE ON can be declared DIRECT as RECURSIVE does
not apply to EXTERNAL routines). Default: routine is not DIRECT

Compiler Options

EMA <string>

The <string> specifies the parameters of the EMA instruction emitted
for HEAP 2 programs (see HEAP option). The string is of the form
“emasize,msegsize’ (e.g. °65,2°) where emasize and msegsize are
unsigned integers. 1If this option is used, it must appear before the
program heading. EMA is only effective in the main program unit, it
will be ignored in subprogram or segment units.

ERROREXIT

Specifies that an external routine’s calling sequence includes an
error return (a JSB ERRO will be emitted following any call). If this
option is wused, it applies only to a single routine, and it must
appear after the reserved word PROCEDURE or FUNCTION and before the
directive. Only EXTERNAL routines may have an ERROREXIT. Default:
routine does not have ERROREXIT

HEAP <integer>
0 specifies no heap is used.

1 specifies that the heap/stack area resides in the 32K logical
address space after the users program. Pointers are one word
addresses.

2 specifies that the heap/stack area resides in EMA. Pointers are
two-word offsets from the start of EMA. An actual parameter
corresponding to a VAR formal parameter is passed as a DEF to a
two word address. If the first word of the two word address is
negative, the second word contains the 16-bit address of the
actual parameter. 1f the first word 1is not negative then the
two words represent the offset of the actual parameter from the
start of EMA.

This option may appear only once in a compilation unit, and if used
it must appear before the program heading. Mixing HEAP options among
compilation units requires special coordination (see HEAPPARMS). With
HEAP 2, objects 1larger than 1024 words in the heap may not be
assigned or passed as value parameters. Default: 1

Compiler Options

HEAPPARMS <ON or OFF>

OFF specifies that VAR parameters cannot reside in the heap. This
option is used with HEAP 2 programs for efficiency reasons or to pass
VAR parameters to a separately compiled routine that was compiled
with HEAP set to 0 or 1. If it 1is known that an actual VAR
parameter (s) will never be in the heap, this option is used to permit
parameter accessing to be done with a one word address instead of
through a two word address (which for non-heap parameters has a
negative first word, see HEAP 2). This option may be turned OFF or
ON anywhere in the compilation unit and its setting affects the VAR
parameters of all routines declared thereafter. In order to take
effect for a given VAR parameter, it must be set or reset before the
reserved word VAR. HEAPPARMS OFF is ignored in the parameter lists
of formal routine parameters. A routine which has any of its VAR
parameters declared with HEAPPARMS OFF may not be passed as an actual

parameter. HEAPPARMS is ignored in compilation units which are HEAP
1. Default: ON

IDSIZE <integer>

The <integer> (range 1 to 150) specifies the number of significant
characters in identifiers. The identifiers may still be up to 150
characters in length, but only the first N characters (where N is the
current IDSIZE) will be used as the actual identifier. Default: 150

IMAGE <integer>

The <integer> (range 0 to 32767) reserves the specified number of
words from the dynamic memory area for use by the IMAGE subsystem.
The area always resides in the 32K logical address space (even .in
HEAP 2 programs). If this option is used, it must appear before the
program heading. A run-time error occurs when the program starts if
there is not enough dynamic memory area available to meet the IMAGE
specification. IMAGE can be used with HEAP 0. IMAGE is only effective
in the main program unit; it will be ignored in subprogram or segment
units. Default: 0

INCLUDE <string>

The <string> names a file whose contents are to be included at the
current position in the source. Included code may not contain
additional INCLUDE options. After including the named file, the
compiler continues processing the line on which the INCLUDE option
appears. An error will occur if the file is not of type TEXT.

Compiler Options

KEEPASMB

Causes the file of generated assembly language code to be kept. 1If
an error occurs in the assembly, the file will be kept whether or not
KEEPASMB is specified. If this option 1is used, it must be specified
before the program heading. KEEPASMB turns MIX ON, MIX may be turned
OFF after KEEPASMB is specified. If KEEPASMB is specified, the name
of the saved assembly language source is displayed after the assembly
terminates. The name is the same as that of the relocatable with a
(") replacing the initial (%). If the relocatable name does not
start with (%) then the name is prefixed with ("), dropping the last
character if the name was already 6 characters long. Default: purge
assembler source at end of assembly

LINESIZE <integer>

The <integer> (range 1 to 256) specifies the maximum number of
characters in a line that a TEXT file will be able to handle. It
applies to all successive type definitions and variable declarations
that involve TEXT files. If the standard files input and/or output
appear in the program heading and the LINESIZE option is to apply to
them, it must appear before the program heading. Default: 128

LIST <ON or OFF>

ON causes the source to be listed. OFF suppresses the listing except
for lines that contain errors. While LIST is OFF, AUTOPAGE, PAGE,
STATS, and TABLES are effectively OFF. Default: ON

LIST _CODE <ON or OFF>

ON specifies that the program listing is to contain emitted code in
symbolic form, Default: OFF

MIX <ON or OFF>

ON specifies that the generated assembly source is to contain Pascal
source lines as comments. The program heading and any source lines
before the heading are not included. Default: OFF (see KEEPASMB
option)

PAGE

Causes the listing to resume at the top of the next page (if LIST is
ON) .

Compiler Options

PARTIAL_EVAL <ON or OFF>

ON suppresses the evaluation of the right operand of an AND (OR)
. operator when the 1left operand is FALSE (TRUE). OFF causes all
operands of a Boolean expression to be evaluated. Default: ON

PASCAL <string>

If this option is specified, it must appear before the program
heading. The system utilities COMPL and CLOAD look for:

SPASCAL

as the first characters of a source file in order to schedule the
Pascal compiler.

The optional <string> is used to place information in the NAM record
of the program unit. If the first character of the string is a comma
(».) then the string specifies the contents of the NAM statement
following the name field. This includes the program type, the
priority, other options and a comment:

$SPASCAL °,4,89 My Program’$
PROGRAM trial (input, output);

will generate a NAM statement of the form:
NAM TRIAL, 4,89 My Program YYMMDD . HHMM

where YYMMDD.HHMM is a date/time stamp provided by the compiler on
all NAM records. If the first character is NOT a comma (,) then the
string specifies only the comment field of the NAM statement; the

relocatable type, followed by a space, will be provided by the
compiler.

$PASCAL ‘Sample Program’, SUBPROGRAMS
PROGRAM sample (input, output);

will generate a NAM statement of the form:
NAM SAMPL,7 Sample Program YYMMDD . HHMM

Only the first 40 characters of the string will be used in either
case.

Note: The use of the first form requires specification of the
relocatable type by the user. This must agree with the type of
program unit being compiled. The use of the SEGMENT or SUBPROGRAM
option 1is still required if the program unit is to be one of those

types, but the option will not be checked against the user-supplied
NAM statement. 1If the user-specified relocatable type does not agree
with the program unit type known to the compiler the results are
unpredictable.

Compiler Options

RANGE <ON or OFF>

ON specifies that run-time checks of array indices, subrange
assignments, actual value parameters, and pointer dereferencing are
to be performed. Note: Range-checking is always per formed for set

expressions upon assignment whether or not this option is ON.
Default: ON

RECURSIVE <ON or OFF>

ON specifies that subsequent routines can be called recursively. OFF
specifies that subsequent routines cannot be called recursively. For
the option to take effect for a given routine it must be set or reset
appropriately before the block or directive. If a routine is
declared FORWARD, the RECURSIVE option must be set appropriately at
the FORWARD declaration. The RECURSIVE option has no effect on

routines declared EXTERNAL. A RECURSIVE routine cannot be DIRECT.
Default: ON

SEGMENT

Specifies that the current compilation unit is a segment, rather than
a subprogram or main program. A segment is identical to a subprogram
except that a "segment main" is created by the compiler that returns
to the point following the segment load call (See Chapter 3). A type
5 relocatable is produced for a segment. Each level-1l routine in a
segment unit is normally an entry point (see VISIBLE option). If this
option is specified, it must appear before the program heading.
De fault: compilation unit is a main program

STATS

Specifies that the state of the compiler options and certain
configuration information for the current compilation be displayed at
the end of the compilation (the state of the options is displayed in
the 1listing file, the configuration information both in the listing
and to the terminal). If this option is specified, it must appear
before the program heading. The STATS information will only appear
in the listing file if LIST is ON at the end of the compilation.

Example:
Dynamic Memory Allocation

102 pages of EMA.
20 Pages requested.
23 Pages allocated.
10 Pages for one more memory segment.
36 Pages for one less memory segment.

Compilation started: Sat Feb 23, 1980 1:48 pm
Compilation completed: Sat Feb 23, 1980 1:49 pm

Compiler Options

COMPILER OPTIONS:

ANSI OFF
ASMB R
AUTOPAGE OFF
BUFFERS 1
CCDE ON
HEAP 1
HEAPPARMS ON
IDSIZE 150
IMAGE 0
KEEPASMB OFF
LINESIZE 128
LIST ON
LIST_CODE OFF
MIX ON
PARTIAL_EVAL ON
RANGE ON
RECURSIVE ON
STATS ON
SUBTITLE

TABLES ON
TITLE Sample Program
TRACE OFF
UNIT PROGRAM
VISIBLE ON
WIDTH 80
XREF OFF

The "Dynamic Memory Allocation" information tells the user that:

The compiler had 102 pages of EMA space. This can be modified by
the SZ operator command.

.The user had requested a minimum of 20 pages for the heap/stack

area. This value can be changed by specifying another value in
the option file.

After the configuration process, 23 pages were actually allocated
for the heap/stack area. This is because 3 pages were left over
from the memory segments area after as many segments as possible
were made memory segments. A user request of 24 pages may cause
one less segment to be memory resident or perhaps a smaller
segment (that was disc resident) to become memory resident. 1In

either case 24 pages is next request that will change the actual
allocation.

If the user had requested a minimum of 10 pages for the heap/stack
area (which would have resulted in a larger memory segments area),
then one more segment would have been made memory resident. This
would have resulted in a decrease in compiler workspace and a
possible increase in the speed of compilation.

Compiler Options

If the user had requested a minimum of 36 pages for the heap/stack
area (which would have resulted in a smaller memory segments
area), then one less segment would have been made memory resident.
This would have resulted in an increase in compiler workspace and
a possible decrease in the speed of compilation.

SUBPROGRAM

Specifies that the current compilation unit is a subprogram. A
subprogram is identical to a main program except that there is no
body for the main (See Chapter 3). A type 7 relocatable is produced
for a subprogram. Each level-1 routine in a subprogram is normally
an entry point (see VISIBLE option). 1If this option is specified, it
must appear before the program heading. Default: compilation unit is
a main program

SUBTITLE <string>

The first 25 characters of the <string> will be printed under the
TITLE string (see below), if any, at the top of the next and
subsequent pages of the listing. Default: all blanks

Compiler Options

TABLES <ON or OFF>

ON specifies that symbol table information is to be displayed
following routines and/or the program. The option must be ON before
the final semicolon of a routine (or period in the case of the

program) and LIST must be ON for the appropriate TABLES to be
displayed. Default: OFF

Example:
1 00000 PROGRAM example (INPUT, OUTPUT):;
2 00676 {
3 00676 program to demonstrate the different kind of table entries
4 00676 }
5 00676
6 00676 CONST
7 00676 exclamation = 71 °;
8 00676 perfect = 8128;
9 00676 pi = 3.1415926;
10 00676 big = 123456789L10;
11 00676 string = ‘A string indeed’;
12 00676
13 00676 TYPE
14 00676 POSINT = 0..32767;
15 00676 CHARSET = SET OF CHAR;
16 00676 ANARRAY = PACKED ARRAY ([1..100] OF BOOLEAN;
17 00676 ARECORD = RECORD
18 00676 one: INTEGER;
19 00676 CASE two: POSINT OF
20 00676 10: (ten: POSINT) ;
21 00676 20: (twenty: REAL);
22 00676 30: (thirty: LONGREAL);
23 00676 END;
24 00676

00676 CONST
00676 frano = ANARRAY [50 OF false, 50 OF true];

00676

00676 VAR

00676 once: CHARSET;

00717 upon: TEXT;

01256 a time: ARECORD;

01265 year: 1900..2000;

01266 era: (past, present, future);
01267

01267 PROCEDURE donothing;

00000 BEGIN {donothing}

00027 END; {donothing}

00047

00047 $ TABLES ON $ {only want main program tables}
00047 BEGIN {example}

41 00100 END. {example}

BWWWWWWWWWWONNNDN
CLVNOUMBdWNHOWVL®OINU

D-10

Compiler Options

TABLES continued

GLOBAL IDENTIFIER TABLES

ANARRAY <1> TYPE
<1> 6/ 4 PACKED ARRAY <3> OF <2>
<3> 0/ 7 SUBRANGE 1..100 OF <4>
<4> 1/ 0 SCALAR STANDARD
<2> 0/ 1 BOOLEAN
ARECORD <5> TYPE
<5> 7/ 0 RECORD
ONE <6> FIELD 0/2
<6> 2/ 0 INTEGER
TEN <7> FIELD 3/1
<D 0/15 SUBRANGE 0..32767 OF <4>
THIRTY <8> FIELD 3/4
<8> 4/ 0 LONGREAL
TWENTY <9> FIELD 3/2
<9> 2/ 0 REAL
TWO <7> FIELD 2/1
<10> 3/ 0 TAG <7>
<11> 4/ 0 VARIANT 10
<12> 5/ 0 VARIANT 20
<13> 7/ 0 VARIANT 30
A_TIME <5> ACTUAL VARIABLE @1+686
BIG <8> CONSTANT 1.2345678900000000L+18
CHARSET <14> TYPE
<14> 17/ 0 SET OF <15>
<15> 0/ 8 CHAR
DONOTHING
DECLARED PROCEDURE ACTUAL RECURSIVE

ERA <17> ACTUAL VARIABLE @1+694
<17> 0/ 2 SCALAR DECLARED
EXCLAMATION

<15> CONSTANT “!°
FRANO <1> CONSTANT ARRAY @6+0
FUTURE <17> CONSTANT 2
ONCE <14> ACTUAL VARIABLE @1+446
PAST <17> CONSTANT 0
PERFECT <4> CONSTANT 8128
PI <9> CONSTANT 3.1415925L+00
POSINT <7> TYPE
PRESENT <17> CONSTANT 1
STRING <18> CONSTANT STRING €2+6
<18> 7/ 8 PACKED ARRAY <19> OF <15>
<19> 1/ 0 SUBRANGE l1..15 OF <4>
UPON <20> ACTUAL VARIABLE @1+463
<20> 223/ 0 TEXT
YEAR <22> ACTUAL VARIABLE @1+693
<22 0/11 SUBRANGE 1900..2000 OF <4>

D-11

Compiler Options

A TABLES 1listing contains two types of entries: identifier entries
and type entries, The first line of the example is an identifier
entry:

ANARRAY <1> TYPE

An identifier entry has three fields. The first is the identifier
itself. If an identifer is longer than eight characters it is listed
alone on a line and the other two identifier entry fields follow on
the next 1line (see DONOTHING and EXCLAMATION for examples). The
second field is the type number, for ANARRAY this is <1>, and it is
used to locate the type entry for the identifier. The third field is
the class of the identifer, ANARRAY is an identifier which defines a

type. Other possibilities for identifier class can be seen in the
table.

Identifier entries are listed in alphabetical order with one
exception. When a record type 1is encountered, the fields of the
record are listed in alphabetical order at that point. The fields of
ARECORD are an example (ONE, TEN, THIRTY, TWENTY, and TWO); then the
identifier entries go back into alphabetical order with A_TIME.

The second line of the example is a type entry:
<1> 6/ 4 PACKED ARRAY <3> OF <2>

A type entry has three fields. The first is the type number (referred
to above). Type entries are only listed once, immediately following
the first identifier entry of the type. The type number is used to
reference a type entry from an identifier of that type appearing
later in the list. The second field is the minimum size of the type
in the form words/bits. An object of the specified type within a
PACKED object can have its minimum size (see Chapter 4 PACKED TYPES).
Objects not within PACKED objects will have an actual size rounded up
to the next number of whole words. The third field is a description
of the type. 1In this case a "packed array" with an index type of <3>
and an element type of <2>,

Record type entries are followed by their fields in alphabetical
order:

fieldid <typenum> field <word-offset)>/<words>/<bit-offset>/<bits>
The word offset of the start of the field and the number of words the
field occupies are always specified. If the record is PACKED then
the bit offset of the start of the field (from the word offset), and
the number of bits the field occupies are specified. If the record
has a VARIANT part, the VARIANT selection constants are listed next:

{typenum> <words>/<bits> variant <tag value>

D-12

Compiler Options

The <typenum> is arbitrary and is not referenced anywhere. The size
field is the minimum size of the entire record when that particular
VARIANT is selected. The <tag value> is the value of the tag that
corresponds to the particular VARIANT.

The standard scalar types appear in the tables with their predefined
names in the type entry. The type entry that indicates a one-word
subrange of INTEGER will appear as 1/0 SCALAR STANDARD.

Structured constants and variables occupy storage and their
identifier entry specifies where this storage starts. The compiler
generates two kinds of labels. If a structured constant or variable
is global it is 1located at an offset from a 1label of the form
"@pDDD", if it is not global (i.e. cannot be accessed from other
compilation units) it 1is located at an offset from a label of the
form ".DDDD". The offset is a decimal value. Structured constants
and variables declared while CODE is OFF are not guaranteed to have
accurate label entries.

TITLE <string>

The first 25 characters of the <string> will be printed at the top of
the next and subsequent pages of the listing. Default: all blanks

.TRACE <integer>

The <integer> specifies the LU number where a history of routine
entries and exits are displayed. LU 0 (default) specifies that no
trace 1is desired. If the option is used, calls to the following
routines are placed in the emitted code:

TYPE
LU
LEN
STR64

0..63;
1..64;
PACKED ARRAY [l..64] OF CHAR;

PROCEDURE trace init {call emitted at start of program }
SALIAS “"TIN S$
(trace_lu: LU); {LU of trace output }
EXTERNAL;

PROCEDURE trace close {Call emitted at end of program }
SALIAS “°“TCL”S
EXTERNAL;

PROCEDURE trace begin {cCall emitted at start of each routine}
SALIAS “"TBG $

(name len: LEN; {Length of routine name }
name~ : STR64); {Name of routine }
EXTERNAL;

D-13

Compiler Options

PROCEDURE trace end {Call emitted at end of each routine }
SALIAS ““TND”$
(name len: LEN; {Length of routine name }
name : STR64); {Name of routine }
EXTERNAL;

If any compilation unit of a program has TRACE on, and one of the
standard trace packages is to be wused (%TRACA, %$TRACB, or %TRACC),
the main program must have TRACE on to the same LU when the BEGIN and
END of the main program are encountered to ensure that the necessary
calls to "TIN and "TCL are emitted. This is the user’s responsibility
as the compiler cannot know when compiling the main whether tracing

was specified in any separately compiled subprogram or segment.
Default: 0

VISIBLE <ON or OFF>

ON specifies that subsequent level-1l routines are to be entry points
and thus must have names unique within the first five characters. OFF
specifies that subsequent routines are not entry points, and are not
subject to the five character name system restriction (and are thus
not accessible from other program units). If a routine is declared
FORWARD, the VISIBLE option must be set appropriately at the FORWARD
declaration. Default: ON

WIDTH <integer>

The <integer> specifies the number of significant characters in a
source line (range 20 to 150). Additional characters on the line are
ignored. This option takes effect starting with the line it appears
on., Default: 80

XREF

Specifies that a cross reference of the program will be generated at
the end of the 1listing (see Appendix F). If this option is
specified, it must appear before the program heading. Default: no
cross reference

D-14

Appendix E
Program To Program Communication

This appendix illustrates a major application of EXEC calls in
Pascal /1000 programs. Program-to-program communication via message
queues is implemented with class I/0 calls.

.The following four procedures manipulate the gqueue:

gallocate Allocate a queue.

grelease Release (deallocate) a queue.
send Enter a message into the tail of a queue.
receive Retrieve a message from the head of a queue.

These routines can be conveniently packaged as a subprogram unit, as
they are in this appendix.

Program-to-Program Communication

$ SUBPROGRAM,

RECURSIVE OFF $

PROGRAM ptopc;

{

khkhkkhkkkkhkhkhkhkhkkkkhkkhkkkhkkhkkkkhkkkkhkkhkkhkkkikkk
* *
* Routines for *
* PROGRAM-TO-PROGRAM COMMUNICATION *
* *

*khkkhkk kkkkhkhkkkkkkkkk khkkkkhkhkhkhkhkkkhkhkkkkk kkkkk

}

CONST

no_deallocate_bit
no_abort bit

8192;
-32768;

execl8 = 18 + no_abort_bit;
exec20 = 20 + no_abort_bit;
exec2l = 21 + no_abort_bit;
maxmsglen = 80;

TYPE
INT = ~-32768..32767;
POSINT = 0..32767;
LENGTH = 0..maxmsglen;
MSGTYPE =

{bit 13}
{bit 15}

{class write}
{class write/read}
{class get}

PACKED ARRAY [l..maxmsglen] OF CHAR;

PROCEDURE classvwrite
-SALIAS ‘EXEC $

(icode,
icnwd
ibuff
ilen,
iopl,
iop2,
iclas

EXTERNAL;

INT;
MSGTYPE;

INT);

PROCEDURE class_write_read
‘EXEC S

SALIAS
(icode,
icnwd
ibuff
ilen,
iopl,
iop2,
iclas

EXTERNAL;

INT;
MSGTYPE;

INT);

Program-to-Program Communication

PROCEDURE classqget
SALIAS ‘EXEC ' $

(icode : INT;
iclas : POSINT;
VAR ibuff : MSGTYPE;
ilen : INT;
VAR iopl,
iop2 : INT):
EXTEFRNAL;

PROCEDURE abreg
(VAR a reg : INT;

VAR b_reg : LENGTH);
EXTERNAL;

PROCEDURE error_handler;
$DIRECTS
EXTERNAL;

Program-to-Program Communication

{

hh AKX IR KRR KA KRR AR KRR A AR AR Ak A RR R RAhk kR hkhhhkhkhkkhkkkkkhkhkhkhkkkkkkkhkk

* QALLOCATE *
khkkhkk kkhkkkkkkk

Allocate a queue by reserving a queue 1id (class number). This is
accomplished by a class write with a dummy buffer (length specified
to be 0) and a 0 gueue id. The no-deallocate bit of the returned
gueue id is set on, and the class write is completed with a class get
(also with the dummy buffer).

The returned queue id is to be used unchanged in all future references
to the queue.

PROCEDURE gallocate {Purpose - Allocate a queue}
(VAR g_id : POSINT); {output - Queue id }

VAR
zZero : INT;
dummy_buffer : MSGTYPE; {Dummy buffer}

BEGIN {gallocate}

{Allocate a queue id (class number).}
class write (execl8, 0, dummy_buffer, 0, 0, O, q_id);
error_handler;

{set no-deallocate bit.}
q_id := g_id + no_deallocate_bit;

{Complete above class write.}
class get (exec2l, q_id, dummy buffer, zero, zero, zero);
error_handler;

END {galloc};

Program-to-Program Communication

{

khkkkkhhkhhkhhkhkhkhkkkkhkkhhkhkhhkkhhkkkhkhkhhkhkhhhkhkrhkkkdhkhkhkkhkkhkhhkhkhhhkhhkhkhhxk kkkxk

* QRELEASE *
khkkkkkkkhk &

Release a queue., This is accomplished by turning off the
no-deallocate bit of the queue id, and using it in a class write with
a dummy buffer. The class write is completed with a class get, also
with a dummy buffer.

The caller must first ensure that the queue to be released is empty,
and that there are no requests still pending on it.

}

PROCEDURE qrelease {Purpose - Release a queue}
(g_id : POSINT); {Input - Queue id }
VAR
Zero : INT;
dummy buffer : MSGTYPE; {pummy buffer}

BEGIN

{Turn off no-deallocate bit.}
g_id := g_id - no_deallocate_bit;

{Release the queue.}
class_write (execl18, 0, dummy buffer, 0, 0, O, q_id);
error_handler;

{Complete above class write.}
class_get (exec2l, q_id, dummy_buffer, zero, zero, zero);
error_handler;

END {grelease};

Program-to-Program Communication

{

khkhkk khhkhkkkkhkhhkhkhkkhkkkhhkhkhkk khkhkhkkkhkk khkhkhkkkhkhkhkhkhhhkhk khkhkkkkhkkhkkkkkkhk kkk k*k

* SEND *
KXk kkk khk

Enter a message, along with a sender id and a message id, into the
tail of a queue. This is accomplished by a class write/read with the
appropriate queue id.

If the queue is already full, the routine will wait until the queue
becomes nonfull.

}

PROCEDURE send {Purpose - Send a message }
(g_id : POSINT; {Input - Queue id }
sender id, {Input - Sender id }
message id : INT; {Input - Message id }
message : MSGTYPE; {Input - Message to be sent }
message_length : LENGTH); {Input - Char. length of msg.}

BEGIN {send}

{Send the message, along with the sender id and the message id.}

class write_read (exec20, 0, message, -message_length,
sender_id, message_id, q_id);

error_handler;

END {send};

Program—-to-Program Communication

{

kkkkhkhhkhkhhkhhkhhhkhk kkhkhhhhdhhkkk khkhkhkkkkhkhkhkkkhkkhkhkkhkhkkkhkkkh kkhkk khhkdhhhkkk

* RECEIVE *
Khkkhk kkkdkk

Retrieve a message, along with the sender id and the message id, from
a queue. This is accomplished by a class get, which completes the
class write/read of a previous call to "send".

I1f the queue is already empty, the routine will wait until the queue
becomes nonempty.

}

PROCEDURE receive {Purpose ~ Receive a message }
(q id : POSINT; {Input - Queue id }
VAR sender id, {Output - Sender id }

message id : INT; {output - Message id }
VAR message- : MSGTYPE; {Output - Message received }
VAR message_length : LENGTH); {output - Char. length of msg.}

VAR
dummy : INT;

BEGIN
{Retrieve the message, along with the sender id and the mesage id.}
class get (exec2l, g id, message, -maxmsglen,
- sender_id, message_id);
error_handler; -

{Retrieve message length from B register.}
abreg (dummy, message length);

END {receive}; -

. {end of subprogram}

Program-to-Program Communication

The sample programs in this section use the program-to-program
communication subprogram to send and receive message via class 1I/0.
Using the INCLUDE compiler option and subprograms one can easily set
up a variety of similar programmer utilities.

SRECURSIVE OFF$
PROGRAM dadptp (INPUT, OUTPUT):;

{

DADPT is a sample program that uses the class I/0O subprogram, PTOPC",
to do program to program communication. By using this subprogram
the program can be broken down into 5 simple steps:

1. Allocate a queue (class number).
2. Give the user instructons.
3. Read and send messages.
4. Schedule son program to pick up messages.
| 5. Release the queue (class number).
CONST
max_length = 80; { maximum message length }
terminator = ‘XX7; { program terminating message }
no abort bit = -32768; { bit 15, 100000 octal }
exec23 = 23 + no abort bit;
sons_name = ‘SONPTP ; { name of son to be scheduled }
TYPE

INT = -32768..32767;

POSINT = 0..32767;

MESG_LENGTH = 1l..max_length;

NAME_TYPE PACKED ARRAY [l..6] OF CHAR;
MESG_TYPB PACKED ARRAY [MESG_LENGTH] OF CHAR;
ASCII_WORD = PACKED ARRAY [1l..2] OF CHAR;

CONST

blank_message = MESG_TYPE [max_length OF °~ '];
VAR

q id : POSINT;

mlength,

sender id,

message_id : INT;

me ssage : MESG_TYPE;

PROCEDURE gallocate

(VAR q_id : POSINT);
EXTERNAL;

PROCEDURE grelease
(VAR g_id : POSINT);
EXTERNAL;

PROCEDURE send

(g_id : POSINT;
sender_id,
message id : INT;
message : MESG_TYPE;
mlength : MESG LENGTH);
EXTERNAL; -
PROCEDURE abreg
(VAR areg,
breg : ASCII_WORD);
EXTERNAL;

PROCEDURE prog sched

(exec_code : INT;
name : NAME_TYPE;
g_id : POSINT);
EXTERNAL;
PROCEDURE error_handler;
SDIRECTS
VAR
areq,

breg : ASCII_WORD;

BEGIN
abreg (areg, breg);
writeln(“* *ERROR IN EXEC CALL!

halt (13);
END {error_handler};

SALIAS “EXEC’S$

ERROR CODE IS :
writeln(’Class number is “,q_id);

Program-to-Program Communication

‘,areg:3, breg:3);

Program-to-Program Communication

BEGIN
{allocate a queue (class number) for the messages}

gallocate (q_id);

fgive the user instructions} . ,
writeln(‘Enter a message of :,max_length:O, characgersx);
writeln(‘Enter °,terminator,’ to terminate program.');

REPEAT

{erase the o0ld message}
message := blank_message;

{prompt user and read in message}
write (> 7);

prompt;

read (message.);

{send the message}
send (q_id, sender_id, message_id, message, max_length);

UNTIL message = terminator;

{schedule sonptp}

prog_sched (exec23, sons_name, q_id);
error_handler;

{release the class number}
grelease (q_id);

END {dadptp}

Program-to-Program Communication

SRECURSIVE OFFS$
PROGRAM sonptp;

{

SONPTP is a program scheduled by DADPTP. SONPTP also uses the

subprogram PTOPC to do class I/O. SONPTP can be broken down into 3
steps:

1. Get the queue number passed by DADPTP.
2. Associate output with LU 1.
3. Receive and print messages.

}

CONST
max_length = 80; { maximum message length }
terminator = “XX°; { indicates the last message }
TYPE

INT = -32768..32767;

POSINT = 0..32767;

MESG_LENGTH = 1l..max_length;

MESG_TYPE = PACKED ARRAY [MESG_LENGTH] OF CHAR;

ASCII_WORD = PACKED ARRAY [1l..2] OF CHAR;
PARM_ARRAY = ARRAY [1..5] OF INT;
VAR
g id : POSINT;
mlength,
sender_id,
message id : INT;
message : MESG_TYPE;
parms : PARM_ARRAY;
output : TEXT;

PROCEDURE receive
(q_id : POSINT;
VAR sender_id,

message_id : INT;
VAR message : MESG_TYPE;
VAR mlength : INT);

EXTERNAL;

PROCEDURE rmpar
(VAR parms : PARM_ARRAY);
EXTERNAL;

PROCEDURE abreg
(VAR areqg,
breg : ASCII_WORD);
EXTERNAL;

PROCEDURE error_handler;
SDIRECTS

Program-to-Program Communication

VAR
areg,
breg : ASCII_WORD;

BEGIN
abreg (areg, breg.);
writeln(output,'**ERROR IN EXEC CALL! ERROR CODE 1S :.l,
areg: 3, breg:3):
writeln(output, ‘Class number is “,q id);
halt (13); -
END {error_handler};

BEGIN

{get the class number passed by dadptp}
rmpar (parms);
g_id := parms [1];

{associate the file output with LU 1}
rewrite (output, “17);

{receive and send messages until the terminating message is received}
REPEAT
receive (q_id, sender 1d, message id, message, mlength);
writeln(output, ‘Message > “,message:mlength)
UNTIL message = terminator;

END {sonptp}

E-12

Appendix F
User-Callable Pascal/1000 Library Routines

The Pascal library contains several routines that are directly
callable from user programs. The external names of these routines as

given below may be aliased to user-chosen valid Pascal procedure or
function names.

RSPAR Run string parameter (function)

This function either retrieves the entire run string, or it
extracts selected parameters from the run string. The function
returns a one-word integer value that is the character length
of the run string or selected parameter. 1f the selected
character parameter does not exist, O is returned.

Note that the "run string" that this function operates upon is
either the run string typed at the terminal when the program
is scheduled interactively, or the "optional buffer" when the
program is scheduled programmatically with a call to EXEC 9,
10, 23, or 24. 1In the latter case, the function expects the
buffer to include the entire run string that one would type at
the terminal, including the beginning "RU,<program name>,".

1) Position. A value parameter of type one-word integer that
passes the position of the desired parameter, where 0 is
the program name, 1 is the first parameter, 2 is the
second parameter, etc. If any negative position value is
passed, the entire run string is retrieved.

2) pPrarameter. A VAR parameter of type PACKED ARRAY [1l..80]
OF CHAR that contains upon return either the entire run
string or a selected parameter, depending on the value of
position (above). If the entire run string is returned,
all blanks around the comma separators are stripped. If a
selected parameter is returned, leading and trailing
blanks are stripped. If the selected parameter does not
exist, the return value is undefined.

3) Length. A VAR parameter of type one-word integer that
passes the maximum number of characters to be returned in
parameter (above). (The actual number of characters
returned is the function value.) If fewer characters than
specified are returned, parameter (above) is blank-filled.

User-Callable pascal/1000 Library Routines;blank

FUNCTION rspar

(position : INT;
VAR parameter : STRINGS0;
length : INT)
¢ INT;
EXTERNAL;

where: TYPE INT = -32768..32767;

and TYPE STRING80 = PACKED ARRAY [1..80] OF CHAR;

Note: The S$HEAPPARMS OFF$ compiler option

for the VAR parameter
effect.

must be in effect
if the SHEAP 2$ option is in

@GHS1

User-Callable Pascal /1000 Library Routines;blank

Get heap 1/stack information (procedure.)

parameters.
TYPE
ADDR1l = 0..32767; {one-word logical addr. }
INFO_REC1 =
RECORD
tos, {top of stack }
toh, {top of heap }
init .tos, {initial top of stack }
init_toh, {initial top of heap }
high_.tos, {highest top of stack }
high toh, {highest top of heap }
free_block, {current free list block}
mark_block : ADDRI; {current mark list block}
END;

PROCEDURE get_heap_l_stack_info
SALIAS “@GHS1'$
(VAR heap_infol : INFO_REC);
EXTERNAL;

This procedure, to be called from SHEAP 1$ programs only,

returns a record containing current heap and stack information

NOTES: The stack grows toward increasing addresses, and the

heap grows toward decreasing addresses.

The addresses of the current top of stack and top of
heap are returned in fields tos and toh,
respectively. The initial top of stack and top of

heap addresses are returned in fields init to

s and

init toh, respectively. Their *high water marks" are

returned in high_tos and high_toh, respectively.

At all times:

init_tos <= tos <= high_tos
high_toh <= toh <= init_toh

tos < toh

The addresses of the current free space block and the
current mark block are returned in fields free_block

and mark_block, respectively.

User-Callable Pascal /1000 Library Routines;blank

@SHS1 sSet heap 1l/stack information (procedure)

.This procedure, to be called from $HEAP 1% programs only,
allows the user to set the heap and stack information
parameters described above. It is to be called only by users

desiring to do their own heap and stack management.

PROCEDURE set_heap_l_stack_info
SALIAS “@SHS1’$
(heap_infol : INFO_REC1);
EXTERNAL;

@INH1 Initialize heap 1/stack information (procedurei)

This parameterless procedure, to be called from S$SHEAP 18
programs only, initializes heap and stack information. Its

effects are described in Chapter 8.

PROCEDURE initialize_heap_l_stack_info
SALIAS “@INH1'S
EXTERNAL;

€GHS2 Get heap 2/stack information (procedure)

This procedure is similar to @GHS1l, except that it is to be
called from S$HEAP 2$ programs only. It returns a record

containing current heap and stack information parameters.,

TYPE
ADDR2 = 0..maxint; {two-word EMA address }
INFO_REC2 =
RECORD
tos, {top of stack }
toh, {toh of heap }
init .tos, {initial top of stack }
init " toh, {initial top of heap }
high™ tos, {highest top of stack }
high .toh, {highest top of heap }
free block, {current free list block }
mark_block : ADDR2; {current mark list block }
END;

PROCEDURE get_heap_z_stack_info
$ALIAS °@GHS2 '$
(VAR heap_infoz : INFO_REC2);
EXTERNAL;

@SsHsS2

@INH2

@TIME

@SGLD

User-Callable Pascal/1000 Library Routines;blank

set heap 2/stack information (procedure)

.This procedure 1is similar to @SHS1l, except that it is to be
called from SHEAP 2$ programs only. It allows users desiring
to do their own heap and stack management to set the heap and
stack information parameters described above.

PROCEDCURE set_heap_z_stack_info
SALIAS “@SHS2'$
(heap_info2 : INFO_REC2);
EXTERNAL;

Initialize heap 2/stack information (procedure) .

This procedure is similar to @INH1 above, except that it is to
be called by SHEAP 2$ programs only. The procedure

initializes heap and stack information, and is described in
Chapter 8.

PROCEDURE }nitia%ize_peap_z_stack_information
SALIAS "QINH2'$
EXTERNAL;

Time (procedure)

This procedure requires a VAR parameter of type PACKED ARRAY
[1..26] OF CHAR in which the current time is returned. A
sample time string:

Ssun Jan 6, 1980 3:01 pm

PROCEDURE get_time
SALIAS @TIME $
(VAR time_string : STRING26);
EXTERNAL;

Segment load (procedure)

This procedure is used to load a Pascal compilation unit that
was compiled with the $SEGMENT ON$ option. It requires a
parameter of type PACKED ARRAY [1..5] OF CHAR in which the
program name of the compilation unit is passed.

TYPE
SEG_NAME = PACKED ARRAY [1..5] OF CHAR;

PROCEDURE seg_load
SALIAS “@SGLD’S$
(name: SEG_NAME);
EXTERNAL;

F-5/F-6

Appendix G
Pascal/1000 Cross-Referencer

The Pascal/l1000 Cross-Referencer (PXREF) produces a cross-reference

table for each procedure and function in a Pascal/1000 program, and
for the main program itself.

The cross-referencer can be run from file manager or it can be

scheduled from the compiler by including the $XREF ONS$ compiler
option in the program.

Cross-Reference Table Content

For each program block a cross-reference table 1is generated. The
table consists of a list of all identifiers local to the block, and
any predefined or non-local identifiers that are used in the block.
For each identifier in the table, the following information is given:

1. THE KIND OF IDENTIFIER IT IS -- L.abel, Constant, Type, variable,
Record field, Tag field, Enumerated Constant, Program, Procedure,
Function, Program Parameter, Formal Variable by value, Formal
variable by Address, Formal Function, Formal Procedure, or Formal
Procedure or Function Parameter.

2. THE BLOCK AND LINE NUMBER WHERE IT IS DECLARED -- (Not givep fqr
predefined identifiers.) The _’kind” of block in which it 1s
declared is given also. For example,

ALPHA
vVariable declared at 56 by Procedure ONE

A procedure or function that is declared forward or external is
so labelled. For example,

EXEC_READ
peclared external at 10 by Program STAT

3. LINE NUMBERS OF LINES WHERE IT IS USED IN THE BLOCK -- This
includes occurrences of identifiers in blocks nested within the
block being cross-referenced. For example, a program’s
cross-reference table lists uses of global variables in
procedures as well as in the body of the program.

Following the cross-reference table for the main program is a ligt.of
all predefined identifiers used in the program. Each such identifier
is followed by its ‘kind” and the line number for each occurrence.

Cross-Referencer

Order of Identifiers

Identifiers are listed in alphabetical order. Numbers precede letters
and letters precede the underscore (°.°). (Note that since ‘0’
precedes ‘1’ alphabetically, “identl0l1’ “precedes ‘identll’ despite
the fact that 11 is less than 101.) When two or more identifiers have
the same name, they are 1listed in the order in which they were
declared,

Paging

The cross-reference table or listing of any block that is not a
formal or external procedure or function always begins on a new page.

Using the Cross-Reference Generator

There are two ways to obtain a cross-reference of a program: run the
cross-referencer by itself or have the compiler run it when it
compiles the program. The command which runs the cross-referencer by
itself is:

RU, PXREF, <source>,<cross-reference> i,{L, N})

where <source> is a Pascal source file and <cross-reference> is the
file or device on which the cross-reference will be printed. 1f 'L’
is specified, each block’s 1listing will be printed before its
cross-reference; if ‘N° is specified, it will not. Default is I, when
the cross-referencer is run by itself, but N is the only option used
by the compiler. There 1is no way to have the compiler run the
cross-referencer with the L option.

To have the compiler run the cross-referencer, include the option
.5 XREF ON $° or ’$ XREF $ ° anywhere in the source. (Default is
$ XREF OFF $°.)

Errors and Warnings

The cross-referencer does not detect all syntax errors, A program
which compiles without errors will cross-reference with neither
warnings nor errors, but the converse is not necessarily true.

The cross-referencer prints a warning if:

- an input 1line 1is too long (the entire 1line is printed, but the
extra characters are ignored, which may result in errors).

.~ an identifier is used without having been declared.
.~ an identifier is declared more than once.,

.= a procedure or function is declared FORWARD but never appears in
the program.

Cross-Referencer

EMA Version

The cross referencer maintains internal symbol tables in memory. The
HEAP 1 version of the cross-referencer can run out of space for its
tables and be forced to abort. There are two solutions to this
condition. There 1is a HEAP 2 version of the cross referencer that
will cross reference programs as large as its EMA partition will
permit. For a large EMA partition, this size is probably larger than
any practical program will ever require. The compiler will use
whichever version 1is currently called PXREF, so the HEAP 1 or the
HEAP 2 version can be made the default used by the compiler. The
disadvantage of using the HEAP 2 version 1is that it required an EMA
partition. Since the Pascal compiler requires an EMA partition and
locks itself in the partition when running, a system with many Pascal
compilations running would prevent the HEAP 2 cross-referencer from
running at all. The HEAP 2 version is also slightly slower. Another
possible solution is to size the HEAP 1 version (with the system SZ
command) to occupy a larger partition. Wwhen the HEAP 1 version is
loaded it requires 19 pages and is sized to 26 pages. If either 27 or
28 page partitions are available, it can be sized up to one of those

values, and it should then be able to cross-reference slightly larger
programs.

Refer to the Pascal /1000 Configuration Guide (part number

92832-90003.) for information about 1loading either version of the
cross-referencer.

Cross-Referencer

Sample Cross-Reference Table (with blocks listed)

Pascal/1000 Cross Reference of &EXAMP

1 PROGRAM example (library, output);

2

3 LABEL

4 i, 2, 10;

5

6 CONST

7 MIN = 0;

8 MAX = 2;

9

10 TYPE
11 RANGE = MIN. .MAX;
12 POINTER = "“TREC;
13
14 TREC = RECORD
15 char_field: CHAR;
16 enum field: (choicel, choice2, choice3);
17 rec Field: RECORD
18 - char_field: CHAR;
19 END;

20 END;

21

22 VAR

23 library: FILE OF CHAR;

24 n: POINTER;

25 vrec: RECORD
26 char_field: CHAR;

27 CASE boo_field: BOOLEAN OF
28 true: (t £field: INTEGER):
29 false: (f:field: CHAR);
30 END;

31
32 FUNCTION factorial

33 (x: INTEGER)

34 : INTEGER; FORWARD;

Function FACTORIAL
Cross Reference

FACTORIAL
Function declared forward at 32 by Program EXAMPLE

INTEGER
Predefined Type
Used at 33,34

X
Formal Variable by Value declared at 33 by Function FACTORIAL

35
36

38
39
40
41
42
43
44
45
46
47
48
49

Cross-Referencer

PROCEDURE fill_trec
(VAR rec: TREC;
C: CHAR);

VAR
m, n: INTEGER;

FUNCTION choice_123 {within procedure fill trec}

(n: INTEGER)
¢+ RANGE;

BEGIN {choice 123}

choice 1237 :=
END; {choice_123}

(m + n) mod 3;

Cross-Referencer

Function CHOICE_123
Cross Reference

CHOICE_123
Function declared at 43 by Procedure FILL_TREC
Used at 48

INTEGER
Predefined Type
Used at 44

M

Variable declared at 41 by Procedure FILL_TREC
Used at 48

N

Formal Variable by Value declared at 44 by Function CHOICE_123
Used at 48

RANGE

Type declared at 11 by Program EXAMPLE
Used at 45

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

BEGIN {fill_trec}

:= ord(c);
:= factorial(m);

WITH rec DO BEGIN
char_field := c;

CASE choice 123(n) OF
MIN: enum field := choicel;
MAX: enum_field := choice3;
OTHERWISE
enum_field := choiceZ;
END;

WITH rec field DO BEGIN
char_field := c;
END;
END;

70 END; {fill;trec}

Cross-Referencer

Cross-Referencer

Procedure FILL_TREC
Cross Reference

C

Formal variable by Value declared at .38 by Procedure FILL_TREC
Used at 53,57,67

CHAR
Predefined Type
Used at 38

CHAR FIELD

Record Field declared at 15 by Program EXAMPLE
Used at 57

CHAR FIELD

Record Field declared at 18 by Program EXAMPLE
Used at 67

CHOICEl

Enumerated Constant declared at 16 by Program EXAMPLE
Used at 60

CHOICE2

Enumerated Constant declared at 16 by Program EXAMPLE
Used at 63

CHOICE3

Enumerated Constant declared at 16 by Program EXAMPLE
Used at 61

CHOICE 123

Function declared at 43 by Procedure FILL_TREC
Used at 48,59

ENUM_FIELD
Record Field declared at 16 by Program EXAMPLE
Used at 60,61,63

FACTORIAL

Function declared forward at 32 by Function FACTORIAL
Used at 54

FILL_TREC
Procedure declared at 36 by Program EXAMPLE
*** NEVER USED **#

INTEGER
Predefined Type
Used at 41,44

M
Variable declared at 41 by Procedure FILL_TREC
Used at 48,53,54

Cross—-Re ferencer

MAX

Constant declared at 8 by Program EXAMPLE
Used at 61

MIN

Constant declared at 7 by Program EXAMPLE
Used at 60

N

Variable declared at 41 by Procedure FILL_TREC
Used at 54,59

ORD .
Predefined Function
Used at 53

REC
Formal Variable by Address declared at 37 by Procedure FILL_TREC
Used at 56

REC_FIELD
Record Field declared at 17 by Program EXAMPLE
Used at 66

TREC
Type declared at 14 by Program EXAMPLE
Used at 37

Cross—-Referencer

71

72 FUNCTION factorial; {recursive}
73

74 BEGIN {factorial}

75 IF x = 0 THEN BEGIN

76 factorial := 1;

77 END

78 ELSE BEGIN

79 factorial := x * factorial(x - 1l);
80 END;

81 END; {factorial}

G-10

Cross-Referencer

Function FACTORIAL
Cross Reference
FACTORIAL

Function declared at 72 by Program EXAMPLE
Used at 76,79

X

Formal Variable by value declared at 33 by Function FACTORIAL
Used at 75,79

Cross-Referencer

82
83 BEGIN {example}
84 reset (library);

85

86 WITH vrec DO BEGIN

87 read(library, char field);
88 boo field := true;

89 t_field := MAXINT;

90 END;

91

92 new (n) ;

93 £ill_trec (n”, vrec.char_field);
94

95 l: goto 2;

96 2: goto 10;

97 10: writeln(‘Demonstration of label use’);

98 END. {example}

Cross-Referencer

Program EXAMPLE
Cross Reference

1

Label declared at 4 by Program EXAMPLE
Used at 95

10
Label declared at 4 by Program EXAMPLE
Used at 96,97

2
Label declared at 4 by Program EXAMPLE
Used at 95,96

BOOLEAN
Predefined Type
Used at 27

BOO FIELD

Tag Field declared at 27 by Program EXAMPLE
Used at 88

CHAR
Predefined Type
Used at 15,18,23,26,29,38

CHAR FIELD

Record Field declared at 15 by Program EXAMPLE
Used at 57

CHAR_FIELD

Record Field declared at 18 by Program EXAMPLE
Used at 67

CHAR_FIELD
Record Field declared at 26 by Program EXAMPLE
Used at 87,93

CHOICEl

Fnumerated Constant declared at 16 by Program EXAMPLE
Used at 60

CHOICE2

Enumerated Constant declared at 16 by Program EXAMPLE
Used at 63

CHOICE3
Enumerated Constant declared at 16 by Program EXAMPLE
Used at 61

ENUM_FIELD
Record Field declared at 16 by Program EXAMPLE
Used at 60,61,63

Cross—-Referencer

EXAMPLE
Program

FACTORIAL

Function declared at 72 by Program EXAMPLE
Used at 54,76,79

FALSE

Predefined Enumerated Constant
Used at 29

FILL_TREC
Procedure declared at 36 by Program EXAMPLE
Used at 93

F_FIELD

Record Field declared at 29 by Program EXAMPLE
*** NEVER USED ***

INTEGER
Predefined Type
Used at 28,33,34,41,44

LIBRARY

Program Parameter declared at 23 by Program EXAMPLE
Used at 1,84,87

MAX
Constant declared at 8 by Program EXAMPLE
Used at 11,61
MAXINT
Predefined Constant
Used at 89

MIN
Constant declared at 7 by Program EXAMPLE
Used at 11,60

N
Variable declared at 24 by Program EXAMPLE
Used at 92,93

NEW
Predefined Procedure
Used at 92

OUTPUT
Predefined Program Parameter
Used at 1

POINTER
Type declared at 12 by Program EXAMPLE
Used at 24

RANGE
Type declared at 11 by Program
Used at 45

READ
Predefined Procedure
Used at 87

REC_FIELD
Record Field declared at 17 by
Used at 66

RESET
Predefined Procedure
Used at 84

TREC
Type declared at 14 by Program
Used at 12,37

TRUE
Predefined Enumerated Constant
Used at 28,88

T_FIELD
Record Field declared at 28 by
Used at 89

VREC

EXAMPLE

Program EXAMPLE

EXAMPLE

Program EXAMPLE

variable declared at 25 by Program EXAMPLE

Used at 86,93

WRITELN
Predefined Procedure
Used at 97

Cross-Referencer

Cross—-Referencer

Predefined Identifiers Used:

BOOLEAN
Predefined Type
Used at 27

CHAR
Predefined Type
Used at 15,18,23,26,29,38

FALSE
Predefined Enumerated Constant
Used at 29

INTEGER
Predefined Type
Used at 28,33,34,41,44

MAXINT
Predefined Constant
Used at 89

NEW
Predefined Procedure
Used at 92

ORD
Predefined Function
Used at 53

ouTPUT
Predefined Program Parameter
Used at 1
READ
Predefined Procedure
Used at 87

RESET
Predefined Procedure
Used at 84

TRUE

Predefined Enumerated Constant
Used at 28,88

WRITELN
Predefined Procedure
Used at 97

End of Cross Reference
98 Lines read
0 Warnings/Errors

INDEX

abs, 7-21
ALIAS compiler option, 4-28, D-1
AND, 5-37
ANSI, D-1
append, 6-2, 6-7, 7-1
arctan, 7-23
arithmetic functions, 7-21
arithmetic operators, 5-35
array, 1-3, 4-14, 9-23

constant, 4-5

subscripts, 5-31
ASMB compiler option, D-2
assembler, scheduling, 9-1
assembly, 9-4, 9-6, 9-20, 9-22
assignment compatible types, 5-48
assignment statement, 5-4
AUTOPAGE compiler option, D-2

base page, 8-13
base type, 1-3, 4-13
basic symbols, 2-1
block, 1-4
body,
routine, 4-28
program, 3-5
Boolean, 4-9, 9-23
operators, 5-36
BUFFERS compiler option, 9-23, D-2

Index-1

INDEX

CASE,
label list, 1-5
statement, 1-5, 5-13, 8-45
catching errors, B-4, B-6
cctL, 6-5, 6-8, 6-31, 6-32
char, 4-9
chr, 7-27
close, 6-35, 7-2
closing files, 6-35
CODE compiler option, 9-1, D-2
comments, 2-7
COMMON, 9-24
compatibility, 5-47
parameter list, 4-27
types, 5-47
compilation units, 3-1
compile-time errors, 9-15, C-1
compiler options, 2-8, 8-15, D-1, D-8
ALIAS, D-1
AUTOPAGE, D-2
BUFFERS, 9-23, D-2
CODE, 9-1, D-2
DIRECT, 9-22
EMA' D-3
ERROREXIT, D-3
HEAP, 7-12, 8-15, D-3
HEAPPARMS, 8-36, D-4
IDSIZE, 2-4
IMAGE, 9-25, 9-26
INCLUDE, 3-7, D-4
KEEPASMB, 9-1, D-5
LINESIZE, D-5
LIsT, D-5
LIST CODE, 9-20, D-5
MIX, 9-19, D-5
PAGE, 7-4, D-5
PARTIAL_EVAL, D-6
PASCAL, D-6
RANGE, 9-15
RECURSIVE, D-7
SEGMENT, D-7
sTATS, D-7, D-9
SUBPROGRAM, D-9
SUBTITLE, D-9
TABLES, D-10, D-13
TITLE, D-13
TRACE, 9-16
VISIBLE, 4-28, D-14
WIDTH, D-14
compiling a program, 9-1
compound statement, 1-4, 1-5, 5-8

Index-2

conditional statements, 1-5
constant,
array, 4-5
pefinition, 4-3
expression, 5-45
record, 4-6
set, 4-17
symbolic, 5-28
control variable, 1-5
cos, 7-23
cross reference generator, 9-1,
errors and warnings, G-2
sample, G-4
table content, G-1

data,
allocation, 8-1
dynamic, 1-4, 8-16
global, 8-16
local, 8-16
management, 8-16
packed, 8-39

packed and unpacked access, 8-40, 8-41,

static, 1-4

unpacked, 8-39
DBUGR, 9-22
de-allocation procedures, 7-12
debugging tools, 9-15
declaration, 4-1, 4-2, 4-27
direct-access files, 1-4, 6-3,
direct calling sequence, 8-47

DIRECT compiler option, 8§-47, 9-22, D-2
directives, FORWARD and EXTERNAL, 2-6,

dispose, 7-14, 8-25
DVROO, 7-4
DVROS5, 7-4
dynamic,
allocation, 7-12
call chain, 9-18
data, 1-4, 8-16
link, 8-13
memory allocation, D-8
var iables, 4-13

efficiency considerations, 8-35

element type, 4-14

ELSE, 5-10

EMA
addressing routines, 8-43
compiler option, 8-15, D-3
errors, B-4

G-2

6-34

4-292-6

8-42

INDEX

I ndex-3

INDEX

Heap management, 8-32
value, 4-25
cross reference, G-3
empty statement, 5-25
entry count, 8-13
entry point, 4-28
enumeration, 4-11
eof, 7-24
eoln, 6-33, 7-24
ERROREXIT compiler option, D-3
error line, 9-15%
error message printers, B-4
error return, 9-32
errors, 9-14
catching, B-4, B-6
compile-time, 9-15, C-1
cross reference, G-2
EMA, B-4
FMPI B-4
1/0, B-3
program, B-1l
run-time, 9-15, 9-16, B-1
schedule, 9-7
segment, B-4
syntax, C-1
EXCLUS, 6-5
EXEC calls, 9-29
encoding, 9-29
no-abort bit, 9-32
exp, 7-22
Expression, 1-4, 5-26, 8-43
compatibility, 5-49
evaluation, 5-33
extensions to standard Pascal, 1-1
EXTERNAL directive, 2-6, 4-30

field, 4-18
selection, 5-22, 5-31
selector, 1-3

field-width parameters, 6-25

Files, 4-21, 9-23
assembly, 9-4, 9-6
associating in the RU command, 6-9
associating logical and physical, 6-9
associating through the string parameter, 6-11
buffer, 5-32
buffer variable, 6-3
closing, 6-35
current-position pointer, 6-4
declaration of, 6-1
direct, 6-4
direct-access , 1-4, 6-3, 6-14, 6-34
function restrictions, 6-36

Index-4

INDEX

handling procedures, 7-1

handling functions, 7-29

INPUT, 6-1, 6-2

list, 9-2, 9-5

mode or state, 6-4

number of components, 6-3

opening, 6-2, 6-5, 6-8

option, 9-2, 9-6

oyTPUT, 6-1, 6-2

parameter, 4-26

physical, 6-4

procedure restrictions, 6-36

read-only, 6-4

relationship between logical and FMP, 6-13

relocatable, 9-2, 9-5

scratch, 6-12

sequential, 1-4, 6-2

source, 9-2, 9-3, 9-5

structure, 1-3

text, 6-2

types, 6-13

verification,

write-only, 6-
FMP errors, B-4
FMP vs. Pascal 1/0, 8-48
FOR statement, 1-5, 5-19, 8-45
format parameters, 8-13
FORTRAN, 9-22, 9-23, 9-24
FORWARD directive, 2-6, 4-29, 4-30
function, 4-24

body, 4-28

declaration part, 4-27

name, 4-28

reference, 5-43

result, 4-27

tracing, 9-16

and procedures, 8-46

and procedures, predefined, 2-6

9-5
4

get, 6-16, 7-2
with text files, 6-22
global, 3-7, 8-49
area, 3-5
data, 8-16
identifier tables, D-11
objects, 4-31
GOTO statement, 1-4, 5-24

halt, 7-20

HEAP compiler option, 7-12, 8-15, D-3
HEAP 1 vs HEAP 2, 8-43
HEAP 2 value, 4-25

heap
initialization, 8-21

I ndex-5

INDEX

managment, 8-17

management EMA, 8-32

management routines short, 8-33

organization overview, 8-18
heap/stack area, 8-12, 8-15
heap/stack collision, 8-15
HEAPPARMS compiler option, 8-36, D-4

I/0 errors and warnings, B-3
identical types, 5-47
identifiers, 2-4

order of, G-2

predefined, 2-5
IDSIZE compiler option, 2-4, D-4
IF statement, 5-10
IMAGE compiler option, 8-15, 9-25, 9-26, D-4
IN, 5-42
INCLUDE compiler option, 3-7, D-4
index type, 4-14
integer, 4-9

single-word, 8-44
interactive debugging, 9-22
interactive file 1/0, 6-15
intermediate objects, 4-31

KEEPASMB compiler option, 9-1, D-5

label, 1-4, 4-2, 4-3
language constructs, 1-7
level-l routine, 4-28
libraries, trace, 9-16, 9-17, 9-19
library routine names, 4-28
library routines,
short versions, 8-48
user-callable, F-1
library, Pascal run-time, 9-12
linepos, 6-32, 7-29
LINESIZE compiler option, D-5
LIST compiler option, D-5
LIST CODE compiler option, 9-20, D-5
list file, 9-2, 9-5
listing, 9-9
literals, 5-26
in, 7-22
loading segment overlays, 3-11
local data, 8-16
objects, 4-31
variables, 8-13
logical and FMP files, 6-13
logical and physical files, 6-9

Index -6

INDEX

logical files, 6-1
longreal, 4-10, 8-43

main area, 3-1, 8-13

main program block, 3-5

main program unit, 3-1, 3-3, 8-13
manual organization, 1-6

mark, 7-14, 8-28

maxint, 4-9

maxpos, 6-35, 7-29

memory configuration, 8-12
minint, 4-9

MIX compiler option, 9-19, D-5
mixed listing, 9-20

MOD’ 5—35

monitor, 9-1

multiply-dimensioned arrays, 4-17

namr, 9-2

new, 7-12

nil, 4-13

no-abort bit, 9-32
NOCCTL, 6-5, 6-8
non-Pascal programs, 9-23
non-Pascal routines, 9-22
NOT, 5—36

numbers, 2-6

objects, 4-31

odd, 7-24

open, 6-2, 6-8, 7-3
opening files, 6-5
operands, 5-26

operator precedence, 5-33
operators, 1-4

option file, 9-2, 9-6
OR, 5-37

ord, 7-26

ordinal functions, 7-26
ordinal type, 1-3, 4-15
ordinal value, 7-26
OTHERWISE, 1-5, 5-13
overprint, 6-32, 7-3

Index-7

INDEX

pack, 7-16
PACKED, 4-21
packed data, 8-39
packed structures allocations for elements, 8-4, 8-5
packed type value, 4-25
PAGE compiler option, 7-4, D-5
page, 6-31
paging, cross referencer, G-1
parameter,
accessing, 8-35
actual, 4-25
EMA, 4-25
file, 4-26
function, 4-26
heap 2, 4-25, 5-4, 6-18, 6-20, 7-5, 7-9
list, 4-25
list compatibility, 4-27
packed type, 4-25
passing, 8-36
procedure, 4-26
reference, 4-26
string, 4-25
value, 4-25, 8-36
variable, 4-26, 8-36
partial evaluation, 5-11, 5-37, 8-43
PARTIAL EVAL compiler option, D-6
partition configuration, 8-12
PASCAL compiler option, D-6
PASCAL and FORTRAN, 9-23
Pascal 1/0 vs. FMP, 8-48
Pascal/1000 program, summary, 1-2
PASCL, 9-1, 9-11
run string, 9-2
passing parameters, 8-36
PCL, 9-1
physical files, 6-1, 6-4
pointer, 1-4, 4-13
dereferencing, 5-32
position, 6-35, 7-29
power set, 1-3
pred, 7-28
predeclared variables, 2-6
predefined
identifiers, 2-5
procedures, 6-16
procedures and functions, 2-6
symbolic constants, 2-5
types, 2-5, 4-9
predicates, 7-24
procedure, 4-24
additional, 7-20
body, 4-28
declaration part, 4-27
name, 4-28

Index-8

INDEX

parameters, 4-26
statement, 4-24, 5-6
tracing, 9-16
transfer, 7-16
procedures and functions, 8-46
procedures and functions, predefined, 2-6
program,
body, 3-5
errors, B-1l
heading, 3-4, 4-1
loading, 9-12
parameter, 3-4
run string, 9-14
running, 9-14
to program communication, E-1
vocabulary, 1-8
prompt, 6-31, 7-4
PURGE, 6-35
put, 6-16, 6-19, 7-5
with text files, 6-22
PXREF, 9-1, G-1

range—checking, 8-44, 9-15
RANGE compiler option, 9-15, D-7
read, 6-16, 6-17, 7-5

with text files, 6-22
readdir, 6-34, 7-6
readln, 6-28, 7-7
real, 4-10, 8-44
record, 1-3, 4-18

constant, 4-6
recursion, 8-13, 8-43, 8-46
RECURSIVE compiler option, D-7
recursive routine, 4-30
reference parameter, 4-26
relational operators, 5-41
release, 7-15, 8-28
relocatable file, 9-2, 9-5
REPEAT statement, 1-5, 5-17
reserved words, 2-1, 2-3
RESET, 6-2, 6-5, 7-8
restrictions, procedure and function files, 6-36
return addresses, 8-13
rewrite, 6-2, 6-6, 7-8
round, 7-25
routine, 8-13

body, 4-28

declaration, 4-24

declaration Part, 4-27

heading, 4-24

names, 4-28
RSPAR, F-1
RTE file, 6-1

Index-9

INDEX

RU command, 6-9
run string,
PASCL, 9-2
program, 9-14
run-time errors, 9-15, 9-16, B-1
running a program, 9-14

SAVE, 6-12, 6-35
scalar variables allocation of, 8-1, 8-2
scheduling messages, 9-6
scope, 4-31
scratch files, 6-12
seek, 6-34, 7-9
segment, 9-24,
error, B-4
overlay, 3-1, 3-9, 3-11, 9-13
overlay area, 8-15
unit, 3-1, 3-9, 9-13
SEGMENT compiler option, D-7
segmentation, 8-48
selectors, 5-29
separators, 2-7
sequential files, 1-4, 6-14
operations, 6-16
set, 1-3, 4-20, 8-44
constant, 4-7
constructor, 5-39
operators, 5-37
SHARED, 6-5
short heap stack library or $SHSLB, 8-48
simple,
constants, 4-3
type, 1-2
sin, 7-23
source file, 9-2, 9-3, 9-5
sqr, 7-22
sqrt, 7-22
stack management, 8-17
standard types, 1-3
statements, 1-4, 5-1
assignment, 5-4
CASE, 1-5, 8-45
compound, 1-4, 1-5
conditional, 1-5
FOR, 1-5, 8-45
G&0TO, 1-4
label, 5-3, 5-24
procedure, 5-6
REPEAT, 1-5
WHILE, 1-5
WITH’ 1'6, 8—45
static data, 1-4

Index-10

STATS compiler option, D-7, D-9
string parameter, associating files, 6-11
string value, 4-25
strings, 2-6, 4-5, 4-16, 5-27
structured,
constants, 4-4
types, 1-3, 4-14
variables allocation for, 8-2, 8-3
subexpressions common, 8-44
SUBPROGRAM compiler option, D-9
subprogram units, 3-1, 3-6, 8-13, 9-13, 9-24
loading, 9-12
subr ange, 4-12, 8-44
SUBTITLE compiler option, D-9
succ, 7-27
summary of the Pascal/1000 language, 1-1
symbolic constant, 5-28
predefined, 2-5
symbols,
basic, 2-1
digits, 2-1
letters, 2-1
special, 2-1, 2-2
syntax diagrams, A-1l
syntax errors, Cc-1
Sz command, 9-8

1-1. Pascal/1000 Program Vocabulary, 1-9
2-1. Special Symbols, 2-2

INDEX

2-2. Reserved Words, 2-3

5-1. Pascal’s Operators, 5-34

6-1. Results of the Procedure Read (file one, variable), 6-23
6-2. Results of the pProcedure Read (file:two, str _variable), 6-24
6-3. Field-Width Parameter Default Values, 6-25

6-4. Procedure and Function File Restrictions, 6-36

7-1. System Routines Called to Calculate Function values, 7-1
8-1. Allocations for Scalar Variables, 8-2

8-2. Allocations for Structured Variables, 8-3

8-3. Allocations for Elements of Packed Structures, 8-5

8-4. Pascal/l1000 variable and Parameter Access, 8-35

8-5. Pascal/1000 Parameter Passing and Access, 8-37

8-6. Packed and Unpacked Data Access, 8-40

8-7. Overhead Times for Routines With .ENTR vs. SDIRECT Calling

Sequences, 8-47
TABLES compiler option, D-10, D-13
tag, 4-18
tag field, 1-3
temporaries, 8-13
text, 4-11, 6-2
text file operations, 6-22
time,
direct calling sequence, 8-46

Index-11

INDEX

overhead for routines, 8-47
TITLE compiler option, D-13
TRACE compiler option, 9-16, 9-19, D-13

library A, 9-18, 9-19

library B, 9-18, 9-19

library C, 9-18, 9-19

overflow, 9-18

tree, 9-18
traceback, 9-18
tracing, procedure and function, 9-16
transfer functions, 7-25
transfer procedures, 7-16
trunc, 7-25
type,

attributes, 4-7

base, 1-3

conversions, 5-48

definition, 4-7

ordinal, 1-3

predefined, 2-5

simple, 1-2

standard, 1-3

structured, 1-3

unpack, 7-18

unpacked data, 8-39

UNTIL, 5-17

user-callable library routines, F-1
user—-defined types, 4-11

value parameters, 8-36

VAR, 4-26

variables, 5-29
accessing, 8-35
allocated, 8-7
declaration, 1-4, 4-22
packed, 8-9
parameter, 4-26, 8-36
predeclared, 2-6

variant, 1-3, 4-18

VISIBLE compiler option, 4-28, D-14

Index-12

warnings and errors, Cross reference, G-2
warnings, 1/0 errors and, B-3
WHILE statement, 1-5, 5-16
WIDTH compiler option, D-14
WITH statement, 1-6, 5-22, 5-31, 8-45
workspace, insufficient, 9-8
write, 6-16, 6-20, 7-9
parameters, 6-25
with text files, 6-25
writedir, 6-34, 7-10
writeln, 6-30, 7-11

XREF, D-14

SHeap 2$, 8-32

SPASCAL, 9-3

$PLIB, 9-12

SSHSLB or short heap stack library, 8-48
STRACE <lu>, 9-16

$PRERS, 8-48

$PRERS or short error routine, B-4
$TRACA, 9-16, 9-18

$TRACB, 9-16, 9-18

$TRACC, 9-16, 9-18

@GHS1l, 8-19, F-3

QGHS 2, 8-19, F-4

@INHl, 8-19, F-4

@INH2, 8-19, F-5

@PRER or standard error routine, B-4
@sGLp, 3-11, F-5

@sHSl, 8-19, F-4

@sHS 2, 8-19, F-5

@TIME, F-5

INDEX

Index- 13/14

READER COMMENT SHEET

Pascal/1000
Reference Manual

92832-90001 May 1980
Update No.
(if Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

FROM:

Name

Company

Address

| II " | NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 141 CUPERTINO, CA.

— POSTAGE WILL BE PAID BY — =

L]
Hewlett-Packard Company |
Data Systems Division]
11000 Wolfe Road [T
Cupertino, California 95014 E—
ATTN: Technical Marketing Dept. EE—

L |

(b/” | HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY
Data Systems Division

MANUAL PART NO. 92832-90001 11000 Wolfe Road
Printed in U.S.A. May 1980 Cupertino, California 95014

	000
	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	replyA
	replyB
	xBack

