[/ Gackaro

HP 1000 A400 Computer

Reference Manual

RHISIIII
JJ %% GJUUD 2 Hﬁ

[b, HEWLETT

PACKARD

HP 1000 A400 Computer

Reference Manual

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
INFORMATION

This equipment complies with the requirements in Part 15 of FCC Rules for a
Class A computing device. Operation of this equipment in a residential area may
cause unacceptable interference to radio and TV reception requiring the operator
to take whatever steps are necessary to correct the interference.

WARNING: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instruction manual,
may cause interference to radio communications. It has been tested and found
to comply with the limits for Class A computing devices pursuant to Subpart J of
Part 15 of FCC Rules, which are designed to provide reasonable protection
against such interference. Operation of this equipment in a residential area is
likely to cause interference in which case the user at his own expense will be
required to take whatever measures may be required to correct the interference.

Data Systems Division
1266 Kifer Road
Sunnyvale, CA 94086-5304

Manual Part No. 02424-30001 Printed in U.S.A. December, 1987
E1287

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equip-
ment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard Company.

Copyright © 1986, 1987 by HEWLETT-PACKARD COMPANY

ny

Printing History

The Printing History below identifies the edition of this manual and any updates that are included.
Periodically, update packages are distributed which contain replacement pages to be merged into
the manual, including an updated copy of this printing history page. Also, the update may contain
write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be
added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with
its user-inserted update information. New editions of this manual will contain new information, as well
as all updates.

To determine what manual edition and update is compatible with your current software revision code,
refer to the Manual Numbering File or the Computer User’s Docurnentation Index. (The Manual
Numbering File is included with your software. It consists of an “M” followed by a five digit product
number.)

First Edition Dec 1986
Update 1 Mar 1987
Second Edition Dec 1987 ... e

3/4

Table of Contents

Chapter 1
Introduction
General ... 1-1
B ALUIES . . . o ottt et e e e e e e 1-1
Single-Board Computer Description 1-1
ATCHITECIUNE . . . o ottt e e e e 1-4
Floating Point Processingttt 1-4
Virtual Control Panel e 1-5
Bootstrap Loaders 1-5
Self-Test ROULINES . . . oottt et et e e 1-5
Time Base Generatorttt e 1-7
POWer SUPPIY .« o 1-7
Input/Output ([/O) 1-7
On-Board I/O (OBIO)t 1-7
Support of A-Series I/O Cards oo 1-8
MEMOTY . .ot 1-9
Memory Controller 1-9
MEMOTY ACCESS « .+« o e vttt e ettt et et 1-10
Memory EXpansion 1-10
SOFEWALE . . . ot 1-11
HP Interface Bus (HP-IB) 1-12
Computer NEtWOrk 1-12
Expansion and Enhancement il 1-12
SPECIfiCations 1-12
Chapter 2
Operating Features
Hardware RegiStErSot 2-1
A-REEISIEr o 2-1
B-REgISIEr . . . oot 2-1
o 2y 1] =) o R 2-1
Extend (E) RegiSter oot 2-1
Overflow (OQ) RegISErot e 2-2
Central Interrupt Register i 2-2
Violation Register o i 2-2
Parity Error Register 2-2
Interrupt System Register 2-2
WMAP-REZISIErottt 2-2
Virtual REISIErsot 2-2
M-REGISIET . . oot 2-3
ToREGISIEr . . o o 2-3
S TSt .« o et 2-3
VP Pre-Test . oottt e e e e e e 2-4
User Interface and Control 2-4
Bootstrap Loaders e 2-9

Loader Selection for Auto-Boot 2-9

Program Starts 2-9
VCP Re-Entry for Extended Boot Loading 2-10
Device Parameters and Media Formats 2-11
Virtual Control Panel (VCP) 2-11
VCP Program Operation i 2-12
Extended Memory Test (M) 2-16
Address Test 2-17
Pattern Test for Stuck Bits 2-17
Parity Error Set Routine (%S) 2-18
Loader Commands 2-19
VCP User Considerationsttt 2-22

Chapter 3

Programming Information

Data Formats e 3-1

Addressing e 3-2
Paging ... 32
Direct and Indirect Addressing 3-5
Memory Mapping e 3-5
Virtual Memory Area 3-5
Code and Data Separation i 3-5
Base-Relative Addressing 3-6
Reserved Memory Locations i 3-6
Nonexistent Memoryo e 3-7

Base Set Instruction Formats 3-7
Memory Reference Instructions i, 3-7
Register Reference Instructions 3-9
Input/Output Instructions 3-9
Extended Arithmetic Memory Reference Instructions 39
Extended Arithmetic Register Reference Instructions 39
Extended Instructions 3-10
Floating Point Instructions i i 3-10
Double Integer Instructions 3-10
Language Instruction Set i e 3-10
Virtual Memory Instructions i 3-10
Operating System INStructionsttt 3-10
CDS INStructionso .t e 3-11

Base Set Instruction Coding 3-11
Memory Reference Instructions, 3-11
Register Reference Instructions 3-16
Input/Output Instructions i 3-28
Extended Arithmetic Memory Reference Instructions 3-33
Extended Arithmetic Register Reference Instructions 3-35
Extended Instruction Group 3-38
Floating Point Instructions i 3-55
Language Instruction Set 3-58
Double Integer Instructions i 3-65
Virtual Memory Instructions 3-70
Operating System Instruction Set 3-74
Execution Times e 3-75

Double-Precision Floating Point Instructionst 3-75

Assembly Language 3-79
RTE IMplementationoieuertnnni i 3-80
Chapter 4
Dynamic Mapping System
Memory Addressingo oo 4-1
General DesCriptions 4-2
Page Mapping Register InStructions ..., 4-2
Working Map InStructions 4-3
Cross-Map INSLrUCHIONS 4-4
Detailed DeSCRIPLONS 4-5
DMS Instruction Execution Times i 4-25
Assembly Language and RTE Implementationot 4-25
Chapter 5
Code and Data Separation
Code and Data Addressingiiimrmi i 5-1
General DESCIPHONS . ..o 5-3
Procedure Call INStructionsottt 5-3
Procedure EXit INStrUCLIONS vttt 5-4
C,Q, Z, and IQ INStrUCLIONSottt 5-4
Stack Frame Descriptionotiinniiiiiiii 5-5
Detailed DESCHIPLONS\ttt 5-6
Assembly Language and RTE Implementation ..o, 5-19
EXECUtioN TimeS . ..ottt e 5-20
Chapter 6
Interrupt System
Power-Fail INterrupto 6-1
Parity Error INEITUPLttt 6-4
Memory Protect INtermupt oot 6-4
Unimplemented Instruction Interrupt 6-5
Time Base Generator INtErTUPtottt 6-5
Virtual Memory Area INEITUPLo 6-6
CDS Segment INErTUPLttt 6-6
Input/Output INTEITUPL oot 6-6
Interrupt Priority 6-7
Central Interrupt Register it 6-7
Processor Status Register o i 6-7
Interrupt Type CONtrol 6-8
[NSTrUCLION SUMMALY . . oo ottt 6-8
Chapter 7
On-Board 1/0 (OBIO)
General DesCription 7-1
Processor DesCriptionttt 7-2
MOCU Pin-OUL . v o et e e e e e e e e 7-2

OBIO Features 7-3

VO MAESIEr ... 7-3
Programming VCP 7-3
Break Detection 7-3
MCU Default Configuration for VCP 7-3
VCP Write 7-4
VCP Read 7-4
Driver Registers 7-4
OBIO Data Transfer 7-4
CPU to External Device Transfers 7-5
MCU/Driver Communication 7-6
DMA Device Write 7-6
DMA Device Read 7-7
MCU Control Words 7-7
[dentity 0: EXEC Read Request, 7-7
[dentity 10: EXEC Write Request 7-9
[dentity 11: MCU Control Requestscccuiiiiiennn oo, 7-10
Identity 11-0000: Port3 DiagnoSticscoo ... 7-10
Identity 11-0001: Load Executable Code 7-11
Identity 11-0010: Return MCU Dynamic State 7-11
Identity 11-0011: Undefined 7-12
[dentity 11-0100: De-Assert SLRQ- Line 7-12
Identity 11-0101: Reset 7-12
[dentity 11-0110: Enter VCP Mode 7-12
Identity 11-0111: Set Protocol o .. 7-12
Identity 11-1000: Define User Terminator 7-13
[dentity 11-1001: Dump FIFO 7-13
Identity 11-1010: Set Baud Rate 7-13
Identity 11-1011: Modem Control 7-14
Identity 11-1100: FIFO Buffering (Input Buffering) 7-14
Identity 11-1101: Disable Breako, 7-14
Identity 11-1110: Set MCU State, 7-15
[dentity 11-1111: Undefined 7-15

Table Of Control Word Responses 7-15
MCU Status Words 7-16
TYPE 000: Read Data Buffer Ready 7-17
TYPE 001: Write Data Buffer Empty 7-17
TYPE 010: Destinationless. Char/Speed Sensing 7-17
TYPE O11: Reset Result 7-17
TYPE 100: Modem Information 7-18
TYPE 101: Backspace Information 7-19
TYPE 110: FIFO Buffering Data Available 7-19
TYPE 111: Error 7-19
MUX Driver Description 7-20
A400 MUX Driver Registers oo 7-20
Data Register 30 7-20
Control Register 31 7-20
Transfer Type Selection 7-21
Register 31 Decoder 7-22
Status Register 32 7-22
Modem Control 7-22

Modem SEAteS 7-23

Modem CPU Interrupts 7-23
RTS [Pin #4]/DTR [Pin #5] 7-23
Clear To Send (CTS) Line [Pin #5) e 7-23
Data Set Ready (DSR) Line [Pin #6] 7-23
Ring Indicator (RI) Line [Pin #22] 7-24
Carrier Detect (CD) Line [Pin #8] 7-24

Firmware Architecture 7-24
CPU Interrupt Request Line 7-24

Initialization 7-24
Self-Test . .o 7-24
Port Definitions 7-24

P10 - P17: Modem Control 7-24
P20 - P24: SCI ... o 7-25
P30 - P37: MCU Data Port 7-25
P40 — P47: MCU Misc Port 7-26
Definition Of On-Board RAM 7-26

Chapter 8

Input/Output (I/0) System

Input/Output Addressingo i 8-1

Input/Output Priority 8-5

Interface Elements 8-7
Global Register 8-7
Control Bits 8-7
Flag Bits 8-8
Data Buffer Register 8-8
Control Register 8-8

Direct Memory ACCESSottt ettt e 8-8
Control Word 1 8-9
Control Word 2 8-9
Control Word 3 8-9
DMA Transfer Initialization 8-11
Self-Configured DMA 8-11
DMA Data Transfer 8-12

Non-DMA Data Transfer 8-13
Input Data Transfer (Interrupt Method) 8-13
Output Data Transfer (Interrupt Method) 8-15
Non-Interrupt Data Transfer 8-16

Diagnose Modes 8-17
Diagnose Mode 1 8-18
Diagnose Mode 2 8-18
Diagnose Mode 3 8-19

Appendix A
Reference Tables and Conversions

Figure 1-1
Figure 1-2

Figure 5-1.
Figure 8-1.
Figure 8-3.
Figure 8-4.

List of lllustrations

HP 1000 A400 COMPULETS ..o v it e 1-3
A400 Computer Simplified Block Diagram 1-6
Loading Device Parameters and Media Formats 2-13
Loading Device Parameters and Media Formats (Continued) 2-14
Loader Command Format i, 2-20
Data Formats and Octal Notationt 3-3
Base Set Instruction Formats 3-8
Shift and Rotate Functions i 3-18
Examples of Double-Word Shifts and Rotates 3-36
Basic Logical Memory Addressing Scheme 4-1
Expanded Memory Addressing Scheme 4-2
Stack Frame General Layout v, 5-5
Input/Output SYStEMo 8-2
Priority Linkage (Simplified)o 8-4
INterrupt SEQUENCEottt 8-5

. Options and ACCESSOIIES 1-13

Specifications 1-14
Specifications (Continued) i 1-15
Specifications (Continued) 1-16
Specifications (Continued) i 1-17
Specifications (Continued) 1-18
Specifications (Continued) 1-19
Specifications (Continued) o i 1-20
Specifications (Continued)o i 1-21
Specifications (Continued) 1-22
Specifications (Continued) i 1-23
Self-Test Failure Indicators i 2-4

. A400 Switch Locations 2-7
. A400 Switch Settings 2-8
. LED Display for /O Cardso 2-8
. VCP Characters and Associated Registers 2-15
. VCP Commandsottt 2-16
VCP Loader Command Errors 2-21
Memory Paging 3-4
Reserved Memory Locations, 3-6
Shift/Rotate Group Combining Guide 3-17

. Alter/Skip Group Combining Guidet 3-24
. Typical Base Set Instruction Execution Times 3-81
. Typical Base Set Instruction Execution Times (Continued) 3-82
-5. Typical Base Set Instruction Execution Times (Continued) 3-83
. Typical Base Set Instruction Execution Times (Continued) 3-84
. Typical Base Set Instruction Execution Times (Continued) 3-85
Double Precision Floating Point Execution Times 3-85
[nstructions and Opcodes for RTE-A Implementation 3-86
Dynamic Mapping Instructions Execution Times 4-25

10

Table 5-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 8-1.
Table 8-2.
Table 8-3.

CDS Instruction Execution Times 5-20
A400 Interrupt ASSIgNMENtS it 6-2
Sample Power-Fail Subroutine 6-3
Instructions for Select Codes 00 through 07 6-9
Non-Interrupt Transfer Rates 8-17
Diagnose Mode 1 8-18
Diagnose Mode 2 8-19

11

ADA
ADB
ADQA
ADQB
ADX
ADY
ALF
ALR
ALS
AND
ARS
ASL
ASR
BLF
BLR
BLS
BRS
CACQ
CAX
CAY
CAZ
CBCQ
CBS
CBT
CBX
CBY
CBZ
CCA
CCB
CCE
CCQA
CCQB
CIQA
CIQB
CLA
CLB
CLC
CLE
CLF
CLO
CMA
CMB
CME
CMW
CPA
CPB
CXA
CXB
CYA

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS

Add 10 A L 3-12
Add to B .. 3-12
Add Q 10 A o 5-19
Add Q to B ..o 5-19
Add Memory to X ..o 3-38
Add Memory to Y ... 3-38
Rotate A Left Four 3-18
A Left Shift, Clear Sign 3-19
Aleft Shift ... 3-19
CANd” 10 A e 3-12
A Right Shift 3-19
Arithmetic Shift Left 3-35
Arithmetic Shift Right 3-35
Rotate B Left Four 3-20
B Left Shift, Clear Sign 3-20
B Left Shift 3-20
B Right Shift 3-21
Copy Ato Cand Q 5-15
Copy A 10 X o 3-38
Copy A 10 Y o e 3-39
Copy A 10 Z .o e 5-17
Copy BtoCand Q i i 5-16
Clear Bits 3-52
Compare Bytes i 3-49
Copy B to X ... 3-39
Copy B to Y oo 3-39
Copy B 1o Z ..o 5-17
Clear and Complement A i, 3-24
Clear and Complement B 3-25
Clear and Complement E 3-25
Copy CtoQand A e 5-16
CopyCtoQandB i e 5-16
Copy Interrupted Q to A 5-18
Copy Interrupted Qto B 5-18
Clear A . 3-25
Clear B 3-25
Clear Control 3-29
Clear E ... 3-21,3-25
Clear Flag 3-29
Clear Overflow 3-29
Complement A e 3-25
Complement B 3-26
Complement E 3-26
Compare Words 3-53
Compare t0 A 3-13
Compare to B 3-13
Copy X 10 A Lo 3-39
Copy X t0 B ..o 3-39
Copy Y 10 A L 3-40

12

CYB
CZA
CZB
DIV
DLD
DST
DSX
DSY
ELA
ELB
ERA
ERB
EXIT
EXIT1
EXIT2
FAD
FDV
FIX
FLT
FMP
FSB
HLT
INA
INB
IOR
ISX
ISY
ISZ
JLA
JLB
JLY
JMP
JPY
JSB
LAX
LAY
LBT
LBX
LBY
LDA
LDB
LDMP
LDX
LDY
LIA
LIB
LPMR
LSL
LSR
LWD1
LWD2

Copy Y 10 B o 3-40

Copy Z 10 A o e 5-17
Copy Z t0 B o 5-18
Divide 3-33
Double Load e 3-34
Double Store 3-34
Decrement X and Skip if Zero 3-40
Decrement Y and Skip if Zero 3-40
Rotate E Left with A 3-21
Rotate E Left with B 3-21
Rotate E Right with A 3-22
Rotate E Right with B 3-22
Procedure Exit 5-14
Procedure Exit with One Skip 5-15
Procedure Exit with Two Skips i i 5-15
Floating Point Add 3-55
Floating Point Divide 3-56
Floating Point to Single Integer 3-57
Single Integer to Floating Point 3-57
Floating Point Multiply 3-56
Floating Point Subtract 3-56
Halt . 3-29
Increment A e 3-26
Increment B 3-26
“Inclusive OR” 10 A ... 3-13
Increment X and Skip if Zero 3-41
Increment Y and Skip if Zero...... i 3-41
Increment and Skip if Zero 3-14
Jump and Load A 3-47
Jumpand Load B 3-47
Jumpand Load Y 3-47
Jump . 3-14
Jump Indexed by Y 3-48
Jump to Subroutine 3-14
Load A Indexed by X 3-41
Load A lndexed by Y 3-42
Load Byte 3-50
Load Bindexed by X 3-42
Load BlIndexed by Y 3-43
Load A .. e 3-15
Load B .. 3-15
Load A Map 4-6
Load X from Memory 3-43
Load Y from Memory 3-43
Load Input to A e 3-30
Load Input to B 3-30
Load Page Mapping Register 4-6
Logical Shift Left (32) 3-37
Logical Shift Right (32) L 3-37
Load DATAL Map e 4-9
Load DATA2 Map 4-10

13

MB0O0O Cross Move Bytes, Execute to Execute 4-20
MB0O1 Cross Move Bytes, Execute to DATAL 4-21
MB02 Cross Move Bytes, Execute to DATA2 4-21
MB10 Cross Move Bytes, DATA1 to Execute 4-22
MB11 Cross Move Bytes, DATA1 to DATAL 4-22
MB12 Cross Move Bytes, DATA1 to DATA2 4-23
MB20 Cross Move Bytes, DATA2 to Execute 4-23
MB21 Cross Move Bytes, DATA2 to DATAL1 4-24
MB22 Cross Move Bytes, DATA2 to DATA2 4-24
MBT Move Bytes 3-50
MIA Merge Into A ... e 3-30
MIB MergelInto B 3-30
MPY Multiply 3-34
MVW Move Words i e e e 3-54
MWO0 Cross Move Words, Execute to Execute 4-16
MWO01 Cross Move Words, Execute to DATA1 4-16
MWO02 Cross Move Words, Execute to DATA2 4-17
MW10 Cross Move Words, DATA1 to Execute 4-17
MW11 Cross Move Words, DATA1 to DATAL i, 4-18
MW12 Cross Move Words, DATA1 to DATA2 i 4-18
MW20 Cross Move Words, DATA2 to Execute 4-19
MW21 Cross Move Words, DATA2 to DATAL o i 4-19
MW?22 Cross Move Words, DATA2 to DATA2 4-20
NOP NO Operationt 3-22
OTA OULPUL A o e e e 3-31
OTB Output B . 3-31
PCALI Internal Procedure Call i, 5-6
PCALX External Procedure Call i 5-8
PCALYV Variable External Procedure Call 5-10
PCALR Procedure Call .ENTR Compatible 5-11
PCALN Procedure Call .ENTN Compatible 5-12
RAL Rotate A Left e e e 3-22
RAR Rotate A Right 3-23
RBL Rotate B Left et e 3-23
RBR Rotate B Right 3-23
RRL Rotate Left (32)o e e 3-37
RRR Rotate Right (32) i i 3-37
RSS Reverse SKip Senset i 3-26
SAX Store Alndexed by X 3-44
SAY Store Alndexed by Y 3-44
SBS St BItS . .o e 3-52
SBT Store Byte 3-51
SBX Store BlIndexed by X 3-44
SBY Store Bindexed by Y 3-45
SDSP Store Displayo 5-13
SEZ Skipif Eis Zero 3-27
SFB Scan for Byte 3-51
SFC Skipif Flag Clear i 3-31
SFS SKip if Flag Seto 3-31
SIMP Save Interrupted Map 4-9
SLA Skipif LSBof Ais Zero 3-23,3-27

14

SLB Skipif LSBof Bis Zero i 3-24,3-27
SOC Skip if Overflow Clear i, 3-32
SOS Skip if Overflow Set 3-32
SPMR Store Page Mapping Register i i 4-6
SSA Skipif Signof Ais Zero 3-27
SSB Skipif Signof Bis Zero 3-27
STA StOrE A e 3-15
STB Store B....... e 3-15
STC SetControl e 3-32
STF SetFlag i e 3-32
STMP Store AMap e 4-7
STO Set Overflow 3-33
STX Store X t0 MEeMOIYottt e 3-45
STY Store Y to MemMOryottt 3-46
SWMP Save Working Map 4-9
SZA SKip if A QS Zero 3-28
SZB SHp if Bis ZErot 3-28
TBS Test Bitso 3-53
XAX Exchange Aand X 3-46
XAY Exchange Aand Y 3-46
XBX Exchange Band X 3-46
XBY Exchange Band Y i 3-46
XCA1 Cross Compare A through DATAT Map, 4-14
XCA2 Cross Compare A through DATA2 Map0 4-15
XCB1 Cross Compare B through DATA1 Map 4-14
XCB2 Cross Compare B through DATA2 Map L. 4-14
XJCQ Cross Map Jump (and Load Cand Q)o 4-8
XIMP Cross Map Jump o i 4-7
XLA1 Cross Load A through DATA1 Map 4-10
XLA2 Cross Load A through DATA2 Map it 4-11
XLB1 Cross Load B through DATA1 Map o it 4-11
XLB2 Cross Load B through DATA2 Map it 4-11
XOR “Exclusive OR” 10 A i 3-16
XSA1 Cross Store A through DATAL Mapt 4-12
XSA2 Cross Store A through DATA2 Map it 4-13
XSB1 Cross Store B through DATATI Map 4-12
XSB2 Cross Store B through DATA2 Map 4-13
.CFER Transfer Complex or Double Floating Point 3-59
.CPM Single Integer Arithmetic Compare oot 3-65
.CPUID Processor Identification i 3-74
.DAD Double Integer Add 3-65
BLE Single Floating Point to Double

Floating Point e 3-62
.DCO Double Integer Compareiiiiiiin . 3-67
.DDE Double Integer Increment i, 3-68
.DDI Double Integer Divide 3-69
.DDIR Double Integer Divide Reverse 3-69
.DDS Double Integer Decrement and Skip if Zero 3-67
.DFER Transfer Three Consecutive Words 3-59
.DIN Double Integer Increment i 3-68
.DIS Double Integer Increment and Skip if Zero 3-68

15

.DMP Double Integer Multiply 3-69
.DNG Double Integer Negatet 3-67
.DSB Double Integer Subtract 3-66
.DSBR Double Integer Subtract Reverse 3-66
.ENTC Transfer Parameter Addresses i .. 3-64
.ENTN Transfer Parameter Addressesc. .. i .. 3-64
.ENTP Transfer Parameter Addresses 3-60
.ENTR Transfer Parameter Addresses, 3-60
.FIXD Floating Point to Double Integer 3-57
.FLTD Double Integer to Floating Point 3-57
.FLUN Unpack Floating Point Quantity 3-62
.FWID Firmware Identification 3-75
IMAP 16-Bit Subscript Mappingt e 3-71
RES 16-Bit Subscript Resolution i 3-71
JMAP 32-Bit Subscript Mapping e 3-72
JRES 32-Bit Subscript Resolution i 3-72
.LBP Mapping with Registers i i 3-74
.LBPR Mapping with DEF i 3-74
.LPX Indexed Mapping with Registers 3-73
.LPXR Indexed Mapping with DEF 3-73
.NGL Double Floating Point to Single

Floating Point 3-63
.PACK Normalize Floating Point Quantity 3-63
.PMAP Map Specified Page 3-70
PWR2 X Times 2 tothe Power N i, 3-63
SETP Set A Table e 3-61
SIP - Skip if Interrupt Pending 3-75
.TADD Double Floating Point Add i .. 3-76
.TDIV Double Floating Point Divide 3-76
.TFTD Double Integer to Double Floating Point 3-77
.TFTS Single Integer to Double Floating Point 3-77
.TFXD Double Floating Point to Double Integer 3-77
.TFXS Double Floating Point to Single Integer 3-78
.TMPY Double Floating Point Multiply 3-78
.TSUB Double Floating Point Subtract 3-79
WFI Wait for Interrupt e 3-75
.XFER Transfer Three Consecutive Words 3-61
ZFER Transfer Eight Words 3-58
..FCM Complement and Normalize Single

Floating Point e 3-61
..TCM Complement and Normalize Double

Floating Point 3-64

16

Introduction

General

The HP 1000 A400 Computers and Computer System (hereafter referred to as A400
computers) are low-cost members of the high-performance HP 1000 A-Series
processor family. Memory and [/O are combined on the processor board, thereby
eliminating two or more PC boards and some redundant logic. The A400 is available
at these three levels of integration:

e HP 12100A Single board computer
e HP 2134A Computer in a 20-slot box
e HP 2424A Micro 14 Computer in low-cost 6-slot box

e HP 2434A Micro 24 Computer in 14-slot Micro/1000 box (with or without
integral disc)

e HP 2484A/B Micro 24 System Processor Unit with RTE-A Operating System in
Micro/1000 box, with or without integral disc.

Features

e Full A-Series compatibility

e 512k bytes of on-board parity memory

e 32k bytes of Boot PROM

e 10ms time base generator

e Full support of code and data separation (CDS)

e Battery backup and power fail recovery capabilities

e Support for up to four A-Series memory array cards

e 4-channel asynchronous MUX with two ports supporting modem control
e 300, 1200, 9600, 19.2k, and 76.8k baud transfers

Single-Board Computer Description

Product number 12100A is the A400 single-board computer that consists of a CPU,
memory controller, 512k bytes of parity memory, and asynchronous serial /O
multiplexer The A400 board will plug into any A600+/A700 backplane with up to

four parity memory arrays and as many standard A-Series /O cards as the backplane
will hold.

Introduction 1-1

The 12100A can be used as the foundation for building a customized computer
system. A user-supplied computer cabinet provides the necessary backplane, power
supply and cooling fans. The On-Board /O (OBIO) cable is available for four 25-pin
RS-232 serial I/O connections.

Since the A400 board computer is software compatible with current A-Series CPUs,
the RTE-A Operating System and all existing A-Series software packages are
available for building a computer system.

Table 1-1 gives a brief list of options and accessories available. The following
publications provide additional information on selecting components and configuring a
computer system.

1-2

A400 Engineering and Reference Documentation, 02424-90003.

HP 1000 Computer System Software Technical Data, Volume I, part no.
5953-8710 or replacement.

HP 1000 Computer System Software Technical Data, Volume II, 5953-8721, part
no. 5953-8721 or replacement.

HP 1000 A-Series Computer Handbook, part no. 5954-8576 or replacement.
HP 1000 System Designer’s Guide, part no. 92077-90001.

Introduction

HP 2134A Box, HP 2424A Box, HP 12100A Board, and
HP 2434A/2484A/2484B Micro 24 Packages

Figure 1-1. HP 1000 A400 Computers

Introduction 1-3

Architecture

The A400 computer architecture is based on a distributed intelligence concept that
separates the processing of input/output (/O) instructions from that of other
instructions. Most central processor unit (CPU) circuitry resides on a single CMOS
chip, packaged in a ceramic 168-pin grid array (PGA).

The A400 CPU executes the HP 1000 instruction set, including:

Index instructions.

Instructions for logical operations.

Bit and byte manipulation.

Base instructions that include

- Single and double-precision floating point operations.

- Double-integer and virtual memory addressing instructions.

- Language instructions for increased program execution speed for higher level
languages such as FORTRAN and Pascal.

The CPU also performs several system-level functions including memory protect,
power fail/auto restart, time base generation, and parity error handling.

The entire micromachine plus much of the macromachine support circuitry (such as
clock generation, memory control, interrupt control, and macro registers) is included
in the CPU chip. The chip is implemented in 1.3 micron double-level CMOS
standard cells and contains approximately 20,000 gate equivalents (1 gate equivalent
= 2 input NAND gates), plus three custom register files (sixteen 16-bit registers).
The mapping system, on-board memory array, control store, and backplane interface
are implemented external to the processor chip on the PC board.

All /O instructions are executed by custom CMOS input/output processor (IOP)
integrated circuit chips that reside on the on-board I/O or on the individual I/O
interface cards. A common backplane links the A400 with additional memory array
and I/O cards. The instructions are fetched from memory and decoded by the CPU.
When an instruction is decoded as being of the I/O type, it is broadcast on the
backplane for execution by the appropriate 1/O card. Because the OBIO and each /O
card is capable of operating independently of the CPU, the A400 can perform direct
memory access (DMA) I/O transfers very efficiently. An /O card interacts with the
CPU only on DMA initiation and completion; beyond that, the entire high-speed
transfer is handled by the I/O card, leaving the CPU free to work on other tasks.
This achieves high efficiency in CPU and I/O throughput. Figure 1-2 is a simplified
block diagram of the A400 computer.

Floating Point Processing

Floating point processing is implemented in firmware, providing high-speed dedicated
logic that performs exceptionally fast single precision (32-bit) and double precision
(64-bit) floating point arithmetic operations.

1-4 Introduction

Virtual Control Panel

The Virtual Control Panel (VCP) program is an interactive program that enables an
external device (such as a terminal) to control the CPU in a manner similar to a
conventional computer control panel. [t allows you to access the various registers
(such as A, B, and P), examine or change memory, and control execution of a
program. The VCP program is stored in the boot memory PROM of the A400.
When not being used as the VCP, the VCP-enabled terminal can be used in the same
way as any other terminal connected to the system, except that the BREAK key has a
unique function in VCP mode. When the A400 computer is operating as a node in a
computer network via NS/1000 or DS/1000-IV, the VCP device can be an adjacent
computer in the network.

Bootstrap Loaders

There are several bootstrap loaders stored in the VCP PROM on the A400 board.
The loaders provide program loading from several sources including disc drives,
PROM storage modules, NS/1000 or DS/1000-IV network link, magnetic tapes, HP
mini-cartridge tapes, and cartridge tapes of the disc drives. The first three loaders
can be selected for auto-boot by switches on the A400 board; any of the loaders can
be selected by operator commands via the VCP.

Self-Test Routines

Self-test routines are standard in the A400 computer and are stored in PROM on the
A400 board. These routines are executed whenever computer power is turned on, or
by operator command via the VCP, providing a check of specific areas of CPU logic.

Introduction 1-5

A400 Processor

Memory
Controller

512 kB
of
Memory

4 Serial 1/0 Ports

L8600-36

N

mzZ »r VDXO>» ®

N4 VN N

Additional
Memory

Interface
Card

Interface
Card

Interface
Card

Figure 1-2. A400 Computer Simplified Block Diagram

1-6 introduction

Time Base Generator

The A400 board includes a time base generator (TBG) which can be used to update
the real-time clock, establish timing points for task switching, and generate microcode
timeout interrupts. The time base generator (TBG) can generate an interrupt every
10 milliseconds. The TBG is disabled at power up, and must be explicitly enabled
using standard I/O instructions. Once enabled, the first TBG pulse will be generated
10 milliseconds later.

Power Supply

A400 computer packages have power supplies designed to continue normal operation
in environments where AC line power may fluctuate widely. Input line voltages and
frequencies may vary widely without affecting the operation of the computer.

Battery backup is supported by the A400 processor in 2134A, 2434A, and 2484A/B

packages. An optional battery backup card and/or battery pack can be installed to

sustain memory for 15 to 90 minutes (depending on memory size) in the event of a
complete power failure, thus providing an automatic restart capability.

If power fail protection is needed in an HP 2424A package, an uninterruptable power
supply (UPS) should be considered.

Another power supply enhancement to Micro/1000 configurations (and standard in the
2134A) is 25-kHz voltage that can be rectified at the load and used to power
accessory plug-in cards used for measurement and control applications.

Input/Output (/O)

Data transfer between the computer and [/O devices can take place under DMA
control or program control. The DMA capability provides a direct link between
memory and I/O devices. The total bandwidth available through multiple DMA
channels is 4.4 million bytes (2.2 million words) per second.

On-Board 1/0 (OBIO)

The A400 computer contains on-board [/O (OBIO) circuitry consisting of an [/O
processor chip, I/O master circuitry, and four serial I/O ports. The following
functionality is provided by the OBIO circuitry:

Transmission Mode
Bit-serial, Asynchronous

Introduction 1-7

Capacity
Four full duplex communications channels
Two-channel modem support

Programmable Features
Echo on or off
Switch-programmable VCP port
Record termination processing (any character)
Baud rate selection (300, 1200, 9600, 19.2K, and 76.8K)
Backspace processing
ENQ/ACK handshake
XON/XOFF handshake

Interface Levels
RS-232 and V.28 (standard)
RS-422/423 (user-supplied cable for each channel)
Any mix of interface levels

Maximum Cable Length (depending on baud rate)
RS-232, 15 meters (19.2k baud)
RS-423, 50 meters (19.2k baud)
RS-422, 1200 meters (19.2k baud)

Error Detection
Framing errors and overrun errors
Parity errors may be checked using software library routines.

Modem Control
Interacts with six modem control lines: Clear to Send, Request to Send,
Data Set Ready, Carrier Detect, Data Terminal Ready, Ring Indicator.

Two of the four ports drive the six modem control lines required for normal modem
control. A “Break” on Port A will give you access to VCP, when enabled. The port
processor also handles backspace processing to minimize the interrupts that the CPU
must process. The I/O master and the single DMA channel that it provides are
shared by the four port processors. The select code for OBIO is select code 77, and
cannot be changed.

Support of A-Series I/0 Cards

The A400 supports as many A-Series [/O cards as the card cage capacity allows. The
[/O cards contain a custom [/O processor chip on each card, enabling each card to
process its own /O instructions and handle direct memory access (DMA) data
transfers. The I/O system has a multilevel vectored priority interrupt structure with
60 distinct interrupt levels, each of which has a unique priority assignment. Any I/O
device can be selectively enabled or disabled, or all /O devices can be enabled or
disabled under program control.

1-8 Introduction

An important feature of the interface cards is a common-content Global Register
which can be loaded with the select code of a specific [/O card. When the Global
Register is enabled, all I/O instructions are executed only by the I/O card whose
select code is in the Global Register. This not only facilitates setting up DMA
transfers but also makes reconfiguration of an I/O driver a simple matter of changing
the Global Register to the appropriate select code. Also, because the Global Register
can direct I/O instructions to a specific [/O card, the 1/O-instruction address bits can
be used to access registers on an /O card. This feature is utilized in the design of
the [/O cards to increase their capabilities.

About one-third of the area on the interface cards is occupied by the /O Master,
which consists of an 1/0O processor chip and its associated logic. The /O Master is
also available in breadboard form for users who wish to design their own 1/O cards.
The I/0O Master is described in detail in the HP 1000 A/L-Series Computer I/O
Interfacing Guide, part no. 02103-90005.

Memory

The A400 computer contains a memory controller and 512k bytes of user RAM (with
parity) resident on board. Also included are 2k bytes of boot RAM and 32k bytes of
boot PROM on board.

Memory Controller

The memory controller interfaces to the processor, on-board memory, optional
memory array cards, and [/O. The processor controls memory array card operations
by connections across the backplane and a memory array front plane. Interaction
with I/O occurs across the backplane.

The memory controller is responsible for the following functions:

e Generating handshake signals for backplane (BUSY, VALID).

e Latching data and addresses during memory cycles.

e Generating interrupt signals (MPV, PE).

e Arbitrating memory and refresh cycles.

e Generating read strobes for array cards.

e Protecting memory during illegal accesses.

e Accessing loader and front panel firmware.

e Inhibiting array cards during protected access.

Introduction 1-9

e Maintaining memory data during power failures.

e Verifying that physical address indeed accesses an existing array card and if not
drive all “1’s” onto backplane.

e Determine whether the requested memory cycle should occur in two or three
clock signal cycles.

Memory Access

The A400 memory system is “dynamically mapped” which provides the ability to
access more than 32k words of 16-bit data. Map RAMs generate the physical address
of data to be accessed during a memory cycle. Mapping widens the 15-bit address
bus on the backplane (which can access up to 32k words of memory) to a 24-bit
address bus (combined backplane and frontplane) which can access up to 16M words
of memory. The memory array cards are word addressable.

Memory access can be initiated by either the processor or by an [/O device using
DMA. Processor accesses can be read and/or write protected by two bits that are
stored in the map RAMs. Thus, processor access to protected memory will cause an
interrupt to occur (if memory protect is enabled) and the access will be aborted. An
I/O device using DMA can access protected memory, however. This is true for either
a read or write access.

The detection of a parity error on a read causes the assertion of a parity error signal
on the backplane. This condition signal is handled by the processor or by the I/O
card depending on which initiates the access.

Memory Expansion

The A400 processor allows main memory expansion beyond the on-board 512k bytes.
A maximum of four megabytes of main memory can be supported by adding the
following memory array cards:

12103C 512k byte parity array card
12103D 1M byte parity array card
12103K 2M byte parity array card
12103L 4M byte parity array card
12103M 8M byte parity array card

Error correcting code (ECC) memory and the 12103B 256k byte memory array card
are not supported.

When a 12103C or 12103D array card is added to the system, its size must conform
to the address space boundaries. A compatible size is indicated when an integer
results from dividing the size of existing memory by the size of the array card to be
added. The 12103K/L/M cards are self-configuring and the integer rule does not
apply. They can be added on any half-megabyte boundary.

1-10 introduction

When installing array cards there is no need to physically identify the array cards
(such as jumper or switch setting to set recognition of physical address space). The
memory controller automatically designates the on-board memory as the first memory
address space. The array cards configure themselves in ascending order going away
from the on-board memory. The beginning of the memory is, therefore, the on-board
memory and the end of memory is on the array farthest from the on-board memory.

It is possible to use partially loaded array cards as long as the total memory on the
array is either 512k or 1M bytes. The partially loaded arrays can be incorporated
into the module self-configuring scheme. There can be a total of up to four array
cards in the system. For the proper order of installation, refer to the appropriate
installation and service manual.

Software

Software support for the A400 computers begins with RTE-A, a member of HP’s
family of Real-Time Executive (RTE) operating systems. RTE-A is a real-time
multi-programming, multi-user operating system designed to take full advantage of the
A400 /O structure to enhance overall CPU and /O throughput. RTE-A offers a wide
range of configurations, from a small, memory-based, execute-only system to a full
disc-based system with on-line program development. Ultilizing the A400 mapped
memory system, RTE-A supports user partitions of up to 64k bytes and memory sizes
up to 32 megabytes.

Memory can be divided into fixed and dynamically allocated partitions at system
generation time. Critical programs can be made resident in fixed partitions to ensure
fastest possible response to requests for their execution. Other programs can be
assigned partitions from the dynamic memory pool according to need, using the
smallest available block of memory.

RTE-A also supports Virtual Memory Addressing (VMA) for access to data arrays
much larger than main memory (up to 12.6 megabytes). The disc functions as an
extension of main memory so far as data is concerned, in a manner that is
transparent to the user and does not require any special programming. In addition,
RTE-A supports a special case of VMA, called Extended Memory Area (EMA). With
EMA, up to two megabytes of a program’s data can be in main memory at once,
which affords faster processing of data arrays small enough to use the EMA
capability. The programmer chooses the data array handling mode at program load
time.

Disc-based RTE-A systems support program development in FORTRAN 77,
Pascal/1000, BASIC/1000, and Macro/1000 Assembly Language. Program
development for the A400 can also be performed on an HP 1000 System under
RTE-6/VM or RTE-1VB.

The diagnostic packages listed in Table 1-1 may be used for testing and fault
location.

Introduction 1-11

HP Interface Bus (HP-IB)

Among the /O interface cards available for the A400 computer is the HP 12009A
HP-IB Interface Card which can interface the A400 computer to a variety of HP
peripherals and other equipment compatible with the Hewlett-Packard Interface Bus
(HP-IB). (HP-IB is the Hewlett-Packard implementation of IEEE standard 488-1978,
“Digital Interface for Programmable Instrumentation”.) A single HP 12009A can
control up to 14 HP-IB instruments and several can be used to achieve concurrent
operation of multiple HP-IB instrumentation clusters under the RTE-A
multiprogramming operating system.

Computer Network

You can configure the A400 computer into an HP NS/1000 or DS/1000-IV Distributed
System by using either an HP 12007B or an HP 12044A HDLC Interface. Both of
these interfaces support the high-level data link communications (HDLC) protocol,
functioning as a preprocessor to handle low and medium levels of protocol
processing. The A400 computers can be easily mixed with other members of the HP
1000 family in a single computer network. The HP 12042B Programmable Serial
[nterface (PSI) card allows sophisticated OEMs to design customized protocols for
networks. Hewlett-Packard offers a customer training course on how to program the
PSI card. '

Expansion and Enhancement

Table 1-1 lists accessory products available to expand or enhance the A400
computers.

Specifications

The HP 1000 A-Series Computer Handbook, part no. 5954-8576 or replacement,
provides complete specifications for the A400 computers and systems.

Table 1-2 provides an abridged set of A400 specifications. Except where indicated,
the specifications are applicable to the HP 2134A/2424A/2434A Computer and the HP
2484A/B Computer System. Both the computer and the computer system have been
product accepted by the Underwriters’ Laboratories (UL) and the Canadian Standards
Association (CSA). The A400 computer and system also meet the RFI standards of
the Federal Communications Commission (FCC) and Verband Deutches
Electrotechnikes (VDE).

1-12 Introduction

Table 1-1. Options and Accessories

DESCRIPTION

HP PRODUCT NO.

230 Vac Operation

512K Byte Memory Array Card

1M Byte Memory Array Card

2M Byte Memory Array Card

4M Byte Memory Array Card

8M byte Memory Array Card

Memory Connector for one memory array card
Memory Connector for two memory array cards
Memory Connector for three memory array cards
Memory Connector for four memory array cards
Asynchronous Serial Interface

Parallel Interface

HDLC Interface (modem operation)

PROM Storage Module

HP-IB Interface

Intelligent Breadboard

Extender Board

Priority Jumper Card

Input/Output Extender

8-Channel Asynchronous Multiplexer

Multi-use 8-channel Multiplexer

Programmable Serial Interface

Multi-use Programmable Serial Interface

HDLC interface (hard-wired operation)
High-Level Analog Input Card*

Expansion Multiplexer Card*

Analog Output Card*

16-In/16-Out Isolated Digitatl I/O Card*

Color Video Interface

DS/1000-IV Data Link Slave Interface
DS/1000-IV Modem Interface to HP 3000

LAP-B Network Interface

DS/1000-1V Direct Connect Interface to HP 3000
LAN Interface

Data Link Master Interface
HP-IB Extender Card
Integral Modem Interface

Battery Backup Card

Battery Backup for 2134A

25 kHz Sine Wave Card

Diagnostic Package for A400 processor and interfaces™ *

Diagnostic Package for A400-compatible hard disc drives and
magnetic tape units™*

HP-1B Extender card
Integral Modem Interface

Opt 015
12103C
12103D
12103K
12103L
12103M
12038A
120388
12038C
12038D
120058
12006A
12007A
12008A
12009A
12010A
12011A
12012A
12025A/B-002
12040D
12041A/B
12042A
12043A
12044A
12060A
12061A
12062A
12063A
12065A
12072A
12073A
12075A
12082A
12076A

12092A
37203L
37222A

12154A
121578

12159A
24612A

243988

37203L
37222A

* Accessory for HP 2134A, 2434A, and 2484A/B packages only.
** Included with the HP 2484A/B System.

Introduction 1-13

Table 1-2. Specifications

SPECIFICATIONS COMMON TO THE HP 2134A, 2424A, 2434A, AND 2484A/B

CENTRAL PROCESSOR

Word Size:

Instruction Set:
Memory Reference:
Register Reference:
Input/Output:
Extended Arithmetic:
Index:
Bit, Byte, Word Manipulation:
Floating Point (single precision):
Language:
Dynamic Mapping:
Double Integer:
Virtual Memory:
Operating System:

Code and Data Separation:

Floating Point (double precision):

16

205 standard instructions.

14
43
13
10
34
10

1"

40
12

21

Registers:
Accumulators:
Index:

Memory Register:
Base:
Bounds:

Supplementary:

Time Base Generator
Interrupt:

Two (A and B), 16 bits each. Implicitly addressable,
also explicitly addressable as memory locations.

Two (X and Y), 16 bits each.
One (P), 15 bits.

One (Q), 15 bits; one (C), 1 bit.
One (Z), 16 bits.

Two (overflow and extend), 1 bit each.

A time base generator interrupt is provided for
maintaining a real time clock. The interrupt request
is made when the CPU signals, at 10-millisecond
intervals, that its internal clock is ready to roll over.
Timing accuracy of the time base generator is
+2.16 seconds per 24-hour day.

1-14 Introduction

Table 1-2. Specifications (Continued)

SPECIFICATIONS COMMON TO THE HP 2134A, 2424A, 2434A, AND 2484A/B (Continued)

MICROMACHINE
Address Space:
Microinstruction Word Size:

Microaddress Space

16,384 words (256 blocks of 64 words each).
32 bits.

16k microwords.

Word Types: six
Cycle Time: 227 nanoseconds
Microorders: 198
Operations: 14
Special: 56
ALU and Conditional: 48
Store: 32
B-Bus: 32
A-Bus: 16
MEMORY

Memory Structure:

Memory Size:

Memory Cycle Time:

Memory Parity Checking:

64 pages minimum of 2048 bytes per page, with
direct access to current page or base page (page 0),
and indirect or mapped access to all pages.

512 kb parity memory on board. Up to 32 Mbytes
with 12103 parity array modules.

454 nanoseconds.

Parity logic in the memory controller continuously
generates correct parity for all words written into
memory and monitors the parity of all words read out
of memory. Either odd or even parity can be
selected programmatically. A parity error generates
an interrupt to memory location 00005, which can
contain a JSB to a user-supplied parity error handling
subroutine or a halt instruction.

INPUT/OUTPUT

Determination of I/O Address:

I/0 address select code is set for each interface
card by select code switches on the card and is
therefore independent of interface card position in
the card cage. Select code of OBIO is 77 and
cannot be changed.

Introduction 1-15

Table 1-2. Specifications (Continued)

SPECIFICATIONS COMMON TO THE HP 2134A, 2424A, 2434A, AND 2484A/B (Continued)

INPUT/OUTPUT (Continued)

I/0 Device Interrupt Priority:

Interrupt Masking:

interrupt Latency:

Direct Memory Access (DMA):

DMA Latency:

Data Packing Under DMA:

Maximum Achievable DMA
Burst Rate:

Depends upon I/0 interface card position in the card
cage with respect to the processor. OBIO always
has the highest priority in the system.

The 1/0 Master Logic includes an interrupt mask
register which provides for selective inhibition of
interrupts from specific interfaces under program
control. This capability can be programmed to
temporarily cut off undesirable interrupts from any
combination of interfaces when they could interfere
with crucial transfers.

8.00 to 60.00 microseconds. 10.00 microseconds
typical. (Interrupts cannot be serviced until a DMA
cycle or an instruction in progress has completed
execution.) The worst-case latency of 60.00 micro-
seconds is based upon time to complete a double-
precision floating point divide (.TDIV), the longest
non-interruptible standard instruction.

The 1/0 processor chip supports DMA capability on
OBIO and each I/0 interface, which reduces the
number of interrupts from one data item (byte or
word) to one per complete DMA block.

Time interval from Service Request by an I/O device
through completion of the DMA 1/O data transfer to
or from the /0 interface is 0.83 microseconds for
input, 1.25 microseconds for output for the interface
with highest hardware 1/O priority.

When byte mode is specified in Control Word instruc-

tions, the 1/0 processor chip automatically manages
byte packing or unpacking.

2.2 million words (4.4 megabytes) per second.

SAFETY AND RFI QUALIFICATION

HP 1000 A400-Series products are UL listed and CSA
certified to meet Underwriters’ Laboratories (UL)

and the Canadian Standards Association (CSA)
standards for safety. The A400-Series also complies
with the RFI standards of the Federal Communications
Commission (FCC) and Verband Deutches Electro-
technikes (VDE).

1-16 Introduction

Table 1-2. Specifications (Continued)

SPECIFICATIONS COMMON TO THE HP 2134A, 2424A, 2434A, AND 2484A/B (Continued)

DC REQUIRED
MODEL +5V dc +5M dc +12V dc -12V dc

12100A Processor Board 4.2A 1.5A 0.065A 0.090A

(standby) " 0.63A
12103C 512kb Memory 1.1A 1.0A

(standby) * 0.6A
12103D 1024kb Memory 1.3A 1.6A

(standby) * 1.0A
12103K 2Mb Memory 0.9A 1.0A

(standby) * 0.61A
12103L 4Mb Memory 0.9A 1.3A

(standby) * 0.65A
12103M 8Mb Memory 0.9A 2.1A

(standby) * 0.71A
120058 Async. Serial Interface 1.6A 0.2A 0.1A
12006A Parallel Interface

With +5V logic 1.94A 0.18A
With +12V logic 1.61A 0.18A

12007A/B HDLC Interface (modem) 2.6A 0.4A 0.2A
12008A PROM Storage Module 2.0A 0.1A
12009A HP-IB Interface 2.1A 0.1A
12010A Breadboard Interface™” 0.8A 0.4A
12040B/C/D Async. Multiplexer 2.5A 0.1A 0.1A
12041A/B Multi-use MUX 2.5A 0.1A 0.1A
12042B Prog. Serial Interface 2.6A 0.4A 0.2A
12043B Multi-use PSIF 2.6A 0.4A 0.2A
12044A HDLC Interface (direct) 2.4A 0.3A 0.1A
12060A Analog Inputt 1.1A
12061A Analog Multiplexert 0.1A
12062A Analog Output ¥ 1.2A
12063A Digital /O 1.0A
12065A Color Video Interface 3.7A 0.5A 0.02A
12072A Data Link Interface 1.5A 0.2A 0.1A
12073A Modem HP 3000 Interface 2.6A 0.4A 0.2A
12075A LAP-B Network interface 2.6A 0.4A 0.2A
12076A LAN Interface 4.5A 0.5A 0.38A
12082A 3000 Interface (direct) 2.4A 0.3A 0.1A
12092A Data Link Master IF 2.6A 0.4A 0.2A
37203L HP-1B Extender Card 0.8A
37203L w/opt 001 0.8A
37222A Integral Modem |F 1.2A 0.1A 0.1A

* Standby indicates the current supplied from the optional battery backup during

power failure.

** 12010A current requirement listed here is for the I/O Master circuitry only;

logic added by the user will require additional current.
+ Requires 25 kHz power supply accessory. Available only in the HP 2134A, 2434A,

and HP 2484A/B.

Introduction

1-17

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2424A COMPUTER

ELECTRICAL SPECIFICATIONS

AC Power Required:
Line Voltage:

Line Frequency:

Inrush Current (cold power-up):

Nominal Current:

Maximum Power Required:

Power Factor:

86-140V (120V -28%/+;17%) standard;
172-276V (240V -28%/+15%) option 015.

47.5 to 66 Hz.

20.0A max (at 120 Vac).
40.0A max (at 240 Vac).

2.5A (120 Vac); 2.5A max (86 Vac).
1.3A (240 Vac); 1.3A max (172 Vac).

216 Watts (300 VA).

0.70 minimum, current leading the voltage.

PHYSICAL CHARACTERISTICS
Dimensions:

Height:

Height w/feet:

Width:

Depth:
Weight:

Ventilation:

Volume:

205 mm (8.07 in.)
208 mm (8.19 in.)
325 mm (12.80 in.)
500 mm (19.69 in.)

13.2 kg (29 Ib)

Air intake is through the front; exhaust is through
the rear.

Approximately 70 cubic feet per minute.

ENVIRONMENTAL SPECIFICATIONS

Temperature:
Operating:
Non-operating:

Relative Humidity:

Altitude:
Operating:
Non-operating:

0°to 60°C (32°to 140° F)
-40° to 75° C (-40° to 167° F)

5% to 95% non-condensing.

To 4.6 km (15,000 ft.)
To 15.3 km (50,000 ft.)

1-18

Introduction

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2424A COMPUTER (Continued)

ENVIRONMENTAL SPECIFICATIONS

(Continued)
Vibration and Shock:

Shock

Operating: 1.5 g peak, '/, sine, 6 to 9 ms duration,
45 Hz crossover.

Non-operating: 7.0 g peak, !/, sine, 6 to 9 ms
duration, 45 Hz crossover.

Operating Vibration:

Frequency Power Spectral
(Hz) Density (g2/Hz)
5 0.002
5-15 ~-1/.5 dB/octave
15 0.0015
12 - 200 -6.0 dB/octave
200 - 350 0.00012
350 - 500 -6.0 dB/octave

g's rms = 0.43

POWER SUPPLY
Output:

Maximum Output Current Ratings:

Short Circuit Protection:

5V Output Overvoltage
Protection:

Dc voltages and tolerances:

+5v +2%

+12v +6/-3%
-12Vv +6/-4%
+5Vv +12V -12v
23A 3.6A 1.1A

All dc and ac power outputs are fault protected for
short circuits. The power supply will shut down if
any of the outputs are short circuited at turn on.

The +5V output is sensed for overvoltage and the +5V
supply shuts down if its output voltage exceeds 5.5V.
The ac power switch must be cycled to reset the

+5V output.

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2434A AND 2484A/B SYSTEM

ELECTRICAL

AC Power Required:
Line Frequency:

Line Voltage:

Operating Current:

47.5 to 66 Hz

88-138V (115V -25%/+20%) standard:
178-276V (230V -23%/+20%) Option 015.

BA, max. in 115V configuration: 3A, max. in 230V
configuration.

PHYSICAL CHARACTERISTICS

Dimensions:
Height:
Width:
Depth:

178 mm (7 in.)
483 mm (19 in.)
648 mm (26 in.)

Introduction 1-19

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2434A AND 2484A/B SYSTEM (Continued)

(Continued)
Weight:

Integrated Disc Added:

Ventilation:

Without integrated Discs:

PHYSICAL CHARACTERISTICS

16.3 kg (36 Ib)
using 12022A Disc 15Mb 20Mb
Controller Interface: 2.27 Kg (5 Ib) 2.7 kg (6 Ib)

using 12009A HP-IB
Interface: 3.0 kg (6.6 Ib)

Air intake is through the left; exhaust is out through
the right.

Temperature:
Operating:

Non-operating:

Relative Humidity:
Without Internal Disc:

With Internal Disc:

Non-operating:
Altitude:

Operating:

Non-operating

Vibration and Shock:

ENVIRONMENTAL SPECIFICATIONS

0° to 58° C (32° to 131° F) up to 3.1 km (10,000 ft);
without internal dISCS Maxumum temperature is

linearly derated c (3. 6 F) for each 304.8m (1000 ft)
mcrease in altltude Resultmg temperature range is o®
to 45° C (32 to 113° F) at 4572 meters (15,000 ft).

10° to 40° C (40 to 113° F) wnth internal discs;
maximum rate of change <10° C (18° F) per hour.

-40° to 75° C (-40° to 167° F) (maximum temperature
with internal discs is 60° C (14¢° F)).

Operating: 5% to 95% wnth maxlmum wet bulb temp-
erature not to exceed a0° C (140 F), excluding all
conditions which cause condensation.

Operating: 20% to 80% wuth maxlmum wet bulb temp-
erature not to exceed 29° C (85 F), excluding all
conditions which cause condensation.

5% to 95% non-condensing.

To 4.6 km (15,000 ft.)
To 15.3 km (50,000 ft.)

HP 1000 A400-Series products are type tested for
normal shipping and handling shock and vibration.
(Contact factory for review of any application that
requires operation under continuous vibration).

1-20 Introduction

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2434A AND 2484A/B SYSTEM (Continued)

POWER SUPPLY
Output:

Maximum DC Current Available
to /0 and Memory Cards:

DC voltages and tolerances:
+5.1Vv +2%

+12V +6/-3%

-12v +/-6%
+5.1V +5M +12V -12v
45.8A 5.5A 6.9A 2.9A

Note that combined current available from +5.1V and
+5M supplies is 50A, maximum.

All dc power outputs are fault protected for short
circuits. The power supply will shut down if any
output is short-circuited at turn-on.

25 KHZ AC VOLTAGE

HP 12159A 25 kHz Power Module

The Power Module provides 27.0V p-p+ 8%. 25 kHz
nominal, split phase from three pins on the backplane-
mating connector. Maximum output power is 30 watts.

BATTERY BACKUP

Recharge Time:

Battery Type:

HP 12154A Battery Backup Card

The Battery Backup Card provides from 45 to 210
minutes of memory sustaining power, depending upon
system configuration, state of charge, and temper-
ature; additional hold-up time can be achieved by
connecting an external battery.

14 hours for fully discharged battery pack.

Nickel cadmium.

Introduction 1-21

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2134A COMPUTER

ELECTRICAL SPECIFICATIONS
AC Power Required:

Line Voltage: 86-138V(115V -25%/+20%) standard;
178-276V (230V -23%/+20%) option 015.

Line Frequency: 47.5 to 66 Hz.
Maximum Power Required: 700 Watts.

PHYSICAL CHARACTERISTICS

Dimensions:
Height: 266 mm (10.5 in.).
Width: 483 mm (19 in.).
Depth: 612 mm (24 in.).
Weight: 29.5 kg (65 Ib).
Ventilation: Four fans provide approximately 10.1 cubic meters per

minute (360 CFM) front-to-rear airflow, half through the card
cage and half to cool the power supply.

ENVIRONMENTAL SPECIFICATIONS

Temperature:
Operating: 0: to 56°C (32° to 131°F) up to 3048 meters (10,000 ft);
0 to 45°C (32 to 113 F) up to 4572 meters (15,000 ft).
Non-operating: -40° to 75’ C (-40°to 167" F). .
derated to: -40° to 60°C (-40° to 140 F) with 121578
battery backup.
Relative Humidity: 5% to 95% non-condensing.
Altitude:
Operating: To 4.6 km (15,000 ft).
Non-operating: To 15.3 km (50,000 ft).
Vibration and Shock: HP 1000 A400-Series products are type tested for normal

shipping and handling shock and vibration. (Contact factory
for review of any application that requires operation under
continuous vibration.)

1-22 Introduction

Table 1-2. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2134A COMPUTER (Continued)

POWER SUPPLY

Output: DC voltages and tolerances:
+5.1V +2%
+12v +6/-3%
-12V +/-6%
Maximum DC Current Available
to /0 and Memory Cards: +5.1V +5M +12v -12v
65.8A 8.5A 5.4A 3.4A

Note that combined current available from +5.1V and +5M
supplies is 70A, maximum.

All dc power outputs are fault protected for short circuits.
The power supply will shut down if any output is short-
circuited at turn-on.

25 KHZ AC VOLTAGE

Voltage: 39V RMS
Current: 1.5A, max.

Power: 50 watts, max.

BATTERY BACKUP

Battery Type:

12157B Battery Backup

The Battery Backup provides from 15 to 90 minutes of
sustaining power for up to four memory array cards,
depending upon system configuration, state of charge, and
temperature. Additional hold-up time can be achieved by
connecting an external battery.

Sealed lead-acid.

Introduction 1-23

Operating Features

This chapter describes the bootstrap loaders, the Virtual Control Panel (VCP)
program, and the central processor registers accessible to the programmer.

Hardware Registers

The A400 computer has several working registers that can be selected for display and
modification via the VCP program. (Interface card registers are described in the I/O
System chapter of this manual and in the interface card reference manuals.) The
functions of the A400 registers are described in the following paragraphs.

A-Register

The A-Register is a 16-bit accumulator that holds the results of arithmetic and logical
operations performed by programmed instructions. This register can be addressed
directly by any memory reference instruction as location 000000 (octal), thus
permitting interrelated operations with the B-Register (for example, “add B to A” and
“compare B with A”) using a single-word instruction.

B-Register

The B-Register is a second 16-bit accumulator that can hold the results of arithmetic
and logical operations completely independent of the A-Register. The B-Register can
be addressed directly by any memory reference instruction as location 000001 (octal)
for interrelated operations with the A-Register.

P-Register

The 15-bit P-Register holds the address of the next instruction to be fetched from
memory.

Extend (E) Register

The one-bit extend (E) Register is used by rotate instructions to link the A- and
B-Registers or to indicate a carry from the most-significant bit (bit 15) of the A- or
B-Register by an add instruction or an increment instruction. This is of significance
primarily for multiple-precision arithmetic operations. If already set (logic 1), the
extend bit cannot be cleared by a carry. However, the extend bit can be selectively
set, cleared, complemented, or tested by programmed instructions.

Operating Features 2-1

Overflow (O) Register

The one-bit overflow (O) Register indicates that an add instruction, divide instruction,
“or an increment instruction referencing the A- or B-Register has caused (or will
cause) the accumulators to exceed the maximum positive or negative number that can
be contained in these registers. The overflow bit can be selectively set, cleared, or
tested by programmed instructions.

Central Interrupt Register

The central interrupt register is a six-bit register that holds the select code of the last
interface card or internal condition whose interrupt request was serviced.

Violation Register

The violation register is a 15-bit register that records the logical address of any
fetched instruction that violates memory protection rules.

Parity Error Register

The parity error register is a 24-bit register that stores the physical address of the last
memory location that caused a parity error.

Interrupt System Register

The interrupt system register is a one-bit register that indicates the status of the
interrupt system. When set (logic 1), the interrupt system is enabled; when cleared
(0), the interrupt system is disabled.

The X- and Y-Registers are 16-bit registers that are accessed through the use of the
32 index register instructions and two jump instructions described in Programming
Information chapter.

WMAP-Register

The WMAP-Register is a 16-bit register that holds the logical map numbers used for
memory references by Dynamic Mapping System instructions. (Refer to the Dynamic
Mapping System chapter for more information.)

Virtual Registers

Two virtual registers, M and T, are created by the Virtual Control Panel program and
can be accessed, via the VCP, to examine or change a program in memory or to
manually create a program in memory.

2-2 Operating Features

M-Register

The M-Register holds the address of the memory cell currently being read from or
written into by the Virtual Control Panel.

T-Register

The T-Register indicates the contents of the memory location currently pointed to by
the M-Register.

Self-Test

Self-test is a microcoded diagnostic executed when the computer is powered up. Test
results are displayed by the LEDs on the A400 board.

The microcoded self-test tests the CPU kernel prior to the VCP pre-test loading and
expanding on the kernel testing. The first section of the test verifies the correct
operation of the micromachine sequencer. Processor chip data paths are tested,
followed by some basic functions of the ALU and testing of the PROM area where
VCP is located.

Before execution of self-test, all of the LEDs will be illuminated. The entire self-test
executes within a few seconds. In the event of a test failure, the LED pattern will
indicate the last test that was started but not finished. Refer to Table 2-1. A
summary of the four sections of CPU logic tested by the microcode self-test follows:

1. CT-Register Test. Verifies that the CT-Register can store and read data. There
is an initial test for stuck bits, followed by a test of the ability of the ALU
circuitry to pass immediate data and execute an “AND” micro-order. After the
initial test of the CT-Register passes, a test of storing all possible values into the
CT-Register is performed.

2. Micromachine Stack Test. This test verifies that the stack logic of the
~ micromachine and the “JSB” and “JSBL” micro-orders are functioning. R00 and
RO1 of the register file (A- and B-Registers) also are tested for their ability to
store values.

3. P-Register Test. This test verifies the ability of the P-Register to store a value.
[t also checks the integrity of the A-bus and the “IP” micro-order’s ability to
increment the P-Register.

4. VCP Prom Test. This test verifies the ability to read the VCP PROM area and

to test the integrity of the data stored in the VCP PROM. At this point, the VCP
pre-test attempts to boot.

Operating Features 2-3

Table 2-1. Self-Test Failure Indicators

SELF-TEST FAILURE INDICATIONS NORMAL INDICATIONS
0000 0000 Microcode self-test 000000060 Loader executing
0000 0000 1stinstr fetch 00000000 VCP executing
0000 06000 Basic CPU oYoJoloX X X X | BCM executing
0000 0000 1K boot RAM 00000000 DDL executing
00000000 |/0O interrupts 00000000 Prgm executing
00000000 Main Memory *
00000000 Interface card * ®@=0on, O-=off *-May flash

VCP Pre-Test

The VCP pre-test is the primary power-up test. It is automatically executed upon the
completion of the microcode self-test, during initial power-up, after any
powerfail/restart, or by the %T command from the VCP prompt. VCP pre-test will
test and verify the following CPU macroinstructions:

Memory reference instructions

Register reference instructions

Input/output instructions

Extended arithmetic memory reference instructions
Extended arithmetic register reference instructions
Extended instructions

The VCP pre-test also tests the 1k of boot RAM memory, memory controller
functions, the memory arrays, CPU /O, and the individual /O chips.

The path of communication between the VCP pre-test and the user is DIP switch
U1601, the LEDs, and the VCP terminal console, if there is one in use. By setting
DIP switch U1601 with the proper pattern, the pre-test can be looped unconditionally
or looped until an error is detected. As portions of the pre-test complete, a
corresponding LED becomes extinguished. When an error occurs, the LEDs display
the section number that failed, followed by information on the error.

If there is a VCP terminal console active, the error will be displayed if possible. If it
is a soft error, then the VCP prompt along with information about the system will be
displayed along with the error. The ID and select code of all the I/0 cards found in
the system, and a CPU identification message is also displayed.

User Interface and Control
There are two switch settings that are reserved for the looping control of the VCP

pre-test. The remainder of the switch settings indicate the proper action to take when
the test completes. Refer to Table 2-2 and 2-3.

2-4 Operating Features

If the failure is in the CPU section or 1k boot RAM section, the test will loop on the
address of the failure and the LEDs will indicate that the CPU section or 1k boot
RAM section failed. If the failure information indicated by the VCP pre-test is not
sufficient to determine the failing component, it may be necessary to load and
execute the DDL diagnostics. If the failure is in the CPU section, it may not be
possible to execute DDL diagnostics. A failure of the CPU section indicates a
defective processor chip.

If a memory error occurs, the memory size and section will be displayed. If an /O
error occurs, the type of error and the select code will be displayed. The pre-test
attempts to display the error information immediately after the error is detected. The
error display is followed by a VCP prompt, indicating that no further testing was
done, and control was passed to VCP.

If no VCP is found, an error condition is displayed even though it is not necessary to
have a VCP with automatic boot. If multiple VCPs are found, an error will also
occur.

A status message is displayed with a VCP prompt under the following conditions:

e The self-test passes or the VCP pre-test fails the memory or I/O portion, and
looping is not activated.

e A VCP terminal is found, and pre-test concludes.

At this point, the VCP pre-test may be re-executed using the %T command or any of
the other VCP commands may be executed.

Table 2-1 indicates the LED indications for the self-test. For more information, refer
to the RTE-A Quick Reference Guide, part no. 92077-90020, or the appropriate
installation and service manual. If the failure occurs in either the main memory test
or the [/O interface test, additional information is displayed on the LEDs following
the section failure indicated in Table 2-1.

NOTE

Only parity memory is supported by the A400 computer. If ECC
memory is detected, the section indicator will be all 1’s.

Operating Features 2-5

[f there is a main memory failure, the section indicator followed by 10xxxxxx (where
xxxxxx is the 32k block of memory that failed), is displayed on the LEDs. If xxxxxx
is 0, the problem could be in the parity circuitry or in the map RAMs, and could be
caused by bad memory controller circuitry. [f xxxxxx is all 1’s, the problem is that
ECC memory was found, which the processor does not support.

If there is an I/O interface failure, the section indicator followed by 10xxxxxx is
displayed on the LEDs, where xxxxxx is either:

1. The select code of the failing interface card, if xxxxxx is greater than 17B; or

2. The I/O subsection that failed, if xxxxxx is less than 20B.

2-6 Operating Features

Table 2-2. A400 Switch Locations

/_/\ U1601
] | s

u1001 = .l:l:

1 g I T o= T g

= [

[me |
g CH |ss8

s7| =R 0000

] e gom—’

mss 0000

|

1] — (
LED LEDs

* Note that the U1001 and U1601 switches are open when in the left position and closed
when in the right position. In this diagram, the U1001 switches are all closed and the
U1601 switches are OOCOCCCC.

| 1.8600-17
Switch Description
S1 thru S4 Selects RS-232 or RS-422/423 on all ports. Refer to Table 2-3.
U1001 S5 and S6 Selects RS-232 or V.28 for modem control line DSR on Ports B and C.
Refer to Table 2-3.
S7 Determines if Port A will be the VCP interface. Refer to Table 2-3.
S1 thru S6 Start-Up (BOOT SEL) - Used during normal operation to select
the bootstrap source. They also control the operation of the
computer while VCP Pre-Test is executing. Refer to Table 2-3.
U1601 S7 Don’t care.
S8 Memory Lost -~ The Memory Lost switch is an auto-restart override
switch which can be set open when battery back-up is available.
Because the Micro 14 Computer does not support battery back-up,
this switch must be set closed.

Operating Features 2-7

Table 2-3. A400 Switch Settings

CPU SWITCH SUMMARY (U1601)

*1 MEANING
Self-test loop

Loop, stop on error
VCP execution
*VCP execution
*VCP, speed sense
*Disc int loader
*PROM loader
*HDLC loader
*HP-IB disc Idr
Break disabled
Break enabled
ENQ/ACK disabled
ENQ/ACK enabled
#ARS disabled
#ARS enabled

~

P11 go0000000

L 11000000000
11 11 000000000w
L 1000000000

LI B I @ X' 2 A L O T N O O A4}

IIOOIIIIIIIIIIIO)
QO vt Lyt

O = Open = off;

* = Auto restart if enabled
= Auto restart after powerfail

OBIO SWITCH SUMMARY (U1001)

MEANING

RS-422/423 Port A
RS-232 Port A
RS-422/423 Port B
RS-232 Port B
RS-422/423 Port C
RS-232 Port C
RS-422/423 Port D
RS-232 Port D
Modem Port C, V.28
Modem Port C, RS-232
Modem Port B, V.28
Modem Port 8, RS-232
VCP break enabled

P11 00~
e Yo LN INN T YA
1110000 1w
NN Yo X NEERRE.S

NeoYo LR BN ENER RN RN
Ottt N

L @ Y& 2L I T T B B Y &

C = Closed = on

Table 2-4. LED Display for 1/0 Cards

STATUS INDICATION L7 L6 L5 L4 L3 L2 Lt LO Octal
NO I/O cards in system 1 0 0 0 0 0 0 o0 200
More than one interface has been enabled as VCP 1 0 0 0 0 0 0 1 201
Priority chain broken 1 0 0 0 0 O 0 202
Duplicate select code 1 0 0 0 0 0 1 1 203
Select code = < 20B 1 0 0 0o o0 1 0 o 204
Terminal not connected for VCP 1 0 o o 0o 1 0 1 205
Unexpected TBG Interrupt 1 0 0 0 0 1 1 0 206
Unexpected MP interrupt 1 0 0 0 0 1 1 1 207
Unexpected UIT interrupt 1 0 0 0 1 0 0 0 210
Invalid select code for OBIO 1 0 0 0 1 0 0 1 211
Invalid ID no. for OBIO 1 0o o 0 1 0 1 0 212
Speed Sensing fallure on OBIO or 120400 MUX VCP port 1 0 0 0 1 0 1 1 213

NOTE: 1 =LED on; 0 = LED off.

Table 2-4 indicates the failing subsection corresponding to the LED pattern displayed
if the error does not correspond to a failing I/O interface.

When a failure occurs in the main memory test or the I[/O interface test, the section
indicator and the subcode indicator (as described above) alternate on the LEDs. The
same patterns that are displayed on the LEDs are also displayed in the corresponding
octal format on the VCP terminal console if the console exists and the information

can be displayed.

2-8 Operating Features

Along with error information being displayed on the VCP terminal console, other
useful information is displayed:

e The amount of memory found in the system
e Contents of the various registers

e A table of select codes and ID numbers for all [/O cards in the system
e CPU identification

The A-Register contains the number of I/O chips that were tested during the pre-test.
The B-Register contains the revision code of the VCP PROMs unless the pre-test
detects a duplicate I/O select code and displays it in the B-Register.

Bootstrap Loaders

The A400 bootstrap loaders are contained in 32k bytes of PROM space located on the
processor board. The PROM also stores VCP code. The bootstrap loaders share the
RAM with extra scratch pad registers, and with code for MAP and diagnostics. The
bootstrap loading devices are:

Disc drives (via HP-IB).

PROM storage modules.
DS/1000-IV (HDLC) network links.
HP 264x mini-cartridge tapes.
CS/80 cartridge tapes.

Micro/1000 internal discs.

1600 bpi magnetic tapes.

The loader can be invoked by auto-boot when power comes up, or by VCP command.
Auto-boot can only invoke four of the loaders: disc via HP-IB, PROM module,
NS/1000 or DS/1000-IV (HDLC), and Micro/1000 internal disc. The VCP can invoke
any of the loaders by a command from the operator. The VCP load commands are
discussed later in this chapter.

Loader Selection for Auto-Boot

Auto-boot is selected by setting one of the four U1601 BOOT SEL switches located
on the A400 board. These switches, the startup switches, are set during installation
and also provide options other than auto-boot selection. When a loader has been
selected for auto-boot and the self-test completes, the boot loader executes if memory
was lost; or the program in memory executes if memory was sustained by the
optional battery backup pack. Refer to Table 2-2 and 2-3 for startup switch settings.

Program Starts

When an auto-boot completes without error, the loaded program starts execution at
memory location 02. The loader sets the contents of the A- and B-Registers as
follows:

Operating Features 2-9

1. Cold start (memory not sustained):

a. A = loader command parameters
b. B = pointer to string area

2. Auto-restart (memory sustained; execution starts at location 04):

a. A=0
b. B=0
3. %E command from VCP:
a. A=-1
b. B=0

4. %B command from VCP:
a. A = loader command parameters.

b. B = pointer to a string area where:
Word 1 = memory size (64k blocks)
Word 2 = string length (in bytes)
Word 3 = first word of string
Word n = n-2 word of string

VCP Re-Entry for Extended Boot Loading

The VCP loader can be re-entered from a program to boot load. It executes a
program from a loading device. The VCP code is re-entered as follows:

1. A VCP boot loader call allows you to call any of the VCP loaders. This allows a
complete call back sequence including a checkout routine. The following is a
sample VCP loader call back checkout program:

LDA COUNT Negative number of characters in the boot string
LDB POINTER Starting address of the string

HLT 0,C Call VCP loader sequence

<= > VCP loader is started and the new program is loaded

COUNT DEC -12 Negative number of characters (bytes) in the string
POINTER DEF*+1 Starting address of the string ASC 06,DC2027SYSTEM

This string can be any allowable string entered after the %B command
(%Bxxffffbusctext). Note that %B is not actually entered but is assumed when
using this call.

If the VCP loader encounters an error, the loader will report the error and return
to the VCP prompt.

2-10 Operating Features

2. With the disc loader, re-enter to boot load the specific program described by the
“ABS” code in the following call back programming sequence.

CLA,CLE,INA Indicate disc call back -- do not suspend

HLT 3,C Enable PROM

ABS... HP-IB bus address

ABS... Device unit number (head for 7906)

ABS... Absolute starting sector (Vector 1 for 7908/11/12)
ABS... Cylinder offset (Vector 2 for 7908/11/12/14)
ABS... Vector 3 for 7908/11/12/14

This sequence assumes that the Global Register is set prior to entry to the loader and
that the absolute starting sector is the combined cylinder/head/sector for that drive.
When the load is completed, the loader will start execution in the standard JMP 2
manner. If a suspend after load was specified by the E-Register being set when
called, the program will halt after the load. In the case of the halt the operator can
enter either a %E or a %R to continue. Any error will return to the VCP, if present,
or restart the original load.

The 7906 will be accessed in the surface mode only, and all other discs will be
accessed in the cylinder mode.

Device Parameters and Media Formats

There is a specific data format for each combination of loader, interface card, loading
device, and media. The data formats are described in Figure 2-1.

Virtual Control Panel (VCP)

The VCP program is an interactive program that enables an external device (such as
a terminal) to control the CPU in a manner similar to a conventional computer
control panel. That is, it allows the operator to load programs using the loaders,
access the various registers (for example, A, B, P, and I/O registers), examine or
change memory, and control execution of a program.

The VCP program supports the following VCP interfaces:

HP 12005A/B Async Serial Interface card
HP 12007/12044 DS/1000-IV card

Port A of the On-board /O (OBIO)

HP 12040B/C/D MUX card

The select code for OBIO is set at 77B and cannot be changed. The select code for
the other interfaces does not matter. Only one interface card in the computer can
serve as a VCP interface; the card selection is established by selecting a switch on
the desired I/O card during system installation. To use OBIO Port A to connect to
VCP, set the OBIO switch (U1001-7) to “on” (closed).

Operating Features 2-11

VCP Program Operation

The VCP program is executed from PROM as a software program and uses the
various machine registers (such as A and B) during its execution. Therefore, these
registers are automatically saved upon entry to the VCP code. (The save area is in
boot RAM on the memory controller section of the A400 board.) Thus, the response
to an inquiry is the data that was saved at the time of entry to the program. The
exceptions to this are indicated by the absence of an asterisk in Table 2-5. When
you enter the Run (%R) command, the VCP program restores the machine with the
current data in the save area and starts execution as specified by the program
execution address in the P-Register.

The VCP program can be entered in the following three ways:

1. After a power-up, PROM execution is directed to the VCP program instead of a
boot load routine;

2. When the VCP interface card requests a slave cycle to enable the VCP program
(for example, BREAK key pressed on VCP); or

3. When a HLT (halt) instruction is fetched and one I/O card is enabled for break
(otherwise, the instruction has no effect).

After a power-up, the computer type, the [/O table, and the amount of memory are
displayed on the VCP screen. The A-Register is set to the number of I/O chips that
were tested during the self-test. This enables you to verify that all installed memory
and I/O cards were tested. (Also, except when the self-test detects a duplicate I/O
select code and reports it in the B-Register, the B-Register contains the revision code
of the VCP PROMs.) When entered, the VCP displays the basic set of registers (P, A,
B, RW, M, and T) and issues the VCP prompt character (VCP>) for a response. You
can enter any of the characters or commands listed in Tables 2-5 and 2-6 and the
VCP program responds as indicated in the tables. A carriage return is used to
terminate a VCP entry.

After a response to an inquiry, you can change the data contained in that register or
memory location by entering new data. For example (operator inputs are underlined
and <cr> indicates a carriage return):

A 001234 4321<cr>
A 004321

Data input is terminated by a carriage return. If during an input, the program cannot
interpret a character, the program displays the characters “!?”, then starts a new line
with the VCP prompt. Entry errors may be corrected by backspacing over them and
entering the correct information. While entering data, you can abort the input by
entering a rub-out (DEL). The loader commands, %B, %L, and %W can also be
aborted by a rub-out. When entering data into a register, leading zeros can be
omitted. If you type a question mark, the VCP will output a “help” file that
summarizes acceptable command entries.

2-12 Operating Features

MINI-CARTRIDGE TAPE

Device:
Interface:

Default
Parameters*:

Format:

Loader:

PROM MODULE

Device:
Interface:

Default
Parameters*:

Format:

Loader:

DISC DRIVE

Device:

Interface:

Default
Parameters*:

Format:

Loader:

HP 264x Terminal
HP 12005A Asynchronous Serial Interface

000020
Reads absolute binary file, writes 4k absolute binary block.

Transmits special escape sequence to invoke a read of a record and does checksum of
the data. When writing to tape, a block number Is used to specify which 4k-word memory
area Is to be dumped to tape (0 = 0 to 4k.

If a file number Is specified then the program will issue a find file command; if not, the
tape is read from where it stands. When writing to the tape, the program will not write a
file mark; this allows sequential blocks to be written in a series. There are only two units
(0 and 1) on the terminal; if a larger unit number is specified, the result will be unpredict-
able.

More than 32k words may be loaded into a system from a single cartridge tape.

PROM (2K x 8 bits)
HP 12008A PROM Storage Module

000022

Count-Partial-Data

Count = number of 64k byte blocks.

Partial = number of words of partial 64k byte block.

Data = 16-bit words, one word per location until Count and Partial are satisfied.

Uses STC-LIA process to transfer data. The PROM cannot be written to nor does it use
the block number of unit number.

HP 9895, CS/80 and SS/80 Disc Drive, cartridge tape drive of the 7908/11/12/14 Disc
Drive, or 2434A/84A/B integrated disc using HP-IB interface.

HP 12009A HP-IB Interface

002027

Count-Partial-Data

Countt = number of 64k byte blocks.

Countt = number of 64k byte blocks.

Data = 16-bit words, one word per loction until Count and Partial are satisfied.

Uses HP-IB protocol to communicate with the disc. The load sequence is:

1. Device clear
2. Status check
3. Read/write 32 words via DMA
4. Status check

* See Figure 2-2 for loader command formats.
+ The Count and Partial values are stored in memory locations 00000 and 00001, respectively.

Figure 2-1. Loading Device Parameters and Media Formats

Operating Features 2-13

DISC DRIVE (VIA DISC INTERFACE)

Device:
Interface:

Defauit
Parameters*:

Format:

Loader:

MAGNETIC TAPE

Device:
Interface:

Default
Parameters*:

Format:

Loader:

HP 2434A/84A/B Internal fixed/micro-floppy disc drive.
HP 12022A Disc Interface.

000032
Same as Disc Drive via HP-IB, above.

Standard I/O for commands to interface, and DMA for data.

HP 7970/7974/7978/7979/7980 Magnetic Tape Drive
HP 12009A HP-IB Interface

004027

Memory image file

Count-Partial-Data

Count = number of 64k byte blocks.

Partial = number of words of partial 64k byte block.

Data = 256 byte records read until EOF or until Count and Partial are satisfied.

Uses HP-I1B protocol to communicate with the disc. The load sequence is:

Device ID

Status clear

Rewind/file forward (if file specified)
Read/write

Status check

ahwn=

COMPUTER NETWORK

Device:
Interface:
Default
Parameters*:
Format:

Loader:

HP 1000 Computer.
HP 12007B/12044A HDLC Interface.

000024

Reads absolute binary or memory image files, writes a 32k memory image file.

Standard handshake using HP distributed system protocol. Block number and unit number

are not used.

* See Figure 2-2 for loader command formats.
+ The Count and Partial values are stored in memory locations 00000 and 00001, respectively.

Figure 2-1. Loading Device Parameters and Media Formats (Continued)

2-14 Operating Features

Table 2-5. VCP Characters and Associated Registers

CHARACTER +
ENTERED RESPONSE MEANING

A* XXX X XX A-Register contents

B* XXX XXX B-Register contents

E* X E-Register contents

G* x000xx Global Register (GR) contents and status (bit 15 = 0 if
enabled, 1 if disabled)

* X Interrupt system status (O=off, 1=on)

M* Oxxxxx Memory address (pointer for T and Ln command)

o X O-Register contents

P* XXX XXX Program execution address

Q* XX X X XX C- and Q-Register contents (C is bit 15)

RS X X X X XX Switch register contents

T OxXXXX XXXXXX Memory contents pointed to by M

v XXX XXX Violation register (memory protect)

xX* XXX XXX X-Register contents

y* XXX XXX Y-Register contents

z* XXX XXX Z-Register contents

RC XX XX XX Central Interrupt Register contents

RD** XXXXXX XXXXXX Data for /0 diagnose modes 1 and 2

RF** XXX XXX I/0 flags: Flags 20 thru 24, and Flag 30 (1=flag set; O=flag
clear)

Ri** XXX XXX Interrupt mask register

RP X XXXX Xxxxxx xxx| Parity violation register contents

RS XXX XXX Switch Register

RW* XX X X XX Working map set (WMAP)

R20™* XXX XXX DMA self-configuration register

R21** XXX XXX DMA control register

R22** XX X X XX DMA address register

R23** XXX XXX DMA count register

R24** XXX XXX I/0 scratch register

R25** XXX XXX I/0 scratch register

R26** XXX X XX /0 scratch register

R30** XX XX XX 1/0 card data register

R31** XXX XXX Optional /0O card register

R32** XX X X XX Optional I/0 card register

? XXX X XX Qutput Help file

T x = octal data.

* Registers that are maintained in the VCP save area of boot RAM.

=+ Applies only to the /0 card whose select code equals the contents of the Global Register

NOTE: When a register’s contents are changed by the user, the new value is returned;
if the VCP does not accept a change, the VCP prompt is returned.

Operating Features 2-15

Table 2-6. VCP Commands

COMMAND* MEANING
%B Load and go (boot). Execute a specified loader routine and start program
execution at completion of load. See Figure 2-2 for format.
%C Clear memory. Set all memory to zero and perform a preset.
%E Execute. Start execution of program at location P=2 (A-Register equals -1

(all ones) and B-Register equals 0).

%L Load. Similiar to %B except do not start execution. See Figure 2-2 for
format. (%L followed by %R is equivalent to %B).

%M Memory test. Execute destructive extended memory test. Tests addressing
logic. The test will optionally loop on error. Returns amount of memory
found. If an error is found, the error type, error address, and the data writ-
ten and read is displayed.

%P Preset. Generate a control reset (CRS) signal on the backplane to initialize
all cards
%R Run. Set all registers to the appropriate values in the save area and start

execution at address specified by the P-Register.

%S Parity error set. Places a parity error in addressable memory to test the parity
interrupt handler and to verify proper functioning of the parity error interrupt logic.

%T Test. |Initiate the self-test and return to VCP (memory is sustained but the i/0
system is reset).

%W Write. Write to the selected device. (See Figure 2-2 for format.) When writing
to a disc drive, the Count and Partial values defined in Figure 2-1 must be in
memory locations 00000 and 00001.

D Decrement. Decrement memory pointer and dispiay the contents of the M- and
T-Registers. Valid only after T.

Ln List. List n blocks of eight memory locations starting with location pointed to by
the M-Register.

N Next. Same as D except increment the pointer. Valid only after T.

RMxx List the 32 map registers in the DMS map set specified by xx.

RMxxPyy | Show the value of register yy in map set xx. If a number is input after this
command, the register is changed to the new value.

? Output Help file.

* Must be followed by a carriage return.

Extended Memory Test (%M)

The extended memory test (VCP %M command) is a three-to-four-minute test that
reads all the memory found in the system to check for parity errors, tests the
functionality of the address logic, and checks for stuck bits in the data.

2-16 Operating Features

CAUTION

The extended memory test (%M) is a destructive memory test. For
this reason, you will be asked twice whether you really want to
execute the test after you issue the %M command. The only valid
responses to the questions are Y(yes) or N(no). If any other
responses are given, the question will be repeated. If N, control
will pass back to the VCP prompt. If Y, the test will go to the next
step.

After verifying that you want to execute the destructive test, you are asked if you
want to loop if an error is found. The default is N, no looping. If the response is Y,
looping will be activated. After an error is displayed, you have the option of
continuing with testing or returning to VCP.

When command execution is initiated, the amount of memory in the system is
determined and displayed on the VCP console. All of the memory is read, and if a
parity error occurs, an error message is displayed. Note that in this section of the
test, the data-written that is displayed when an error occurs is invalid.

Error messages are displayed for parity errors, addressing errors, or pattern test
errors at the time they occur. If looping has been activated, the testing is repeated.

If looping has not been activated, you will be asked if you want to continue. If you

enter N, control will pass to the VCP prompt. If you enter Y, testing will continue if
the failure occurred before the pattern test. If you are in the pattern test, a Y reply

will cause testing to begin on the next pattern.

If there are no errors detected, a message indicating successful completion of the
extended memory test will be displayed. The current value of some of the registers
will then be displayed and control will be passed to the VCP prompt.

Address Test

The address test executes next, to determine if the addressing logic is functioning
properly. A message will notify you when pass 1 and pass 2 are being executed.
Each location will then be read back and verified to contain the unique pattern that
was written into it. If the patterns don’t match, an addressing error will occur. A
message will also indicate successful completion of the test.

Pattern Test for Stuck Bits

Five patterns are run to test for stuck bits, one 32k-word block at a time. If the data
pattern written does not match the data pattern read, a pattern test error occurs.

Operating Features 2-17

When all of the 32k-word blocks have been tested successfully with all five data
patterns, a message is displayed indicating that the pattern has completed
successfully.

The following is a sample error message displayed when an error is detected in the
extended memory test:

Address Test Failure

Page number with error = 000044
Offset into page with error = 000000
Logical address with error = 010000
Data Written = 010000 *

Data Read = 000002

* Not valid before the first “Addr. Test in Progress — Pass 1” message is
displayed.

Parity Error Set Routine (%S)

The parity error set routine (VCP %S command) allows you to place a parity error
somewhere in addressable memory in order to test the parity error interrupt handler
in the extended memory test and the VCP pre-test. It also can be used to quickly
verify that the parity error interrupt logic is functioning properly.

Throughout this routine, when you are prompted for a number, you must respond
with a valid octal number; otherwise, the prompt is repeated or the invalid input will
be ignored.

When %S is entered at the VCP prompt, a message is displayed indicating what this
command will do. VCP will prompt you for the page number in physical memory
where you want to place the error. If a valid octal number is not entered in the first
digit of the number, the question will be repeated. If there is an invalid number in
any other digit location, the number is ignored.

When a valid page number is entered, you will be prompted for the offset address of
the location to be changed. The logical address where the error is placed will then
be displayed.

After the requested location has been read and the contents displayed, you are
prompted for new data to be written to that location. This new data should have one
or more bits toggled to cause a single or double-bit error. You will be asked whether
the data just entered is okay. If you enter N, the new data entered will not be
written and the old data will be displayed again, so that another value can be entered.

If you enter Y, the parity error sense is reversed, the new data is written, parity sense
is restored, and parity error interrupts are turned on.

To verify that the parity interrupt circuitry is working, you must read the location you
put in by using the %M command, the L command with WMAP set properly, or
manually using the M and T-Registers.

2-18 Operating Features

To clear the parity error, the memory location with the error must be written to,
without changing the parity sense. This can be accomplished by using the %T, %C,
or other standard VCP commands. See Table 2-6.

Loader Commands

The loader commands can be entered via the VCP in either of two ways:

1. Allow the parameter default values (given in Figure 2-1) to be used; or
2. Specify all necessary parameters.

The VCP loader command format is shown in Figure 2-2. The loader command
error codes and their meanings are listed in Table 2-7.

Operating Features 2-19

LOADER COMMAND FORMAT

%B/L/W dv fffffbusc text

where:

dv =

feffe

SC =

text

device type as follows:

DC = disc (cartridge or flexible) via HP-IB
CT = cartridge tape (HP 264x)

RM = PROM card

DS = DS computer network Link

MT = magnetic tape via HP-1B

DI = disc via HP 12022A Card

file number (octal 0 to 77777 only)

4k-word memory block number when writing to cartridge tape; HP-18 bus address of disc
drive; or non-HP-IB drive address; otherwise, use 0. For the HP 2437A/87A Internal disc
drives, this is O for the first fixed drive, 1 for the second, and 3 for the micro-floppy drives.
unit number (0 to 7) only Iif used on device. For the HP 7906 Disc Drive, the unit number Is
the head number. For CS/80 Disc Drive that includes cartridge tape drive, unit 0 = disc
drive and unit 1 = cartridge tape drive.

select code of interface card to be used.

file name, or ASCII string to be passed to the program after it is loaded. This is only
available with the %B and %L commands.

Note: See Figure 2-1 for default parameters for each loading device.

Note that spaces cannot be used in the command entry. The following formats are all acceptable:

% Bdvtext
% Bdffbusc
% Bdvffbusctext

EXAMPLES:
%BDC

%BDC30

%L DC27025

%WDC27025

Device parameters are defaulted; text cannot start with a number.
No text passed.

Text passed.

Load and start execution of the default program on disc. (Disc parameters defaulted to
002027; see Figure 2-1).

Load and start execution of the default program on the disc at select code 30 and default
other parameters.

Load (but don’'t execute) and override parameter default values:
file number 2 (i.e., the third file)

HP-IB bus address 7

unit 0

select code 25

Same as above except write to file 2.

Figure 2-2. Loader Command Format

2-20 Operating Features

Table 2-7. VCP Loader Command Errors

ERROR ERROR
CODE MEANING CODE MEANING
Magnetic Tape Loader Errors
0 Unrecognizable load/bootstring.
2 Select code less than 20 octal. .
3| No'card win the seiect code you specifed. | 310 | Time out during intalzation/read 10,
512 Mag tape off line.
513 No write ring.
Cartridge Tape Loader Errors 514 Time out during End command.
515 Time out waiting for rewind completion.
517 Time out waiting for DMA transfer.
110 File forward error. Status in B-Register. g%? ?f,:";yoz"t'%';gg: an:‘st?nsfer.
11 Checksum error. 522 Time out waiting for DSJ.
112 No data before EOF (end of file). 523 Bad DSJ response.
120 Write error. Status in B-Register. 525 Tiime out waiting for Mag Tape Not Busy.
3 Paraliol Poll tme ot after lesuing 4
PROM Module Loader Errors a{,?,mma?,d' out after Issuing a
535 Bad status after read/write command.
550 No data transfer (read only).
211 End of programs. 560 No mag tape ID.
212 Bad format.
218 Sy apgor than 32k must start on HP 12022A Disc Interface Loader Errors
214 Write not allowed to ROM.

DS/1000 Loader Errors

Time out after CLC 0. Check select code
specified.

Checksum error.

Time out after download request.

Time out after file number.

Bad transfer (Central generated). Status
in B-Register.

Time out after buffer request.

Time out after count echo.

Time out walting for data.

Time out after VCP mode requests a
DS write.

Central will not accept data. Status in
B-Register.

Data block out of sequence.

P file not absolute binary.

Disc Loader Errors (via HP-IB)

Time out reading disc type. Check HP-IB
address.

Time out UDC (Universal Device Code) or
reading status. Check disc.

Status error. Status in B-Register.

Time out during file mask.

Time out during seek.

Time out during read or write command.

Time out during DMA of data.

Parity error during DMA transfer.

Time out during FIFO flush.

Time out during DSJ (Device Specified
Jump) command.

Bad DSJ return. Returned value in
B-Register.

Disc not identifiable. Disc ID in B-Register.

610 Time out after SDH (sector drive head)
for read/write.

611 Time out after cylinder high.

612 Time out after cylinder low.

613 Time out after sector.

614 Time out after sector count.

615 Time out after read/write command.

616 Time out after DMA read/write transfer.

617 Parity error during transfer.

620 Fixed disc not ready.

630 Time out after request status register.

631 Time out after read status register.

632 Time out after waiting for not busy.

633 Time out after request error register.

634 Time out after read error register.

635 Status error:
A-Register = status register;
B-Register = error register.

650 Time out after SDH register for restore.

651 Time out after restore.

660 Disc not defined.

Other

1024/ | Possible meanings:
1025

1. Booting from CS/30 disc that has been
push button restored from CTD tape
or booting dla_lgnostlcs directly from the
tape. The CTD tape may not have
certified/formatted before data was
stored to It.

2. Booting from a CTD tape in ASAVE
format.

3. Booting from the CS/80 disc was not
successful. Bootex may be corrupted.

4. F.aulty tape control board in the CS/80
disc.

5. Incorrect VCP file number in the runstring.

Operating Features

2-21

VCP User Considerations

When using the VCP to debug a program, you should be aware of the following
conditions:

1. The VCP program uses an interface card or port A of the on-board I/0 and
modifies the characteristics of that interface. When the VCP program exits, it
sets register 24 on the interface to all “1”’s to allow software detection of a VCP
interaction and, thus, reinitialization of an operation. (This also causes an
interrupt if the interrupt system is enabled.) The VCP will leave the interface in
output mode with both Flag 30 and Control 30 set.

2. The status of the interrupt system (STC 4 (on) or CLC 4 (off)) is not indicated
and will remain unchanged unless %P is executed to preset the computer.

3. Memory protect is indicated by the sign bit of RW (WMAP-Register) and may be
modified.

2-22 Operating Features

Programming Information

This chapter describes the software data formats and the base set machine-language
instruction coding (including single and double-precision floating point, virtual
memory, high-level language support instruction set (LIS), and operating system
instruction set (OSI) required to operate the computer and its associated input/output
system. Refer to the “Dynamic Mapping System” and “Code and Data Separation”
chapters for information on machine-language coding.

Data Formats

As shown in Figure 3-1, the basic data format is a 16-bit word in which bit positions
are numbered from 0 through 15 in order of increasing significance. Bit position 15
of the data format is used for the sign bit; a logic 0 in this position indicates a
positive number and a logic 1 in this position indicates a negative number. The data
is assumed to be a whole number and the binary point is therefore assumed to be to
the right of the number.

The basic word can also be divided into two 8-bit bytes or combined to form a 32-bit
double word. The byte format is used for character-oriented input/output devices;
packing two bytes of data into one 16-bit word is accomplished by software drivers or
by byte-packing hardware in the I/O Master. In I/O operations, the higher-order byte
(byte 1) is the first to be transferred.

The double-integer format is used for extended arithmetic in conjunction with the
extended arithmetic instructions. Bit position 15 of the most-significant word is the
sign bit and the binary point is assumed to be to the right of the least significant
word. The integer value is expressed by the remaining 31 bits.

Programming Information 3-1

Two floating point formats are shown in Figure 3-1. The single-precision format is
used with single-precision floating point instructions included in the standard base set
of instructions. The double-precision format is used with double-precision floating
point instructions. Bit position 15 of the most-significant word is the mantissa sign
and bit position 0 of the least-significant word is the exponent sign. Bits 1 through 7
of the least significant word express the exponent and the remaining bits express the
mantissa. A single-precision floating point number is made up of a 23-bit mantissa
(fraction) and sign and a 7-bit exponent and sign, thus providing six significant
decimal digits in the mantissa. A double-precision floating point number is made up
of a 55-bit mantissa and a 7-bit exponent and sign, thus providing 16 significant
decimal digits in the mantissa. If either the mantissa or the exponent is negative,
that part must be stored in two’s complement form. The number must be in the
approximate range of 107* to 10**®. When loaded into the accumulators, the
A-Register contains the most-significant word and the B-Register contains the
least-significant word.

Figure 3-1 also illustrates the octal notation for both single-length (16-bit) and
double-length (32-bit) words. Each group of three bits, beginning at the right, is
combined to form an octal digit. A single-length (16-bit) word can therefore be fully
expressed by six octal digits and a double-length (32-bit) word can be fully expressed
by 11 octal digits. Octal notation is not shown for byte or floating-point formats,
since bytes normally represent characters and floating-point numbers are given in
decimal form.

The range of representable numbers for single-word data is +32,767 to -32,768
(decimal) or +77,777 to -100,000 (octal). The range of representable numbers for
double-word integer data is +2,147,483,647 to -2,147,483,648 (decimal) or
+17,777,777,777 to -20,000,000,000 (octal).

Addressing

Paging

The computer memory is logically divided into pages of 1,024 words each. A page is
defined as the largest block of memory that can be directly addressed by the address
bits of a single-length memory reference instruction. These memory reference
instructions use 10 bits (bits 0 through 9) to specify a memory address; thus, the
page size is 1,024 locations (2000 octal). Octal addresses for each page, up to a
maximum memory size of 32k, are listed in Table 3-1.

3-2 Programming Information

DATA FORMATS
- - - > INCREASING MEMORY - - - >
{—— Sign Bit {— Least significant data bit
SINGLE INTEGER 1
151413 121110 98 7 65 4 321 0 K—Blnary‘point
Byte 0 Byte 1
/\ /\
1 LA 1
PACKED
BYTE
FORMAT
151413 121110 98 7 65 4 3 21 0
. Binary
K—_— Sign Bit point
DOUBLE INTEGER 1
(151413 121110 98 7 654 3 21 0 151413 121110 98 7 65 4 321 0
A
Integer
31 bits
Mantissa sign Exponent sign
¥ a
SINGLE PRECISION
FLOATING POINT
154:413 121110 98 7 65 4 3 21 0 151413 121110 98 7 656 4 3 21 0
Jli]
N N
L Binary Point Mantissa Ex7ponent
23 bits bits
}
{— Mantissa sign Exponent sign .
D CHOATING POINT 27 27 27 27
(OPTIONAL) u
15’1413 10 1514 21 0 1514 2 1 0 1514 8 76 543 210
Il]
N/ NS
L Binary Point Mantissa Exponent
55 bits bits
OCTAL NOTATION
WORD
FORMAT
151413 121110 98 7 65 4 321 0
I S Y Y S) I | NG Mo
8 ¢ & 8 8 8°
INTEGER I | l | l [1
DOUBLE WORD
151413121110 98 7 65 4 3 21 0 151413 121110 98 7 65 4 3 21 0
—_ I e e
810 89 88 87 g8 85 84 8 8 8! &

Figure 3-1. Data Formats and Octal Notation
L8600-37

Programming Information 3-3

Provision is made to directly address one of two pages: page zero (the base page
consisting of locations 00000 through 01777) and the current page (the page in which
the instruction itself is located). Memory reference instructions reserve bit 10 to
specify one or the other of these two pages. To address locations on any other page,
indirect addressing is used as described in the following paragraphs. Page references
are specified by bit 10 as follows:

1. Logic 0 = Page Zero (Z)
2. Logic 1 = Current Page (C)

Table 3-1. Memory Paging

MEMORY OCTAL
SIZE PAGE ADDRESSES
0 00000 to 01777
1 02000 to 03777
2 04000 to 05777
3 06000 to 07777
4 10000 to 11777
5 12000 to 13777
8 14000 to 15777
7 16000 to 17777
8 20000 to 21777
9 22000 to 23777
10 24000 to 25777
11 26000 to 27777
12 30000 to 31777
13 32000 to 33777
12 34000 to 35777
16K w 15 36000 to 37777
16 40000 to 41777
17 42000 to 43777
18 44000 to 45777
19 46000 to 47777
20 50000 to 51777
21 52000 to 53777
22 54000 to 55777
23 56000 to 57777
24 60000 to 61777
25 62000 to 63777
26 64000 to 65777
27 66000 to 67777
28 70000 to 71777
29 72000 to 73777
30 74000 to 75777
31 76000 to 77777

3-4 Programming Information

Direct and Indirect Addressing

All memory reference instructions reserve bit 15 to specify either direct or indirect
addressing. For single-length memory reference instructions, bit 15 of the instruction
word is used; for extended arithmetic memory reference instructions, bit 15 of the
address word is used. Indirect addressing uses the address part of the instruction to
access another word in memory, which is taken as the new memory reference for the
same instruction. This new address word is a full 16 bits long: 15 address bits plus
another direct/indirect bit. The 15-bit length of the address permits access to any
location in the Logical address space. If bit 15 again specifies indirect addressing,
still another address is obtained; thus, multistep indirect addressing may be done to
any number of levels. The first address obtained that does not specify another
indirect level becomes the effective address for the instruction. Direct or indirect
addressing is specified by bit 15 as follows:

1. Logic 0 = Direct (D)
2. Logic 1 = Indirect ()

After three or more levels of indirect addressing, interrupts are checked and, if an
interrupt is pending, the instruction will be interrupted and restarted when the
interrupt service routine is done.

Memory Mapping

Memory mapping is a standard feature of the A400 computer and is used to access
all locations of main memory. Refer to the Dynamic Mapping System chapter for a
description of memory mapping.

Virtual Memory Area

Under Virtual Memory Area (VMA) operation, a program may access two separate
data areas, one being the 32k word logical address space, and the other being a
virtual address space of up to 16M words. The virtual address space may be either
memory-resident or disc-resident, and up to 1M words per program may reside in
memory. This is accomplished through mapping pages of the logical address space
to the virtual address space.

Code and Data Separation

When Code and Data Separation (CDS) is enabled, a program’s address space is
partitioned into two separate address spaces: a code space and a data space of up to
31k words each. Opcodes and the operand pointers that follow the opcode reside in
code space, and variables and constants reside in data space. CDS instructions are
provided that remap the code segment to other physical pages in memory, thus
providing large program support. A program’s code size may be up to 128 segments
(each having 31k words of code), which may be either memory-resident or
disc-resident. The optional HP 92078A package for the RTE-A operating system
provides software support for CDS.

Programming Information 3-5

Base-Relative Addressing

Under CDS, special hardware is used to access memory locations relative to a base
register called the Q-Register. When a memory address is in the range 2 through
1023, the Q-Register value is added to produce an effective address in the data space.
When CDS is enabled, code may not reside on the base page, which means that jump
instructions may not jump to the base page.

Reserved Memory Locations

The first 64 memory locations of the physical base page (octal addresses 00000
through 00077) are reserved as listed in Table 3-2. The first two locations are
reserved as addresses for the two 16-bit accumulators (the A- and B-Registers). If
options or input/output devices corresponding to locations 00020 through 00077 are
not included in the system configuration, these locations can be used for
programming purposes. The last 64 locations of the physical base page (1700 to
1777) are reserved for use by the Virtual Control Panel program for the string area.

Table 3-2. Reserved Memory Locations

MEMORY
LOCATION PURPOSE
00000 A-Register address.
00001 B-Register address.
00002-00003 | Reserved.
00004 Power-fail interrupt.

00005 Memory parity interrupt.

00006 Time base generator interrupt.

00007 Memory protect interrupt.

00010 Unimplemented instruction
interrupt.

00011 Reserved.

00012 Virtual Area Memory Interrupt.

00013 CDS Segment Interrupt.

00014-00017 | Reserved.

00020-00077 | Interrupt locations corresponding
to interface card selection codes.

01700-01777 | VCP program string area.

3-6 Programming Information

Nonexistent Memory

Nonexistent memory is defined as those locations not physically implemented in the
machine. Any attempt to write into a nonexistent memory location will be ignored
(no operation). Any attempt to read from a nonexistent memory location will return
an all-ones word (177777 octal); no parity error occurs. If the nonexistent memory is
protected, a memory protect interrupt will be generated.

Base Set Instruction Formats

The base set of instructions are classified according to format. The six formats used
are illustrated in Figure 3-2 and described in the following paragraphs except for the
DMS and CDS instructions, which are described in Sections IV and V. In all cases
where a single bit is used to select one of two cases (for example, D/I), the choice is
made by coding a logic 0 or logic 1, respectively.

Memory Reference Instructions

This class of instructions, which combines an instruction code and a memory address
into one 16-bit word, is used to execute some function involving data in a specific
memory location. Examples are storing, retrieving, and combining memory data to
and from the accumulators (A- and B-Registers) or causing the program to jump to a
specified location in memory.

The memory cell referenced (that is, the absolute address) is determined by a
combination of 10 memory address bits (0 through 9) in the instruction word and 5
bits (10 through 14) assumed from the current contents of the M-Register. This
means that memory reference instructions can directly address any word in the
current page; additionally, if the instruction is given in some location other than the
base page (page zero), bit 10 (Z/C) of the instruction doubles the addressing range to
2,048 locations by allowing the selection of either page zero or the current page.
(This causes bits 10 through 14 of the address contained in the M-Register to be set
to zero instead of assuming the current contents of the M-Register.) This feature
provides a convenient linkage between all pages of memory, since page zero can be
reached directly from any other page.

With CDS enabled, this feature becomes even more powerful as the base register is
added to all base page references (addresses from 2 to 1777 octal, or MRG
instructions with Z/C=0). This means that each single-word instruction has direct
access to data on the current page, or data up to 1k word relative to the base
register.

Programming Information 3-7

| 1s|14|13| 12[1 1]10]9|a|7|a|5|4|3]2[1|o|
I ! I] |

| I zic | | |
MORY
REF“{'-:EEN& I llnstruction J Memory Address |
o/ A o
l			
A/B S/Al 1			
REGISTER			
REFERENCE	C	ass I	
A/			
iNPUT/OUTPUT [Class	[instruction	Channel	
Class	linstruction!		
I			
EXTENDED
ARITHMETIC l [] | (zeros)]
MEMORY
REFERENCE I l |

| | P

| L
e L L
REGISTER | | | [Nesor|

REFERENCE

1
INSTRUCTION Class Class | instruc-
GROUP
| | | | |
l | N
| | I
FLOATING | | o1
DOUBLE | cClass [nstruction |
INTEGER,
CDS, AND LIS
L8200-68A

Figure 3-2. Base Set Instruction Formats

As discussed under previously, bit 15 is used to specify direct or indirect memory
addressing. Note also that since the A- and B-Registers are addressable, any
single-word memory reference instruction can apply to either of these Registers as
well as to memory cells. For example, an ADA 0001 instruction adds the contents of
the B-Register (address 0001) to the contents currently held in the A-Register; specify
page zero for these operations since the addresses of the A- and B-Registers are on
page zero.

3-8 Programming Information

Register Reference Instructions

In general, the register reference instructions manipulate bits in the A-Register,
B-Register, and E-Register; there is no reference to memory. This group includes 39
basic instructions which may be combined to form a one-word multiple instruction
that can operate in various ways on the contents of the A-, B-, and E-Registers.
These 39 instructions are divided into two subgroups; the shift/rotate group (SRG)
and the alter/skip group (ASG). The appropriate subgroup is specified by bit 10
(S/A). Typical operations are clear and/or complement a register, conditional skips,
and register increment.

Input/Output Instructions

The input/output instructions use bits 6 through 11 for a variety of I/O instructions
and bits 0 through 5 to apply the instructions to a specific I/O channel (if the Global
Register is disabled) or to an I/O card register. This provides the means of
controlling all peripherals connected to the I/O channels and for transferring data to
and from these peripherals. Included also in this group are instructions to control the
interrupt system, overflow bit, and computer halt.

Extended Arithmetic Memory Reference Instructions

As the single-word memory reference instruction described previously, the extended
arithmetic memory reference instructions include an instruction code and a memory
address. In this case, however, two words are required. The first word specifies the
extended arithmetic class (bits 12 through 15 and 10) and the instruction code (bits 4
through 9 and 11); bits 0 through 3 are not needed and are coded with zeros. The
second word specifies the memory address of the operand. Since the full 15 bits are
used for the address, this type of instruction may directly address any location in
memory. If the CDS mode is enabled and the reference is to the base page, the base
(Q) register will be added to the second word before referencing memory. As with
all memory reference instructions, bit 15 is used to specify direct or indirect
addressing. Operations performed by this class of instructions are integer multiply
and divide (using double-length product and dividend) and double load and double
store.

Extended Arithmetic Register Reference Instructions

This class of instructions provides long shifts and rotates on the combined contents of
the A- and B-Registers. Bits 12 through 15 and 10 identify the instruction class; bits

4 through 15 and 10 identify the instruction class; bits 4 through 9 and 11 specify the
direction and type of shift; and bits 0 through 3 control the number of shifts, which -
can range from 1 to 16 places.

Programming Information 3-9

Extended Instructions

The extended instructions include index register instructions, bit and byte
manipulation instructions, and move and compare instructions. Instructions
comprising the extended instruction group are one, two, or three words in length.

The first word is always the instruction code; operand addresses are given in the
words following the instruction code or in the A- and B-Registers. The operand
addresses are 15 bits long, with bit 15 (most-significant bit) generally indicating direct
or indirect addressing.

Floating Point Instructions

The floating point instructions allow addition, subtraction, multiplication, and division
of 32 bit floating point quantities. Two conversion routines are provided for
transforming numerical integer representations to/from floating point representations.
The A400 adds double precision (64-bit) floating point instructions as well as all
routines to convert from single and double integer to single and double precision
floating point, and vice versa.

Double Integer Instructions

The double integer instructions allow arithmetic and test operations on 32-bit
quantities. Bits 15 through 7 identify the instruction class, and bits 6 through 0
specify the instruction code. Double integer values contained in the A- and
B-Registers have the most significant bits in the A-Register.

Language Instruction Set

The language instruction set performs several frequently used high-level language
operations, including parameter passing, array address calculations, and floating point
conversion, packing, rounding and normalizing. Bits 15 through 7 identify the
instruction class, and bits 6 through 0 specify the instruction code.

Virtual Memory Instructions

The virtual memory instructions perform accesses to virtual memory and the extended
memory area, which are extensions of logical memory.

Operating System Instructions

The operating system instructions provide instructions for ascertaining the CPU and
firmware identification, and instructions for interrupt conditions.

3-10 Programming Information

CDS Instructions

The A400 includes the CDS instruction set, which includes instructions for examining
and modifying the base (Q) register, bounds (Z) register, and CDS-mode (C) register.
This set also includes instructions for transferring control between subroutines (which
may or may not be memory-resident).

All instructions that reference multi-word data (double integer, single and double
precision floating point) as well as instructions using sequential addressing (DMS
move instructions, .SETP and SFB) will have the base register added to the initial
address if the instruction is base relative and CDS mode is enabled. Subsequent
memory references are then executed sequentially.

Instructions that leave an address in a register upon completion (for example, LBT,
.ZFER, .SETP, MW00) will contain an address revolved for base relativity,
incremented by the proper count.

Base Set Instruction Coding

Machine language coding for the base set of instructions are provided in following
paragraphs. Definitions for these instructions are grouped according to the
instruction type: memory reference, register reference, input/output, extended
arithmetic memory reference, and extended arithmetic register reference.

Directly above each definition is a diagram showing the machine language coding for
that instruction. The darker shaded bits code the instruction type and the lighter
shaded 3 bits code the specified instruction. Unshaded bits are further defined in
the introduction to each instruction type. The mnemonic code and instruction name
are included above each diagram.

In all cases where an additional bit is used to specify a secondary function (D/I,Z/C,
or H/C), the choice is made by coding a logic 0 or logic 1, respectively. In other
words, a logic 0 codes D (direct addressing), Z (zero page, or H (hold flag); a logic 1
codes I (indirect addressing), C (current page), or C(clear flag).

Memory Reference Instructions

The following 14 memory reference instructions execute a function involving data in
memory. Bits 0 through 9 specify the affected memory location on a given memory
page or, if indirect addressing is specified, the next address to be referenced.
Indirect addressing may be continued to any number of levels; when bit 15 (D/I) is a
logical 0 (specifying direct addressing), that location will be taken as the effective
address. The A- and B-Registers may be addressed as locations 00000 and 00001
(octal), respectively.

Programming Information 3-11

If bit 10 (Z/C) is a logic 1, the memory address is on the current page. If bit 10 is a
logic 0, the memory address depends on whether CDS mode is enabled. If CDS
mode is enabled, the base (Q) register will be added to bits 0 through 9 to provide
the memory address. [f CDS mode is not enabled, the memory address is on the
base page (page 0). If the A- and B-Register is addressed, bit 10 must be a logic 0
to specify page zero, unless the current page is page zero.

ADA ADD TO A
1514 1312|1110 918 7 6 |5 4 3 |2 1 0
o [1To] o]0 %

Memory Address

Adds the contents of the addressed memory location to the contents of the
A-Register. The sum remains in the A-Register and the contents of the memory cell
are unaltered. The result of this addition may set the extend bit or the overflow bit.
(Extend and overflow examples are illustrated in the appendix.)

ADB ADD TO B
1514 1312|1110 98 7 6 |5 43 |2 1 0

Orltfale]

_\’d
Memory Address

Adds the contents of the addressed memory location to the contents of the B-Register.
The sum remains in the B-Register and the contents of the memory cell are
unaltered. The result of this addition may set the extend bit or the overflow bit.
(Extend and overflow examples are illustrated in the appendix.)

AND “ADD” TO A
1514 1312j1110 9|8 7 6 15 4 3 |2 1 0
Ohlojo|1|of

Memory Address
Combines the contents of the addressed memory location and the contents of the

A-Register by performing a logical “AND” operation. The contents of the memory
cell are unaltered.

3-12 Programming Information

CPA COMPARE TO A
1514 1312§1110 98 7 6 |5 4 3 |2 1 0
Pul1folt]ofe

—— "4

"

Memory Address

Compares the contents of the addressed memory location with the contents of the
A-Register. If the two 16-bit words are not identical, the next instruction is skipped,;
that .is, the P-Register advances two counts instead of one count. If the two words
are identical, the next sequential instruction is executed (do if true). Neither the
A-Register contents nor memory cell contents are altered.

ceB COMPARE TO B
15114 1312|1110 9|8 7 6 |5 4 3 |2 1 0

- _emesn——

oY

Memory Address

Compares the contents of the addressed memory location with the contents of the
B-Register. If the two 16-bit words are not identical, the next instruction is skipped;
that is, the P-Register advances two counts instead of one count. If the two words
are identical, the next sequential instruction is executed (do if true). Neither the
B-Register contents nor memory cell contents are altered.

IOR “INCLUSIVE OR" TO A
1514 1312|1110 9|8 7 6 |5 43 |2 1 0

—————— ———
Memory Address

Combines the contents of the addressed memory location and the contents of the

A-Register by performing a logical “inclusive OR” operation. The contents of the
memory cell are unaltered.

Programming Information 3-13

1Sz INCREMENT AND SKIP IF ZERO
1514 1312|1110 98 7 6 |54 3 |2 10
D, lal+l4 k1l

/l 01 1 1 /(:

"

Memory Address

Adds one to the contents of the addressed memory location. If the result of this
operation is zero (memory contents incremented from 177777 to 000000), the next
instruction is skipped; that is, the P-Register is advanced two counts instead of one
count. If the result of this operation is not zero, the next sequential instruction is
executed. In either case, the incremented value is written back into the memory cell.
Current page, direct addressing with this instruction will produce undefined results if
CDS is enabled.

JMP JUMP
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0
o[o]

"

Memory Address

Transfers control to the addressed memory location. That is, a JMP causes the
P-Register count to set according to the memory address portion of the JMP
instruction so that the next instruction will be read from that location.

JSB JUMP TO SUBROUTINE
165|114 1312]11109|8 7 6 |5 4 3 |2 1 0

—— —
Memory Address

This instruction, executed in location P (P-Register count), causes the computer
control to jump unconditionally to the memory location (m) specified by the memory
address portion of the JSB instruction. The contents of the P-Register plus one
(return address) is stored in memory location m, and the next instruction to be
executed will be that contained in the next sequential memory location (m + 1). A
return to the main program sequence at P + 1 will be effected by a JMP indirect
through location m. This instruction has undetermined results if executed while CDS
is enabled.

3-14 Programming Information

LDA LOAD A
15(141312j1110 9|8 7 6 |6 4 3 |2 1 O
o I T T~ T
ARIBELA LINe

Memory Address

Loads the contents of the addressed memory location into the A-Register. The
contents of the memory cell are unaltered.

= LOAD B
1514 1312|11109|8 76 |5 43|21 0
G PR B S Y

nr1]o])%

u— ————

s~

Memory Address

Loads the contents of the addressed memory location into the B-Register. The
contents of the memory cell are unaltered.

STA STORE A
15114 131211110 918 7 6 |56 4 3|2 1 0
D 1 R B

/) 0

———— ———

Memory Address

Stores the contents of the A-Register in the addressed memory location. The
previous contents of the memory cell are list; the A-Register contents are unaltered.
Current page, direct addressing with this instruction will produce undefined results if
CDS is enabled.

STB STORE B
1514 1312|1110 9|8 7 6 [5 4 3 |2 1 0
o 131 1 [+
AREREEE BTN

——— 4

.l

Memory Address

Stores the contents of the B-Register in the addressed memory location. The previous
contents of the memory cell are lost; the B-Register contents are unaltered. Current
page, direct addressing with this instruction will produce undefined results if CDS is
enabled.

Programming Information 3-15

XOR “EXCLUSIVE OR” TO A
1514 1312|11109|8 7 6 |56 4 3 |2 1 0
njaj1jejoltc

Memory Address
Combines the contents of the addressed memory location and the contents of the
A-Register by performing a logical “exclusive OR” operation. The contents of the
memory cell are unaltered.

Register Reference Instructions

The 39 register reference instructions execute functions on data contained in the
A-Register, B-Register, and E-Register. These instructions are divided into two
groups: the shift/rotate group (SRG) and the alter/skip group (ASG). In each group,
several instructions may be combined into one word. Since the two groups perform
separate and distinct functions, instructions from the two groups cannot be mixed.
Unshaded bits in the coding diagrams are available for combining other instructions
from the same group. The ASG and SRG instructions are not affected by the state
of CDS.

Shift/Rotate Group. The 20 instructions in the shift/rotate group (SRG) are defined
first; this group is specified by setting bit 10 to a logic 0. A comparison of the
various shift/rotate functions are illustrated in Figure 3-3. Rules for combining
instructions in this group are as follows (refer to Table 3-3):

1. Only one instruction can be chosen from each of the two multiple-choice
columns.

2. References can be made to either the A-Register or B-Register, but not both.

3. Sequence of execution is from left to right.

3-16 Programming Information

In machine code, use zeros to exclude unwanted operations.

Code a logic 1 in bit position 9 to enable shifts or rotates in the first position;
code a logic 1 in bit position 4 to enable shifts or rotates in the second position.

The extend bit is not affected unless specifically stated. However, if a
“rotate-with-E” instruction (ELA, ELB, ERA, or ERB) is coded but disabled by a
logic 0 in bit position 9 and/or position 4, the E-Register will be updated even
though the A- or B-Register contents are not affected; to avoid this situation code
a “no operation” (four zeros) in the first and/or second positions (3 zeros for
ALS/BLS).

Table 3-3. Shift/Rotate Group Combining Guide

[[\
ALS W ALS
ARS ARS
RAL RAL
RAR RAR

1 ALR } | [,CLE] [.SLA]|, 1 ALR }
ALF ALF
ERA ERA

\ ELA ELA

4 \ }

[A 4 \
BLS BLS
BRS BRS
RgL RBL
RBR Y , | RBR

1 BLR [,CLE] [,sL8]} BLR
BLF BLF
ERB ERB

| ELB | ELB

Programming Information 3-17

w A- or B-Register

o) ¥¥ ¥ O
ALS 151413 [12|11 10| 98 |7]|6|(5]|4]| 3| 2}1}0
BLS
e (NN 214
ARS L [T TTTTTTTITTIL
RAL f\f f{\
e WIS

RAR [m ,},}
RBR
0 0
ALR \1’5{\‘\ ffo{
BLR
EES |15i i I H‘ 0
E
(Y ¥ ¥¥ ¥
g | [’I'__—J” LIl]e
E
ALF
BIf 15[14}13 121110[987654,321)

LB8600-38
Figure 3-3. Shift and Rotate Functions

ALF ' ROTATE A LEFT FOUR
151141312]1110 9|8 7 6 |5 4 3 12 1 0

1st Position 2nd Position

Rotates the A-Register contents (all 16 bits) left four places. Bits 15, 14, 13, and 12
rotate around to bit positions 3, 2, 1, and 0, respectively. Equivalent to four
successive RAL instructions.

3-18 Programming Information

ALR A LEFT SHIFT, CLEAR SIGN
1514 1312|1110 98 7 6 |5 4 3|2 1 0

T LT

1st Position 2nd Position

Shifts the A-Register contents left one place and clears sign bit 15.

ALS A LEFT SHIFT
1514 1312]1110 9|18 7 6 |5 4 3]2 1 0

-+ [

1st Position 2nd Position

Arithmetically shifts the A-Register contents left one place, 15 magnitude bits only;
bit 15 (sign) is not affected. The bit shifted out of bit position 14 is lost; a logic 0
replaces vacated bit position 0.

ARS A RIGHT SHIFT
15[141312|11109]18 7 6|5 4 3 |2 1 0

B B o

Ealins

1st Position 2nd Position

Arithmetically shifts the A-Register contents right one place, 15 magnitude bits only;
bit 15 (sign) is not affected. A copy of the sign bit is shifted into bit position 14; the
bit shifted out of bit position 0 is lost.

Programming Information 3-19

BLF ROTATE B LEFT FOUR
14 13 12

1st Position 2nd Position

Rotates the B-Register contents (all 16 bits) left four places. Bits 15, 14, 13, and 12
rotate around to bit positions 3, 2, 1, and 0, respectively. Equivalent to four
successive RBL instructions.

BLR B LEFT SHIFT, CLEAR SIGN
1514 1312]1110918 7 6 |5 4 3 |2 1 0
...... 1 ﬂ

1st Position 2nd Position
Shifts the B-Register contents left one place and clears sign bit 15.

BLS B LEFT SHIFT
15 |14 1312|1110 9

1st Position 2nd Position

Arithmetically shifts the B-Register contents left one place, 15 magnitude bits only; bit
15 (sign) is not affected. The bit shifted out of bit position 14 is lost; a logic 0
replaces vacated bit position 0.

3-20 Programming Information

BRS B RIGHT SHIFT
1514131211110 9|8 7 6 |56 4 3 |2 1 0

(jotalr] |1] |oje}s
T LT

1st Position 2nd Position

Arithmetically shifts the B-Register contents right one place, 15 magnitude bits only;
bit 15 (sign) is not affected. A copy of the sign bit is shifted into bit position 14; the
bit shifted out of bit position 0 is lost.

CLE CLEAR E
15§14 1312|1110 9|8 7 6 |5 4 3 |2 1 O
i

Clears the E-Register; that is, the extend bit becomes a logic 0.

ELA ROTATE E LEFT WITH A
15 114 13 12 876|]543}1210

1st Position 2nd Position

Rotates the E-Register content left with the A-Register contents (one place). The
E-Register content rotates into bit position 0; bit 15 rotates into the E-Register.

ELB ROTATE E LEFT WITH B
1514 1312}j1110 9|8 7 6 |5 4 3 |2 1 O
[Te] T [T]e

1st Position 2nd Position

Rotates the E-Register content left with the B-Register contents (one place). The
E-Register content rotates into bit position 0; bit 15 rotates into the E-Register.

Programming Information 3-21

ERA ROTATE E RIGHT WITH A
15|14 1312|1110 9|8 7 6 |5 4 3
jrftiojr] 1

- [T

1st Position 2nd Position

Rotates the E-Register content right with the A-Register contents (one place). The
E-Register content rotates into bit position 15; bit 0 rotates into the E-Register.

ERB ROTATE E RIGHT WITH B
15 [14 1312|1110 9|8 7 6

1st Position 2nd Position

Rotates the E-Register content right with the B-Register contents (one place). The
E-Register content rotates into bit position 15; bit 0 rotates into the E-Register.

NOP NO OPERATION

1514 1312]11109]8 7 6 |56 4 3]2 1 0

This all-zeros instruction causes a no-operation cycle.

RAL ROTATE A LEFT
15 |14 13 12 210

itk

1st Position 2nd Position

Rotates the A-Register contents left one place (all 16 bits). Bit 15 rotates into bit
position 0.

3-22 Programming Information

RAR ROTATE A RIGHT
1514 13121110918 7 6 |5 4 3 |2 1 0

1st Position 2nd Position

Rotates the A-Register contents right one place (all 16 bits). Bit 0 rotates into bit
position 15.

RBL ROTATE B LEFT

151413 12J]1110 98 7 6 15 4 3 |12 10
foltio] |1| [oltlo
o — ey smm—’

ist Position 2nd Position

Rotates the B-Register contents left one place (all 16 bits). Bit 15 rotates into bit
position 0.

RBR ROTATE B RIGHT
15 |14 13 12 876

1st Position 2nd Position

Rotates the B-Register contents right one place (all 16 bits). Bit 0 rotates into bit
position 15.

SLA SKIP IF LSB OF A IS ZERO
15114 1312|1110 9|8 7 6 |6 4 3 |2 1 O

Skips the next instruction if the least-significant bit (bit 0) of the A-Register is a logic
0.

Programming Information 3-23

SLB SKIP IF LSB OF B IS ZERO
151413 12|11109]|8 76543210
1

Skips the next instruction if the least-significant bit (bit 0) of the B-Register is a logic
0.

Alter/Skip Group. The 19 instructions of the alter/skip group (ASG) are defined

next. This group is specified by setting bit 10 to a logic 1. Rules for combining
instructions are as follows (refer to Table 3-4).

Table 3-4. Alter/Skip Group Combining Guide

CLA CLE [,SSA] [.SLA],
CMA} |[,SEZ]| {CME} | [,INA] [,SZA]
CCA CCE [,RSS]

L — L _—
cLB CLE [,SsB] [,SLB]
CMB] [.SEZ] ICME] [.INB] [,SzB]
ccs CCE) | [,RSS]

1. Only one instruction can be chosen from each of the two multiple-choice
columns.

2. References can be made to either the A-Register or B-Register, but not both.
3. Sequence of execution is from left to right.

4. If two or more skip functions are combined, the skip function will occur if either
or both conditions are met. One exception exists: refer to the RSS instruction.

5. In machine code, use zeros to exclude unwanted instructions.
CCA CLEAR AND COMPLEMENT A

15 [14 1312|1110 98 76 |5 4 3 2 1 0
1|1

Clears and complements the A-Register contents; that is, the contents of the
A-Register become 177777 (octal). This is the two’s complement form of -1.

3-24 Programming Information

ccB CLEAR AND COMPLEMENT B
15|14 13121111098 7 6 |5 4 3]2 1 O
| 1

Clears and complements the B-Register contents; that is, the contents of the
B-Register become 177777 (octal). This is the two’s complement form of -1.

CCE CLEAR AND COMPLEMENT E
15[14 1312]1110 98 7 6 |5 4 312 1 0

Clears and complements the E-Register content (extend bit); that is, the extend bit
becomes a logic 1.

CLA CLEAR A
15{14 1312|1110 98 7 6 |5 4 3 |2 1 0

Clears the A-Register; that is, the contents of the A-Register becomes 000000 (octal).

CLB CLEAR B
15 j14 13 12 8761543}210

Clears the B-Register; that is, the contents of the B-Register become 000000 (octal).

CLE CLEAR E
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 O

Clears the E-Register; that is, the extend bit becomes a logic 0.

CMA COMPLEMENT A
15|14 1312|1110 9|8 7 6 |6 4 3 |2 1 O

Complements the A-Register contents (one’s complement).

Programming Information 3-25

cmB COMPLEMENT B
1514 1312§1110 9|8 7 6 |5 4 3 |2 1 0

Complements the B-Register contents (one’s complement).

CME COMPLEMENT E
15[141312]11109|8 7 6 |54 3 12 10

Complements the E-Register content (extend bit).

INA INCREMENT A
15[141312]11109|8 76 |5 43 |21 0

Increments the A-Register by one. The overflow bit will be set if an increment of the
largest positive number (077777 octal) is made. The extend bit will be set if an
all-ones word (177777 octal) is incremented.

INB INCREMENT B
151413 12[]1110 9|8 7 6 |54 3 |2 1 0

Increments the B-Register by one. The overflow bit will be set if an increment of the
largest positive number (077777 octal) is made. The extend bit will be set if an
all-ones word (177777 octal) is incremented.

RSS REVERSE SKIP SENSE
1514 1312|11109|8 7 6 |5 4 3 |2 1 0
1

Skip occurs for any of the following skip instructions, if present, when the non-zero
condition is met. An RSS without a skip instruction in the word causes an
unconditional skip. If a word with RSS also includes both SSA and SLA (or SSB and
SLB), bits 15 and 0 must both be logic 1’s for a skip to occur; in all other cases, a
skip occurs if one or more skip conditions are met.

3-26 Programming Information

SEZ SKIP IF E IS ZERO
151413121110 9|8 7 6 |5 4 3 |2 1 0
T

Skips the next instruction if the E-Register content (extend bit) is a logic 0.

SLA SKIP IF LSB OF A IS ZERO
1514 13121111098 7 6 |5 4 3 |2 1 0

Skips the next instruction if the least-significant bit (bit 0) of the A-Register is a logic
0; that is, skips if an even number is in the A-Register.

SLB SKIP IF LSB OF B IS ZERO
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0

Skips the next instruction if the least-significant bit (bit 0) of the B-Register is a logic
0; that is, skips if an even number is in the B-Register.

SSA SKIP IF SIGN OF A IS ZERO
1514 131211110918 7 6 |5 4 3 |12 1 0

Skips the next instruction if the sign bit (bit 15) of the A-Register is a logic 0; that is,
skips if a positive number is in the A-Register.

SSB SKIP IF SIGN OF B IS ZERO
1514 1312|1110 918 7 6 |5 4 3 |2 1 0

Skips the next instruction if the sign bit (bit 15) of the B-Register is a logic 0; that is,
skips if a positive number is in the B-Register.

Programming Information 3-27

SZA SKIP IF A IS ZERO
151413 12]11109|8 7 6 |5 4 3 |2 1 0

Skips the next instruction if the A-Register contents are zero (16 zeros).

74:] SKIP IF B IS ZERO
1514 1312}]1110 9|8 7 6 |5 43 |2 1 0

Skips the next instruction if the B-Register contents are zero (16 zeros).

Input/Output Instructions

The following input/output instructions provide the capability of setting, clearing or
testing the flag and control bits associated with DMA, programmed I/O, interrupts,
memory protect, time base generator, parity error, Global Register, and overflow. /O
instructions with select codes of seven or less have various functions. (Refer to Table
5-3 for further information regarding specific select-code functions.) I/O instructions
permit data transfer between the A- and B-Registers and either specific I/O devices or
between registers associated with memory protect, parity error, or interrupts. The
various registers and [/O devices are addressed by means of their register numbers
and select codes.

Bit 11, where relevant, specifies the A- or B-Register or distinguishes between set
control and clear control; otherwise, bit 11 may be a logic 0 or a logic 1 without
affecting the instruction (although the assembler will assign zeros in this case). In
those instructions where bit position 9 includes the letters H/C, the programmer has
the choice of holding (logic 0) or clearing (logic 1) the device flag after executing the
instruction. (Exception: the H/C bit associated within instructions SOC and SOS
holds or clears the overflow bit instead of the device flag.) Note that this H/C option
is not supported on some of the [/O instructions with select code less than 10 octal.

Bits 8, 7, and 6, specify the appropriate I/O instruction. When the Global Register is
enabled, bits 5 through 0 apply the instruction to a register on the I/O card whose
select code is in the Global Register.

NOTE

Execution of I/O instructions is inhibited when the memory protect
feature is enabled.

The following instruction descriptions assume that the Global Register is disabled and,
therefore, the instructions are addressed to a select code. The extension of I/O
instructions are not affected by the state of CDS.

3-28 Programming Information

CLC CLEAR CONTROL
15|14 1312|1110 918 7 6 |5 4 3 |2 1 0
[T

-~ >
Ve

Select Code or
Register Number

Clears the control bit (Control 30) of the selected I/O channel or function. This turns
off the specific device channel and prevents it from interrupting. A CLC 00
instruction clears the control bits from select code 06 upward, effectively turning off
all I/O devices.

CLF CLEAR FLAG
15114 13121111098 7 6 |5 4 3 j2 1 0

- >y

Select Code or
Register Number

Clears the flag (Flag 30) of the selected I/O channel or function. A CLF 00
instruction disables the interrupt system for the time base generator and all interface
cards; this does not affect the status of the individual channel flags.

CLO CLEAR OVERFLOW
15[141312]11110 9|8 76 |5 4 3]2 1 0
ol ool o olol

Clears the overflow bit.

HLT HALT
15 [14 13 12 876]543]210

- >y
g

Select Code or
Register Number

Halts the computer, holds or clears the flag of the selected /0O channel, and invokes
the virtual control panel program. The HLT instruction will be contained in the
T-Register, which is displayed on the VCP when the VCP program starts executing.
The P-Register (also displayed) will contain the HLT location plus one. Note that if
break is not enabled on any /O card, the HLT instruction has no effect.

Programming Information 3-29

LIA LOAD INTO A
1514 1312]1110 98 7 6 |54 3 |2 10

-)
e

Register Number

Loads the contents of the addressed I/0O buffer or special function register into the
A-Register.

LiB LOAD INTO B
1514 1312|1110 98 7 6 |5 4 3 |2 1 0

- >y
g

Register Number

Loads the contents of the addressed I/O buffer or special function register into the
B-Register.

MIA MERGE INTO A
15|14 1312|1110 918 7 6 |5 4 3]2 1 0
t]ojejojayt

— >
e

Register Number

By executing a logical “inclusive OR” function, merges the contents of the addressed
I/O buffer or special function register into the A-Register.

MmiB MERGE INTO B
1514 1312|1110 98 7 6 |5 4 3 |2 1 0

- >
s

Register Number

By executing a logical “inclusive OR” function, merges the contents of the addressed
I/0 buffer or special function register into the B-Register.

3-30 Programming Information

OTA OUTPUT A
15114 131211110 9|8 7 6 |5 4 3 |2 1 ©

1jajajo

- >
s

Register Number

Outputs the contents of the A-Register to the addressed I/0 buffer or special function
register. The contents of the A-Register are not altered.

oTB OUTPUT B
1514 13121111098 7 6 |5 4 3 |2 1 0

- o
s

Register Number

Outputs the contents of the B-Register to the addressed /O buffer or special function
register. The contents of the B-Register are not altered.

SFC SKIP IF FLAG CLEAR
1514 1312|1110 9|8 7 6 |5 4 3]2 1 0O

- >y

Select Code or
Register Number

Skips the next programmed instruction if the flag (Flag 30) of the selected channel
is clear (device busy).

SFS SKIP IF FLAG SET
15|14 1312|1110 918 7 6 |54 3 |2 1 0
tJoJo]o] T

-)

Select Code or
Register Number

Skips the next programmed instruction if the flag (Flag 30) of the selected channel is
set (device ready).

Programming Information 3-31

SOC SKIP IF OVERFLOW CLEAR
15114 13 12 876[1543]1210
1lolalole '

Skips the next programmed instruction if the overflow bit is clear. Use the H/C (bit
9) to either hold or clear the overflow bit following the completion of this instruction
(whether the skip is taken or not).

sos SKIP IF OVERFLOW SET
15 [14 13 12
1{o|o]o

Skips the next programmed instruction if the overflow bit is set. Use the H/C bit (bit
9) to either hold or clear the overflow bit following the completion of this instruction
(whether the skip is taken or not).

STC SET CONTROL
15 {14 13 12 876543210
1]ojojo

>}

Select Code or
Register Number

Sets the control bit (Control 30) of the selected I/O channel or function.

STF SET FLAG
15 1a1312|11100]8 76|54 3210
1{olojo]| |1]0

-~ >

Select Code or
Register Number

Sets the flag (Flat 30) of the selected I/O channel or function. An STF 00 instruction
enables the interrupt system for the time base generator and all interface cards.

3-32 Programming Information

STO SET OVERFLOW
15 |14 13 12
1{ofojo]

Sets the overflow bit.

Extended Arithmetic Memory Reference Instructions

The four extended arithmetic memory reference instructions provide for integer
multiply and divide and for loading and storing double-length words to and from the
A- and B-Registers. The complete instruction requires two words: one for the
instruction code and one for the address. When stored in memory, the instruction
word is the first to be fetched; the address word is in the next sequential location.

Since 15 bits are available for the address, these instructions can directly address any
location in memory. As for all memory reference instructions, indirect addressing to
any number of levels may also be used. A logic 0 in bit position 15 specifies direct

addressing; a logic 1 specifies indirect addressing.

DIV DIVIDE
15|14 1312|11109|8 76 |5 43 |21 0
o]1jojo]ojojo]ofo|o

Memory Address

Divides a double-word integer in the combined B- and A-Registers by a 16-bit integer
in the addressed memory location. The result is a 16-bit integer quotient in the
A-Register and a 16-bit integer remainder in the B-Register. Overflow can result
from an attempt to divide by zero, or from an attempt to divide by a number too
small for the dividend. In the former case (divide by zero), the division will not be
attempted and the B- and A- -Register contents will be unchanged except that a
negatwe quantity will be made positive. In the latter case (dmsor too small), the
execution will be attempted with unpredictable results left in the B- and A- Reglsters
If there is no divide error, the overflow bit is cleared.

Programming Information 3-33

DLD DOUBLE LOAD
1511413 12]11110 98 7 6 |54 3]2 1 0
o]o]1]efo]o[o]o]o]o

Memory Address

Loads the contents of addressed memory location m (and m+1) into the A- and
B-Registers, respectively. If m is base relative and CDS mode is enabled, the base
register will be added to m and the references will come from m+Q and m+Q+1
(even if m+1 is not base relative).

DST DOUBLE STORE
1514 131211110918 7 6 |54 3 |2 1 0

ofojtjojajojojojojo

Memory Address

Stores the double-word quantity in the A- and B-Registers into addressed memory
locations m (and m+1), respectively. If m is base relative and CDS mode is enabled,
the base register will be added to m and the references will come from m+Q and
m+Q+1 (even if m+1 is not base relative).

MPY MULTIPLY
1514 1312]1110 918 7 6 |5 4 3 |2 1 0

ofoj1jo]ajo|ofo]o|o

Memory Address

Multiplies a 16-bit integer in the A-Register by a 16-bit integer in the addressed
memory location. The resulting double-length integer product resides in the B- and
A-Registers, with the B-Register containing the sign bit and the most-significant 15
bits of the quantity. The A-Register may be used as an operand (that is, memory
address 0), resulting in an arithmetic square. The instruction clears the overflow bit.

3-34 Programming information

Extended Arithmetic Register Reference Instructions

The six extended arithmetic register reference instructions provide various types of
shifting operations on the combined contents of the B- and A-Registers. The
B-Register is considered to be to the left (most-significant word) and the A-Register is
considered to be to the right (least-significant word). An example of each type of
shift operation is illustrated in Figure 3-4.

The complete instruction is given in one word and includes four bits (unshaded) to
specify the number of shifts (1 to 16). Viewing these four bits as a binary-coded
number enables the number of shifts to be easily understood; that is, binary-coded 1
= 1 shift, binary-coded 2 = 2 shifts ... binary-coded 15 = 15 shifts. The maximum
number of 16 shifts is coded with four zeros, which essentially exchanges the
contents of the B- and A-Registers.

The extend bit is not affected by any of the following instructions. Except for the
arithmetic shifts, overflow also is not affected.

The execution of extended arithmetic register reference instructions is not affected by
the state of CDS.

ASL ARITHMETIC SHIFT LEFT
8761]543]210
lojojofoit

e —

Number
of Shifts

Arithmetically shifts the combined contents of the B- and A-Registers left n places.
The value of n may be any number from 1 through 16. Zeros are filled into vacated
low-order positions of the A-Register. The sign bit is not affected, and data bits are
lost out of bit position 14 of the B-Register. If any one of the lost bits is a
significant data bit (“1” for positive numbers, “0” for negative numbers), the
overflow bit will be set; otherwise, overflow will be cleared during execution. See
ASL example in Figure 3-4. Note that two additional shifts in this example would
cause an error by losing a significant ‘1’.

ASR ARITHMETIC SHIFT RIGHT
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 O
o :0" 0 0 1

v, ——

Number
of Shifts

Arithmetically shifts the combined contents of the B- and A-Registers right n places.
The value of n may be any number from 1 through 16. The sign bit is unchanged
and is extended into bit positions vacated by the right shift. Data bits shifted out of
the least-significant end of the A-Register are lost. Overflow cannot occur because
the instruction clears the overflow bit.

Programming Information 3-35

B-REGISTER

A-REGISTER

:——5 Bits lost

1
T
1011 000 101 000 101 | 0 101 101 011 100 11t
ASR 5 . :
" . . [}
(Arithmetic Shift Right v '\ ! ‘\+
5 places) {
1111 110 110 001 010 | 0010 101 011 010 113
------- |
Extended sign 1
1
Bits lost 4—1_ |
1
v
0000 000 111 101 000 § 1t 101 101 000 110 111
ASL 5 . :
1
(Arithmetic Shift Left i /' ! +/.
5 places) :
0011 110 100 011 011 | 0100 011 011 100 000 |€&— Zeros filled
1
: :’ Bits lost
T
1011 000 101 000 101 | 0101 101 011 100 111
LSR 5 !
(Logical Shift Right * | \
5 places) :
Zeros Filled —— 1 6 000 010 110 001 010 ; 0010 101 011 010 111
1
+
1
Bits lost ‘—:_ |
[
Ll
0101 000 111 101 000 | 1101 101 000 110 111
LSL 5 2
(Logical Shift Left / | /
5 places) {
0011 110 100 011 011 ; 0100 011 011 100 000
}
1
! —]
}
0101 110 111 000 010 | 0100 010 110 000 111
RRR 8 1
|
(Rotate Right : '*
8 places) A
1000 011 101 011 101 : 1100 001 001 000 101
1
T‘ 1
—t
1
i
1
SR N 1
0110 011 101 111 000 :ono 011 010 000 111
RARL 7 T
1
(Rotate Left /] r/J
7 places) :
|1o11 110 000 110 011 10100 001 110 110 011
|
. K T
I
L8600-39 :

3-36

Figure 3-4. Examples of Double-Word Shifts and Rotates

Programming Information

LSL LOGICAL SHIFT LEFT
15114 1312|1110 9|8 7 6 |5 4 3 |12 1 0O
ofofofo]1]o

em— pr—
Number
of Shifts
Logically shifts the combined contents of the B- and A-Registers left n places. The
value of n may be any number from 1 through 16. Zeros are filled into vacated
low-order bit positions of the A-Register; data bits are lost out of the high-order bit
positions of the B-Register.

LSR LOGICAL SHIFT RIGHT
15 [14 13 12 876|543]210
ofo1 Jofo]o|1]o
n— —
Number
of Shifts

Logically shifts the combined contents of the B- and A-Registers right n places. The
value of n may be any number from 1 through 16. Zeros are filled into vacated
high-order bit positions of the B-Register; data bits are lost out of the low-order bit
positions of the A-Register.

RRL ROTATE LEFT
15 |14 13 12 8761]5431210
" Tolo[1]e]o

m—— —
Number
of Shifts

Rotates the combined contents of the B- and A-Registers left n places. The value of
n may be any number from 1 through 16. No bits are lost or filled in. Data bits
shifted out of the high-order end of the B-Register are rotated around to enter the
low-order end of the A-Register.

RRR ROTATE RIGHT
1514 1312]1110 9|8 7 6 |5 4 3 |2 1 0
et s’

Number

of Shifts

Rotates the combined contents of the B- and A-Registers right n places. The value of
n may be any number from 1 through 16. No bits are lost or filled in. Data bits
shifted out of the high-order end of the A-Register are rotated around to enter the
high-order end of the B-Register.

Programming Information 3-37

Extended Instruction Group

Index/Register Instructions. The index registers (X and Y) are two 16-bit registers
accessible by the following instructions:

ADX ADD MEMORY TO X
1514 1312|1110 9f8 76 |5 4 3|21 0
| ojofti]o

M

Memory Address

Adds the contents of the addressed memory location to the contents of the

X-Register. The sum remains in the X-Register and the contents of the memory cell
are unaltered. The result of this addition may set the extend bit or the overflow bit.
The A- and B-Registers can be referenced as memory locations 0 and 1, respectively.

ADY ADD MEMORY TO Y
15|14 1312|1110 9|8 7 6 |5 4 3 |2 1 0
ol 11110

e

Memory Address

Adds the contents of the addressed memory location to the contents of the

Y-Register. The sum remains in the Y-Register and the contents of the memory cell
are unaltered. The result of this addition may set the extend bit or the overflow bit.
The A- and B-Registers can be referenced as memory locations 0 and 1, respectively.

CAX COPY A TO X
15 |14 13 12
t]ofole

Copies the contents of the A-Register into the X-Register. The contents of the
A-Register are unaltered.

3-38 Programming information

CAY COPY ATO Y
15|14 1312|1110 9|8 7 6 |5 4 3 |2 1 0
[olan

Copies the contents of the A-Register into the Y-Register. The contents of the
A-Register are unaltered.

cBX COPY B TO X
15

Copies the contents of the B-Register into the X-Register. The contents of the
B-Register are unaltered.

cBY COPYBTOY
15 |14 13 12 5§43J]210

Copies the contents of the B-Register into the Y-Register. The contents of the
B-Register are unaltered.

CXA COPY X TO A
1514 1312111098 7 6 |5 4 3 |21 0

Copies the contents of the X-Register into the A-Register. The contents of the
X-Register are unaltered.

CXB COPY X TO B
1514 1312111098 7 6 |5 4 3 |2 1 O
' ofo}1|olo

Copies the contents of the X-Register into the B-Register. The contents of the
X-Register are unaltered.

Programming Information

3-39

CYA COPY Y TO A
543|210
ol1]1jajo

Copies the contents of the Y-Register into the A-Register. The contents of the
Y-Register are unaltered.

CcyYB COPYY TOB
1514 131211110 918 7 6 |5 4 3]2 1 0
110 ' oj1]1fojo

Copies the contents of the Y-Register into the B-Register. The contents of the
Y-Register are unaltered.

DSX DECREMENT X AND SKIP IF ZERO
1514 13121110918 7 6 |5 4 3

Subtracts one from the contents of the X-Register. If the result of this operation is
zero (X-Register decremented from 000001 to 000000), the next instruction is
skipped; that is, the P-Register count is advanced two counts instead of one count. If
the result is not zero, the next sequential instruction is executed.

DSY DECREMENT Y AND SKIP IF ZERO
15114 1312111098 7 6 |5 4 3 |2 1 O

Subtracts one from the contents of the Y-Register. If the result of this operation is
zero (Y-Register decremented from 000001 to 000000), the next instruction is
skipped; that is, the P-Register count is advanced two counts instead of one count. If
the result is not zero, the next sequential instruction is executed.

3-40 Programming Information

ISX INCREMENT X AND SKIP IF ZERO
1514 1312|1110 98 7 6 {5 4 3 j2 1 0
JoJoe]o

Adds one to the contents of the X-Register. If the result of this operation is zero
(X-Register rolls over to 000000 from 177777), the next instruction is skipped; that is,
the P-Register count is advanced two counts instead of one count. [f the result is not
zero, the next sequential instruction is executed.

ISY INCREMENT Y AND SKIP IF ZERO
1514 1312|1110 918 7 6 |54 3 |21 0
1]ejejo

Adds one to the contents of the Y-Register. If the result of this operation is zero
(Y-Register rolls over to 000000 from 177777), the next instruction is skipped; that is,
the P-Register count is advanced two counts instead of one count. If the result is not
zero, the next sequential instruction is executed.

LAX LOAD A INDEXED BY X
1514 1312]1110918 7 6 |5 4 3 |2 1 0

My

Operand Address

Loads the A-Register with the contents indicated by the effective address, which is
computed by adding the contents of the X-Register to the operand address. The
effective address is loaded into the M-Register; the X-Register and memory contents
are not altered. Indirect addressing is resolved before indexing; bit 15 of the
effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

Programming Information 3-41

LAY LOAD A INDEXED BY Y
1514 13 12}]1110 918 7 6 |5 4 3 |2 1 0

e

Operand Address

Loads the A-Register with the contents indicated by the effective address, which is
computed by adding the contents of the Y-Register to the operand address. The
effective address is loaded into the M-Register; the Y-Register and memory contents
are not altered; Indirect addressing is resolved before indexing; bit 15 of the
effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

LOAD B INDEXED BY X
87615431210
ojojoit|o

gy o

Operand Address

Loads the B-Register with the contents indicated by the effective address, which is
computed by adding the contents of the X-Register to the operand address. The
effective address is loaded into the M-Register; the X-Register and memory contents
are not altered. Indirect addressing is resolved before indexing; bit 15 of the
effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

3-42 Programming Information

LBY LOAD B INDEXED BY Y
15114 1312|1110 98 7 6 |5 4 3 |2 1 O

iy, o

Operand Address

Loads the B-Register with the contents indicated by the effective address, which is
computed by adding the contents of the Y-Register to the operand address. The
effective address is loaded into the M-Register; the X-Register and memory contents
are not altered. Indirect addressing is resolved before indexing; bit 15 of the
effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

LDX LOAD X FROM MEMORY
1514 1312j1110 9|8 7 6 |5 4 3 |2 1 O
o[o[1[o[s

e

Operand Address

Loads the contents of the addressed memory location into the X-Register. The A-
and B-Registers may be addressed as locations 00000 and 00001, respectively;
however, if it is desired to load from the A- or B-Register, copy instruction CAX or
CBX should be used since they are more efficient.

LDY LOAD Y FROM MEMORY
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0
of1]1]0}1

o

Operand Address

Loads the contents of the addressed memory location into the Y-Register. The A-
and B-Registers may be addressed as locations 00000 and 00001, respectively;
however, if it is desired to load from the A- or B-Register, copy instruction CAY or
CBY should be used because they are more efficient.

Programming Information 3-43

SAX STORE A INDEXED BY X
1514 1312111098 7 6 |5 4 3 |2 1 0
:,Q: 0 0}0

.

Operand Address

Stores the contents of the A-Register into the location indicated by the effective
address, which is computed by adding the contents of the X-Register to the operand
address. The effective address is loaded into the M-Register; the A- and X-Register
contents are not altered. Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

SAY STORE A INDEXED BY Y
1514 1312|1110 9|8 7 6 |5 4 3

"

Operand Address

Stores the contents of the A-Register into the location indicated by the effective
address, which is computed by adding the contents of the Y-Register to the operand
address. The effective address is loaded into the M-Register; the A- and Y-Register
contents are not altered. Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

SBX STORE B INDEXED BY X
15|14 1312|11109f8 76543]210
" ojajojojo

Operand Address

3-44 Programming Information

Stores the contents of the B-Register into the location indicated by the effective
address, which is computed by adding the contents of the X-Register to the operand
address. The effective address is loaded into the M-Register; the B- and X-Register
contents are not altered. Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

SBY STORE B INDEXED BY Y
15l1a1312f11109f8 76 [543 |210
oj1]ojejo

-

Operand Address

Stores the contents of the B-Register into the location indicated by the effective
address, which is computed by adding the contents of the Y-Register to the operand
address. The effective address is loaded into the M-Register; the B- and Y-Register
contents are not altered. Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be added before indexing. The
index value can be positive or negative.

STX STORE X TO MEMORY
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0

ey

Memory Address
Stores the contents of the X-Register into the addressed memory location. The A-

and B-Registers may be addressed as locations 00000 and 00001, respectively. The
X-Register contents are not altered.

Programming Information 3-45

STY STORE Y TO MEMORY
1514 1312j1110 9|8 7 6 |5 4 3 |2 1 O

Wy

Memory Address

Stores the contents of the Y-Register into the addressed memory location. The A-
and B-Registers may be addressed as locations 00000 and 00001, respectively. The
Y-Register contents are not altered.

XAX EXCHANGE A AND X
1514 1312{1110 918 7 6 |5 4 3 |2 1 0

Exchanges the contents of the A- and X-Registers.

XAY EXCHANGE A AND Y
15|14 13 12j1110 918 7 6 |5 4 3]2 1 O

Exchanges the contents of the A- and Y-Registers.

XBX EXCHANGE B AND X
1514 1312|1110 918 7 6 |5 4 3

Exchanges the contents of the B- and X-Registers.

XBY EXCHANGE B AND Y
1514 1312|1110 98 7 6 |56 4 3 |2 1 O

of1fritin

Exchanges the contents of the B- and Y-Registers.

Jump Instructions. The following four jump instructions allow a program to either
jump to or exit from a subroutine.

3-46 Programming Information

JLA JUMP AND LOAD A
15114 1312|1110 9|8 7 6 |5 4 3 |2 1 O

-

Memory Address

This instruction, executed in location P, causes computer control to jump
unconditionally to the memory location specified by the second word of the
instruction. The contents of the program counter plus two are stored in the

A-Register. A return to the main program will be effected by a JMP indirect through
location 00000 (the A-Register).

JLB JUMP AND LOAD B

1514 1312|1110 9|8 7 6 |54 3 210

o

Memory Address

This instruction, executed in location P, causes computer control to jump
unconditionally to the memory location specified by the second word of the
instruction. The contents of the program counter plus two are stored in the

A-Register. A return to the main program will be effected by a JMP indirect through
location 00001 (the B-Register).

JLY JUMP AND LOAD Y
1514 1312{1110 918 7 6 |54 3|2 10

Memory Address

This instruction is designed for entering a subroutine. The instruction, executed in
location P, causes computer control to jump unconditionally to the memory location
specified in the memory address. Indirect addressing may be specified. The contents
of the P-Register plus two (return address) are loaded into the Y-Register. A return

to the main program sequence at P + 2 may be effected by a JPY instruction
(described next).

Programming Information 3-47

JPY JUMP INDEXED BY Y
1514 1312|1110 9|8 7 6 |5 4 3 j2 1 0

——

Operand Address

Transfers control to the effective address, which is computed by adding the contents
of the Y-Register to the operand address. Indirect addressing is not allowed. The
effective address is loaded into the P-Register; the Y-Register contents are not altered.
Memory protect checks are performed on all references to memory (read, write,
fetch), except references to memory locations 0 and 1 (A and B).

Byte Manipulation Instructions. A byte address is defined as two times the word
address plus zero or one, depending on whether the byte is in the high-order position
(bits 8 through 15) or low-order position (bits 0 through 7) of the word containing it.
If the byte of interest is in bit positions 8 through 15 of memory location 100, for
example, then the address of that byte is 2* 100 + 0, or 200; the address of the
low-order byte in the same location is 201 (2* 100 + 1). Because of the way byte
addresses are defined, 16 bits are required to cover all possible byte addresses in the
32k-word Logical address space (memory goes to 4M bytes). Hence, for byte
addressing, bit 15 does not indicate indirect addressing. Memory references to byte
addresses on base page (4-3777) with CDS mode enabled will have 2*Q (byte base
register) added to the base relative address.

Byte addresses 000 through 003 reference bytes in the A- and B-Registers. These
addresses will not cause memory violations. The user should, however, be careful in
referencing these byte addresses: for example, storing into byte address 002 or 003
would destroy the byte address originally contained in the B-Register.

3-48 Programming Information

NOTE

Instructions that store an interrupt count into the code sequence on
interrupt (CBT, MBT, CMW, and MVW), have undefined results if
executed with CDS mode enabled.

CBT COMPARE BYTES
15|14 1312|1110 918 7 6 |56 4 3 |2 1 0

ojojojojojojojofojojojojo0jojofo

Return if array 1 = array 2

Return if array 1 < array 2

Return if array 1 > array 2

Compares the bytes in string 1 with those in string 2. This is a three-word
instruction where:

Word 1 = Instruction code,

Word 2 = Address of word containing the string count, and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-Registers. The A-Register contains the
first byte address of string 1 and the B-Register contains the first byte address of
string 1.

The number of bytes to be compared is given in the memory location addressed by
Word 2 of the instruction; the number of bytes to be compared is restricted to a
positive integer greater than zero. The strings are compared one byte at a time; the
ith byte in string f1 is compared with the ith byte in string 2. The comparison is
performed arithmetically; that is, each byte is treated as a positive number. If all
bytes in string 1 are identical with all bytes in string 2, the “equal” exit is taken.

As soon as two bytes are compared and found to be different, the “less than” or
“greater than” exit is taken, depending on whether the byte in string 1 is less than or
greater than the byte in string 2. The three ways this instruction exits are as follows:

1. No skip if string 1 is equal to string 2; the P-Register advances one count from
Word 3 of the instruction. The A-Register contains its original value incremented
by the count stored in the address specified in Word 2.

2. Skips one word if string 1 is less than string 2; the P-Register advances two
counts from Word 3 of the instruction. The A-Register contains the address of
the byte in string 1 where the comparison stopped.

Programming Information 3-49

3. Skips two words if string 1 is greater than string 2; the P-Register advances three
counts from Word 3 of the instruction. The A-Register contains the address of
the byte in string 1 where the comparison stopped.

For all three exits, the B-Register will contain its original value incremented by the
count stored in the address specified in Word 2. This instruction is interruptible.
The interrupt routine is expected to save and restore the contents of the A- and
B-Registers. During the interrupt, the remaining count is stored in Word 3 of the
instruction. This instruction has undefined results if executed with CDS mode
enabled.

LBT LOAD BYTE
1514 1312|1110 98 7 6 |5 43]2 10

This one-word instruction loads into the A-Register the byte whose address is
contained in the B-Register. The byte is right-justified with leading zeros in the left
byte. The B-Register is incremented by one.

MBT MOVE BYTES
1514 13121110918 7 6 |5 4 3]2 1 0

I
ojojo|ojofojojo|jOfO]jO|jOjO]O|O|O

Moves bytes in a left-to-right manner; that is, the byte having the lowest address from
the source is moved first. This is a three word instruction where:

Word 1
Word 2
Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-Registers. The A-Register contains the
first byte address source and the B-Register contains the first byte address
destination.

Instruction code,

Address of word containing the byte count, and

The number of bytes to be moved is given by a 16-bit positive integer greater than
zero addressed by Word 2 of the instruction. The byte address in the A- and
B-Registers are incremented as each byte is being moved. Thus, at the end of the
operation, the A- and B-Registers are incremented by the number of bytes moved.
Wraparound of the byte address would result from a carry out of bit position 15;
therefore, if the destination became 000, 001, 002, or 003, the next byte would be
moved into the A- or B-Register and destroy the proper byte addresses for the move
operation. For each byte move, a memory protect check is performed.

3-50 Programming Information

This instruction is interruptible. The interrupt routine is expected to save and restore
the contents of the A- and B-Registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction. This instruction has undefined results if
executed with CDS mode enabled.

S8T STORE BYTE
1514 1312j1110 918 7 6 |5 4 3 |2 1 0

Stores the A-Register low-order (right) byte in the byte address contained in the
B-Register. The B-Register is incremented by one. A memory protect check is
performed before the byte is stored. The left byte in the A-Register does not have to
be zeros. The other byte in the same word of the stored byte is not altered.

SFB SCAN FOR BYTE
151413 12|11109|8 7 6 |5 4 3 |2 1 0

This is ~ one word instruction with the operands in the A- and B-Registers. The
A-Regiscer contains a termination byte (high-order byte) and a test byte (low-order
byte). The B-Register contains the first byte address of the string to be scanned.

A string of bytes is scanned starting at the byte address given in the B-Register.
Scanning terminates when a byte in the string matches either the test byte or the
termination byte in the A-Register. The manner in which the instruction exits
depends on which byte is matched first. If a byte in the string matches the test byte,
the instruction will not skip upon exit; the B-Register will contain the address of the
byte matching the test byte. If a byte in the string matches the termination byte, the
instruction will skip one word upon exit; the B-Register will contain the address of the
byte matching the termination byte plus one.

The scanning operation will not continue indefinitely even if neither the termination
byte nor test byte exists in memory. These bytes are in the A-Register with byte
addresses 000 and 001, respectively. Thus, if no match is made by the time the
B-Register points to the last byte in memory, the B-Register will roll over to zero and
the next test will match the termination byte in the A-Register with itself.

This instruction is interruptible. The interrupt routine is expected to save and restore
the contents of the A- and B-Registers.

Bit Manipulation Instruction. The following three instructions allow any number of
bits in a specified memory location to be cleared, set, or tested.

Programming Information 3-51

cBS CLEAR BITS
1514 1312f11109]|8 76 |5 43]2 10
1jofo

T

Memory Address

Clears bits in the addressed location. This is a three-word instruction where:

Word 1 = Instruction code,
Word 2 = Address of a 16-bit mask, and
Word 3 = Address of word where bits are to be cleared.

The bits to be cleared correspond to logic 1’s in the mask. The bits corresponding to
logic 0’s in the mask are not affected. A memory protect check is performed prior
to modifying the word in memory.

SBS SET BITS
15 |14 13 12 5 3210

Mg

Memory Address

Sets bits in the addressed location. This is a three-word instruction where:

Word 1 = Instruction code,
Word 2 = Address of a 16-bit mask, and
Word 3 = Address of word where bits are to be set.

The bits to be set correspond to logic 1’s in the mask. The bits corresponding to
logic 0’s in the mask are not affected. A memory protect check is performed prior
to modifying the word in memory.

3-52 Programming Information

TBS TEST BITS
1511413 12]1110 9|8 7 6 |6 4 3 |2 1 O

e

Memory Address

Tests (compares) bits in the addressed location. This is a three-word instruction
where:

Word 1 = Instruction code,

Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word in which bits are to be tested.

The bits in the addressed memory word corresponding to logic 1’s in the mask are
tested. If all the bits tested are 1’s, the instruction will not skip; otherwise the
instruction will skip one word (that is, the P-Register will advance two counts from
Word 3 of the instruction).

Word Manipulation Instructions. The following instructions facilitate the comparing
and moving of word arrays.

cMmw COMPARE WORDS
1514 1312111098 7 6 |56 4 3 |2 1 O

ojo(ojojojofojojojojojoj0jo0i0]|0

Return if array 1 = array 2

Return if array 1 < array 2

Return if array 1 > array 2

Compares the words in array 1 with those in array 2. This is a three-word
instruction where:

Word 1 = Instruction code,

Word 2 = Address of word containing the word count, and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-Registers. The A-Register contains the
first word address of array 1 and the B-Register contains the first word address of
array 2. Bit 15 of the addresses in the A- and B-Registers are ignored; that is, no
indirect addressing allowed.

Programming Information 3-53

The number of words to be compared is given in the memory location addressed by
Word 2 of the instruction; the number of words to be compared is restricted to a
positive integer greater than zero. The arrays are compared one word at a time; the
ith word in array 1 is compared with the ith word in array 2. This comparison is
performed arithmetically; that is, each word is considered a two’s complement
number. If all words in array 1 are equal to all words in array 2, the “equal” exit is
taken. As soon as two words are compared and found to be different, the “less
than” or “greater than” exit is taken, depending on whether the word in array 1 is
less than or greater than the word in array 2. The three ways this instruction exits
are as follows:

1. No skip if array 1 is equal to array 2; the P-Register advances one count from
Word 3 of the instruction. The A-Register contains its original value incremented
by the word count stored in the address specified in Word 2.

2. Skips one word if array 1 is less than array 2; the P-Register advances two
counts from Word 3 of the instruction. The A-Register contains the address of
the word in array 1 where the comparison stopped.

3. Skips two words if array 1 is less than array 2; the P-Register advances three
counts from Word 3 of the instruction. The A-Register contains the address of
the word in array 1 where the comparison stopped.

For all three exits, the B-Register will contain its original value incremented by the
word count stored in the address specified in Word 2. This instruction is
interruptible. The interrupt routine is expected to save and restore the contents of
the A- and B-Registers. During the interrupt, the remaining count is stored in Word
3 of the instruction. This instruction has undefined results if executed with CDS
mode enabled.

Mvw MOVE WORDS
1514 1312|1110 98 7 6 |5 4 3 |2 1 0

ojojojojojofojojojojofojojojoj|o

Moves words in a left-to-right manner; that is, the word having the lowest address in
the source is moved first. This is a three-word instruction where:

Word 1 = Instruction code,
Word 2 = Address of word containing the count, and
Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-Registers. The A-Register contains the
first word address source and the B-Register contains the first word address
destination. The number of words to be moved is a 16-bit positive integer greater
than zero addressed by Word 2 of the instruction. The word addresses in the A- and
B-Registers are incremented as each word is being moved. Thus, at the end of the
operation, the A- and B-Registers are incremented by the number of words moved.

3-54 Programming Information

Wraparound of the word address would result from a carry into bit position 15 (that
is, at 32676). If the destination address became 000 or 001, the next word would be
moved into the A- or B-Register and destroy the proper word addresses for the move
operation. For each word move, a memory protect check is performed.

This instruction is interruptible. The interrupt routine is expected to save and restore
the contents of the A- and B-Registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction. This instruction has undefined results if
executed with CDS mode enabled.

Floating Point Instructions

The floating point instructions allow addition, subtraction, multiplication, and division
of single precision floating point quantities, and conversion of quantities from floating
point format to integer format or vice versa. The A400 has additional instructions to
convert single precision floating point quantities to double integer and vice versa.
Data formats are shown in Figure 3-1. Except for zero, all floating point operands
must be normalized (that is, sign of mantissa differs from most significant bit of
mantissa).

The execution times of the floating point instructions are spccified below in Table
3-5. Th:se instructions are noninterruptible except during iadirect address resolution;
any attempted interrupt is held off for the full execution tic1e of the currently active
floating point instruction. However, DMA operation is not held off.

Single Precision Operations. Overflow for single precision operations occurs if the
result lies outside the range of representable single precision floating point numbers
[-2%7,(1-22)2'""]. In such a case, the overflow flag is set and the result (1-272%)2'%
is returned to the A- and B-Registers. Underflow occurs if the result lies inside the
range [-27'2°(1+27%?),-27'?]. In such a case, the overflow flag is set and the result 0 is
returned to the A- and B-Registers.

FAD FLOATING POINT ADD
876154311210
olojojojoiojo

Memory Address

Adds the floating point quantity in the A- and B-Registers to the floating point
quantity in the specified memory locations. The floating point result is returned to
the A- and B-Registers.

Programming Information 3-55

FSB FLOATING POINT SUBTRACT
1514 13121110 9|8 7 6 |5 4 3 12 1 0
oloj1jofolojo

My

Memory Address

Subtracts the floating point quantity in the specified memory locations from the
floating point quantity in the A- and B-Registers. The floating point result is returned
to the A- and B-Registers.

FMP FLOATING POINT MULTIPLY
1514 1312|11109|8 76543 |21 0
1]ojojojojo

o

Memory Address

Multiplies the floating point quantity in the A- and B-Registers by the floating point
quantity in the specified memory locations. The floating point result is returned to
the A- and B-Registers.

FDV FLOATING POINT DIVIDE
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0

Nty

Memory Address
Divides the floating point quantity in the A- and B-Registers by the floating point

quantity in the specified memory locations. The floating point result is returned by
the A- and B-Registers.

3-56 Programming Information

FLOATING POINT TO
FIX SINGLE INTEGER

1511413 1211110918 7 6 |5 4 3 12 1 0
{1]olajojojajo

Converts the floating point quantity in the A- and B-Registers to single integer format.
The integer result is returned to the A-Register. If the magnitude of the floating
point number is <1, regardless of sign, the integer 0 is returned. If the magnitude of
the exponent of the floating point number is >16, regardless of sign, the integer
32767 (077777 octal) is returned as the result and the overflow flag is set.

SINGLE INTEGER TO
FLT FLOATING POINT

1514131211109 |8 76 |5 43|21 0
' 1]ojt}je]ojojo

Converts the single integer quantity in the A-Register to single precision floating point
format. The floating point result is returned to the A- and B-Registers.

FLOATING POINT TO
.FIXD*] DOUBLE INTEGER

151413 12f11109f8 76 [543]2 10
‘: 1fojojo]1jojo

Converts the floating point quantity in the A- and B-Registers to double integer
format. The integer result is returned to the A- and B-Registers. (The A-Register
contains the most-significant word and the B-Register contains the least-significant
word.) If the magnitude of the floating point number is <1, regardless of sign, the
integer 0 is returned. If the magnitude of the floating point number is >32,
regardless of sign, the integer 223-1 is returned as the result and the overflow flag is
set.

DOUBLE INTEGER TO
.FLTD* FLOATING POINT

151a1312|11109|8 76|54 3|21 0
1{oi1f{ol1fofo

Converts the double integer quantity in the A- and B-Registers to single precision
floating point format. The floating point result is returned to the A- and B-Registers.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-57

Language Instruction Set

The Language Instruction Set consists of seventeen instructions that perform certain
frequently used high-level language operations including parameter passing, array
address calculations, and floating point conversion, packing, rounding and
normalization operations.

For multiple-word instructions, indirect addressing to any number of levels is
permitted for the word(s) indicated as a memory address. A logic 0 in bit position15
specifies direct addressing; a logic 1 specified indirect addressing.

The following paragraphs provide machine language coding and definitions for the
Language Instruction Set. Data formats are shown in Figure 3-1. For a more
detailed description of instructions in the Language Instruction Set, refer to the
Relocatable Library Reference Manual, HP part no. 92077-90037.

.ZFER"* TRANSFER EIGHT WORDS
1514 1312}]11109|8 7 6 |54 3 |2 10
DE AL

N

Memory Address

Transfers eight consecutive words from one memory location to another. The source
address +8 is returned to the A-Register; the destination address +8 is returned to the
B-Register. This is a three-word instruction where:

Word 1 = Instruction.
Word 2
Word 3 = Source address.

Wraparound of either address produces undefined results. Under CDS, the source
and/or destination address may be adjusted for base relativity.

Destination address.

*Refer to the “Assembly Language” paragraph of this chapter.

3-58 Programming Information

TRANSFER COMPLEX
.CFER* OR DOUBLE FLOATING POINT

1514131211110 9|8 7 6 |5 4 3 |2 1 0
1 1 010§'f1:

Memory Address

Transfers a double precision floating point quantity (four consecutive words) from
one memory location to another. The source address +4 is returned to the
A-Register; the destination address +4 is returned to the B-Register. This is a
three-word instruction where:

Word 1
Word 2
Word 3 = Source address.

I

Instruction.

]

Destination address.

Wraparound of either address produces undefined results. Under DS, the source
and/or destination address may be adjusted for base relativity.

TRANSFER THREE
.DFER* CONSECUTIVE WORDS

1514 1312|11109f8 76 |s a3]2 10
siojtjo}1

o

Memory Address

Transfers three consecutive words from one memory location to another. The source
address +3 is returned to the A-Register; the destination address +3 is returned to the
B-Register. This is a three-word instruction where:

Word 1
Word 2
Word 3 = Source address.

Wraparound of either address produces undefined results. Under CDS, the source
and/or destination address may be adjusted for base relativity.

Instruction.

Destination address.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-59

TRANSFER PARAMETER
.ENTP* ADDRESSES

1514 13 12
1{alalo}

Transfers the true addresses of parameters from a calling sequence into a subroutine;
adjusts return address to the true return point. There must be exactly two words
between the subroutine entry point and the .ENTP instruction. A true address is
determined by eliminating all indirect references. The true return address is returned
to the A-Register. Used for privileged or re-entrant subroutines. This instruction has
undefined results if executed with CDS mode enabled.

NOTE

When calling a subroutine that uses .ENTR, do not pass a
parameter that is located in the subroutine’s .ENTR parameter
area. This can cause indeterminate results. For example:

WRONG RIGHT
jsb sub jsb sub
def *+2 def *+2
def parm def parm

. par;n nop
par;n nop par;nl nop
sub nop sub nop
jsb .entr jsb .entr
def parm def parml

TRANSFER PARAMETER
.ENTR* ADDRESSES

1514 1312|11109|8 7 6 |5 4 3 |2 1 0

Transfers the true addresses of parameters from a calling sequence into a subroutine;
adjusts return address to the true return point. A true address is determined by
eliminating all indirect references. No more than three levels of indirect addressing
are allowed per parameter. This instruction has undefined results if executed with
CDS mode enabled.

*Refer to the “Assembly Language” paragraph of this chapter.

3-60 Programming Information

TRANSFER THREE
XFER" CONSECUTIVE WORDS

1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0

Transfers three consecutive words from one memory location to another. The
A-Register must contain the source address and the B-Register must contain the
destination address. The source address +3 is returned to the A-Register; the
destination address +3 is returned to the B-Register. Wraparound of either address
produces undefined results. Under CDS, the source and/or destination addresses may
be adjusted for base relativity. ‘

.SETP" SET A TABLE
15 [14(13[12]11|10/9 187 (6 |[5|4 |3 |21 |0
1jofrjtir

0 Address where Count is given

Sets a table of increasing numbers in consecutive memory locations. The A-Register
must contain the initial number and the B-Register must contain the initial memory
address (direct only); the succeeding memory location must give the address where
the number of memory locations (count > 0) is given. Entries in the table are
established by incrementing the initial address and number by one (1) for each
successive entry until the last number, initial number, the initial address+COUNT and
the A-Register equals the initial value+COUNT. Wraparound will produce undefined
results. This instruction is interruptible. On return the B-Register equals the initial
address +COUNT. Under CDS, the memory addresses may be adjusted for base
relativity.

NOTE

If the initial address +COUNT -1 results in an address which is
beyond the end of logical memory, addresses within the base page
are destroyed.

COMPLEMENT AND NORMALIZE
..FCM* SINGLE FLOATING POINT

1514 1312|11109]18 7 6 |56 4 3 |2 1 0
gi1{14041{0

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-61

Complements and normalizes in place a packed single precision floating point
quantity located in the A- and B-Registers. The result is returned to the A- and
B-Registers.

SINGLE FLOATING POINT TO
.BLE* DOUBLE FLOATING POINT

15114 1312|1110 9|8 7 6 |5 4 3]2 1 O

g

Memory Address

Converts the single precision floating point quantity in specified memory locations to
a double-precision floating point quantity. The result is returned to other specified
memory locations. This is a four-word instruction where:

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of result.

Word 4 = Address of operand.

UNPACK FLOATING
.FLUN" POINT QUANTITY

15114 1312|1110 9|8 7 6 |5 43 12 1 0

Unpacks a floating point quantity. The lower part of the floating point quantity must
be in the B-Register. The exponent is returned to the A-Register, the lower part of
the mantissa is returned to the B-Register.

*Refer to the “Assembly Language” paragraph of this chapter.

3-62 Programming Information

DOUBLE FLOATING POINT TO
.NGL* SINGLE FLOATING POINT

141312l11109|8 76|54 3|21 0
tol1l1iofo

N

Memory Address

Converts the double precision floating point quantity in the specified memory
locations to a single precision floating point quantity. The result is placed in the A-
and B-Registers. Overflow is cleared unless, during execution, rounding results in
overflow or underflow of the exponent, in which case overflow is set and the result is
truncated to the greatest positive number. This is a three-word instruction where:

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of operand.

NORMALIZE FLOATI*.G
.PACK™ POINT QUANTITY

15114 131211110918 7 6 |5 4 3 |2 = O
11]o]o}o

Converts the signed mantissa of a floating point quantity into a normalized format.
The floating point quantity must be in the A- and B-Registers. The succeeding
instruction must reserve one word of memory for temporary storage of the exponent.

The first word of the two-word floating point result is returned to the A-Register; the
second word, to the B-Register.

X TIMES 2 TO
.PWR2* THE POWER N
15413 12}]11109}8 76 |54 3 |2 10
+To] o]

Calculates for floating point x and integer n: y = x*2". The floating point quantity
must be in the A- and B-Registers; the succeeding instruction must define integer n.

The first word of the two-word floating point result is returned to the A-Register; the
second word, to the B-Register.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-63

NEGATE DOUBLE
.. TCM* FLOATING POINT

15114 1312|1110 9|8 7 6 |5 4 3 |2 1 O

i

Memory Address

Negates a packed double precision floating point quantity located in the specified
memory locations. The result is returned to the same specified memory locations.

.ENTN* TRANSFER PARAMETER ADDRESSES
15|14 1312[1110 9|8 7 6 |5 4 3 |2 1 0

Transfers the true addresses of parameters from a calling sequence into a subroutine;
adjusts return address to the true return point. The return address stored in the SUB
entry point references the word following the last parameter DEF in the calling
routine. A true address is determined by eliminating all indirect references. This
instruction has undefined results if executed with CDS mode enabled.

.ENTC* TRANSFER PARAMETER ADDRESSES
151413121110 9|8 7 6 |5 4 3 |2 1 O

Transfers the true addresses of parameters from a calling sequence into a subroutine;
adjusts return address to the true return point. The return address stored in the SUB
entry point references the word following the last parameter DEF in the calling
routine. There must be exactly two words between the subroutine entry point and the
.ENTC instruction. A true address is determined by eliminating all indirect
references. The true return address is returned to the A-Register. Used for
privileged or re-entrant subroutines. This instruction has undefined results if
executed with CDS mode enabled.

*Refer to the “Assembly Language” paragraph of this chapter.

3-64 Programming Information

SINGLE INTEGER
.CPM* ARITHMETIC COMPARE

1413 12|1110 9 8761543 210
1111

Return if operand 1 = operand 2

Return if operand 1 < operand 2

Return if operand 1 > operand 2

Arithmetically compares operands addressed by second and third word. Does not
skip if operands are equal; however, skips one instruction if the first operand is less
than the second, or skips two instructions if the first operand is greater than the
second.

Double Integer Instructions

The double integer instructions allow arithmetic and test operations on 32-bit integer
quantities. The data format for double integer values is shown in Figure 3-1.

Double integer values contained in the (A,B) registers have the most significant bits
in the A-Register. Values stored in memory require two locations. The operand
address in a double integer instruction points to the first memory location, which
contains the most significant bits. Double integer instructions clear the overflow
register upon entry, and will set the O-Register if an overflow occurs. The E-Register
is never cleared by a double integer instruction.

.DAD* DOUBLE INTEGER ADD
1514 1312[11109)8 76543]2 10
i1]tjoio

Y

Memory Address

Performs the double integer operation:
(A,B) = (A,B) + <OPND>

The contents of <OPND> are unaltered. In the event of overflow, the overflow bit is
set and the returned

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-65

result contains the lower 32 bits of the actual sum, in unsigned form. The extend bit
will be set if an unsigned carry out of the A-Register occurs.

.DSB* DOUBLE INTEGER SUBTRACT
1514 13121110 9|8 7 6 |56 4 3 J2 1 0O
Rk 1 1 0 0

N o

Memory Address

Performs the double integer operation:
(A,B) = (A,B) - <OPND>

The contents of <OPND> are unaltered. In the event of overflow, the overflow bit is
set and the returned result contains the lower 32 bits of the actual difference, in
unsigned form. The extend bit will be set if an unsigned borrow out of the
A-Register occurs.

DOUBLE INTEGER
.DSBR* SUBTRACT REVERSE
15 |14 13 12 876(543(|210

—

Memory Address

Performs the double integer operation:
(A,B) = <OPND> - (A,B)
The contents of <OPND> are unaltered. In the event of overflow, the overflow bit is

set and the returned result contains the lower 32 bits of the actual difference, in
unsigned form. The extend bit will be set if an unsigned borrow occurs.

*Refer to the “Assembly Language” paragraph of this chapter.

3-66 Programming Information

DOUBLE INTEGER DECREMENT
.DDS* AND SKIP iF ZERO

151413 12|11109|8 76 |54 3 |2 10
ol 1]oj1 |1

g

Memory Address

Performs the double integer operation:
<OPND> = <OPND> - 1

If the new value of <OPND> equals zero, the next instruction will be skipped. The
value in <OPND> is treated as an unsigned number, and a borrow out of the
<OPND> is ignored.

.DNG* DOUBLE INTEGER NEGATE
1514 1312[11109|8 76 |54 3 |2 10
ojojajrit

Memory Address
Performs the double integer operation:

(A,B) = - (A,B)

An input value of (100000,000000) is left unchanged and overflow is set. An input
value of zero will cause the extend bit to be set.

.DCO* DOUBLE INTEGER COMPARE
15|14 1312]1110 98 7 6 |5 4 3 |2 1 0

Memory Address
Compares the double integers (A,B) and <OPND>

if (A,B) = <OPND> Return to P+2
If (A,B) < <OPND> Return to P+3
If (A,B) > <OPND> Return to P+4

where P is the address of the .DCO instruction. The value of both double integers
and the overflow bit are unaltered.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-67

.DIN* DOUBLE INTEGER INCREMENT
15141312[1110 9|8 7 6 |5 4 3 |2 1 0

Performs the double integer operation:
(AB) = (AB) +1

An input value of (077777, 177777) will return a result of (100000, 000000) and set
overflow. An input value of (177777, 177777) will return a result of zero and cause

the extend bit to be set.

.DDE* DOUBLE INTEGER DECREMENT
15 j14 13 121110 9

Performs the double integer operation:
(AB) =(AB) -1

An input value of (100000, 000000) will return a result of (077777, 177777) and set
overflow. An input value of zero will return a result of (177777, 177777) and cause

the extend bit to be set.

DOUBLE INTEGER INCREMENT
.DIS* AND SKIP IF ZERO

1514 1312]1110 9|8 7 6 |5 4 3 |2 1 0

Memory Address

Performs the double integer operation:
<OPND> = <OPND> + 1

If the new value of <OPND> equals zero, the next instruction will be skipped. The
value in <OPND> is treated as an unsigned number, and a carry out of the <OPND>
is ignored.

*Refer to the “Assembly Language” paragraph of this chapter.

3-68 Programming Information

.DDI* DOUBLE INTEGER DIVIDE
8|76 |5]a]3 |2[1]0

My

Memory Address

Performs the double integer operation:
(A,B) = (A,B) - <OPND> _
The contents of <OPND> are unaltered. If overflow or divide by zero occurs, the
result (077777,177777) is returned and overflow is set.
DOUBLE INTEGER
.DDIR* DIVIDE REVERSE
15|14 1312|1110 9|8 7 6 |54 3 |2 1 0

S

Memory Address
Performs the double integer operation:
(A,B) = <OPND> + (A,B)

The contents of <OPND> are unaltered. If overflow or divide by zero occurs, the
result (077777,177777) is returned and overflow is set.

.DMP* DOUBLE INTEGER MULTIPLY
15114 1312|1110 98 7 6 |5 4 3 |2 1 O

e

Memory Address

Performs the double integer operation:
(A,B) = (A,B) x <OPND>

The contents of <OPND> are unaltered. If overflow occurs, the result
(077777,177777) is returned and overflow is set.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-69

Virtual Memory Instructions

The Virtual Memory Instructions perform accesses to virtual memory and the
extended area, which are extensions of logical memory. If an addressed data item is
in physical memory, the instructions perform the required mapping, including
modification of map registers and entry of the appropriate page numbers into the
user’s logical address space. If an addressed data item is not in physical memory, a
fault is generated to a macrocode routine which swaps the data from the disc into
physical memory and then restarts the VMA instruction. The fault sequence
generated depends on whether the CDS mode is enabled. If CDS mode is disabled, a
JSB,I through memory location 04 in the user map is effected. Memory location 04
is expected to contain the address of the entry point of the VMA fault-handler in the
user space (indirect addressing is not allowed). If CDS mode is enabled, an interrupt
is generated to trap cell 12 octal in the system map. As the VAM fault interrupt is
the lowest priority interrupt, any other pending interrupts will be serviced first.

NOTE

VMA always maps the page that the requested VMA address is on
in addition to the next page, ensuring that entire data items up to
1k words in size are mapped-in. The exception to this is .PMAP,
which only maps-in the requested page.

.PMAP*] MAP SPECIFIED PAGE

Error return

Normal return

On entry, the A-Register is loaded with the number of the user-map register to be
altered and the B-Register is loaded with the page ID, which are the parameters
passed to the routine. If an attempt is made to map in the last+1 page, that PMR is
mapped read and write protected. When no error occurs, a normal return occurs to
the second word after the instruction; mapping is complete; and the contents of the
A- and B-Registers are incremented. If a fault occurs and the sign bit is set in the
A-Register, an error return to the word that follows the instruction occurs. If a fault
occurs, and the sign bit is not set in the A-Register, a normal fault sequence is
generated. The O-,X-, and Y-Registers are undefined. The E-Register is set if an
attempt was made to map the last+1page; otherwise it is cleared.

*Refer to the “Assembly Language” paragraph of this chapter.

3-70 Programming Information

The .PMAP instruction uses the-last user page (31) of memory and then maps that
logical page read and write protected. After a .PMAP call, memory references to
address >75777 octal will cause memory protect violations.

.IMAP* 16-BIT SUBSCRIPT MAPPING
15 10|19 18(7(6 |5|4|3 |2]|1 |0

D/I

Word 2 = DEF dope vector

Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation and maps the result into logical memory. Each of
the subscripts and dimensions are 16-bit integers. However, the calculation uses
32-bit adds and multiplies. The subscripts are sign-extended to 32 bits. The
subscript words cannot address the A- or B-Register.

Word 2 points to a table that specifies in order the number of dimensions, dimension
sizes, the number of words per element, and a two-word offset.

On a normal return, the A-, X-, Y-, E- and O-Registers are undefined and the
B-Register contains the logical address.

.IRES* 16-BIT SUBSCRIPT RESOLUTION
15 [14

D

|
Word 2 = DEF dope vector
Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation. Each of the subscripts and dimensions are 16-bit
integers. However, the calculation uses 32-bit adds and multiplies. The subscripts
are sign-extended to 32 bits. The subscript words cannot address the A- or
B-Register.

Word 2 points to a table that specifies in order the number of dimensions, dimension
sizes, the number of words per element, and a two-word offset.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-71

On a normal return, the A- and B-Registers contain the address of the array element
in double-integer format (most significant word in the A-Register).

JMAP* 32-BIT SUBSCRIPT MAPPING
15 j14|13

0,

Word 2 = DEF dope vector
Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation and maps the result into logical memory. Each of
the subscripts and dimensions are 16-bit integers, and the calculation uses 32-bit adds
and multiplies. The subscripts are sign-extended to 32 bits. The subscript words
cannot address the A- or B-Register.

Word 2 points to a table that specifies the number of dimensions, dimension sizes,
the number of words per element, and a two-word offset.

On a normal return, the A-, X-, Y-, E-, and O-Registers are undefined and the
B-Register contains the logical address.

JRES* ~ 32-BIT SUBSCRIPT RESOLUTION

Word 2 = DEF dope vector

Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation. Each of the subscripts and dimensions are 16-bit
integers, and the calculation uses 32-bit adds and multiplies. The subscript words
cannot address the A- or B-Register.

Word 2 points to a table that specifies the number of dimensions, dimension sizes,
the number of words per element, and a two-word offset.

On a normal return, the A- and B-Registers contain the address of the array element
in double-integer format (most significant word in the A-Register).

*Refer to the “Assembly Language” paragraph of this chapter.

3-72 Programming Information

.LPXR* INDEXED MAPPING WITH DEF
15|14 1312}]1110 9|8 7 6 |5 4 3 |2 1 0

ot

Memory Address

On entry, the pointer specified by the second instruction word is resolved, and the
double word it points to is loaded into the A- and B-Registers. The offset specified
in the third instruction word is resolved, and the double word it points to is added to
the contents of the A- and B-Registers. The result is treated as a 26-bit VMA pointer
and is mapped. On exit, the B-Register contains the logical address of the data item,
and the A-, X-, Y-, E-, and O-Registers are undefined. The offset word cannot refer
to the A- or B-Register.

LPX* INDEXED MAPPING WITH REGISTERS
15fa1312]11100]|s8 76543 f210
| 1]1]0]1

e

Memory Address

On entry, the second instruction word either directly or indirectly points to a double
integer in memory, which is to be added to the double integer in the A- and
B-Registers to form a double-word VMA pointer. If bit 15 of the A-Register is set,
the B-Register contains the address of a data item presently residing in logical
memory and the .LPX instruction does nothing; otherwise, the data item is mapped.
On exit, the B-Register contains the logical address of the data item, and the A-, X-,
Y-, E-, and O-Registers are undefined.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-73

.LBPR* MAPPING WITH DEF
1514 1312]11109|8 76 |5 4 3 |2 1 0
i1l11}0

s

Memory Address

On entry, the pointer specified by the second instruction word is resolved and the
double word it points to is loaded into the A- and B-Registers. This value is treated
as a 26-bit VMA pointer and is mapped. On exit, the B-Register contains the logical
address of the data item, and the A-, X-, Y-, E-, and O-Registers are undefined.

.LBP* MAPPING WITH REGISTERS
111098 76 |54 3}210

On entry, the 26-bit VMA pointer is contained in the A-Register (most significant
word) and B-Register; if bit 15 of the A-Register is set, the B-Register contains the
address of a data item presently residing in logical memory; otherwise, the data item
is mapped. On exit, the B-Register contains the logical address of the data item, and
the A-, X-, Y-, E-, and O-Registers are undefined.

Operating System Instruction Set

The operating system instructions provide instructions for ascertaining the CPU and
firmware identification, and instructions for interrupt conditions.

.CPUID* 7 PROCESSOR IDENTIFICATION
15|14 1312|1110 9|8 7 6

The A-Register is loaded with a number that identifies the type of processor installed
in the computer system, where:

Octal 2 = A600
Octal 3 = A700
Octal 4 = A900
Octal 5 = A600+
Octal 7 = A400

*Refer to the “Assembly Language” paragraph of this chapter.

3-74 Programming Information

FWID* FIRMWARE IDENTIFICATION
15|14 1312|1110 9}8 7 6 |5 4 3 |2 1 0

On exit, the A-Register contains a number that identifies the revision code of the
firmware.

.WFI* WAIT FOR INTERRUPT
1514 1312[1110 918 7 6 |5 4 3 |2 1 0

This instruction is equivalent to a JMP* except that the processor does not perform
memory accesses, which would decrease the effective bandwidth of the memory
backplane. This instruction is interruptible.

.Sip* SKIP IF INTERRUPT PENDING
1514 1312|1110 9|8 7 6 |5 4 3 |2 1 0

The processor skips if an /O interrupt is pending (INTRQ- is asserted on the A-series
backplane), which is independent of the Level 2 and Level 3 interrupt masks.

Execution Times

Table 3-5 lists the execution times required for the various base set instructions.
Table 3-6 lists the execution times required for double precision floating point
instructions.

Double-Precision Floating Point
Instructions

The double-precision floating point instructions are standard in the base set and
provide for add, subtract, multiply and divide operations on a double-precision value,
as well as instructions that convert double-precision floating point values to or from
single and double integer fixed values.

Overflow for double precision operations occurs if the result lies outside the range of
representable double precision floating point numbers [-2'?7,(1-2%)27'*"]. In such a
case, the overflow flag is set and (1-27%%)2'*" is returned as the result. Underflow
occurs if the result lies inside the range [-27'**(1+27%*),27']. In such a case, the
overflow flag is set and 0 is returned as the result.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information 3-75

DOUBLE FLOATING
.TADD* POINT ADD

1514 1312111098 76 |5 4 3]2 1 0
{ojojoloj1}o

i s

Memory Address

Adds two double precision floating point quantities (augend plus addend). This is a
four-word instruction where:

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of augend.
Word 4 = Address of addend.

DOUBLE FLOATING

.TDIV* POINT DIVIDE
1514 1312}11109]|8 76 |5 4 3

. y{1j1j0fof1|c
D

/)

D,

D

/)

Memoryv Address

Divides one double precision floating point quantity by another (dividend by divisor).
This is a four-word instruction where:

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of dividend.
Word 4 = Address of divisor.

It

*Refer to the “Assembly Language” paragraph of this chapter.

3-76 Programming Information

DOUBLE INTEGER TO

TFTD* DOUBLE FLOATING POINT
1514 1312|1109 76 |543]210
1{of1|of1|1]o0

Converts the double integer quantity in the A- and B-Registers to double precision

Wy oo

Memory Address

floating point format. The floating point result is returned to the specified memory

locations.

SINGLE INTEGER TO

.TFTS* DOUBLE FLOATING POINT
15114 13121110 9|8 7 6 |5 4 3 |2 1 O
of1}ojoj1}o

Converts the single integer quantity in the A-Register to double precision floating

By

Memory Address

point format. The floating point result is returned to the specified memory locations.

DOUBLE FLOATING

.TFXD* POINT TO DOUBLE INTEGER
1514 1312|11109]8 7 6 |54 3 |2 1 0
ojofafi]1]e

Converts the double precision floating point quantity in the specified memory
locations to double integer format. The integer result is returned to the A- and

e

Memory Address

B-Registers. (The A-Register contains the most-significant word and the B-Register

contains the least-significant word.) If the magnitude of the floating point number is
<1, regardless of sign, 0 is returned as the result. If the magnitude of the exponent
of the floating point number is > 32, regardless of sign, the integer 2*'-1 is returned
as the result and the overflow flag is set.

*Refer to the “Assembly Language” paragraph of this chapter.

Programming Information

3-77

DOUBLE FLOATING
.TFXS* POINT TO SINGLE INTEGER

14 13 12 543|210
ojolojol1{o

Memory Address

Converts the double precision floating point quantity in the specified memory
locations to single integer format. The integer result is returned to the A-Register. If
the magnitude of the floating point number is <1, regardless of sign, 0 is returned as
the result. If the magnitude of the exponent of the floating point number is > 16,
regardless of sign, the integer 2'°-1 is returned as the result and the overflow flag is
set.

DOUBLE FLOATING
.TMPY* POINT MULTIPLY

15|14 1312]111109|8 7 6 |56 4 3 |2 1 O

1fofalaj1]e

e

Memory Address

Multiplies one double precision floating point quantity by another (multiplicand by
multiplier). This is a four-word instruction where:

Word 1
Word 2
Word 3 = Address of multiplicand.
Word 4 = Address of multiplier.

Instruction code.

Address of result.

*Refer to the “Assembly Language” paragraph of this chapter.

3-78 Programming Information

DOUBLE FLOATING
.Tsus* POINT SUBTRACT

1514 1312|11109|8 76|54 3|2 10
Joj1}o]oi1{o

——

Memory Address

Subtracts one double precision floating point quantity from another (minuend from
subtrahend). This is a four-word instruction where:

Word 1 = Instruction code.

Word 2 = Address of result.
Word 3 = Address of minuend.
Word 4 = Address of subtrahend.

uwn

Assembly Language

New instructions not recognized by the HP Macroassembler require different handling
in HP Assembly Language programming. These instructions are asterisked in the
preceding paragraphs and must be used in the form: JSB x where x is the
instruction. (The instruction, x, must be declared as an external at the beginning of
the assembly language program.) Most of these instructions correspond to library
subroutines** and must be implemented into HP RTE systems (as described in the
following paragraph) to enable their execution in firmware instead of software.

*Refer to the “Assembly Language” paragraph of this chapter.
**Refer to the Relocatable Library Reference Manual, HP part no. 92077-90037

Programming Information 3-79

RTE Implementation

New instructions are implemented in an RTE-A system by changing library entry
points during the parameter input phase of system generation. (Refer to the
appropriate RTE manual for the system generation procedures.) Using the list of
entry point opcodes given in Table 3-7, make the entry changes as indicated below:

LPMR,RP, 105700
SMPR,RP,105701

.ADQE,RP, 105413
Alternatively, entry points may be changed by loading (via LINK) a “replacement”

module when user programs are loaded. Opcode replacement modules RPL60
through RPL63 are included in the RTE-A system.

3-80 Programming Information

Table 3-5. Typical Base Set Instruction Execution Times

INSTRUCTION EXECUTION TIME (usec)

Memory Reference
Group

(Direct)
LDA/B, STA/B
ADA/B, IOR, XOR, AND
CPA/B
ISZ without skip
with skip

(4]

JSB

JMP

(One Indirect)

LDA/B, STA/B

ADA/B, IOR, XOR, AND
CPA/B

1SZ

JSB

JMP

(Each Additional Indirect)

N Nwm o oo

O b b s -
[¢,]

O = = NN =
oo onom

Alter/Skip Group 0.75 to 2.25
Shift/Rotate Group 0.75 to 3.00
Extended Arithmetic

Group
DLD 2.5
DST 2.25
MPY 6.00
Div 8.5t09.5
ASL 1.75 plus 0.50/shift
ASR, LSL, LSR, RRL, RRR 1.75 plus 0.25/shift

Input/Output Group

HLT 18.75
By select code:
SCO0: CLF 4.5
STF 5.75
SFC, SFS
without skip 4.25
with skip 4.75
LIA/B 6.65
OTA/B 6.00
CcLC 13.65

Pragramming Information 3-81

Table 3-5. Typical Base Set Instruction Execution Times (Continued)
INSTRUCTION EXECUTION TIME (usec)
input/Output Group
(Continued)
SC1: CLF,STF 2.0
SFC, SFS
without skip 2.5
with skip 2.75
LIA/B 16.25
OTA/B 2.75
Ssc2: STF 475
CLF 4.00
SFC, SFS
without skip 4.5
with skip 4.75
LIA/B 6.75
OTA/B 6.0
STC 3.5
SC3: LIA/B 6.75
OTA/B 6.00
SC4: SFC, SFS
without skip 2.75
with skip 3.00
LIA/B 2.75
OTA/B 3.00
CLC 3.5
STC 3.5
SC5: SFC, SFS
without skip 3.00
with skip 3.50
STF 2.50
CLF 2.75
LIA/B 3.00
CLC, STC 2.75
SC6: SFC, SFS
without skip - 3.50
with skip 3.7%
STF, CLF 5.00
CLC 45
STC 3.00
SC7: STC 3.00
LIA/B 3.25

3-82 Programming Information

Table 3-5. Typical Base Set Instruction Execution Times (Continued)

INSTRUCTION

EXECUTION TIME (psec)

Input/Output Group
(Continued)

SC20 and up:
CLC, CLF, STC,
and STF 3.50
SFC, SFS
without skip 3.50
with skip 5.25
LIA/B 6.00
MIA/B 6.00
OTA/B 5.25
Extended Instruction
Group
(Index Register Instructions
ADX, ADY 1.75
CXA, CXB, CYA, CYB 0.75
DSX, DSY 1.25
XAX, XBX, XAY, XBY 1.25
STX, STY 1.75
LDX, LDY 1.75
CAX, CBX, CAY, CBY 0.75
LAX, LBX, LAY, LBY 2.25
SAX, SBX, SAY, SBY 2.25
ISX, ISY 1.25
JLY, JPY 1.75
Per each indirect address
level 0.50
JLA, JLB 1.75
(Bit Manipulation
instructions)
CB8S, SBS, TBS 3.5

(Word Manipulation
Instructions)

MVW

CMW

(Byte Manipulation
Instructions)

LBT

SBT

MBT, CBT

SFB (Exit on location of
byte

3.75 plus 2.33/byte
3.75 plus 1.25/word

1.75
2.50
4.25 plus 2.33/byte

1.50 plus 1.50/byte

Programming Information

3-83

Table 3-5. Typical Base Set Instruction Execution Times (Continued)

INSTRUCTION EXECUTION TIME (usec)

Floating Point Group

(Single Precision)

FLT 1.75 to 6.50
FIX 1.50 to 6.50
FAD, Fs8 7.75 to 26.00
FMP 13.775 to 25.25

Language Instruction Set

.ENTR 4.75

.ENTP 5.25

.ENTN 3.5

.ENTC 4.25

per parameter (no indirect) 1.00

per indirect address level 1.00

.SETP (interruptible) 3.25

per table entry 0.50

.XFER 4.5

.DFER 5.75

.CFER 7.00

.ZFER 11.00

.CPM 3.50 to 4.25
..FCM 1.50 to 6.50
.NGL 59t05.9
.BLE 5.2t06.8
..TCM 7.0 to 8.0
.FLUN 1.6t0 1.6
.PACK 8.0t0 9.9
.PWR2 3.6 to 3.9

Double Integer

Instructions

.DAD 2.50 to 3.50
.DSB, DSBR 3.250 to 3.50
.DNG, DIN, DDE 1.75

.DCO 3.25 to 3.50
.DIsS 2.75 t0 3.25
.DDS 3.00

.DMP standard 16.75 to 27.00
.DDI standard 9.25 to 73.10
.DDIR standard 9.5 to 73.50

3-84 Programming Iinformation

Table 3-5.

Table 3-6. Double Precision Floating Point Execution Times

Typical Base Set Instruction Execution Times (Continued)

INSTRUCTION

EXECUTION TIME (usec)

Virtual Memory
Instructions

.LBP 6.25
.LBPR 7.00
.LPX 7.75
.LPXR 9.00
.IMAP (Basic) 9.75

Per parameter (standard) 9.75 to 14.75
JMAP 9.75

Per parameter (standard) 11.00 to 26.00
.IRES (Basic) 5.0

Per parameter (standard) 9.75 to 14.75
.JRES (Basic) 5.5

Per parameter (standard) 11.00 to 26.00
.PMAP 5.00 to 6.00
Operating System

Instructions
.CPUID 1.25
.FWID 2.50
.SIP 1.50

with skip 1.36

.WFI Until interrupted

Dynamic Mapping
System Instruction
Group

Refer to Chapter 4 for
detailed descriptions and
execution times.

INSTRUCTION EXECUTION TIME (usec)

FIXD 7.0to 8.2

FLTD 8.0 to 8.6

.TADD, .TSUB 23 to 26

.TOIV 68 to 72

.TFXS 8.0t0 9.5

.TFTS 9.5 to 10.4

.TFXD 9.5 to 10.7

.TFTD 10 to 11.1

.TMPY 57 to 59

Programming Information

3-85

Table

3-7. Instructions and Opcodes for RTE-A Implementation

INSTRUCTION OCTAL|[INSTRUCTION OCTAL [INSTRUCTIONl OCTAL| INSTRUCTION OCTAL
MNEMONIC |[OPCODE{MNEMONIC |OPCODE| MNEMONIC [OPCODE| MNEMONIC OPCODE
LPMR 105700 JLy 105762 JLA 100600 TFTD 105126
SPMR 105701 JPY 105772 JLB 104600 _TFXS 105102
LDMP 105702 LBT 105763 XLA 101724 .TFXD 105106
STMP 105703 SBT 105764 XLD 101724 NGL 105214
LWD1 105704 MBT 105765 XLB 105724 .BLE 105207
LWD2 105705 CBT 105766 XSA 101725 _FLUN 105226
SWMP 105706 SFB 105767 XsT 101725 _PACK 105230
SIMP 105707 SBS 105773 XSB 105725 .FIXD 105104
XJMP 105710 CBS 105774 XCA 101726 FLTD 105124
XJCQ 105711 TBS 105775 XCB 105726 .PWR2 105225
XLA1 101724 MVW 105777 MWF 105732 .DMP 105054
XLA2 101421 CMW 105776 MWI 105730 .DDI 105074
XLB1 105724 _XFER 105220 MWW 105733 .DDIR 105134
XLB2 105721 ENTR 105223 MBF 101732 .PCALI 105400
XSA1 101725 ENTP 105224 MBI 101730 .PCALX 105401
XSA2 101722 .ENTN 105234 MBW 101733 .PCALV 105402
XSB1 105725 ENTC 105235 IMAP 105250 .PCALN 105404
XSB2 105722 .DFER 105205 IRES 105244 .PCALR 105406
XCA1 101726 .CFER 105231 .JRES 105252 EXIT 105417
XCA2 101723 .FCM 105232 JMAP 105245 EXIT1 105415
XCB1 105726 .ZFER 105237 .LPXR 105254 EXIT2 105416
XCB2 105723 SETP 105227 .LPX 105255 .SOSP 105406
MW00 105727 $SETP 105227 .LBPR 105256 .CCQA 101406
MWO1 105730 .CPM 105236 .LBP 105257 .CCQB 105406
MWO2 105731 .DNG 105203 .FAD 105000 .CACQ 101407
MW10 105732 .Dco 105204 .FAD 105000 .CBCQ 105407
MW11 105733 .DIN 105210 .FSB 105020 .CZA 101410
MW12 105734 .DDE 105211 FSB 105020 .CZB 105410
MW20 105735 .DIS 105212 .FMP 105040 .CAZ 101411
MW21 105736 .DDS 105213 FMP 105040 .CBZ 105411
Mw22 105737 .DAD 105214 .FDV 105060 .CIQA 101412
MB0O 101727 .DSB 105014 FDV 105060 .ClQB 105412
MBO1 101730 .DSBR 105034 FIX 105100 .ADQA 101413
MB02 101731 .PMAP 105240 FIX 105100 .ADQB 105413
MB10 101732 CXA 101744 IFIX 105100
MB11 101733 CYA 101754 FLT 105120
MB12 101734 CXB 105744 FLT 105120
MB20 101735 cyB 105754 FLOAT 105120
MB21 101736 XAX 101747 .CPU 105300
MB22 101737 XAY 101757 .FWID 105301
SAX 101740 XBX 105747 WFI 105302
SAY 101750 XBY 105757 SIP 105303
SBX 105740 STX 105743 .DLD 104200
sBY 105750 STY 105753 .DST 104400
CAX 101741 LDX 105745 .MPY 100200
CAY 101751 LDY 105755 DIV 100400
CBX 105741 ISX 105760 .TADD 105002
cBY 105751 ISY 105770 .TSUB 105022
LAX 101742 DSX 105761 .TMPY 105042
LAY 101752 DSY 105771 .TDIV 105062
LBX 105742 ADX 105746 ..TCM 105233
LBY 105752 ADY 105756 .TFTS 105122

3-86 Programming Information

Dynamic Mapping System

The basic addressing space of the HP 1000 A400 computer is 32768 words, which is
referred to as logical memory. The amount of memory actually installed in the
computer system is referred to as physical memory. The Dynamic Mapping System
(DMS) is standard logic in the HP 1000 A400 computer and provides an addressing
capability for up to 16 million words of physical memory. The DMS allows logical
memory to be mapped into physical memory through the use of dynamically alterable
memory maps.

Memory Addressing

The basic memory addressing scheme provides for addressing 32 pages of logical
memory, each page consisting of 1024 words. This memory is addressed through a
15-bit logical address bus as shown in Figure 4-1. The upper 5 bits of this bus
provide the logical page address and the lower 10 bits provide the relative word offset
within the page.

0 0
4
10 bits Page Offset
Logical { | — 9
Address Y | _________ 10
Logical Page
5 bits Address
\
14 14

Figure 4-1. Basic Logical Memory Addressing Scheme

Dynamic Mapping System 4-1

Also associated with any memory access is a 5-bit logical map number. The DMS
converts the logical map number and the logical page address into a 14-bit physical
page number, thereby allowing 16k (2'*) pages of physical memory to be addressed.
This conversion is accomplished by having the 5-bit logical map number and the 5-bit
logical page address access 1024 page mapping registers (PMRs), each of which is 16
bits wide. Each of these map registers contains the user-specified (privileged) 14-bit
page address. This new page address is combined with the original 10-bit page offset
to form a 24-bit memory address as shown in the Figure 4-2. The PMRs also contain
two bits of memory protection information. Bit 15 indicates that the page is
read-protected when privileged mode is disabled. Bit 14 indicates that the page is
write-protected when privileged mode is disabled. Any attempt to read from a
read-protected page will result in a read violation and the memory read will return an
undefined result. Any attempt to write into a write-protected page will result in a
write violation and the memory will not be altered. If a read or write violation
occurs, the DMS signals the memory protect logic (part of the memory controller)
that a violation has occurred, which causes the memory protect logic to generate an
interrupt. As discussed in the “Interrupt System” chapter, memory protect violations
are interrupted to select code 07.

The width of the PMRs is limited to a 16-bit word, of which two bits specify
read/write protection, so the maximum width of the physical page address is 14 bits.

[0 0 0 ow
Page
Offset ~ o
0
-—(Logical 10--- -— 0
Page : Physical
Address |’ Page }
14 Mapping Address
Registers
\ 14 Oeem (PMRs)
Map .
Number -
4--- --—-13 23]
] 10
Logical ---14 Write-Protect
Address ---15 Read-Protect

Figure 4-2. Expanded Memory Addressing Scheme

General Descriptions

Page Mapping Register Instructions

The page mapping register instructions allow the privileged user to alter the PMRs,
each of which have the following format:

4-2 Dynamic Mapping System

PAGE MAPPING REGISTER FORMAT

0

.] physical page number
13
14 —-write protect this page
15 --read protect this page

The page mapping register instructions are:

LPMR - load a PMR indexed by A-Register from B-Register
SPMR - store a PMR indexed by A-Register to B-Register
LDMP - load a map from memory '

STMP - store a map to memory

All of these instructions are privileged.

Working Map Instructions

The computer maintains three logical maps, cumulatively called the Working Map Set
(WMAP). The working map instructions allow the system to alter the logical maps,
and also to start a user program.

The Execute map is the map number used for instruction fetches and normal memory
accesses. The data maps (DATA1 and DATAZ2) are the map numbers used in
cross-map memory references. There are two data maps to allow the system to do
cross-map moves from one area of memory to another without having to go through
the system map. In addition, this feature allows the system to be able to quickly
access one area of memory (such as a System Available Memory map) while being
able to also access another (such as the user’s map). Memory references to locations
0 or 1 in the Execute map are defined to access the A- or B-Registers, respectively.
References to 0 or 1 in the data maps are defined to access physical memory
locations.

The computer has an additional working map called the Code map. The Code map
is defined as the Execute map that has been inclusively OR’d with 1, following which
the original Execute map is redefined as the data map. The use of separate maps
for both code and data occurs only when CDS mode is enabled, and effectively
doubles the logical address space for user programs. The format of WMAP is as
follows:

Dynamic Mapping System 4-3

WMAP FORMAT

0

:] Execute map number

4

5

i] DATA1 map number

9

10

: } DATA2 map number

14

15 ~-- memory protection enable

Upon servicing interrupts, the computer saves the currently executing WMAP in a
register called IMAP, and loads WMAP with the following values:

1. The DATA1 map is set to the old Execute map.
2. The new Execute map is set to zero.

3. The DATA2 map contains an undefined value.
4. Memory protection is disabled.

The working map instructions are:

XIMP - cross jump

XJCQ - cross map jump (and load C and Q)
SWMP - store current WMAP into memory

SIMP - store current IMAP into memory

LWD1 - load WMAP field DATA1 from memory
LWD2 - load WMAP field DATA2 from memory

All of these instructions are privileged.

Cross-Map Instructions

While the working map instructions provide a way to load the working map set, the
cross-map instructions provide a means to use them.

These instructions are non-privileged. For all of these instructions, indirect DEF
references are done through the Execute map, while the final reference is done
through the specified map. When Code and Data Separation (CDS) is enabled, any
memory accesses involving the Execute map number are considered to be data
accesses, and the base register hardware will add the base (Q) register value to
memory addresses from 2 through 1023. Memory accesses involving the DATA1 or
DATA2 map numbers are done with CDS disabled, so accesses to the base page will
not have the base register added.

4-4 Dynamic Mapping System

Abbreviations used are:

“0” - means logical Execute map
“1” - means logical DATA1 map
“2” - means logical DATA2 map

The cross map instructions are:

XLA1 - cross load A through the DATA1 map
XLB1 - cross load B through the DATA1 map
XLA2 - cross load A through the DATA2 map
XLB2 - cross load B through the DATA2 map
XSA1 - cross store A through the DATA1 map
XSB1 - cross store B through the DATA1 map
XSA2 - cross store A through the DATA2 map
XSB2 - cross store B through the DATA2 map
XCA1 - cross compare A through the DATA1map
XCB1 - cross compare B through the DATA1 map
XCA2 - cross compare A through the DATA2 map
XCB2 - cross compare B through the DATA2 map
MWO00 - cross move words from Execute to Execute
MWO01 - cross move words from Execute to DATA1
MW02 - cross move words from Execute to DATA2
MW10 - cross move words from DATA1 to Execute
MW11 - cross move words from DATA1 to DATA1
MW12 - cross move words from DATA1 to DATA2
MW20 - cross move words from DATA2 to Execute
MW21 - cross move words from DATA2 to DATA1
MW22 - cross move words from DATA2 to DATA2
MB00 - cross move bytes from Execute to Execute
MB01 - cross move bytes from Execute to DATAL
MB02 - cross move bytes from Execute to DATA2
MB10 - cross move bytes from DATA1 to Execute
MB11 - cross move bytes from DATA1 to DATAL1
MB12 - cross move bytes from DATA1 to DATA2
MB20 - cross move bytes from DATA2 to Execute
MB21 - cross move bytes irom DATA2 to DATA1
MB22 - cross move bytes from DATA2 to DATA2

If CDS mode is enabled, the base (Q) register will be added to base relative
addresses in the Execute map only. Cross map references to addresses in one of the
alternate maps are not checked for base relativity.

Detailed Descriptions

The following paragraphs provide machine language coding and definitions for the
DMS instructions. Note that all memory accesses are subject to the DMS memory
protection rules.

Dynamic Mapping System 4-5

LPMR LOAD PAGE MAPPING REGISTER
141312|11109}8 7 6|5 43|21 0

Loads the contents of the B-Register into the page mapping register (PMR) addressed
by the contents of the A-Register. Any attempt to address a PMR outside the range
of 0 to 1023 or to modify a PMR that is currently being accessed produces undefined
results. The format for the PMR contents is: bit 15 = read protect; bit 14 = write
protect; and bits 13 to 0 = physical page number. This instruction is privileged.
After the operation, the A-Register is incremented.

SPMR STORE PAGE MAPPING REGISTER
15 |14 1312|1110 98 7 65 4 32 1 0
oo afo]

Loads the contents of the page mapping register (PMR) addressed by the value in the
A-Register into the B-Register. Any attempt to address a PMR outside the range of 0
to 1023 produces undefined results. The format for the PMR contents is: bit 15 =
read protect; bit 14 = write protect; and bits 13 to 0 = physical page number. This
instruction is privileged. After the operation, the A-Register is incremented.

LDMP 7 LOAD A MAP
15ha1312]11109]|8 7 65 43|21 0
ofojoj1io
D
/
D
I

Loads the map number specified by Word 2 from the 32-word block of memory
specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

There are 32 maps of 32 PMRs each; the beginning PMR number of a map is related
to the map number as follows:

PMR number = Map number x 32

Undefined results occur when a map number outside the range of 0 to 31 is
addressed, when modification of a currently executing map is tried, or when the
resolved address of the map image is outside the range of 2 to 77740 octal.

4-6 Dynamic Mapping System

All memory references are done in the Execute map and may include the A- and
B-Registers. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted.

STMP STORE A MAP
151413121110 9|8 7 6|5 4 3|2 1 O
: ojojajtin

Stores the map number specified by Word 2 to the 32-word block of memory
specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

There are 32 maps of 32 PMRs each; the beginning PMR number of a map is related
to the map number as follows:

PMR number = Map number x 32

Undefined results occur when a map number outside the range of 0 to 31 is
addressed or when the resolved address of the map image is outside the range of 2
to 77740 octal.

All memory references are done in the Execute map and may include the A- and
B-Registers. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted.

XJMP CROSS MAP JUMP
1514 131211109)8 7 6|5 4 3}2 1 0

Dynamic Mapping System 4-7

Resolves indirect references, sets the program counter to the resolved address
specified by Word 3, and loads WMAP with the value pointed to by the resolved
address of Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new WMAP number.
Word 3 = Pointer to next instruction (new PC value).

All memory references (direct and indirect) are done in the Execute map and may
include the A- and B-Registers. The next instruction will be fetched using the new
WMAP. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted.

CROSS MAP JUMP
XJCQ (AND LOAD C AND Q)

15 j14 13 12 87 6}]543|210

ofo]s

Resolves indirect references, sets the program counter to the resolved address
specified by Word 3, and loads the WMAP specified by Word 2, and loads the C-
and Q-Registers with new values addressed by Word 4, where:

Word 1 = instruction opcode.

Word 2 = pointer to new WMAP number.

Word 3 = pointer to next instruction (new PC value).
Word 4 = pointer to new C- and Q-Register values.

All memory references (direct and indirect) are done in the Execute map and may
include the A- and B-Registers. The next instruction will be fetched using the new
WMAP, under a CDS mode specified by the new C-Register value. This instruction
is privileged and is interruptible in that it may be interrupted during indirect address
resolution after three levels of indirection, and then restarted.

4-8 Dynamic Mapping System

SWMP SAVE WORKING MAP
15114 13121111098 7 6|5 4 3]2 1 0
' ofijt]o

Stores WMAP at the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and may include the A- and
B-Registers. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted.

SIMP SAVE INTERRUPTED MAP
15114 131211110 9|8 7 6|5 4 3|2 1 0

Stores IMAP at the location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and may include the A- and
B-Registers. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted.

LWD1 LOAD DATA1 MAP
15|14 1312|1110 9|8 7 6|5 4 3|2 1 0

Loads the DATALI field of the WMAP register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATA1 map.

Dynamic Mapping System 4-9

All memory references are done in the Execute map and may include the A- and
B-Registers. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted. Map numbers outside the range of 0-31 produce undefined results.

LWD2 LOAD DATA2 MAP
1514 1312}]1110 9|8 7 6|5 4 3]2 1 0O

Loads the DATA?2 field of the WMAP register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATA2 map.

All memory references are done in the Execute map and may include the A- and
B-Registers. This instruction is privileged and is interruptible in that it may be
interrupted during indirect address resolution after three levels of indirection, and
then restarted. Map numbers outside the range of 0-31 produce undefined results.

CROSS LOAD A
XLAt THROUGH DATA1 MAP

1514 1312|1110 9|8 7 6|5 4 3|2 1 0

Loads the A-Register from the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA1 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

4-10 Dynamic Mapping System

CROSS LOAD B
XLB1 THROUGH DATA1 MAP

15114 1312]1110 98 7 6]5 4 3}]2 1 0O
nek 0{0

D
/)

Loads the B-Register from the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA1 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS LOAD A
XLA2 THROUGH DATA2 MAP
15114 1312|1110 9|8 7 65 4 3|2 1 0O

j1{ofojoi1

Loads the A-Register from the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA2 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS LOAD B
XLB2 THROUGH DATA2 MAP

1514 1312|1110 9|8 7 6|5 4 3|2 1 O

Dynamic Mapping System 4-11

Loads the B-Register from the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA2 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS STORE A
XSA1 THROUGH DATA1 MAP

1514 1312]1110 98 7 6|5 4 3|12 1 O
of1ioj1

Stores the A-Register contents in the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA1 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS STORE B
XSB1 THROUGH DATA1 MAP

1514 1312]11110 918 7 65 4 312 1 0
1lolt|o}s

Stores the B-Register contents in the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

4-12 Dynamic Mapping System

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA1 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS STORE A
XSA2 THROUGH DATA2 MAP

15 [14 1312|1110 9]8 7 6|5 4 3

Stores the A-Register contents in the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA2 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS STORE B
xXSsB2 THROUGH DATA2 MAP
15|14 131211110 918 7 615 4 312 1 0O
olaj1o

Stores the B-Register contents in the memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA2 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

Dynamic Mapping System 4-13

CROSS COMPARE A
XCA1 THROUGH DATA1 MAP

1514 1312|1110 9}8 7 6|5 4 3|2 1 0

D
/)

Compares the A-Register contents with a value in the memory location pointed to by
Word 2 and skips if the values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA1 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS COMPARE B
XCB1 THROUGH DATA1 MAP

151413121110 9|8 7 6|5 4 3|2 1 0

Compares the B-Register contents with a value in the memory location pointed to by
Word 2 and skips if the values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA1 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

4-14 Dynamic Mapping System

CROSS COMPARE A
XCA2 THROUGH DATA2 MAP

15114 1312|1110 9|8 7 65 4 32 1 0

Compares the A-Register contents with a value in the memory location pointed to by
Word 2 and skips if the values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA2 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS COMPARE B
XcB2 THROUGH DATA2 MAP

156114 1312|1110 9|8 7 6|5 4 3j2 1 0

Compares the B-Register contents with a value in the memory location pointed to by
Word 2 and skips if the values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute map and may include the A-
and B-Registers and will be checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map. Because A- and B-Register
addressing and base relative checking are disabled in the DATA2 map, direct
addresses 0 through 1777 refer to physical memory locations. This instruction is
interruptible in that it may be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

Dynamic Mapping System 4-15

CROSS MOVE WORDS,
MwWO00 EXECUTE TO EXECUTE

15|14 1312|1110 98 7 6}5 4 3|21 0
tjof1j1i1

Moves a block of words from the Execute map to the Execute map. The A-Register
specifies the source address, the B-Register specifies the destination address, and the
X-Register specifies the number of words to be moved (which must be an integer

equal to or greater than zero). Address bit 15 must be zero, as indirect source and
destination references are not allowed. On return, the A-Register contains the last

memory address in the source block moved plus one, the B-Register contains the last
memory address in the destination block moved plus one, and the X-Register is zero.

If CDS mode is enabled, the A- and B-Registers will be checked for base relativity
before execution. Upon exit these registers will contain the base relative address,
incremented by the count in the X-Register.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

CROSS MOVE WORDS,
Mwo1 EXECUTE TO DATAT1

1514 1312111098 7 6|5 4 3|21 0

Moves a block of words from the Execute map to the DATA1 map. The A-Register
specifies the source address in the Execute map, the B-Register specifies the
destination address in the DATA1 map, and the X-Register specifies the number of
words to be moved (which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and destination references are not
allowed. On return, the A-Register contains the last memory address in the source
block moved plus one, the B-Register contains the last memory address in the
destination block moved plus one, and the X-Register is zero.

If CDS mode is enabled, the A-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

4-16 Dynamic Mapping System

CROSS MOVE WCRDS,
Mwo02 EXECUTE TO DATA2

15|14 1312J1110 918 7 6|5 4 321 0
T1]1]ofo]1

Moves a block of words from the Execute map to the DATA2 map. The A-Register
specifies the source address in the Execute map, the B-Register specifies the
destination address in the DATA2 map, and the X-Register specifies the number of
words to be moved (which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and destination references are not
allowed. On return, the A-Register contains the last memory address in the source
block moved plus one, the B-Register contains the last memory address in the
destination block moved plus one, and the X-Register is zero.

If CDS mode is enabled, the A-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

CROSS MOVE WORDS,
Mwi10 DATA1 TO EXECUTE

15|14 1312|1110 918 7 6|5 4 3|21 O

Moves a block of words from the DATA1 map to the Execute map. The A-Register
specifies the source address in the DATA1 map, the B-Register specifies the
destination address in the Execute map, and the X-Register specifies the number of
words to be moved (which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and destination references are not
allowed. On return, the A-Register contains the last memory address in the source
block moved plus one, the B-Register contains the last memory address in the
destination block moved plus one, and the X-Register is zero.

[f CDS mode is enabled, the B-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B-, or X-Registers.

Dynamic Mapping System 4-17

CROSS MOVE WORDS,
Mwi11 DATA1 TO DATA1

15 |14 13 12 876|543]210

Moves a block of words from one location in the DATA1 map to another in the
DATA1 map. The A-Register specifies the source address, the B-Register specifies
the destination address, and the X-Register specifies the number of words to be
moved (which must be an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references are not allowed. On
return, the A-Register contains the last memory address in the source block moved
plus one, the B-Register contains the last memory address in the destination block
moved plus one, and the X-Register is zero.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

CROSS MOVE WORDS,
MW12 DATA1 TO DATA2

1514 1312|1110 9|8 7 6|54 3|21 0

Moves a block of words from the DATA1 map to the DATA2 map. The A-Register
specifies the source address in the DATA1 map, the B-Register specifies the
destination address in the DATA2 map, and the X-Register specifies the number of
words to be moved (which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and destination references are not
allowed. On return, the A-Register contains the last memory address in the source
block moved plus one, the B-Register contains the last memory address in the
destination block moved plus one, and the X-Register is zero.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

4-18 Dynamic Mapping System

CROSS MOVE WORDS,
Mw20 DATA2 TO EXECUTE

1514 1312§1110 9|8 7 6|5 4 3 |21 0

Moves a block of words from the DATA2 map to the Execute map. The A-Register
specifies the source address in the DATA2 map, the B-Register specifies the
destination address in the Execute map, and the X-Register specifies the number of
words to be moved (which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and destination references are not
allowed. On return, the A-Register contains the last memory address in the source
block moved plus one, the B-Register contains the last memory address in the
destination block moved plus one, and the X-Register is zero.

If CDS mode is enabled, the B-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

CROSS MOVE WORDS,
Mwa1 DATA2 TO DATA1

15114 1312|1110 98 7 6|5 4 3|21 O

Moves a block of words from the DATA2 map to the DATA1 map. The A-Register
specifies the source address in the DATA2 map, the B-Register specifies the
destination address in the DATA1 map, and the X-Register specifies the number of
words to be moved (which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and destination references are not
allowed. On return, the A-Register contains the last memory address in the source
block moved plus one, the B-Register contains the last memory address in the
destination block moved plus one, and the X-Register is zero.

This instruction produces undefined results if A-, B-, or X-Register has bit 15 set or if
the source or destination address rolls over. It is interruptible, with the context saved
in the A-, B- and X-Registers.

Dynamic Mapping System 4-19

CROSS MOVE WORDS,
Mwa2 DATA2 TO DATA2

15114 1312|1110 98 7 6|5 4 3121 0

Moves a block of words from the DATA2 map to the DATA2 map. The A-Register
specifies the source address, the B-Register specifies the destination address, and the
X-Register specifies the number of words to be moved (which must be an integer
equal to or greater than zero). Address bit 15 must be zero, as indirect source and
destination references are not allowed. On return, the A-Register contains the last
memory address in the source block moved plus one, the B-Register contains the last
memory address in the destination block moved plus one, and the X-Register is zero.

This instruction produces undefined results if the A-, B-, or X-Register has bit 15 set
or if the source or destination address rolls over. It is interruptible, with the context
saved in the A-, B- and X-Registers.

CROSS MOVE BYTES,
MB00 EXECUTE TO EXECUTE
1514 1312|1110 918 7 6|5 4 3]2 1 0
- ol

Moves a block of bytes from one location in the Execute map to another in the
Execute map. The A-Register specifies the source address and the B-Register
specifies the destination address. The X-Register specifies the number of bytes to be
moved (which is an unsigned 16-bit number that may equal zero). Indirect
addressing is not allowed because a byte address uses all 16 bits. A byte address is
two times the word address plus zero or one, which specifies the high order (bits 15
to 8) or low order (bits 7 to 0) position, respectively. On return, the A-Register
contains the last memory byte address in the source block moved plus one, the
B-Register contains the last byte address in the destination block moved plus one, and
the X-Register is zero.

If CDS mode is enabled, the A- and B-Registers will be checked for base relativity
before execution. Upon exit these registers will contain the base relative address,
incremented by the count in the X-Register.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

4-20 Dynamic Mapping System

CROSS MOVE BYTES,
MBO1 EXECUTE TO DATAI1

15114 1312]1110 918 7 6|5 4 3]2 1 O

Moves a block of bytes from a location in the Execute map to one in the DATA1
map. The A-Register specifies the source address in the Execute map, and the
B-Register specifies the destination address in the DATA1 map. The X-Register
specifies the number of bytes to be moved (which is an unsigned 16-bit number that
may equal zero). Indirect addressing is not allowed because a byte address uses all
16 bits. A byte address is two times the word address plus zero or one, which
specifies the high order (bits 15 to 8) or low order (bits 7 to 0) position, respectively.
On return, the A-Register contains the last memory byte address in the source block
moved plus one, the B-Register contains the last byte address in the destination block
moved plus one, and the X-Register is zero.

If CDS mode is enabled, the A-Register will be checked for base relativity before
executing. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

CROSS MOVE BYTES,
MB02 EXECUTE TO DATA2

15114 1312]1110 918 7 6|5 43|21 O

Moves a block of bytes from a location in the Execute map to one in the DATA2
map. The A-Register specifies the source address in the Execute map, and the
B-Register specifies the destination address in the DATA2 map. The X-Register
specifies the number of bytes to be moved (which is an unsigned 16-bit number that
may equal zero). Indirect addressing is not allowed because a byte address uses all
16 bits. A byte address is two times the word address plus zero or one, which
specifies the high order (bits 15 to 8) or low order (bits 7 to 0) position, respectively.
On return, the A-Register contains the last memory byte address in the source block
moved plus one, the B-Register contains the last byte address in the destination block
moved plus one, and the X-Register is zero.

If CDS mode is enabled, the A-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

Dynamic Mapping System 4-21

CROSS MOVE BYTES,
MB10 DATA1 TO EXECUTE

1514 1312|11109|8 7 6|54 3|21 O
i1j1]of1}o

Moves a block of bytes from a location in the DATA1 map to one in the Execute
map. The A-Register specifies the source address in the DATA1 map, and the
B-Register specifies the destination address in the Execute map. The X-Register
specifies the number of bytes to be moved (which is an unsigned 16-bit number that
may equal zero). Indirect addressing is not allowed because a byte address uses all
16 bits. A byte address is two times the word address plus zero or one, which
specifies the high order (bits 15 to 8) or low order (bits 7 to 0) position, respectively.
On return, the A-Register contains the last memory byte address in the source block
moved plus one, the B-Register contains the last byte address in the destination block
moved plus one, and the X-Register is zero.

If CDS mode is enabled, the B-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

CROSS MOVE BYTES,
mB11 DATA1 TO DATAT1

1514 1312|11109]8 7 6|5 43|21 0
1it]eft1}|1

Moves a block of bytes from one location in the DATA1 map to another in the
DATA1 map. The A-Register specifies the source address and the B-Register
specifies the destination address. The X-Register specifies the number of bytes to be
moved (which is an unsigned 16-bit number that may equal zero). Indirect
addressing is not allowed because a byte address uses all 16 bits. A byte address is
two times the word address plus zero or one, which specifies the high order (bits 15
to 8) or low order (bits 7 to 0) position, respectively. On return, the A-Register
contains the last memory byte address in the source block moved plus one, the
B-Register contains the last byte address in the destination block moved plus one, and
the X-Register is zero.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

4-22 Dynamic Mapping System

CROSS MOVE BYTES,
MB12 DATA1 TO DATA2

14 1312|1110 9|8 7 65 4 3

Moves a block of bytes from a location in the DATA1 map to one in the DATA2
map. The A-Register specifies the source address in the DATA1 map, and the
B-Register specifies the destination address in the DATA2 map. The X-Register
specifies the number of bytes to be moved (which is an unsigned 16-bit number that
may equal zero). Indirect addressing is not allowed because a byte address uses all
16 bits. A byte address is two times the word address plus zero or one, which
specifies the high order (bits 15 to 8) or low order (bits 7 to 0) position, respectively.
On return, the A-Register contains the last memory byte address in the source block
moved plus one, the B-Register contains the last byte address in the destination block
moved plus one, and the X-Register is zero.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

CROSS MOVE BYTES,
MB20 DATA2 TO EXECUTE

15 |14 13 12

Moves a block of bytes from a location in the DATA2 map to one in the Execute
map. The A-Register specifies the source address in the DATA2 map, and the
B-Register specifies the destination address in the Execute map. The X-Register
specifies the number of bytes to be moved (which is an unsigned 16-bit number that
may equal zero). Indirect addressing is not allowed because a byte address uses all
16 bits. A byte address is two times the word address plus zero or one, which
specifies the high order (bits 15 to 8) or low order (bits 7 to 0) position, respectively.
On return, the A-Register contains the last memory byte address in the source block
moved plus one, the B-Register contains the last byte address in the destination block
moved plus one, and the X-Register is zero.

If CDS mode is enabled, the B-Register will be checked for base relativity before
execution. Upon exit this register will contain the base relative address, incremented
by the count in the X-Register.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

Dynamic Mapping System 4-23

CROSS MOVE BYTES,
mB21 DATA2 TO DATA1

1514 1312|1110 9|8 7 6|5 4 321 0
j1i1]1f1]0

Moves a block of bytes from a location in the DATA2 map to one in the DATALI
map. The A-Register specifies the source address in the DATA2 map, and the
B-Register specifies the destination address in the DATA1 map. The X-Register
specifies the number of bytes to be moved (which is an unsigned 16-bit number that
may equal zero). Indirect addressing is not allowed because a byte address uses all
16 bits. A byte address is two times the word address plus zero or one, which
specifies the high order (bits 15 to 8) or low order (bits 7 to 0) position, respectively.
On return, the A-Register contains the last memory byte address in the source block
moved plus one, the B-Register contains the last byte address in the destination block
moved plus one, and the X-Register is zero.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

CROSS MOVE BYTES,
MB22 DATA2 TO DATA2

1514 1312|1110 9|8 7 65 43|21 0
TRz o5 gaaas ey ey o ..211:

Moves a block of bytes from one location in the DATA2 map to another in the
DATA2 map. The A-Register specifies the source address and the B-Register
specifies the destination address. The X-Register specifies the number of bytes to be
moved (which is an unsigned 16-bit number that may equal zero). Indirect
addressing is not allowed because a byte address uses all 16 bits. A byte address is
two times the word address plus zero or one, which specifies the high order (bits 15
to 8) or low order (bits 7 to 0) position, respectively. On return, the A-Register
contains the last memory byte address in the source block moved plus one, the
B-Register contains the last byte address in the destination block moved plus one, and
the X-Register is zero.

This instruction produces undefined results if the source or destination address rolls
over. It is interruptible, with the context saved in the A-, B- and X-Registers.

4-24 Dynamic Mapping System

DMS Instruction Execution Times

Table 4-1 lists the execution times for the various DMS instructions.

Assembly Language and RTE Implementation

Refer to the Assembly Language and RTE Implementation sections of the “Dynamic
Mapping System” chapter for information on implementing the DMS instructions in
HP Assembly Language and in an HP RTE-A operating system.

Table 4-1. Dynamic Mapping Instructions Execution Times

Execution Time

Instruction { usec)
XLA1/XLB1, XLA2/XLB2 2.50
XSA1/XSB1, XSA2/XSB2 2.50
XCA1/XCB2, XCA2/XCB2 2.50
MWQO0, MWO1, MW02, MW10, | 3.19 plus 0.91
MW11, MW12, MW20, MW21, | per word moved
Mw22
MB0O, MBO1, MB02, MB10, 3.19 plus 0.91-
MB11, MB12, MB20, MB21, 2.05 per byte
MB22 moved
LPMR 1.37
SPMR 1.14
LDMP, STMP 18.20
XJMP 5.23
xXJCQ 6.60
LWD1, LWD2 2.28
SWMP 4.55
SIMP 1.82

Note: Memory refresh during a processor memo
ccess €an make an instruction an.roxmate y
eperc nt sIowgr. Hea\g DMA activity can also

grade (lengthen) execution times due to
contention for memory.

Dynamic Mapping System 4-25

Code and Data Separation

The basic logical address space of the HP 1000 A-Series architecture is 32768 words,
in which both code and data reside. Code and Data Separation (CDS) is an
enhancement to the A-Series architecture which separates code and data into separate
logical address spaces. The main benefit of CDS is that it provides support of
programs that may have up to 4M words of code, and this code may be either
memory-resident or disc-resident. The optional HP 92078A package for RTE-A
provides software support for CDS. Refer to the RTE-A Programmer’s Reference
Manual for a description of how to take advantage of CDS by using Macro/1000 and
other HP languages.

Code and Data Addressing

CDS utilizes the Dynamic Mapping System environment of the A-Series architecture,
and uses separate DMS maps to reference code and data. - The term “code” refers to
opcodes, DEFs to parameters, in-line constants, current-page links and constants for
Memory Reference Group (MRG) instructions. The term “data” refers to variables
and constants used by a program.

When CDS is disabled, both code and data are accessed through the logical address
space of the computer, which is 32k words. The DMS maps this logical address
space into the physical address space of up to 16M words. This is accomplished
through the use of 32 memory maps of 32 pages each. A program executes in a
single map, which is called the Execute map, although it may access memory through
other maps using DMS instructions.

Code and Data Separation 5-1

When CDS is enabled, code and data are accessed through separate maps. The
Execute map number specifies which map is used to access data, and the Execute
map number inclusive-ORed with ‘1’ is used to access code. The Execute map
number must be an even number between 0 and 30, inclusive. In all subsequent
descriptions, DATA[n] and CODE|[n] refer to memory locations in data space and
code space, respectively. In addition, when CDS is enabled the base register (Q) is
enabled, and all Execute map memory addresses that lie in the range 2 through 1023
have the Q-Register added by the memory accessing hardware before the memory
location is accessed. Locations () and 1 of data space are still defined to reference
the A- and B-Registers. Cross-map memory accesses, such as XLA1, are done with
CDS disabled.

As an example, consider a DLD 500 instruction that is executed with CDS on, with
an Execute map number of 2, and with the Q-Register equal to 5000. The DLD
opcode and the DEF 500 are read from memory using map number 3, because these
words are considered to be code. The memory values loaded into A and B will be
read through map number 2, because these words are considered to be data. The
actual address of the memory locations to be loaded is 5500, because the hardware
automatically adds the Q-Register to memory addresses between 2 and 1023.

Most instructions separate code and data as was described for the previous example,
but the Memory Reference Group has some exceptions. The JSB, STA current page
direct, STB current page direct, and ISZ current page direct instructions may not be
used when CDS is enabled because they attempt to write into code space. MRG
references to base page always access memory in the data space, but MRG references
to the current page always access code space for the first memory access and data
space for all subsequent direct/indirect levels. That means that an LDA current page
direct will load a constant from code space, that an LDA current page indirect will
access a current page link in code space and then data in data space, and so on for
the other MRG instructions. Note also that base page MRG references are useful for
accessing variables that are Q-relative, such as the local variables or parameter
pointers in a stack frame (to be described later).

The following restrictions must be met when CDS is enabled; otherwise, undefined
results may occur. The Q-Register value must lie in the range of 1024 through
32767. The program counter must lie in the range 1024 to 32767, which means that
jump instructions may not jump to the base page or to the A- or B-Register.

Support for linking of relocatable code is provided by the RTE-A LINK program.

5-2 Code and Data Separation

General Descriptions

Procedure Call Instructions

The procedure call (PCAL) instructions are used to invoke a procedure, which may
reside in code or data space. All of the PCAL instructions adjust the Q-Register to
allocate and set up a new stack marker (memory locations used to link procedure
invocations and exits), and branch to the new procedure.

The PCAL instructions are:

PCALI - procedure call to current segment

PCALX - procedure call to any segment

PCALYV - procedure call to any segment (variable)

PCALR - procedure call to .ENTR-compatible non-CDS code in data space
PCALN - procedure call to .ENTN-compatible non-CDS code in data space

The PCALI instruction is the fastest PCAL instruction, and it is used to call a
procedure that resides in the current code address space.

Two of the PCAL instructions (PCALX, PCALV) are capable of remapping the
logical code space to another area of physical memory. Each logical code space is
called a segment, and these PCALs are called cross-segment PCAL instructions.

The last two PCAL instructions (PCALR, PCALN) are used to call code that is not
CDS-compatible. Such code resides in the data space, and must follow the .ENTR or
.ENTN procedure call sequence.

The standard PCAL call sequence is:
PCAL opcode(PCALI, PCALX, PCALYV, PCALR,
or PCALN)
LABEL PE

DEC AC [,]]
DEF A _1 []

DEF A_AC []]
(return point from procedure PE)

PE DEC FS
(next instruction to be executed in procedure PE)

EXIT opcode (EXIT, EXIT1, or EXIT2)

Code and Data Separation 5-3

The PCAL opcode is the appropriate opcode to be used to access the new procedure.
If the new procedure is in the same segment, then PCALI should be used. If the new
procedure is in another segment, then PCALX or PCALYV should be used. If the new
procedure is not CDS-compatible, then PCALR or PCALN should be used. Note that
the selection of the PCAL opcode is done automatically by the RTE-A LINK program,
which will also automatically segment your program for you.

The LABEL to the new procedure points to the location of the new procedure. In the
case of PCALL, PCALR, and PCALN, the LABEL is a DEF (a 15-bit logical address,
possibly indirect) to the new procedure. In the case of PCALX, the LABEL consists
of a word which contains information that determines how the logical code space
must be remapped to get to the new procedure. In the case of PCALYV, the DEF
(which may be indirect) points to a word in data space which specifies how code
space should be remapped.

AC is a word which specifies how many parameter pointers follow. Parameter
pointers are 15-bit logical addresses (with the 16th bit specifying indirection) which
point to variables that are being passed as parameters to the new procedure. From 0
to 255 parameter pointers may be passed in the PCAL call sequence.

Procedure Exit Instructions
The Exit instructions are:

EXIT - procedure exit with no skips
EXIT1 - procedure exit with one skip
EXIT2 - procedure exit with two skips

C, Q, Z, and IQ Instructions
Other instructions are provided to access the C-, Q-, Z- and IQ-Registers. These are:

CCQA (CCQB) - copy C and Q to A (or B)
CACQ ?CBCQ) - copy A (or B) to C and Q
CZA (CZB) - copy Z to A (or B)

CAZ (CBZ) - copy A (or B) to Z

CIQA (CIQB) - copy IQ to A (or B)
ADQA (ADQB) - add Q to A (or B)

SDSP - store display

5-4 Code and Data Separation

Stack Frame Description

A stack frame is an area of memory in the logical data space that contains variables
local to a procedure and pointers to variables of other procedures. The stack frame
also contains six words of information called the stack marker, which links the
procedure call chain from one procedure invocation to the next. The general layout
of a stack frame is shown in Figure 5-1.

The Z-Register, also called the bounds register, increases the reliability of CDS
software. The bounds register detects the growth of a stack frame past the end of
the allowed data space into areas used by VMA or memory used for other purposes.
On every PCAL instruction, the microcode checks that the NEXT_Q value of a
created stack marker is less than the Z-Register. If this check fails then the program
will interrupt to the memory protect handler (see PCALI description for more detail).

previous stack frame
\
Q ——» STATIC_Q
0 PREV_Q
R RETURN_P stack
market
RETURN_CST ARG_COUNT
0 NEXT_Q } stack
frame
reserved J
0 or more words of parameter
parameter pointers pointers
0 or more words of | local variable
local variable space space J
next stack frame

PREV_Q is the Q-register value for the calling procedure.

RETURN_P Is the return address in the calling procedure.

R Is the return segment Iindicator: R = 0 indicates the return address is in the same segment as the calling
procedure (a segment reload is not required), R = 1 indicates the return address is in segment

RETURN_CST (a segment reload Is required.

ARG_COUNT is a number (0-255) that is the count of actual parameters passed to the called procedure. This
fleld is maintained for all PCAL instructions.

NEXT_Q is the Q-Register value to use when building the next stack frame during a subsequent
PCAL NEXT_Q may be adjusted during the execution of a procedure to aiter the size of the local variable space.

STATIC_Qis a word that is used by biock-structured languages such as Pascal. This word and the RESERVED
word are reserved for use by Hewlett-Packard software.

Figure 5-1. Stack Frame General Layout

Code and Data Separation 5-5

Detailed Descriptions

PCALI INTERNAL PROCEDURE CALL
15 |14 1312|1110 9

D/| DEF to subroutine

Function: Procedure call to current code segment
Use: Current Code Segment

PCALI

DEF pe [,I]
DEC ac
DEF a_1 [,]]

DEF a_ac [,1]
External Code Segment

pe EQU*
DEC fs

Operands: pe: Procedure entry point
ac: Actual argument count
a_i :Actual argument i (multiple indirects are supported)
fs : Frame size in words

Interruptible: Yes

5-6 Code and Data Separation

PCALI determines the new Q-Register value for the called stack frame, which may be
found at the current NEXT_Q value. The old Q value is written into the new stack
frame at PREV_Q, which provides a link from the new stack frame to the old stack
frame. The argument count (AC) of parameters to be passed is read from
CODE[P+2], and the parameter pointers are copied from CODE[P+3] to DATA[new
Q+6] after the parameter pointers have been resolved for indirection and base
relativity. The value of AC is written into the ARG_COUNT location of the stack
marker. Indirects are followed in memory until a direct address is found. If the
(direct) address is between 2 and 1023, the current Q-Register value is added before
the parameter pointer is copied into data space. PCALI may be interrupted during
parameter pointer resolution and copying, and the PCALI instruction may simply be
restarted after the interrupt has been processed because the actual state of the calling
procedure (specifically the P- and Q-Registers) has not been altered.

The actual parameter count (AC) is stored in the ARG_COUNT field of the new
stack frame, and the upper byte of that word (RTN_CST) is undefined. The return
point of the procedure (P+3+AC) is stored in the RETURN_P location of the new
stack frame. The ‘R’ bit contains zero, which designates that a subsequent EXOT
instruction should exit without loading a new segment.

The called procedure entry (PE) is found by resolving the address at CODE[P+1], and
CODE[PE] contains the called frame size (FS). The NEXT_Q value of the new stack
frame is set to the new Q value plus FS.

If the NEXT_Q is greater than or equal to the bounds register (Z), stack overflow has
occurred and a memory protect interrupt will be executed to memory location 07 of
map zero. After the interrupt, the instruction violation register is equal to the fetch
address of the PCAL instruction, and the program counter value at the time of the
interrupt is undefined. The Q-Register and IQ-Register point to the offending stack
marker. The new stack marker and formal arguments may have been written into
memory locations at addresses greater than the Z-Register value. To provide a safety
zone, set the Z-Register to 264 words below the area you want to protect.

If stack overflow did not occur, PCALI branches to the called procedure by setting
the program counter, P, to PE+1 and the Q-Register to the new Q value.

Code and Data Separation 5-7

PCALX EXTERNAL PROCEDURE CALL
1514 1312|1110 9|8 7 65 43]2 1 0

Code label to subroutine

N = argument count (0 < N < 255)

:D/ .
» "Il N DEFs to arguments .
D,
Function: Procedure call to procedure in external segment
Use: Current Code Segment
PCALX
LABEL pe
DEC ac
DEF a_1 [,]]
DEF a_ac [,[]
External Code Segment
pe EQU*
DEC fs
Operands: pe . Code label (Code Segment Table index and Segment
Transfer
Table index) to procedure
ac Actual argument count
ai: Actual argument i (multiple indirects are supported)
fs Frame size in words
Interruptible: Yes

PCALX determines the new Q-Register value for the called stack frame, which may
be found at the current NEXT_Q value. The old Q value is written into the new
stack frame at PREV_Q, which provides a link from the new stack frame to the old
stack frame. The argument count (AC) of parameters to be passed is read from
CODE|[P+2], and the parameter pointers are copied from CODE[P+3] to DATA[new
Q+6) after the parameter pointers have been resolved for indirection and base
relativity. PCALX may be interrupted during the parameter pointer resolution and
copying, and the PCALX instruction may simply be restarted after the interrupt has
been processed because the actual state of the calling procedure (specifically the P-
and Q-Registers) has not been altered.

5-8 Code and Data Separation

The return point of the procedure (P+3+AC) is stored in the RETURN_P location of
the new stack frame. The ‘R’ bit contains one, which designates that a subsequent
EXIT instruction should load the new segment indicated by RETURN_CST in the
stack marker. The current segment number is read from CODE[2000B], ANDed with
177400B, inclusive ORed with AC, and stored in DATA[new Q+3].

PCALX now attempts to load the external segment. The upper byte of CODE[P+1]
contains the CST (Code Segment Table) index. The PCALX instruction looks up the
CST entry through the base page of the code map set. (The code map set number is
the Execute map number inclusive ORed with one.) The memory address of the CST
entry is the CST index shifted left two times. Restriction: the CST index must be in
the range 0 through 127. Note that this process of looking up a CST entry is done
with the base register hardware and A/B addressablhty off. If bit 15 of the CST
entry is‘1’, then the called procedure is not in memory. PCALX will interrupt to
memory location 13 octal of map zero and this location must contain a JSB to the
segment interrupt handler. The program counter at the time of the interrupt points to
the offending PCALX instruction, and the Q value is unchanged. After the segment
is loaded, the PCALX instruction may be re-executed. The CDS segment interrupt is
the lowest priority interrupt, and if other interrupts are present when a fault is
detected, the instruction is simply restarted after the other interrupts are serviced.
The following paragraphs describe what PCALX does if the segment is present in
memory.

This paragraph describes how a code segment is ‘mapped in’. The lower 14 bits of
the CST entry contain the starting physical page of the new code segment, which the
microcode maps in by setting the PMRs (page mapping registers) of code page 1 to
the physical page number, code page 2 to the physical page number plus 1, code
page 3 to the physical page number plus 2, and so on. These page mapping registers
are write-protected to protect the code against alteration. The base page PMR of the
code map is not altered.

After the new code segment has been mapped in, the entry point of the called
procedure is determined. The low byte of the external label (in CODE[P+1] in the
old segment) contains the STT (Segment Transfer Table) index. Beginning at
location 2001B in code space is a table of address pointers (with bit 15 set to zero)
that point to the externally accessible procedures in this segment. Location 2001B
plus the STT index contains the 15-bit address of the called subroutine, and this
value is the called procedure entry (PE).

CODEI[PE] contains the called frame size (FS). The NEXT_Q value of the new stack
frame is set to the new Q value plus FS. If the new NEXT Q is greater than or
equal to the bounds register (Z) then stack overflow has occurred, and a memory
protect interrupt will be executed at memory location 07 of map zero. After the
interrupt, the instruction violation register is equal to the fetch address of the PCALX
instruction, and the program counter contains an undefined value. The Q-Register
and [Q-Register point to the offending stack marker. The new stack marker and
formal arguments may have written into memory locations at addresses greater than
the Z-Register value.

Code and Data Separation 5-9

Now that the new stack marker is complete, PCAQLX branches to the called
procedure by setting the program counter, P, to PE+1 and the Q-Register to the new
Q value.

VARIABLE EXTERNAL
PCALV PROCEDURE CALL

1514 1312|1110 9|8 7 6|5 43]2 1 0

D/| DEF to code label to subroutine

N = argument count (0 < N < 255)

N DEFs to arguments ,

Function: Procedure call, Code to Code, External procedure
Use: Current Code Segment

PCALV
DEF x |[,I]
DEC ac
DEF a_1 []]

DEF a_ac [,I]
External Code Segment

pe EQU*
DEC fs

Ddta Segment |
x|l LABEL pe

Operands: pe : Procedure entry point
xl : Procedure variable
ac : Actual argument count
a i Actual argument i
fs : Frame size in words

Interruptible: Yes

5-10 Code and Data Separation

The difference between the PCALX and PCALYV instructions is that the code label is
in the call sequence in PCALX, while in PCALV it is in the data space. The pointer
to the external label may be a multi-level indirect. See PCALX for a description of

segment loading.

PROCEDURE CALL,
PCALR .ENTR COMPATIBLE

15114 131211110918 7 6|5 43]2 1 0
‘ s[oli 1

D/| DEF to subroutine

N = argument count (0 < N < 255)
ED/ll
D/II

N DEFs to arguments

Function: Procedure call, Code to Data, .ENTR compatible
Use: Current Code Segment

PCALR
DEF pe [,I]
DEC ac
DEF a_1 [,]]

DEF a_ac [I]
Data Segment
BSS fc

pe NOP
JSB .ENTR
DEF pe-fc

Operands: pe: Procedure entry point
ac: Actual argument count
a_i: Actual argument i

fc : Formal argument count

Interruptible: Yes

Code and Data Separation 5-11

PCALR is similar to PCALI except it is used for invoking procedures in the data
segment that are .ENTR compatible. The mechanism for calling non-CDS code
involves copying a .ENTR call sequence (minus the JSB) into the stack frame. PCAL
then turns off CDS, and executes the function of a JSB to the non-CDS-code
procedure by writing a return address into the new procedure entry and branching to
the procedure entry plus one. The procedure entry address must be between 1024
and 32766.

A “DEF*+AC+1” is written into the reserved word location (of the stack marker) for
PCALR so as to follow the .ENTR calling convention.

The stack frame created by PCALR (and PCALN) is:

Q — Stack Marker
DEF a_1

DEF a_ac
EXIT
EXIT1
EXIT2

NEXT _Q in the stack marker is undefined.

PROCEDURE CALL,
PCALN .ENTN COMPATIBLE

15 |14 1312|1110 98 7 6|5 4 3

DEF to subroutine

N DEFs to arguments

Function: Procedure call, Code to Data, Constant Internal procedure,
.ENTR compatible

Use: Code Segment
PCALN
DEF pe [,1}

DEC ac
DEF a_1 []]

DEF a_ac [

5-12 Code and Data Separation

Data Segment
BSS fc

pe NOP
JSB .ENTN
DEF pe-fc

Operands: pe : Procedure entry point
ac : Actual argument count
a_i: Actual argument i

fc : Formal argument count
Interruptible: Yes

The stack frame created by PCALN is similar to the stack frame created by PCALR.
The difference between PCALR and PCALN is that the PCALR writes the return
address at the non-CDS-code procedure entry, PE, with a return address of the new
Q-Register value plus 5, while PCALN writes a return address of the new Q value
plus 6. Thus, the return address in PCALR points to a word that points around a
parameter list (as in the .ENTR convention), while the return address in PCALN
points to the parameter list (as in the .ENTN convention).

SDSP 7 'STORE DISPLAY
1514 1312|11109|8 7 6|5 4 3]2 1 0

DEC delta level offset

D/, DEF location of di+1 words for display

Function: Store display in memory
Use: SDSP

DEC dI

DEF dsp [,1]
Operands: dl : delta level offset

dsp: location of dl+1 words for display

Interruptible: Yes

Code and Data Separation 5-13

The store display instruction is used by block-structured languages such as Pascal to
store a number of STATIC_Q words into memory. SDSP begins by storing the
current Q-Register value into the DATA[disp]. The following is done dl times: the
value just stored into memory is used as an address in memory, and this value,
logically ANDed with 7777B, is stored in the word after the last word stored. The
following table shows what is placed in the display by the SDSP instruction.

LOCATION VALUE

disp Q value for current procedure

disp+1 Q value for first lexically enclosing procedure

disp+2 Q value for second lexically enclosing procedure

disp+dl . Q value for di-th lexically enclosing procedure
EXIT PROCEDURE EXIT

15 |14 13 12

111098 7 6|5 4321 0

Function: Exit from procedure
Use: EXIT
Interruptible: No

The EXIT instruction is used by any called procedure (in CDS mode or non-CDS
mode) to return to the calling CDS procedurc. The RETURN_P word in the stack
marker holds the return address, and if bit 15 of that word is 1, then a new segment
must be loaded first. The return segment is specified by the RETURN CST field of
the current stack marker. (See ‘mapping in’ in the PCALX description.) If the
returning segment is not in memory, then an interrupt to memory location 13 octal of
map zero will occur, with the P- and Q-Registers unaltered by EXIT. The CDS
segment interrupt is the lowest priority interrupt, and if other interrupts are present
when a fault is detected then the instruction is simply restarted.

If EXIT was able to load the segment, or if the EXIT was to the current segment,
then the C- and Q-Registers are loaded from the PREV_Q word, and the P-Register is
set to RETURN_P.

5-14 Code and Data Separation

EXIT1 PROCEDURE EXIT WITH ONE SKIP
1514 1312|1110 9|8 7 6 0

Function: Exit from procedure at normal exit + 1
Use: EXIT1
Interruptible: No

EXIT1 is functionally identical to EXIT except that the program counter is set to
RETURN_P plus one.

EXIT2 PROCEDURE EXIT WITH TWO SKIPS
1514 13 121110 9 543|210

........................ 1o
Function: Exit from procedure at normal exit + 2
Use: EXIT2
Interruptible: No

EXIT1 is functionally identical to EXIT except that the program counter is set to
RETURN_P plus two.

CACQ COPY A TO C AND Q
1514 1312|1110 918 7 6|5 4 3

Function: Copy A- to C- and Q-Registers
Use: CACQ

Operands: A : value to load into C and Q
Interruptible: No

The value contained in the A-Register is copied to the C- and Q-Registers. Bits 14
through 0 are copied into the Q-Register. If bit 15 of the A-Register is one, then
CDS is turned off before the next instruction is fetched; otherwise, CDS is turned on.

Code and Data Separation 5-15

cscaQ COPY B TO C AND Q
15114 13121111098 7 615 43121 0
| i)

Function: Copy B- to C- and Q-Registers
Use: CBCQ

Operands: B : value to load into C and Q
Interruptible: No

The value contained in the B-Register is copied to the C- and Q-Registers. Bits 14
through 0 are copied into the Q-Register. If bit 15 of the B-Register is one, then
CDS is turned off before the next instruction is fetched; otherwise, CDS is turned on.

CCQA COPY C TO Q AND A
1501413121110 9]8 7 6|54 3|21 0

0
Function: Copy C- and Q-Registers to A-Register
Use: CCQA
Operands: A gets values in C and Q
Interruptible: No

The C- and Q-Registers are copied into the A-Register. If CDS is enabled (C=0),
then bit 15 of the A-Register is set to zero; otherwise, it is set to logic one.

ccas COPY CTO QAND B
15 |14 13 12 543|210

Function: Copy C- and Q-Registers to B-Register
Use: CCQB

Operands: B gets values in C and Q
Interruptible: No

5-16 Code and Data Separation

The C- and Q-Registers are copied into the B-Register. If CDS is enabied (c = 0),
then bit 15 of the B-Register is set to zero; otherwise, it is set to logic one.

CAZ ~ COPYATOZ
1514 1312111098 7 6|54 3]21 0
: 1 P

Function: Copy A-Register to Z-Register
Use: CAZ

Operands: Z gets value in A
Interruptible: No

The contents of the A-Register are copied into the Z-Register. The results of setting
bit 15 of the Z-Register are undefined.

cB2 COPY B TO Z
15|14 1312|1110 9]8 7 6|5 43]21 0
: |ojoj1

Function: Copy B-Register to Z-Register
Use: CBZ

Operands: Z gets value in B
Interruptible: No

The contents of the B-Register are copied into the Z-Register. The results of setting
bit 15 of the Z-Register are undefined.

CZA COPY Z TO A
15|14 1312|11109|8 7 6|5 43|21 0
1]ojojo

Function: Copy Z-Register to A-Register
Use: CZA

Operands: A gets value in Z
Interruptible: No

Code and Data Separation 5-17

The contents of the Z-Register are copied into the A-Register.

CzB COPY ZTO B
514 1312j1110 98 7 6§15 4 3]2 1 O

Function: Copy Z-Register to B-Register
Use: CZB

Operands: B gets value in Z
Interruptible: No

The contents of the Z-Register are copied into the B-Register.

CIQA COPY INTERRUPTED Q TO A
15|14 1312|1110 98 7 6|5 4 3]2 1 O

1o
Function: Copy interrupted Q-Register to A-Register
Use: CIQA
Operands: IQ : interrupted Q and C values
Interruptible: No

The A-Register is loaded with the value of the IQ-Register, which is the value of the
C- and Q-Registers at the time of the last interrupt or fault.

ciaB COPY INTERRUPTED Q TO B
15|14 1312|1110 918 7 615 4 3

Function: Copy interrupted Q-Register to B-Register
Use: CIQB

Operands: IQ : interrupted Q and C values
Interruptible: No

5-18 Code and Data Separation

The B-Register is loaded with the value of the [Q-Register, which is the value of the
C- and Q-Registers at the time of the last interrupt or fault.

ADQA 7 ~ _ADDQTO A
111098 76|543]|21 0

15 |14 13 12

0 toj1]
Function: Add Q-Register to A-Register
Use: ADQA
Interruptible: Yes

The Q-Register is added to the A-Register (A = A+Q). The ADQA instruction
produces undefined results if executed while CDS is disabled.

ADGSB ADDQTOB
1514 1312J1110 98 7 6|5 4 3]21 0
1]of1}1

Function: Add Q-Register to B-Register
Use: ADQB
Interruptible: Yes

The Q-Register is added to the B-Register (B = B+Q). The ADQB instruction
produces undefined results if executed while CDS is disabled.

Assembly Language and RTE Implementation

Refer to the Assembly Language and RTE Implementation paragraphs in Chapter 3
for information on implementing the CDS instructions in HP Assembly Language and
in an HP RTE-A operating system.

Code and Data Separation 5-19

Execution Times

Table 5-1 shows the execution times for the CDS instructions.

Table 5-1. CDS Instruction Execution Times

INSTRUCTION TIME (Lsec)
EXIT)
no segment mapping 2.25
with segment mapping 13.50
EXITY, EXIT2
no segment mapping 2.48
with segment mapping 13.73
PCALI (no parameters) 4.95
per parameter passed 1.35
per indirect 0.45
PCALX (includes segment mapping) 19.35
per parameter 1.35
per indirect 0.45
PCALV (includes segment mapping) 20.70
per parameter 1.35
per indirect 0.45
PCALR 7.88
per parameter 1.35
per indirect 0.45
PCALN 7.20
per parameter 1.35
per indirect 0.45
CACQ, CBCQ 1.35
CCQA, CCQB 0.90
CAZ, CBZ 0.90
CZA, CZB 0.90
CIQA, CiQB 1.35
ADQA, ADQB 0.90
SDSP
display size = 0 2.48
per element of display 0.90

5-20 Code and Data Separation

Interrupt System

Interrupt requests can be classified into two types: system level and I/O. The
interrupt system receives all interrupt requests and determines which interrupt will be
serviced.

In the A400 computer, the interrupt priority of an I/O card is based on the card’s
proximity to the processor card. The Interrupt Service routine, however, is
determined by the interrupting card’s select code. This select code is independent of
the card’s physical location. It is determined by setting six switches on each I/O
card, one per select bit code. The select code of the on-board I/O is 77 octal and
cannot be changed.

Any device can be selectively enabled or disabled under program control, thus
switching the device into or out of the interrupt structure. In addition, the interrupt
system is divided into types of interrupts (Table 6-1). Interrupt Type 3 can be
enabled or disabled under program control using a single instruction, and interrupt
Types 2 and 3 combined can be enabled or disabled using a single instruction.

Power-Fail Interrupt

On the HP 2134A, 2424A, 2434A, and 2484A/B, the computer power supply is
equipped with power-sensing circuits. When primary line power fails or drops below
a predetermined level while the computer is running, an interrupt to memory location
00004 is automatically generated. Memory location 00004 is intended to contain a
jump-to-subroutine (JSB) instruction referencing the entry point of a user-supplied
power-fail subroutine. The interrupt capability of lower-priority operations is
automatically inhibited while a power-fail subroutine is in process.

A minimum of five milliseconds is available between the detection of a power failure
and the loss of usable power supply power to execute a power-fail subroutine; the
purpose of such a routine is to transfer the current state of the computer system into
memory and then halt the computer. A sample power-fail subroutine is given in
Table 6-2. The battery backup (available in the HP 2434A, 2484A/B and 2134A
only) supplies enough power to preserve the contents of memory for a sustained line
power outage of 15 or more minutes, depending on the amount of memory installed.

Interrupt System 6-1

Table 6-1. A400 Interrupt Assignments

Select
Code Interrupt Interrupt
(OCTAL) Location Assignment Type
04 00004 Power Fail Interrupt 2
05 00005 Memory Parity Interrupt 1
06 00006 Time Base Generator 3
Interrupt
07 00007 Memory Protect Interrupt 2
10 00010 Unimplemented Instruction 1
Interrupt
11 00011 Reserved
12 00012 Virtual Area Memory 4
Interrupt
13 00013 CDS Segment Interrupt 4
14-17 00014-00017 | Reserved
20-77 00020-00077 | 1O Card Interrupts 3

There is a switch-selectable option for what action the computer will take upon
restoration of primary power. When the switch U1601 S8 is closed, the computer
will execute either a loader or the Virtual Control Panel routine, depending on the
setting of the Start-Up switches (U1601 S1 to S6).

NOTE

Switch U1601 is mounted on the edge of the A400 board and is not
an operator control. The setting of this switch is normally
determined by the System Manager prior to or during system
installation.

When switch U1601 S8 is open, the automatic restart feature is enabled. After the
self-test is executed following the return to normal power levels, an interrupt to
location 00004 occurs. This time the power-down portion of the subroutine is skipped
and the power-up portion begins. (Refer to Table 6-2.) Those conditions existing at
the time of the power-fail interrupt are restored and the computer continues the
program from the point of the interruption.

Note that an auto-restart interrupt to location 00004 occurs only if that location’s
contents are not zero; otherwise, the system is re-booted. This is done so that if
power fails and is restored during a boot, an attempt to restart a partially loaded
program can be avoided. To enable this to happen, the program being loaded should
initially load location 00004 with zero and load the power-fail JSB instruction only
when the load is otherwise complete.

6-2 Interrupt System

Table 6-2. Sample Power-Fail Subroutine

LABEL | OPCODE | OPERAND COMMENTS
PFAR NOP Power Fail/Auto Restart Subroutine.
SFC 4B Skip if interrupt was caused by power failure.
JMP UP Power being restored; reset state of system.
DOWN| CLC 0B Shut down any DMA or 1/O.
STA SAVA Save A-Register contents.
CCA Set flag indicating that computer was running when power failed.
STA PFFLG
STB SAVB Save B-Register contents.
ERA,ALS Transfer E-Register content to A-Register bit 15.
SOC Increment A-Register if Overflow is set.
INA
STA SAVEO | Save E- and O-Register contents.
LDA PFAR Save contents of P-Register at time of power failure.
STA SAVP
SIMP
DEF SAVI Same IMAP contents.
insert user-written routine to save I/O states.
SFS 4B
JMP *—1 Wait in case power comes back up.
upP LDA PFFLG Was computer running when power failed?
SZA,RSS
HLT 4B No, then halit.
CLA Yes, then reset computer Run flag to initial state.
STA PFFLG
Insert user-written routine to restore I/O devices.
EIID-S SAVEO | Restore the contents of the E-Register and O-Register.
SLA,ELA
STF 1B Set C-Register.
LDA SAVA Restore A-Register contents.
LDB SAVB Restore B-Register contents.
STC 4B Reset power fail logic for next power failure.
XJMP Cross jump to program executing at power failure.
DEF SAVI
DEF SAVPR,|
SAVEOQ| OCT 0 Storage for E and O.
SAVA | OCT 0 Storage for A.
SAVB OCT 0 Storage for B.
SAVP OCT 0 Storage for P.
PFFLG | OCT 0 Storage for Run flag.
SAVI oCT 0 Storage for IMAP.

Note: The memory maps used must be saved and restored, as must (if used) the states of

the interrupt mask register, memory protect (conditional restore), and Global Register.

If the computer memory does not contain a subroutine to service the power-fail

interrupt, location 00004 should contain a NOP instruction (00 octal).

At the end of a restart routine, consideration should be given to re-initializing the

power-fail logic and to restoring the interrupt capability of the lower priority
functions.

Interrupt System

6-3

Parity Error Interrupt

Parity checking of memory is a standard feature in the A400 computer. The parity
logic continuously generates correct parity for all words written into memory and
monitors the parity of all words read out of memory. Parity can be programmatically
set to even parity (STF 05) or cleared to odd parity (CLF 05). Correct odd parity is
defined as having the total number of “1” bits in a 17-bit memory word (16 data bits
plus the parity bit) equal to an odd value. If a “1” bit (or any odd number of “1”
bits) is either dropped or added in the transfer process involving a standard memory
array card, a Parity Error signal is generated when that word is read out of memory.

The Parity Error signal generates an interrupt to memory location 00005 if the parity
system was previously enabled by an STC 05 instruction. Parity interrupts turn off
the system. Location 00005 may contain either a JSB instruction referencing the
entry point of the parity error subroutine or a JMP instruction pointing to a HLT
instruction. (/O instructions, including a HLT instruction, may not be in a trap cell).
A parity error during a DMA transfer causes an interrupt to the memory location
corresponding to the select code of the I/O card making the transfer if the proper bit
has been set in the control word.

The memory address of the parity error will be loaded automatically into the parity
register which is accessible to the user by a programmed LIA 05 or LIB 05
instruction for bits 0 through 15, and by an LIA 5,C or LIB 5,C for bits 16 through
23.

If a parity error occurs during a read of an instruction, that instruction is executed
but memory writes are disabled. When a parity error occurs, it is recommended that
the entire program or set of data containing the error location be reloaded.

Memory Protect Interrupt

The memory protect feature protects selected pages of memory against alteration or
entry by programmed instructions except those involving the A- and B-Registers.

The memory protect logic, when enabled by an STC 07 instruction, also prohibits the
execution of all [/O instructions except those referencing I/O select code 01 (the
processor card status register and the overflow register). Execution of all HLTs is
prohibited. This feature limits control of /O operations to interrupt control only.
Thus, an executive program residing in protected memory can have exclusive control
of the /O system.

The memory protect logic is disabled automatically by any interrupt (except when the

interrupt location contains an I/O instruction) and must be re-enabled by an STC 07
or XJMP instruction at the end of each interrupt subroutine.

6-4 Interrupt System

Programming rules pertaining to the use of memory protect are as follows (assuming
that an STC 07 instruction has been given):

a. Locations 00000 and 00001 in the Execute map are the A- and B-Registers and
are not in protected memory. Locations 00000 and 00001 in the DATA1 and
DATA2 maps are real memory locations (not the A- and B-Registers) and may
reside in protected memory.

b. A user-specified 1024-word page of memory is read and/or write protected by
Page Mapping Register instructions described in the Dynamic Mapping chapter.

c. - Execution will be inhibited and an interrupt to location 07 will occur if any
instruction addresses a location in protected memory, or if any privileged
instruction is attempted (excluding those addressing select code 01 but not HLT
01). After three successive levels of indirect addressing, the logic will allow a
pending interrupt.

Following a memory protect interrupt, the address of the illegal instruction will be
present in the violation register. This address is made accessible to the programmer
by an LIA 07 or LIB 07 instruction, which loads the address into the A- or
B-Register.

Note that DMA operation is not affected by memory protect.

Unimplemented Instruction Interrupt

An unimplemented instruction interrupt (to memory location 00010) is requested
when the CPU signals that the last instruction fetched was not recognized by itself or
by any other system card. This interrupt provides a straightforward entry to software
routines for the execution of instruction codes not recognized by the computer
hardware. The unimplemented instruction interrupt must receive immediate service
in order to recover the instruction code that caused it. For this reason, and because
it is desirable to permit the use of unimplemented instructions anywhere, the
unimplemented instruction interrupt is never inhibited.

Time Base Generator Interrupt

A time base generator interrupt request is made when the CPU signals that its
internal clock divider chain has rolled over. The clock divider is set to roll over at
10-millisecond intervals for maintaining a real-time clock. The interrupt occurs
through location 00006 and can be masked (inhibited) by using bit 1 of the interrupt
mask register. (The interrupt mask register allows interrupts from the TBG and the
[/O cards to be selectively masked. For details on the interrupt mask register, refer
to the HP 1000 A/L-Series Computer [/O Interfacing Guide, part no. 02103-90005.)
The TBG can be turned on by an STC 06 instruction, and turned off by a CLC 06 or
CLC 00 instruction.

Interrupt System 6-5

Virtual Memory Area Interrupt

During the execution of a VMA instruction, the hardware may determine that the

desired VMA address does not reside in physical memory and needs to be loaded
from disc. This causes a VMA interrupt to memory location 000012 (octal). This
interrupt can occur only when Code and Data Separation (CDS) is enabled.

CDS Segment Interrupt

During the execution of a CDS instruction, the hardware may determine that a
desired CDS segment does not reside in physical memory and needs to be loaded
from disc. This causes a CDS segment interrupt to memory location 000013 (octal).

Input/Output Interrupt

Interrupt locations 20 through 77 (octal) are reserved for I/O devices. In a typical I/O
operation, the computer issues a programmed command such as Set Control/Clear
Flag (STC,C) to one or more external devices to initiate an input (read) or an output
(write) operation, via either programmed I/O or DMA. While the /O card is in the
process of transferring data, the computer may be either running a program or
looping, waiting for a flag to be set. Upon completion of the read or write operation,
the interface flag is set. If the corresponding control bit is set, the interface will
interrupt. Its request will be passed through a priority network so that only the
highest priority interrupting device receives service. The computer acknowledges the
interrupt and the highest priority device receives service when the current instruction
has finished executing, except under the following circumstances:

a. Interrupt system disabled or interface card interrupt disabled (or masked).

b. JMP indirect, JSB indirect, XJMP, or XJCQ instruction not sufficiently executed.
These instructions inhibit all interrupts except power-fail or memory protect until
the succeeding instruction is executed. After three successive levels of indirect
addressing, the logic will allow a pending I/O interrupt.

c. A DMA (direct memory access) data transfer is in process.

Current instruction is any I/O group instruction. The interrupt in this case must
wait until the succeeding instruction is executed.

After an interface card has been issued a Set Control (STC instruction) and its flag
bit becomes set, all interrupt requests from lower-priority devices are inhibited until
this flag bit is cleared by a Clear Flag (CLF) instruction, or until control is cleared
by a Clear Control (CLC) instruction. A service subroutine in process for any device
can be interrupted only by a higher-priority device; then, after the higher-priority
device is serviced, the interrupted service subroutine can continue. In this way it is
possible for several service subroutines to be in the interrupt state at one time; each
of these service subroutines will be allowed to continue after the higher-priority
device is serviced. All such service subroutines normally end with a JMP indirect or
XJMP instruction to return the computer to the point of interrupt.

6-6 Interrupt System

Note that interrupt trap cells must contain a JMP or JSB instruction because maps
change on interrupt.

Interrupt Priority

The interrupt servicing priority among the system interrupts is as follows:
Parity error (select code 5).

Unimplemented instruction (select code 10).

Memory protect (select code 7).

Power-fail (select code 4).

Time base generator (select code 6).

OBIO (select code 77).

/O interrupts (select codes 20 through 76).

I T S e

Virtual Memory Area (select code 12) and CDS Segment (select code 13).

Central Interrupt Register

Each time an interrupt occurs, the address of the interrupt location is stored in the
central interrupt register. The contents of this register are accessible at any time by
executing an LIA 04 or LIB 04 instruction. This loads the address of the most recent
interrupt into the A- or B-Register.

Processor Status Register

The processor status register is two registers: one for input and one for output. The
input register shows the status of the BOOT SEL switches and is read into the upper
eight bits of the A- or B-Register by an LIA/B 01 instruction. The switch, bit, and
function relationships are as follows:

SWITCH BIT MEANING
S1 8 Boot select
S2 9 Boot select
S3 10 Boot select
S4 11 Boot select
S5 12 VCP program select
S6 13 ENQ/ACK select
S7 14 Not used
S8 15 Auto-restart enabled (1)/disabled (0)

Interrupt System 6-7

The output register drives the CPU board LEDs. The output of the lower eight bits
of the A- or B-Register are sent to the LEDs by an OTA/B 01 instruction. A logic 1
in either register lights the corresponding LED.

Interrupt Type Control

/O address 00 is the master control address for Type 3 interrupts (TBG and I/O
cards). An STF 00 instruction enables Type 3 interrupts and a CLF 00 disables Type
3 interrupts. (Type 3 interrupts are disabled when power is initially applied.) /O
address 04 is the master control address for Type 2 interrupts (power-fail and
memory protect) and Type 3 interrupts combined. An STC 04 instruction enables
Type 2 and 3 interrupts and a CLC 04 disables Type 2 and 3 interrupts.

The Type 2 and 3 interrupt mask from 1/O address 04 is a different Type 3 mask
than the Type 3 mask at /O address 00. If either of these two masks are set, Type 3
interrupts will be disabled. In addition to these two interrupt masks, the Time Base
Generator flag interrupt can also be masked by bit 1 of the Interrupt Mask Register.
If any of these three masks are set, then the TBG flag interrupt will be disabled.

Instruction Summary

Table 6-3 is a summary of instructions for select codes 00 through 07. For a
summary of instructions used with the I/O cards, refer to an I/O card reference
manual.

6-8 Interrupt System

Table 6-3. Instructions for Select Codes 00 through 07

Instruction Function Instruction Function

STCO NOP STC 4 Enable type 2 and 3 interrupts

CLCO System reset CLC 4 Diable type 2 and 3 interrupts

STF O Enable type 3 interrupts STF 4 NOP

CLF O Disable type 3 interrupts CLF 4 NOP

SFS 0 Skip if type 3 interrupts enabled SFS 4 Skip if power is stable

SFC 0 Skip if type 3 interrupts disabled SFC 4 Skip if power going down

Li* 0 Load from interrupt mask register Li* 4 Load from central interrupt register

Mi* 0 NOP Mi* 4 NOP

oT* 0 Output to interrupt mask register oT* 4 Output to central interrupt register

STC 1 NOP STC 5 Enable parity error interrupts

CLC 1 NOP CLC 5 Disable parity error Interrupts

STF 1 Same as Set Overflow (STO) STF 5 Set parity sense to even parity

CLF 1 Same as Clear Overflow (CLO) CLF 5 Clear parity sense to odd parity

SFS 1 Same as Skip if Overflow set (SOS) SFS 5§ Skip if parity sense Is even

Li* 1 Load from processor status register SFC 5 Skip if parity sense is odd

Mi* 1 Merge from processor status register LI* 5 Load from parity register (bits 0-15)

oT* 1 Outputy to processor status register LI*5,C Load from parity register (bits 16-23)
Mi* 5 NOP

STC 2 Enable break feature oT* 5 NOP

CLC 2 NOP

STF 2 Disable global register STC 6 Turn on time base generator

CLF 2 Enable global register CLC 6 Turn off time base generator

SFS 2 Skip if global register disabled STF 6 Set time base generator flag

SFC 2 Skip If global register enabled CLF 6 Clear time base generator flag

Li* 2 Load from global register SFS 6 Skip if time base generator flag set

Mi* 2 NOP SFC 6 Skip if time base generator flag clear

oT* 2 Output to global register (Note 1) Li* 6 NOP
Mi* 6 NOP

STC 3 NOP oT* 6 NOP

cLc 3 NOP

STF 3 NOP STC 7 Enable memory protect

CLF 3 NOP cLCc7 NOP

SFS 3 NOP STF 7 NOP

SFC 3 NOP CLF 7 NOP

Li* 3 Load from PSAVE SFS 7 NOP

Mi* 3 NOP SFC 7 NOP

oT* 3 Output to PSAVE Li* 7 Load from violation register

Li* 3,C Load from ROM P Mi* 7 NOP

oT* 3,C Output to ROM P oT* 7 NOP

*=AorB

Note 1. An OTA/B 2 with A/B equal to 1 thru 7, establishes a diagnose mode; refer to Chapter 8 for details.

Interrupt System 6-9

On-Board I/0 (OBIO)

General Description

This chapter describes the On-Board Input/Output subsystem (OBIO), a set of four
serial I/O ports that reside on the A400 board. OBIO is unique to the A400
computer. The A400 also supports I/O using standard interface cards common to the
A/L-Series family. For more information on the cards, refer to the Input/Output (I/O)
System chapter of this manual.

OBIO is comprised of an I/O processor, the I/O master circuitry, and four serial port
processors. The I/O master and the single DMA channel that it provides are shared
by the four port processors. The port processors are implemented in 63701V
microprocessor units (MCUs).

The DMA machine outputs characters much faster than the maximum baud rate of
peripherals, therefore the maximum data throughput is equal to the baud rate, minus
a slight per buffer overhead time. The baud rates supported are 300, 1200, 9600 and
19.2k, and 76.8k baud. The port processors buffer data until a user definable special
character is detected, a carriage return is detected, or until its buffer is full
(approximately 95 characters). At that time, the port processor requests service from
the CPU. The port processor also does backspace processing to minimize the
interrupts that the CPU must process. The serial ports support RS-232, RS-422,
RS-423, and V.24/28. Two of the four ports support modem control lines.

Normal software interfacing to the four serial OBIO ports is handled by the device
drivers DDC00 and DDCO1; and interface driver ID400, supplied with the RTE
Operating System. For more information, refer to the RTE-A Driver Reference
Manual, part no. 92077-90011.

On-Board 1/0 (OBIO) 7-1

Processor Description

A400 1/O is designed around the Hitachi HD63701V1 8-bit single-chip microcomputer
unit (MCU). The HD63701V1 comes complete with 192 bytes of on-board RAM and
40096 bytes of on-board ROM. This processor is used in single chip mode (mode 7),
which includes four multiplexed ports. Port 1 and port 4 are 8-bit parallel [/O ports,
port 2 is the timer (unused) and Serial Communications Interface (SCI), and port 3 is
an 8-bit parallel [/O port with two control lines, Input Strobe 3 (IS3-) and Output
Strobe 3 (0S3-). The input frequency (Fxtal) = 4.9152 MHz, which is internally
divided to give a Frequency of Operation (Fo) = 1.2288 MHz. This inverts to provide
a cycle time of 0.8138 microseconds. The internal clock will therefore overflow at
53.333 milliseconds. An external clock may be connected to each port processor.
Although any frequency may be used up to 153K baud, the A400 clock is a 19.2K
baud input. This clock is derived by a 19.2K baud divider on the card. This rate is
the maximum input data rate supported, and worse case calculations are made using
this rate.

MCU Pin-Out

vss {1 0} E
XTAL - 2 L 39 | SC1 <- (1ISC3-)
EXTAL 3 38| sSC2 -> (0S3-)
NMi- < 4 37 | P30 .
IRQ1- 5 36 | P31
Vpp/RES- {6 35 | P32 .
STBY- 47 34 | P33 <-> (DATA PORT)
(“1") => P20 8 33 | P34 .
(“17) => P21 49 32 | P35
(19.2K CLOCK) -> P22 410 31 | P36
(RECEIVE DATA) -> P23 - 11 30 | P37
(TRANSMIT DATA) -> P24 {12 29 | P40 <~ (CONTROL TRANSFER)
(MODM CONNECT-) <- P10 413 28 |- P41 <~ (MCU OUTPUT)
(CTS-) <= P11 14 27 L P42 -> (DATA IN AUX BUF)
(DSR-) <- P12 {15 26 |- P43 -> (READ CONFIGURATION)
(DTR/RTS-) <- P13 416 25 | P44 <~ (PORT ID 0)
(R-) <- P14 {17 24 | P45 <~ (PORT ID 1)
(CD-) <- P15 418 23 |- P46 -> (SLRQ-)
(AUTO ANSWER-) <- P16 - 19 22 | P47 -> (PORT INTERRUPT-)
(FAIL SELF-TEST) <- P17 420 21 } Vee

7-2 On-Board 1/0 (OBIO)

OBIO Features

The A400 supports four serial I/O ports, controlled by port processors A through D
(PPA through PPD). PPB and PPC support modems, while PPA and PPD will not.
PPA is the only port which may be configured as the Virtual Control Panel. The
DMA machine outputs characters much faster than the baud rate, so the maximum
data throughput is equal to the baud rate, minus a slight per buffer overhead time.
The on-board MUX can detect framing and receiver overrun errors. The baud rates
supported are 300 baud, 1200 baud, 9600 baud, and 19.2K baud (using external
clock). 76.8K baud is available with RS-422. The SCI supports a standard
mark/space (NRZ) format, with one start bit and one stop bit.

VO Master

The I/O Master portion of the OBIO performs all of the program functions described
in the A/L-Series I/O Interfacing Guide. The select code of the OBIO is set at select
code 77 and cannot be changed.

Programming VCP

When the Virtual Control Panel (VCP) is communicating with the MCU, it only talks
to port A. The VCP driver can communicate with the MCU using VCP calls
(put_char and get_char).

Break Detection

Breaks are detected by the MCU if two framing errors are detected within
approximately 100 milliseconds. A break to port A will cause SLRQ- to be asserted.
The system will ignore this input unless the A400 card was selected as the VCP card.

MCU Default Configuration for VCP

A hard or soft reset will cause VCP to come up with the following parameters:

Baud Rate: 9600
ENQ/ACK disabled
Modem Control disabled

No echo of data without destination
No FIFO buffering

On-Board 1/0 (OBIO) 7-3

VCP Write

Since the VCP driver uses single character transfers to send data, a similar function
is implemented by the MCU. This transfers only one character to the external
device, and may be used when the system is or is not in VCP mode. For a VCP
single character transfer, a special bit is implemented in the write control word. If
this bit is set, the control designates a single character write, and no data transfer is
required. Refer to the Identity 10: EXEC Write Request section of this chapter.

VCP Read

The MCU should be configured for no buffering, have no read pending, and be
configured to echo characters with no destination. Each character received from the
external device then causes an MCU status available interrupt (setting the appropriate
bit in status register 32). This MCU status word is flagged as data without a
destination, and it is stored in bits 7-0. The VCP driver performs all editing
functions.

Driver Registers

OBIO uses registers 30, 31, and 32 to communicate with the CPU. They are
summarized as follows:

e Register 30 is a data register that appears to the MCU as an 8-bit register. Only
the eight least significant bits are sent to the MCU when the CPU performs an
OTA 30B.

e Register 31 is a control register that allows the driver to control the ports. The
driver writes to this register, instructing the designated MCU that the next word
will be an MCU control word, MCU status word, or actual data.

e Register 32 is a status register. Bits 7-4 reflect the pass/fail result of the port’s
self-test. Bits 3-0 are port interrupt bits that are cleared if the corresponding
MCU is requesting interrupt service, and is independent of the value of control
register 31.

OBIO Data Transfer

This section describes the typical steps the driver must perform in order to read and
write a string to an external device. In a DMA quad, four words are required:

Word 1 is written to DMA control register 21.
Word 2 is written to DMA control register 31 (and MCU).

7-4 On-Board I/0 (OBIO)

Word 3 is written to DMA control register 22.
Word 4 is written to word/byte control register 23.

The general bit definitions for DMA control word 1 are:

15 14 13 12 11 10 9 8 7 6 5 4 0
CONT|DVCMD| BYTE | RES | CINT | REM FOUR|[AUTO| IN Various | ADD EXT BUS

CONT Continue: Enables a DMA reconfiguration upon completion of a
self-configured DMA transfer.

DVCMD Device Command: Issues a device command signal for each data element
transferred. This is required for proper handshaking.

BYTE Byte/word Transfer: Conducts DMA transfers in byte mode. This is
required for proper handshaking.

RES Residue: Writes word/byte count back into memory.

CINT Completion Interrupt: Inhibits DMA completion interrupt. (Do not set flag
30B when finished.)

REM Remote: Enables remote (non-standard) memory for DMA transfer (not
used in RTE-A).

FOUR Fetch Four Control Words: Causes DMA self-configuration to fetch four
control words, that is, three DMA control words and one I/O card control
word.

AUTO Automatic: Initiates the first data transfer once DMA is configured to
output, without waiting for an SRQ-. For input transfers, it enables a
Device Command signal after the last data element is transferred. Note that
this in only in effect during self-configuring DMA, thereby requiring all
output DMA transfers to be self-configured. AUTO must be on for output,
and off for input.

IN Transfer In: Performs DMA transfers from I/O devices to memory.
Various: User definable.

ADD EXT BUS: Five bits that allow DMA access to physical memory by referencing
one map set of 32 registers each.

CPU to External Device Transfers

To initiate a write to port processor A, a control word “identity 10: EXEC Write
Request” followed by the actual data must be sent to the MCU:

On-Board 1/0 (OBIO) 7-5

QUAD #1:

Word #1 - 165400B (CONT,DVCMD,BYTE,CINT,FOUR,AUTO,MAP SET 0)
Word #2 - 000201B (send ctrl word to PPA, enable interrupts on port A)
Word #3 - xxxxxxB (address of MCU control word)

Word #4 - 177776B (two bytes)

QUAD #2:

Word #1 - 065407B (DVCMD,BYTE,CINT,FOUR,AUTO,MAP SET 7)
Word #2 - 000001B (send actual data to PPA, enable interrupts on port A)
Word #3 - xxxxxxB (address of data in map set 7)

Word #4 - 177633B (101 bytes)

To initiate a longer transfer than the MCU’s memory will allow, read and write
requests must be broken into several requests small enough for the MCU’s buffer.
Note that the same action may be taken by the CPU using a STC/SFC structure, but
the DMA quad method is simpler and more code efficient.

MCU/Driver Communication

There are four modes of communication with the MUX driver:

Device to MUX driver through the MCU
MUX driver to device through the MCU
MUX driver to MCU
MCU to MUX driver

Each mode is selected by control register 31 bits CNTRL XFER and MCU OUTPT.

DMA Device Write

CNTRL XFER = 0, MCU OUTPT = 0. This type of word at control register 31
causes the MCU to assume that the data available at data register 30 will be actual
data to be sent to the SCI. If the driver requests a write transfer to a port’s device,
it initiates the transfer with a DMA quad. The quad first configures the MCU for a
write transfer, then follows with the data to be sent to the device. The driver does
not send more than one MCU buffer full of data at a time. If the total number of
characters is greater than one MCU buffer, the driver must wait for the MCU to
interrupt, indicating it is finished with the previous buffer, then transfer the next
buffer of data.

7-6 On-Board 1/0 (OBIO)

DMA Device Read

CNTRL XFER = 0, MCU OUTPT = 1. This type of word at control register 31
indicates a transfer initiated by the driver as a response to an MCU status word
indicating the MCU has a full buffer. The driver sets up a DMA read transfer for
the number of characters the MCU indicated. Chain DMA may be used in this case,
since a new read configuration word may then be sent to the MCU (Identity 1 EXEC
read MCU control word), followed by the actual DMA transfer. The data will always
arrive in even pairs, since the last buffer is padded with a null/space if needed to end
on word boundaries.

MCU Control Words

CNTRL XFER = 1, MCU OUTPT = 0. If the MCU OUTPT bit is cleared and the
CNTRL XFER bit is set, the MCU treats the data available at data register 30 (port
3) as an MCU control word.

Identity 0: EXEC Read Request

This type of control word request is normally completed upon receiving an MCU
status word of type “READ DATA BUFFER READY”.

UPPER BYTE: READ CHARACTERISTICS

15, 14 13 12 11 10 9 8

IDENT|START| FIRST {XPRNT| BLOCKIECHO|LAST [BINRY]
=0 |CHAR |BUFFR|XFER |XFER |/PAGE|BUFFR|/A.H.

LOWER BYTE = MAXIMUM NUMBER OF CHARACTERS TO READ

7 6 ,5 ,4 3 .2 1,0

I i i |

msB LSB
| 1 |] | | l

Bit 15: CONTROL WORD TYPE IDENTIFICATION = 0

Bit 14: START CHAR
This bit is used for editing. [If you backspace into a previous buffer, the MCU
sends indication of this, and saves the byte in the start of MAINBUF area. If
this bit is set, it indicates the driver:

- ignored the character supplied with notification of backspaces,
- requests the character to be placed in the start of MAINBUF, and
- requests the next character to be placed in location SMAINBUF+1.

On-Board 1/0 (OBIO) 7-7

Bit 13: FIRST BUFFR
This bit is set if this is the first buffer of a (possibly) multiple buffer transfer. It
instructs the MCU to ignore excessive backspaces during a normal ASCII read if
set, and to send “delete” status words during a normal ASCII read if cleared.
This bit also indicates when to send a DC1 in HP protocol mode.

When in block mode (setting bit 11), bit 10 takes on the meaning of page (1) or line
(0) mode transfers.

If a control 17B request with bit 8 set has been made, transparent ASCII reads
change to testing for a defined terminator, and no echo of CRLF when a terminator
is detected. Bits 12 and 8 are the transparent and binary bits, respectively. They
describe the type of read requested as described in the following table:

Reads do not return the terminating character. If an odd number of characters is
requested, or the read is terminated on an odd boundary, the last character will be
padded with a null (octal 0) for binary read transfers, or a space (octal 40) for
non-binary read transfers.

The terminating condition is indicated in the appropriate MCU status word.

When FIFO buffering is enabled, no data is echoed or processed. The data is
processed only when the read is actually posted to the port. Therefore, data will not
be echoed until the read is posted, causing the entire buffer to be dumped at once.

Bit 10: ECHO/PAGE
If echo is set, all characters will be echoed as soon as they are received, but with
these exceptions:

- A \CRLF will be echoed for DEL
- ENQ/ACK will not be echoed if in ENQ/ACK handshaking mode
- XON/XOFF will not be echoed if in XON/XOFF mode.

If the request is block mode (bit 11, BLOCK XFER set), this has the meaning of
page mode (if set), or line mode (if cleared). Block mode indicates a forced no
echo.

Bit 9: LAST BUFFR
This bit is set to notify the MCU that this is the last buffer of a (possible)
multi-buffer transfer. It is used in ASCII reads to indicate that all data will be
ignored until the terminating condition is met. If this bit is cleared, the MCU
leaves itself in “double buffer” mode, until the read terminates, to save all data
until the next partial read request is received.

Bit 8: BINRY / A.H.
If the BLOCK and PAGE bits are set, an auto home/lock keyboard (esc H ESC
c) occurs. In other cases, it flags a binary transfer (see table).

7-8 = On-Board 1/0 (OBIO)

IF THE BLOCK BIT = 0:

No termination on char-
acter count.

READ TYPE TR BI TERMINATING COND. DESCRIPTION OF READ
NORMAL ASCII 00 Detection of Cr, or EOT. Allow editing (BS & DEL); if echo bit set —>
echo each character and echo CRLF for CR;
No termination on char- if echo bit clear -> echo CRLF for CR.
acter count. Note that editing occurs at last valid char-
acter, not necessarily last entered character.
Echo “\CRLF" for DEL if echo is enabled.
XPARENT ASCIlI 10 Detection of user defined if echo bit set -> echo each character and
terminator. No termination echo CRLF for CR.
on count. If echo bit clear -> echo CRLF for CR. (Or
as per user def. term.)
NORMAL BINARY X 1 Satisfy character count. If echo bit set -> echo each character.
XPARNT BINARY
IF THE BLOCK BIT = 1 (TR IS IGNORED):
READ TYPE PAGE TERMINATING COND. DESCRIPTION OF READ
BLOCK LINE 0 Detection of Cr. Inhibit echo. If first character received is a
DC2(+CR) flush bufr, then send a DC1.
No termination on char- If TR = 0, echo a CRLF when CR is detected.
acter count.
BLOCK PAGE 1 Detection of RS.

Inhibit echo. If first character received is a
DC2, flush ten send a DC1.
If TR = 0, echo a CRLF when RS is detected.

Bits 7-0: MAXIMUM NUMBER OF CHARACTERS TO READ
This is only valid if LAST BUFFR = 1. This byte tells the MCU the maximum
number of characters to read. If status 0 characters read is returned (user
immediately entered terminator), a driver request for that buffer is invalid, since
it does not exist. If a request is made which is larger than the maximum buffer
size, the buffer size request is reduced to maximum size.

Identity 10: EXEC Write Request

This type of control word request is normally completed by receiving an MCU status
word of type “WRITE DATA BUFFER EMPTY”. This type is used if the driver (or
VCP) is instructing the MCU to perform a DMA data transfer or a non-DMA transfer
of a single character. The second feature is useful in VCP single character mode to
send characters to the external device as they become available, without requiring the
use of DMA, or if the driver transfers data in byte mode. Identity 10 also allows the
driver to configure the appending of CRLF’s.

UPPER BYTE: WRITE CHARACTERISTICS

15 14 13 12 1

10 9 8

I
IDENTITY |WRITE | HOLD|FORCE
1 0 |-READ} CRLF [EN/AK

SINGL| LAST f HOLD
CHAR | BUFFR|EN/AK

On-Board 1/O (OBIO) 7-9

LOWER BYTE = SINGLE CHARACTER/DMA CHARACTER LENGTH
7 6 5 4 3 2 1 0

1 1 l ! l |]
| I ! | ¥ I |
MSB LsB

| | | I | | 1

Bits 15-14: Control Word Type Identification = 01

Bit 13: WRITE-READ
This bit is used to indicate a write-read is in effect, and to buffer data until the
read is available.

Bit 12: HOLD CRLF (TR BIT)
If this bit is set, no CRLF will be appended at the end of the transfer.

Bit 11: FORCE EN/AK
If this bit is set, an ENQ/ACK handshake must occur before the current write, if
HOLD EN/AK is cleared.

Bit 10: SINGL CHAR
If this bit is set, the MCU does not expect any IS3- handshakes or data from
data register 30. It will only output the character contained in bits 7-0 and will
not process bits 13-8.

Bit 9: LAST BUFFR
This bit is used with the BINRY XFER bit. [If LAST BUFFR = 1, BINRY XFER

= 0, and the last valid data character is a “_”, then the “_” will not be printed,
and the CRLF will not be appended.

Bit 8: HOLD EN/AK (BI BIT)
If this bit is set, no ENQ/ACKs (unless forced) will occur during the current
transfer.

Bits 7-0: DATA COUNT/CHARACTER
These eight bits contain the character to be transferred when bit 13 (SINGL
CHAR) 1s set. When bit 13 is not set, it contains the number of characters the
DMA transfer will contain. The MCU uses this number to determine the end of
valid data in its buffer, testing for premature termination of DMA. This number
may be 0 if you want to force any conditions such as ENQ/ACK control, or just
write a CRLF.

Identity 11: MCU Control Requests

Identity 11 is used for all requests to the MCU for the various types of control
required.

Identity 11-0000: Port3 Diagnostics

This control request is normally completed upon reading the echoed data byte. Note
that the proper sequence must be strictly observed.

7-10 On-Board 1/0 (OBIO)

Bits 15-10: Control Word Identification = 110000

When entering this mode, the next word written to port 3 will be echoed back for
verification. The proper sequence is:

1. Write to control register 31 selecting the desired port.

2. Write this MCU control word to data register 30.

3. Verify PINT bit is off at status register 32.

4. Write data byte to data register 30.

5. Wait for PINT bit on at status register 32 and OS3- strobe.
6. Read and compare data byte from data register 30.

7. Verify PINT bit is off at status register 32.

Note that this only occurs once per sequence, and the sequence must be completed in
order for the MCU to continue processing.

Identity 11-0001: Load Executable Code

This control request requires the buffer to fill, and will wait indefinitely for it to fill, then execute the
buffer.

Bits 15-10 Control Word Identity = 110001.

Identity 11-0010: Return MCU Dynamic State

This MCU control word returns an eight-bit MCU status byte. The requested byte is
returned during the next IS3/0S3 handshake, regardless of the state of the INXFER
and CNTRLXFER bits.

Bits 15-10: Control Word Identity = 110010
Bits 7-0: Memory Location

Returns dynamic status. The MCU returns 16 bits, with the eight most significant
bits indicating the length of FIFO buffering data, and the least significant bits
returning the contents of the location indicated by bits 7-0. If the requested memory
location was P3DATA (location $0006H) the MCU will return the revision code as an
offset to 4.00 (such as, 123 decimal = rev 5.23). If the requested memory location
was RDR (location $0012H) the MCU will return the value of the location
ROMFUDGE (used to force simple checksum of all ROM to equal 0 for self-test
verification. Refer to the Firmware Architecture section for exact values of other
memory locations.

The requested value is immediately returned by the MCU, so this control word must
always be followed by a status word request, which is immediately returned without a
status type.

On-Board I/0 (OBIO) 7-11

Identity 11-0011: Undefined

This control word is used for future enhancements.

Identity 11-0100: De-Assert SLRQ- Line
Bits 15-10: Control Word Identity = 110100

This control word causes the port to remove SLRQ-. This is used by VCP when the
“disable break” switch has been selected, to remove the condition which initiated
VCP.

Identity 11-0101: Reset
Bits 15-10: Control Word Identity = 110101
Bit 0: HARD/SOFT RESET
0: HARD RESET. This type of control word invokes a delayed response, an
MCU status word, “SELF-TEST RESULT”. It initiates self-test, resets all
pointers, and flushes data. The self-test result is set upon each execution
from restart, and is saved internally as an MCU status word. When finished,
the MCU asserts the MCU status available interrupt line, and returns a type
101 self-test result word.
1: SOFT RESET (ABORT). Any reads or writes are aborted, and any pending
status words are removed. The buffers are re-initialized, and all data is lost.

This is the same as a hard reset, but no self-test results are returned, and no
status word becomes available. The driver then re-initializes the card.

Identity 11-0110: Enter VCP Mode
Bits 15-10: Control Word Identity = 110110

Enters VCP mode (single character transfer mode) with echo enabled, and no FIFO
buffering.

Identity 11-0111: Set Protocol
Bits 15-10: Control Word Identity = 110111

This control word instructs the MCU to set the port protocol to be used in multiple
character transfers.

7-12 On-Board 1/0 (OBIO)

Bits 3-0: Selected Protocol

0000: TTY protocol

XXX1: bi-directional XON/XOFF protocol
XX1X: HP protocol

X1XX: non-HP CPU protocol

1XXX: hardwire handshake protocol

For more information, refer to the Serial I/O Drivers (Rev. 4010) section of the
RTE-A Driver Reference Manual, part no. 92077-90011.

Identity 11-1000: Define User Terminator

This control word instructs the MCU to set the user-defined character.

Bits 15-10: Control Word Identification = 111000

Bit 8: Default/Set Terminator
1: changes to terminate on defined character in bits 7-0 (no echo CRLF).
0: changes to normal ASCII read (terminate on CR, echo CRLF).

Bits 7-0: Special Character

These bits programmatically set the special user defined terminator.

Identity 11-1001: Dump FIFO
This control word is used for full duplex implementations.
Bits 15-10: Control Word Identification = 111001

If this option is set, the MCU will quickly process all data in the FIFO buffer as
binary data, and transfer the data from the FIFO buffer to the main buffer. Since
this is used to support the Full Duplex Binary Read mode of operation, the transfer is
only on word boundaries, and only up to MAINBUFLEN characters. The MCU
returns a “READ BUFFER AVAILABLE” status word, with the most significant byte
= 0. This control word must always be followed by a status word request, which will
be returned, with no type.

Identity 11-1010: Set Baud Rate
This type of MCU control word initiates SCI configuration and causes the

communication channel to reset, and therefore should only be done upon
initialization.

On-Board 1/0 (OBIO) 7-13

Bits 15-10: Control Word Identification = 111010
Bits 3-0 Desired Baud Rate

B3 B2 B1 B0 Baud Rate Selected

0 1 1 0 300 baud

0 1 1 1 1200 baud

1 0 1 1 9600 baud

1 1.0 0 19.2K baud (external clock)
1 1 1 0 76.8K baud

any others 9600 baud

Identity 11-1011: Modem Control
Bits 15-10: Control Word Identification = 111011

Bits 1-0: Modem Configuration
Bit 1:
Bit 0:

Set to allow RI interrupts

Set to allow modem connection (DTR and RTS -> true). Note that the
MCU can be instructed to assert DTR and RTS without allowing
connection (that is, connect status word) by setting any of bits 7-2.

DTR may be forced true without making firmware attempt to connect by setting any

of bits 7-2.

Identity 11-1100: FIFO Buffering (Input Buffering)
Bits 15-10: Control Word Identity = 111100
Bit 1: Enable FIFO buffering

Enable FIFO buffering. Flush Auxbuf. This can be used when already in
FIFO buffering to flush the auxiliary buffer.

1:

Disable FIFO buffering. In both cases if the port transmitted an XOFF, an
XON will be transmitted at this point.

Bit 0: Interrupt On Each Character

1:

If bit 1 is set, then interrupt (schedule program in driver) upon each
character. This feature is useful to allow the character which schedules the
program to be saved.

No interrupts.

Identity 11-1101: Disable Break
Bits 15-10: Control Word Identity = 111101

7-14

On-Board 1/0 (OBIO)

This control word prevents the MCU from asserting SLRQ-, and invoking VCP.
Bit 0: Break Enable Control:

0: Disable SLRQ-. P46 configured as an input.

1: Enable SLRQ-. P46 configured as an output.

Identity 11-1110: Set MCU State
This type of control request sets internal flags in the MCU to initiate one-time events.
Bits 15-11: Control Word Identity = 111110
Bit 0: Forces Read Terminate - Force a pending read to complete.
Bit 1: Performs an ENQ/ACK handshake (even if in non-HP protocol).
Bit 2: Generate Break
This flag causes no data to be transmitted temporarily while a 250 millisecond

break is transmitted. Note that this holds off processing of data for the entire
time, only allowing interrupts to be serviced.

Bit 3: Speed Sensing
Setting this bit causes the MCU to reply with a status word of type “speed data”
status word to be returned. The MCU looks for a CR. It echoes a CRLF when
the CR is detected at an acceptable baud rate. If in HP protocol mode, this is
done with ENQ/ACK handshakes, and gives 0.5 seconds for a response at each
baud rate.

Bit 4: Send an ASCII “XOFF”

Bit 5: Send an ASCII “LF”

Bit 6: Send an ASCII “CR”

Bit 7: Send an ASCII “DC1” (“XON”)

Identity 11-1111: Undefined

This control word is used to allow future enhancements.

Table Of Control Word Responses

This table explains which control words are terminated immediately (that is, no status
word will be returned) and which will terminate later.

On-Board 1/0 (OBIO) 7-15

MCU CONTROL WORD

DESCRIPTION OF MCU RESPONSE

EXEC Read Request
EXEC Write Request
Port 3 diagnostics
Load executable code
Return MCU status
Remove SLRQ-
Reset

Enter VCP mode
Set protocol

Define user term.
Dump FIFO

Set baud rate
Modem control

FIFO buffering
Disable break

Set MCU state

MCU status word: “Read Buffer Available”

MCU status word: “Write Data Buffer Empty”
See text

See text

MCU status word: 16 bit result, returned immed.
Immediate termination

MCU status word only on hard reset

Immediate termination

Immediate termination

immediate termination

MCU status word: 16 bit result, returned immed.
Immediate termination

Immediate termination (modem has asyc. ints)
Immediate termination

Immediate termination

Immediate termination

MCU Status Words

CNTRL XFER = 1, MCU OUTPT = 1. These MCU status words are the first data
sent to the driver after the MCU sends an MCU status available interrupt request
(setting port 4 bit 0) and the driver handshakes with an OS3 strobe. The first most
significant four bits indicate why the MCU sent the status available interrupt request,
and the least significant 13 bits contain further information. The MCU removes the
status available line (PINT) when the status word is read, upon “ENTER VCP
MODE”, or upon receiving a “Reset” control word. If at any time another status
word becomes available while the previous has not been read, the MCU declares an

internal error and initiates a soft reset.

UPPER BYTE: TYPE OF MCU STATUS AVAILABLE INTERRUPT

15 14 13

12 1 10 9 8

| | | i

| 1
TYPE OF DATA

MsB LSB | MSB ' LS8

| | | |
TYPE SPECIFIC DATA BITS

LOWER BYTE = EXTENDED DATA

3 ,2 , 1,0

|
EXTENDED DATA

Il l
| 1

7-16 On-Board 1/0 (OBIO)

TYPE 000: Read Data Buffer Ready

Data buffer is ready. Padded with nulls for binary reads, spaces for ASCII reads.
Bit 12: Set if padding is in effect.

Bit 11: Set if a force read terminate. (Bit 9 is set also.)

Bit 10: Set if delete detected and not FIRST BUFFR.

Bit 9: Set if a terminator was detected, cleared if terminated on count.

Bit 8: Set if terminator = EOT (indicates no data to be transferred).

Bits 7-0: Number of words available (in words, due to padding).

TYPE 001: Write Data Buffer Empty

The last character in the write buffer has been sent to the external device. The next
buffer may be transmitted. -

TYPE 010: Destinationless. Char/Speed Sensing

Bit 8:
1: Speed sensing enabled

Bits 7-0 contain the word for RMCSR used by the MCU to match the user’s

baud rate.

OE hex: 76800 baud

0B hex: 9600 baud

07 hex: 1200 baud

06 hex: 300 baud

0C hex: external clock (19.2K baud)

OF hex: MCU could not detect baud rate

0: Data With No Destination

This response indicates a character with no destination has been detected.
This occurs whenever a character is transmitted from the external device and
both double buffering is not enabled or no read is pending.

Bits 7-0: The actual character that caused the unsolicited interrupt.

TYPE 011: Reset Result

Note that if self-test fails, it may not be possible to get the result to the CPU. Reset
Result sets the appropriate bit in status register 32. Two bits of the self-test result
will be this port’s ID. This is used by the diagnostics to verify the port ID lines.

On-Board I/0 (OBIO) 7-17

Bit 10:
0: Error Reset

Bits 7-0: contains the error reset error code:

00 hex: Undefined

01 hex: [S3- timeout in status word loop

02 hex: [S3- timeout in control word loop

03 hex: No read configuration during process character routine

04 hex: Timeout during status word transfer of immediate transfer
routine

05 hex: No read configuration available after MCU->CPU transfer

06 hex: No write configuration available after CPU->MCU transfer

1X hex: Status word collision during MSENDSTATS routine (low byte
contains first overrun status word type)

2X hex: Status word collision during backspacing routine (low byte
contains first overrun status word type)

1: Hard Reset
Bits 12-11: Port ID
Bits 7-0: Self-Test Result:
: pass
: failed ROM checksum
: failed RAM address check

: failed RAM pattern test
: not in MCU operating mode 7

BLWN=O

Note that a hard reset also indicates a powerfail on the card.

TYPE 100: Modem Information
Bits 9-8: Information type as defined below

00: Incoming call (RI F-> T and RI masked=0) 01: Modem initiated disconnect
(cnct=T DTR/RTS=T, DSR*CD*CTS T->F)

1X: Modem connect (cnct=F DTR/RTS=T DSR*CD*CTS F —> T). It also sets
cnct.

Bit 5: Value of Carrier Detect line
0 = true (detected carrier)

Bit 4: Value of Ring Indicator line
0 = true (ringing)

Bit 3: Value of Data Terminal Ready Request To Send lines
0 = true (enable modem connect)

Bit 2: Value of Data Set Ready line
0 = true (modem ready)

7-18 On-Board 1/0 (OBIO)

Bit 1: Value of Clear To Send line
0 = true (modem receive ready)

Bit 0: Value of MCU Modem connection state
0 = MCU acknowledges connection

TYPE 101: Backspace Information

This type of status word is sent when the user sends backspaces past the start of the
current buffer, and the FIRST BUFFR bit is cleared. When the MCU detects the first
excess backspace into the previous buffer, it echoes the backspaces (if appropriate)
until it detects a non-backspace character. The MCU then sends that character, along
with the number of backspaces detected. It also places this character in the start of
MAINBUF, to either be used, or discarded by the next read request. Note that if
more than 254 excess characters are entered, a backspace will cause a delete since
the counter is overrun (on normal ASCII reads).

Bits 12-8: Number of Excess Backspaces
If this number is 37 octal (all ones) it indicates an overflow of the counter, and
that bits 7-0 are invalid. The number of backspaces is N-1 (that is, 0->1
backspace ... 31->32 backspaces).

Bits 7-0: Replacement Character
This character is available in the event that the user backspaced an odd number
of characters into the previous buffer. The driver then uses this character, and
clears the START CHAR bit in the subsequent read request. It is the driver’s
responsibility to test for terminators, since they are not detected by the MCU in
this case. This allows all subsequent DMA transfers to occur on even word
boundaries.

TYPE 110: FIFO Buffering Data Available

Bits 7-0: character which initiated FIFO buffering interrupt.

TYPE 111: Error

Bits 10-8: Error type as defined below 0 hex: FIFO buffering buffer overflow.
Character in bits 7-0.

0 hex: FIFO buffer overflow. Character in bits 7-0.

1 hex: SCI detected an overrun error. Data in bits 7-0.
2 hex: SCI detected a framing error.

3 hex: Undefined.

4 hex: Undefined.

5 hex: SCI detected a break.

6 hex: Undefined.

7 hex: No MCU status word available (PINT not set).

On-Board 1/O (OBIO) 7-19

A framing error occurs when the 10th bit is not a stop bit (that is, not a mark). If
this occurs twice in a 53.33 millisecond time frame, it is considered to be a break. A
framing error usually indicates mismatched baud rates. Internally, the MCU will not
report the break until it is removed, or up to four seconds. No data processing
occurs during a break detection.

MUX Driver Description

This section explains how all mechanisms now supported by multiplexer driver
ID400.REL are implemented by A400’s MCU.

A400 MUX Driver Registers

The A400 4-channel on-board I/0 (OBIO) system has three registers to make it
accessible to the CPU. They are registers 30, 31, and 32.

Data Register 30

Data register 30 appears to the MCU as an 8-bit register. Therefore, whenever the
CPU performs an “OTA 30B”, only the 8 least significant bits are sent to the MCU.
For this reason, the MCU will always wait for 2 DVCMD- states before it completely
reads “16 bits” from data register 30. As an example: To send a 16-bit word using
register 30B, the CPU first clears the SRQ- line (cIf 30B), then sends the MCU the
most significant byte (OTA 30B,C). It next asserts DVCMD- (STC 30B), and waits
for the MCU to send a SRQ-, which sets flag 30B, indicating the MCU has received
the first byte. After flag 30B has been set, the CPU clears flag 30B, and writes the
second byte (using OTA 30B,C). Again the CPU asserts DVCMD- (STC 30B). The
transfer is complete when the MCU again asserts SRQ- (which sets flag 30B).

DATA REGISTER 30

7/15 6/14 5/13 4112, 3/11,2/10, 1/9 | 0/8
! i | i 1 | l

MSB | L 1 | | | | LS8

Control Register 31
Control register 31 allows the driver to control the ports. The driver writes to this

register, instructing the designated MCU that the next word will be an MCU control
word, MCU status word, or actual data.

7-20 On-Board 1/0 (OBIO)

CONTROL REGISTER 31

7,6 ,5 , 4 ,3 ,2 , 1,0

] | |
CNTRY PORT MCU [ENABLE PORT
XFER | SELECT |JOUTPT| D

1

|
INTERRUPTS
\ C A B A A

Bit 7: CNTRL XFER
Setting bit 7 indicates that the next word at data register 30 will be either an
MCU control word or a MCU status word (depending upon the MCU OUTPT
bit). If this bit is not set, actual data will be available at data register 30.

Bits 6-5: PORT SELECT
These two bits notify the MCU which port is the target of the transfer. The
MCU compares this value with the hard-wired identification at MCU ports P42
and P43. If the values do not match, the control transfer is ignored, and data at
data register 30 is ignored until a write to control register 31 matches the port’s
ID. The values are:

BIT 6 BIT 5 PORT SELECTED
0 0 A
0 1 B
1 0 C
1 1 D

Bit 4: MCU OUTPT-
This bit is also known by the CPU/MUX driver as INPUT XFER. Throughout
this document, INPUT XFER will be referred to as MCU OUTPT. MCU OUTPT
tells the MCU whether to expect input or output through data register 30. If the
bit is set, the MCU considers the transfer to be an output transfer, MCU to CPU.

Bits 3-0: ENABLE PORT INTERRUPTS -
If the appropriate bit is set, a MCU status available interrupt request generated
by the MCU can propagate through to the IRQ- line. This bit does not, however,
affect the corresponding value at status register 32. Note that if performing
programmatic I/O, if any port interrupts, it will set flag 30B, possibly adversely
affecting instructions such as SFC 30B, etc.

Transfer Type Selection
Bits 7 and 4 (CNTRL XFER and MCU OUTPT) are used to describe which type of

transfer will take place at data register 30. Bits 6 and 5 (Port Select) are used to
indicate the destination port.

On-Board 1/0 (OBIO) 7-21

BIT 7 BIT 4 ACTION
0 0 actual data transfer, CPU -> MCU
0 1 actual data transfer, MCU -> CPU
1 0 MCU control word transfer, CPU -> MCU
1 1 MCU status word transfer, MCU -> CPU

Register 31 Decoder

The following table explains the action taken according to the lower eight bits in

control register 31.

CPU CPU MCU MCuU

WRITE READ |[CTRLWD | STATWD
PORT A | 00X/01X 02X/03X | 20X/21X 22X/23X
PORT B | 04X/05X 06X/07X | 24X/25X 26X/27X
PORT C | 10X/11X 12X/13X | 30X/31X 32X/33X
PORT D | 14X/15X 16X/17X | 34X/35X 36X/37X

Note that the four least significant bits tell which ports are enabled (i.e., 011 means
CPU write to port A, ports A and D enabled).

Status Register 32

STATUS REGISTER 32
7 6 5 4 3 2 1 0

[] l ! |]
1 I T I | I

PORT SELF-TEST RESULT PORT INTERRUPTS
D \ C I B A A D | C | B A

Bits 7-4: PORT SELF-TEST RESULT
These bits reflect the pass/fail result of the port’s self-test. At each PON (power
on) or programmatic HARD RESET, the MCU will initially set this bit, and clear
it if the self-test passed. If the self-test fails, it may be possible the failure was
not severe, and that the self-test result may be requested.

Bits 3-0: PORT INTERRUPTS
These status bits are cleared if the corresponding MCU is requesting interrupt
service, and is independent of the value at control register 31.

Modem Control

The A400 supports six modem lines. They implement the necessary handshakes to
allow modem communication. These lines are controlled by the Data
Communications Equipment (DCE) and the Data Terminal Equipment (DTE). The
MCU functions as the DTE. -

7-22 On-Board /O (OBIO)

To initiate a longer transfer than the MCU’s memory will allow, read and write
requests must be broken into several requests small enough for the MCU’s butfer.
Note that the same action may be taken by the CPU using a STC/SFC structure, but
the DMA quad method is simpler and more code efficient.

Modem States

The modem is considered connected when the DSR line is “ON” (logical 0), the CTS
line is “ON”, and the CD line is “ON”. When the CPU instructs the MCU to
configure itself as a modem, it will tun “ON” the DTR line (logical 0). Thereafter,
when the MCU is writing to a buffer, it checks the CTS line before transmitting. If
this line is “OFF” (logical 1) the MCU will hold off transmitting until it becomes
true. If the modem is instructed to perform a disconnect, it will turn “OFF” DSR
(logical 1).

Modem CPU Interrupts

The MCU will only interrupt the CPU if it is configured as a modem by a CN30B
command. The modem will interrupt (inform the CPU with a status word) upon
connection or disconnection, if so instructed. If the last command was to connect,
and it becomes disconnected, it will interrupt the CPU, or visa versa. The MCU will
interrupt each time the CD line changes states, and will also interrupt each time the
ring indicator line goes “ON”.

RTS [Pin #4]/DTR [Pin #5]

These two lines are tied together in the hood connector. In this document, Request
To Send and Data Terminal Ready are interchangeable terms. This line is generated
by the DTE (MCU). This line is true when the MCU is connected, or is in the
process of connection.

Clear To Send (CTS) Line [Pin #5]

This line is controlled by the DCE (modem). The DCE can temporarily restrain the
MCU from sending data by lowering this line. The MCU tests this line before every
character it transmits, to be sure the line is ready. It is analogous to an “XOFF”
character.

Data Set Ready (DSR) Line [Pin #6]

This line is controlled by the DCE (modem). It indicates that the DCE is ready to
communicate when set high to a logical 1.

On-Board 1/0 (OBIO) 7-23

Ring Indicator (RI) Line [Pin #22]

This line indicates an incoming call, and is controlled by the DCE (modem). The
MCU will generate an interrupt if it is configured as a modem, and it detects this line
going from “OFF” to “ON”.

Carrier Detect (CD) Line [Pin #8]

This line is controlled by the DCE (modem). It indicates that a DCE is connected.
This line and the DSR line must be “ON” for the MCU to transmit.

Firmware Architecture

CPU Interrupt Request Line

The MCU status available interrupt line (P40, PINT*), is configured as an output.
Before the MCU sets this line, it must first save the status word to be retrieved when
the driver requests the MCU status word.

Initialization

Upon a reset, PPA must be configured to a default value for VCP. In this manner,
all ports will be preconfigured to the same initial value. These values are: Internal
clocking of 9600 baud, and no XON/XOFF handshakes. If a carrier is detected, the
port will be configured as a connected modem, otherwise it is assumed no modem is
present. Unsolicited character interrupts are recognized, and all characters are
echoed. The MCU performs a self-test, and upon completion, assert the MCU status
available interrupt request line, with the SELF-TEST bit set.

Self-Test

The self-test will initially set the self-test failed bit, and clear it if the result passes.
As much as possible, it will test the RAM, perform a CRC on the ROM, and check
some ports. The result will be saved, and a MCU status available interrupt will be
initiated.

Port Definitions

P10 - P17: Modem Control

The MCU modem control port 1 is used only on PPB and PPC. It monitors and
controls all modem lines. These lines are connected as follows:

7-24 On-Board 1/0 (OBIO)

P17 P16 P15 P14 P13 P12 P11 P10

SFTST|WATCH| CD- | RI- |DTR/ [DSR- | CTS-|CNCT
FAILD| RI RTS-

P10: MCU acknowledges modem connect Output [Port B and C only]
P11: Clear to Send Input (CTS) [Port B and C only]

P12: Data Set Ready Input (DSR) [Port B and C only]}

P13: Data Terminal Ready Output (DTR) [Port B and C only]

P14: Ring Indicator Input (RI) [Port B and C only]

P15: Carrier Detect Input (CD) [Port B and C only]

P16: Watch Ring Indicator (enable RI interrupts)

P17: Last self-test executed failed Output

P20 - P24: SCi

Port lines P20-P22 configure the MCU mode upon power-up. They must all be set to
“1”’s to allow the desired mode 7 configuration. P21 and P20 are pulled high by an
external pull-up resistor. P22 is high upon PON. P25 - P27 give the mode the card
is currently in. These lines control the Serial Communications Interface as follows:

P27 P26 P25, P24 P23 P22, P21 , P20

1 T
MCU TOO | RDI [EXTNL [XXXXX | XXXXX
OPEII?ATINGIMODE CLOCK]XXXXX | XXXXX

P20: Logical “1” (tied high)

P21: Logical “1” (tied high)

P22: External Clock Input

P23: Receive Data Input

P24: Transmit Data Output

P25-P27: Current operating mode: all 1’s for single
chip mode

P30 - P37: MCU Data Port

P37 P36 P35 P34 P33 P32, 6 P31 P30

BIT15] BIT14 [BIT13 | BIT12|BIT11 | BIT10 | BIT9 | BIT8
/BIT7 {1 /BIT6 |[/BITS | /BIT4(/BIT3 | /BIT2 | /BIT1] /BITO

On-Board 1/0 (OBIO) 7-25

This port is connected through external hardware to data register 30. P30 is the least
significant bit of the data byte. Strobe lines OS3- and IS3- are used with this port
for handshaking. These lines are always configured as inputs except if the port is
enabled, when they can be either all input or all output.

P40 - P47: MCU Misc Port

P47 P46 P45 P44 P43 P42 P41 PAD

PINT-] SLRQ-| PID1| PIDO|PRT4 | PRT4 | MCU | CNT
GREAD] INAUX|OUTPT| XFR+

This port is used to watch the data from control register 31.

P40: MCU Control Transfer Input (CNTXFR+)

P41: MCU OUTPT, {CPU Input Transfer} (INXFR+)

P42: Data in AUX (FIFO) buffer (Output/Internal flag)

P43: Read buffer available (Output/Internal flag)

P45: MSB Port Identification Input

P46: Slave Request Input/Output, PPA only (SLRQ-)

P47: MCU STATUS AVAILABLE INTERRUPT REQUEST Output (PINT-)

Definition Of On-Board RAM

INTERNAL RAM MAP
LOCATION NAME

$000BH ->| USER DEF.TERMINATR |<- (UNUSED OUTPUT
$000CH ->| EXCESS BACKSPACE |<- COMPARE REGIS-
COUNT <- TER, |.E. RAM)

$0040H -> 07 BYTE STACK <- (STACKEND)
$0046H ->| (NO PROGRAM STACK){<- (STACK)

$0047H ->] 95 CHAR AUXILIARY |<- (SAUXBUF)
$00A5H ->| BUFFER (AUXBUF) [<- (EAUXBUF)

$00ABH > 12 BYTE MISC. <- (SMISC)
$00B1H -> STORAGE AREA <- (EMISC)

$00B2H ->| 78 CHARACTER INPUT/|<- (SMAINBUF)
OUTPUT BUFFER
$00FFH ->, (MAINBUF) <- (EMAINBUF)

AUXIN_PTR points to the location for the next incoming character from the SCI, if
the buffer is not full. The buffer is full when PRT4_INAUX is set and AUXIN_PTR
= AUXOUT _PTR. AUXOUT_PTR points to the location of the next character
available for processing. The buffer is empty when PRT4_INAUX is cleared.

The Stack builds down, and contains enough memory for ONE interrupt service
routine. Therefore, no routines may use the stack.

7-26 On-Board 1/0 (OBIO)

MISCELLANEOUS RAM DEFINITIONS

NAME

LOCATION USE

PROTOCOLWD

ENQCNTR

$00A6H PROTOCOL WORD

$00A7H ENQ/ACK COUNTER & ENQ RETRY TIMER COUNTER

AUXIN_PTR
AUXOUT PTR
MAINBF_PTR
MISC_FLAGS
CNTAL_WORD
CNTRLWDLSB
STATWORD
STATWRDLSB
MCU_STATE
MCU_SAVE

$00A8H FIFO INPUT DATA POINTER (SEE ABOVE)

$00A9H FIFO OUTPUT DATA POINTER (SEE ABOVE)

$00AAH POINTER TO 150 CHARACTER MAIN BUFFER

$00ABH MCU INTERNAL FLAGS BYTE

$00ACH MSB OF CONTROL WORD

$00ADH ...AND LSB OF CONTROL WORD

$00AEH MSB OF MCU STATUS WORD

$00AFH ...AND LSB OF STATUS WORD

$00BOH MCU ONE-TIME STATE INDICATOR FLAGS

$00B1H LOCATIONS TO BE SAVED ON SOFT RESET + SCI RETS

INTERNAL REGISTERS

NAME LOCATION USE

PIDDR $0000H PORT1 DATA DIRECTION REGISTER 1=OUTPUT
P3DDR $0004H PORT3 DATA DIRECTION REGISTER 1=OUTPUT
P4ADDR $0005H PORT4 DATA DIRECTION REGISTER 1=OUTPUT
PIDATA $0002H PORT1 DATA REGISTER

P2DATA $0003H PORT2 DATA REGISTER

P3DATA $0006H PORT3 DATA REGISTER

P4ADATA $0007H PORT4 DATA REGISTER

TCSR $0008H TIMER CONTROL AND STATUS REGISTER
C_R_MSB $0009H COUNTER REGISTER MSB

P3CSR $000FH PORT3 CONTROL AND STATUS REGISTER
RMCR $0010H SCI RATE AND MODE CONTROL REGISTER
TRCSR $0011H SCI TRANSMIT/RECEIVE CONTROL AND STATUS REGISTER
RDR $0012H SCI RECEIVE DATA REGISTER

TDR $0013H SCI TRANSMIT DATA REGISTER

(Note that location $0006H returns Revision code and location $0012 returns
ROMFUDGE on dynamic state requests. See appropriate section) ‘

On-Board 1/0 (OBIO)

7-27

DEFINITIONS OF PORT 1 DATA BITS

PORT1_FAIL
PORT1_WRI_
PORT1_CD_
PORT17RI
PORT1_DTR_
PORT1_DSR_
PORT1"CTS
PORTICNCT_

EQU 100000008
EQU 01000000B
EQU 001000008
EQU 000100008
EQU 000010008
EQU 000001008

EQU 000000108

EQU 00000001B

BIT 7:
BIT 6:
BIT 5:
BIT 4:
8IT 3:
BIT 2:
BIT 1

SELF-TEST FAILED =1

WATCH RING INDICATOR (NEG. TRUE)
CARRIER DETECT (NEGATIVE TRUE)

RING INDICATOR (NEGATIVE TRUE)

DATA TERMINAL READY/RTS (NEG. TRUE)
DATA SET READY (NEGATIVE TRUE)

: CLEAR-TO-SEND (NEGATIVE TRUE)

'BIT 0: MCU IN MODEM CONNECT STATE (NEG. TRUE)

EXPLANATION OF MODEM STATE (INVALID IF IN HARDWIRE HANDSHAKE MODE!)

CNCT_=0 DTR_=0:
CNCT_ =0 DTR =1
CNCT =1 DTR_ =0 :
CNCT =1 DTR =1

DEFINITIONS OF PROTOCOL WORD

PROTO_VCP

PROTO_RXO

PROTO_4IN
PROTO_HP
PROTO_X

» EQU 10000000B BIT 7:
PROTO_SXOF EQU 010000008 BIT 6:
PROTO_WACK EQU 001000008 BIT 5:
_ EQU 000100008 BIT 4:
PROTO_WIRE EQU 000010008 BIT 3:
EQU 000001008 BIT 2:
EQU 00000010B BIT 1:
EQU 00000001B BIT 0:
MCU_STATE WORD

NOT MODEM, NOT ACTIVE

WAITING TO BE CONNECTED (CPU INITIATED)
WAITING TO BE DISCONNECTED (CPU INITIATED)
ACTIVE MODEM DEFINITIONS OF PROTOCOL WORD

IN VCP MODE

SENT AN XOFF NO ROOM TO RECEIVE)

WAITING FOR ACK STATE

RECEIVED AN XOFF (CAN'T TRANSMIT) BITS 3-0: PROTOCOL TYPE
HARDWIRE HAN SHAKE

FOREIGN CPU

HP PROTOCOL (ENQ/ACK & DC1)

XON/XOFF PROTOCOL (IF BIT 1 SET: RXOFF ONLY) DEFINITIONS OF

DEFINITIONS OF MCU_STATE WORD

STATE_DC1
STATE_CR
STATELF
STATE_XOFF
STATE_SENS
STATE_BRAK
STATE_ENAK
STATE_FRRD

EQU 10000000B
EQU 010000008
EQU 001000008
EQU 000100008
EQU 000010008
EQU 000001008
EQU 000000108
EQU 000000018

BIT 7:
BIT 6:
BIT 5:
BIT 4.
BIT 3:
BIT 2:
BIT 1:
BIT 0:

SEND AN ASCII “DC1 (XON)”

SEND AN ASCII “CR"

SEND AN ASCIi “LF"

SEND AN ASCII “XOFF"

DO SPEED SENSING

GENERATE A BREAK

SEND AN ASCIll “ENQ”, WAIT FOR ACK
FORCE READ COMPLETE

DEFINITIONS OF MCU_SAVE WORD (SOME BITS SAVED ON A SOFT RESET)

SAVE_TYPEA
SAVE_ICHAR

SAVE_RPNDG EQU 001000008

SAVE_USRDF
SAVE_FREE1
SAVE_FREE2

EQU 100000008
EQU 010000008

EQU 000100008
EQU 000010008
EQU 000001008

SAVE_SRETW EQU 00000010B

SAVE_SRETR

7-28

EQU 000000018

BIT 7:
BIT 6:
BIT 5:
BIT 4:
BIT 3:
BIT 2:
BIT 1:
BIT 0:

On-Board 1/0 (OBIO)

IN TYPE-AHEAD MODE (RETURN TO DBL BUFR)
INTERRUPT ON PER-CHAR IN TYPE AHEAD
ALLOW DOUBLE BUFFERING, READ IS PENDING
VALID USER DEFINED TERMINATOR

FREE

FREE

SCI RETURN TO DMA WRITE LOOP

SCI RETURN TO DMA READ LOOP

DEFINITIONS OF MISC_FLAGS WORD

MISC_GREAD
MISC_SNDBF
MISC_WDONE
MISC_DELBF
MISC_PBRAK
MISC_XS_BS
MISC_OLDRI
MISC_INAUX

EQU 100000008
EQU 010000008
EQU 001000008
EQU 000100008
EQU 000010008
EQU 00000100B
EQU 00000010B
EQU 00000001B

BIT 7: FLAG HAVE A FULL READ BUFFER

BIT 6: SEND DATA IN MAIN BUFFER TO EXT. DEVICE

BIT 5: SEND WRITE BUFFER EMPTY STATUS WHEN ALL DONE
BIT 4: TELL CPU TO DELETE THE PREVIOUS DATA

BIT 3: POSSIBLE BREAK ...TEST

BIT 2: WE HAVE EXCESS BACKSPACES

BIT 1: PREVIOUS VALUE OF RING INDICATOR (0:TRUE)

BIT 0: DATA IS AVAILABLE IN AUXILIARY BUFFER

WHAT TO DO WHEN DATA IS AVAILABLE (MISC_INAUX = 1):

STATE
DEST. DATA
SAVE/T.A.

SAVE/BETWEEN READS
PROCESSING/RET T.A.
PROCESS./NO RET T.A.

SAVE_TYPEA MISC_GREAD
SAVE_RPNDG
0 0 0
1 0 X
0 1 1
1 1 0
0 1 0

On-Board 1/0 (0BIO)

7-29

Input/Output (I/0) System

The purpose of the input/output system is to transfer data between the computer and
external devices. As shown in Figure 8-1, data can be transferred either by a direct
memory access (DMA) feature or through the A- or B-Register in the CPU
(non-DMA). Each A/L-Series 1/O interface has DMA logic and DMA is normally
used for most I/O data transfers. Once the DMA logic has been initialized, no
programming is involved and the transfer occurs in two distinct steps as follows:

1. Between the external device and its I/O interface card in the computer;
2. Between the I/O interface and memory via the backplane data bus.
This two-step process also applies to a DMA output transfer except in reverse order.

As mentioned above, data may be transferred under program control without using
the DMA feature. This type of transfer allows the computer to manipulate the data
during the transfer process. A non-DMA input transfer is a three-step process as
follows:

1. Between the external device and its I/O interface;

2. Between the I/O interface and the A- or B-Register via the data bus and the
processor; and

3. Between the A- or B-Register and memory via the processor and the data bus.

Note that in the DMA transfer the processor is bypassed. Since a DMA transfer
eliminates programmed loading and storing via the accumulators, the time involved is
very short. The DMA feature is discussed in more detail later in this chapter.

Input/Output Addressing

As shown in Figure 8-2, an external device is connected by cable directly to the
break-out panel of the A400 four-channel MUX or to an interface card located in the
computer card cage. The interface card, in turn, plugs into one of the input/output
backplane slots, each of which is assigned a fixed interrupt priority. Note, however,
that the select code of the A/L-Series interface cards is independent of the priority.
The computer communicates with a specific device on the basis of its select code,
which is set by switches on the interface card. The A400 on-board I/O is hard-wired
to select code 77 octal and cannot be changed.

1/0 System 8-1

The on-board I/O always has the highest priority. The interface card inserted next to
the A400 board has the second highest priority as shown in Figure 8-2. The priority
of a device can be changed by exchanging its interface card and cable with those
occupying some other I/O slot. This will change the priority but not the I/O address
(select code). Due to priority chaining, there can be no vacant slots from the
on-board I/0 to the lowest priority slot used. Only select codes 20 through 76 (octal)
are available for input/output cards; the lower select codes (00 through 17) are
reserved for other features.

8-2

I/0 System

| FRONTPLANE
A400 Singie-Board Computer
A-Reg B-Reg
512 kB of Memory ¥
On-Board
110 Memory Array
— P
l Interface Memory Controller Cards
4-Port
Breakout BACKPLANEl v l
Panel T A T
Pe1rl:)$\:r al I/0 Interface I/0 Interface 1/0 Interface
Devices Card Card Card
Peripheral Peripheral Peripheral
Device Device Device
L8600-34
Figure 8-1. Input/Output System

Without Memory Array

Slot 1
Slot 6
With Memory Array Memory

Frontplane
Connector \

Slot 1

Slot 6

L8600-26

A400 Computer

To 4-Channel
Breakout Panel
(highest priority 1/0)

To 1/0 Device with
Second Highest Priority
(System Disc Drive)

Memory Array
Card

A400 Computer

To 4-Channel
Breakout Panel
(highest priority 1/Q)

To 1/0 Device with
Second Highest Priority
(System Disc Drive)

Figure 8-2. 1/O Priority Assignments

1/O System 8-3

8-4

{/0 System

PARITY
ERROR
SIGNAL

MEMORY
PROTECT
SIGNAL

COMPUTER | POWER

LOGIC FAIL
SIGNAL
TBC
SIGNAL
HIGHEST
/O PRIORITY
oBIO
INTERFACE
CARD
INTERFACE
CARD
INTERFACE
CARD
LOWEST
1O PRIORITY

PRIORITY
ENABLE

PARITY
ERROR

MEMORY
PROTECT

POWER
FAIL

TIME BASE
GENERATOR

AR atl

b o
t—

o
DEVICE

o
DEVICE

o

| pevice

o
DEVICE

laharana
)

SELECT
CODE

05

07

04

@

8200-35

Figure 8-3. Priority Linkage (Simplified)

INTERRUPTING
CHANNEL COMPUTER SERVICING
(SHADED CHANNEL)

CPU
TIME PROGRAM | 3 | 4| & 6|17]8

12 3 TOGETHER |
13 3

COUNTER

e

y
® END OF SERVICE SUBROUTINE

8200-36

Figure 8-4. Interrupt Sequence

Input/Output Priority

The plug-in card slots of the A400 computers are numbered 1 through 6 for the
Micro 14, 1 through 14 for the Micro/1000, and 1 through 20 for the 2134A. If
additional memory is desired, slots above the A400 board are used. Slots below the
A400 board are available for 1/O cards, with the on-board I/O having the highest /O
interrupt priority and the slot below the A400 board having the second highest
priority. An I/O channel consists of an I/O device (or devices) and its I/O interface
and is assigned the number of the card slot.

1/0 System 8-5

When an input/output device is ready to be serviced, it causes its interface card to
request an interrupt so that the computer will interrupt the current program and
service the device. Since many device interfaces will be requesting service at random
times, it is necessary to establish an orderly sequence for granting interrupts. Also, it
is desirable that high-speed devices should not have to wait for low-speed device
transfers. Both of these requirements are met by a series-linked priority structure
illustrated by Figure 8-3. The bold line, representing a priority enabling signal, is
routed in series through each interface capable of causing an interrupt. The interface
cannot interrupt unless this enabling signal is present at its input.

Each device (or other interrupt function) can break the enabling line when it requests
an interrupt. If two devices simultaneously request an interrupt, the device with the
highest priority will be the first one that can interrupt because it has broken the
enable line for the lower-priority device. The other device cannot begin its service
routine until the first device is finished. However, a still higher-priority device (one
interfaced through a lower-numbered slot) may interrupt the service routine of the
first device. Figure 8-4 illustrates a hypothetical case in which several devices
request service by interrupting a CPU program. Both simultaneous and
time-separated interrupt requests are considered.

Assume that the computer is running a CPU program when an interrupt from /O
channel 5 occurs (at reference time t1), and that the card in slot 5 (channel 5) is
assigned select code 22. With the I/O interface supplying the select code as the
memory address, a JSB instruction in the interrupt location for select code 22 causes
a program jump to the service routine for the channel-5 device (select code 22). The
JSB instruction automatically saves the return address (in a location which you must
reserve in your routine) for a later return to the CPU program.

The routine for channel 5 (select code 22) is still in progress when several other
devices request service (set flag). First, channels 6 and 7 request simultaneously at
time t2; however, since neither one has priority over channel 5, their flags are
ignored and channel 5 continues its transfer. But at t3, a higher priority device on
channel 3 requests service. This request interrupts the channel 5 transfer and causes
the channel 3 transfer to begin. The JSB instruction saves the return address for
return to the channel 5 routine.

During the channel 3 transfer, the channel 4 flag is set (t4). Since it has lower
priority than channel 3, channel 4 must wait until the end of the channel 3 routine.
And since the channel 3 routine, when it ends, contains a return address to the
channel 5 routine, program control temporarily returns to channel 5 (even though the
waiting channel 4 has higher priority). The JMP,I instruction used for the return
inhibits all interrupts until fully executed. At the end of this short interval, the
channel 4 interrupt request is granted.

When channel 4 has finished its routine, control is returned to channel 5, which at
last has sufficient priority to complete its routine. Since channel 5 has been saving a
return address in the main CPU program, it returns control to this point.

8-6 I/0 System

The two waiting interrupt requests from channels 6 and 7 are now enabled. Channel
6 has the higher priority and goes first. At the end of the channel 6 routine, control
is temporarily returned to the CPU program. Then the lowest priority channel
(channel 7) interrupts and completes its transfer. Finally, control is returned to the
CPU program, which resumes processing.

Interface Elements

The /O interface provides the communication link between the computer and one or
more external devices. The interface includes several basic elements which either the
computer or the device can control in order to effect the necessary communication.
These basic elements are the Global Register, control bits, flag bits, data buffer
register, and control register. Other registers, associated only with DMA, are
discussed in the “Direct Memory Access” section of this chapter. The control and
flag bits and the data buffer and control registers of an interface can be addressed
directly when its select code is in the Global Register (GR) and the GR is enabled.
Refer to the interface card reference manuals or the “On-Board I/O” chapter of this
manual, for specific information on the data and control registers.

Global Register

In the A-Series computers, the select code that is in the Global Register specifies
which I/O interface is enabled to execute I/O instructions. The Global Register (GR)
is a register on each I/O interface that can be loaded with the select code of any one
of the I/O interfaces. (At any given time, the GR on all I/O interfaces is loaded with
the same select code.) When the GR is enabled, an /O instruction is executed only
by the /O interface whose select code matches the select code in its GR. Also, the
GR allows other registers on the selected I/O interface to be accessed
programmatically by I/O instructions. The Global Register on all /O interfaces may
be simultaneously loaded with an OTA/B 02 instruction, enabled with a CLF 02
instruction, and disabled with an STF 02 instruction.

Control Bits

The control bits on an interface are used to turn on a specific /O function. In
addition, a control bit must be set to allow the corresponding flag bit to interrupt.
There are three control bits associated with each I/O select code: control 20, 21, and
30. Control 30 is the only control bit that can be accessed with or without the Global
Register being enabled. When control 30 is set it generates an action command,
allowing one word or character to be read or written. Control 20 and 21 can only be
accessed when the Global Register is enabled. When control 20 is set it turns on
DMA self-configuration. The setting of control 21 enables DMA transfers.

I/O System 8-7

Flag Bits

The flag bits (when set) are used primarily to interrupt or to signal completion of a
task. Flag 30, the only flag bit accessible without using the Global Register, signals
either that one data element has been transferred or that an interrupting condition
has been detected. There are three other flags, all of which must be accessed with
the Global Register enabled. Flag 20 signals DMA self-configuring transfer complete;
flag 21 signals DMA transfer complete; and flag 22 signals parity error during DMA.
The device cannot clear the flag bit. If the corresponding control bit is set, priority is
high, and the interrupt system is enabled, then setting the flag bit will cause an
interrupt to the location corresponding to the I/O interface’s select code.

Data Buffer Register

The data buffer register (designated Register 30) is used for the intermediate storage
of data during an I/O transfer. Typically, the data capacity is 16 bits.

Control Register

The control register (designated Register 31) enables a general purpose interface card
to be configured for compatibility with a specific I/O device or to be programmed for
particular modes of operation. The control register must be programmatically set up
for each particular application. Refer to the interface card manuals for specific
information on the control register.

Direct Memory Access

The direct memory access (DMA) capability of each interface provides a direct data
path between memory and a peripheral device, making it practical to use DMA for
most data transfers. The use of DMA to perform /O data transfers reduces the
number of interrupts from one per byte or word to one per complete DMA block
transfer. (Maximum DMA block size is 65,536 bytes.)

The maximum DMA transfer rate is 4.4 million bytes per second; this also is the
combined limit for DMA transfers by two or more I/O interfaces. Except when the
DMA feature is operating at full bandwidth, the central processor can interleave
memory cycles with the DMA operation. The DMA feature is provided by the
following elements:

1. The common backplane that links the processor, memory, and [/O interfaces;
2. The capability of the I/O interfaces to execute I/O instructions; and

3. The Global Register which:

8-8 1/0 System

a. Enables only the I/O interface whose select code is in the Global Register to
execute /O instructions, freeing the address bits of the 1/O instruction; and

b. Enables the I/O-instruction address bits to be used to access registers on the
I/O interface specified by the Global Register.

Each I/O interface has four registers associated with DMA. Three of them must be
loaded with control words that specify the DMA operation. The fourth register is
used for a special type of DMA operation called self-configured DMA, which is
discussed later. All of these registers can be accessed only when the select code of
the desired /O interface is in the Global Register. The DMA registers and their
functions are as follows:

e Register 20, DMA Self-Configuration Address Register;

e Register 21 (for Control Word 1), DMA Control Register;

e Register 22 (for Control Word 2), DMA Address Register; and
e Register 23 (for Control Word 3), Word/Byte Count Register.

Control Word 1

Control Word 1 (CW1) must be loaded into Register 21 of the desired I/O interface
as part of the DMA initialization process. The general definitions of the bits in
Control Word 1 are given in Figure 8-5. Note that the requirements of individual I/O
interfaces may vary slightly from the general definitions and that it is necessary to
refer to the I/O interface reference manuals or the “On-Board I/O” chapter of this
manual for specific programming information.

Control Word 2

Control Word 2 (CW2) loads into Register 22 the address of the first memory
location to be read from or stored into when the DMA operation is initiated. The
most significant bit (bit 15) is not used by the DMA control logic; when CW2 is read
for status, bit 15 is the complement of bit 7 in CW1 (Figure 8-5).

Control Word 3

Control Word 3 (CW3) loads into Register 23 the two’s-complement number of data
elements to be transferred by DMA. Data elements may be either words or bytes as
specified by bit 13 of CW1 (Figure 8-5). The end of a DMA data transfer is
indicated by the transition from -1 to 0 of the value in Register 23 (the Word/Byte
Count Register); this causes the /O interface to generate a completion interrupt. (A
DMA transfer can also be terminated in other ways as described in the interface card
manuals.) :

I/O System 8-9

15 14 13 12 1 10 9 8 7 6 5 4 0

CONT| DVCMD | BYTE | RES | CINT | REM | FOUR | AUTO IN Various | ADDR EXT BUS

CONT (Continue), bit 15.
Bit 15 = 1: Enable a DMA re-configuration upon completion of a selif-configured DMA transfer.
Bit 15 = 0: Stop DMA after current transfer.

DVCMD (Device Command), bit 14.
Bit 14 = 1: Issue a Device Command signal for each data element transferred.

Bit 14 = 0: No Device Command signal issued.

BYTE (Byte/word transfer), bit 13.
Bit 13 = 1: Conduct DMA transfer in byte mode.
Bit 13 = 0: Conduct DMA transfer in word mode.

RES (Residue), bit 12.
Bit 12 = 1: Write word/byte count back into memory.
Bit 12 = 0: Word/byte count is not written.

CINT (Completion Interrupt), bit 11.
Bit 11 = 1: Inhibit DMA completion interrupt.
Bit 11 = 0: Request completion interrupt when word/byte count goes from —1 to 0 and bit 15 equals 0.

REM (Remote), bit 10.
Bit 10 = 1: Enable remote (non-standard) memory for DMA transfer.
Bit 10 = 0: Remote memory not enabled.

FOUR (Fetch four control words), bit 9.

Bit 9 = 1: Causes DMA self-configuration to fetch four control words; i.e., three DMA control words and one I/O card
control word.

Bit 9 =0: Fetch three control words for DMA self-configuration.

AUTO (Automatic), bit 8. This bit is read only during self-configured DMA.

Bit 8 = 1: Initiate first data transfer once DMA is configured to output, without waiting for an SRQ. For input transfers,
enable a Device Command signal after the last data element is transferred.

Bit 8 = 0: For output transfers, wait for a Service Request (SRQ) signal before performing the first transfer. For input
transfers, the last data element is not followed by a Device Command.

IN (Transfer In), bit 7.
Bit 7 =1: Perform DMA transfer from /O device to memory.
Bit 7 =0: Perform DMA transfer from memory to IO device.

Various, bits 5 and 6, User definable.

ADDR EXT BUS, bits 4-0
These five bits allow DMA accesses to physical memory by referencing one map set of 32 registers each.

8200-53

Figure 8-5. General Bit Definitions for Contro! Word 1

I/0 System

DMA Transfer Initialization
A DMA data transfer is started by:
1. Loading the Global Register with the select code of the desired I/O interface;

2. Loading the three DMA registers: DMA control into Register 21, DMA address
into Register 22, and word/byte count into Register 23;

3. Loading the control register (Register 31) of the I/O interface (described in the
individual interface card reference manuals or the “On-Board I/O” chapter); and

4. Issuing an STC instruction to Register 21 (DMA Control Register).

A typical programming sequence to configure the DMA logic for a DMA transfer is
as follows:

LDA SC Load select code

OTA 2,C Set up Global Register

CLC 21B

LDA Cwl

OTA 21B Output DMA control word
LDA CWw2

OTA 22B Output DMA starting address
LDA Cw3

OTA 23B Output DMA word/byte count
LDA CNTL

OTA 31B Output /O interface control word

STC 21B,C Start DMA and device
<continue any other processing>

Self-Configured DMA

Each I/O interface also has logic that can automatically load the DMA registers
discussed previously with the DMA control words from sequential locations in
memory. This process is performed by using the I/O interface’s Register 20, the
Self-Configuration Register. The DMA self-configuration feature is initialized by
setting the value of Register 20 to the memory address of a list of DMA “triplets” or
“quadruplets”.

A triplet is of the form: DMA control word, DMA transfer address, and word/byte
count. The triplet words are the words to be loaded into Registers 21, 22, and 23,
respectively. A quadruplet is of the form: DMA control word, I/O interface control
word, transfer address, and word/byte count. Bit 8 of the DMA control word
(Control Word 1) determines whether a triplet or quadruplet is loaded. (A
quadruplet is used only when the /O interface control word must be changed; refer
to the interface card manuals or the “On-Board 1/O” chapter for detailed
information.) As each register is loaded, the contents of Register 20 are incremented,
leaving it pointing to the memory location to be loaded into the next register.

1/0 System 8-11

DMA self-configuration can be chained to enable consecutive DMA transfers via the
same /O interface with a minimum of interrupts. If bit 15 of Control Word 1 in a
triplet (or quadruplet) is a logic 1, the DMA registers will be loaded with the next
triplet or quadruplet in memory (as pointed to by Register 20) upon completion of
the current DMA block transfer. When bit 15 (and bit 11) is a logic 0, the current
DMA block transfer is followed by a completion interrupt.

DMA Data Transfer

Figure 8-6 illustrates, in general, the sequence of operations for a DMA input data
transfer (the minor differences for an output transfer are explained in text). Note
that the Global Register has been enabled and loaded with the /O interface’s select
code.

The initialization routine sets up the DMA control registers on the I/O interface (1)
and issues the start command (STC 21,C) to the DMA Control Bit (Control 21). (If
the operation is an output, the /O interface buffer is also loaded at this time.) The
DMA logic is now turned on and the computer program continues with other
instructions.

Setting the DMA Control bit (2) causes the I/O interface to send a Start signal (with
a data word if it is an output transfer) to the external device (3). The device goes
through a read or write cycle and returns a Done signal (with a data word if it is an
input transfer). The Done signal (4) requests the DMA logic (5) to transfer a word
into (or out of) memory (6). The process now loops back to step 3 to transfer the
next word.

After the specified number of words has been transferred, the DMA logic generates a
completion interrupt (7). The program control is now forced to a completion routine
(8), the content of which is the programmer’s responsibility.

For more detailed information on DMA, refer to the A/L-Series 10 Interfacing Guide,
part no. 02103-90005.

8-12 I/0 System

INTERFACE CARD

COMPUTER

PROGRAM o e
INITIALIZATION SET CONTROL

> INPUT
ROUTINE [AE 9 DEVICE
DMA ,%%
LOGIC START

777772] cone
o DATA %
"NTERRUPT ?ma BUFFER DATA
COMPLETION
ROUTINE 2
10
%
Vi
%
weMoRy [(ZZZZ7Z77777772

W) PROGRAMMEF'S RESPONSIBILITY

m AUTOMATIC OPERATIONS

8200-40

Figure 8-6. DMA Input Data Transfers

Non-DMA Data Transfer

The following paragraphs describe how data is transferred between memory and
input/output devices without using DMA. The sequences presented are simplified in
order to present an overall view without the involvement of software operating
systems or device drivers.

Input Data Transfer (Interrupt Method)

Figure 8-7 illustrates the sequence of events required to input data using the interrupt
method. Note that some operations are under control of the computer program
(programmer’s responsibility) and some of the operations are automatic. Note also
that the Global Register has been loaded and enabled and the /O interface’s control
register has been loaded.

The operations begin (1) with the programmed instruction STC 30,C which sets the
Control bit (Control 30) and clears the Flag bit (Flag 30) on the /O interface.
Because the next few operations are under control of the hardware, the computer
program may continue the execution of other instructions. Setting the Control bit
causes the card to output a Start signal (2) to the device, which reads out a data
character and asserts the Done signal (3).

1/0 System 8-13

The device Done signal sets the Flag bit, which in turn generates an interrupt (4)
provided that the interrupt conditions are met; i.e., the interrupt system must be on
(STF 00 previously given), no higher priority interrupt is pending, and the Control bit
is set (done in step 1). The interrupt causes the current computer program to be
suspended and control is transferred to a service subroutine (5). It is the
programmer’s responsibility to provide the linkage between the interrupt location
(which agrees with the select code) and the service subroutine. It is also the
programmer’s responsibility to include in his service subroutine the instructions for
processing the data (loading into an accumulator, manipulating if necessary, and
storing into memory).

The subroutine may then issue further STC 30,C instructions to transfer additional
data characters. One of the final instructions in the service subroutine must be CLC
30,C. This step (6) restores the interrupt capability to lower priority devices and
returns the I/O interface to its static “reset” condition (Control clear and Flag clear).
This condition is initially established by the computer at power turn-on and it is the
programmer’s responsibility to return the [/O interface to the same condition on the
completion of each data transfer operation. At the end of the subroutine, control is
returned to the interrupted program via previously established linkages.

INPUT TRANSFER

COMPUTER
PROGRAM INTERFACE CARD

o INPUT
SET CONTROL
STC 30,
A CLEAR FLAG DEVICE
. (2]
L]
: . START
INTERRUPT (7777777777770 SET FLAG DONE

CLEAR CONTROL

DATA

BUFFER

SERVICE @

SUBROUTINE

s PROGRAMMER'S RESPONSIBILITY
@ AUTOMATIC OPERATIONS

8200-41

Figure 8-7. Input Data Transfer (Interrupt Method)

8-14 I/O System

Output Data Transfer (Interrupt Method)

Figure 8-8 illustrates the sequence of events required to output data using the
interrupt method. Again note the distinction between programmed and automatic
operations. Note also that the Global Register has been loaded and enabled and that
the 1/0O interface’s control register has been loaded. It is assumed that the data to be
transferred has been loaded into the A-Register and is in a form suitable for output.

The output operation begins with a programmed instruction (OTA 30) to transfer the
contents of the A-Register to the /O interface buffer (1). This is followed (2) by the
instruction STC 30,C which sets the Control bit (Control 30) and clears the Flag bit
(Flag 30) on the I/O interface. Because the next few operations are under control of
the hardware, the computer program may continue the execution of other instructions.
Setting the Control bit causes the interface to output the buffered data and a Start
signal (3) to the device, which writes (for example, records and stores) the data
character and asserts the Done signal (4).

The device Done signal sets the card’s Flag bit, which in turn generates an interrupt
(5) provided that the interrupt system is on, priority is high, and the Control bit is set
(done in step 2). The interrupt causes the current computer program to be
suspended and control is transferred to a service subroutine (6). It is the
programmer’s responsibility to provide the linkage between the interrupt location
(which agrees with the select code) and the service subroutine. The detailed contents
of the subroutine are also the programmer’s responsibility and the contents will vary
with the type of device.

The subroutine may then output further data to the I/O interface and reissue the STC
30,C command for additional data character transfers. One of the final instructions
in the service subroutine must be a clear control (CLC 30,C). This step (7) allows
lower priority devices to interrupt and restores the /O interface to its static “reset”
condition (Control clear and Flag clear). At the end of the subroutine, control is
returned to the interrupted program via the previously established linkages.

I/O System 8-15

OUTPUT TRANSFER

COMPUTER INTERFACE CARD

PROGRAM

BUFFER 227727 PATA OuTPUT

DEVICE
SET CONTROL e

CLEAR FLAG [LLLL START

OTA 30
STC 30.C
L]

INTERRUPT WJ777777777777] SET FLAG K72 777777777, DONE

CLEAR CONTROL

SERVICE

SUBROUTINE ” PROGRAMMER'S RESPONSIBILITY

PZZ2> AUTOMATIC OPERATIONS

8200-42

Figure 8-8. Output Data Transfer (Interrupt Method)

Non-Interrupt Data Transfer

It is also possible to transfer data without using the interrupt system. This involves a
“wait-for-flag” method in which the computer commands the device to operate and
then waits for the completion response. In using this method to transfer data,
computer time is relatively unimportant. [t is assumed that the interrupt system is
turned off (STF 00 not previously given). It is also assumed that the Global Register
has been loaded and enabled and that the /O interface’s control register has been
loaded.

As shown in Table 8-1, the programming is very simple; each of the routines will
transfer one word or character of data.

INPUT. As described in the “Input Data Transfer (Interrupt Method)” paragraph, an
STC 30,C instruction begins the operation by commanding the device to read one
word or character. The computer then goes into a waiting loop, repeatedly checking
the status of the Flag bit (Flag 30). If the Flag bit is not set, the JMP *-~1 instruction
causes a jump back to the SFS instruction. (The *-1 operand is assembler notation
for “this location minus one.”) When the Flag bit is set, the skip condition for SFS
is met and the JMP instruction is skipped. The computer thus exits from the waiting
loop and the LIA 30 instruction loads the device input data into the A-Register.

8-16 1/O System

OUTPUT. The first step, which transfers the data to the /O interface buffer, is the
OTA 30 instruction. Then STC 30,C commands the device to operate and accept the
data. The computer then goes into a waiting loop as described in the preceding
paragraph. When the Flag bit becomes set, indicating that the device has accepted
the output data, the computer exits from the loop. (The final NOP is for illustration
purposes only.)

Table 8-1. Non-interrupt Transfer Rates

Instructions Comments
input Routine

STC 30,C Start device

SFS 30 Is input ready?
JMP *-1 No, repeat previous instruction
LIA 30 Yes, load input into A-Register
Output Routine .
QTB 30 Output data to I/0 card’s data
register

STC 30,C Start device

SFS 30 Has device accepted the data?
JMP *-1 No, repeat previous instruction
NOP Yes, proceed

Diagnose Modes

A diagnose mode allows the I/O interfaces to be accessed for diagnostic or test
purposes. A diagnose mode is established when an OTA/B 2 instruction (output to
the Global Register) is executed with the A- or B-Register value equal to one through
seven. (The diagnose mode is terminated when an OTA/B 2 instruction is executed
with the A- or B-Register equal to zero.) When establishing a diagnose mode the
current contents of the Global Register (GR) are not altered.

The diagnose mode can be on an individual I/O interface or on all I/O interfaces. If
the GR is disabled then all I/O interfaces accept the diagnose mode. If the GR is
enabled, only the I/O interface whose select code is in the GR will accept the
diagnose mode. Diagnose Mode 7 is used to disable any service request (SRQ)
signal coming into the I/O chip which may cause DMA to cycle during a test. (Mode
7 can be disabled only by a CRS signal (CLC 0).) Diagnose Modes 4 through 6 are
reserved for future definition. Diagnose Modes 1 through 3 are described in the
following paragraphs. '

1/0 System 8-17

Diagnose Mode 1

When an OTA/B 2 instruction is executed with the A- or B-Register equal to 1, each
I/O interface responds by turning off priority to the next I/O interface. When the
instruction is complete the only I/O interface receiving priority will be the highest
priority I/O interface. When a subsequent LIA/B 2 instruction is executed, the /O
interface receiving priority sets the A- or B-Register equal to its select code and
identification data (ID) and passes priority to the next I/O interface. Having
responded once it will not respond again unless Mode 1 is established again.

The next LIA/B 2 executed sets the A- or B-Register equal to the second I/O
interface’s select code and ID. The second I/O interface at completion of the
instruction passes priority to the next [/O interface. This process continues until the
last I/O interface responds. After the last I/O interface responds the next LIA/B 2
will not affect the A- or B-Register and therefore can be detected as a no response.
(An OTA/B 2 with the A- or B-Register equal to 0 terminates this sequence.)

Mode 1 can also be used to retrieve the select code and ID of a desired I/O interface
without going through the priority process. This is accomplished by establishing
Mode 1 and then executing an LIA/B xx, where xx is the I/O interface select code.
This procedure will not modify a priority sequence already in process. The Mode 1
select code and ID format are shown in Table 8-2.

Table 8-2. Diagnose Mode 1

A/B Bits Meaning
15 intelligent interface
14
13
12 Interface card type
11 identification number
10
9
8
7 J Interface card revision code
6
8 } Interface card select code

Diagnose Mode 2
Diagnose Mode 2 causes an I/O interface to respond to an LIA/B 2 instruction in the

same manner as in Mode 1 except that the data set into the A- or B-Register is as
shown in Table 8-3.

8-18 I/0 System

Table 8-3. Diagnose Mode 2

A/B Bits Meaning
15 1
14 Always zero
13]
12 1 = Break feature is enabled
1 1 = Receiving interrupt priority
10 Always one
9 Control bit
8 Flag bit
7 1 = Global Register equals select
code of intertace card
6 Global Register enabled/disabled
5
4
‘3 Current Global Register value
1
0

Diagnose Mode 3

Diagnose Mode 3 allows an I/O chip to do a DMA transfer without affecting the I/O
interface. When Mode 3 is entered the 1/0O chip does a DMA input transfer of the
data in the configuration address register to the location in memory pointed to by the
DMA address register. The configuration address register is incremented after each
transfer so that the data can be verified. The transfer continues until the DMA count
is incremented to zero. Mode 3 also prevents any STC instructions from generating a
device command to the /O interface.

I/0 System 8-19

Appendix A
Reference Tables and Conversions

This appendix contains the following reference information and tables:

ASCII character codes
Octal/decimal conversions
Exponential and log equivalents
Math constants

Instruction codes in octal

Base set instruction codes in binary
Extend and overflow examples

Interrupt and control summary

Reference Tables and Conversions

A-1

CHARACTER CODES

ASCIl First Character Second Character ASCIi First Character Second Character
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent
A 040400 000101 ACK 003000 000006
B 041000 000102 BEL 003400 000007
C 041400 000103 BS 004000 000010
D 042000 000104 HT 004400 000011
E 042400 000105 LF 005000 000012
F 043000 000106 vT 005400 000013
G 043400 000107 FF 006000 000014
H 044000 000110 CR 006400 000015
| 044400 000111 SO 007000 000016
J 045000 000112 S 007400 000017
K 045400 000113 DLE 010000 000020
L 046000 000114 DC1 010400 000021
M 046400 000115 DC2 011000 000022
N 047000 000116 DC3 011400 000023
(o} 047400 000117 DC4 012000 000024
P 050000 000120 NAK 012400 000025
Q 050400 000121 SYN 013000 000026
R 051000 000122 ETB 013400 000027
S 051400 000123 CAN 014000 000030
T 052000 000124 EM 014400 000031
U 052400 000125 SuB 015000 000032
\Y 053000 000126 ESC 015400 000033
w 053400 000127 FS 016000 000034
X 054000 000130 GS 016400 000035
Y 054400 000131 RS 017000 000036
P4 055000 000132 us 017400 000037
a 060400 000141 SPACE 020000 000040

! 020400 000041
b 061000 000142 "
021000 000042
c 061400 000143
021400 000043
d 062000 000144
$ 022000 000044
e 062400 000145
% 022400 000045
t 063000 000146
& 023000 000046
9 063400 000147 : 023400 000047
h 064000 000150
. (024000 000050
i 064400 000151
.) 024400 000051
] 065000 000152 .
025000 000052
k 065400 000153
+ 025400 000053
| 066000 000154
026000 000054
m 066400 000155
- 026400 000055
n 067000 000156
. 027000 000056
o 067400 000157
/ 027400 000057
p 070000 000160 .
: 035000 000072
q 070400 000161)
; 035400 000073
r 071000 000162
< 036000 000074
s 071400 000163 _
= 036400 000075
t 072000 000164
> 037000 000076
u 072400 000165
? 037400 000077
v 073000 000166
@ 040000 000100
w 073400 000167
(055400 000133
x 074000 000170
\ 056000 000134
% 074400 000171
z 075000 000172] 056400 000135
A 057000 000136
0 030000 000060 - 057400 000137
1 030400 000061 { ' 060000 000140
2 031000 000062 075400 000173
3 031400 000063 | 076000 000174
4 032000 000064 } 076400 000175
5 032400 000065 ~ 077000 000176
6 033000 000066 DEL 077400 000177
7 033400 000067
8 034000 000070
9 034400 000071 First Character Second Character
NUL 000000 000000 AL AL
SOH 000400 000001
STX 001000 000002 L V \
ETX 001400 000003 L I
EOT 002000 000004
ENQ 002400 000005 [15 14113[12 11]10]9 8]7]6 SFI]3 2[1 Lﬂ

A-2 Reference Tables and Conversions

OCTAL ARITHMETIC

ADDITION

TABLE

01 02 03 04 05 06 07

N OO s W N =]|O

MULTIPLICATION

TABLE

02 03 04 05 06 07

N O s W -

COMPLEMENT

EXAMPLE

Add: 3677 OCTAL
+ 1331 OCTAL

(111=) CARRIES

5230 OCTAL

EXAMPLE

Muttiply: 657 OCTAL
x 54 OCTAL

3274
4153

45114 OCTAL

(Reminder: add in octal)

To find the two’s complement form of an octal number. (Same procedure whether converting from positive to negative

or negative to positive.)
RULE

1. Subtract from the maximum
representable octal value.

2. Add one.

EXAMPLE
Two’s complement of 556,

177777
— 000556

177221
+ 1

1772224

8200-43

Reference Tables and Conversions

A-3

OCTAL/DECIMAL CONVERSIONS

OCTAL TO DECIMAL

TABLE DECIMAL

o7
815
1623
24-31

DECIMAL TO OCTAL

TABLE

NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL

TABLE DECIMAL ‘

- 10000 154360
- 20000 130740
-32768 100000

EXAMPLE

Convert 463, to a decimal integer.

400, = 2564
60' = 48“)
3s = 310
307 decimal
EXAMPLE

Convert 5229,, to an octal integer.

5000,, = 11610,
200,, = 310,
20, = 24,
9y = 11,
12155,
(Remainder: add in octal)
EXAMPLE

Convert —629,, to two's complement octal.

—500,, = 177014,
—100,, = 177634,

—20,, = 177754, (Add in octal)
-9,y = 177767,
176613,

For reverse conversion (two’s complement octal to negative decimal):

1. Complement, using procedu

re on facing page.

2. Convert to decimal, using OCTAL TO DECIMAL table.

8200-44

A-4

Reference Tables and Conversions

MATHEMATICAL EQUIVALENTS

2'!

16
32

64
128
256

512
1 024
2 048

4 096
8 192
16 384

32 768

1
23

303

3 641

46 113
575 360
7 346 545

N =0 3

& W

10
n

12
13
14

107

12
144
750
420

240
100
200
400
000

B WN - O3

© 0o~ O,

2-n
1.0

0.5
0.25

0.125
0.0625
0.03125

0.01562
0.00781
0.00390

0.00195
0.00097
0.00048

0.00024
0.00012
0.00006

0.00003

1.000
0.063
0.005
0.000
0.000

0.000
0.000
0.000
0.000
0.000

5
25
625

3125
65625
82812 5

41406 25
20703 125
10351 5625

05175 78125

107"

000 000 000
146 314 631
075 341 217
406 111 564
032 155 613

002 476 132
000 206 157
000 015 327
000 001 257
000 000 104

000
463
270
570
530

610
364
745
143
560

2 = 7 {N DECIMAL

65 536 16 0.00001 52587 89062 S
131 072 17 0.00000 76293 94531 25
262 144 18 0.00000 38146 97265 625
524 288 19 0.00000 19073 48632 8125
1 048 576. 20 0.00000 09536 74316 40625
2 097 152 21 0.00000 04768 37158 20312 5
4 194 304 22 0.00000 02384 18579 10156 25
8 388 608 23 0.00000 01192 09289 55078 125
16 777 216 24 0.00000 00596 04644 77539 0625
33 554 432 25 0.00000 00298 02322 38769 53125
67 108 864 26 0.00000 00149 01161 19384 76562 5
134 217 728 27 0.00000 00074 50580 59692 38281 25
268 435 456 28 0.00000 00037 25290 29846 19140 625
536 870 912 29 0.00000 00018 62645 14923 09570 3125
1073 741 824 30 0.00000 00009 31322 57461 54785 15625
2 147 483 648 31 0.00000 00004 65661 28730 77392 57812 5
4 294 967 296 32 0.00000 00002 32830 64365 38696 28906 25

10 = 7 IN OCTAL

107 n 1077
000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32
651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35
704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11
706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63

152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
561 06 67 405 553 164 731 000 000 18 0.000 000 00O 000 000 000 01
276 41

8200-45

Reference Tables and Conversions A-5

MATHEMATICAL EQUIVALENTS

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

b WN =3

m
n-1

T

Inm

log; 7

V0 -

2I
1.00069
1.00138
1.00208
1.00277
1.00347
1.00416
1.00486
1.00556
1.00625

7 10g102
0.30102 99957
0.60205 99913
0.90308 99870
1.20411 99827
1.50514 99783

33874
72557
16050
64359
17485
75432
38204
05803
78234

62581
11335
79633
01078
09503
38973
23785
98468
97782

2% IN DECIMAL

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

1.00695
1.01395
1.02101
1.02811
1.03526
1.04246
1.04971
1.05701
1.06437

21
55500
94797
21257
38266
49238
57608
66836
80405
01824

56719
90029
07193
56067
41377
4112
23067
61380
53360

n10gq 2, nlog, 10 IN OCTAL

n log; 10
3.32192 80949
6.64385 61898
9.96578 42847
13.28771 23795
16.60964 04744

CWwuw~NO,3

0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9

710Gy 2
1.80617 99740
2.10720 99696
2.40823 99653
2.70926 99610
3.01029 99566

MATHEMATICAL CONSTANTS IN OCTAL SCALE

(3.11037 552421) g,

(0.24276 301566) g,
(1.61337 611067) g
(1.11206 404435) g,
(1.51544 163223) (g,
(3.12305 407267) g,

R

o
@ o
=1
LN
o o
" "

(2.55760 521305) g,
(0.27426 530661) o

(1.51411 230704) g,
(0.33626 754251 g,
(1.34252 166245) (g,
(3.24464 741136) g,

Iny
log, ¥
JZ
In 2
In 10

H

i

1.07177
1.14869
1.23114
1.31950
141421
1.51571
1.62450
1.74110
1.86606 59830

(0.44742
-{0.43127
-(0.62573

(1.32404

(0.54271

(2.23273

21
34625
83549
44133
79107
35623
65665
47927
11265

36293
97035
44916
72894
73095
10398
12471
92248
73615

n log; 10
19.93156 85693
23.25349 66642
26.57542 47591
29.89735 28540
33.21928 09489

147707) g,
233602) (g,
030645) (g,
746320) g,
027760) (g,
067355) (g)

8200-46

A-6

Reference Tables and Conversions

OCTAL COMBINING TABLES

MEMORY REFERENCE INSTRUCTIONS

INDIRECT ADDRESSING

Refer to octal instruction codes given on the following page.
To combine code for indirect addressing, merge 100000 with octal instruction code,

REGISTER REFERENCE INSTRUCTIONS

SHIFT-ROTATE GROUP (SRG)

1. select to operate A or B.

2. select 1 to 4 instructions, not more than one
from each column.

3. combine octal codes (leading zeros omitted)
by inclusive or.

4. order of execution is from column 1 to column 4.

A OPERATIONS

1 2 3 4
ALS (1000} CLE {40) SLA (10) ALS (20)
ARS (1100) ARS (21)
RAL (1200) RAL (22)
RAR (1300) RAR (23)
ALR (1400) ALR (24)
ERA (1500) ERA (25)
ELA (1600} ELA (26)
ALF (1700) ALF (27)

B OPERATIONS

1 2 3 4
BLS (5000) CLE (4040) SLB (4010) BLS (4020)
BRS {5100) BRS (4021)
RBL (5200) RBL (4022)
RBR (5300} RBR (4023)
BLR {5400) BLR (4024)
ERB (5500) ERB (4025)
ELB (5600) ELB (4026)
BLF (5700) BLF (4027)

ALTER-SKIP GROUP (ASG)

1. select to operate on A or B.

2. select 1 to 8 instructions, not more than one
from each column.

3. combine octal codes {leading zeros omitted)
by inclusive or.

4. order of execution is from column 1 to column 8.

A OPERATIONS

1 2 3 4
CLA (2400) SEZ (2040) CLE (2100) SSA (2020)
CMA (3000) CME (2200)
CCA (3400} CCE (2300)

5 6 7 8

SLA (2010) INA

B OPERATIONS

(2004) SZA (2002) RSS (2001)

1 2 3 4
CLB (6400) SEZ (6040) CLE (6100) SSB (6020)
CMB (7000) CME (6200)
CCB (7400) CCE (6300)

5 6 7 8

SLB (6010) INB

(6004) SZB (6002} RSS (6001)

INPUT/OUTPUT INSTRUCTIONS

CLEAR FLAG

Refer to octal instruction codes given on the following page.
To clear flag after execution (instead of holding flag), merge 001000’ with octal instruction code.

8200-47

Reference Tables and Conversions A-7

INSTRUCTION CODES IN OCTAL

Memory Reference

ADA 04(0XX)—
ADB 04(1XX)—
AND 01(0XX)—
CPA 05(0XX)—
cPB 05(1XX)—
IOR 03(0XX)—
1SZ 03(1XX)—
JMP 02(1XX)—
JSB 01(1XX)—
LDA 06(0XX)—
LDB 06(1XX)—
STA 07(0XX)—
sTB 07(1XX)—
XOR 02(0XX)—
Binary
Shift-Rotate
ALF 001700
ALR 001400
ALS 001000
ARS 001100
BLF 005700
BLR 005400
BLS 005000
BRS 005100
CLE 000040
ELA 001600
ELB 005600
ERA 001500
ERB 005500
NOP 000000
RAL 001200
RAR 001300
RBL 005200
RBR 005300
SLA 000010
sLe 004010
Alter-Skip
CCA 003400
cecs 007400
CCE 002300
CLA 002400
CLB 006400
CLE 002100
CMA 003000
CMB 007000
CME 002200
INA 002004
INB 006004

RSS 002001
SEZ 002040
SLA 002010
SLB 006010
SSA 002020
SsB 006020
SZA 002002
SzB 006002
Input/Output

CLC 1067~
CLF 1031 -
CLO 103101
HLT 1020
LIA 1025—
LIB 1065
MIA 1024
MiB 1064 —
OTA 1026 -
oTB 1066—
SFC 1022
SFS 1023-
SOC 102201
SOS 102301
STC 1027 -
STF 1021-
STO 102101

Extended Arithmetic

ASL
ASR
DIV
JLA
DLD
DST
JLB
LSL
LSR
MPY
RRL
RRR

1000(01X)—
1010(01X)—
100400
100600
104200
104400
104600
1000(10X)—
1010(10X)—
100200
1001(00X)—
1011(00X)—

Binary

Ext. Inst. Group

ADX
ADY
CAX
CAY
CBS
cBT
CBX

105746
105756
101741
101751
105774
105766
105741

* Not directly user callable.
Used by HP software.

Assuming: no indirect addressing.
no combined instructions.
shifts taken in first position only.
hold flag after I/O execution.

Refer to preceding page for octal combining tables.

CBY
CMW
CXA
CXB
CYA
cyB
DSX
DSY
ISX
ISY
JLy
JPY
LAX
LAY
LBT
LBX
LBY
LDX
LDY
MBT
MVW
SAX
SAY
SBS
SBT
SBX
SBY
SFB
STX
STY
TBS
XAX
XAY
XBX
XBY

105751
105776
101744
105744
101754
105754
105761
105771
105760
105770
105762
105772
101742
101752
105763
105742
105752
105745
1056755
105765
1056777
101740
101750
105773
105764
105740
105750
105767
105743
105753
105775
101747
101757
105747
105757

Floating Point

FAD
FDV
FiIX
FLT
FMP
FSB
.FIXD
.FLTD
.TADD
.TDIV
.TFTD
.TFXD
.TFXS
.TMPY
.TSuB

Language Inst. Set

.BLE
.CFER
.DFER
.CPM
.ENTC
.ENTN
.ENTP
.ENTR

105000
105060
105100
105120
105040
105020
105104
105124
105002
105062
105122
105106
105102
105042
105022

105207
105231
105205
105236
105235
105234
105224
105223

..FCM 105232
.NGL 105214
.SETP 1056227
.TCM 105233
XFER 105220
.ZFER 105237

Double Integer

.DAD 105014
.DCO 105204
.DDE 105211
.DDI 105074
.DDIR 105134
.DDS 105213
.DIN 105210
.DIS 105212
.DNG 105203
.DMP 105054
.DSB 105034
.DSBR 105114

VMA/EMA

.IMAP 105250
.IRES 105244
JMAP 105252
JRES 105245

.LBP 105257
.LBPR 105256
.LPX 105255

.LPXR 105254
.PMAP 105240

Oper. Syst. Set

.CPUID 105300
.FWID 105301
.SIP 105303
WFI 105302

Dynamic Map Syst.

LDMP 105702
LPMR 105700
LWD1 105704
LWD2 105705
MB0O 101727
MBO1 101730
MB02 101731
MB10 101732
MB11 101733
MB12 101734
MB20 101735
MB21 101736
MB22 101737
MWO00 105727
MWO1 105730
MWO02 105731
MW10 105732
MW11 105733
MwW12 105734
MW20 105735

Mwa21
Mwe2
SIMP
STMP
SPMR
SWMP

105736
105737
105707
105703
105701
105706

A-8 Reference Tables and Conversions

INSTRUCTION CODES IN OCTAL (Continued)

XCA1
XCA2
Xce1
XCcB2
XJMP
X.CQ
XLA1
XLA2
XLBt
XLB2
XSA1
XSA2
XSB1
XSB2

Code and Data Sep.

ADQA
ADQB
CACQ
CAZ
cBCQ
cBz
CCQA
ccas
CiQA
ciaB
CZA
CczB
EXIT
EXIT1
EXIiT2
PCALI
PCALN
PCALR
PCALV
PCALX
SDSP

101726
101723
105726
105723
105710
105711
101724
101721
105724
105721
101725
101722
105725
105722

101413
105413
101407
101411
105407
105411
101406
105406
101412
105412
101410
105410
105417
105415
105416
105400
105404
105403
105402
105401

105405

Reference Tables and Conversions

A-9

BASE SET INSTRUCTION CODES IN BINARY

**Second word is Memory Address.

15 [14 13 12 n 0 9 |8 7 6 | 5 4 3| 2 1 0
MEMORY REFERENCE INSTRUCTIONS
D/l | AND 001 0 Z/C |- MEMORY ADDRESS >
D/l | XOR 010 0 Z/C
D/ IOR 011 0 z2/C
D/l | JSB 001 1 Z/C
D/l | JMP 010 1 zZC
D/l | 18Z 011 1 Z/C
D/l | AD" 100 A/B 2C
D/t | CP* 101 A/B ZC
D/t | LD® 110 A/B zZ/C
D | st 11 A/B Z/C
SHIFT/ROTATE GROUP
0 000 A/B 0 D/E ‘LS 000 tCLE D/E iSL" | “LS 000
A/B 0 D/E *RS 001 D/E ‘RS 001
A/B 0 D/E R'L 010 D/E RL 010
A/B 0 D/E R'R 011 D/E R'R 011
A/B 0 D/E *LR 100 D/E ‘LR 100
A/B 0 D/E ER* 101 D/E ER’ 101
A/B 0 D/E EL" 110 D/E EL’ 110
A/B 0 D/E ‘LF 11 D/E ‘LF 1m
NOP 000 000 000 000
ALTER/SKIP GROUP
(o] 000 A/B 1 CcL* 01 CLE 01 |SEZ SS* SL' | INT SZ° RSS
A/B CM* 10 CME 10
A/B cc 1 CCE 11
INPUT/OUTPUT GROUP
1 000 1 H/C HLT 000 |-¢——— SELECT CODE ———>
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
A/B 1 HC MP 100
A/B 1 H/C LI 101
A/B 1 HC OT" 110
0 1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C SOC 010 000 001
1 H/C SOS ot1 000 001
EXTENDED ARITHMETIC GROUP
1 000 MPY** 000 010 000 000
DIv** 000 100 000 000
JLA 000 110 000 000
DLD** 100 . 010 000 000
DST*” 100 100 000 000
JLB 100 110 000 000
ASR 001 000 0 1
ASL 000 0 1
LSSR 88? 000 10 e
l¢——— OF —m——>
LSL 000 000 1 0 BITS
RRR 001 001 0 0
RRL 000 001 0 0
FLOATING POINT INSTRUCTIONS
1 000 101 00 FAD 000 0 000
FSB 001
FMP 010
FDV 011
FIX 100
FLT 101
Notes: * = A or B, according to bit 11. +CLE: Only this bit is required.
D/, A/B, Z/C, D/E, H/C coded 0/1. $SL*: Only this bit and bit 11 (A/B as applicable) are required.

8200-56

A-10 Reference Tables and Conversions

BASE SET INSTRUCTION CODES IN BINARY (Continued)

15 |14 13 12 | 1 0 9| 8 7 6 | s 4 3| 2 1 0
FLOATING POINT INSTRUCTION (Continued)
1 000 101 00 .TADD 000 0 010
-TSUB 001
TMPY 010
TDIV 011
TFXS 100
TFTS 101
FIXD 100 100
FLTD 101
TFXD 100 110
TFTD 101
DOUBLE INTEGER INSTRUCTIONS
1 000 101 000 001 .DAD 100
011 .DSB 100
101 DMP 100
111 .DDI 100
001 001 .DSBR 100
001 011 DDIR 100
010 000 DNG 011
.DCO 100
001 DIN 000
DDE 001
DIS 010
.ODS 011
LANGUAGE INSTRUCTION SET
1 000 101 010 0 00 ‘DFER 101
) BLE 111
01 NGL 100
10 XFER 000
ENTR 011
ENTP 100
SETP 111
1 CFER 001
.FCM 010
.TCM 011
ENTN 100
ENTC 101
CPM 110
ZFER 111
VIRTUAL MEMORY INSTRUCTIONS
1 000 101 010 100 PMAP 000
‘ JIRES 100
JRES 101
101 IMAP 000
JMAP 010
LPXR 100
LPX 101
LBPR 110
LBP 111

OPERATING SYSTEM INSTRUCTION SET

1 000 101 011 000 .CPUID 000
.FWID 001
WFI 010
Sip o1

Reference Tables and Conversions A-11

BASE SET INSTRUCTION CODES IN BINARY (Continued)

15 [14 13

12 [n

10

9 | 8

7

6| 5

4

3 | 2

DMS INSTRUCTIONS

1 000

[. I I

AB
A/B
AB
A/B
A/B
A/B
B/W
B/W
B/W
B/W
B/W
B/wW
B/wW
BwW
BW

01

111

000

001
010

011

LPMR
SPMR
LDMP
STMP
LWDH1
LWD2
SWMP
SIMP
XJMP
XL
XS
XC*1
XL2
XS2
XCr2
M°00
M°01
M°02
M°10
M°11
Me12
M°20
Me21
Me22

000
001

010
011

100
101

110
11

000
100
101

110
001
010
o011
1
000
001
010
o011
100
101
110
111

SCIENTIFIC INSTRUCTION SET

1 000

101

on

010

011

TAN
SQRT
ALOG
ATAN
cos
SIN
EXP
ALOGT
TANH
DPOLY
/CMRT
/ATLG
.FPWR
.TPWR

000
001
010
o1
100
101
110
11
000
001
010
011
100
101

VECTOR INSTRUCTION SET

1 000

101

000

001

000

001

010

011

000

VADD
vsSuB
VMPY
VDIV
VSAD
vSsB
VSMY
VSDV
DVADD
pvsuB
DVMPY
DVDIV
DVSAD
DVSSB
DVSMY
DVSDV
VPIV
VABS
VSUM

001
011
100
101
110
111
000
001
001
011
100
101
110
111
000
001
001
011
101

*

Notes:

= A (0) or B (1), according to bit 11.
° =B (0) or W (1), according to bit 11.

A-12 Reference Tables and Conversions

BASE SET INSTRUCTION CODES IN BINARY (Continued)

15 |14 13 12 | n 10

9 [o

7

6|5 a4 3| 2

VECTOR INSTRUCTION SET (Continued)

1 000 101

001

001

010

011

VNRM
vDOT
VMAX
VMAB
VMIN
vmiB
VMOV
VSwp
DPIV
DVABS
DVSUM
DVNRM
DVDOT
DVMAX
DVMAB
DVMIN
DvMiB
DVMOV
DVSWP

mnm
000
001
010
ot1
101
110
11
001
011
101
111
000
001
010
011
101
110
111

CODE AND DATA SEPARATION

1 000 001

101

100

100

000

001

000

001

CCQA
CACQ
CZA
Ccaz
CIQA
ADQA
PCALI
PCALX
PCALV
PCALR
PCALN
SDSP
ccas
cBCQ
czB
cBz
ciaB
ADQB
EXIT1
EXIT2
EXIT

110
m
000
001
010
011
000
001
010
011
100
101
110
11
000
001
010
011
101
110
111

Reference Tables and Conversions

A-13

BASE SET INSTRUCTION CODES IN BINARY (Continued)

EXTENDED INSTRUCTION 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
GROUP
SAX/SAY/SBX/SBY 1 0 0 0 |AB 0 1 1 1 1 1 0 | XY 0 0 0
CAX/CAY/CBX/CBY 1 0 0 0 A/B 0 1 1 1 1 1 0 X/Y 0 0 1
LAX/LAY/LBX/LBY 1 0 0 0 A/B 4] 1 1 1 1 1 0 XY 0 1 0
STX/STY 1 0 0 0 1 0 1 1 1 1 1 0 XY 0 1 1
CXA/CYA/CXBICYB 110 0 O |AB|l 0 1 1 1 1 1 o |[xy|] + o0 O
LDX/LDY 1 0 0 0 1 0 1 1 1 1 1 0 XY 1 0 1
ADX/ADY 1 0 0 0 1 0 1 1 1 1 1 0 X/Y 1 1 0
XAX/XAY/XBX/XBY 1 0 0 0 A/B 0 1 1 1 1 1 0 XY 1 1 1
ISX/ISY/DSX/DSY 1 0 0 0 1 0 1 1 1 1 1 1 XY| O 0 D
/)
JUMP INSTRUCTIONS 1lo o o1 o 1|1 1 1|1 1 // 0o 1 0
JLY =0
JPY = 1
BYTE INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 0 //////////
LBT. =0 1 1
SBT =1 0 O
MBT =1 0 1
cBT =1 1 0
SFB =1 1 1
/)
BIT INSTRUCTIONS 1 0 4] 0 1 0 1 1 1 1 1 1 1 /
SBS =0 1 1
cBS =1 0 O
TBS =1 0 1
/)
WORD INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1
CMW =0
MVW = 1
8200-52

A-14 Reference Tables and Conversions .

EXTEND AND OVERFLOW EXAMPLES

SAME SIGN (POSITIVE)

SIGN SIGN
9y _)
A/B REGISTER o ¢ o
AUGEND 0] , 1,
LS LS
b) b
< <
ADDEND o] o 1
< 4
4 4
OV=UNCHANGED ov=1
RESULT
ESULT A/B 0 2 E-UNCHANGED 5 E=UNCHANGED
LS
SAME SIGN (NEGATIVE)
SIGN SIGN
b i)
1 4 S
A/B REGISTER v o 1
AUGEND 5)
RS LS
b b
C L 4
ADDEND 110 1
b} b)
1 4 L4
l 2
ov OV=UNCHANGED
RESULT A/B
SULT A/ ol . e 5 E=1
LS LS
DIFFERENT SIGNS
SIGN SIGN
b b}
A/B REGISTER olol B
AUGEND N)
< LS
b b}
I 4 S
ADDEND 1 o], 1
S <
4 !.
RESULT A/B 1 OV=UNCHANGED OV=UNCHANGED
E=UNCHANGED 5 E=1
LY <
SIGN SIGN
= 4
A/B REGISTER Ol N 0
AUGEND S)
LS BS
.] b}
LS €
ADDEND ol 1 o| 1
b} D
1 4 L §
2 {
OV =UNCHANGED OV=UNCHANGED
RESULT AB 0], e=1 , E=UNCHANGED
L § <
8200-48
Reference Tables and Conversions A-15

INTERRUPT AND CONTROL SUMMARY

INST S.C. 00 S.C. 01 S.C. 02 S.C. 03 S.C. 04 8.C. 05 S.C. 06 8.C. 07
STC NOP NOP Enable break NOP Enable Type Enable parity | Turn on Time Turn on memory
mode. 2and 3 error Base Generator. | protect.
interrupts. interrupts.

CLC | System reset. NOP NOP NOP Disable Type Disable parity | Turn off Time NOP

2 and 3 error Base Generator.
interrupts. interrupts.

STF Enable Type 3 STO Disable Global NOP NOP Set parity Set Time Base NOP
interrupts. Register. sense to even | Generator

parity. flag.

CLF Disable Type 3 CLO Enable Global NOP NOP Set parity Clear Time NOP
interrupts. Register. sense 10 odd | Base Generator

parity. flag.

SFS Skip if Type 3 SOSs Skip if Global NOP Skip if power Skip if parity | Skip if Time NOP
interrupts are Register is not going down | senseis even. | Base Generator
enabled. disabled. flag is set.

SFC Skip if Type 3 SOC Skip if Global NOP Skip if power Skip if parity Skip if Time NOP
interrupts are Register is is going down. | sense is odd. | Base Generator
disabled. enabled. flag is clear.

L Load from in- Load from pro- Load from Load from Load from cen- | Load bits 0-15 NOP Load from
terrupt mask cessor status Global PSAVE or (with tral interrupt from parity violation
register. register. Register. ,C) ROMP. register. error register, register.

or (with ,C)
bits 16-23.
M NOP Merge from pro- NOP NOP NOP NOP NOP NOP
cessor status
register.

orT* Output to in- Output to pro- Output to Output to Output to cen- NOP NOP NOP
terrupt mask cessor status Global PSAVE or (with tral interrupt
register. register. Register. ,C ROMP. register.

(Note 1)

Note 1: ar; OTC;A{Bllz with A/B equal to one through seven establishes a diagnose mode; refer to “Diagnose Modes" paragraph in Chapter

or details.

A-16

Reference Tables and Conversions

Manual Part No. 02424-90001

Printed in U.S.A. D ber, 1987 HEWLETT
E1287 seemoer ﬂf PACKARD

	0000
	0001
	0002
	0003
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	03-79
	03-80
	03-81
	03-82
	03-83
	03-84
	03-85
	03-86
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	xBack

