(ﬁ HEWLETT
PACKARD

HP 92045A
Microprogramming Package

Reference Manual

Higlil
el IR

HP 92045A
Microprogramming Package

Reference Manual

Includes:
Paraphraser Programming
WLOAD WCS Loader and
PROM Burn Program

(D PR

HEWLETT-PACKARD COMPANY

Data Systems Division

11000 Wolfe Road MANUAL PART NO. 92045-90001
Cupertino, California 95014 Printed in U.S.A. February 1982

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the

appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition.............. e Feb 1982

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

ii

Copyright © 1982 by HEWLETT-PACKARD COMPANY

PREFACE

The purpose of this manual is to provide the user with the information needed to develop and write
microprograms which will run on the A700 processor for HP 1000 systems. The scope of this manual is
complete in that no other manuals are required as references for writing microprograms. It covers the
following major subjects:

Part I - Why Microprogramming

® Microprogramming Concepts

® Microprogram Controllable Functions

Part II - Microprogramming Methods

® Microprogramming Preparation
e Word Types
® Microorders

e Writing Microinstructions

Part III - Microprogramming Support Software and Hardware

o Using the Paraphraser Microassembler

o Writable Control Store Support Software

e PROM Control Store Support Software

e HP 12156A Floating-Point Card Microprogramming

Part IV - Microprogramming Examples

e Example Microprograms

Appendixes

e Includes paraphraser information including summaries of microorders, microorder phrases, and a sum-
mary of floating-point microinstructions

® Includes the base set listing, and information on debugging microcodes

® There is also a fold-out functional block diagram.

iii

PREFACE (Continued)

To gain a better understanding of the processor hardware, refer to the HP 1000 A700 Computer Reference
Manual, part no. 02137-90001. For information on the Control Store Cards used for microprogram storage in
this computer, refer to the HP 1000 A700 User Control Store Installation and Reference Manual, part no.
02137-90003. Installation of the HP 12156A Floating-Point Card is covered in the HP 12156A Floating-Point
Processor Kit Installation and Reference Manual, part no. 12156-90001. The Writeable Control Store driver
ID.41 is described in its own manual, RTE Driver ID.41 For 12153A WCS Cards Reference Manual, part no.
92045-90002.

iv

CONTENTS

PART I- WHY MICROPROGRAMMING?

Section 1 Page
MICROPROGRAMMING CONCEPT

Microprogramming Overview 1-2
Program Analysis Methods 1-3
The Microprogramming Process.................... 1-4
Executing Your Microprogram 1-6
Summaryiiiiii 1-6
Section 2 Page

MICROMACHINE DESCRIPTIONS
Microprogram Controllable Computer Functions 2-1

Overall Circuit Descriptionoo0. 2-5
Microprogram Controlcooieinnn.. 2-5
Arithmetic/Logic Unit 2-5
Input/Output (Backplane) Section 2-5
Processor Registersooovviint. 2-6
MeMOTY ..t e 2-7
Memory Controller 2-6
Memory Arrayoiiiiiiiiiiiiaaa 2-6
Dynamic Mapping System.................... 2-6

Boot MemOTy ... 2-7
Virtual Control Panel (VCP) 2-7

A Closer Look At The Functions................... 2-7
Some Definitions And Timing Points 2-15
How These Functions Interrelate............... 2-15
Control Storecooiiiiii it 2-17
Description Of The Base Set 2-18
Operational Overviewccovuven. 2-19
Instruction Decoding Loops 2-19
Macroinstruction Fetching 2-20
Macroinstruction Execution 2-21

PART II - MICROPROGRAMMING METHODS

Section 3 Page
MICROPROGRAMMING PREPARATION STEPS
‘Microprogramming Hardware 3-1
Microprogramming Support Software 3-2
The Paraphraser Microcode Microassembler. 3-3
Driver ID41 ..., 3-3
WLOAD ... 3-3
Loading The Microprogramming Support
Software ...ttt e 3-3
PROM Code Generator 3-4
Preparatory Steps........ TN 3-4
Debugging Microcode, 3-4
Section 4 Page

MICROINSTRUCTION FORMATS
Microinstruction Binary Format

Definition Of Word Typescooviinnnn. 4-1
Word Type 1 ..o 4-3
Word Type 2 ..o 4-4
Word Type 3coovviiiiiiii e 4-5
Word Type 4cooviiiiiiiii i 4-5
Word Type 5 ..ottt 4-6
Word Type 6 ... 4-6

Arithmetic Data Paths 4.7

ALUFunctionsovviiiiiiiiinnneeiinnnnn. 4.7
Standard ALU Functions 4-8
Special ALU Functionscoooet 4-8

Shift Functionsccoo i, 4-22

Microorder Definitionsc.ccvvvevn. 4-23

Microcode Restrictions and Considerations 4.27
Memory And I/O Microorders 4-27
Fetch Microordersccooivviiinnn. 4-27
BFB And IFCH Microorders 4-27
RDIO And WRIO Microorders 4-27
Memory Readscooiiiiiiiinnne, 4-27
Map Referencesooiiiiiiiiiinn, 4-27
Base Register and Data and Code Maps 4-28

Section 5 Page

TIMING CONSIDERATIONS

Computer Timingccoiiiiiiniiiinnn... 5-1

Memory and I/O Accessccovniinnnnnn. 5-1

Processor Clock Freezecoovviit. 5-2

Data Transfersoveieereinrieeennnne. 5-3

Section 6 Page

MAPPING TO USER’S MICRO-
PROGRAMMING AREA

Control Store Mapping Method 6-1
Software Entry Points 6-2
User Instruction Groupooooan. 6-2

UIG Opcode Blocksoooiiiit 6-4
User Area UIG Blocks 6-4
HP Reserved UIG Blocks 6-5
User’s Area Mapping Example 6-5
Branching To Your Microprogram 6-6
Returning To The Base Set 6-7
Calling Microprogramsoouunn. 6-8

Handling Interruptsl 6-9
Example Of Checking Interrupt Condition 6-9
Microcode Time-Outcooevvvviei... 6-10

Registers Reserved for the User 6-10

Microprogramming Considerations 6-10

Section 7 Page

WRITING MICROPROGRAMS

Planning and Preparation 7-1

The Paraphrasercciiiiiennnn. 7-1

CONTENTS (Continued)

Paraphraser Rules 7-2
Control Statement............................... 7-3
Commentso 7-3
Numbers i 7-3

Microinstruction Sentence 7-4
Labelscoo i i 7-4
Directives............cooiiiiiiiiiiiii . 7-5

Origin Directivescoounn. 7-5
Align Directives 7-6
Define Directivec.ccoiiiiia... 7-6
Microinstruction Specifications 7-7

Writing Microinstructions 7-7
Sentencesccoiiiiiiiiiii 7-7
PRrasesoovovrinriiitenneeeenanenn, 7-9
Writing Phrases................................ 7-9
Defaulted Fields 7-9

Field Conflicts 7-10
Word Type Conflicts 7-10
Unrecognizable Phrase 7-10
Bad Field Default 7-10

Description Of Phrases 7-11
Branching Phrases 7-11
Arithmetic Phrases.........................u.. 7-13

Basic Arithmetic Phrases 7-14
Arithmetic Phrases With Shift or Rotate 7-16
Arithmetic Phrases With Carry-in Modifier .. 7-17
Arithmetic Phrases With ALU Special 7-19
Arithmetic Phrases With Immediate Data ... 7-21
Conditional Phrases 7-23
Conditional Branching Phrases 7-23
Conditional Return Phrases 7-23
Conditional SPO Phrases 7-24
Special Phrasescooiieiiia.. 7-24
Field Forcing Phrases 7-24

PART III - MICROPROGRAMMING SUPPORT
SOFTWARE AND HARDWARE

Section 8 Page
USING THE PARAPHRASER
Loading MPARA 8-1
Using The Paraphraser Microassembler 8-1
Execution Command 8-2
The Paraphraser Output 8-3
Binary Object Code...................cooivi... 8-3
Paraphraser Output Listings 8-3
Error Messagesooourniniiniiiiinnnnn 8-5
Label Errors 8-5
Translation Errors 8-6

vi

Section 9 Page
WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE

WCS Mappingooiii i 9-1
Using WLOAD iiiiiiian. 9-2
WLOAD Commandscovviinnnnn.. 9-2
ONCommand..........oovvviiiinnnennninnnnnn, 9-3
OF Commandccvviiiieiiiiinnnnnnn. 9-3
Equate Command 9-3
Remove Command 9-3
Status Command 9-3
Load ASCII Command 9-4
Display Mapping Command 9-4
LUCommandccovviiiininnnnnnnnnn... 9-4
Read Commandccoiiivnnnnn, 9-5
Initialize Commandc...o... 9-5
Background Command 9-5
Write Data Command 9-5
Load Binary Command 9-6
Test Commandccvviinnnn... 9-6
Exit Command 9-6
Transfer File...............co i .. 9-7
Return From Transfer File 9-7
HelpFile i 9-7
Commentovriiiiiiii i 9-7
Section 10 Page
WLOAD PROM BURN TAPE FUNCTION
PCS PROM Specificatons......................... 10-1
Using WLOAD for Burn Tapes 10-1
Burn Tape Command 10-2
Error Reporting 10-3
Output Format 10-3
PROM Burn Outputccvuunenn.... 10-5
Section 11 Page
FLOATING POINT PROCESSOR
General Description......................o0va... 11-1
Basic Capabilitiescvvinnt. 11-1
General Operationc.covivueeannn. 11-3
Interface to the Micromachine 11-3
Sequence of Operation 11-3
Transfer of Control Word 114
Transfer of Input Operands 11-4
Transfer of Results 11-5
Transfer of Error Conditions 11-5
Writing Microcode For The FPP 11-6
General Floating-Point Microcode 11-6
Floating Point Control Word Fields 11-6
Paraphraser Floating Point Sentence 11-8
Floating Point Division 11-9
Paraphraser Division Sentence 11-10
Control Store Starting Address 11-10

CONTENTS (Continued)

PART IV - MICROPROGRAMMING EXAMPLES

Section 12 Page
MICROPROGRAMS

Branching To The Example Programs 12-1
Buffer Initialization Example..................... 12-3
Shell Sort Examplet 12-6
Privileged Driver Example 12-11
Structure of Example Program 12-12
Appendix A Page
SUMMARY OF WORD TYPES A-1
Appendix B Page
SUMMARY OF MICROORDERS B-1
Appendix C Page
SUMMARY OF MICROORDER

PHRASES C-1

Appendix D Page
FLOATING POINT MICRO-

INSTRUCTIONS D-1
Appendix E Page
BASE SET LISTING ..., E-1
Appendix F Page
FUNCTIONAL BLOCK DIAGRAM.............. F-1
Appendix G Page
DEBUGGING MICROCODE G-1
Diagnostic Connections G-1
Programming the Logic Analyzer G-2
Diagnostic Window Microcode G-3
Index ...t I-1

vii

ILLUSTRATIONS

Title Page Title Page
Overview of Microprogramming Steps 1-2 Example of a Paraphraser Label Listing 8-4
Major Sections of the Computer 2-3 Example of a Paraphraser Floating Field
Simplified Microprogram Control Section.......... 2-14 Listingccoviiiiiii i 8-4
Control Store Mapcvviiiiann. 2-17 Address Label Errors 8-5
Microinstruction Word-Type Binary-Format Translation Errors 8-6
Summary ... 4-2 Translation Format of PROM Burn Code........... 10-3
Single Word, Single Bit Shifts.................... 4-24 Example PROM Binary Code Printout 104
Double-Word, Single-Bit Left Shifts............... 4-25 Floating-Point Processor Data Paths 11-2
Double-Word, Single-Bit Right Shifts 4-26 Jump Table to Example Microprograms 12-2
Example of Microprogram Source File 7-8 Flowchart of Shell Sort Program 12-7
Title Page Title Page
Computer Functionscccco.... 2-8 Microprogrammable Floating-Point
Preparatory Steps.............coiiiiiiiiiiiia., 3-5 Operationsc.c.oviieiiiiinnenninnnn... 11-2
Manual and Software References 3-6 Microprogrammable Floating-Point Functions 11-6
Summary of A700 Computer Word Types 4.7 Connector J4 Signal Identification................. G-2
Microorder Definitions 4-9 Connector J5 Signal Identification................. G-2
Control Store UIG Software Entry Point Functional Block Diagram F-3
Assignmentsol 6-3

viii

PART I - Why Microprogramming?

Section 1

Section 2

Microprogramming Concept

Micromachine Descriptions

PART Il — Microprogramming Methods

Section 3
Section 4
Section 5
Section 6

Section 7

Microprogramming Preparation Steps
Microinstruction Formats

Timing Considerations

Mapping to User’s Microprogramming Area

Writing Microprograms

PART Ill - Microprogramming Support Software and Hardware

Section 8
Section 9
Section 10

Section 11

Using the Paraphraser
Writable Control Store (WCS) Support Software
WLOAD PROM Burn Tape Function

Floating Point Processor

PART IV - Microprogramming Examples

Section 12

APPENDIXES
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Index

Microprograms

Summary of Word Types
Summary of Microorders
Summary of Microorders Phrases
Floating Point Microinstructions
Base Set Listing

Functional Block Diagram

Debugging Microcode

SECTION 1
MICROPROGRAMMING CONCEPT I

PART |
Why Microprogramming?

MICROPROGRAMMING CONCEPT

1

The HP A700 processor for HP 1000 systems has a microprogrammed architecture to provide flexibil-
ity of micromachine operation. It allows future firmware enhancements of the instruction set and
provides you with significant performance increases for your application.

Microprograms in computers offer the following advantages:

® Reduction of program execution time. By developing microprograms for often-used techniques,
program execution time is significantly decreased. Execution time is reduced because:
= Many instruction fetches are eliminated.
— Microinstructions typically execute three to ten times faster than Assembler instructions.
— Multiple operations can occur during a single microinstruction.

— The microinstruction word width (32 bits in the A700 processor) provides a larger instruction
repertoire than available with the Assembler word width (16 bits).

— Many more registers and computer instructions are available to the microprogrammer than

are available to the high-level language programmer.

¢ Implementation of customized computer instructions. Customized instructions (i.e.,
microprograms) can provide facilities not otherwise available. Examples are:
— Post indexing and/or preindexing macroinstructions
— Stack macroinstructions.

— Special arithmetic macroinstructions (double integer, decimal, etc.)

Types of applications that can be programmed:

® Sort routines (e.g., bubble, shell, radix-exchange, and quicksort).

® Arithmetic or Floating Point Calculations that can take advantage of the HP 12156A Floating
Point Processor.

¢ Transcendental Functions (e.g., sine, square root, and logarithms).

® Fast Fourier Transform (FFT).

You may also create microprograms to contrél your own customized hardware. Some microprogram
examples are given in Part IV.

Microprogramming Concepts

Microprogramming has disadvantages in some areas when compared to high-level language pro-
gramming. For example:

e Microprogramming of all or almost all routines for an application program can be cumbersome and
unprofitable. An analysis should be made first to determine those areas that can benefit most from
microprogramming. '

e Microprograms are not relocatable in control store.

e Microprograms written for the A700 processor cannot be used on other HP processors without
being rewritten.

Although additional effort is required to become familiar with the processor in order to write a
microprogram, the results are usually well worth the effort. The use of the paraphaser microassembler
facilitates programming in such a way that the wide (32 bit) microword is easily coded. The following
paragraphs outline the considerations involved when you decide to microprogram.

1-1. MICROPROGRAMMING OVERVIEW

The first consideration for an application program, or perhaps a library routine running in an RTE
environment, is the execution time. Does it or any parts of it have to be faster? This may or may not be
obvious in external operation (i.e., waiting time is too long for a line printer output when a certain
calculation is performed, terminal response is too slow, etc.).

Some method of analyzing the programming environment must be used to identify the areas which
consume excessive time. Consider the basic methods described below:

e Employ programming analysis devices (e.g., the HP 1610 Logic Analyzer) which attaches to the
computer. This is the most accurate but most expensive method.
e Perform a programmatical analysis. This is a compromise over the above method, it is less costly

but less accurate.

In summary, the first step is to find out what would be advantageous to microprogram. An analysis of
the programming environment may reveal, for example, that setting up a microprogram for a
seldom-used library routine would not give a cost effective return in overall software efficiency.

1-2

Microprogramming Concepts

1-2. PROGRAM ANALYSIS METHODS

The first analysis method (use a programming analysis device) described above under
Microprogramming Overview is beyond the scope of this manual.

The second analysis method described above requires a special program that monitors executing
programs. It should record just where most of a program’s execution time is spent, and it should point
out to the user which sections of code can be optimized or microprogrammed to speed up program
execution and throughput.

For example, this monitor program could insert counters in the program being tested to determine how
many times an instruction or routine is executed.

There are other ways of obtaining useful timing information. For example, you can use the interrupt
method as follows:

e Use a time-scheduled program to monitor the desired program.

® Reserve a “word block counter.” for example, at every 500 words or so of main memory.

In the time-scheduled program of the interrupt method, each time the device interrupts, the P-register
could be sampled and the count incremented for the associated “word block counter.” That is, a record
is generated for the program location counter at periodic intervals. This could be done several hundred
thousand times and, at the end of the sample period, a percentage of time spent in each area of memory
can be obtained. Then . ..

® The load map of the program being analyzed can be examined to determine which parts of the
program could possibly be microprogrammed to decrease execution time.

® The resolution for your analysis program could be changed, as could other parameters in the
program to obtain the desired profile.

This is the general idea of how an activity profile generation program could be used. Also you can refer
to the Contributed Library Catalog, part no. 22999-90040, for programs you may be able to use.

Once the activity profile generation program output is analyzed for any excessive computer time, you
are ready to concentrate on a particular area for microprogramming. However, keep in mind the
following:

® The maximum benefit of microprogramming will not be realized by simply imitating Assembly
language instructions in microroutines.

® In order to determine specifically what to microprogram, the computer functions and program
intent should be studied before you begin to write your microprogram. The final result will be a
microprogrammed solution that executes in much less time and is totally or at least partially
transparent.

An overview of the steps to take in order to get your microprogram into operation is covered in the
following paragraph.

1-3

Microprogramming Concepts

1-3. THE MICROPROGRAMMING PROCESS

Figure 1-1 provides an overview of the steps involved in microprogramming the A700 processor. The
figure illustrates the following:

After a program analysis, the entry point (microaddress) for the control store module that you will
be using must be determined.

The microprogram is then written as a source file for the Paraphraser microassembly language
according to the information given in Part II of this manual. Using Edit/1000 it is corrected and
stored in a disc file.

The paraphraser is executed (run MPARA). The microprogram source file is translated by MPARA
and microassembled to generate object code. It will also provide a source listing, and an error list
(if any). Optionally, according to the source program command statement, it will provide a floating
field listing and a label listing.

Subsequent editing on the source program using Edit/1000 can correct any errors.

The object code microprogram usually will be loaded into Writable Control Store (WCS) using the
WLOAD Utility and tested for fault free operation. Bugs in the microprogram are eliminated by
again editing the source program, translating it with MPARA, storing it again in WCS and testing
its operation until operation is free of errors.

NOTE

The HP 12153A Writable Control Store Kit is an important part
of developing microprogramming. The developing of programs to
store in Writable Control Store (WCS) or PROM Control Store
(PCS) is the primary purpose of this manual (described in sections
9 and 10). Information on WCS and PCS cards will be found in the
HP 1000 A700 User Control Store Installation and Reference
Manual, part no. 02137-90003.

The ready-to-run microprogram can be stored in two ways:

It can be left in WCS.

You can create a permanent microprogram through the use of the Control Store PROM Burn
Program of WLOAD. This software, in turn, can be used to generate the mask tapes or data files
which are used to have Programmable Read Only Memory (PROMs) fused or “burned.” The
PROMs can then be installed on the HP 12155A PROM Control Store (PCS) Card.

The advantages of executing microprograms from WCS are:

1-4

WCS can be reused for many microprograms.

WCS can be used to swap microprograms in and out of the system to suit a variety of users.

Microprogramming Concepts

ACTIVITY PROFILE
GENERATION
PROGRAM

USER
MICROPROGRAMMING
REQUIREMENT

RUN PROGRAM
ANALYSIS

\&/
I~ T

COMPUTER

STUDY RESULTS
AND/OR
PLAN MICROPROGRAM

ASSIGN ASSEMBLY
LANGUAGE
INSTRUCTION CODE
TO DETERMINE
ACCESS POINT

WRITE THE
MICROPROGRAM
IN PARAPHASER
LANGUAGE

PREPARE AND
INPUT SOURCE
(EDIT USING
EDIT/1000)

STORE
ON DISC

MPARA MICROPROGRAM

PARA- LISTING WLOAD

PHRASER DISC PROM
Burn

~ Function
OBJECT CODE ON & = 2
DISC FILE (OR TO _— = OUTPUT
OUTPUT DEVICE) DATA CARTRIDGE
NEW (EDITED) @ TAPE (OR OTHER
INTERIM PERFORM DEVICE)

EDITING AND
CHECKOUT

DISC FILE

USING WCS,

WRITE
(READ) PARAPHASER
IN WCS WRITABLE AND EDIT/1000 PROMS INSTALLED
CONTROL ON PCS CARD
=='=' =2 STO?E g
p— (WCS) = =
= =4
MICROPROGRAM
EXECUTION
WwCS 110\ WRITE CALL

MICROPROGRAM
TO WCS

UTILITY
ROUTINE
(WLOAD)

CALL

USER PROGRAMS
IN MAIN MEMORY

8200-8
Figure 1-1. Overview of Microprogramming Steps

1-5

Microprogramming Concepts

The disadvantages are:

® Microprograms in WCS can be destroyed by an errant user of the system.

e When computer power is removed, your microprogram is lost and must be reloaded.

e Each WCS card requires an /O slot in the computer; although a PCS card also requires a slot it
stores twice as much microcode.

The advantages of fusing (or burning) the microprogram into PROMs are:

® The program is permanently stored on the PCS, and when the power is removed from the computer
it does not have to be reloaded.

e One PCS card contains twice as much control store as does a WCS card; therefore, potentially
fewer card slots are used if large storage is needed.

The disadvantage is:

e There is much more involved in storing and changing the microprogram with PROMs than there is
with WCS such that “bugs” in the microprogram will be harder to correct.

1-4. EXECUTING YOUR MICROPROGRAM

If your microprogram is stored in PROMs, it can be executed immediately through User Instruction
Group (UIG) instructions. Whether your microprogram is contained in WCS or PCS, it can link
Assembly language routines to microprograms. The hardware and firmware map each UIG instruc-
tion to a unique control memory destination. UIG instructions are covered in Section 6.

Microprograms that reside in WCS execute at the same speed as do those residing in PCS. Both WCS
and PCS resident microprograms can be used along with the base set in control store. The base set is
defined as the computer’s standard instruction set of microprograms.

1-5. SUMMARY

To effectively create a microprogram, the programmer must have the following:

® An understanding of what to microprogram.

® An understanding of the HP A700 processor operation and its architecture.

e Knowledge of the methods used to map to and access control store.

e Knowledge of the appropriate microprogramming hardware and sofware products.

One way to obtain this knowledge is to attend the Hewlett-Packard Computer Microprogramming

course. The above subjects are all covered in the remaining portions of this manual but remember that
most important first step, find out what you should microprogram.

SECTION 2
MICROMACHINE DESCRIPTIONS mm

MICROMACHINE DESCRIPTIONS

2

This section covers detailed information that you should know about HP 1000 A700 computer
operation. You should study it before attempting to write a microprogram for it. The following
paragraphs describe:

® The hardware functions controlled by microinstruction.

¢ Aspects of the base set microprogrammed operation that will be important to your
microprogramming.

To implement your own microprograms you will not need to know the computer design at the logic
circuit level. The information in this book should be entirely sufficient for your needs. The base set
discussion will help you to become aware of the existing microprogram’s operation. Below is a look at
the overall computer followed by details on registers and other functions.

2-1. MICROPROGRAM CONTROLLABLE COMPUTER FUNCTIONS

Figure 2-1 illustrates the four major sections of the computer that control computer functions. In order
of importance they are the following:

® Microprogram Control Logic Section

® Arithmetic/Logic Unit (ALU) Section.

® Memory Controller Section.

® Input/Output (Logic) Section.

The other sections shown are memory array, memory maps, boot memory, processor registers, and

control store. The base set on the lower processor connects by control store bus to the optional Writable
Control Store (WCS), PROM Control Store (PCS), and Floating Point Processor (FPP).

Accessories shown in the overall block diagram that are directly associated with microprogramming
are the following:

e HP 12153A Writable Control Store (WCS) Kit.

e HP 12155A PROM Control Store (PCS) Kit.

e HP 12156A Floating Point Processor (FPP) Kit.

Important information about accessories related to microprogramming is covered in other sections of

this manual, and a general description of the controllable computer functions is contained in the
following paragraphs.

2-1/2-2

Micromachine Descriptions

10 Vo BACKPLANE
CARDS AND OPTIONAL
ADDITIONAL MEMORY
WCS/PCS ARRAYS
CARDS 4 /\
I S 1 H [1 H Ld "" == Lo 1 5 L | LI 1.
< wcs oR Pcs o =d ower L= 4 FLoating Y r< yprer 5 memory . MEMORY
CARD PROCESSOR POINT PROCESSOR CONTROLLER ARRAY
(OPTIONAL) PROCESSOR
(OPTIONAL)
MICROPROGRAM 80OT
CONTROL MEMORY
LOGIC (VCP, SELF TEST)
INPUT/OUTPUT
CONTROL FLOATING LOGIC
LOGIC POINT (BACKPLANE
(VO MASTER)* PROCESSOR INTERFACE)
vV
PROCESSOR MEMORY Q
*WCS CARD ONLY REGISTERS CONTROLLER
MEMORY
ARRAY
FPP PROCESSOR .
Cg:gggt CONTROL REGISTERS
" STORE PROMS (EXTERNAL ALU) MEMORY
MAPS
SPECIAL
BASE PURPOSE
SET REGISTERS
L - 4d L d = d - r< =q ——— < =n ——— r
‘I--------q --r b —‘r 1 ‘r 1 Ar 11 o i d 1 a I ") 1 a2
< < 7
T0 V. \V AV OPTIONAL
ADDITIONAL] r EMORY
WCS/PCS ARRAYS
CARDS CONTROL STORE BUS (FLEX. CABLE) 4L | \/ V MEMORY ARRAY FRONTPLANE

PROCESSOR/MEMORY CONTROLLER FRONTPLANE

Figure 2-1. Major Sections of the Computer
2-3/2-4

Micromachine Descriptions

2-2. OVERALL CIRCUIT DESCRIPTION

The HP 1000 A700 Computer consists of two processor cards, memory controller and memory array.
The upper processor card contains the Input/Output or Backplane Interface section and some of the
processor registers. The lower processor card contains the Arithmetic Logic Unit (ALU), the
microprogram control section, some processor registers, and the base set firmware. The processor cards
communicate with the memory controller card over the Processor/Memory Controller Frontplane.
Additional details of these sections are described below.

2-3. MICROPROGRAM CONTROL

The Microprogram Control Logic includes a “look-up” table, a micromachine sequencer, control store
(memory) for the card, a four-deep microprogram subroutine stack, a microinstruction register, and
decoders. The “look-up” table has an entry for each macroinstruction that selects the appropriate base
set microinstruction address.

The base set, WCS, PCS, and FPP receive addresses and send data, respectively, to and from the
Microprogram Control over the Control Store Bus.

The base set (standard instruction microprogram) is stored in 2k-microwords of ROM and is part of the
“basic” computer. Extensions of the control store which you can use for your microprogramming are
the 4k-microword WCS, the 8k-microword PCS, and the FPP card with either 2k- or 4k-microwords. (A
microword is 32 bits wide and contains one microinstruction.) No more than four control store cards
are allowed which can be any combination of WCS, PCS cards, and one FPP card. However, the
maximum number of microinstructions words that can be addressed is 16k-words.

WCS communicates with the I/O section to allow microprograms to be written to and read from the
Memory Array. They connect to each other through the backplane, through which some signals for the
control and loading of WCS are passed from the I/O section.

The WCS, PCS,and FPP are connected through the frontplane to the micromachine control store buses
in a parallel fashion. Therefore, when executing microcode there is no difference in addressing the
base set or the microinstructions you have added. The microinstruction output is the same. No matter
how the microprogram control is physically implemented, together they appear as one large
microprogram facility.

2-4. ARITHMETIC/LOGIC UNIT

The Arithmetic/Logic Unit (ALU) section of the computer includes most of the hardware required to
actually carry out commands of the microinstructions. It provides the logic to perform arithmetic and
logical operations on the data.

2-5. INPUT/OUTPUT (BACKPLANE) SECTION

The Input/Output (I/O) Section serves as the backplane interface between the computer and external
devices. The I/O hardware responds either to Microprogram Control stimuli (for computer-initiated
data or control operations) or to device stimuli (for device-signaling attention requests), and hence
becomes the active communication link between the computer and peripheral devices.

2-5

Micromachine Descriptions

2-6. PROCESSOR REGISTERS

The directly-addressable working registers of the processor include an instruction register, a program
counter register, an accumulator, a memory return register, and temporary storage (scratch) registers
for use in processor operations.

There are also indirectly-addressed register files including general-purpose, privileged, and special-
purpose external registers. Special-purpose external registers are located on the memory controller
card and FPP, and communicate with the processor over the processor/memory controller frontplane.
Some of the privileged registers are reserved for use by the base set, and the special-purpose registers
are used for map addressing, parity errors, interrupt updates, and reserved for future requirements.

2-7. MEMORY

2-8. MEMORY CONTROLLER. The Memory Controller controls the main memory of the
computer system. It contains 32 Memory Maps with 32 registers each for dynamic mapping of the
memory array. The Memory Maps store information used to generate the physical address of data
accessed during a memory cycle (see Dynamic Mapping below).

Memory Protect is part of memory control. Memory protect can interrupt and report the logical
address of any instruction that attempts to read or write into protected pages of memory, or execute
certain instructions flagged by the Dynamic Mapping System. The Read and Write protect bits are
stored in the Memory Maps. However, an I/O device using Direct Memory Access (DMA) can access
protected memory for both reads and writes; however, this occurrence is prevented by the RTE
operating system.

2-9. MEMORY ARRAY. All programs and data reside in the Memory Array section. The
Assembly language macroinstructions stored in main memory are decoded by the Microprogram
Control Section of the processor.

2-10. DYNAMIC MAPPING SYSTEM. The 32k words logical address space of the HP 1000
A700 architecture is expanded to 16 megawords of physical memory through a process called
“mapping.” The Dynamic Mapping system uses Map RAMs located on the Memory Controller to store
information for generating the physical address of the data accessed in a memory cycle. The map
RAMs extend the 15 logical address bits to the equivalent of 24 physical address bits using dynamic
memory mapping.

Since the maps involved can be dynamically reloaded, accessibility to the entire physical memory is
accomplished. When the base register is enabled, two maps are used together to extend the addresses.
These are called the Data and Code Maps. (Note: The base register is not supported by the RTE-A.1
operating system; however, an update at some future time may include this support.)

2-6

Micromachine Descriptions

2-11. BOOT MEMORY. Boot memory including ROM and RAM is stored on the memory
controller card, and it is used each time the computer is powered up. The ROM includes a self test
program which is a short processor checkout program.

2-12. VIRTUAL CONTROL PANEL (VCP). The VCP program is an interactive program
stored in the boot memory ROM that is written in HP 1000 Assembly code. The VCP enables an
optional external device (usually a terminal) to control the processor in a manner similar to a
conventional computer control panel. Using the VCP, an operator can access various registers (A, B, P,
etc.), examine or change memory, and control execution of a program or load and initiate execution of
the operating system or diagnostic.

2-13. A CLOSER LOOK AT THE FUNCTIONS

In Table 2-1 the microprogrammable functions of the major computer sections (shown in Figure 2-1)
and the registers are described at a level which is consistent with microprogramming requirements.
Wherever appropriate, the associated microorders and microinstruction fields are mentioned.
Microorders and Microinstruction Fields are covered in detail in Section 4 of this manual. Table 2-1
also has a section which briefly describes the bus system.

Refer to the functional block diagram in Appendix E when reviewing the table. Once you understand
the computer’s architecture and the effect of microorders, microorder phrases, and the paraphraser
microassembler, you will need only the detailed block diagram, and microorder charts to write
microprograms.

Figure 2-2 is a simplified block diagram of the Microprogram Control Section of the processor. In a
“conventional” computer control section, specific hardware is dedicated to each function performed by
the instruction set. The major advantage of the “conventional” approach is higher speed to process the
instruction set. The major disadvantage is inflexibility for special applications or for enhancements.

In the microprogrammed computer the logical functions are defined by a series of microinstructions
contained in microroutines (subroutines of microcode). The microroutines are contained in the pro-
cessor memory called “control store.” The basic instructions for processor operation contained in
permanent control store is called the “base set.” In this way the microprogrammed computer is more
flexible than the “hardwired” computer since microprograms can be modified to reprogram the
hardware to perform different functions.

The Microprogram Controller executes microinstructions at a very high rate which is fast enough to
keep the main memory busy almost all the time. Thus, the speed penalty for using the
microprogrammed architecture is essentially not a factor, especially when processing the base set of
instructions.

Since this computer is completely microprogrammable, user programs can be made to execute much
faster with the application of user microprogramming.

2-7

Micromachine Descriptions

Table 2-1. Computer Functions

MICROPROGRAM CONTROL SECTION

Entry Look-Up Table:
Entered after microorder JTAB. Has a microroutine entry point for each macroinstruction in basic instruction set.
16-bit instruction decoded to 8-bit address vectored to microaddress space from hexadecimal 100 to 1FF.

Micromachine Sequencer:
increments microroutine under microprogram control. Next address comes from one of the following address
locations:

1. Current address plus one;

2. Branch address in the current 64-word block or anywhere in the 16k (3FFF hex) word address field;
3. Branch address supplied by look-up table;

4. Return address from microsubroutine stack.

Subroutine branches will increment the stack pointer and push the current microaddress plus one onto the
microsubroutine stack. A return from subroutine will supply the next microaddress from the top of the stack and
decrement the stack pointer. On power-up, the micromachine sequencer starts execution at location 06000 (hex).

Control Store:

The control store on the processor contains the base set of microinstructions and microcode diagnostics. Control
store is extended over the frontplane bus to PCS, WCS and FPP cards. The processor can address 16k- words of
which 2k-words are the base set.

Decoder:
The Decoder receives the microinstruction word that is output from the control store and decodes it. The decoded
outputs are the processor control lines which cause the microinstruction to be implemented.

ARITHMETIC LOGIC UNIT

Arithmetic Data Paths:
Microinstructions can specify the following data paths:

1. A-bus operand which can come from either a register-file register or Immediate Data from the
microinstruction;

2. B-bus operand which can come from a register-file register or any other processor register;

3. ALU output data to be stored in a processor register or written to main memory.

ALU Functions:
There are two categories of ALU functions as follows:

1. Standard operations (coded in the microinstruction ALU field)

2. Special operation (coded in the microinstruction when SPEC is in the ALU field and the special operation to
be performed is specified in the ALUS field).

Note (parenthetic mnemonics refer to processor status bits): For all arithmetic operations, Carry Flag (CF) and
ALU Overflow (ALOV) will be updated with the ALU results. Microorder ZERO forces the ALU output (F-Bus) to all
Os, and disables the update of the following conditions in the condition register during the current cycle: CF,
ALOV, SF (Shift Flag), YZ (Y-bus all Zeroes), Y15 (Y-bus bit 15 set), and B15 (B-bus bit 15).

A. Standard ALU Functions:
Arithmetic operations (true 2s complement add or subtract), are always performed with either a carry or a
borrow. For add, the carry-in normally defaults to 0 but can be forced to 1 by microorder FCIN. For subtract
the borrow is the complement of the carry-in, and the carry-in defaults to 1 but can be forced to O by
microorder FCIN. The standard functions include logical operations which always result in the “clear flag”
and “ALU overflow” being cleared.

2-8

Micromachine Descriptions

Table 2-1. Computer Functions (Continued)

ARITHMETIC LOGIC UNIT (Continued)

B. Special ALU Functions:

When (SPEC) is in the microinstruction ALU field with the operation coded in the ALUS field the following
functions can be performed:

1. Byte swapping and masking, four-bit left rotate, and bit manipulation (microorders ASG and SRG).
These operations are performed by the external ALU and operate only on the B-Bus. CF and ALOV
processor condition bits are cleared. The four-bit left rotate (RL4) will not affect the processor Shift Flag
(SF) bit.

2. Arithmetic operations which may include a shift having multiply, divide, and floating point algorithms.
Processor bits CF, ALOV, YZ, and SF represent different conditions used for some of these operations.
(See Table 4-1).

Shift Functions:
There are three categories of shifts that can be executed in microcode:

1. Single-word, single bit shifts;
2. Double-word, single bit shifts, enabled by (DW) double-word bit;
3. Special function shifts (SPEC in the microinstruction ALU field).

The processor SF register holds the shifted out bit, and SF will be updated only for shift functions. It is not updated
for “four-bit left-rotate” (RL4) and when the microinstruction ALU field contains the ZERO microorder. Details of
shift functions are covered under SPO and SP1 Field in Table 4-1.

MEMORY SECTION

Memory Capacity:

16,384k words physical address space, addressable over 24 memory address lines. Memory array cards may
have 64k-words, 128k-words, 256k-words or 512k-words per card, up to a total of four cards per system as long
as the maximum capacity is not exceeded. The memory array cards automaticaily configure themselves in
ascending address order as they are installed in the backplane.

Map RAMs:

32k-words of memory can be addressed without mapping. Dynamic mapping is achieved through Map RAMs on
the memory controller. The Map RAMs convert the 15-bit logical address received into a 24-bit physical address.
Map RAM information can be changed by the processor. Memory read or write accesses are initiated by the
processor or by an I/O device using DMA. The mapping system is used to separate code and data when the base
register is enabled. When the base register is disabled, there are 32 maps each with 32 registers which do
address translation. When the base register is enabled, there are 16 pairs of maps. The lower map of a pair is the
data map that translates data references, the upper map of a pair is the code map which translates instruction
fetches.

Memory Protect:

Memory is protected by bits in Map RAM for read and for write. If the processor attempts a read or write to
protected memory, a memory protect interrupt is generated but the backplane handshake is allowed to complete.
Writes can occur to read protected memory and reads can occur from write protected memory. An /O device
using DMA can read from and write to protected memory.

Data Format:
16-bit words and one parity check bit. Each data transfer moves 17 bits. Parity errors generate a parity error
interrupt signal.

Timing:
A complete memory access to main memory occurs within two clock cycles where the clock cycle is 250 ns. The
fastest data transfer rate is 2.0 Mword/sec or 4.0 Mbyte/sec.

2-9

Micromachine Descriptions

Table 2-1. Computer Functions (Continued)

INPUT/OUTPUT SECTION

/O Control and Select Logic:
I/O timing, signal generation, and I/O address selection take place from this function. The interface control signals
are generated as a result of the Microprogram Controller executing 1/O microorders.

Interrupt Control:
Interrupt sources are latched and prioritized by hardware, and the interrupt source location is stored in a memory
trap cell. A microcode interrupt service routine reads the Interrupt Status Register (IST) to determine the interrupt
of highest priority and take appropriate action. A read of IST into CT followed by a CT30 will vector to a unique
point for each interrupt. The interrupt service routine executes a trap cell as described in the A700 Computer
Reference Manual.

Central Interrupt Latch (CIL):
The CIL, one of the Special External Registers referenced by microorder SRIN, supplies an updated I/O select
code address (refer to Base Set description).

BUS SYSTEM

The processor/memory-controller frontplane (microprogram control and data bus) connects the memory con-
troller card and the two processor cards for the processor to access memory maps and external registers residing
on the memory controller card, and to allow communication between the two cards.

The frontplane bus connects the base set and the control-store accessories with the processor's microprogram
control section over which the microinstructions are transferred.

The backplane transfers data and addresses to memory from the processor. Each word of data into the processor
is stored in the T-register. All data transfers to and from an l/O card go over the backplane.

DIRECTLY-ACCESSED REGISTERS

Directly-Addressable Register Files:
Register files R0OO through R17 (octal) are directly accessed on either the A or B Bus or in the STOR field. Their
functional names are:

Reg. No. Function Reg. No. Function Reg. No. Function
(Octal) Name (Octal) Name (Octal) Name
ROO A RO5 HP1* R12 S2
RO1 B R06 HP2* R13 S3
RO2 X RO7 USR* R14 S4
RO3 Y R10 So R15 S5
RO4 ACC R11 S1 R16 S6

R17 S7

*Reserved registers for HP (HP1 and HP2) and for the user (USR).

Instruction Register (CT):

The Instruction Register (designated the CT register since it serves as a general-purpose counter for shift and
rotate operations) will be decremented by the SP2 microorder, or it will decrement automatically whenever
microorder CTZ or CTZ4 is specified in the microinstruction condition field. This register is loaded with the
macroinstructions from memory which are input to the micromachine microprogram “look up” table. The data or
instruction is returned on a fetch (FCHB or FCHP) microorder (macro instruction fetch). The counter register must
not be overwritten while the instruction is still needed.

2-10

Micromachine Descriptions

Table 2-1. Computer Functions (Continued)

DIRECTLY-ACCESSED REGISTERS (Continued)

IST Register:
The Interrupt Status Register contains information pertaining to the interrupt system including mask and enable
bits. It sets up a priority list of interrupts pending, and allows interrupt bits to be set and and cleared.

LR Register:
The Light Register drives 16 LEDs and will display the results of the Self-Test Program.

MAP Register:

The register referenced by microorder MAP in the microinstruction B or STOR field is a map register located in
the memory controller. This register is addressed through MPAR (an indirectly-addressed special external
register in the memory controller).

MEMR Register:
The MEMR Register controls memory access. MEMR is the lower eight bits of 16-bits of storage and the upper
eight bits contain status information. A store to MEMR will not change the status bits. The bits are as follows:

0-4 MEMR Register map for main memory accesses. Contains number of Data Map if base register is
enabled (Bit 0 = 0).

5 MEMR A/B Addressability bit (bit is O if memory locations 0 and 1 address A or B registers, respectively).
6 MEMDIS bit of MEMR. Bit 6 = 1 enables boot memory.

7 MEMR memory system enable bit. Bit 7 = 0 enables memory access.

8 Always zero.

9 Slave-. Logic zero if Slave- signal is asserted on backpiane.

10 Parity Error. Logic one if parity error interrupt is pending.

11 A/B Fetch-. Logic zero if last fetch was from A or B register.

12 MTO. Logic one if microcode time out occurred.

13 Milost. Logic one if memory lost on last power down. Valid for 10 msec only after power is up.
14 Power Fail Warning. Logic one if power going down within 5 msec.

15 TDI. Logic one if interrupts are temporarily disabled.

BASE Register:

BASE is the Base Register. When the base register is enabled, all memory references (except FCHP, FCHB, and
RDPC) use the Data Map. FCHP, FCHB, and RDPC use the Code Map unless the address is in the Base
Register. If the address is in the Base Register, use the Data Map. The Base Register bits are as follows:

0-14 Base register value. Value is added to any memory address on base page other than 0 or 1 (A and B
regs.) when base register is enabled.

15 If 1 the base register is enabled and if O it is disabled.
Note: The base register is not supported by the RTE-A.1 operating system. [f the base register is turned on in a
microprogram, it must be turned off before completion.

N-Register:

The N (Index) Register is a 4-bit register used for indirect addressing of the privileged and non-privileged
processor registers and the special external registers of the memory controller. N is decremented by a special
microorder DN, and incremented by a special microorder (IN). When N is referenced the upper 12 bits contain
status information. A store to N will not change them. The bits are as follows:

0-3 N-Register for indirect and special register addresses.
4-7 Always zero (Not Used).
8-15 Status bits same as upper 8-bits of MEMR Register.

2-11

Micromachine Descriptions

Table 2-1. Computer Functions (Continued)

DIRECTLY-ACCESSED REGISTERS (Continued)

P-Register:

The P (Program Counter) Register generally holds the macro-program counter and is used to fetch the next
instruction or to get the 2nd or additional operands of multiple word instructions. It can also be used for general
purpose reads and writes but the program counter must be saved and restored. P can be incremented by a
special microorder.

Q-Register:

The Q-Register is available as a microinstruction B-field operand. The ALU output is loaded into Q by an SP0 or
SP1 microorder (LDQ). Q is used as the least-significant word in double-word shifts and for some special ALU
operations. When (Q) is specified in the microinstruction B field it is multiplexed with the B bus data to become the
ALU input; i.e., it is not actually enabled to the B-bus.

SR-Register:
The Switch Register stores the settings of the Frontplane digit switches. The bits are designated as follows:

0-7 Reserved for use by the VCP for start-up option
8 9 Available for the user

10 Reserved for HP microprogram

11-15 Reserved for use by self test firmware

T-Register:
Receives returned data from memory or I/O. T is loaded only from a memory read or fetch or from an |/O read and
it can not be loaded directly by the microcode.

INDIRECTLY-ACCESSED REGISTERS

GRIN General-Purpose Non-privileged Register File:

There are 16 indirectly-accessed general-purpose registers which are accessed through the N-register. They are
referenced by microorder GRIN in either the microinstruction B field or STOR field . They should only be used as
“gcratch” registers in base-set and user microcodes.

PRIN Privileged Register File:

There are 16 indirectly-accessed registers of which several are dedicated for use by the base set. These registers
are accessed through the N-register and referenced by microorder PRIN in either the B or STOR field of the
microinstruction. Refer to the paragraphs on the Base Set for information on using these registers.

SRIN Special-Purpose External Registers:

These registers are located in the memory controller and communicate with the processor over the frontplane
bus. They are indirectly accessed by microoder SRIN in the microinstruction B field or the STOR field . The
register selected is determined by the four low-order bits of the index register (N). The registers are defined as
follows:

0 MPAR: Map address register which can be written to and read. It contains the 10-bit address presented
to the map RAMs for processor access to the map registers. Any read or write to the maps increments
MPAR. (Bits 10 - 15 are always zero.)

1 PEL1: Parity Error Latch is a 16-bit read-only register containing the low 16 bits of physical address
where the last parity error occurred. It is updated even if parity interrupts are disabled. Addresses are
latched for both DMA and processor errors.

2 PEL2: Parity Error Latch 16-Bit read-only register containing the high 8-bits of physical address of the
last parity error. This address is stored in the low eight bits of the register, and the remaining 8 bits are
always 0.

2-12

Micromachine Descriptions

Table 2-1. Computer Functions (Continued)

INDIRECTLY-ACCESSED REGISTERS (Continued)

CIL: Central Interrupt Latch read-only register containing the trap cell address of the last I/O interrupt.
The microcode uses this address to update the central interrupt register located in the register file
(controlled by base set microcode).

HP Reserved.

Reserved. Access to the FPP (see Section 11).

2-13

Micromachine Descriptions

MACROINSTRUCTION

FROM MEMORY

MACRO- INSTRUCTION
LOOK-UP INSTRUCTION REGISTER
TABLE
‘ (ENTRY -
MICROORDER POINTS)
JTAB
> 0P OF STACK MICROMACHINE
RETURN
ADDRESS
MICRO-
ADDRESS ~
MULTI-
PLEXOR
AT awever |
INCREMENTER A— savE — STACK
AND MICRO- | STACK POINTER
_ PROGRAM P Sl
-+ COUNTER
1]
]
1
(Y e cocnann-
MICROINSTRUCTION ADDRESS:
1. CURRENT ADDRESS PLUS 1.
2. BRANCH ADDRESS SPECIFIED IN MICROINSTRUCTION
ADDRESS FIELD.
3. BRANCH ADDRESS SUPPLIED BY LOOK-UP TABLE
4. RETURN ADDRESS FROM THE MICROSUBROUTINE
STACK.
CONTROL
STORE
— (BASE SET)
°T “Wesecs 1
r | OR FPP |
| | CONTROL | USER
STORE — MICROINSTRUCTIONS
| | EXTENSION Cfr----Z-Z-:
| L) —t-
- -, —
b ——— MICROINSTRUCTION DECODERS PROCESSOR
——— CONTROL
REGISTER SIGNALS
— —1>
BRANCH —1>
ADDRESS
MODIFICATION
IMMEDIATE
DATA

8200-5

2-14

Figure 2-2. Simplified Microprogram Control Section

Micromachine Descriptions

2-14. SOME DEFINITIONS AND TIMING POINTS

Some definitions about control and timing will be clarified next followed by a description of the
computer’s interrelated functions and its operation.

® A micromachine is hardware that executes microinstructions.

® The microprogram controller always executes “microcoded” microinstructions during
“microcycles.”

® One microcycle is the time interval required to completely execute a microinstruction.

® A microinstruction is a 32-bit coded word (code definition is called the microcode) that defines
specific hardware operations to be performed by the computer.

e Each microinstruction is composed of at least one, and up to seven microorder fields. Each
microorder defines a specific operation to be performed in the computer. Some microorders ac-

complish multiple operations by themselves.

e A field is a contiguous section of bits of the microinstruction that are decoded into microrders; e.g.,
the ALU field.

® A word-type is a list of fields that comprise the microinstruction. In this computer there are eleven
word-types defining the microinstruction formats.

® Microinstructions physically reside in Control Store and are the basic building blocks of
microprograms.

e Segments of microprograms may be called microroutines.
® A portion of microcode called from a microroutine will be referred to as a microsubroutine.

Part II of this manual provides specific information on timing that you will need for
microprogramming.

2-15. HOW THESE FUNCTIONS INTERRELATE

All the functions described in the preceding paragraphs are interrelated in an operational sense
through the microprogrammed operation of the computer. Here are a few points to remember:

® The computer is always under microprogram control and executing microinstructions when power
is applied.

® A microroutine in the base-set fetches Macroinstructions (Assembly language instructions of the
HP 1000 operation codes set) stored in main memory. Each macroinstruction is interpreted as a
“pointer” (address) to a microroutine, resident in Control Store, which implements the instruction
by executing a sequence of microinstructions.

2-15

Micromachine Descriptions

e The selected microinstructions are loaded into the Microinstruction Register, and data is directed
to the appropriate destination by the microprogram invoked.

A few other points should be considered before examining what Control Store (microprogram memory)
can accomplish:

e The Microprogram Control Section decodes each microinstruction into fields, then executes the
indicated microorders in the proper sequence.

e Each microorder performs a distinct operation and the microorders are not necessarily related to
each other in each microinstruction.

Keep the above points in mind as you read through the following steps of how the Microprogram
Control Section might operate in a microroutine:

e The microinstruction in the microinstruction register typically calls for the contents of some
register to be enabled onto a data/address bus. Then certain “and/or” and “rotate/shift” operations
of the ALU take place during the microcycle and, at the end of the microcycle, a specified
destination register is clocked to receive the prevailing data from its input lines.

e While a jump-to-subroutine microinstruction presently in the microinstruction register is being
executed, the Stack Pointer is incremented to supply the current address plus one to the
microaddress stack and following a return from subroutine, this new address will be used to load
the microinstruction register in the next cycle.

e Several “branch-on-test” microsubroutines are available (e.g., conditions of carry, the sign, a zero
result, presence of a particular bit, etc.) that provide branches to microroutines designed to react to
the condition.

e Just prior to microprogram completion, fetching of the next instruction is begun from the currently
executing microprogram. There is usually a return to the return address of the microsubroutine
stack as specified by the microroutine. Fetching of the next macroinstruction is completed after the
address return.

Do not be concerned if the details of microprogram control are not clear to you at present. You will gain
more knowledge and understanding of computer operation as you learn the microprogramming
language by reading through this manual and writing microprograms. Some further points:

e If the microprogram execution time exceeds the interval between pending interrupts allowed by
your particular system application, the interrupts can be lost. Your microprogram must be written
to test for pending interrupts if it takes a large amount of time.

e When a pending I/O interrupt is detected, the hardware latches and prioritizes this interrupt with
other interrupt sources. Other interrupts are internal to processor operation and take higher
priority positions. The microcode interrupt service routine is invoked which services the pending
interrupts in prioritized order.

2-16

Micromachine Descriptions

2-16. CONTROL STORE

In a general way, you can look at control store as being devoted to serving three areas:

® The computer base set.
® HP microprogrammed accessories (WCS, PCS, and FPP).

e Future HP enhancements (the user can use this area with the reservation that HP may reclaim
part or all of it for future firmware packages that may be released).

® The user microprogramming area.

All 16,384 addressable (32-bit) words of control store are logically partitioned into 1k-word modules.
Figure 2-3 shows the control store map (represented in 1k word separations) and it identifies the areas
of usage listed above. Notice that the Ok- and 1k-word modules are dedicated to the standard base set.
The 4k- and 5k-word modules are used for present HP accessories, and 8k- through 11k-word modules
are for future HP enhancement firmware but may be used by the user with this reservation. The
remaining control store modules of 12k- through 15k-words are reserved for additional microprograms
written by you.

NUMBER
CONTROL MEMORY ADDRESS SOFTWARE OF USER
ALLOCATION MODULE (HEXADECIMAL) DECIMAL ENTRY POINT POINTS
0k 0 - 3FF 00000-01023 YES* —_
HP BASE SET
1k 400 - 7FF 01024-02047 YES* -
2k 800 - BFF 02048-03071 YES* —
HP RESERVED
3k CQ0 - FFF 03072-4095 YES* —
4k 1000 - 13FF 04096-05119 YES* —
HP RESERVED, SIS, VIS,FPP
5k 1400 - 17FF 05120-06143 YES* —
6k 1800 - 1BFF 06144-07167 NO —
HP RESERVED
7K 1C00 - 1FFF 07168-08191 NO —
8k 2000 - 23FF 08192-09215 YES™ 16**
9k 2400 - 27FF 09216-10239 NO —
HP RESERVED/USER
10k 2800 - 2BFF 10240-11263 YES* 16"
11k 2C00 - 2FFF 11264-12287 NO
12k 3000 - 33FF 12288-13311 YES 32
13k 3400 - 37FF 13312-14335 YES 32
RESERVED FOR USER
14k 3800 - 3BFF 14336-15359 NO
15k 3C00 - 3FFF 15360-16383 NO

* HP use only.
** May be used for HP future firmware packages.

Figure 2-3. Control Store Map
2-17

Micromachine Descriptions

2-17.

DESCRIPTION OF THE BASE SET

A listing of the complete base set, including the JTAB microorder Jump Table, is provided in Appendix
E. An overall description of the base set is given below.

The base set microroutines are good examples of microprogramming techniques you may use as a
guide for writing your microprograms. Also, you may want to use some of these microroutines in your
microprograms as utility microroutines. HP recommends that the user places a copy of any base set
subroutines to be used in the user’s control store space. DO NOT JUMP INTO THE HP BASE SET.
This is because HP reserves the right to modify their base set routines.

The base set microroutines provide you with the capability to execute all the base set instructions
described in the HP 1000 A700 Computer Reference Manual , part no. 02137-90001. In the base set are:

® Microroutines to execute instructions in the following groups:

Memory Reference — Floating Point (Without FPP)
Alter-Skip — Dynamic Mapping System
Shift-Rotate — Double Integer

Input/Output — Language Instruction
Extended Arithmetic — Operating System

® Microroutines that

Execute the built-in firmware diagnostics
Initiate the macrocoded self test
Handle interrupts.

Fetch indirect operands.

e Some typical operations performed by the base set microprogram include:

A power-up sequence.
A short diagnostic check of the processor and memory controller

A read/fetch operation to execute an instruction, then fetch the data to perform an ALU
operation, and finally storing the data in a register.

A write operation (e.g., writing the incremented value in an ISZ instruction).

I/O operating routines; e.g., processor-initiated transfers or device initiated transfers of data to
perform an ALU operation, and finally storing this data into a register.

The timing relationships involved in operations such as the above mentioned typical operations are
covered in Section 5 of this manual.

2-18

Micromachine Descriptions

2-18. OPERATIONAL OVERVIEW

The following paragraphs provide an overview of how the Microprogram Control Section performs
several operations in parallel in the base set. The references to example addresses are given in
hexadecimal. The microroutines for the HP 1000 Assembler instruction codes (macroinstructions)
illustrate several techniques that you should be aware of to effectively execute your own
microprograms. You may find it helpful to refer to the functional block diagram in Appendix F for
assistance in understanding these operations.

2-19. INSTRUCTION DECODING LOOPS

Most of the time the processor is executing in a microcoded loop that decodes macorinstructions. This
loop (called the JTAB loop) is entered through microinstructions that have the JTAB microorder in the
op code (operation code) field. There are two JTAB loops in the &CONTROL section of the base set
firmware as follows:

a. Normal macroinstruction decoding that is entered when bit 11 of the switch register (SR register)
is closed (logic “0”). There are two microinstructions in this loop: the first with the JTAB
microorder, and the second for a branch return if there are no interrupts pending.

b. Diagnostic JTAB loop that is entered when bit 11 of the switch register is open (logic “1”). It
contains the same microinstructions as in the normal JTAB loop but information is placed on the
Y-BUS during additional microinstructions so that the information can be input to frontplane
pinouts.

2-20. MACROINSTRUCTION FETCHING

Macroinstruction fetching is the operation which obtains the “next” instruction to be executed from
main memory. In this computer, a “look ahead” technique is used for this process. That is, fetching is
begun while simultaneously completing the execution of the “current” instruction; and fetching is
completed while preparing for execution of this “next” instruction. This is accomplished by starting
the fetch operation using the FCHB or FCHP microorder just prior to termination of the “currently”
executing instruction microroutine. When the fetched instruction is returned from main memory to
the T-register, it will also be stored into CT.

For illustrative purposes, suppose that the “currently” executing microroutine is for an XOR instruc-
tion (that had been obtained from main memory location octal 2000). The P-register has already been
incremented so that as the microroutine for XOR is completing its execution, the fetch (FCHP) is
initiated for main memory location 2001. (Assume that with the completion of the XOR execution, an
augend is left in the A-register and that at main memory location 2001 there is an ADA
macroinstruction.)

Upon termination of this “current” macroinstruction’s routine, control passes to a microroutine in the
control firmware of the base set.

The microroutine of the control firmware checks for an interrupt condition, and then branches to the

microinstruction containing the JTAB microorder. (“JTAB” means “jump table”, and is the microorder
that begins instruction decoding.)

2-19

Micromachine Descriptions

The “JTAB” microinstruction increments the program counter, clears a general-purpose flag, and
begins a memory access of an MRG address if the instruction loaded in the CT is a memory reference
group instruction. In this manner of “look ahead” fetching, the overhead required for instruction
fetching is minimized. User microprograms must be designed to terminate in a similar manner.

The JTAB microorder causes the current microaddress plus one to be saved on the microstack. The last
result of this multi-functioned microinstruction is that the next sequential microaddress executed will
come from locations 100-1FF (hex), and this look-up table entry point is a function of the 16 bits of the
macroinstruction.

In the example being used, an ADA instruction from main memory location 2001 has been stored in
the instruction register CT and an operand address (assume the address is 300) has been formed in the
memory generation logic. The read operation, initiated at the beginning of the JTAB microsubroutine,
obtains the operand (the addend) for the ADA instruction from main memory location 300 but the
information has yet to arrive in the T-register.

Note that after the program counter is incremented in the JTAB microsubroutine, the program
counter points to the location after the opcode. If the instruction is a one-word instruction (such as the
CAX instruction), then the the microroutine for that instruction can simply do a “FCHP, RTN” to
complete. If additional words or addresses are needed by the instruction (such as the DEF after the
LDX instruction), the microroutine for that instruction can begin a memory read using the “RDPC”
microorder.

You can see in these examples that it is the microprogrammer’s responsibility to complete the
instruction with the program counter pointing to the next opcode, begin the fetch, and return to the
control firmware.

In the example being used, the operand address (300) formed in the address generation logic is used to

read the operand (addend) for the ADA instruction. The ADA microroutine adds the addend to the
augend in the A-register, and in the same cycle begins the next instruction fetch.

2-20

Micromachine Descriptions

2-21. MACROINSTRUCTION EXECUTION

Execution of the macroinstructions (assembly language instructions) is carried out by the specific

microoders contained in the individual microinstructions of the appropriate microroutines as they are
decoded from the MIR.

In the example being used, recall that before the operand address (octal 300) was formed in the
Address Generation Logic it contained address 2001 (the address of the ADA instruction) and the P
register contained 2002 if the rules stated above are followed. Now the content of P is incremented by
one due to the JTAB microinstruction line (contains microorder IP). Thus P is adjusted to 2003 in
preparation for the fetch (FCHP) operation that will be initiated as the microroutine for the ADA
instruction (from main memory location 2001) is being executed.

Again, using the ADA instruction as an example, the microinstruction for the ADA immediately
begins a fetch operation from the main memory address (2002) in the program counter (in the
“look-ahead” manner previously described) to obtain the next macroinstruction.

The operand is moved from main memory to the A-register in the following way: Recall that the
microsubroutine called by JTAB has already begun a read operation if the instruction was an MRG
instruction. This read operation gets the ADA operand from main memory (via the T-register), places
it on the B-bus, and the ALU adds the contents of the T-register to the A-register (which is specified in
the A-bus field) and stores the result in the A-register. If a carry results, the E-bit is set; if two’s
complement arithmetic overflow results, an O-bit is set. The setting of the E and O bits are enabled
using the “ENOE” microorder in the SPO field.

The last result of this microinstruction for the ADA macroinstruction is to return to the control
firmware from the address saved on the microstack by the JTAB microsubroutine, using a “RTN”
microorder.

To summarize, the main points you should remember from the above operation description are the
following:

e A fetch operation begins in a “look-ahead” manner while the execution of the previous instruction
is carried out. Once a branch to your microprogram is made, it is possible for you to stay in the user
microprogramming area until it is desired to return to the fetch microroutine. Before returning,
however, you should terminate your microprogram properly.

e Inregard to the length of time your microprogram executes, it should be written so that interrupts
cannot be lost and computer operation will not be suspended. The processor contains a “watchdog”
timer that will abort your microroutine if an interrupt is not serviced within 10 milliseconds.
Therefore, your microprogram should not be allowed to run more than 10 milliseconds.

Interrupts examples were not included in the operational overview of this section since they are
covered in Part II of this manual.

2-21/2-22

SECTION 3
MICROPROGRAMMING PREPARATION STEPS I

PART I
Microprogramming Methods

MICROPROGRAMMING
PREPARATION STEPS || s

When you are ready to begin microprogramming, there are certain initial steps which are necessary to
prepare your RTE operating system so that it will accept the microprogramming environment. These
steps have to do with the available hardware and software in your computer which includes the
following:

e Installation of additional control store memory “hardware” for the storage of your microprograms.
This would be either WCS, PCS, FPP, or a combination of these.

e Installation of microprogramming support software for microprogram development, HP 92045A
Microprogramming Package. (This software is not needed for running the microprograms.) The
software package includes the MPARA paraphraser microprogram assembler, and the WLOAD
WCS card loader and PROM burn program.

e The ID.41 driver (also part of the HP 92045A microprogramming support package) is needed for
the WCS. ID.41 is in the set of drivers that is loaded at system generation time.

The RTE Microprogramming Support Software package operates in the RTE-A.1 operating system
environment. Microprograms may also be developed in the RTE-6/VM environment using MPARA.

3-1. MICROPROGRAMMING HARDWARE

The HP 12153A Writable Control Store (WCS) Kit is the recommended hardware for microprogram
development and it, of course, can be used for normal execution of your microprograms in your
application environment. Each WCS card contains 4k-words of control store.

The other available cards to extend the computer’s control-store capacity are the HP 12155A PROM
Control Store (PCS) card and the HP 12156A Floating Point Processor (FPP) card. These cards cannot
be used for development since the microprograms must be “burned” into PROMs. Therefore, the usual
practice is to have a WCS card for development and, after the microprogram has been debugged,
PROMs are “burned” and then installed on the cards. The PCS card can have up to 8k-words of control
store and the FPP card can have up to 4k-words of control store.

In this computer the WCS and PCS cards are installed in contiguous backplane slots below the lower
processor card. Up to four cards total of WCS and PCS or other firmware accessory (such as an HP
12156A floating point processor) in any combination can be installed. The maximum address is
16k-words; therefore, it is possible to install more cards than can be addressed. (The FPP card is
installed between the processor cards.)

The WCS card after microprogram development could be replaced with a PCS card for permanent
programs. The WCS card is both an I/O card communicating over the backplane for user access to read
and write microcode and a processor writable control-store card communicating over the frontplane.
The PCS card communicates with the processor only over the frontplane (its backplane connection
provides only power and the address priority chain).

3-1

Microprogramming Preparation Steps

WCS cards can be enabled and disabled over the backplane by an OTA 32 instruction (sign bit of A=1
for ON and A=0 for OFF). When it is enabled or ON, the WCS card functions as an extension of the
processor’s control store and the user cannot access data over the backplane. When it is disabled or
OFF, the control store addresses are ignored and the user can access the card through the backplane.

NOTE

Any PCS card can contain optional HP supplied firmware sets, as
well as user-generated PROM firmware.

When WCS cards are in operation the processor continually loads the next microaddress onto the
control store address bus. The card addresses are in 1k-word by 32-bit modules. The WCS and PCS
cards are prioritized so that each card recognizes only its block of control-store addresses, and a
priority chain assures that only one card is driving the control-store data bus at any one time. The
processor control store and any PCS cards are at the bottom of the priority chain and will drive the
control-store bus only if no other device is driving it.

Each PCS card provides eight 1k-word modules of “read only memory.” The address block of each
module is set by switches on the card. Each address block also has a switch to disable the block.

Since WCS cards can be turned off and on for backplane or frontplane operation, respectively, a WCS
card and PCS card can have the identical address blocks.

Typically, a WCS card will be placed in the backplane in a lower priority slot than a PCS card so that it
will have a higher frontplane priority (backplane and frontplane priorities are opposite in priority
sequence). The higher priority is necessary if you are going to overlap the addresses. In this case, when
the WCS card is on (frontplane enabled), its higher priority will accept the address and disable the PCS
card. If the WCS card is off, the PCS card will accept the address. If the PCS card has the higher
priority, the opposite operation occurs.

The operational states, hardware supplied, PROM installation, and installation guide lines for WCS

and PCS cards are contained in the HP 1000 A700 Computer User Control Store Installation and
Reference Manual, part no. 02137-90003.

3-2. MICROPROGRAMMING SUPPORT SOFTWARE

In order to develop and run microprograms in a dynamic manner in the RTE operating environment
you will need the HP 92045A RTE-A Microprogramming Support Software Package which includes
the following:

e MPARA microassembler program
e WCS IO and PROM Burn Utility Routine WLOAD
e ID.41 WCS driver

These programs and the WCS driver are described below.

3-2

Microprogramming Preparation Steps

3-3. THE PARAPHRASER MICROCODE MICROASSEMBLER

The paraphaser microcoding microassembler language converts a source microprogram into binary
object code which may be directed to an output device and/or stored in a disc file. The paraphraser is a
necessary tool for preparing microprograms since the microinstruction word length is 32 bits which
makes other coding methods difficult.

The source may be input from an input device or disc file. The disc file is easiest since this file can be
the same file developed when writing and editing the program with the HP 1000 Editor. The object
code will be in the standard microinstruction format which is recognized by the WLOAD utility
routine. The program can supply a source listing, a floating field listing of the microinstructions, a
label listing, and a list of any errors.

The paraphraser program name is MPARA. MPARA can run with or without the File Manager, and it

requires a minimum of 28k words of memory. All information on preparation of microprograms with
the paraphraser and output of the microprograms is contained in Sections 7 and 8 of this manual.

3-4. DRIVER ID 41

Driver ID.41 must be configured into the RTE system during system generation to provide software
linking between MPARA, WLOAD, and the WCS card.

NOTE

The microprogramming support software can be included either
during system generation or loaded into the system when
required.

Driver ID.41 drives HP 12153A WCS cards for reads and writes (from and to main memory) and allows
control of WCS board functions. The driver utilizes DMA which provides fast data transfer.

When configured in the RTE system, all WCS cards should have a select code of octal 20 or higher. In
the system, the driver can be called directly with an EXEC call, or through the WLOAD program
(refer to the RTE Driver ID.41 For HP 12153A WCS Cards Reference Manual).

3-5. WLOAD

The WCS I/O Utility program WLOAD uses driver ID.41 and transfers microprogram object code into

WCS when run by the user. Section 9 in this manual contains information on WLOAD used as an I/O
utility. WLOAD also includes a PROM “burn tape” function (see paragraph 3-7).

3-6. LOADING THE MICROPROGRAMMING SUPPORT SOFTWARE

The microprogramming support software can be loaded during system generation or on line, using
RTE LINK. The exception to this is the driver ID.41 which can be loaded only at system generation
time. (Refer to RTE Driver ID.41 For HP 12153A WCS Card Reference Manual, part no. 92045-90002.)

3-3

Microprogramming Preparation Steps

3-7. PROM CODE GENERATOR

The process of loading the microcode into the PROMs (Programmable Read Only Memory) is ac-
complished for fusing (“burning”) the binary bits into the PROM chip. The binary code for the PROMs
is generated by the PROM “burn tape” function of WLOAD that uses the final binary object code of the
microprogram as input. The program should be tested and debugged by running the program from a
WCS card before making expensive PROMs. For additional information on PROM burning, refer to
Section 10 of this manual.

3-8. PREPARATORY STEPS

Condensed information on the required preparatory steps for microprogramming appear in Table 3-1
along with references to the sections of this manual (or to applicable documents). The letters in the
referenced column are keyed to entries in Table 3-2, and the numerals refer to sections in this manual.

Table 3-2 is a list of HP 92045A Microprogramming Software and HP manuals used by the
microprogrammer for the HP 1000 A700 computer systems. Section 12 provides examples of the
procedures you may want.

In preparation for microprogramming, the WCS cards to be used must be initialized before they can be
used.

3-9. DEBUGGING MICROCODE

After you have written your source microcode and fixed any errors found by MPARA, load the object
code into WCS and try running it. If its performance is not to your satisfaction you will want to
“debug” it. Microcode debugging on the A700 processor is most efficiently accomplished through the
use of a logic analyzer. Hewlett-Packard logic analyzers are recommended since they were used
throughout the development of the base set and floating point microcode and provided the desired
results.

A logic analyzer allows the actual micromachine execution to be followed, and it can be programmed to
trace the micromachine execution upon detection of certain conditions. Details on connecting a logic
analyzer and information on its use are given in Appendix G (Debugging Microcode).

Microprogramming Preparation Steps

Table 3-1. Preparatory Steps

REFERENCE
(Table 3-2 or

STEP TASKS manual sects.)
1 Establish your microprogramming goal. Develop your own microprogram or 1,12, F
try one of the examples first. For example, run a short microprogram from
start to finish by referring to Section 12.
2 Become familiar with the computer and steps to microprogramming (hard- 2,3,5 6 A
ware, control memory mapping).
3 Establish control memory module and mapping scheme. 2,6 F
4 Plan, develop, and write first-pass microprogram (or if desired, a simple 4,7, 8 12, M
sample program).
5 Plan, develop, and write main memory linking method. 6, 12, L
6 Place RTE system off-line and power down if not already in this state. A
7 Install the optional control store cards: 12153A WCS, 12155A PCS, and A B D E
12156A FPP.
8 Generate and configure the RTE system. The WCS driver ID.41 should be H
found on your primary system disc.
9 Load the necessary microprogramming support software from the following 3,C,D. ILJ K
list into your disc files from the primary system disc.
— WLOAD
— MPARA Paraphraser Microassember
10 Microassemble your source with the paraphraser. 8, J F
1" If necessary, correct errors at the source using WCS, HP Edit/1000 and 1,8,9,C,M
microassemble again.
12 Load main memory program that links to microprogram. C
13 Execute microprogram from main memory. 8,9 C
14 Correct any logical errors found during microprogram execution. (Fix the 8,9, C M
source using Edit/1000.)
15 If you are planning to “burn-in” PROMSs, you must do so from a corrected 8,9.C,M
microassembled object program. Correct source and microassemble until the
final object code is obtained. Go to step 16.
OR
If going to use dynamic microprogramming and your microprogram executes
properly, it can be used through WCS. Development is complete at this point
unless this was an example program.
16 To prepare mask code, run WLOAD PROM code program. 10, K
17 Burn PROMSs from binary code cartridge tape.
18 Mount PROMs on HP 12155A PCS card, test microprogram. C. L

3-5

Microprogramming Preparation Steps

Table 3-2. Manual and Software References

REFERENCE
(from Table 3-1)

MANUAL OR SOFTWARE

A

B

HP 1000 A700 Computer Reference Manual, part no. 02137-90001.
HP 1000 A700 Computer Installation and Service Manual, part no. 02137-90002.
Your System Programmer's Reference Manual, part no. 92077-90007.

HP 1000 A700 User Control Store Installation and Reference Manual, part no.
02137-90003.

HP 12156A Floating Point Processor Kit Installation and Reference Manual, part no.
12156-90001.

HP 92045A Microprogramming Package Reference Manual, part no. 92045-90001.
RTE Driver ID.41 for HP 12153A WCS Card Reference Manual, part no. 92045-90002.
RTE-A.1 General Information (gives guide to system generation) part no. 92077-90006.
WLOAD WCS /O Utility Routine (on primary disc).

MPARA Paraphraser (on primary disc).

PROM Code Generator function in WLOAD (on primary disc).

MACRO/1000 Reference Manual, part no. 92059-90001.

Edit/1000 Users Guide, part no. 92074-90001.

3-6

SECTION 4
MICROINSTRUCTION FORMATS I

MICROINSTRUCTION FORMATS

4

Since microprogramming involves the micromachine’s interpretation of the microinstruction word, it
is essential that the microprogrammer understand the binary structure of the microinstruction and
how the paraphraser is used to automatically microassemble the microinstruction into the proper
format.

In this section you will find the following information:

® The microinstruction word types.
® The 32-bit microinstruction field divisions of each word type.

® The definitions and uses for all microorders.

Additional information that you will need to know is covered in Section 7 and Section 8.

4-1. MICROINSTRUCTION BINARY FORMAT

The HP 1000 A700 computer microinstruction word is made up of fields where each field has a
particular definition. A field may contain no more than one microorder. A microorder causes the
micromachine to carry out one or several machine operations. The definition of the number of bits in
each field and the names of the fields is called the microinstruction format. Figure 4-1 shows the
binary structure of the microinstruction word types.

The binary format gives the order of bits of the microinstruction after it has been assembled by the
paraphraser microassembler language. The microprogrammer does not have to know how many bits
are in each field but he does have to know the definitions and the operations of the microorders
contained in the fields. This is because the paraphraser microassembler correctly formats the
microinstructions from your source program which can be written in a “format free” style.

4-2. DEFINITION OF WORD TYPES

The HP 1000 A700 computer has a microword of 32 bits and six different Word Types. These word
types have subsets (or special word types) that impose certain restrictions on the microorders used in
them. The Word Types are distinguished from each other by the Operation (OP) Field; i.e., the
micromachine will decode the microinstruction according to the contents of the OP Field.

In addition, word types 1 through 5 are interpreted as special word types 1S through 5S if the ALU
field is coded with SPEC (Special). The special word types have certain subroutine operations coded in
the field used for SP0/SP1 in word types 1 through 4. For the special microorders this field is labeled
ALUS (ALU Special); e.g., as shown in Figure 4-1.

4-1

Microinstruction Formats

BIT

WORD
TYPE

31|30|29|28|27

26I25l24|23

22]21]20]19]18

17|16|15]14

13]12'11]10

e[+][5

Tl]

OP1

ABUS

SPO

SP2

ALU

BBUS

STOR

WORD
TYPE

OoP2

ABUS

SPO

CNDX

ALU

BBUS

STOR

WORD
TYPE

OP3

ADRS

SP1

CNDX

ALU

BBUS

STOR

WORD
TYPE

OP4

ADRS

SP1

SP2

ALU

BBUS

STOR

WORD
TYPE

OPS5

ADRL (LONG BRANCH ADDRESS)

ALU

BBUS

STOR

WORD
TYPE

OP6

DAT (IMMEDIATE DATA)

ALU

BBUS

STOR

WORD
TYPE
18

OP1

ABUS

ALUS*

SP2

SPEC

BBUS

STOR

WORD
TYPE
28

OoP2

ABUS

ALUS”

CNDX

SPEC

BBUS

STOR

WORD
TYPE
3S

OP3

ADRS

ALUS*

CNDX

SPEC

BBUS

STOR

WORD
TYPE
4S

OP4

ADRS

ALUS*

SP2

SPEC

BBUS

STOR

WORD
TYPE
58

OP5

ADRL (LONG JUMP TABLE ADDRESS)

SPEC

BBUS

STOR

*Special microorder in ALUS field when ALU field is coded SPEC.

8200-4

4-2

Figure 4-1. Microinstruction Word-Type Binary-Format Summary

Microinstruction Formats

4-3. WORD TYPE 1

Word Type 1 allows ALU functions to be performed with full capability in A, B, STOR and Special
Fields. The A-Bus and B-Bus fields specify the registers enabled onto the corresponding bus. These
registers are to be operated on by the ALU as specified in the ALU field. The resultant data is stored in
the register specified in the STOR field. Special Fields zero and two (SPO and SP2) can be used to
perform additional operations.

The OP Field of this word type may contain the JTAB (Jump Table) microoder which is the instruction
to jump to the entry point “look up” table. The “look up” table provides the destination address where
the subroutine to be executed begins. The subroutine is specified in the ALU field.

The OP Field may contain microorder RTN (Return) which is the unconditional return from a
subroutine to an address on top of the microinstruction stack. A NOP (No Operation) in the OP Field

will cause the next sequential microorder to be executed.

Word Type 1 microorders are the following:

FIELD MICROORDERS

OP NOP, JTAB, RTN

A-BUS Any A-Bus source.

SPO Any SPO microorder (except STOR).

SP2 Any SP2 microorder (jump modifiers, CT30 and CT74, cannot be used).
ALU Any ALU microorder.

B-BUS Any B-Bus source.

STOR Any STOR destination.

4-3

Microinstruction Formats

4-4. WORD TYPE 2

Word Type 2 is equivalent to Word Type 1 except that the SP2 field is replaced by the CONDITION
CODE (CNDX) Field. The OP field determines the conditional operation to be performed if the
condition is true or false as specified.

The OP Field microorder selects the address for continuation after the specified condition is checked:
RTNT (Return True) and RTNF (Return False) cause a return to the address at the top of the
microroutine stack if the condition in the CNDX field is true or false, respectively. SPOT (SP0 True)
and SPOF (SPO False) causes the microorder in the SPO field to be executed only when the condition
specified is true or false, respectively. Following this operation, the next sequential microorder will be
executed.

Word Type 2 microorders are the following:

FIELD MICROORDERS

OoP RTNT, RTNF, SPOT, SPOF

A-BUS Any A-Bus source.

SPO Any SPO microorder (except shifts and LDQ cannot be used with SPOT or SPOF).
CNDX Any CNDX field condition.

ALU Any ALU function (Special ALU operations can not be used with SPOT or SPOF).
B-BUS Any B-BUS source.

STOR Any STOR destination.

Microinstruction Formats

4-5. WORD TYPE 3

Word Type 3 is similar to Word Type 2 but it is used for conditional branching where the destination
address (given in the Address Field) is within the current 64 word block of micromemory. If the current
microinstruction is in the last location of a 64 word block (ends in 3F hex), then the branch, if it is to
occur, will be to the next 64 word block instead of the current one. Since the A-BUS Field is not
available in Word Type 3, the A-BUS defaults to the accumulator (ACC or R4 of the register file. The
SP1 Field is the only special field available which is a subset of the SP0O Field.

In the OP Field, JMPT (Jump True), JMPF (Jump False), JSBT (Jump Sub True), and JSBF (Jump
Sub False) jump to the destination address if the condition in the CNDX field is true or false, as
appropriate. For the “Jump Sub” microorders, the jump is to a subroutine at the destination address
and the current address +1 is pushed onto the microsubroutine stack and the stack pointer is
incremented.

Word Type 3 microorders are the following:

FIELD MICROORDER

(0] JMPT, JMPF, JSBT, JSBF

ADDRESS Destination address in current 64 word block.
SP1 Any SP1 microorder.

CNDX Any CNDX Field condition.

ALU Any ALU function.

B-BUS Any B-BUS source.

STOR Any STOR destination.

4-6. WORD TYPE 4

Word Type 4 is similar to Word Type 3 except that the branch is made unconditionally. This allows the
use of the SP2 Field along with the SP1 Field. As in Word Type 3, if the current microinstruction is in
the last location of a 64 word block, then the branch will be to the next 64 word block. The A-BUS
defaults to the accumulator (ACC or R4 of the register file).

The OP Field may contain either JMP (Jump) or JSB (Jump Sub) for jumping to the destination
address or to a subroutine address at the destination address, respectively.

Word Type 4 microorders are the following:

FIELD MICROORDERS

oP JMP, JSB

ADDRESS Destination address in current 64 word block.
SP2 Any SP2 microorder.

SP1 Any SP1 microorder.

ALU Any ALU function.

B-BUS Any B-BUS source.

STOR Any STOR destination.

4-5

Microinstruction Formats

4-7. WORD TYPE 5

Word Type 5 is used to perform an unconditional branch to any location in the 16k-word control store.
The A-BUS Field defaults to the accumulator (ACC or R4 of the register file).

The OP Field microoders may be either JMPL (Jump Long) and JSBL (Jump Sub Long) where JMPL is
a jump to the destination address, and JSBL is to the subroutine at the destination address. In both, a
jump modify can be specified by coding SPEC in the ALU field which will cause the lower four bits of
the destination address to be replaced by the lower four bits of the Instruction Register (Register CT).

Word Type 5 microorders are the following:

FIELD MICROORDERS

04 JMPL, JSBL

ADDRESS Destination address anywhere in the 16k-word control store.

ALU Any ALU function (SPEC will cause a jump modify operation equivalent to CT30).
B-BUS Any B-BUS source.

STOR Any STOR destination.

4-8. WORD TYPE 6

Word Type 6 is used for enabling immediate data onto the A-BUS. The OP Field for this word is IMM
(Immediate Data).

Its microorders are the following:

FIELD MICROODERS

OoP IMM

IMM Immediate data to be placed on the A-BUS.
ALU Any ALU function except SPEC.

B-BUS Any B-BUS source.

STOR Any STOR destination.

The Word Types and their fields are summarized in Table 4-1.

Microinstruction Formats

Table 4-1. Summary of HP 1000 A700 Computer Word Types

TYPE FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6 FIELD7
1 OP1 ABUS SPO SP2 ALU BBUS STOR
2 OoP2 ABUS SPO CNDX ALU BBUS STOR
3 OP3 ADRS SP1 CNDX ALU BBUS STOR
4 OP4 ADRS SP1 SP2 ALV BBUS STOR
5 OP5 ADRL ALU BBUS STOR
6 OP6 DAT ALU BBUS STOR

1S OP1 ABUS ALUS SP2 SPEC BBUS STOR

28 OP2 ABUS ALUS CNDX SPEC BBUS STOR

38 OP3 ADRS ALUS CNDX SPEC BBUS STOR

4S8 OP4 ADRS ALUS SP2 SPEC BBUS STOR

58 OP5 ADRL* SPEC* BBUS STOR

*Go to microinstruction table for microorder long branch jump (lower four bits of destination address replaced by
bits 3-0 of CT).

4-9. ARITHMETIC DATA PATHS

The micromachine is based on a three-address architecture. The microinstruction can specify an A-Bus
operand and a B-Bus operand. The resultant Y-Bus data is stored into a location specified in the STOR
field. The A-BUS operand can be either a register in the register file specified in the A-Bus Field or
Immediate Data from the microinstruction. The B-Bus operand is specified in the B-Bus Field and can
come from the register file or from other dedicated registers in the processor. The A and B Buses are
operated on by the ALU. ALU output data (F-Bus) is passed to the Y-Bus, with or without shifting, and
stored into a processor register or written to main memory as specified in the STOR Field. A data path
external to the ALU is used for byte manipulation and ASG or SRG instructions.

4-10. ALU FUNCTIONS

The ALU functions are divided into two categories:

1. Standard ALU operations which are coded in the ALU field and can be combined with a shift in the
SPO or SP1 field.

2. Special ALU operations performed when SPEC is in the ALU field. The SPO or SP1 field becomes
the ALUS field that is used to indicate which Special operation to perform.

4-7

Microinstruction Formats

4-11. STANDARD ALU FUNCTIONS

The standard ALU functions can be divided into two types: Arithmetic and Logical.

The arithmetic operations are true two’s complement add or subtract functions. They are always
performed with either a carry or borrow. For add operations the carry-in normally defaults to 0, but
can be forced to a 1 with a special microorder (FCIN). For subtract operations, the borrow is the
complement of the “carry-in.” “Carry-in” normally defaults to 1 for subtract, but can be forced to 0 with
a special microorder (FCIN). For all arithmetic operations CF (Carry Flag) and ALOV (ALU Overflow)
will be updated with the ALU results.

The logical operations are performed as a bit-by-bit logical function on the A-Bus and B-Bus. Since
logical operations will not generate a carry or overflow, CF and ALOV are always cleared at the end of
the microcycle except for the microorder ZERO. ZERO, which forces the output of the ALU to all zeros,
will disable the update of the following conditions during the current cycle: CF, ALOV, SF (Shift Flag),
YZ (Y-Bus zeros), and Y15 (Y-Bus bit 15), and B15 (B-Bus bit 15).

4-12. SPECIAL ALU FUNCTIONS

When SPEC is in the ALU field, two types of ALU operations can be performed: Internal ALU Specials
(arithmetic) and External ALU Specials (logical). The Special ALU operation is coded in the ALUS
(ALU Special) field.

The Internal ALU Specials are a group of operations provided by the ALU which can be used for
multiply, divide, and floating point algorithms. Each function may include an arithmetic operation
and a shift. The conditions CF, ALOV, YZ, and SF may be used to represent different conditions for
ALU Specials than for Standard arithmetic functions.

The External ALU Specials are performed external to the standard ALU. (The standard ALU executes
all the ALU operations described in paragraph 4-11.) The external ALU Specials include byte
swapping and masking, a four-bit left rotate and bit manipulation used for ASG and SRG emulation.
All these operations are logical operations, so CF and ALOV are cleared. The four-bit left rotate (RL4)
will not affect the Shift Flag (SF).

For a detailed description of these functions, see the microorder definitions for ALUS in Table 4-2.

Microinstruction Formats

Table 4-2. Microorder Definitions

MICRO-
ORDER DEFINITION
WORD TYPE 1: OP FIELD
JTAB Meaning: A Jump to subroutine will occur. The Entry Point Look-Up Tables provide the lower 8
bits of the destination address which is vectored into the microaddress space between 100-1FF
(hexadecimal). The current address +1 is pushed onto the stack and the stack pointer is
incremented. Normally, JTAB will only be used to begin execution of a microroutine after a
fetch microorder has been executed so that the instruction will be loaded into T and CT
registers. Since JTAB will also initiate the execution of MRG instructions, it should be coded as
follows for correct operation:
OP1/JTAB SPO/NOP SP2/IP ABUS/B ALU/ADAC BBUS/T STOR/CWRB
(The CWRB in the STOR Field may not actually occur). JTAB will always cause the B-Bus to
be read as if it is an MRG instruction; i.e., it will resolve the MRG address. JTAB will always
clear the double word bit (DW) and the temporary interrupt disable (TDI). Since the ALU
function is ADAC and there is no carry-in, CF and ALOV will be cleared at the end of the cycle.
The MA register is loaded (with the resolved MRG address) on every JTAB.
JTAB forces the SP0, A and STORE fields to what would otherwise be coded on the first
microinstruction of an MRG instruction:
INSTRUCTION CT15-11 SPO A STOR
AD* X100X RDB CAB NOP
AND X0010 RDB CAB NOP
CP* X101X RDB CAB NOP
IOR X0110 RDB CAB NOP
ISZ X0111 RDB CAB NOP
JMP,| 10101 RDB CAB NOP
JMP,D 00101 FCHB CAB NOP
JSB,I 10011 RDB CAB NOP
JSB,D 00011 NOP CAB NOP
LD* X110X RDB CAB NOP
ST X111X NOP CAB CWRB
XOR X0100 RDB CAB NOP
Non-MRG X000X NOP CAB NOP
Because these microorders may be forced, microorders FCHB (SP0) and RDB (SP0) can not
be coded in the JTAB microinstruction. A jump modifier is not allowed. The RDB and CWRB
forced by JTAB use the code map unless the address is on the base page.
NOP Meaning: No operation affecting the microcode flow will take place; i.e., the next sequential
microorder will be executed.
Usage: This is a default microoder where the OP field is blank.
RTN Meaning: An unconditional return from subroutine will occur. The next microaddress will come
from the top of the microsubroutine stack and the stack pointer will be decremented. The return
can be to any address in micromemory. No jump modifier is allowed.

4-9

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE 2: OP FIELD

RTNT

RTNF

SPOF

SPOT

If the condition specified in the CNDX field is True, then this is the same as the RTN OP.
Otherwise, the next sequential operation is executed.

if the condition specified in the CNDX Field is False then this is the same as the RTN OP.
Otherwise, the next sequential instruction is executed.

The microorder in the SPO field will be executed only if CNDX is False. The next sequential
microorder will be executed. SPEC cannot be coded in the ALU Field. The SPO Field must not
contain a shift function or LDQ

The microorder in the SPO field is executed only if CNDX is True. The next sequential
microorder will be executed. SPEC cannot be coded in the ALU field. The SPO Field must not
contain a shift function or LDQ.

WORD TYPE 3: OP FIELD

JMPT

JMPF

JSBT

JSBF

Jump to target address within current 64 word block only if CNDX is True. Otherwise, the next
sequential microorder is executed. If the current address is in the last location of a 64 word
block, then the jump will be to the next 64 word block.

Same as JMPT except that the jump will occur only if CNDX is False.

Jump to subroutine at target address within current 64 word block only if CNDX is True. If
CNDX is True, the current address + 1 is pushed onto the microsubroutine stack and the stack
pointer is incremented. If the current address is the last location of a 64 word block, then the
jump will be to the next 64 word block. If CNDX is not True, then the next sequential
microinstruction will be executed.

Same as JSBT except that the jump to subroutine occurs only if CNDX is False and the next
sequential microorder is executed if CNDX is True.

WORD TYPE 4: OP FIELD

JMP

JSB

Word Type 4. Unconditional Jump to target address within the current 64 word block. If the
current address is the last location of a 64 word block then the jump will be to the next 64 word
block. Jump modifiers may be used.

Unconditional jump to subroutine at the target address within the current 64 word block. The
current address + 1 is pushed onto the microsubroutine stack and the stack pointer will be
incremented. If the current address is the last location of a 64 word block, then the jump will be
to the next 64 word block. Jump modifiers may be used.

WORD TYPE 5: OP FIELD

JMPL

JSBL

Unconditional jump to target address anywhere in the microaddress space. Coding SPEC in
the ALU field performs a modified jump. This causes the lower 4 bits of the target address to be
replaced with bits 3-0 of CT and all ones to be put on the Y bus.

Unconditional jump to subroutine at target address anywhere in the microaddress space. The
current address +1 is pushed onto the microsubroutine stack and the stack pointer is in-
cremented. A jump modify may be performed by coding SPEC in the ALU field. This causes the
lower 4 bits of the target address to be replaced with bits 3-0 of the CT register and all ones to
be put on the Y-bus.

4-10

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE 6: OP FIELD
IMM Immediate data used as the A-Bus operand. The next sequential instruction is executed.

WORD TYPES 1 AND 2: A-BUS FIELD

The A Field specifies the A-Bus operand and is available in Word Types 1 and 2. For Word Types 3, 4 and 5 the
A-Bus defaults to the accumulator (R04).

(ROO) A
(R01) B
X (R02)
Y (RO3)
ACC (R04)
HP1 (RO5)
HP2 (RO6)
USR (R07)

S0-S7
(R104 - R17,)

Macro A-Register, R0OO of the register file.

Macro B-Register, R0O1 of the register file.

Macro X-Register, R02 of the register file.

Macro Y-Register, R03 of the register file.

Accumulator, R04 of the register file. A-Bus defaults to ACC in WORD Types 3, 4 and 5.
RO5 of the register file. Reserved for use as the Return register.

RO06 of register file. Reserved (do not use).

RO7 of the register file. Reserved for the user. That is, no HP microcode will use this register.

General-purpose registers in the register file.

WORD TYPES 1, 2, 3, AND 4: SPO FIELD AND SP1 FIELD

The SP1 field contains a subset of the SPO Field. The SPO Field is available in Word Types 1 and 2, and the SP1
Field is available in Word Types 3 and 4. The microorders below are available in both the SP1 Field and the SPO

Field.

ACF

AL1

AR1

CLE

FCIN

Perform the ALU operation specified using the carry flag as the ALU carry in. This microorder
has no effect if the ALU field contains a logical operation.

Arithmetic Left Shift. If the double-word bit (DW) is set, then a double-word shift will be
performed with the ALU output as the most significant word and the Q-register as the least
significant word. This special cannot be used with the SPOT or SFOF microorders in the OP
field.

This special cannot be used with SPOT or SPOF in the OP Field. Same as LL1 except that an
arithmetic Right Shift is performed.

Clear the macro Extend register at the end of the microcycle.

Force the ALU carry-in to 1 for add operations (ADDC, ADBC, CMBC, ADAC, CMAC). Force
the ALU carry-in (BORROW:-) to O for subtract operations (SBAC and SBBC). This microorder
has no effect if the ALU field contains a logical operation.

Increment the P-register at the end of the microcycle.

4-11

Microinstruction Formats

Table 4-2. Microorder Deﬁnitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPES 1, 2, 3, AND 4: SPO FIELD AND SP1 FIELD (Continued)

IN Increment the N (Index) register at the end of the microcycle.

LDQ Store the ALU output (preshifter) in the Q-register. LDQ used with SPOT or SPOF in the OP
field.

LL1 Logical shift of the ALU output Left 1 position. If the double-word bit (DW) is set, then a
double-word shift will be performed with the ALU output as the most significant word and the
Q-register as the least significant word. This special can not be used with the SPOT or SPOF
microorders in the OP field.

LR1 Same as LL1 except that a logical Right Shift is performed. This special cannot be used with
SPOT or SPOF in the OP Field.

NOP No operation.

RDB Perform a memory read using the B-Bus as the memory address. The data read is returned to
the T-register. Uses Data Map if base register is enabled.

RL1 Same as LL1 except that a Left Rotate is performed. This special cannot be used with SPOT or
SPOF in the OP Field.

RR1 Same as LL1 except that a Right Rotate is performed. This special cannot be used with SPOT
or SPOF in the OP Field.

RDP Perform a memory read using the address in the P-register. The data read is returned to the
T-register. Uses Data Map if base register is enabled.

STE Set the macro Extend register at the end of the microcycle.

WORD TYPES 1 AND 2: SPO FIELD

BFB Same as a RDB except that a line called “RNI" is asserted on the backplane which goes to
external devices to indicate that an instruction is on the backplane (typically an I/O instruction).
If the base register is enabled, BFB uses the Code Map.

CK2 Enables the optional floating point processor to clock at twice its normal rate.

CLO Clear the integer overflow register at the end of the microcycle.

ENOE Enable the macro register E, and the integer overflow register to be set from the results of the

current microcycle.

Add operations: (ADDC, ADAC, ADBC, CMAC, CMBC), E is set if the carry out of the ALU is
set.

Subtract operations: (SBBC, SBAC), E is set if the carry out of the ALU is clear; that is, E is set
if there is a borrow.

Logical operations: the setting of E is undefined. The integer overflow is set if the overflow of
the ALU is set. Otherwise, E and the integer overflow register are unchanged. The setting of E
and integer overflow occurs at the end of the microcycle.

4-12

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPES 1 AND 2: SPO FIELD (Continued)

FCHB Read with address on the B-Bus to perform an instruction fetch. Data returned on FCHB will be
loaded into both the T-register and the CT-register (Instruction Register). A fetch microorder
must be executed before returning to the JTAB subroutine to perform all the necessary
“housekeeping” functions in order to execute the next assembly instruction. If an interrupt is
pending, FCHB will be inhibited and INTP set. There can only be one fetch (FCHB or FCHP)
per macroinstruction. If the base register is enabled, FCHB uses the Code Map.

IFCH Performs an interrupt instruction fetch. 1AK (interrupt acknowledge) will be asserted on the
backplane. A memory read will occur where the address and map selection are driven by the
highest priority interrupting device. P-register is not altered. The data returned will be loaded
into the T-register. This microorder is normally executed only in the interrupt service
microroutine. This microoder will not work properly if the value of the B bus is 0 or 1. The central
interrupt latch (CIL) will be loaded with the address. (CIL is an external register referenced by
SRIN.) If the base register is enabled, IFCH uses the Data Map.

LDBR Load the Base Register with the data on the Y-Bus at the end of the microcycle.

STOR Perform the STOR operation specifed only if the condition specified (CNDX) is met. STOR can
only be used with SPOT or SPOF in the OP field.

STO Set the integer overflow register at the end of the microcycle.

WORD TYPES 1, 2, 3, AND 4: ALUS FIELD WHERE ALU FIELD CONTAINS SPEC

The following specials are available in the ALUS field (Word Types 1,2,3, and 4) when the ALU field contains
SPEC. F is used in the microorder descriptions to indicate the ALU output or F-Bus. Q should not be used in the
B-field along with the ALU Specials. In this case, Q is an implied operand.

ASG Performs a transformation of the B-bus operand and passes it to the Y-bus. This instruction is
normally used to change the ASG instruction in the instruction register CT into a more usable
form.

The ASG data transformation is the following:

Y-Bus gets B-Bus Y-Bus gets B-Bus
0 8 8 X
1 SKP 9 X
2 SE 10 X
3 9 11 11
4 0 12 X
5 1 13 X
6 2 14 X
7 3 15 X

NOTES: In the table above, X is undefined, SE indicates the state the E bit should be at the end
of the instruction (excluding the effects of INA). SKP is a logical “1” if the ASG instruction
should skip (again excluding the effects of INA).

4-13

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPES 1, 2, 3, AND 4: ALUS FIELD WHERE ALU FIELD CONTAINS SPEC (Continued)

Civ

DIv1

DNRM

RL4

Two’s complement divide step:

F = B+A+Cin, if SCFF = 0;
F = B—A—1+Cin, if SCFF = 1;

where SCFF = “sign compare flip flop”, Cin=SCFF, and F = F-Bus.

The sign compare flip flop is internal to the ALU and is driven onto the YZ output line during the
DIV operation. The sign compare flip flop is updated only when DNRM, DIV, or DIV1 is
performed. When one of these microorders is specified, the SCFF will be updated at the end of
the cycle with “A15 exclusive NOR F15”; i.e., SCFF (next cycle) = 1 if the signs of A and the
F-bus are the same, SCFF (next cycle) = 0 if the signs of A and the F-bus are different.

A double word, logical left shift is performed on the F-Bus and Q-register with “A15 exclusive
NOR F15” shifted into the least significant bit position.

The processor conditions are the following:

CF = carry out;

ALOV = overflow;

YZ = sign compare flip flop;
SF = A15 exclusive NOR F15.

First two’'s complement divide step. This is the same as DNRM with the exception that the value
shifted into the least significant bit position is “A15 exclusive OR F15.”

Double-Length Normalize Step: F-Bus = B+Cin, where Cin=0

A double word, logical left shift is performed on the F-bus and Q where a zero is shifted into the
least significant bit position.

Processor conditions are the following:

CF = F15 exclusive OR F14;

ALOV = F14 exclusive OR F13;

YZ = Q register and F-Bus (before shifting) are all zeros;
SF = A15 exclusive OR F15 (F-bus bit 15).

DNRM will cause the sign compare flip flop (SCFF) to be loaded at the end of the cycle with
“A15 exclusive NOR F15.”

Rotate the B-Bus operand left 4 places and pass to the Y-Bus. This microorder is used in
emulation of SRG instructions. CF and ALOV are cleared. The shift flag is not updated by this
microorder. If the SP2 field contains LWE or LWF, they are ignored.

4-14

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPES 1, 2, 3, AND 4: ALUS FIELD WHERE ALU FIELD CONTAINS SPEC (Continued)

SM2C Sign magnitude to 2’s complement conversion:

F = B+Cin, if B15 = 0;
F = (-B)+Cin, if B15 = 1;

where Cin=B15, and F = F-bus.

1

There is no shift but bit 15 of the Y-Bus is forced as follows:
Y15= B15 exclusive OR F15.

The processor conditions are the following:

CF = carry out;
ALOV = overflow;
YZ = B15;

SF = not updated.

SNRM Single length normalize step: F = B+Cin, where Cin=1, F = F-bus.

F is not shifted, but a logical left shift is performed on Q with a zero shifted into the least
significant bit position.

The processor conditions are the following:

CF = Q15 exclusive OR Q14 (before shifting);

ALOV = Q14 exclusive OR Q13 (before shifting);

YZ = Q register all zeros before shifting;
SF = Q15 (before shifting).

SRG Performs a transformation of the B-Bus operand and passes it to the Y-Bus. This microorder is
normally used to change the SRG instruction in the CT-register (instruction register) a more
usable form.

The Transformation If The Transformation If
B-Bus Bit 10 = 0 B-Bus Bit 10 = 1
Y-Bus B-Bus Y-Bus B-Bus Y-Bus B-Bus Y-Bus B-Bus
0 8 8=0 — 0 0 8=0 —
1 9 9=0 — 1 1 9=0 —
2 6 10=0 — 2 2 10=0 —
3 7 11 11 3 3 11 11
4 0 12=0 — 4 8 12=0 —
5 1 13=0 — 5 6and (Bor9) 13=0 —
6 2 14 5 6 7 14 6
7 4 15 3 7=0 — 15 9

NOTES: CF and ALOV are cleared.

SWAP Swap bytes of B-bus field operand and pass to Y-bus. CF and ALOV are cleared.

Swzu Swap bytes of B-bus field operand, zero the upper byte and pass to Y-bus. CF and ALOV are
cleared.

SWzY Swap bytes of B-bus field operand, zero the lower byte and pass to Y-bus. CF and ALOV are
cleared.

4-15

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPES 1, 2, 3, AND 4: ALUS FIELD WHERE ALU FIELD CONTAINS SPEC (Continued)
TMPY Two's complement multiply step. This is the same as UMPY with one exception: the value
shifted into the most significant bit position is:
F15 exclusive OR OVR,
where F15 is bit 15 of F-Bus and OVR=ALU overflow from the current cycle.
TMLC Last cycle of two's complement multiply:
F = B+Cin, if Q0=0;
F = B—A-1+Cin, if Q0=1
where Cin=Q0, F = F-bus.
A double word, logical right shift is performed on F-bus and Q-register with the following shifted
into the most significant bit position:
F15 exclusive OR OVR,
where F15 = bit 15 of F-bus, and OVR=ALU overflow of the current cycle.
The processor conditions are the following:
CF = carry out;
ALOV= overflow;
YZ= QO;
SF = Q0.
UMPY Unsigned multiply step:
F = B+Cin, if Q0=0;
F = A+B+Cin, if Q0=1;
where Cin=0, F = B-bus (ALU output).
A double-word logical right shift is performed with F and Q, with the carry flag from the current
cycle being shifted into the most significant bit position. The processor conditions are updated
as follows:
CF = carry out;
ALOV = overflow;
YZ = QO;
SF = Q0.
LY Zero the lower byte of the B-bus field operand and pass to Y-bus. CF and ALOV are cleared.
ZUyY Zero the upper byte of the B-bus field operand and pass to Y-bus. CF and ALOV are cleared.

WORD TYPES 1 AND 4: SP2 FIELD

CLF

CMDW

CMID

This field specifies a number of special functions in the processor.

Clear general-purpose flag at the end of current microcycle.

Complement the Double Word bit at the end of the current microcycle. For standard ALU
functions the double-word bit indicates that a shift specified will be a double-word shift.

Complement the sense of the “temporary interrupt system disable” at the end of the current
microcycle.

4-16

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPES 1 AND 4: SP2 FIELD (Continued)

CT30 Replace bits 3-0 of jump address with bits 3-0 of the CT-register. This is a jump modify
microorder and can be used only in Word Type 4.

CT74 Replace bits 3-0 of jump address with bits 7-4 of the CT-register. This is a jump modify
microorder and can be used only in Word Type 4.

DCT Decrement the general-purpose counter at the end of the current microcycle.

DN Decrement the N register at the end of the cycle. If DN and IN are both coded, the N register will
decrement.

FCHP Read with address in P to perform an instruction fetch. Data returned on FCHP will be loaded
into both T and CT (Instruction Register). A fetch microorder must be executed before returning
to the JTAB microinstruction to perform all necessary “housekeeping” functions in order to
execute the next assembly instruction. If an interrupt is pending, FCHP will be inhibited and
INTF will be set. If the base register is enabled, FCHP uses the Code Map.

P Increment the P-register at the end of the microcycle. If IP is coded in both the SP2 and SPO
fields the P register will only increment once.

LWE Link with E; that is, E is shifted into the data word and the bit shifted out is loaded into E. LWE
can only be coded with a shift coded in the SPO field.

LWF Link with F. F (the general purpose flag) is shifted into the data word and the bit shifted out is
loaded into F. LWF can only be used with a shift in the SPO or SP1 field.

NOP No special operation is performed.

RDIO Perform an |/O handshake on the backplane where an I/O card will will send an operand to the
CPU. The returned operand is loaded into register T. Before executing this microorder, the
microcode must check that IORQ is asserted on backplane (see microorder IORQ).

RDPC Perform a memory read using the address in the P-register. If the base register is enabled,
RDPC uses the Code Map.

STF Set general-purpose flag at the end of the current microcycle.

WRIO Perform an /O handshake on the backplane where the processor card will supply data to be
received by the I/O card from the Y-Bus. For this microorder to function correctly, the
microcode must check that IORQ is asserted.

WORD TYPES 2 AND 3: CONDITION (CNDX) FIELD

The conditions are tested by the conditional operations. They are updated at the end of the microcycle, such that
they refer to conditions generated during the previous microcycle or registers loaded at the end of the previous
microcycle.

B15 Bit 15 of the B-Bus was a logic “1” during the previous micro-cycle. This condition is not valid if
Q was the B-Bus operand during the previous cycle. The B15 condition is not updated when
zero is in the ALU field.

4-17

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPES 2 AND 3: CONDITION (CNDX) FIELD (Continued)

ALOV The overflow output of the ALU set at the end of the previous microcycle. For standard ALU
functions, ALOV is a true two’s complement overflow but it may indicate a different condition for
SPEC functions. The ALOV condition is not updated when ZERO is in the ALU field.

CF The carry output set at the end of the previous microcycle. It is a true two’s complement carry
for add operations, and borrow— (complement of borrow) for subtract operations. CF may
indicate different conditions for SPEC functions. The CF condition is not updated when the ALU
field contains ZERO.

CTZ All bits of the CT-register are zero. This condition is not valid during the cycle immediately
following a load of the CT register. CT will be decremented at the end of the microcycle when
CTZ is in the CNDX field.

CTz4 All the lower 4 bits of the CT-register are zero. The CTZ4 condition will not be valid during the
cycle immediately following a load of the CT-register. CT will be decremented at the end of the
microcycle when CTZ4 is in the CNDX field.

E The macro E (Extend) register is set.

F General-purpose flag is set. Note that the state of F may be altered by JTAB in the OP field or
STF, CLF, LWF in the SP2 field.

INTP A processor interrupt is pending. This condition lags the interrupt condition by one cycle.
Example:

CONDITION RESULT
Parity Error Occurs; *Set Parity Error Flag
If INTP Go To 1 Cycle; *INTP Not True Yet
If INTP Go To 2 Cycles; *Now INTP Is True

INTF The Interrupt Flip-Flop is set meaning that the last fetch was ignored because a qualified
interrupt request was pending. This indicates that the interrupt service routine must be called
before the next JTAB microorder is executed. INTF is cleared in the interrupt service routine by
any STOR to the interrupt status register (IST).

IORQ IORQ (/O request) was asserted on the backplane at the the previous microcycle.

MPEN Memory protect was enabled during the previous cycle.

o The integer overflow register is set.

PON This microorder allows the firmware to distinguish a “force to zero” on powerup from a “jump to
nonexistent micromemory” or a “microcode time out.” It indicates that the processor power-on
signal was asserted during the previous cycle.

SF Shift flag is set. When a shift operation is executed, the shift flag is loaded with the bit shifted
out. For further explanation see the paragraph in this section on Shifting Functions, and the
ALU Special microorder definitions (ALUS Field). The SF condition is not updated when ZERO
is in the ALU field.

Y15 Bit 15 of the Y-Bus was a logic “1” at the end of the previous microcycle.

YZ The Y-Bus was all zeros at the end of the previous cycle. When an ALU special microorder is
executed, YZ may indicate a different condition. (See description of SPEC microorders in the
ALUS field.) The YZ condition is not updated when the ALU field contains ZERO.

4-18

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPES 1 - 6: ALU FIELD

This field describes the function to be performed on the A-Bus operand and the B-Bus operand.

AND

ADAC

ADBC

ADDC

CAND

CMAC

CMBC

IOR

NAND

INOR

SBAC

SBBC

SPEC

XNOR

XOR

ZERO

Logically “AND” A with B. CF and ALOV are cleared.
Add (two’s complement) the A-Bus operand to Cin: A+Cin; where Cin defaults to 0.
Add (two’s complement) Cin to B-Bus operand: B+Cin; where Cin defaults to 0.

Add (two’s complement) A-Bus operand and B-Bus operand: A+B+Cin;
where Cin defaults to 0.

Logically “AND” B with the one’s complement of A. CF and ALOV are cleared.

Add the one’s complement of the A-Bus operand to Cin: (NOT A)+Cin; where Cin defaults to 0.
Add the one’s complement of B to Cin: (NOT B)+Cin; where Cin defaults to 0.

Logically “inclusive OR” A with B. CF and ALOV are cleared.

Logically “NAND” A with B. CF and ALOV are cleared.

Logically “inclusive NOR” A with B. CF and ALOV are cleared.

Subtract (two’s complement) A-Bus operand from B-Bus operand: B—A—1+Cin;
where Cin= —borrow and Cin defaults to 1.

Subtract (two’s complement) B-Bus operand from A-Bus operand: A—B—1+Cin;
where Cin= —borrow and Cin to 1.

Perform special operation specified in ALUS field. SPEC cannot be used with SPOT, SPOF or
IMM in the OP field, and cannot use Q in the B Field. With Word Type 5, SPEC will cause a
jump modify operation equivalent to CT30, and all ones will be put on the Y-Bus.

Logically “exclusive NOR” A with B. CF and ALOV are cleared.

Logically “exclusive OR” A with B. CF and ALOV are cleared.

Forces the ALU output to all zeros. The following conditions are not updated: Y15, YZ, CF,
ALOV, SF, and B15.

WORD TYPES 1 - 6: B-BUS FIELD

The B-Bus Field is used to specify the B-Bus operand and is in all Word Types.

CAB

CT

CXY

Conditionally enable to the B-Bus either the macro A- or B-register:

A-register if bit 11 of the CT register = 0; B-Register if bit 11 of the CT register = 1.

Counter, also used as an instruction register. After a fetch, the instruction is returned to both T
and CT.

Conditionally enable to the B-Bus either the macro X- or Y-register:

X-Register if bit 3 of the CT-register = 0; Y-Register if bit 3 of the CT-register = 1.

4-19

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPES 1 - 6: B-BUS FIELD (Continued)

FA The Fetch Address register which generally holds the address of the last macroinstruction
fetch.

GRIN Enable to the B-Bus the register in the general register file indexed by N.

IST Interrupt status register.

N The Index Register (bits 0-3) for indirect addressing of the privileged and general register files
and the external registers (bits 4-7, not used; bits 9-15, status information).

P The P-register which generally holds the macro program counter.

FRIN Register in the privileged register file indexed by N.

Q Q-register (internal to the ALU). The Q-register becomes the B-Bus operand for ALU opera-
tions, although it is not actually enabled onto the B-Bus. Thus, Q cannot be used in the B-Field
for External ALU Specials or memory operations that use the B-Bus as the address (BFB, RDB,
FCHB). Also, specifying Q in the B-Field will cause the B15 condition to be undefined during the
following cycle.

MA The last memory address register which generally contains the address of the most recent
access to main memory. MA is loaded by any memory reference microorder and also when
JTAB is asserted.

MAP Enable Map Register addressed by MPAR to the B-Bus. MPAR is an external register. Bit 15 is
read protect, bit 14 is write protect, and bits O to 9 have the physical page number.

MEMR Enable the Memory Control Register onto the B-Bus.

A (R0OO) Macro A-register (R0O).

B (RO1) Macro B-Register (R01).

X (R0O2) Macro X-Register (R02).

Y (RO3) Macro Y-Register (R03).

ACC (R04) Register file accumulator (R04).

HP1 (RO5) RO5 of the register file. Reserved for use by HP as the Return register.

HP2 (RO6) RO6 of the register file. Reserved for use by HP.

USR (R07) R07 of the register file. Reserved for the user. That is, no HP microcode will use this register.

$0-87 General-Purpose Registers

(R10g- R17,)

SR Enable the processor switch register to the B-Bus. An open switch is read as a “0” and a closed
switch as a “1”.

SRIN Enable to the B-Bus the Special register indexed by N, bits 0-3.

Registers: 0=MPAR; 1=PEL1; 3=PEL2; 3=CIL; 4-15, HP reserved.

4-20

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPES 1 - 6: B-BUS FIELD (Continued)
T The T-register to which data from the backplane is stored after memory and 1/O reads. If data

from a previous memory or I/O read has not yet been returned to the T-register, then the
processor will freeze. If the previous read was A/B addressed, the A- or B-Register will be
enabled onto the B-Bus.

WORD TYPES 1 - 6: STOR FIELD

The STOR Field is used to specify the destination register (or main memory) into which the Y-Bus will be loaded
at the end of the microcycle. Register updating occurs only at the end of the cycle.

CAB Store the Y-Bus conditionally in either the macro A- or B-register:

A-register if bit 11 of the CT-register = 0; B-Register if bit 11 of the CT-register = 1.
) Counter Register (instruction register).

CXY Store the Y-Bus conditionally in either the macro X- or Y-register:
X-Register if bit 3 of the CT-register = 0; Y-Register if bit 3 of the CT-register = 1
CWRB Conditional write (used for indirect storing). Perform a memory write if B15 = 0; otherwise

perform a memory read. The read or write will be to the main memory location pointed to by the
address on the B-Bus. Data for write is from the Y-Bus.

GRIN The register in the general register file indexed by N.

IST Store the Y-Bus to the Interrupt Status Register.

LR Enable and latch the Y-Bus into the processor status LEDs. Storing a “0” in LR will light the
corresponding LED, and storing a “1” will turn off the LED.

N The Index Register which is used for indirect addressing of the GRIN and PRIN register files
and the external SRIN registers.

NOP No store is performed.

MAP Store Y-Bus into MAP Register addressed by MPAR. Bit 15: read protect. Bit 14: execute
protect. Bits 0-13: physical page no.

MEMR Store the Y-Bus into the Memory Contol Register.

P The P-register which generally holds the macro program counter.

PRIN The register in the privileged register file indexed by N.

A (R00) Macro A-Register

B (RO1) Macro B-Register

X (R0O2) Macro X-Register

Y (RO3) Macro Y-Register

ACC (R04) Register file accumulator.

4-21

Microinstruction Formats

Table 4-2. Microorder Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPES 1 -6: STOR FIELD (Continued)
HP1 (RO5) R5 of the register file. Reserved for use as the Return register.
HP2 (R06) R6 of the register file. Reserved for use by HP.
USR (R07 R7 of the register file. Reserved for user. That is, no HP microcode will use this register.
S0-857 General-purpose registers.
(R10g- R174)
SRIN Store Y-Bus into the special register indexed by N, bits 0-3.

Registers: 0 = MPAR; 1 = PEL1; 2 = PEL2; 3 = CIL; 4-15, HP reserved.

WRP Write to memory at the address specified by P. Data comes from the Y-Bus.
WRB Write to main memory at the address on the B-Bus. Data to write comes from the Y-Bus

4-13. SHIFT FUNCTIONS

There are three categories of shifts which can be executed in the microcode:

1. Single Word, single bit shifts;
2. Double Word, single bit shifts;
3. Special function shifts (SPEC in the ALU field).

The double Word bit (DW) is used to differentiate between single and double word shifts. The Shift
Flag (SF) is used to hold the bit which is shifted out. Note that the Shift Flag will be updated ONLY for
shift functions. The Shift Flag is normally updated for all shift functions except RL4 (4 bit left rotate).

The Shift Flag is not updated when the ALU field contains ZERO.

Single word, single-bit shifts are indicated by microorders in the SPO or SP1 field when the double-
word bit is cleared and the ALU field does not contain SPEC. The shifts are arithmetic, logical or
rotational either right or left. The output of the ALU (F-Bus) is shifted and then enabled to the Y-Bus.

SF will be updated as follows:

SF
SF
SF

i

A link with either E (Extend register) or F (general-purpose flag) can be specified in the SPO0 field. In
this case, E or F will be shifted into the F-Bus data word and the bit shifted out (same as the bit loaded

F-Bus bit 0 for all right shifts
F-Bus bit 15 for left rotate and logical shift
F-Bus bit 14 for left arithmetic shifts

into SF) will be loaded into either E or F (see Figure 4-2 for Single-Word Single-Bit Shifts).

4-22

Microinstruction Formats

Double-word single-bit shifts are indicated by microorders in the SPO or SP1 field when the double-
word bit is set and the ALU field does not contain SPEC. The shifts are arithmetic, logical, or
rotational — either right or left. The output of the ALU (F-Bus) is shifted together with the Q register
where the F-Bus is the most significant word and Q is the least significant word. The F-Bus, after
shifting will be enabled to the Y-Bus and the shifted data from Q will be loaded back into Q. SF will be
updated as follows:

SF = Q bit 0 for all right shifts
SF = F-Bus bit 15 for left rotate and logical shifts
SF = F-Bus bit 14 for left arithmetic shifts

A link with either E (Extend register) or F (general-purpose flag) can be specified in the SO field. In
this case, E or F will be shifted into the F-Bus/Q data word and the bit shifted out (same as the bit
loaded into SF) will be loaded into either E or F (see Figure 4-3 for Double-Word Single-Bit Left Shifts,
and Figure 4-4 for Double-Word Single-Bit Right Shifts).

There are seven Internal ALU Special functions and one External ALU Special shift function which
perform shifts. These shifts may be either single- or double-word shifts by definition and their function
is not affected by the state of the double-word bit. For the ALU Specials, if a link with E or F is
specified, then the bit shifted out (same as the bit loaded into SF) will be loaded into E or F, but E and F
will NOT be shifted in; that is, the normal shifting operation will occur. For the External ALU Special
shift (RL4) any link specified will be ignored. These shift operations and the Shift Flag updating are
explained in detail under the SP0 and SP1 fields in the microorder definitions. (The SP1 field is a
subset of the SPO field so they are given under “Word Types 1 - 4 for the SP0 Field and SP1 Field.”)

4-14. MICROORDER DEFINITIONS

Microorder Definitions are given in Table 4-2, and a Summary of Microorders which shows in tabular
form the microorders contained in each field is provided in Appendix B.

4-23

Microinstruction Formats

{~75b4h31zh1ho[[al7]s]s] [s]2]" l{—W
_J

SF'\rn AR
GsT TTTTTITTTTT T fof
A J

e ¥ v V¥
CITTTTITTTITITITTT [e]

Logicnl with link

ﬂlllll]lllllll@

Arithmetic

O IS
G I TI T T T TIIITITI]

SF 4

Arithmetic with link
SF &

O\ o
I‘5I1{li3|12[11|‘\0l QISI 7 18[514' 312[1 @

RIGHT
Rotate

AN Y
hsh4h3h2h1bo[9[a]7le|5]4]3[2|1[qJ

Rotate with link

F

KRR Ny
CITTTTTTITT LT [e]

- [EOR Fl
{EoR F}

o)

Logical

RN N
GsL I T T IT T TTTTTTTTTe]

Logical with link

21
[ﬁt”llllll]lllllllloj

{coRr Fl
{EorF—

Arithmetic

O N 0
UIIIIIIIIHIIIM

Arithmetic with link

O f\a@sp
[15]14'13]12'11]10[9]8]7 IGI5 [4[3I2[1 [0]
A oy

8200-9

Figure 4-2. Single Word, Single Bit Shifts

4-24

Microinstruction Formats

F-BUS Q-REGISTER

' v ¥ ¥ ¥ ¥)
11]<——<—l5'14]13'12111[10'9[8]7[6[5[4]3]2]1IO]
J

Rotnto

@L"le'zl“lw[[s]7]e]s]«[s]>

Rotate with link

‘\

[=]

A v ¥ ¥ ¥ ¥
QSIIIIIHIIIIIIIW L TTT T TTTTTTITTTTC]

IEonrl _/

F Logical

I
ELTTTITTITTITT1T1]

Loglcal with link

vy R A v v
{‘LJIIIIIIIIJIIIll°J<—<—['5IIIllIIHIIIIIT<ﬁ]

fEoR Fl
-{EOR F}

A v
| [oje——a{s]

—

v Vv’
[TT TP T TTTTTTT]e]

'2'a A AR S
MIHHII|llllll?l+——«+sllll[llllllll [Te]

Arithmetic with link
SF

Llulwlnlﬂlwl [el7]e]s]]z l]<———<—{151'4lwl'2I”I'°I ofaf7[e]s]e[s]2 l l
X e

8200-11
Figure 4-3. Double-Word, Single-Bit Left Shifts

4-25

Microinstruction Formats

F-BUS
Rotate

Q-REGISTER

_ an N ~
Elsbaltsliz]n[mlg [sT7]e]s]s]3]2]" l(ﬂ—»——————»[m]mlw]m[n[m[9[8]7[—6]5 [a]s]2]1]0]

Rotate with link

Y e R y
@ﬂlllllllllllIllﬂ»——»l*slllllllllllll?\l_oﬂ

Logical = o
IR KR’ YN YN
CITTTITITTIII I T el———ITTITTTTITTIIIT T[]

Logical with link

SF

e A AR A
ﬁ'sllllllllllllITIO}*————'FSIIlllIIIIIIlIIIOQ

Arithmetic

__JcorFl
fEor T} —

SF

N
[T 1]

Arithmetic with link

D)
L

O Ny SR SR
Pﬂ}lllllll[ll]IIIF}—*———’FSIIIIIIIIHII

A AN AN N
15]1;113[12[11[10]9'[5]7 [6]s]] 3]2[1lﬂ—&———»[mlmlmln]nho]gle [7Te]s]a]a]2]" I(@

{EOR Fh
]EOR|r

8200-10

Figure 4-4. Double-Word, Single-Bit Right Shifts

4-26

Microinstruction Formats

4-15. MICROCODE RESTRICTIONS AND CONSIDERATIONS
4-16. MEMORY AND I'O MICROORDERS

Do not code more than one memory or I/O microorder in the same microinstruction. These microorders
are: RDP, RDPC, RDB, FCHP, FCHB, IFCH, BFB, WRB, WRP, CWRB, RDIO, and WRIO.

4-17. FETCH MICROORDERS

The fetch microorders are FCHB and FCHP. Every microroutine to emulate an instruction must
contain exactly one fetch microorder. A store to the interrupt status register is not allowed in the
microinstruction in which the fetch occurs. A memory or I/O microorder, as defined above, or any
modification of CT or IST are not allowed between the fetch microinstruction and the return JTAB
loop. The fetch microorder will not cause CT to be loaded at the end of the current microcycle but may
cause it to be loaded at the end of the following microcycle. Therefore, the microinstruction following
the fetch may reference CT if it does not contain the T microorder. No following microorder should
reference CT.

4-18. BFB and IFCH MICROORDERS
BFB and IFCH must not reference the A- or B-Registers since they will not function in this manner.
This means that either A/B addressability must be off or that the B-Bus must have a value greater

than 1 during the cycle when BFB or IFCH is executed. Therefore, the user microcode must resolve
this problem.

4-19. RDIO AND WRIO MICROORDERS

Microorder T should not be coded in the B field of a microinstruction for operation in the same
microroutine as an RDIO or WRIO microorder.

4-20. MEMORY READS

All memory reads must be terminated with T in the B field. Note that T is contained in the B field of
the JTAB microinstruction to terminate the FCHB or FCHP at the end of the JTAB microroutine.

4-21. MAP REFERENCES

Do not code the MAP microorder in the STOR field.

4-27

Microinstruction Formats

4-22. BASE REGISTER AND DATA AND CODE MAPS

When the base register is disabled, all memory references use the map specified in bits 0-4 of MEMR,
which may contain any map number. When the base register is enabled, it is assumed that bits 0-4 of
MEMR contain an even map number which is used as the Data Map. The corresponding Code Map will
be the Data Map with bit 0 forced to a “1”. The following memory references use the Data Map: RDP,
RDB, WRB, WRP, and CWRB. The following memory references use the Code Map, except when they
reference the base page in which case they will use the Data Map: FCHB, FCHP, RDPC, and BFB.
When the base register is enabled, any memory reference to the base page will have the base register
added to its logical address. This will not affect addressing the A or B registers.

4-28

SECTION 5
TIMING CONSIDERATIONS I

TIMING CONSIDERATIONS

Certain details about computer timing should be considered for microprogram applications so that you
can do the following:

e Intelligently and effectively make use of computer time when you execute your microprograms.
e Synchronize microinstructions properly for the operations that you wish to perform with your

microprograms.

The information you need to know about the computer’s timing to effectively microprogram can be
separated into three categories:

® A basic definition of the processor cycle time period.

¢ Conditions that can vary the speed of execution of your microprograms.

® How you estimate the time it takes for a microprogram to execute.

In the HP A700 processor, the timing as related to microprogramming is very simple since almost all

microinstruction operations take place within a single clock period. The microinstruction time periods
are described in this section.

5-1. COMPUTER TIMING

As defined in Section 2 of this manual, microinstructions are executed in the micromachine during
“microcycles.” One microcycle is the time interval required to completely execute one normal
microinstruction. The length of one microcycle is 250 nanoseconds.

A normal microinstruction is defined here as one that does not result in a processor clock “freeze.”

5-2. MEMORY and I/O ACCESS

The processor has the capability of buffering (or latching) the data and address of just one memory or
/O access while a previous memory access is being executed. While an I/O access is being executed

there is no buffering (or latching) of data and address. Different lengths of time are required for these
operations as follows:

a. Memory accesses typically take two processor cycles (microcycles). If memory refresh occurs at the
same time, the access can extend to four microcycles.

b. I/O accesses take three microcycles each.

Any DMA activity from I/O cards has priority over the processor operations; thus, any memory or I/O
access can be delayed by the DMA time.

5-1

Timing Considerations

5-3. PROCESSOR CLOCK FREEZE

A freeze of the processor clock is a waiting condition where the current microinstruction will not be
executed until the freeze is terminated. There are four conditions associated with memory or /O access
that will cause a processor clock freeze. They are the following:

a. If the microorder T is in the B-Bus Field of the current microinstruction while the T-register has
not yet been loaded with data from the previous memory or I/O read.

b. If a memory or /O access has been requested by a microorder, and the memory and I/O access logic
is busy (that is, it is still holding an address or data from a previous request which has not yet gone
out on the backplane).

¢. The MAP microorder in either the B-Bus or STOR field is executed while the maps are in use by
the memory controller for a memory cycle. Since the map registers are required by the processor
for the new microorder, a freeze will occur. This freeze lasts a maximum of one clock cycle.

d. The FCHP and FCHB microorders cause a freeze if any read or write is in progress. This ensures
that any memory protect violation is detected at the end of the instruction that caused it.

A processor clock freeze is transparent to the microcode. It will delay the transition of the processor
clock at the middle of the clock cycle for an integral number of cycles. When a freeze occurs, none of the
microorders in the current (frozen) microcycle will be executed until the freeze condition is no longer in
effect. A processor clock freeze does not effect the system clock or any other cards.

Maximum performance is obtained by minimizing the number of times freezes occur in any
microprogram since each freeze adds one or more clock periods of 250 nanoseconds to the total run
time. In microprogramming consider the effect of memory read operations and T register usage.

All memory read operations use the T-register and take at least two processor clock cycles. Thus, the
T-register is not available in the cycle after a memory read. Freezes can be avoided by not program-
ming T-register reference microorders immediately following memory read microorders. An example
of microinstruction execution times of memory accesses through the T-register comparing the time
with a freeze and without a freeze follows:

S0:=55; *
S1:=a,RDP; sstart memory read
Q:=1; sfreeze time = 1.0 usec
St:=a,:RDP; sstart memory read
S0:=55 swait for memory read
S2:=t #no freeze, time = 0.750 usec

Avoidance of a freeze is beneficial if you can effectively use the cycle occurring in between the memory
reference microorder and the T microorder.

5-2

Timing Considerations

Microinstruction execution including I/O accesses, and reading and writing to memory is illustrated in
the following examples where the explanation and backplane action is given in a list below the
examples:

PROGRAM: NOP; NOP; RDIO; A:=T; NOP

ACTIONS: . NOP , NOP , RDIO lFREEZEIFREEZE. A:=T , NOP

! } = TIME
LIST NO.. ' N ' '
(below)
PROGRAM: NOP; NOP; WRP; RDIO; NOP; NOP; A:=T
ACTIONS: ~ NOP NOP WRP RDIO NOP NOP FREEZE A:=T
[L 1 L [[L »> TIME
T 1 T I 1 I 1 | |
LIST NO.: 5 6 7 8
(below)
PROGRAM: NOP; NOP; WRP; WRP; WRP; A:=B
ACTIONS: NOP NOP WRP WRP FREEZE, WRP A:=B
" - TIME
LIST NO.: 9 10 11 12 13
(below)

ACTIONS LIST:

First Example Second Example Third Example
1. I/O Read Started. 5. Write Started. 9. Write Started.
2. Freeze, T not ready. 6. /O Read Buffered. 10. Write Buffered.
3. Freeze. 7. I/O Read Started. 11. Freeze: Buffer In use
4. Executed 8. Freeze Since I/O Read Not Done. 2nd Write Started.

12. No Freeze, 3rd Write Buffered.
13. No Freeze, 3rd Write Started.

5-4. DATA TRANSFERS

A complete memory access to main memory occurs within two 250 nanosecond processor cycles. Thus,
the fastest data transfer rate, taking into account memory refresh cycles, is 2.0 Mwords per second or
4.0 Mbytes per second. An example of a data transfer program is the cross-move-words macroinstruc-
tion (e.g., dynamic mapping macroinstruction MW01) which moves words at memory speed.

5-3/5-4

SECTION 6
MAPPING TO USER'S MICROPROGRAMMING AREA HEER

MAPPING TO USER’S
MICROPROGRAMMING AREA |[

In order to have operational flexibility when using your microprogramming facilities, you must have
an understanding of the methods used to branch from main memory to control store and then back to
your program in main memory when your microprogram is completed. This section provides infor-
mation that will enable you to do the following:

® Understand the control store mapping scheme.

® Link to the user’s microprogramming area from your Assembly Language, FORTRAN, or
PASCAL program.

® Pass parameters to your microprogram.
® Understand control store branch address modification (using some of the available microorders).
® Return from control store (making a “normal” exit).

® Pass parameters from your microprogram back to your main memory program.

For this discussion on mapping it will be assumed that your microprograms have already been
prepared (using the Paraphraser) and placed in some facility of control store (e.g., WCS or PCS).
Section 7 describes how to assign starting addresses to your microprograms.

Part III (Microprogramming Support Software and Hardware) of this manual describes methods used
to get microprograms into control store. One method is the creating and installing of permanent
microprograms. Another method is to use WCS and the WCS related microprogramming support
software (ID.41,WLOAD) to load microprograms into control store and swap (or overlay) them with
other microprograms.

6-1. CONTROL STORE MAPPING METHOD

The Microprogram Control Section is always in control of the computer, and the base-set
microroutines carry out the steps for reading the instructions (and data) from main memory. In this
operation, all instructions are placed in the instruction register and decoded. (The JTAB mac-
roinstructions decoding loop is described in Section 2 of this manual.

Data can be considered as “parameters” which can be loaded into the desired and appropriate registers
by your microprogram to later perform certain operations. Parameter passing will be described later in
this section.

The process of decoding the macroinstruction bits determines which control store address (i.e., which
microprogram) is called by the macroinstruction (Assembly language instruction) fetched from main
memory.

The decoding process, or mapping method, described below is at the level you will need for normal user

microprogramming. Also the instructions for mapping to particular control store entry points are
defined.

Mapping

6-2. SOFTWARE ENTRY POINTS

Recall that the control store map in Figure 2-3 shows all 16k words of control store, the boundary
addresses of each memory area, and whether or not the memory area has “software entry points”
available to the user. The software entry points are opcodes reserved for the user that branch to
microaddresses where your microprograms begin.

The hardware/firmware combination in the Microprogram Control Section is the facility that defines
the control store software entry points. As described in Section 2, certain areas of control store may be
used for HP microprograms and/or microprogrammed computer enhancements. Thus, you should
know the contents of any area of control store before you put your microprograms there.

You should restrict your use of software entry point instruction codes to those set aside for entrance
into the user’s microprogramming area. The instruction codes for most sofware entry points (excluding
the base set and HP reserved areas of control store) are defined in the following paragraph, and the
instruction codes for entrance into the user’s area (the primary subject of this section) are identified.

Once the user instruction has entered control store, the user’s microprogram may branch to any
control store location. Again, the use of discretion is implied since the areas shown in Figure 2-3 which
are reserved for HP microprograms and/or microprogrammed accessories may be filled with
microprograms.

NOTE

The contents and placement of microroutines of the A700 base set
are reserved by HP and they are subject to change without notice.
Therefore, branching into the HP base set to use existing
microroutines (such as INDREAD) is not recommended. How-
ever, you may copy these routines into your microprogramming
areas for your own use.

6-3. USER INSTRUCTION GROUP (UIG)

For the purposes of mapping to the “user” areas, the processor base set has a reserved block of binary
codes called the User Instruction Group (UIG). The user’s areas that have these codes are designated
as UIG Software Entry Points. Entry to other control store areas requires an extra branch after
reaching control store.

All opcode blocks which are accessible through the UIG instructions are shown in Table 6-1. This table
is arranged in UIG instruction (binary code) order.

Mapping

Table 6-1. Control Store UIG Software Entry Point Assignments

RANGE OF UIG INSTRUCTION
MAIN MEMORY VALUES
USED (OCTAL)

CONTROL MEMORY
ENTRY POINT
RANGE (HEX) USE

105000 — 105137 —
105140 — 105177 0900 — 090F
105200 — 105237 —

HP Reserved (Base Set,FPP)
HP Reserved (Base Set)
HP Reserved (Base Set,FPP)

105240 — 105257

101 (or 105) 700 — 737
101 (or 105) 740 — 777

HP Reserved (VMA)

105260 — 105277 2800 — 280F HP Reserved
105300 — 105317 — HP Reserved (Base Set)
105320 — 105337 — HP Reserved (SIS)
105340 — 105357 0DO0 — ODOF HP Reserved
105360 ~ 105377 OF00 — OFOF HP Reserved

101 (or 105) 400 — 417 0800 — 080F HP Reserved

101 (or 105) 420 — 437 0A00 — 0AOF HP Reserved

101 (or 105) 440 — 457 0C00 — 0COF HP Reserved

101 (or 105) 460 — 477 OEO0O ~ OEOF HP Reserved

101 (or 105) 500 — 517 3000 — 300F User Reserved

101 (or 105) 520 — 537 3200 — 320F User Reserved

101 (or 105) 540 — 557 3400 — 340F User Reserved

101 (or 105) 560 — 577 3600 — 360F User Reserved

101 (or 105) 600 — 617 2000 — 200F HP/User Reserved

101 (or 105) 620 — 637 2200 - 220F HP/User Reserved

101 (or 105) 640 — 657 2400 — 240F HP/User Reserved

101 (or 105) 660 — 677 2600 — 260F HP/User Reserved

HP Reserved (DMS)
HP Reserved (EIG)

NOTES:
1. HP Base Set is the HP A700 firmware.

2. Floating Point firmware is located in the HP 12156A FPP control store.

3. VMA = Virtual Memory Access; SIS = Scientific Instruction Set; DMS = Dynamic Mapping System;
EIG = Extended Instruction Set.

4. HP Reserved areas should not be entered by the user, HP/User Reserved areas can contain user
microcode but HP may use this control store area for future firmware packages; and User Reserved
areas will never be used by HF.

The UIG instructions permit you to link Assembly language routines to your microprograms. The key

to UIG is the upper byte (most significant bits) of the calling code which must have the following
format:

octal 105xxx (bit 11 of the CT=1)
or:

octal 101xxx (bit 11 of the CT=0)

where xxx equals values to be defined in the following paragraphs.

Mapping

6-4. UIG OPCODE BLOCKS. The UIG instructions are decoded in blocks of 16 opcodes that
must be further decoded by the microcode.

The control store opcode block selection is determined by the value of bits 8 through 4 in the CT
Register (still part of the coded UIG instruction). In general, a secondary index (composed of bits 3
through 0) directly determines which address in the first 16 locations of the selected opcode block will
be used for entry.

Bit 11 in the third octal digit (105xxx or 101xxx) of the UIG instruction in CT can be used as an
indicator in your microprogram by the CAB microorder. For example, the CAB microorder in the
STORE and BBUS fields will test bit 11 of the CT register for a 0 or 1 to select either the A- or
B-register, respectively.

The value of bits 8 through 4 of the UIG instruction in the CT register is not directly translatable into
the complete address of the control store opcode block but these bits determine the address of branches
in the control store base set JTAB Jump Table, which in turn direct a branch to the opcode block.

6-5. USER AREA UIG BLOCKS. The control store hexadecimal addresses ranging from 3000
through 3FFF are directly accessible and comprise the primary user’s microprogramming area. The
1k-word modules of control store from 2000 (hex) through 2FFF (hex) may be used by user microcode
but these modules may be claimed for future HP firmware enhancement packages. The available user
control store is shown in the control store map of Figure 2-3.

The blocks of opcodes 101500-101577 (octal) or 105500-105577 (octal) are dedicated to the user. The
101600-101677 (octal) or 105600-105677 (octal) opcodes may be used by the user, with the reservation
that future HP firmware packages might reclaim these opcodes. For the same reasons, the 1k control
store modules from 2000 (hex) to 0x2FFF (hex) may be used by the user with the reservation that they
may be used by HP for optional enhancements to the A700 instruction set.

Each opcode block has 16 possible control store software entry points provided by the UIG instruction
secondary index (UIG instruction bit 3 through O combination). The secondary index directly de-
termines which control store address (of the first 16 locations in the selected module) will be loaded
into the CT Register. The range of values for UIG instructions you should use to access the respective
control store addresses are summarized below. Since each opcode block can be entered at 16 different
locations, there are 128 direct entry points into the recommended user’s microprogramming area.

The UIG instruction (binary codes) blocks you can use are the following:

101500 through 101577 or 105500 through 105577, and

101600 through 101677 or 105600 through 105677 which may be used by HP for future A700
optional instruction set enhancements.

6-4

Mapping

6-6. HP RESERVED UIG BLOCKS

The opcode blocks of control store have software entry points that are not available to the user. These
include the software entry points for the base set, and for HP enhancements such as the Floating Point
Processor and Scientic Instruction Set microcode areas, etc.

Some of the opcodes for HP enhancements are reserved for future firmware packages so until these
packages are available they may be used with discretion by the user. The opcodes that are currently
defined instructions are in the base set for each instruction group. Those that are HP- or user-reserved
are decoded in the & USER section of the base set. Refer to Appendix E if you require more information
about the base set.

To avoid access to the HP reserved area do not use the following opcode blocks of UIG instruction
(binary codes) for main memory to control store linking:

105000 through 105337, and

101400 through 101477 or 105400 through 105477, and

101700 through 101777 or 105700 through 105777
The EIG (Extended Instruction Group) and DMS (Dynamic Mapping System) macroinstructions are in
the UIG. The base set listing (Appendix E) shows the DMS microprogram has two “table goto” lines to

fully decode the 64 separate opcodes that are included in this group. (All 64 of these opcodes are “used”
by this group, although some of the opcodes map onto other opcodes or some are unused.)

The two “table goto” lines are included here for reference:

sorigin 0x18b$ *DMS jtab entrypoint
gototbl DMS_TBL1, stor/n; sopcodes 10(x01)700-10¢(x01)717
s$origin 0x18c$ #+DMS jtabl entrypoint

gototbl DMS_TBL2, stor/n; sopcodes 10(x01)720-10(x01)737

These microinstructions branch outside of the JTAB jumptable, and the actual next address is the
target address with bits 3-0 of the macroinstruction inserted in bits 3-0 of control store address.

6-7. USER’S AREA MAPPING EXAMPLE

A typical example of mapping to the user’s microprogramming area through the base set using a
recommended UIG instruction is discussed below. Information about the proper procedure to use in
linking to main memory and for returning to main memory is also included.

Mapping

Suppose that your main memory program has a UIG instruction 105602 (octal) written into a
particular location designated “I.” The UIG instruction can have address pointers and/or operands in
main memory locations I+1, I+2, etc.

For example:

MAIN MEMORY

Location Contents
I 105602
I+1 0
I+2 0
0 0
0 o
o o

6-8. BRANCHING TO YOUR MICROPROGRAM

During execution, UIG instruction 105602 maps to micromemory address 3002 (hexadecimal) as
follows. The previous microprogram (presumably an HP macroinstruction) performs a fetch of your
UIG opcode and returns to the line after the JTAB of the JTAB loop being used. The JTAB loop is
listed below for reference.

jtab:
{
Normal jtab location.

Loop until interrupt.
).

jtab, #Subroutine call to macroinstruction
+ emulation routine.
clf, + put the flag into known state
ip, #« Inc P to address after opcode.
cwrb:=b, bbus/t; + Force orders that are required for
* the MRG decode to begin memory
» references in this cycle.
if not intf goto jtab, #Loop until interrupt causes
acc:=ones; + a fetching to be ignored.
interrupt: «INTERRUPT:
goto int_vector, + branch to interrupt handler
ct:=ist; + load interrupt priority code into ist

The previous microprogram would have returned to the “if not intf” line which checks for interrupts. If
an interrupt occurred and the fetch was held off, the next microinstruction to be executed would be the
“interrupt:” line and the base set would have executed the interrupt. If no interrupt occurred, then the
next microinstruction to be executed would be the “jtab:” line, which begins your microprogram.

The JTAB microinstruction, in conjunction with the look-up table, would produce 1AA (hexadecimal)
for the next microaddress. At this location in micromemory, the base set has a microinstruction that
branches to your microprogram, as shown here:

$origin Ox1AAS$ sopcodes 101 Cor 105) 600-637
gototbl 0x3000, sbranch to the user opcode
stor/n; sinitialize the n register with OxF

6-6

Mapping

The “gototbl 0x3000” function, which is the paraphraser representation for “op5/jmp, adrl/
0x3000,alu/spec”, branches to one of 16 microaddresses from 0x3000 to 0x300F, depending on the
contents of the CT register. The lower four bits of the CT register are substituted for the lower four bits
of the microaddress branched to after the GOTOTBL (CT contains the user instruction). Because the
lower four bits of CT contain the value 2, the next microaddress to be executed is 0x3002.

Upon reaching the user microprogramming area (at address 0x3002), the following situation exists:

CONDITION REASON
CT =105602 (octal) Loaded by the previous fetch.
acc =FFFF (hexadecimal) Loaded by the “if not intf” line.
p =1+1 Due to the “ip” in the JTAB microinstruction.
F =0 Cleared in the JTAB microinstruction.
n = (hexadecimal) Due to “gototbl” line.

At location 3002 (hex), your microprogram begins. Typically, the first 16 locations in a user module are
set up with unconditional branches to the actual user microroutine but you may use the remaining
fields to perform important functions such as reading the next memory address.

location microinstruction comments

0x3000 goto user0; sentry point 0

0x3001 goto useri; sentry point 1

0x3002 goto user2, #my instruction!
rdp, ip, * begin read of next location
a:=a-acc; # increment the A register

0x3003 goto user3; *

0x300F goto userF;]

0x3010 user2: scontinue my instruction!
call INDREAD; sread from the memory address
‘e setc.

From location 3010 (hex), your microprogram can continue execution.

6-9. RETURNING TO THE BASE SET

Once you have completed your microprogram, you must return to the base set to have it continue
execution of the micromachine operations. (Remember, when the micromachine is executing your
microprogram, you are in complete control.) It is your responsibility to fetch the next macroinstruc-
tion, and for this purpose, you should be sure to set the program counter to the next macroinstruction
to be executed after your user-group macroinstruction.

In this example, the program counter was already set to the next macroinstruction address, so the last
microinstruction to be executed could be simply the following:

fchp, rtn; sreturn to the base set

6-7

Mapping

6-10. CALLING MICROPROGRAMS

Procedures for invoking your microprograms from assembly language and high level languages are
described below. The basic concepts of invoking microprograms and passing parameters should also be
evident from this information.

In the RTE-A.1 environment, the best way to assign a name to a user opcode is through the RPL
mechanism of Macro/1000. With this feature, your application programs can call your microprograms
or software-equivalents for your microprograms, and the choice is made at the time the program is
linked. Create a file with the names of your opcodes RPL’ed to the user opcodes you have chosen. The
following is an example:

MACRO, L

NAM MYRPL ,7

ENT MYOP,USER1,USER2,USER3
; THIS FILE CREATES THE EXTERNAL RPL’S WHICH ARE LOADED
; WITH THE PROGRAM TO DEFINE MY USER OPCODES

MYOP RPL 105500B

USER1 RPL 105501B

USER2 RPL 105502B

USER3 RPL 105503B
END

After you have created a file with opcode names, you can call your microprogram from assembly
language as follows:

MACRO,L
NAM TEST,7?7
ENT TEST
EXT MYOP,ISC,NMBR, IBUF
TEST NOP
JSB MYOP sEXECUTE MY OPCODE
DEF ++4 s WHICH
DEF ISC 3 TAKES
DEF NMBR 3 THESE
DEF IBUF 3 PARAMETERS
JMP TEST,I ;
END TEST

This microprogram accesses its parameters from memory locations pointed to by succeeding DEF's, and
the location directly after the opcode points to the next instruction to be executed after MYOP (the
.ENTR calling sequence). (See RTE-DOS relocatable library for complete details.)

If your microprogram complies with the .ENTR calling sequence as this microprogram does, you can
call your microprograms directly from FORTRAN/1000 or Pascal/1000.

In FORTRAN:

C Execute my microprogram
CALL MYOP(ISC,NMBR,IBUF)

In Pascal:
MYOPISC,NMBR,IBUF); (execute my microprogram)

6-8

Mapping

If your microprogram accepts parameters in the A, B, X, Y, E, and O registers, or does not comply with
the .ENTR calling sequence, you must access your microprogram directly from assembly language.
Otherwise, you must provide an assembly language interface routine to access your microprogram
from high level languages. Following the .ENTR calling sequence is preferable. Good examples of HP
microprograms that honor the .ENTR calling sequence are those of the Vector Instruction Set. (Note:
VIS information will be furnished as an update to this manual since it is not available at the time of
the first printing.)

In any case, while linking your application program, relocate the RPL file after you relocate your
application program to define your microprogram entry points. Make sure your microprogram has
been correctly loaded with WLOAD, and then your application program is ready to run with
microcoded enhancements.

6-11. HANDLING INTERRUPTS

If your microprogram executes for a period longer than 25 microseconds, you should make your
microprogram interruptable so that interrupt response time on the processor can be acceptable. This
requires that you be able to either save the current state of your microprogram in memory locations or
in registers, or simply restart your microprogram from scratch. Either way, you must periodically
check the “intp” condition, and if it is true, perform a fetch (“fchp” or “fchb”) of the fetch address of your
user-group opcode. (The fetch will be held off by the interrupt condition, and the base set will handle
the interrupt condition after you do a return back to the JTAB loop.)

6-12. EXAMPLE OF CHECKING INTERRUPT CONDITION

As an example, at a convenient point in your microprogram you might include the following
microinstructions:

if intp goto quit; sbetter check for interrupts now!
. e« o« *
quit: shave to quit now due to interrupts
p:=fa, *+ reload the program counter
fchb, rtn; *» fetch and return to the base set

This procedure will work if you can return directly to the base set using the return address on the
subroutine stack. However, if you have to check interrupts within a subroutine of your own, you can
jump to the location specified in the base set as INST__RESTART (at location 0xD0) and the base set
will handle the interrupt. For example:

if intp goto quit; scheck for interrupts
* e *
quit: »
goto INST_RESTART p:=fa;¢let the base set handle the fetch.

6-9

Mapping

6-13. MICROCODE TIME-OUT

You should be aware that if your microprograms execute for longer than 10 milliseconds without
servicing interrupts, your microprogram may be subjected to a microcode time-out. When this occurs,
your processor will perform an Unimplemented Instruction Trap (UIT) interrupt (on YOUR user-
group opcode). If you are operating within the RTE-A environment, RTE-A will abort execution of the
program which called your microprogram.

6-14. REGISTERS RESERVED FOR THE USER

Your microprograms will probably be similar to some of the already-existing HP1000 instructions,
such as FAD, or .ENTR, so be sure to look over the microprograms for these instructions. These
microprograms use the registers of the machine in exactly the same way that you may use them to
hold temporary values. If you need to define registers for user-defined functions, the HP base set has
allocated registers for you that it will not alter. The directly accessible register USR (R07) may be used
as a user-defined register, as can registers 4 through 7 of the PRIN register file.

6-15. MICROPROGRAMMING CONSIDERATIONS

Because the base set manages all of the functions of the processor, you must perform certain functions
(and refrain from performing others) to enable the base set to continue execution after your
microprogram has finished. Normally, problems with your microcode will not stop micromachine
operation so that other users in an RTE environment cannot continue using the system while you are
debugging your microcode. However, the following rules should be followed for allowing the base set to
continue doing its job.

After the fetch and before your return observe the following:

1. Do not store to or otherwise alter the CT or IST registers.
2. Do not initiate any memory or I/O read or write.

3. Do not alter the privileged registers in the PRIN register that are used by the base set; i.e., alter
only PRIN registers 4 through 7.

4. Do not initiate I/O requests without having previously established that IORQ is present. (You
should generally not be executing I/O requests unless you have special hardware with which to
interact or a microcoded driver.)

Do not execute the JTAB microorder.
Do not alter the HP-reserved directly accessible registers HP1,HP2.
Do not alter the MEMR register unless you replace it before you fetch and return.

If your microprogram is long, be prepared to honor interrupts.

© ® N oo

Do not alter the page mapping registers (through “map” in the STOR field) unless that is a
function of the microprogram.

6-10

SECTION 7
WRITING MICROPROGRAMS I

WRITING MICROPROGRAMS

1

With the information in this final section of Part II you will be able to write your microprograms so
that they will be accepted by the Paraphaser. If properly prepared, your microprogram will be
processed (using information in Section 8) to generate micro-object code which is ready to load in WCS
for execution in the computer. This section provides:

® A suggested method for preparing your microprograms.
® A description of the paraphraser labels, directives, fields, and other rules for preparation.
® Paraphraser control methods.

® Methods of making microprogram starting address assignments and making other modifications
using directives.

The information in this section requires as a prerequisite, a study of the preceding sections (particu-
larly Section 4 and 6).

7-1. PLANNING AND PREPARATION

Plan your microprogram essentially the same way as you would plan an Assembly language program
but base the objective on the concepts described in Section 1 for microprogramming. Steps that must be
taken to achieve the objective should be clear and organized. The logical sequence for the
microprogram can be prepared in flowchart form for easier programming.

When preparing your microprogram, take full advantage of your system’s EDIT/1000 capability. The
editor provides the tools for generating the source code and storing it in a disc file. The files can be

accessed later for editing and microassembling. Complete instructions for using the editor are con-
tained in the HP EDIT/1000 Reference Manual, part no. 92074-90001.

The paraphraser program MPARA will accept RTE text files (type 4) as source files. Its output consists
of two files as follows: a listing file (type 4) and a microcode file (type 5).

You can include along with the microinstructions in your program as many comments as you feel are
appropriate. Comments are to help you correct the program for errors or to help you explain your
program so that others can understand it at some later time. Paragraph 7-3 covers the details you will
need on these subjects.

7-2. THE PARAPHRASER

The Paraphraser is the microcoding language of the A700 processor. It is an RTE microassembler for
translating your microprogram “free format” source file into binary object code. After running the
paraphraser with the source microcode program, the object microcode is stored in a file, the number of
errors are printed on the output device, and optionally a listing of address labels are output.

7-1

Writing Microprograms

When writing your microprogram in the free-format manner allowed by the paraphraser, it is not
necessary to set up Tab spacing for fields or write a microorder for each field since the paraphraser will
automatically set up and fill in the fields as required for each word type.

The program Control Statement at the beginning of the microprogram provides you with the options of
producing an address label listing, and a floating field listing. These listings are described in Section 8.

The Paraphraser program is named MPARA. MPARA is written in Pascal with assembler en-
hancements, and it will run on an HP 1000 system in a 32k byte partition. MPARA must be loaded
into a disc file of your system. Loading and using the MPARA is covered in Section 8 of this manual.
MPARA allows your program to contain definitions of a combined total of about 600 address labels,
data labels, and microorders.

The resulting binary object code is in a format that is recognized by the WLOAD utility program used
to load the HP 12153A WCS card and to generate a PROM format for firmware to be installed on the
HP 12155A PCS card.

The rules for preparing a program for the paraphraser are described in this section. The hardware/
software environment for the paraphraser is described in Section 3.

7-3. PARAPHRASER RULES

The Paraphraser accepts 80-character variable-field-length source records. The 80-character line is
wide enough to contain the longest microorder phrase and a comment on the same line.

The “free-format” construction of microinstructions means that you can write them in sentence-like
groups of expressions. These expressions include microorders, which are translated by the paraphraser
into microcode. They do not have to be organized rigidly into fields of a certain number of bits, or in a
certain order as required by conventional microassemblers.

All the fields do not have to be specified in the microinstruction sentences since the paraphraser will
automatically put “default” microorders in the proper microinstruction fields. Operation Code (OP
Code) microorders determine the microinstruction word type and the field requirements.

Source programs contain the following elements:

e (Control statement.
e (Comments.

® Sentences which are composed of microinstruction specifications including field/microorder ex-
pressions or phrases, numbers, labels, and directives.

7-4. CONTROL STATEMENT

Every microprogram must start with a control statement in the first line. This statement must start in
column one with the syntax description file mnemonic MPARA. The MPARA mnemonic is followed by
one or more command options spaced by commas. The options are as follows:

7-2

Writing Microprograms

e Option L for a label listing.

e Option F for a floating field listing.

e An optional name and comment field that is displayed by WLOAD when reading microcode files.
Format: ‘ NAM, comment’;.

Examples of control statements are the following:

MPARA,L,F; #Control statement for label and floating field listings
MPARA,F, *NIS, Vector instruction set microcode’;
MPARA, ' SORT, integer sort microcode’,L;

7-5. COMMENTS

A comment either follows an asterisk (#) or it is enclosed in a set of brackets ({ ... }). Note that these
are the upper case brackets (equivalent to capital letters) on Hewlett-Packard terminals. Comments
are ignored by the paraphraser and passed on to the list device. Asterisk noted comments are useful for
general commenting. Bracketed comments are useful for numbering the entries in a microcode jump
table, for comments requiring several lines, and for nulling out sections of code as you go through the
debugging process.

Rules for comments are the following:
1. A comment can start in any column on any line.

2. When a comment is defined by an asterisk (#) the remainder of the line is ignored. The asterisk
must be repeated on each comment line.

3. When a comment is defined by an opening bracket ({) it must be completed with a closing bracket
(}) which need not be on the same line. A microinstruction can be included on the same line
following a closing bracket. If there is a opening bracket with no closing bracket, an error message
will be produced. An example of a comment follows where GOTO 0 is a microinstruction:

{THIS IS A COMMENT)} GOTO 0; «THIS IS ALSO A COMMENT
{THIS IS A COMMENT INCLUDING AN ASTERISK #} GOTO 0;
GOTO 0; #{ }THIS IS A COMMENT DUE TO THE ASTERISK

7-6. NUMBERS

MPARA lets you specify values that are decimal, hexadecimal or octal. The base of the number is
determined as follows:

a. If the number begins with “1-9”, it is interpreted as decimal number; for example, 2048 or 8196.

b. If the number begins with “0x” or “0X”, the rest of the number is interpreted as hexadecimal; for
example, OxFFFF or 0X1AF.

c¢. Ifthe number begins with “0” (and not “0x” or “0X”), the rest of the number is interpreted as octal;
for example, 0777 or 0127772.

7-3

Writing Microprograms

7-7. MICROINSTRUCTION SENTENCE

A microinstruction sentence is specified as a group of labels, directives, and microinstruction
specifications which is ended by a semicolon (;).

A microinstruction sentence can be on more than one line, and separate phrases in the same sentence
are separated by a comma (,). An asterisk noted comment can be included on any line following a
microinstruction sentence, phrase, or directive. Sentences, phrases, and paraphraser errors are
explained in detail below under Writing Microinstructions.

7-8. LABELS

MPARA allows you to give symbolic names to microaddresses. These names are called “labels.” A label
consists of a set of consecutive characters followed by a colon (:) and a blank. The accepted set of
characters in the label symbol are described by the following:

® First Character: A-Z, a-z, period (.), underscore (__), “at” symbol (@).

® Characters After First: A-Z, a-z, 0-9, period (.), underscore (__), “at” symbol (@).

® Termination: Label continues until a colon (:) is found.

® Length Allowed: Any length, up to a full line.

® Uniqueness: Labels must be unique in the first eight characters. Lower case letters are equivalent

to upper case letters (A-Z = a-z).

MPARA allows you to specify more than one label per sentence and to include multiple directives per
sentence.

The following is a simple example:

LABEL1: #*both labels have the same value
LABEL2: *
GOTO LABEL3; *

The following is a more complex example:

LABELY: sorigin 50$ *both labels will actually have the
LABEL2: svalue decimal 50, even though LABEL1
GOTO LABEL3; #occurs before origin directive

The following is an very complex example:

LABELY: $origin 50$ s*both labels will actually have the
LABEL2: $origin 100$ svalue decimal 200!

GOTO LABEL3 *Note that the last origin directive
$ORIGIN 200s ; *+ specified is the one that counts

The address of the last origin directive seen by MPARA takes precedence over any other origin
directive addresses.

7-4

Writing Microprograms

The following lines contain examples of both good and bad labels:

this_is_a_good_label: #good

hello: s#good

this_/is_a bad_label: #it has the unacceptable character (/)
8this_is_bad_also: +it begins with a number

hello_world: #these two labels are not unique in their
hello_worlds: sfirst eight characters.

woops *bad..the colon must follow the symbol

For good labels, the label takes on the value of the following microinstruction’s microaddress. For bad
or duplicated labels, an error message is produced and the rest of the microinstruction is skipped.

7-9. DIRECTIVES

Directives are commands you give to MPARA along with your microinstruction specifications. A
directive is used for one of the following: setting the current microaddress to a value, aligning the
microaddress forward to a 16 or 64 microword boundary, or defining new names for microorders.

When MPARA detects any bad directive, it will output an appropriate error message and skip the
current microinstruction.

The directives of MPARA begin and end with a dollar sign ($).

7-10. ORIGIN DIRECTIVES. Directives set the address where MPARA places an associated
microinstruction. The following examples give good and bad origin directives:

sorigin 77 sset origin to decimal 77

$origin Oxlas sset origin to hexadecimal 1A
sorigin 017¢ #set origin to octal 17

sorigin 01A$ sbad origin value

sorign 0$ *bad directive

s$origin 0 go_to_begins sbad directive (too many parameters)

Normally when MPARA begins, the current microaddress is automatically set to zero and incre-
mented for each successive microinstruction. However, with the origin directive you can set the
address to some other value.

The following specification for two simple microinstructions illustrates the way that the origin
directive interacts with labels and other directives:

$origin 50¢ sset the microaddress to 50 decimal,
OTHER_LABEL : sdefine a label

GOTO THIS_IS_A_LABEL; #this microinstruction is a jump
sorigin 100s$ sset the microaddress to 100 decimal
THIS_IS_A_LABEL: sdefine a label here

GOTO OTHER_LABEL; #this microinstruction is a jump

These two microinstructions perform a jump from microaddress 50 to microaddress 100 and back.
Note that the semicolon (;) is a special character. (However, any semicolons inside of comments are

ignored...see the comments section.) The origin directive has only one parameter: the value to which
the current microaddress should be set.

7-5

Writing Microprograms

7-11. ALIGN DIRECTIVE. Sometimes it is convenient to be able to align the current
microaddress so that bits 0,1,2,3,4 or more of the microaddress are zero. With this processor, you will
most often align to a 64-word block. You might do this to group sections of code to best take advantage
of short jumps.

Also, you will align to 16-word blocks to set up jump tables for use with the CT30 and CT74
microorders. The format of the align command is as follows:

salign num$

where num is the microaddress block to which to align.

Exarmple:
ENTER_FOR_JUMPTABLE: #this microinstruction
$origin 20$ *+ does a
GOTO JTABLE, CT30; *+ computed jump
JTABLE: $align 16$ #align this jumptable to location 32.
{00} GOTO LABEL1; *
{01} GOTO LLABELZ2; + (refer to Table 4-2 for
{02) GOTO |.ABEL3; *+ & description of CT30)
{etc }

7-12. DEFINE DIRECTIVE. The define directive allows the user to specify the values to be
assigned to microorders that are not already defined in MPARA. The format of the define directive is

$DEFINE fld/ord values$

where fld is the name of the field in which you want to define the microorder, ord is the name of the
microorder you want to define, and value is the numerical value you want to assign to the microorder.

The symbol you specify for the microorder must follow the same character selection rules as for a label.
This directive is useful for defining the names of bit masks in the immediate data field, defining the
values of labels that exist outside of your source file, or for giving new and meaningful names to the
register file registers.

Some examples follow:

$DEFINE ADRL/LOOP 0x640$ #this is a label [’1] use later
$DEFINE DAT/BITMASK 0xS5S55%¢ #this is an immediate data symbolic label

$DEFINE ABUS/F1L 016$ sdefine a name for

$DEFINE BBUS/F1L 016$ + a scratch file register to be used
$DEFINE STOR/F1L 016% *+ to hold a floating point operand.
CALL LOOP; suse the label I defined.

F1L:=F1L AND BITMASK; suse the scratch file register and

#the immediate data label I defined.

7-6

Writing Microprograms

7-13. MICROINSTRUCTION SPECIFICATIONS

Microinstruction specifications can be freely combined with labels and directives in the same
microinstruction sentence as required for the most efficient micromachine operation.

The specifications of the microinstruction sentence consist of the microorders defined in Section 4
along with any acceptable numerical parameters added by the microprogrammer. They can be written
either as field/microorder expressions which force the microorder into the specified field unless it
produces an unacceptable microinstruction, or simply as phrases acceptable to the paraphraser for
interpretation into field/microorder expressions as defined below under Description of Phrases.

7-14. WRITING MICROINSTRUCTIONS

Microinstructions are written in free-form sentences that are to be translated into binary code by the
paraphraser. It is not necessary to specify all fields of the microinstructions since the specified field or
fields will cause the paraphraser to produce defaulted microorders in the remaining fields as required.
The defaulted microorder requirements are determined by the particular word type of the
microinstruction; and the particular word type is determined by the op code (operation code) field.
Sometimes the word type is specified in your program but usually it is deduced by the paraphraser
from the phrase you have written for some other field. When a microorder is specified for a particular
field (called a “forced field phrase”), the microorder is forced into that field as long as it is acceptable to
the paraphraser.

When your microprogram is processed by the paraphraser, it interpretes the phrases, directives, and
labels, adds defaulted microorders according to word type, sorts them into field/microorder format, and
then translates the field/microorders into microcode to form complete microinstructions. An example
microprogram source file is shown in Figure 7-1.

7-15. SENTENCES

The microinstruction sentences of your source file are a group of characters followed by a semicolon (;).
MPARA translates your sentences into microinstructions. MPARA does not limit your options in
expressing microinstructions, it increases it.

You can represent any valid microinstruction by an MPARA sentence. Also, it is extremely versatile;
e.g., MPARA will let you insert mnemonics in the fields, and even will let you use phrases that look
like PASCAL code such as (a: =b+100;). The free-format syntax of MPARA gives you lots of room for
adding comments (a highly recommended practice). See the sample microprograms in Section 12 for
examples of microcode written for MPARA.

7-7

Writing Microprograms

Note: Numbers on the left are line numbers in the source file.

01 MPARA,L; #memory reference utilities <811110.1357>

02

03 $define adrl/TDI_DISABLE 0x7d0s$

04

05 INDREAD: sorigin 0x7c0$ #INDIRECT RESOLUTION UTILITY

06 nop:=t, rdb; #»1st level: start new read

07 if not b15 then rtn, *» if address was direct then return
08 s6:=ma+one; + save address+1 of read in s6

09 nop:=t, rdb; #2nd level: start new read

10 if not b15 then rtn, # if address was direct then return
11 s6:=ma+one; *+ save address+1 of read in s6

12 indrloop: nop:=t, rdb; #3rd level and beyond: start new read
13 if not b15 then rtn, + if address was direct then return
14 s6:=ma+one; + save address+1 of read in s6

15 call TDI_DISABLE, nop:=memr; #assure that interrupts are enabled
16 goto indrloop; #loop until indirect is resolved

Line 01: Control Statement. MPARA required for the paraphraser to read its syntax description file when
executing, L is an option that produces a label listing, and anything after the asterisk is a comment (*memory.....).

Line 03: Directive to MPARA defining a symbolic label for the subroutine TDI__DISABLE which is presumably in
another file or in the A700 base set ROMs.

Line 05: Directive to MPARA that specifies that the current microinstruction will be placed at microaddress 7C0
(hexadecimal). it defines the symbolic label for the microaddress as INDREAD in the ADRL field.

Line 06: Two microinstruction phrases. The (nop:=t) phrase means that MPARA will set the STOR field to the
NOP microorder, the ALU field to the ADBC microorder (pass from BBUS to YBUS), and the BBUS fieldto the T
microorder. The (rdb) phrase means that the SPO field will contain the RDB microorder. Note that these phrases
could have been reversed, or on different lines since the MPARA language is free-format.

Lines 07 and 08: Two phrases of one complete microinstruction sentence. The (if not b15 then rtn) is a conditional
phrase that says that MPARA will set the OP2 field to the RTNF microorder, and the CNDX field to the B15
microorder. The (s6:=ma-+one) is an arithmetic phrase which says that MPARA will set the STOR field to the S6
microorder (a scratch file register), the ALU field to the ADBC microorder, the BBUS field to the MA microorder,
and the SPO field to FCIN.

Lines 09 through line 14: Contains microinstructions identical to those explained previously.

Line 12: Defines symbolic label. Creates microorder INDRLOOP in the ADRL field with a value of 7C4
(hexadecimal).

Line 15: Contains a branch phrase that loads the OPS5 field with JSBL, and the ADRL field will contain the value of
the TDI__DISABLE microorder defined in line 03. The (nop:=memr) is an arithmetic phrase similar to line 06,
except that the BBUS field will contain the MEMR microorder.

Line 16: Contains-a branch phrase that causes the microprogram to loop. Note this microinstruction specifies the
contents of the OP5 and ADRL fields but does not specify the BBUS, ALU or STOR fields. These unspecified
fields default to the ACC, ZERO and NOP fields, respectively.

Figure 7-1. Example of Microprogram Source File

7-8

Writing Microprograms

7-16. PHRASES

Sentences in MPARA, as in the natural language analogy, can be subdivided into phrases. A phrase in
MPARA is a group of characters that specifies one or more microorders. The statement “one or more” is
important because some of the microorders of the micromachine are interrelated; e.g., the source and
destination of an ALU operation along with the ALU operation itself.

Phrases are a “short cut” to writing microcode. For example, MPARA allows you to write the phrase
“A :=B” to specify that the STOR field gets the A microorder, the BBUS field gets the B microorder,
and the ALU field gets the ADBC microorder. Written out completely in microorders this is “STOR/A,
BBUS/B, ALU/ADBC”, where a “microorder” inserted in a “field” is represented as “field/microorder.”

However, you must have an understanding of the micromachine (covered in Section 2). You should
also have a working knowledge of the microorders, the fields, and the microinstruction Word Type
formats (covered in Section 4). You should know what fields you are using when you specify a phrase.
Because you are microcoding, you probably want to optimize the given task. Also, the amount of
micromemory available is limited so you’ll want to do as much operation in one microcycle as possible.
This will cause your microprograms to run faster.

Phrases recognized by the paraphraser are described in detail in this section of the manual under
Description of Phrases.

7-17. WRITING PHRASES

Phrases in MPARA are separated by commas, and the last phrase of a microinstruction sentence ends
with a semicolon. You can chain together phrases until MPARA accepts your sentence or finds an
error in it. If MPARA accepts your sentence, then it will produce a microinstruction in the microcode
file. If MPARA does finds an error, it will put an error message in your listing file and skip to the next
microinstruction sentence.

As with any MPARA sentence, you need not put the whole phrase on one line of your source file. Here
are some examples:

IF NOT YZ #[f the YBUS was not zero in the
GOTO 63; spreceeding cycle, then branch.
IF INTP CALL SUBRO1; #If interrupts are present then

scall a subroutine

Note that some phrases have more than one meaning. For instance, the GOTO 0 phrase can mean
OP4/JMP,ADRS/0 for a short jump or OP5/JMPL,ADRL/O for a long jump. In any case, MPARA will
attempt to chose the appropriate meanings so that a valid microinstruction will be constructed.

7-18. DEFAULTED FIELDS

When your microinstruction sentence does not fill every field in the word type you are using, MPARA

will attempt to default the remaining fields. However, not all fields can be reasonably defaulted (refer
to Bad Field Default below).

One example of field defaulting is the following sentence:
NOP;

in which the OP1 field gets the no-operation (NOP) microorder, the SP2 field defaults to NOP, the SP0
field defaults to NOP, the ABUS defaults to ACC, the BBUS defaults to ACC, the STOR field defaults
to NOP, and the ALU field defaults to ZERO.

7-9

Writing Microprograms

An even briefer way to specify a NOP microinstruction is to write semicolon (;) as the sentence. In this
case all of the fields default to the same microorders as when “NOP;” is the sentence and the OP1 field
defaults to NOP.

The default values are noted in the summary of microorders in Appendix B.

The following paragraphs describe some of the errors that MPARA looks for in your microinstruction
sentences. The Section 8 on Using the Paraphraser covers the listing file and has a complete listing of
errors and examples.

7-19. FIELD CONFLICTS. Ifthe sentence that you have specified is written such that it tries to
fill a field more than once, it will produce an error. As an example, if your sentence was the following:

A:=B, B:=A;

the paraphraser would be required to fill three fields of the microinstruction twice (which it cannot do).

7-20. WORD TYPE CONFLICT. Your sentence selects microorders that exist only in fields of
different word types. For example, an immediate data (IMM) of operation 6 (OP6) cannot occur in the
same microcycle as a jump (JMP) of operation 4 (OP4); thus an error is produced if an attempt was
made to program these in the same microinstruction.

7-21. UNRECOGNIZABLE PHRASE. If MPARA cannot match one or more of your phrases to
the acceptable phrases, it will produce an error. For example, if you made a typing mistake and
specified “GOTTO 0;” as a microinstruction instead of “GOTO 0”, MPARA would not recognize the
phrase.

7-22. BAD FIELD DEFAULT. Not all of the fields have default values. For example, if you
specified a phrase that only filled the ADRL (Long Branch Address) field, the paraphraser would not
know whether you wanted the OP5 field to default to JMPL or JSBL. Also, the Condition Field
(CNDX) and ALU Special (ALUS) fields do not have default values. Bad Field Defaults will produce
errors and the error messages will be stored in the list file.

7-10

Writing Microprograms

7-23. DESCRIPTION OF PHRASES

Phrases accepted by the paraphraser are described below under several categories as follows:

a. Branching Phrases

b. Arithmetic Phrases

c. Conditional Phrases
d. Special Phrases

e. Field-Forcing Phrases

The phrases you can use are listed below along with the resulting fields for each, and the meaning of
the phrase.

A summary of phrases is provided in Appendix C.

7-24. BRANCHING PHRASES

Branching phrases are used for either short jumps to the current 64-word memory block or long jumps
to anywhere in the 16k-word control memory. Branching word types are either Word Type 4 for GOTO
jumps to address; or Word Type 5 for CALL jumps to subroutine; or Word Type 1 miscellaneous
branches for return from subroutine, no operation, or to decode a macroinstruction. Branching phrases
are described below.

JUMP TO ADDRESS BRANCHING PHRASES

GOTO adr
Fields: OP4/JMP ADRS/adr.
Meaning: Short jump to address (adr).

GOTO adr
Fields: OP5/JMPL ADRL/adr.
Meaning: Long jump to address (adr).

LGOTO adr
Fields: OP5/JMPL ADRL/adr.

Meaning: Long jump to address (adr).

SGOTO adr
Fields: OP4/JMP ADRS/adr.
Meaning: Short jump to address (adr).

7-11

CALL adr
Fields:

Meaning:

CALL adr
Fields:

Meaning:

LCALL adr
Fields:

Meaning:

SCALL adr
Fields:

Meaning:

GOTOTBL adr
Fields:

Meaning:

CALLTBL adr
Fields:

Meaning:

7-12

Writing Microprograms

JUMP TO SUBROUTINE BRANCHING PHRASES

OP5/JSBL ADRL/adr.

Long jump to subroutine (adr).

OP4/JSB ADRS/adr.
Short jump to subroutine (adr).

OP5/JSBL. ADRL/adr.

Long jump to subroutine (adr).

OP4/JSB ADRS/adr.

Short jump to subroutine (adr).

JUMP TO TABLE BRANCHING PHRASES

OP5/JMPL ADRL/adr ALU/SPEC.

See Note below on the decoding of macroinstructions below.

OP5/JSBL ADRL/adr ALU/SPEC

See Note below on the decoding of macroinstructions.

NOTE

GOTOTBL and CALLTBL are the phrases generally used for
decoding macroinstructions. After the processor executes the
JTAB microorder in the control firmware, all macroinstructions
in the 101XXX and 105XXX range are decoded to blocks of 16
consecutive opcodes. Once in the jump table, the firmware does a
GOTOTBL to a consecutive block of 16 microaddresses, based on
the low four bits of the macroinstruction in CT (instruction
register).

For example, if the macroinstruction in CT (instruction register)
is 105005 the GOTOTBL phrase is “goto 0x1000;”, the firmware
will branch to location 1005 (hexadecimal). You should place
jumps to your code in these locations, or jumps to the unim-
plemented opcode handler in the control firmware. CALLTBL is
the same as GOTOTBL except that it results in a “jump to
subroutine” (the current microaddress plus one is pushed onto the
subroutine stack).

Writing Microprograms

The miscellaneous branches are the following:

NOP

Field: OP1/NOP

Meaning: A NOP (no operation) will not perform a branch or return; instead, the current
address is incremented to the next microinstruction.

JTAB

Field: OP1/JTAB.

Meaning: The JTAB microorder is a special microoder for decoding macroinstructions. Do not
use this microorder unless you are changing the method of decoding mac-
roinstructions and handling interrupts. JTAB performs a “jump to macroinstruction
subroutine” to a microaddress in the range of hexadecimal 100-1FF (refer to the
base set subroutine for FPLA).

RTN

Field: OP1/RTN

Meaning: Return to the microaddress on the micromachine stack, and decrement the stack
pointer. Used for returning from subroutines that write, or to return from your
microroutine to the control firmware.

7-25. ARITHMETIC PHRASES

Arithmetic phrases allow the user to specify the microorders for arithmetic operations. The A700
computer has a three address architecture, meaning that the inputs to the ALU come from two sources
that you specify and the output goes to a register that you specify.

The value on the A-Bus (as specified by the ABUS or DAT fields) can be one of the internal-register file
registers or the immediate data value specified in the microinstruction. The value on the B-Bus (as
specified by the BBUS field) can be any of the readable registers on the machine. The destination of the
Y-Bus (as specified by the STOR field) can be any of the writable registers on the machine, or to the bit
bucket (NOP).

ALU operations and shift operations in phrases are signified by “ := ” where the register to be written
in the STOR field (Y-Bus) is on the left of the expression and the source register and input to the ALU
(abus or bbus) is on the right of the expression.

NOTE

In the arithmetic phrases given below, the lower case (non-
capital) letters represent registers specified by the programmer.
Where a register is represented by a bus, (e.g., abus, bbus) the bus
indicated is the input to the ALU that will be used to transfer the
contents of named register (internal or any readable register for
the abus or bbus, respectively).

The capital letter mnemonics on the left of the resulting field
expressions are the names of the microinstruction fields.

7-13

Writing Microprograms

Also, shift and rotate modifiers can be added to the arithmetic phrases, as can microorders that modify
the carry-in of the ALU.

Arithmetic phrases are divided into the following categories:

Basic arithmetic phrases;

a.
b. Arithmetic phrases with shift or rotate;

1

Arithmetic phrases modifying carry-in;

e

Arithmetic phrases using alu special field;

e. Arithmetic phrases with immediate data.

7-26. BASIC ARITHMETIC PHRASES. The basic arithmetic phrases allow you to specify
ALU operations involving the ALU field, BBUS field, STOR field, and ABUS field. This includes
operations such as passing the value of a register through the ALU to another register, or adding the
contents of two registers and storing the results in another register.

The basic arithmetic phrases are described below showing the resulting fields and the meaning of the
phrase:

BASIC ARITHMETIC PHRASES

stor := bbus

Fields: ALU/adbc STOR/stor BBUS

Meaning: The value of the register specified as “bbus” is passed through the ALU and stored
in the register specified as “stor.”

stor := abus

Fields: ALU/adac STOR/stor ABUS/abus

Meaning: The value of the register specified as “abus” is passed through the ALU and stored
in the register specified as “stor.”

stor := NOT bbus
Fields: ALU/ecmbe STOR/stor BBUS/bbus
Meaning: The one’s complement of the value of the register specified as “bbus” is stored in the
register specified as “stor.”
stor := NOT abus

Fields: ALU/cmac STOR/stor ABUS/abus

Meaning: The one’s complement of the value of the register specified as “abus” is stored in the
register specified as “stor.”

stor := ONES

Fields: ALU/xnor STOR/stor BBUS/ACC ABUS/ACC

Meaning: The 16-bit quantity which is all ones is stored into the register specified as “stor.”
Note that “all ones” is the two’s complement representation of number “—1.”

7-14

Writing Microprograms

stor := 2ZEROS
Fields: ALU/xor STOR/stor BBUS/ACC ABUS/ACC

Meaning: The 16-bit quantity which is all zeros is stored into the register specified as “stor.”

stor := ZERD
Fields: ALU/zero STOR/stor

Meaning: The 16-bit quantity which is all zeros is stored into the register specified as “stor.”
Note that this operation will not update the CF, Y15, B15, SF and ALOV conditions.

stor := NOT abus AND bbus
stor := bbus AND NOT abus

Fields: ALU/cand STOR/stor BBUS/bbus ABUS/abus

Meaning: The one’s complement of the register specified as “abus” is logically ANDed with the
content of the register specified as “bbus”,and stored into the register specified as
“stor.”

stor := abus - bbus

Fields: ALU/sbbc STOR/stor BBUS/bbus ABUS/abus

Meaning: The result of subtracting the content of the “bbus” register from the content of the
“abus” register is stored in the “stor” register.

stor := bbus - abus
Fields: ALU/sbac STOR/stor BBUS/bbus ABUS/abus

Meaning: The result of subtracting the content of the “abus” register from the content of the
“bbus” register is stored in the “stor” register.

stor := abus + bbus
stor := bbus + abus

Fields: ALU/adde STOR/stor BBUS/bbus ABUS/abus

Meaning: The result of summing the content of the “abus” register with the content of the
“bbus” register is stored in the “stor” register.

stor := abus XNOR bbus
stor := bbus XNOR abus

Fields: ALU/xnor STOR/stor BBUS/bbus ABUS/abus

Meaning: The result of exclusive NORing the content of the “abus” register with the content of
the “bbus” register is stored in the “stor” register.

stor := abus XOR bbus
stor := bbus XOR abus
Fields: ALU/xor STOR/stor BBUS/bbus ABUS/abus

Meaning: The result of exclusive ORing the content of the “abus” register with the content of
the “bbus” register is stored in the “stor” register.

7-15

Writing Microprograms

stor := abus AND bbus
stor := bbus NAND abus

Fields: ALU/and STOR/stor BBUS/bbus ABUS/abus

Meaning: The result of ANDing the content of the “abus” register with the content of the
“bbus” register is stored in the “stor” register.

stor := abus NAND bbus
stor := bbus NAND abus

Fields: ALU/mand STOR/stor BBUS/bbus ABUS/abus

Meaning: The one’s complement of the logical AND of the contents of the “abus” register and
the “bbus” register is stored into the “stor” register.

stor := abus I0R bbus
stor := bbus IOR abus

Fields: ALU/ior STOR/stor BBUS/bbus ABUS/abus

Meaning: The inclusive OR of the contents of the “abus” register and the “bbus” register is
stored in the “stor” register.

stor := abus INOR bbus
stor := bbus INOR abus

Fields: ALU/inor STOR/stor BBUS/bbus ABUS/abus

Meaning: The inclusive NOR of the contents of the “abus” register and the “bbus” register is
stored in the “stor” register.

7-217. ARITHMETIC PHRASES WITH SHIFT OR ROTATE. The arithmetic phrases with
shift or rotate allow single- or double-word shifts of values that can be specified in basic arithmetic
phrases.

ARITHMETIC PHRASES WITH SHIFT OR ROTATE

stor := LL1 (right side of basic arithmetic phrase)

Field: SPO/LL1 or SPULL1

Meaning: The result of the basic arithmetic phrase is logically left-shifted and stored in the
“stor” register.

stor := LR1 (right side of basic arithmetic phrase)
Field: SPO/LR1 or SP1/LR1

Meaning: The result of when the basic arithmetic phrase is logically right-shifted and stored
in the “stor” register.

stor := RL1 (right side of basic arithmetic phrase)

Field: SPO/RL1 or SP1/RL1
Meaning: The result of the basic arithmetic phrase is left-rotated and stored in the “stor”
register.

7-16

Writing Microprograms

stor := RR1 (right side of basic arithmetic phrase)

Field: SPO/RR1 or SP1/RR1
Meaning: The result of the basic arithmetic phrase is right-rotated and stored in the “stor”
register.

stor := AL1 (right side of basic arithmetic phrase)
Field SPO/AL1 or SPl/AL1

Meaning: The result of when the basic arithmetic phrase is left-shifted arithmetically and
stored in the “stor” register.

stor := AR1 (right side of basic arithmetic phrase)
Field: SPO/AR1 or SP1/AR1

Meaning: The result of the basic arithmetic phrase is right-shifted arithmetically and stored
in the “stor” register.

7-28. ARITHMETIC PHRASES WITH CARRY-IN MODIFIER. The arithmetic phrases

with carry-in modifier allow the user to specify microorders in the ALU, ABUS, BBUS, and STOR
fields, and the FCIN and ACF microorders in the SPO and SP1 fields.

ARITHMETIC PHRASES WITH CARRY-IN MODIFIER

stor := bbus + ONE
Fields: ALU/adbc STOR/stor BBUS/bbus SPO/FCIN or SP1/FCIN

Meaning: The content of the “bbus” register plus one is stored in the “stor” register.

stor := abus + ONE

Fields: ALU/adac STOR/stor ABUS/abus SPO/FCIN or SP1/FCIN

Meaning: The content of the “abus” register plus one is stored in the “stor” register.
stor := - bbus
stor := NOT bbus + ONE

Fields: ALU/cmbe STOR/stor BBUS/bbus SPO/FCIN or SP1/FCIN

Meaning: The two’s complement of the “bbus” register is stored in the “stor” register.
stor := - abus
stor := NOT abus + ONE

Fields: ALU/cmac STOR/stor ABUS/abus SPO/FCIN or SP1/FCIN

Meaning: The two’s complememt of the “abus” register is stored in the “stor” register.

stor := abus - bbus - ONE
Fields: ALU/sbbec STOR/stor BBUS/bbus ABUS/abus SPO/FCIN or SP1/FCIN

Meaning: The result of subtracting the content of the “bbus” register and the value one from
the “abus” register is stored in the “stor” register.

7-17

Writing Microprograms

stor := bbus - abus - ONE
Fields: ALU/sbac STOR/stor BBUS/bbus ABUS/abus SPO/FCIN or SP1/FCIN

Meaning: The result of subtracting the content of the “abus” register and the value one from
the “bbus” register is stored in the “stor” register.

stor := bbus + abus + ONE
stor := abus + bbus + ONE

Fields: ALU/adde STOR/stor BBUS/bbus ABUS/abus SPO/FCIN or SPI/FCIN
Meaning: The sum of the “abus” register plus the “bbus” register plus one is stored in the

“stor” register

stor := bbus + CF

Fields: ALU/adbec STOR/stor BBUS/bbus SPO/ACF or SP1/ACF
Meaning: The sum of the “bbus” register plus the value of the carry flag is stored in the “stor”
register.

stor := abus + CF

Fields: ALU/adac STOR/stor ABUS/abus SPO/ACF or SP1/ACF
Meaning: The sum of the “abus” register plus the value of the carry flag is stored in the “stor”
register.

stor := NOT bbus + CF
Fields: ALU/cmbe STOR/stor BBUS/bbus SPO/ACF or SP1/ACF

Meaning: The sum of the one’s complement of the “bbus” register and the carry flag is stored
in the “stor” register.

stor := NOT abus + CF
Fields: ALU/cmac STOR/stor ABUS/abus SPO0/ACF or SP1/ACF

Meaning: The sum of the one’s complement of the “abus” register and the carry flag is stored
in the “stor” register.

stor := abus - bbus - BR
Fields: ALU/sbbe STOR/stor BBUS/bbus ABUS/abus SPO/ACF or SP1/ACF

Meaning: The result of subtracting the content of the “bbus” register and content of the carry
flag from the “abus” register is stored in the “stor” register. The content of the carry
flag is the borrow (BR).

stor := bbus - abus - BR

Fields: ALU/sbac STOR/stor BBUS/bbus ABUS/abus SP0/ACF or SP1/ACF

Meaning: The result of subtracting the content of the “abus” register and the content of the
carry flag from the “bbus” register is stored in the “stor” register. The content of the
carry flag is the borrow (BR).

7-18

Writing Microprograms

stor := abus + bbus + CF
stor := bbus + abus + CF

Fields: ALU/adde STOR/stor BBUS/bbus ABUS/abus SPO/ACF or SP1/ACF

Meaning: The sum of the “abus” register, the “bbus” register, and the content of the carry flag
is stored in the “stor” field.

7-29, ARITHMETIC PHRASES WITH ALU SPECIAL. Microinstruction sentences which
have microorder SPEC (Special) in the ALU field take on a special meaning. The third field that
contains SPO and SP1 in word types 1, 2, 3, and 4 becomes the ALUS field and the word types are
defined as 1S, 28, 3S, and 4S. The ALUS field must contain the ALUS microorders. The phrases for
these microorders are listed below.

ARITHMETIC PHRASES WITH ALU SPECIAL

stor := SWAP (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/SWAP

Meaning: The upper byte of the “bbus” register is stored in the lower byte of the “stor”
register, and the lower byte of the “bbus” register is stored in the upper byte of the
“stor” register.

ator := SW2U ¢ bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/SWZU

Meaning: The upper byte of the “bbus” register is stored in the lower byte of the “stor”
register, and the upper byte of the “stor” register is set to zero.

stor := SWZL (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/SWZL
Meaning: The lower byte of the “bbus” register is stored in the upper byte of the “stor”
register, and the lower byte of the “stor” register is set to zero.
stor := 2UY (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/ZUY
Meaning: The lower byte of the “bbus” register is stored in the lower byte of the “stor” register,
and the upper byte of the “stor” register is set to zero.
stor := ZLY (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/ZLY
Meaning: The upper byte of the “bbus” register is stored in the upper byte of the “stor”
register, and the lower byte of the “stor” register is set to zero.
stor := SRG (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/SRG

Meaning: The content of the “bbus” register is operated on by the SRG function, and the result
is stored in the “stor” register.

7-19

Writing Microprograms

stor := RL4 (bbus=)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/RL4

Meaning: The content of the “bbus” register is rotated left four bits and the result is stored in
the “stor” register.

stor := ASG (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ALUS/ASG

Meaning: The content of the “bbus” register is operated on by the ASG function, and the result
is stored in the “stor” register.

stor := UMPY (bbus ,abus)
stor := UMPY (bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/UMPY

Meaning: Perform the unsigned multiply step on the registers specified as “bbus” and “abus”
and store the result into the “stor” register.

stor := TMPY (bbus,abus)
stor := TMPY (bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/TMPY

Meaning: Perform the two’s-complement multiply step on the registers specified as “bbus” and
“abus” and store the result into the “stor” register.

stor := SM2C (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/SM2C

Meaning: Perform the signed-magnitude to two’s-complement conversion on the “bbus”
register and store the result into the “stor” register.

stor := TMLC (bbus ,abus)
stor := TMLC (bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/TMLC

Meaning: Perform the last cycle of the two’s complement multiply on the “bbus” register and
store the result into the “stor” register.

stor := DNRM (bbus, abus)
stor := DNRM (bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/DNR
Meaning: Perform the double-normalize step on the contents of the “bbus” register, and store
the result into the “stor” register.
stor := SNRM (bbus)
Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/SNR

Meaning: Perform the single-normalize step on the “bbus” register contents and store the
result into the “stor” register.

7-20

Writing Microprograms

stor := DIV (bbus,abus)
stor := DIV (bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/DIV

Meaning: Perform the two’s-complement divide step on the contents of the “bbus” and “abus”
registers and store the result into the “stor” register.

stor := DIV1 (bbus ,abus)
stor := DIV1 (bbus)

Fields: ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/DIV1

Meaning: Perform the two’s-complement first divide step on the contents of the “bbus” and
“abus” registers and store the result into the “stor” register.

7-30. ARITHMETIC PHRASES WITH IMMEDIATE DATA. Microinstructions with the
arithmetic phrase Immediate Data will have microorder IMM (Immediate) in the first field (op code
field) and the data in the DAT (Data) field. These microinstructions are word type 6. The phrases for
word type 6 are listed below with their resulting fields and meaning.

ARITHMETIC PHRASES WITH IMMEDIATE DATA

stor := data
Fields: ALU/adac STOR/stor DAT/data OP6/IMM

Meaning: The value of “data” is stored into the “stor” register.

stor := NOT data
Fields: ALU/cmac STOR/stor DAT/data OP6/IMM

Meaning: The one’s complement of “data” is stored into the “stor” register.

stor := NOT data AND bbus
stor := bbus AND NOT data

Fields: ALU/cand STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The one’s complement of “data” is logically ANDed with the contents of the “bbus”
register and the result is stored into the “stor” register.

stor := data - bbus

Fields: ALU/sbbc STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The content of the “bbus” register is subtracted from “data” and the result is stored
in the “stor” register.

stor := bbus - data

Fields: ALU/sbac STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The value of “data” is subtracted from the content of the “bbus” register and the
result is stored in the “stor” register.

7-21

Writing Microprograms

stor := bbus + data
Fields: ALU/adde STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The value of “data is added to the content of the “bbus” register and the result is
stored in the “stor” register.

stor := data XNOR bbus
stor := bbus XNOR data

Fields: ALU/xnor STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The content of the “bbus” register and “data” are exclusive-NORed and the result is
stored in the “stor” register.

stor := data XOR bbus
stor := bbus XOR data

Fields: ALU/xor STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The content of the “bbus” register and “data” are exclusive-ORed and the result is
stored in the “stor” register.

stor := data AND bbus
stor := bbus AND data

Fields: ALU/and STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The content of the “bbus” register and “data” are logically ANDed and the result is
stored in the “stor” register.

stor := data NAND bbus
stor := bbus NAND data

Fields: ALU/mand STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The content of the “bbus” register and “data” are logically NANDed and the result is
stored in the “stor” register.

stor := data I0OR bbus
stor := bbus I0OR cdata

Fields: ALU/ior STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The contents of the “bbus” register and “data” are logically inclusive-ORed and the
result is stored in the “stor” register.

stor := data INOR bbus
stor := bbus INOR data

Fields: ALU/inor STOR/stor BBUS/bbus DAT/data OP6/IMM

Meaning: The contents of the “bbus” register and “data” are logically inclusive-NORed and
the result is stored in the “stor” register.

7-22

Writing Microprograms

7-31. CONDITIONAL PHRASES

Conditional phrases provide the means to specify conditional branching, conditional return, and
conditional execution of the SPO field. These phrases all start with “IF”, and allow the specification of
the OP2, OP3, and CNDX (condition) fields.

7-32. CONDITIONAL BRANCHING PHRASES. The conditional branching phrases given
below result in a jump to a microaddress that is within the same 64-word block as the current address
plus one. The jump is either to the address or subroutine that is specified by “adr” in the ADRS field.

The following phrases are recognized for conditional branching:

CONDITIONAL BRANCHING PHRASES

IF ¢ndx GOTO adr
Fields: OP3/JMPT CNDX/cndx ADRS/adr
Meaning: If condition is true, then jump to the address specified in ADRS.

IF NOT cndx GOTO adr
Fields: OP3/JMPF CNDX/cndx ADRS/adr

Meaning: If condition is not true, then jump to the address specified in ADRS.

IF cndx CALL adr
Fields: OP3/JSBT CNDX/ecndx ADRS/adr

Meaning: If condition is true, then jump to the subroutine at the address specified in ADRS.

IF NOT cndx CALL adr

Fields: OP3/JSBF CNDX/cndx ADRS/adr
Meaning: If condition is not true, then jump to the subroutine at the address specified in
ADRS.

7-33. CONDITIONAL RETURN PHRASES. The return from a conditional return phrases is
to the microaddress on the micromachine stack, and the stack pointer is decremented. Conditional
return phrases are the following:

CONDITIONAL RETURN PHRASES

IF cndx THEN RTN
Fields: OP2/RTNT CNDX/cndx

Meaning: Return if condition is true.

IF NOT endx THEN RTN
Fields: OP2/RTNF CNDX/cndx

Meaning: Return if condition is false.

7-23

Writing Microprograms

7-34. CONDITIONAL SP0 PHRASES. There are some hardware limitations to conditional
SPO phrases as follows: Conditional shifts and rotates are not allowed (this includes the ALUS field),
and the LDQ special can not be performed conditionally. (MPARA does not check for this limitation.)
The conditional SP0 phrases are the following:

CONDITIONAL SP0 PHRASES

IF endx THEN sp0
Fields: OP2/SPOT CNDX/cndx SP0/sp0

Meaning: Execute microorder in SPO field if condition is true.

IF NOT cndx THEN sp0
Fields: OP2/SPOF CNDX/cndx SP0/sp0

Meaning: Execute microorder in SPO field if condition is false.

7-35. SPECIAL PHRASES

The microorders in the SP0, SP1, and SP2 can be specified simply as the microorder mnenonic. Note
that some of the microorders are associated with ALU operations, and the ALU phrases specify some
specials, such as FCIN. Some examples are the following:

SPECIAL PHRASES

Special Phrase Resulting Field Meaning
sp0 SP0/sp0 sp0 microorder placed in SPO field
spl SP1/spl spl microorder placed in SP1 field
sp2 SP2/sp2 sp2 microorder placed in SP2 field

7-36. FIELD FORCING PHRASES

A field forced phrase is one in which the microorder is given along with the field in which it is to be
placed. Several examples of field forced phrase formats are as follows:

OP1/0p1 where an op field 1 microorder (e.g., JTAB) is specified for field OP1,;
CNDX/endx where a condition field microorder (e.g., CF) is specified for field CNDX;
DAT/dat where data is specified for immediate data for field DAT.

If a microorder is written in “forced field” form which does not belong in the specified field, an error
message will be generated during the microassembling process.

7-24

SECTION 8
USING THE PARAPHRASER I

PART I
Microprogramming Support
Software and Hardware

USING THE PARAPHRASER

This section provides instructions for actually microassembling your microprogram after you have
prepared the microprogram using information from Part II of this manual. The MPARA paraphraser
microassembler program must be installed in the RTE operating system of your computer. Refer to
Section 3 of this manual for guidelines on preparing for microprogramming.

This section provides the information on executing the paraphraser microassembler and information
on its output such as the following:

e Binary object code (microcode) file

® Address Label listing

® Floating field listing of the microorders

e Error messages output to list device

The microcode file can be downloaded into the WCS using the WLOAD utility (and the ID.41 WCS
driver). WLOAD also generates binary code formatted for burning PROMs.

8-1. LOADING MPARA

The paraphraser microassembler program MPARA requires a 32k word memory partition, and it has
five segments. MPARA is loaded as follows using the relocating linking loader program LINK:

1. Call LINK from the file manager
FMGR: RU,LINK

2. Load MPARA using LINK command files as follows:

LI,$PLIB

SZ,32 (32k partition SiZe)
RE,%MPARA (RElocate file)
EN (ENd and Exit)

8-2. USING THE PARAPHRASER MICROASSEMBLER

As described in Section 7, the paraphraser microassembler accepts “free format” microprogram
sentences and translates them to produce the binary object code of the microprogram. The program
control statement at the beginning of the program determines if a label listing and a floating field
listing will be output on the list device. Error messages, if any, cannot be suppressed and will always
be output to the list device.

81

Microassembling

Refer to Sections 4 and 7 for descriptions of the microinstructions and how to write them for the
paraphraser. The following paragraphs provide a procedure for microassembling a microprogram.

8-3. EXECUTION COMMAND

The paraphraser can be scheduled to run on the HP 1000, A700 computer system with this command:

:RU,MPARA,source input,list output,binary output

source input

list output

binary output

Name of FMGR file containing the Paraphraser source code; this entry must conform
to the format required by the FMGR namr parameter.

Choose one of the following:

— (minus sign)
FMGR file name
logical unit number

If the minus sign is specified, and the source file name begins with an ampersand (&),
the ampersand is replaced with a apostrophe and the remaining source file name
characters are used for the list file name. The list file is forced to reside on the same
cartridge (character reference code) as the source file. For example:

&LIST source file
'LIST list file name

If an FMGR file name is specified, it must conform to the format required by the FMGR
namr parameter. The list file is created if it does not exist. If the file does exist, the first
character in the file name must be an apostrophe; otherwise an error results.

If a logical unit number is specified, the listed output is directed to that logical device.

Choose one of the following:

— (minus sign)
FMGR file name

logical unit number

If the minus sign is specified, and the source file name begins with an ampersand (&),
the ampersand is replaced with a percent symbol and the remaining source file name
characters are used for the binary file name. The binary file is forced to reside on the
same cartridge (character reference code) as the source file. For example:

&MCODE source file
%MCODE binary file name

If an FMGR file name is specified, it must conform to the format required by the FMGR
namr parameter. The binary file is created if it does not exist. If the file does exist it is
necessary that

a. the first character of the file’s name be a percent sign (%).

b. the existing file be the type specified in the namr parameter (if the file type is not
declared in namr, the file’s type must be Type 5, relocatable binary).

If the above conditions are not met, a paraphraser error will result.

Microassembling

If a logical unit number is specified, the binary output is directed to that logical device.
If this parameter is omitted, no binary object code is generated. Examples;
:RU,MPARA,&SOURCE,LIST,%MCODE
Schedules MPARA to microassemble source file &SOURCE. Listed output is directed
to list file ’LIST, and binary object code is directed to binary file 2 MCODE.
When MPARA is finished translating your microprogram, it will print the following on your terminal:

/MPARA: total errors: n

where n is the number of mistakes you have made or if n=0 there are no mistakes.

8-4. THE PARAPHRASER OUTPUT

The following paragraphs describe the various forms of output available from the paraphraser
microassembler; namely, the microassembled binary object code, the source listing, the optional label
listing, the optional floating-field listing, and error messages.

8-5. BINARY OBJECT CODE

The standard object code output of the paraphraser microsassembler to a disc file or some other output
device must consist of one or more microinstruction records including a NAM (name) record.

The standard object format is acceptable by all programs that accept standard relocatable format (RTE
type 5 files). Therefore the object code can be stored from an input device into a disc file as a binary
relocatable by the FMGR STore command. If the paraphraser FMGR run string specifies an output file
or LU, the paraphraser automatically stores the object code into the specified file or LU.

8-6. PARAPHRASER OUTPUT LISTINGS

The paraphraser prints the microprogram source program with line numbers in hexadecimal on the
specified list device or disc file. The optional label list and floating field list are output to the same
device or file if they are specified in the microprogram command statement. An error listing is also
provided if there are any mistakes in the program.

For examples of source listings, refer to the sample program in Figure 7-1 or the sample programs in

Section 12. The label listing provides each label in alphabetical order with the line number shown in
hexadecimal. An example label listing is provided in Figure 8-1.

8-3

Microassembling

ALLOW_DI
CHANG_OD
DSBLE_TD
ENBLE_TD
INCLUSIV
INDREAD

INDRSOLY
TDI_DISA
TURN_OFF
UNDO_LIS
ZFER_LP

MPARA label listing

0x0302
0x0430
0x0731
0x0742
0x0345
0x0335
0x0420
0x0515
0x0243
0x02D0
0x0220

The floating field listing shows a microinstruction per line with the line number in hexadecimal and
the 32-bit microcode given in hexadecimal. The op (operation) field is given first along with the word
type which is determined by the microorder in the op field. Each field with its microorder is given
together; for example, “op6/imm” for word type 6 and the microorder Immediate data in the op field.

Figure 8-1. Example of a Paraphraser Label Listing

An example of a floating field listing is given in Figure 8-2.

0700 DAZ2812B4

0702 DA2812B4

0704 DA2812B4

MPARA floating field listing

alu/adbe

0701 E235932E op2/rtnf

alu/adbc

alu/adbce

0703 E235932E op2/rtnf

alu/adbc

alu/adbec

0705 E235932E op2/rtnf

alu/adbc

0706 5407E354 opS5/jsbl

stor/nop

0707 40072094 op5/jmpl

stor/nop

op1/nop sp0/rdb sp2/nop abus/acc

bbus/t stor/nop
cndx/b15 sp0/fcin abus/acc
bbus/ma stor/s6

op1/nop sp0/rdb sp2/nop abus/acc

bbus/t stor/nop
¢ndx/b15 sp0/fcin abus/acc
bbus/ma stor/s6

op1/nop sp0/rdb sp2/nop abus/acc

bbus/t stor/nop

cndx/b15 sp0/fcin abus/acc
bbus/ma stor/s6

adrl/TDI_DISA alu/zero bbus/memr

adrl/INDREAD alu/zero bbus/acc

Figure 8-2. Example of a Paraphraser Floating Field Listing

Microassembling

8-7. ERROR MESSAGES

Wherever your source file contains errors, MPARA will give a descriptive error message. There are
two types of errors that MPARA detects:

1. Label errors are errors that MPARA detects while passing through the source file to determine the
values of address labels that you want to define.

2. Translation errors are errors that MPARA detects while translating your sentences into
microinstructions.

8-8. LABEL ERRORS

The address label pass errors are located in the listing file right after the control statement. The
address label errors are described in Figure 8-3.

BAD CONTROL STATEMENT

Message: *** label pass error: bad control statement
Reason: First line in the source file did not start with “MPARA”.

BAD OPTION IN CONTROL STATEMENT

Message: *** label pass error: bad option “Q”
Reason: User specified an invalid option in the control statement.

DUPLICATE ADDRESS LABEL

Message: *** label pass error: redefined label name: “DUPLICAT”
Reason: The user had defined the address label “DUPLICATE” twice. Labels may only be defined once.

BAD DIRECTIVE

Message: *** label pass error: missing $ in directive

Reason: MPARA expects all directives to begin and end with a doliar sign, and the label pass checks your
directives. However, a more descriptive error is inserted in the listing file after the bad directive as
a result of the transtation.

BAD COMMENT

Message: *** label pass error: missing ending }
Reason: A bracketed comment was begun, but not ended before MPARA reached end of the file.

Figure 8-3. Address Label Errors

8-5

Microassembling

8-9. TRANSLATION ERRORS

Whenever MPARA detects a bad sentence during its translation of the input expressions, an error
message is inserted right after the offending sentence and the rest of the sentence is skipped. MPARA
translates your sentences in a left-to-right manner, so the left-most phrases, directives, etc will be
checked first. Figure 8-4 describes the translation errors.

BAD PHRASES
MISSPELLED WORD

Bad Phrase: iff y15 goto there;

Message: *** error: unrecognized sentence due to “iff’

Reason: The “iff" in the source file has no meaning to MPARA. The programmer probably incorrectly
typed “if.”

UNRECOGNIZED PHRASE

Bad Phrase: A:=NON__EXISTENT__REGISTER,;

Message: *** error: unrecognizable arithmetic phrase due to “NON__EXIS"

Reason: MPARA recognized the phrase as an arithmetic phrase, but NON_EXISTENT__REGISTER is
something that MPARA does not understand. if the user had defined that name in the BBUS
field using the “define” directive, then the sentence would have been recognized. In this case,
MPARA found something it did not understand while processing an arithmetic phrase. Similar
messages may be produced for errors in other types of phrases.

MISSPELLED WORD

Bad Phrase: if y15 gotto there;

Message: *** grror: unrecognizable conditional phrase due to “gotto”

Reason: The “gotto” is “goto” miss typed.

UNDEFINED ADDRESS LABEL

Bad Phrase: goto nowhere;

Message: *** grror: unrecognizable branch phrase due to “NOWHERE"

Reason: The address label “NOWHERE” was not defined in the source file. Address labels must be
defined in the address field using the usual “NOWHERE:" method or using the define directive.

TWO MICROORDERS IN ONE FIELD

Bad Phrase: cmid, cmid;

Message: *** error: conflict in sp2 field due to “cmid”

Reason: The program has tried to fill the sp2 field more than once. Conflict may occur in any field if more
than one microorder is specified for that field. Note that in cases where microorders are
duplicated in separate fields, MPARA will choose the fields so that a conflict does not occur. An
example is the increment p-register microorder (IP), which exists in the SPO, SP1 and SP2
fields. The sentence “cmid,ip;” will be interpreted as SP2/CMID and SPO/IP.

Figure 8-4. Translation Errors

Microassembling

CONFLICTING WORD TYPES

Bad Phrase: if y15 goto 100, sp2/ip;

Message: *** error: word type conflict

Reason: The sentence specifies fields from different word types. Valid MPARA sentences must select
microorders in fields within one word type. Note that if “if y15 goto 100, ip” had been specified,
MPARA would have selected SP1/IP, and word type conflict would not have occurred.

NON-VALID CHARACTER

Bad Phrase: if y15 goto there%;

Message: *** error: bad character or number due to “there%”

Reason: The percent character is not a valid MPARA character.

NON-VALID NUMBER

Bad Phrase: s0:=100a;

Message: *** error: bad character or number due to “100a”;

Reason: The “100a” is not a valid number. This type of error is inserted in your list file whenever MPARA
is scanning your sentences and finds bad characters or bad numbers. The following are some
examples of bad numbers in sentences:
s0:=0x10G; *bad hexadecimal number
s0:=0100B; *bad octal number
s0:=100Z; *bad decimal number

BAD DIRECTIVES
UNRECOGNIZED DIRECTIVE

Directive: $orgin 100$

Message: *** error: bad directive

Reason: The programmer probably meant to use the origin directive.

BAD NUMBER

Directive: $origin 0AAS

Message: *** error: bad number in directive

Reason: The number inside of the directive is not represented correctly.

INCORRECTLY TYPED NAME FIELD

Directive: $define adddr/test 100$

Message: *** error: field name is not defined

Reason: The user is trying to define microorder “test” in the “adrl” field but incorrectly typed the field
name in the directive.

MISSING $ SIGN

Directive: $origin 100 ;

Message: *** error: missing ending $

Reason: All directives begin and end with a dollar sign, and this directive is missing the ending dollar

sign.

Figure 8-4. Translation Errors (Continued)
8-7

Microassembling

MISCELLANEOUS

Message:
Reason:

Message:
Reason:

SENTENCE TOO LONG

* ek

error: exceeded maximum sentence length

(No example given here.) MPARA's internal sentence holding buffer been exceeded. Note that
all valid MPARA sentences will not exceed this buffer.

BRACKETED COMMENT NOT COMPLETE

*kk

error: missing ending }

(No example given here) A bracket comment was begun, but a closing bracket was not
encountered before the end of the file.

8-8

Figure 8-4. Translation Errors (Continued)

SECTION 9
WRITABLE CONTROL STORE (WCS)

SUPPORT SOFTWARE Il

WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE |[o

The previous section (Section 8) describes a method of preparing a microprogram and storing this
source program in a system file. The source program, prepared “off line” or on some other system, could
have been stored in a system file by loading it through a system input device. The source program is
then translated by the paraphraser (MPARA) microassembler program and filed as binary object code
(or microcode) in another system file. This later file is the ready-to-use microinstructions of your
program. In order to make use of this microcode it must be moved into the Control Store
(micromachine memory) of the computer.

The computer’s extended Control Store for user programs is provided by Writable Control Store (WCS)
and PROM Control Store (PCS) cards. Normally, the microprogram is initially loaded into a WCS card
so that test runs of the program can demonstrate that it has no “bugs” before burning PROMs to install
on a PCS card.

The WCS cards are loaded by using a program called “WLOAD.” WLOAD is a utility program which
loads WCS and generates PROM “burn tape” code under the RTE operating system. An understanding
of WCS memory mapping is essential for loading microprograms into it. This subject is summarized
below. For additional information on the WCS card, which can be useful to the user for a better
understanding of how to load it, refer to the HP 1000 A700 User Control Store Installation and
Reference Manual, part no. 02137-90003. The WLOAD PROM “burn tape” function is covered in
Section 10.

9-1. WCS MAPPING

The micromachine of the HP A700 computer has a microcode address space of 16k words of which the
user may use 8k words. The 16k words are conceptually divided into 16 logical 1k modules numbered
from O through 15. Each WCS card contains four banks of RAMs (Random Access Memory) for a total
of 4k-words per card. The banks are numbered 0, 1, 2, and 3.

A mapping RAM on each card maps the logical modules to the physical banks. The map RAM has 16
locations each of which corresponds to a logical module. On each card, the logical module may be
assigned a physical block that will be enabled when addressed through mapping, or it may be
unmapped. If a logical module is mapped on more than one card at a time, the card which is higher
priority in the control store chain will be enabled and will disable the other cards (including the
processor control store).

9-1

WCS Support Software

9-2. USING WLOAD

To load a WCS card using WLOAD, the user assigns an LU to the card to identify its /O location for
program interaction. Next, the appropriate logical to physical mapping is set up, and then a file or files
are usually specified from which to download data.

An example of running WLOAD to load a WCS card follows:
RU,WLOAD

NOTE

The WLOAD prompt “xx>” will appear on your terminal where
xx is the WCS LU which is currently specified. In this example,
the WCS LU is specified by the user as 63 is the first step under
WLOAD.

Continue with this procedure while running under WLOAD execution:

PROCEDURE COMMENTS

0>LU,63 WLOAD starts up with LU=0; User enters LU of WCS.

63>IN Initialize. Turn off WCS and unmap all logical modules.

63>EQ,4,0 User equates the logical module 4 address (1000-13FF hex) to physical
bank 0.

63>LB,%EXMPL User loads microcode from the binary format file %2 EXMPL (example).

63>0N User turns WCS on.

63>EX Exit program.

9-3. WLOAD COMMANDS

WLOAD commands are two characters. Some of the commands require parameters which may be
included on the command line separated by commas. If required commands are not included on the
command line, WLOAD will prompt for the parameters.

Commands which read from or write to either the data RAMs or the map RAMs require that WCS be
turned off. If WCS was on when such a command is executed, WCS will be automatically turned off,
and it will be turned back on after execution of the command, unless a WCS I/O error occurs.

Before turning WCS off or executing the command, the input parameters are checked for validity. The
following checks are performed as applicable:

If the logical module is between 0 and 15.

If the physical bank is between 0 and 3.

If the WCS address or data is in hex format and the address <16k (4000).
If the input file (or LU) can be opened.

If the output file (or LU) can be opened or created.

Ouk N

9-2

WCS Support Software

9-4. ON COMMAND

This command turns WCS on. A check is done to make sure WCS actually turned on. The command
format is:

ON

9-5. OF COMMAND

This command turns WCS off. A check is done to make sure WCS actually turned off. The command
format is:

OF

9-6. EQUATE COMMAND

This command stands for “Equate (map) a logical module to a physical bank.” The input parameters
are checked for validity. The command format is:

EQ,logical physical
where:

logical is a logical module number between 0 and 15;

physical is a physical bank number between 0 and 3.

All logical modules containing addresses referenced in the microcode of the input file must be mapped
before loading.

9-7. REMOVE COMMAND

This command removes (unmaps) a logical module. The input parameter is checked for validity. The
command format is:

RE,logical
where:

logical is the logical module between 0 and 15

9-8. STATUS COMMAND

This command displays current status (on/off) of WCS without altering it. The status is obtained from
the WCS card. The format of the command is:

ST

9-3

WCS Support Software

9-9. LOAD ASCII COMMAND

This command loads WCS with ASCII-format data from a file or LU. The programmer must have
previously mapped (using the EQ command) all logical modules containing addresses referenced in the
microcode being loaded from the input file. The loading of WCS is actually an overlay of current data,
so that any address locations not specified in the input file are not altered. This command is useful for
overlaying “patches” onto WCS in order to change a few lines of microcode. The format of the command
is:

LA,input file or lu
where:

input file is the file name where the microcode resides;

lu is the logical unit number of an input device if the microcode is to be input through that device.
The input file must contain one microinstruction per line consisting of the hexadecimal address

followed by the hexidecimal data. This is similar to the floating field listing generated by the
paraphraser.

A validity check is done on the input file or LU. In reading data from the input file, the other errors
which may occur are:
Input file data is incomplete or incorrect format.
b. Address too high. (Address in input file exceeds the 16k logical address space).
c. Logical module not mapped. (An address was read for which the corresponding logical module was

not mapped on the WCS card).

If any of these errors occur, WLOAD will stop execution of the command and the data in WCS will not
be altered.

9-10. DISPLAY MAPPING COMMAND

This command displays the contents of the mapping RAM. The format of this command is:
DM

9-11. LU COMMAND

This command assigns the LU for interaction with WLOAD. A check is done to make sure that the LU
specified is the correct interface type (41) and that the LU can be locked. The LU will remain locked
until a new LU is specified or the program is exited. (Note that lu 0 is always a valid lu to specify). The
format of this command is:

LU,lu

9-4

WCS Support Software

9-12. READ COMMAND

This command reads WCS data from the address range specified and outputs it to the file or logical
unit (lu) specified. Default is the user’s terminal. The start and end addresses are specified in
hexadecimal and an error is reported if they are greater than 16k or if the end address is less then the
start address. The output file will be created if it does not already exist. If an address in the range
given is not mapped on the board, an error will be reported and WLOAD will stop executing the
command. The format of this command is:

RD,start address, [end address,output file or lu]
where:
start address is a hexadecimal number of the lowest address in the range;

end address is a hexadecimal number of the highest address in the range (defaults to start
address).

9-13. INITIALIZE COMMAND

This command initializes WCS. This turns WCS off and unmaps all logical modules. The format of this
command is:

IN

9-14. BACKGROUND COMMAND

This command loads one microword of background data into every location in the specified logical
module. A validity check is done on the input parameters, and an error is reported if the logical module
specified is not mapped. The format of this command is:

BG,logical module,hex data
where:
logical module is a module number between 0 and 15 (see EQ command);

hex data is a 32-bit hexadecimal number for the background data.

9-15. WRITE DATA COMMAND

This command loads one location of WCS with the data specified. The input parameters are checked for
validity. If the address specified is not logically mapped on the card, an error is reported. The format of
this command is:

WD, hex address,hex data
where:
hex address is a hexadecimal number from 0 to 4000 (16k)

hex data is the data specified in hexadecimal

9-5

WCS Support Software

9-16. LOAD BINARY COMMAND

This command (Load Binary) loads WCS with binary format data from a file or lu. This is the standard
object code output of the paraphraser. The programmer must have previously mapped all logical
modules which contain addresses referenced in the input file. The loading of WCS is actually an
overlay of current data, so that any address locations not specified in the input file are not altered. The
format of this command is:

LB,input file or lu
where:
input file is the file name containing your microcode or lu is the input device (e.g., cartridge tape)

containing the microcode.

A validity check is done on the input file or LU. In reading data from the input file, the other errors
which may occur are:

a. Input file data is incomplete or incorrect format.

b. Address too high. (Address in input file exceeds the 16k logical address space).

c. Logical module not mapped. (An address was read for which the corresponding logical module was

not mapped on th WCS card).

If any of these errors occur, WLOAD will stop execution of the command and will not alter WCS data.

9-17. TEST COMMAND

Performs a destructive test of all four physical banks of the WCS RAMs. This test writes patterns of
alternating ones and zeros into the RAMs and then reads the data back out of the RAMs. The test is
run first with a pattern starting with “0”, then run again with a pattern starting with “1.” All errors
are listed in the output file. The total number of errors found in each physical bank is reported to the
user’s terminal. The format of this command is:

TE output file
where:

output file is the namr of the output file used for listing any errors found during the test. If the
error listing is not desired, then type “carriage return” in response to the prompt for output.

9-18. EXIT COMMAND

This command exits the WLOAD program. The format of this command is:
EX

9-6

WCS Support Software

9-19. TRANSFER FILE

This command transfers control to a file that contains the commands required for loading WCS with
your microcode. Using a transfer file can save you time when microcode must be loaded more than
once.

Commands will be read from the file and echoed to the user’s terminal. If any error occurs while
WLOAD is executing from a transfer file, control will be transferred back to the user’s terminal and
the transfer file will be closed. The transfer file command can not be used in another transfer file. The
form of this command is:

namr
where:

namr is the file name or lu

Transfer of control to a file can also be done by specifying the file as the first parameter in the run
string:

RU,WLOAD,namr

9-20. RETURN FROM TRANSFER FILE

The command to transfers control from a transfer file back to the user’s terminal is a double colon. The
format of this command is:

The EX command can be used to simultaneously exit the WLOAD program and the transfer file. Any
lines following an EX or :: in the transfer file will be ignored.

9-21. BT COMMAND

This is the Burn Tape command for the generation of PROM “burn tape” microcode. Use of this
command is covered in Section 10.

9-22. HELP FILE

To display a list on your terminal of the WLOAD commands, call the HELP file. The format of the
command to call this file is:

HE or ??

9-23. COMMENT

Any line that begins with an asterisk (*) is treated as a comment line and will be ignored by WLOAD:

*comment (anything that starts with *)

9-7/9-8

SECTION 10
WLOAD PROM BURN TAPE FUNCTION Hum

WLOAD PROM BURN TAPE FUNCTION

10

The WLOAD PROM burn tape function translates your microprogram into binary code that is
formatted for ROM firmware. The PROM burn binary code is generally stored in a computer file and
then dumped onto HP cartridge tape (burn tape) for reading in an HP 264XX terminal which controls
the PROM burning equipment. The fabricated ROMs are for installation on the HP 12155A PROM
Control Store card or the HP 12156A Floating Point Processor. (Note: The PROM “burn tape” code can
also be used for the A700 base set.)

Typical PROM burning equipment used for burning A700 processor PROMs are the DATA I/O System
19, the PRO-LOG PROM Burner or equivalent.

Before making PROM burn tapes, the microprogram should be completely tested and debugged using
a WCS card for microprogram storage. The source should be corrected and microassembled using the
paraphraser to provide MPARA output code from which the final PROM burn object code files are
generated.

10-1. PCS PROM SPECIFICATIONS

The format of the microinstructions stored in the ROMs used on the PCS card is 32-bits divided by
8-bits. This format requires four ROMs per set. The PROMs can be the Signetics 825181, Harris HM
7681-5 or equivalent. The required PROM characteristics are as follows:

PROM Characteristics

Size: 1k x 8 bits

Address Access Time: 70 nsec max,
Chip Enable Access Time: 40 nsec max
Power Supply Current: 175 mA max

10-2. USING WLOAD FOR BURN TAPES
The WLOAD commands used to interact with WCS are covered in Section 9.

Specifying the LU of the WCS as 0 is a special case which the user may employ to generate PROM
“burn tape” code, whether or not there is a WCS card in the system. When LU=0, any commands
which involve reading or loading WCS (data or map RAMS) will be executed within program memory.
In other words, LU 0 will look like a WCS card including maps and 4k of microcode space. The user can
employ any WLOAD command to load or read the “WCS” of LU 0. (The ON Command will have no
effect.)

10-1

PROM Burn Program

An example of the procedure for running WLOAD to use program memory for burn tape microcode is
the following:

PROCEDURE COMMENTS

0> User leaves LU=0 and loads his microcode into program memory.

0>EQ,4,0 User equates the logical module 4 address (1000-1400 hex) to physical
bank 0.

0>BG,4,00000000 The user puts a background of all zeros into logical module 4. This is
the unburned state of the user’s PROMs.

0>LB,%EX1 User loads microcode from two different MARA object code files.

0>LB,%EX2 These microprograms reside at different places in the logical module 4.

0>BT,P,1,4,FBURN Generate the burn tape file FBURN for a 1k x 8 PCS PROM starting at
logical module 4.

10-3. BURN TAPE COMMAND

PROM burn tape code is generated by the WLOAD program when the Burn Tape Command is
executed. This command can be used in two ways as follows:

a. When the LU specified in WLOAD is zero (0) the PROM burn code tape is generated from the
microcode stored in program memory.

b. When the LU specified in WLOAD is an existing WCS card, the PROM burn code tape will be
generated from the WCS card contents.

In either of the above cases the same sequence of commands are used before executing the BT
command including setting up the map, writing background data, and loading microprogram files.

The PROM burn tape function of WLOAD generates code for the entire PROM so that all logical
modules which fall into the address space of the PROM must be mapped. The user can optionally load
either all zeros (0s) or all ones (1s) into unused areas of the PROM with Background (BG) command.

The format of the Burn Tape (BT) command is:
BT,prom type,prom size,starting logical module,output file
where:
prom type is either B = Base Set to reside on the lower processor card or,

P = PCS or FPP.

prom size is either 1 = 1k words
2 = 2k words
4 = 4k words

starting logical module = the logical module number between 0 and 15 at which the PROM is to
start

output file = the file that the burn code will be stored into. If the input file does not exist it will
be created.

10-2

PROM Burn Program

10-4. ERROR REPORTING

The WLOAD program will report an error for any of the following conditions:

a. Output file cannot be opened or created.
Invalid input parameter for PROM type or size.
c. Starting logical module not valid or logical module plus PROM size exceeds 16k address space.

d. A logical module within the PROM address space is not mapped.

10-5. OUTPUT FORMAT

The translation format of the PROM burn code for five bytes of data output is shown in Figure 10-1.
This is an ASCII-Hex(Space) format. The figure shows the data characters and the control characters
annotated.

An example of a printout of the binary code output from a WLOAD PROM burn tape function pass is
shown in Figure 10-2.

(1) 2) 5
—
%$A0000, 3

11 22 33 44 655 &

$SO00FF

e

®) 4
FORMAT IDENTIFICATION

1. Start Code (%) 4. Execute Code (a space)
2. Address Field 5. End Code (&%)
3. Data Byte 6. Sum-Check Field

Figure 10-1. Translation Format of PROM Code

10-3

PROM Burn Program

A700 CONTROL STORE PROM

1 Kx 8

ADDRESS SPACE: 1000 - 13FF

PCS/FPP Prom 0 Bits 7-0

$A0000,

C4 96 94 8F 8E 8D 80 81 84 94 9B 08 29 8A 84 94
21 94 94 84 84 84 84 85 26 87 94 94 94 94 94 94
S4 94 94 94 84 94 2B 8C 83 14 94 OB 94 94 94 84

84 83 8C B4 94 D4 94 F4 94 94 94 FF FF FF FF FF
9B 08 29 8A 84 94 21 94 94 FF FF FF FF FF FF FF
$5271C , XXXXXXXXXX

A700 CONTROL STORE PROM

1 Kx 8

ADDRESS SPACE: 1000 - 13FF

PCS/FPP Prom 1 Bits 15-8

$A0000,

32 3C A0 18 98 58 98 98 98 10 D8 10 10 12 20 20

00 EO A0 3C 3C FC DO 10 10 12 20 20 60 EQ 60 EO
11 12 20 20 20 60 11 12 50 4D EO CD 60 EO AO 98

~

FC DO 12 EC 20 2C 20 2C 20 20 20 FF FF FF FF FF
D& 10 10 12 20 20 00 EO A0 FF FF FF FF FF FF FF
$S1D3D, XXXXXXXXXX

A700 CONTROL STORE PROM

1 Kx 8

ADDRESS SPACE: 1000 - 13FF

PCS/FPP Prom 2 Bits 23-16

$A0000,

FC 00 02 01 00 OO0 FF 40 9A 04 FF 00 00 00 74 30
00 2C 70 Cl 40 C2 15 00 00 00 00 CO CO C3 00 C2
04 10 30 74 40 00 10 00 00 90 2C 91 30 2C 70 01

C2 15 00 80 81 80 81 00 81 00 Ol FF FF FF FF FF
FF 00 00 00 74 30 04 2C 70 FF FF FF FF FF FF FF
$S517B3 , XXXXXXXXXX

A700 CONTROL STORE PROM

1 Kx 8

ADDRESS SPACE: 1000 - 13FF

PCS/FPP Prom 3 Bits 31-24

$A0000,

3F 01 50 00 00 00 OD 36 14 DA 3F DA DA DA DA DA
D8 FA FA FF FF FE DA DA DA DA 58 5C 97 82 40 4F
DA DA DA DA 9A DA DA DA D2 DC FA DC DA FA FA 00

~

FE DA D2 D9 AE DD AE DE 8E D2 D2 FF FF FF FF FF
3F DA DA DA DA DA D8 FA FA FF FF FF FF FF FF FF
$533C4 , XXXXXXXXXX

Figure 10-2. Example PROM Binary Code Printout
10-4

PROM Burn Program

The first four lines of output are comment lines. These lines are not used by the PROM programmer.
The comment lines appear as a header on each to the four subsections of binary code but the header
will not output on the burn tape since there is no Start of Transmission (%) symbol until the
beginning of the PROM code in front of the address field (0000 in the example printout).

These lines provide the following information:

a. The size and organization of the PROM as specified by function parameters.
b. The address space in hexadecimal.

c. Whether the code is for a PCS, FPP, or Base Set PROM, which one it is of the set of four PROMs,
and which bits of the 32 bits are contained in it.

10-6. PROM BURN OUTPUT

Each of the subfiles, marked by a zero-length record, can be output to cartridge tape as multiple files
by using the file manager STore command and the SAve record format. This saves the files with the
embedded EOF (End Of File) marks.
The store string is the following:

ST,output file,tape lu,SA
where

output file is the name of the disc file containing the binary code, and

tape lu is the logical unit number of the cartridge tape drive in the HP 264X terminal.

10-5/10-6

SECTION 11
FLOATING POINT PROCESSOR I

FLOATING POINT PROCESSOR

11

This section contains the information required for writing microroutines to obtain high-speed floating
point operations using the HP 12156A Floating Point Processor. It also provides a simplified operating
description of the card, and microcode examples utilizing floating point operation.

For physical characteristics of the card and installation information, refer to HP 12156A Floating
Point Processor Kit Installation and Reference Manual, part no. 12156-90001.

11-1. GENERAL DESCRIPTION

The HP 12156A Floating Point Processor (FPP) contains hardware to accelerate the execution of
floating-point dependent macroinstructions and provide floating-point microprogramming capability.
These macroinstructions include the basic single- and double-precision floating-point instructions
(add, subtract multiply, divide, etc.), the Scientific Instructon Set (SIS), and the Vector Instruction Set
(VIS). The FPP card contains four accumulator locations, ROM for storage of 512 arithmetic constants,
4k-words of microcode address space, and logic to interface to the processor. The FPP card plugs into
the backplane between the upper processor and lower processor cards.

11-2. BASIC CAPABILITIES

The FPP interfaces to the computer processor over the frontplane. In operation, it accepts control
words and operands, it performs operations on the operands, and returns the results to the processor.
The operations performed by the card that can be microprogrammed are listed in Table 11-1.

Figure 11-1 shows a block diagram of the internal data paths on the FPP. The arithmetic functions are
carried out by the Floating-Point Arithmetic Logic Unit (FPALU) which has A and B input ports and a
D output port. The D output is buffered onto the B-Bus. Control signals come off the Y-bus.

Four accumulators are available as scratch memory. Each accumulator feeds either A or B input ports
to the FPALU. Results from the D port can be transferred into any accumulator. Each accumulator can
contain either a single or double precision number.

The Arithmetic Constant ROM (ACR) contains the constants required in floating point arithmetic
sequences. The first constant in a sequence is selected by an address pointer, and the pointer is

automatically incremented as the sequence progresses. The selected constants are loaded into the
A-operand port of the FPALU.

111

Floating Point Processor

Table 11-1. Microprogrammable Floating-Point Operations

OPERATION DESCRIPTION
add single, double floating point
subtract single, double floating point
multiply single, double floating point,
double integer, 32 bit logical (unsigned)
divide single, double floating point
double integer, 32 bit logical (unsigned)
fix double floating point to single integer,
double floating point to double integer
float single integer to double floating point,
double integer to double floating point,
double integer to single floating point,
double floating point to single floating point
convert double floating point to single floating point
shift left 0 to 63 bit left shifts
shift right 0 to 63 bit right shifts

Y-BUS

CONTROL LOGIC

ACCUMULATORS

FLOATING POINT
ARITHMETIC
LOGIC UNIT

ARITHMETIC
CONSTANT ROM (ACR)
255
254
/ >

AN
\

CONTROL

B-BUS

8200-7

Figure 11-1. Floating-Point Processor Data Paths

11-2

Floating Point Processor

11-3. GENERAL OPERATION

In operation, a control word is first passed to the FPP. This is done by storing to a reserved location in
the special register file (SRIN). The card then interprets the information stored at this location as its
control information and responds accordingly.

Once a control word is passed, the FPP accepts the necessary operands, and performs the requested
function. After a required propagation delay, the result of the operation is either stored into one of the
accumulators or returned to the processor over the B-Bus or both. An error condition is available to the
processor which indicates whether an overflow or underflow has occurred during the operation.

11-4. INTERFACE TO THE MICROMACHINE

Communication between the micromachine and the FPP occurs through the upper four of the 16
Special-Purpose External Registers referenced by microorder SRIN. These are registers C through F
(hexadecimal). The registers are selected indirectly through the N register (refer to Section 2 of this
manual).

When SRIN is in the STORE field of a microinstruction and N is set to C (hex) through F (hex), the
data present on the Y-Bus will be accepted by the FPP. Similarly when SRIN is in the B-Bus field and
N is set to C (hex) through F (hex), the FPP will drive the B-Bus with the required information. The
table below shows the assignment for the four SRIN locations:

REGISTER WRITE READ
SRIN-F DIVIDE CONTROL WORD RESULT
SRIN-E CONTROL WORD RESULT, ALSO SAVED IN ACCUMULATOR
SRIN-D A-SIDE OPERAND ERROR CONDITION
SRIN-C B-SIDE OPERAND HP RESERVED

11-5. SEQUENCE OF OPERATION

The FPP will operate in one of two general sequences. The first sequence is used for all floating point
operations except division, and the second sequence is used for division.

Sequence for add, sub, mpy, fix, flt, shl, shr, cv:

Transfer a control word to the FPP.
Transfer the input operands to the FPP.
Wait three microcycles.

Transfer results to the destination.
Check the error condition if necessary.

oUW

11-3

Floating Point Processor

Sequence of operation for division:

Transfer a control word to the FPP.
Transfer the input operand to the FPP.
Transfer the required divide control words.
Wait two microcycles.

Transfer the results to the destination.
Check the error condition if necessary.

S o

11-6. TRANSFER OF CONTROL WORD

To start any operation, a control word must first be passed to the FPP. To make the transfer, the N
register must first be set to E and SRIN must be in the STORE field of the microword. Data on the
Y-Bus is then transferred to the FPP control logic. This control word contains the following
information:

The operation to be performed by the card,
The source for the A-side operand,

The source for the B-side operand,

The destination for the result.

W

After the control word is transferred, the FPP will accept the operands from the designated source.

11-7. TRANSFER OF INPUT OPERANDS

After a control word has been passed to the FPP, the control logic determines which operands to accept
from the Y-Bus and which operands are to come from an accumulator or ACR.

When both operands come from the micromachine over the Y-Bus, the A-side operand must be stored
at location SRIN-D, and the B-side operand must be stored at location SRIN-C.

When only one operand is required from the micromachine, (the other operand coming from an
accumulator or ACR) the operand must be passed through SRIN-D regardless of whether the operand
is an A- or B-operand.

NOTE

When operands are passed to the FPP they are always stored in
an accumulator location. The location used to store the operands
is determined by two fields in the control word. All operands are
handled with the most significant word first.

When no operands are required from the micromachine, a special in the SPO field is used to transfer
the operands to the FPALU. One of the SPO fields is dedicated for use in controlling the FPP card. The
SPO microorder CK2 is used to transfer data from the accumulators and/or ACR to the FPALU at two
words (32-bits) per microcycle. This special is used only when no operands are required from the
micromachine. A line of microcode containing CK2 in the SPO field will transfer 2 words to both A and
B ports of the FPALU. For a double precision operation, CK2 must be coded in two lines of microcode to
transfer the four words of data.

11-4

Floating Point Processor

The A-side operand can come from either the Y-Bus, one of four accumulator locations or from the
ACR. The B-side operand can come only from the Y-Bus or one of the four accumulator locations.

11-8. TRANSFER OF RESULTS

When the FPP has completed the required operation the result is available to be accessed from SRIN-E
or SRIN-F. The result is retrieved by having SRIN in the B-field of the microword and N set to E or F.
The destination can be any accumulator location, register file location, or main memory location.

When the destination for the result is only the B-Bus (not stored in an accumulator) the result must be
read from SRIN-F. When the destination is both the B-Bus and one of the four accumulators, the result
must be read from SRIN-E. At the time of the read, the data is written into an accumulator and is
available on the B-Bus.

Data can be transferred to an accumulator at double speed by also asserting the CK2 special in the SP0
field with the read from SRIN-E. During this double transfer only the first word is available on the
B-Bus.

The following table shows all possible combinations for the destination of the result.

DESTINATION SPO OPERAND
READ FROM ACCUMULATOR B-BUS FIELD TRANSFER RATE
SRIN-F X — 1 Word per Microcycle
SRIN-E X X — 1 Word per Microcycle
SRIN-E X X) CK2 2 Words per Microcycle

11-9. TRANSFER OF ERROR CONDITIONS

An error condition status word can be accessed after the required delay time either before or after the
results have been retrieved. This error condition word is read at SRIN-D. The most significant bit of
this word is read as a logic one if an overflow or an underflow has occurred during the last operation.
The bit is cleared if no error has occurred.

11-5

Floating Point Processor

11-10. WRITING MICROCODE FOR THE FPP

11-11. GENERAL FLOATING-POINT MICROCODE

For all floating point operations, the control word passed to the floating point card at SRIN-E contains
the information in the fields shown in the diagram below.

CONTROL WORD AT SRIN-E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FUNCTION A B | D-ADDR | B-ADDR | A-ADDR

11-12. FLOATING-POINT CONTROL-WORD FIELDS

The FUNCTION field translates to the seven-bit function opcode which is used by the FPP logic
circuitry to decide what operation to perform. These functions are written as phrases in the para-
phraser language. These phrases and the operations they perform are given in Table 11-2.

Table 11-2. Microprogrammable Floating-Point Functions

ARITHMETIC
PHRASE OPERATION PERFORMED EXPRESSION

add.f2 single precision addition D:=A+B

sub.f2 single precision subtraction D:=A-B

add.f4 double precision addition D:=A+B

sub.f4 double precision subtraction D:=A-B

shr.i4 0 to 63 right shift D:=A shifted right B
shl.i4 0 to 63 left shift D:=A shifted left B
ft.i1.f4 float single integer to double precision floating D:=A

ft.i2.f2 float double integer to single precision floating D:=A

ft.i2.f4 float double integer to double precision floating D:=A
cv.f4.f2 convert double precision to single precision floating D:=A

fx.f4.i1 fix double precision floating to single integer D:=A

fx.f4.i2 fix double precision floating to double integer D:=A

mul.i2 double integer multiply D:=A"B

mul.12 double logical multiply (unsigned) D:=A"B

mul.f2 single precision multiply D:=A"B

mul.f4 double precision multiply D:=A"B

div.i2 double integer divide D:=A/B

div.I2 double logical divide (unsigned) D:=A/B

div.f2 single precision divide D:=A/B

div.f4 double precision divide D:=A/B

clear clear opcode (default)

11-6

Floating Point Processor

The A field of the control word is used to select the source for the A-side operand. This field encodes the
three possible combinations of the source for the A-operand into a 2-bit field.

A-operand source:

PHRASE OPERATION

a_ bus A-side operand from Y-Bus (default)
a__acc A-side operand from an accumulator
a__rom A-side operand from ROM

The B field is used to select the source for the B-side operand.

B-operand source:

PHRASE OPERATION
b__bus B-side operand from Y-Bus (default)
b__acc B-side operand from an accumulator

The A-ADDR field is the address of the accumulator where the A-side operand is presently located, or
where the A-side operand is to be stored when being passed over the Y-Bus to the FPP. If the A-side
operand comes from ROM the contents of this field have no effect.

A-ADDR field:

PHRASE OPERATION

a0 accumulator 0 (default)
al accumulator 1

a2 accumulator 2

a3 accumulator 3

The B-ADDR field is the address of the accumulator where the B-side operand is presently located, or
where the B-side operand is to be stored when passed to the FPP.

B-ADDR field:

PHRASE OPERATION
b0 accumulator 0 (default)
bl accumulator 1
b2 accumulator 2
b3 accumulator 3

The D-ADDR field is the address of the accumulator where the result is to be stored.

D-ADDR field:

PHRASE OPERATION
do accumulator 0 (default)
dl accumulator 1
d2 accumulator 2
d3 accumulator 3

11-7

Floating Point Processor

11-13. PARAPHRASER FLOATING-POINT SENTENCE

The required information for an FPP control word is specified in the paraphraser by a floating point
sentence initiated by “fp” followed by function phrases. The “fp” microinstruction specification is a
symbol for the paraphraser that causes the specified information to be encoded in the 16-bit data field

of a Word Type 6.

The general form for the paraphraser sentence is the following:

stor:=fp(function, swhat operation to perform
a-operand source, #source for the a-side operand
b-operand source, #source for the b-side operand

a-operand address, #accumulator address for a-side operand
b-operand address, s+accumulator address for b-side operand
d-result address); saccumulator address for result

An example of writing floating-point microinstructions in the paraphraser language is shown below:

n:=0xE; #set n to OxE

srin:=fp(add.f2,a_bus, +*add the operand coming over the y-bus
b_acc,al0,b1,d2); #to the contents of accumulator 1

dn; #set n to 0xD

srin:=a; spass operand (a,b) to the FPP

srin:=b;

nop; *wait three cycles

nop;
in; *set n to OxE

X:=srin; sstore the result in (x,y)

yi=srin; sresult also is stored in accumulator 2

NOTE

Each expression ending in a comma is a phrase, and each
paraphraser sentence ends in a semicolon.

The example floating point sentence says: perform a single-precision floating-point addition (add.f2)
on a number to be passed to the FPP over the y-bus (a__bus) and a number in an accumulator (b__acc).
The number being passed over the y-bus is stored in accumulator zero (a0), and the number in the
accumulator is at location one (bl). The result, if read from SRIN-E, will be stored in accumulator

two (d2).

The paraphraser phrase “fp(...)” generates 16 bits of immediate data which can be stored to any
register. This 16 bits of data must eventually be stored to SRIN-E to initiate an FPP operation. The list
of fields within the parenthesis can be in any order or can be defaulted.

11-8

Floating Point Processor

11-14. FLOATING POINT DIVISION

In floating point division the control word at SRIN-F has two primary uses. The first use is to provide
the required control signal to the FPP during divide operations. The second use is to load the
Arithmetic Constant ROM address pointer with the address of the next constant to be used.

To transfer the divide control word to the FPP, SRIN must be in the STOR field of the microword, and
N must be set to F. The word stored to SRIN contains the information below.

CONTROL WORD AT SRIN-F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIVIDE OPERATON ROM ADDRESS

The DIVIDE OPERATION field contains one of three function opcodes that is used by the floating
point hardware during division.

Divide operation codes are the following:

PHRASE OPERATION

divsetup prepare for division sequence
qbit3 generate three bits of quotient
qbit2 generate two bits of quotient

During any division, a specific sequence of divide control words must be passed to the FPP to control
the operation. These divide control words are passed to the FPP after the main control word and all
operands have been transferred to the FPALU by methods previously described. After the last operand
has been transferred to the FPALU, the following sequence of divide control words must be stored to
SRIN-F:

PHRASE OPERATION

div.i2 1 divsetup, 11 gbit3, 1 gbit2
div.12 1 divsetup, 11 gbit3, 1 qbit2
div.f2 1 divsetup, 9 gbit3

div.f4 1 divsetup, 19 qbit3

After the last divide control word has been stored to SRIN-F, two wait states are required before the
results are available.

The ROM ADDRESS field contains the data to be stored into the ROM address pointer register. This
address pointer is always automatically incremented after each access allowing the next constant to be
accessed. The ACR is used by the microcode which executes the SIS macroinstructions and is not
intended for general use.

11-9

Floating Point Processor

11-15. PARAPHRASER DIVISION SENTENCE. Floating point division information is
specified in the paraphraser by a floating point sentence. The general form of the division sentence is
the following:

stor:=fp(divide operation); sdivide operation to perform
or
stor:=fp(rom_addr/label); saddress of ACR pointer

An example of a floating point divide operation is given below:

n:=0xE; sset n to OxE

srin:=fp(div.f2,a_acc, sdivide the contents of accumulator
b_acc,al,b1,d1); #zero by accumulator one

ck2; #clock in operands

ing sset n to OxF

srin:=fp(divaetup); sprepare to do divide sequence

srin:=fp(qbit3); stransfer nine gbit3 sequences

srin:=fp(qbit3);
srin:=fp(qbit3);
srin:=fp(qbit3);
srin:=fp(qbit3);
srin:=fp(gbit3);
srin:=fp(qbit3);
srin:=fp(qgbit3);
srin:=fp(qbit3);

nop; swait two cycles

nop, dn; sset n to OxE

a:=srin; splace result in (a,b)
b:=srin;

11-16. CONTROL STORE STARTING ADDRESS

The capabilities of the FPP are available identically in all microcode to the 16k-words of control store
of the computer.

The starting microaddress of the first block of control store located on the FPP is 0x1000 (hex). The
length of the block is determined by the jumpers associated with that block, and it is either 2k or 4k
words long. The starting address for the second block of control store on the FPP is switch selectable.

Each block also has one switch that will enable or disable the associated block of control store. When
enabled, the control store of that block will respond to microaddresses within its range. When disabled,
the control store will not respond.

All control store on the FPP has higher priority in the control store chain than the control store on the
processor card, but has lower priority than any control store on the WCS or PCS cards.

The block of control store from 0x1180 to 0x11C0 x1000) has logic associated with it for overlaying a
portion of the control store on the processor containing the section of the jump table which decodes the
floating-point dependent macroinstructions that are executed from the FPP.

This feature is enabled and disabled by a switch on the FPP card. When disabled, this block of
microcode will be executed from the processor control store; i.e., normal operation. When enabled, this
block will be executed from the control store an the FPP, which disables the processor control store.

For information on setting the FPP switches and jumper installation refer to the HP 1000 A700 User
Control Store Installation and Reference Manual, part no. 02137-90003.

11-10

SECTION 12
MICROPROGRAMS IR

PART IV
Microprogramming Examples

MICROPROGRAMS

12

The microprogram examples in this section illustrate the microprogramming concepts presented
throughout the remainder of this manual. Each microprogram is complete in itself and can be used
directly in the A700 processor or used as an example for creating your own microprogram. The
following assumptions are made for the use of the material in this section.

® The program is to be run on an HP 1000 A700 computer system in which the software of the HP
92045A Microprogramming Package has been loaded into the RTE operating system.

o RTE system interface and device table entries (SC-LU relationship) must have been made.

The examples use the paraphraser microprogram language to prepare the source microprograms and
generate object code. The source microprograms can be edited with the Edit/1000 editor. The object
code should be tested using the HP 12153A WCS card in the control store of the processor

When you are ready to run the paraphraser from your disc source file, refer to the procedures in
Section 8 for Using the Paraphraser. This section tells you the control commands to use and describes
the output listing and error messages you may obtain from paraphraser execution. When you are
ready to load your program into WCS, refer to Section 9 on Writeable Control Store Support Software.

There are three microprogram examples included in this section. They are a buffer initialization
routine, a Shell sort, and a privileged driver. The order of complexity increases with each example. The
privileged driver is very complex and should not be attempted before the microprogrammer has
attended the Hewlett-Packard RTE microprogramming class for HP 1000 systems (product number
22964B). The microprogrammer should also have a good working knowlege of RTE-A.1 or RTE-XL
operating system internals and HP 1000 driver writing.

All three of the example microcode routines were debugged using the HP 1610B Logic State Analyzer.

12-1. BRANCHING TO THE EXAMPLE PROGRAMS

A jump table (as described in Section 6) is used to branch into the three microroutines. The jump table
is shown in Figure 12-1.

12-1

Microprograms

MPARA,L ,F;

*
UIG_JMP: sorigin 0x3000$
*

DESCRIPTION:

The following jump table is used to branch into the
various microcode routines. The buffer initialization
routine uses the first opcode, followed by the Shell
sort routine, and the driver. All user opcodes in

the range 10(x01)S00 to 10¢x01)517 (octal) decode

via the FPLA to location OxOtaa (hex) in the control
store. Location Ox0tlaa has the following instruction:

sorigin Ox1aa$ gototbl 0x3000;

This causes a jump to control store address space
0x3000 thru 0x300F depending on the opcode. This
routine is located there and will jump to the true
destination address for that opcode.

CAUTION: All microcode addresses that reference the base set
should be verified (see listings in appendix).

& & & & % & %k & & ® & & % & & & * & & & *

Destination acddresses
#*

$define adrs/init 0x3030¢ »Buffer init routine
$define adrs/sort 0x3050¢ #Shell sort

$define adrs/send 0x3090$ #Privileged driver init
$define adra/trap 0x31008 #Privileged driver completion
sdefine adra/int_uit 0x00B6$ +Illegal user opcode, abort with UIT
*

UIG_OPO0: goto init; #10(x01)500B
UIG_OP1: goto sort; #10(x01)501B
UIG_OP2: goto send; #10(x01)502B
UIG_OP3: goto trap; #10¢(x01)503B
UIG_OP4: goto int_uit,p :=fa; #10(x01)504B
UIG_OPS: goto int_uit,p :=fa; #10(x01)505B
UIG_OP6: goto int_uit,p :=fa; #10(x01)506B
UIG_OP7: goto int_uit,p :=fa; +10(x01)507B
UIG_OP8: goto int_uit,p :=fa; #10(x01)510B
UIG_OP9: goto int_uit,p :=fa; #10(x01)511B
UIG_OPA: goto int_uit,p :=fa; +10(x01)512B
UIG_OPB: goto int_uit,p :=fa; #«10(x01)513B
UIG_OPC: goto int_uit,p :=fa; #«10(x01)514B
UIG_OPD: goto int_uit,p :=fa; #10(x01)515B
UIG_OPE: goto int_uit,p :=fa; #10(x01)516B
UIG_OPF: goto int_uit,p :=fa; #10(x01)517B

Figure 12-1. Jump Table to Example Microprograms

12-2

Microprograms

12-2. BUFFER INITIALIZATION EXAMPLE

EXAMPLE 1: INITIALIZE BUFFER, FORTRAN PROGRAM

FTN7X,L,I,Y

s NoEsNoNoNoNo NP NP R R Ne

Get

OO0

OO0 OO0

999

PROGRAM JOKE3

MAIN PROGRAM:

Calls assembly routine ‘INIT’ to initialize a
user buffer. ‘INIT’ invokes the microcode.

RUN STRING: RUN,JOKE3,START,INC,NUMBR

START: Starting value of buffer
INC: Increment between values
NUMBR: Total number of elements

IMPLICIT INTEGER (A-2)

DIMENSION BUFF(10000>

DIMENSION PARMS(S)

EQUIVALENCE (PARMS(1)>,START), (PARMS(2),INC)
EQUIVALENCE (PARMS(3> ,NUMBR)

starting value, increment, and number of elements

CALL RMPAR(CPARMS)
IF C(IABSC(NUMBR) .GT. 10000> GOTO 999

Initialize the buffer

CALL INIT(BUFF,START,INC,NUMBR)

Print the buffer to scheduling lu

SESN = -1

LU = LOGLUCSESN)
WRITECLU,10)(BUFF(J),J=1,NUMBR)
FORMAT(8(2X,16))

END

EXAMPLE 1: INITIALIZE BUFFER, ASSEMBLER INTERFACE

MACRO,

* % % & % 2 2 =®

* & %

*
BUFF
START
INC
NUMBR

L
NAM INIT,7

Calls the microcode to initialize the buffer passed
by the calling program.

CALLING SEQUENCE:

CALL INIT(BUFF,START, INC,NUMBR)

ENT INIT
EXT .ENTR,.INIT

.INIT must be declared as an entry point in a seperate
assembly module as follows: .INIT RPL 105500B

BSS 1 BUFFER ADDRESS

BSS 1 STARTING VALUE

BSS 1 INCREMENTS

BSS 1 NUMBER OF ELEMENTS

12-3

Microprograms

*

INIT NOP
JSB .ENTR GET PARAMETERS
DEF BUFF
*
+« Branch to control Store Address (0x3000)
*
JSB .INIT USER OPCODE
DEF @BUFF BUFFER ADDRESS
DEF @START STARTING VALUE
DEF @INC INCREMENT
DEF ONUMBR NUMBER OF ELEMENTS
-+
JMP @INIT RETURN
END INIT

EXAMPLE 1: INITIALIZE BUFFER, MICROPROGRAM

MPARA,L ,F;

»*
UG_INIT:

*

*

#*
i#*

Where:

& &% % % & & & & & & F F F F ¥ & F 3

"

EXTRNL:

*
*

INT_BUF:

*

sorigin 0x3030$

DESCRIPTION:

Instruction ‘INBUF’ initializes a buffer in the user
program as specified by the calling program. The
instruction is non-interruptable and does not check
for interrupts after every write to user memory.

The memory protect logic is enabled so that any memory
violation will be detected before the next instruction
is executed (ie. before the next JTAB). Therefore,
memory is protected throughout the entire instruction.

CALLING SEG:

JSB L. INIT

DEF BUFF (,D)
DEF START (,I)
DEF INC «, D
DEF NUMBR (,i)

BUFF is the user buffer

START is the starting value to initialize
the buffer with (ie. buff(1)=start)

INC the increment to the next buffer value
(ie. buff(2) = start+inc)

NUMBR the number of words to initialize
(if numbr <0 use abs(numbr))

$define adrs inst_restart 0x00DOS

rdp, ips sread def buff
call RSV_IND; sresolve indirects

+ must complete read started by RSV_IND
*» 57 has the direct buffer address on return

12-4

nop := t,
ip, rdp;
call RSV_IND,
56 := s7;
acc := t,
ip, rdp;
call RSV_IND;
51 := {,
ip, rdp;
call RSV_IND;
52 := p;
ct := t;
CONT: if yz goto DONE;
if not y15 goto POS_OK;
ct := -t;
POS_OK: p := =6,
dct;
*
init buffer
*
NEXT: wrp := acc, ip;
acc := acc + si1,
if not ctz goto NEXT;
DONE : p = 52;
fchp, rtn;

*

Microprograms

+dummy read

sread START
sresolve indirects
ssave def buff
ssave START value
sread INC

sresolve indirects
ssave INC value
sread NUMBR
sresolve indirects
ssave return pc
+load ct w/ NUMBR
#NUMBR=0?
#NUMBR>0?

*make pos

sp=def buff

sajust count

swrite to buffer
snext data element
*

srestore pc
sreturn

XXX RS RS RSER RS R ERZ AR AR AL AL S

*

. Subroutine RSV_IND

L]

*
*
*

BERRARRRRRRBRBRRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRBRRRN

*

RSV_IND used to resolve indirect
After 3 levels

references by caller.

of indirect, interrupts are checked.
Control is returned to the base set

if there is a pending interrupt.

Calling parameters:

On exit:
User must pick it up!

Data is returned in the "T" register.

The direct address is returned in the

scratch register s7.

SV_IND: s7 := t;
if not y1S then rtn,
rdb, bbus/t;
57 := t;
if not y15 then rtn,
rdb, bbus/t;
57 := t;
if y15 then goto CK_INT;
rdb, bbus/t, rtn;
*
Check for interrupt conditions
*
CK_INT: if intp goto SER_INT;
rdb, bbus/t, goto RSV_IND;

*
»
*
*
*
*
*
»*
¢« On entry: Unresolved address must be in "T" register.
»
*
]
*
*
*
*
R

sfreeze ?

sdef to y bus
15t level

sdata or def read
sdef to y bus
#2nd level

sdata or def read
sdef to y bus
*allow interrupts
sotherwise read data
+*and return

#you lose
skeep looking

12-5

Microprograms

Jump back to Base Set to service interrupt
Note that since we are checking interrupts within

*
*
»
*
* a subroutine, the code cannot just return to the
*+ base set, but MUST do a goto.
*
*
S

ER_INT: goto inst_restart, sservice interrupt
p := fa; soriginal pc

12-3. SHELL SORT EXAMPLE

This example performs a sort of numeric data to illustrate the benefits of microprogramming a typical
program that may be used repeatedly in a particular application. It includes three parts:

a. A FORTRAN program to generate an unsorted buffer, print the unsorted buffer, call a sort
program, and print the sorted buffer.
b. An Assembly language program to interface to a microprogram which performs the actual sort.

c. The sort microprogram that uses a diminishing increment sorting algorithm to sort an array of
integers into ascending order. The routine does check for interrupts and will return to the base set
if necessary. This method is called a “Shell sort.”

The calling sequence is as follows:

LDA NUMBR
LDB BUFF
CLE
JSB SORT
Where:
NUMBR is the number of array elements to sort
BUFF is the starting address of the buffer
E reg indicates first entry into SORT

number of elements (not modified)
address of buffer (not modified)

used to save interrupted address

used to hold current partition increment
used as a swap flag

used as a reenterant flag

Register usage:

HO X »

The flowchart of Figure 12-2 is provided to help you follow the program code in the shell sort example.

12-6

Microprograms

Save Program Counter

Return yes

from int ?
(e=1)

no. of
elements<0
?

init offset y=a

!

Read j and sve, inc address.

Compare i
and j, is i>]
?

Swap i and j element and sto

any

set offset y=y/2 4—@

No. of compares to counter ct=a-y. Form address of i
element in the program counter (p=b). Form address
of j element in a scratch register (sx=b+y). Init swap

indicator (clo).

Read i element and save, inc i
address and save old i address.

pending
interrupts
?

dec ct

Save old p in x, set e,
restore old program cnt,
save counter and exit
to base set.

restore i addr (p=x),

L p| restorejaddr (sx=p+y)

restore count

yes

more
compares ?
(ct=0)

yes any swaps ?

(is o set)

8200-2

Figure 12-2. Flowchart of Shell Sort Program

12-7

Microprograms

EXAMPLE 2: SHELL SORT, FORTRAN TEST PROGRAM

12-8

FTN7X,L,I,Y

s NoNoNsEoRoNoNoNsRoloNoNoNeNe

Get

OO0 OO0

OO0

OO0 ®

OO0

15

18
999

PROGRAM JOKE 4

MAIN PROGRAM:

Calls Subroutine “INIT’ to initialize a user
buffer (ie. unsorted buffer).

Then subroutine ’SORT’ is called to sort the
data buffer. ‘SORT’ calls the microcode.

RUN STRING: RU,JOKE4,START,INC,NUMBR

START: STARTING VALUE
INC: INCREMENT BETWEEN VALUES
NUMBR: TOTAL NUMBER OF ELEMENTS

IMPLICIT INTEGER (A-2)

DIMENSION BUFF(10000)

DIMENSION PARMS(S5)

EQUIVALENCE (PARMS(1),START), (PARMS(2),INC)
EQUIVALENCE (PARMS(3),NUMBR)

starting value, increment, and number of elements

CALL RMPAR(PARMS)
IF (IABS(NUMBR) .GT. 10000> GOTO 999

Initialize the buffer per run string parameters

CALL INIT(BUFF,START, INC,NUMBR)

Print the unsorted buffer to scheduling lu

SESN = -1

LU = LOGLUCSESN)

WRITECLU, 1)
FORMATC/20X,*"*UNSORTED BUFFER"/)
WRITECLU,8)(BUFF(J),J=1,NUMBR)
FORMAT(8(2X,16))

Sort the buffer

CALL SORT(BUFF ,NUMBR)

Print the sorted buffer

WRITECLU,15)
FORMAT(C//20X,"SORTED BUFFER"/)
WRITECLU,18)(BUFF(J),J=1,NUMBR)
FORMAT(8(2X,16))

END

EXAMPLE 2: SHELL SORT: TEST ASSEMBLER INTERFACE

MACRO, L
NAM SORT,7
*
+ Calls the microcode to sort a buffer passed
by the calling program.
*
#+ CALLING SEQUENCE:
*
* CALL SORT(BUFF ,NUMBR)
*
ENT SORT
EXT .ENTR,.SORT
*
.SORT must be declared as an entry point in another
+ assembly module as follows: .SORT RPL 105501B
L4
BUFF BSS 1 BUFFER ADDRESS
NUMBR BSS 1 NUMBER OF ELEMENTS
*
*
SORT NOP
JSB .ENTR GET PARAMETERS
DEF BUFF

Branch to control store address (0x3001)

LDA ONUMBR
LDB BUFF
CLE

B=DEF BUFF A=#ELEMENTS E=0

JSB .SORT
JMP @SORT
END SORT

EXAMPLE 2: SHELL SORT, MICROPROGRAM
MPARA,L;

»
UG_SORT: sorigin 0x3050$

DESCRIPTION:

algorthim to sort an array of integers into ascending
order. ‘SORT’ is interruptable and therefore does

Memory protect checks are implicit on the A700 CPU
if the logic is enabled. (This is different from the
microcode in Hewlett-Packard M/E/F Series computers.)

CALLING SEQ:

LDA NUMBR
LDB BUFF
CLE

JSB .SORT

Where: NUMBR is the number of array elements to sort
BUFF is the starting address of the buffer
E reg indicates first entry into SORT

® & & & & % % % % k & ® &k & & * x & * ¥

Instruction ‘SORT’ uses a diminishing increment sorting

check for memory protect on every memory read and write.

Microprograms

12-9

Microprograms

EXAMPLE 2: SHELL SORT, MICROPROGRAM (Continued)

*
#+ Register usage:

A number of elements (not modified)
» B address of buffer (not modified)
* X used to save interrupted address
* Y used to hold current partition
* increment
* 0 used as a swap flag
* E used as a reenterant flag
*
SORT: s7 := p; #save program counter

if = then goto INT_RTN;

Initial program entry
*
1= a;
if y15 then goto EXIT,
acc := ones;
*
Calculate current partition
#*
SETY: y = 1lriCyd;
if yz then goto EXIT;

*

sre-entering?

ssave no. elements
#neg no. ?, if so goodbye
sset acc = -1

sy=y/2
+all done?

Start sort with current partition offset

*
ST_PASS: ct := a-y;
:= b,
dct;
s6 := b+y,
clo;
*
Compare elements i and j
#*
CMPAR: rdp,ip,
sS := p;
s4 := |
rdb,
s6 := s6 - acc;
83 :=
s2 := 54 xor s53;
if not y15S then goto SUB_UM,
54 := =4,
if y15 then goto CK_INT;
goto SWAP;
SUB_UM: 81 := 53-s4;
if not y1S goto CK_INT;
#*
Swap the elements
“
SWAP: := 14, bbus/ma,
sto;
:= 53, bbus/s5;

wrb

wrb
i

#calc loop count
#p=i element addr
+dec counter once
#56=] element addr
#init swap flag

i element
old i addr
ssave i value
sread j element
#inc j addr
ssave | value
#like signs ?
syes, subtract um
stest neg i

#if so0, i«j

Qj)i

#j-1>0 ?

#if yes, no swap

sread
ssave

#old j adr = i value
sindicate swap
#old i adr = j value

Check for interrupts (ie. MP, Parity, TBG, etc.)

*
CK_INT:

#*

if not intp goto END_CK,

*any interrupts?

Interrupts pending so exit as follows:

#*

Set e to indica
Return to base set

* & % % *F

12-10

Save the next i address (p) in the x register
Save the counter in the reserved user register
Restore the ori%inal program counter

e interrupt entry when we return

Microprograms

INT_EX: x := p, ssave i addr
ste; sset int flag
usr := ct; +save count
p := fa, fchb, srestore old pc
rin; *and return

Return from interrupt section:

*

»*

*

* Restore i address to p
* Restore j address to s6
* Accumulator to -1

* Restore count

#*
1

NT_RTN: p:=x; scurrent i addr
ct := usr; . srestore count
56 := p+y; scurrent j addr
acc := ones; sacc = -1

*
Check for last compare in current partition

*
END_CK: if not ctz goto CMPAR; *more compares ?
if o goto ST_PASS; *any swaps ?
goto SETY; #get next increment

*

#» Start Instruction Fetch, Exit
*

EXIT: p := s7, fchb, srestore pc
rtn; sreturn

12-4. PRIVILEGED DRIVER EXAMPLE

An I/O driver has an initiation section and a continuation/completion section. For any given I/O
request, the operating system is involved with the driver in the operations of both these sections.

The initial EXEC I/O request call forces an entry into the operating system. The operating system
verifies the EXEC request parameters and builds an I/O request block from the user’s parameters and
performs other system checks. The I/O request block is passed onto the driver to carry out the I/O
operation. The operating system performs these steps in about 1 or 2 milliseconds.

There are some high speed, real time applications that require the user program to immediately
service an I/O device without waiting for the operating system initial functions. Therefore, the
programmer needs a way to “bypass” the operating system set-up and error checking. This can be
accomplished by having the user program perform the driver initiation functions in a “privileged”
routine. The required time can be further reduced by microcoding the initiation routine. A privileged
microcoded initiation section driver is more than ten times faster than the normal driver that uses the
operating system; however, the operating system protection is sacrificed.

After the I/O card has either completed the data transfer or has completed a portion of the data
transfer, the I/O card can be programmed to generate an interrupt. The interrupt starts the con-
tinuation section by forcing an entry into the operating system. The operating system must save the
current machine state, determine the cause of the interrupt, and enter the completion section of the
appropriate driver.

12-11

Microprograms

The operating system overhead in the continuation/completion portion of the driver can also be
eliminated by writing a privileged driver which can be further improved by microcoding. The
privileged driver continuation routine is entered directly from the trap cell when the card interrupt
occurs (i,e., bypassing the normal entry into the operating system). Therefore, the driver is responsible
for saving the interrupted machine state on entry, performing the necessary I/O, and restoring the
interrupted machine state upon exit.

12-5. STRUCTURE OF EXAMPLE PROGRAM

The example privileged microprogrammed driver is divided into two parts: an initiation routine called
“SEND” and a continuation/completion routine called “TRAP”. The “SEND” routine is entered di-
rectly from the user program, and it is responsible for outputting a 16-bit data word and a 16-bit
control word to the HP 12006A Parallel Interface Card (PIC).

The “SEND” routine outputs the data to the I/O card, programs the card to interrupt, and returns to
the user program. When the card’s flag is set, the interrupt occurs. The interrupt causes the execution
of the trap cell associated with the select code of the PIC card (30B). Normally, the trap cell contains a
JSB indirect instruction into the operating system. For the privileged driver “TRAP,” the user opcode
is in the trap cell. Therefore, when the interrupt occurs, the “TRAP” microcode is entered directly from
the trap cell. The “TRAP” routine is responsible for saving the state of the machine, completing the /O
transfer, and restoring the state of the machine upon exit.

The calling sequence for the “SEND” routine is shown below:

Calling Sequence:

JSB .SEND

DEF RTN Return address

OCT SCODE select code of PIC card

OCT DVADR data for R31 of PIC

OCT DATA data for R30 of PIC

0TB 2B,C I/O instruction to load global register
0TA 31B I'O instruction to load R31

0TA 30B I/O instruction to load R30

STC 30B,C I/O instruction to send “DVCMD”
LIB2B IO instruction to save global register
0TB 2B,C I/O instruction to load global register
cLC 30B,C I/O instruction to disable device

0TB 2B,C I/O instruction to reset global register

The A700 processor I/O architecture allows the I/O cards to monitor instruction fetches and execute
the I/O instructions that match the I/O card’s select code. Therefore, the microcoded driver must fetch
the I/O instructions frorn memory and broadcast the I/O instructions over the backplane for reading by
the /O cards. (This is quite different from the Hewlett-Packard M/E/F computer line, where the I/O
instructions are generated internally in the microcode.) This is why the instruction “.SEND” passes
the I’O instructions as parameters to the microcoded driver, so that the driver can “broadcast” these
instructions over the backplane.

12-12

Microprograms

Once the instruction is broadcast to the I/O cards, the microcode must assist the I/O card in executing
the I/O instruction if processor resources are required. The I/O card is responsible for executing the
instruction and the microcode acts as a slave processor to the I/O card during the execution of the
instruction.

EXAMPLE 3: PRIVILEGED DRVER, MAIN PROGRAM

MACRO,L

* % % & % & % & & % & % & & & & & & &

® % & % & % % & % ¥ & & £ x ¥ * &

NAM JOKEG6,3

MAIN PROGRAM:
Calls the microcoded driver "SEND" to output a 16-bit data word
to register 30 and a 16-bit control word to register 31 of the
parallel interface card (12006A).
“SEND*" programs the card to interrupt after accepting the data
(ie. when the device’s flag is set) and returns to the the user
program.
On interrupt, the base set microcode executes the trap cell. The
trap cell contains a user opcode that branches to the microcoded
completion driver called "TRAP",
CAUTION: This is the ONLY program that can access the PIC
card because the operating system’s protection
has been bypassed.
ENT JOKEG
EXT EXEC,$LIBR,s$LIBX,.XSA1,.XLA1,$PIMK,.SEND
.SEND must be declared as an external in another assembly module
as follows: .SEND RPL 105502B
Disable memory protect by going privileged so that the trap cell
for the PIC card can be modified without causing a memory protect
violation.
OKE® JSB $LIBR +GO0 PRIVILEGED
NOP *
LDA 0OPCOD +PATCH IN TRAP CELL FOR
JSB .XSA1 +MICROCODED DRIVER "TRAP"
@5CODE *
The PIC card is set up to be a privileged interface. This means
that an interrupt from the PIC card could interrupt either a
user program or the operating system. Non-privileged 1/0 cards
can only interrupt a user program or the idle loop of the
operating system.
Note: In Hewlett-Packard M/E/F Series computers, a card is
privileged if it is physically placed beneath a privileged fence
card and the generation specifies that the system is privileged.
In HP A700-Series computers, a privileged mask register is
maintained on every 1/0 card that informs the 1/0 card
whether or not it can interrupt. The operating
system maintains the value of the privileged mask (the default
value is determined at generation time). The value is output
to the I/0 cards with an OTA 0B command.

12-13

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MAIN PROGRAM (Continued)

* & % % % % ¥ % % ¥ %* % ¥ & & ¥ x ¥ & & £ * x ¥ ¥ % x

®* % % % % % & % * %

® % & & % % & & & & & & * ¥

12-14

The format of the privilege mask is shown below:

CARD INTERRUPT DISABLED
BIT WHEN BIT IS SET

18 scodes 77-74

14 scodes 73-70

13 scodes 67-64

12 scodes 63-60

11 scodes 57-54

10 scodes 53-50

scodes 47-44

scodes 43-40

scodes 37-34

scodes 33-30

scodes 27-24

scodes 23-20

scodes 17-14 reserved for CPU
scodes 13-10 reserved for CPU
tbg

status bit

O=2NWHANONDOWO

JSB . XLA1 #GET DEFAULT PRIVILEGE MASK
DEF $PIMK *

AND =B177677 «CLEAR BIT FOR SCODE 30-33
JSB . XSA1 #RESTORE IT

DEF $PIMK

JSB $LIBX #TURN MEMORY PROTECT

DEF #+1 #BACK ON

DEF #»+1 .

The initiation of the I/0 is started by the "SEND" microcode
and is completed by the "TRAP" microcode. The "TRAP" microcode
communicates with this program, so we must make sure that this
program stays in memory in the same partition. The best way
to do this is for the System Manager to "assign" this program
to a fixed partition at boot-up time. Also, the program should
lock itself into memory with an exec 22 call. These precautions
are needed because we are bypassing the operating system’s
internal protection and set up.

JSB EXEC #+LOCK IN PARTITION

DEF #+3

DEF D22

DEF L0OCK

Output the data to the PIC card

Transfer times:

Start of "SEND" to completion of "SEND" - 76.8 us

Base set coce to handle interrupt - 11.1 us

Start of "TRAP" to completion of "TRAP" - 16.0 us

Total transfer time about 105 us.

NOTE: These times were done on pre-released hardware and base

set. Actual times will be about 8 percent faster.
The PIC card was installed with a loop-back hood.

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MAIN PROGRAM (Continued)

CLE *INDICATE FIRST ENTRY
JSB .SEND *ENTER LAB& MICROCODE
DEF NEXT *RETURN
SCODE OCT 30 #+PIC SELECT CODE
R31 OCT 4S *R31 DATA
R30 0CT 155 *R30 DATA
0TB 2B,C #*SET UP GLOBAL
0TA 31B *DATA TO R3M
0TA 30B *DATA TO R30
STC 30B,C #START TRANSFER
*
#+ The following instructions are used by the
#+ trap cell driver code.
*
LIB 2B *SAVE GLOBAL CAUSE PRIVILEGED
0TB 2B,C #*SET GLOBAL FOR PIC
CLC 30B,C +DISABLE PIC
0TB 2B,C #RESTORE GLOBAL
*
#* Do another transfer, this time indicate that the set up
* code has already been completed.
*
*+ Transfer times:
*
+ Start of "SEND" to completion of "SEND" - 22.4 us
*+ DBase set code to handle interrupt - 11.1 us
+ Start of "TRAP" to completion of "TRAP" - 16.0 us
*
+ Total transfer time approx. 50 us
#+ NOTE: These times were done on pre-released hardware and
+ base set. Actual times will be about 8 percent faster.
+ was installed with a loop-back hood.
*
NEXT CCE #NOT FIRST ENTRY
JSB .SEND *ENTER LAB6 MICROCODE
DEF EXIT *RETURN
ocT 30 #+PIC SELECT CODE
0CT 47 *R31 DATA
OCT 144 *R30 DATA
0TB 2B,C #*SET UP GLOBAL
0TA 31B *+DATA TO R31
O0TA 30B *DATA TO R30
STC 30B,C #START TRANSFER
*
*+ The following instructions are used by the trap cell code.
*
LIB 2B *SAVE GLOBAL CAUSE PRIVILIGED
0TB 2B,C *SET GLOBAL FOR PIC
CLC 30B,C +DISABLE PIC
0TB 2B,C *RESTORE GLOBAL

Unlock the partition and go home
*

EXIT JSB EXEC #+UNLOCK PARTITION
DEF #+3
DEF D22
DEF UNLCK

*
JSB EXEC
DEF #+2
DEF SIX

LOCK DEC 1

UNLCK DEC 0

D22 DEC 22

SIX DEC ©

OPCOD OCT 105503
END JOKEG

12-15

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND”

MPARA,L;

.
UG_SEND:
L

DESCRIPTION:

The instructi

A microcoded

CALLING SEQ:

(used by trap)

(E A XA EERE SRR R RS S]

us

Register usuage:
s0 --
s5 --
s6 --
57 --

usr -

prin(6) --

prin(7) --

Note:

trap cell microc

% % % % % % % £ % % 2 £ F %2 T ¥ F 2 £ £ £ £ T £ T T % € % ¢ * e £ * ¥ * ¢ F & € T F ¥ * * ¢ * % & x ¢ & F * & ¢ + * & & & &

12-16

on "SEND" is a microcoded driver used to output a

16-bit data word to register 30 and a 16-bit control word to
register 31 of the parallel interface card (12006A). The card
is programmed to interrupt upon completion of the data transfer.

completion routine "TRAP" is used to complete the

data transfer. The routine "TRAP" is entered directly from the
trap cell upon interrupt.

CLE Indicates first entry

CCE All subseqent entries

JSB .SEND User opcode

DEF RTN Return Address

OCT SCODE Select code of PIC card
OCT CNTL Data for R31 of PIC

DCT DATA Data for R30 of PIC

0TB 2B,C Set up Global Register
DTA 31B Output to R31 of PIC

OTA 30B Output to R30 of PIC

STC 30B,C Enable transfer and interrupt
LIB 2B Save Global Register

aTB 2B,C Output to Global Register
cLC 30B,C Disable PIC card

0TB 2B,C Restore Global

RRERRFRBRRERBRRBBRRRRRRRRBRRBREBRBBBRERRBRRERRRER
*

Start of Main Program »

[Z X R EE R R EERRE R R R RS R ERRRERRREEREARR SRS R AR S ZRS 2 A AR AR R R AR R R K RS

Environment: The instruction "SEND" is entered directly from the

er program. Therefore, memory protect is enabled

and the mapping system is set up for the currnet
executing program (ie. the pro?ram that executed
the instruction "“SEND"). The g

available and does not have to be saved.

obal register is

Contains the return address of the next

user instruction

Scratch register

Scratch register

Scratch register

bits 0-5 IC card’s select code

bit 15 1=card busy O=card available

Contains the map set number associated with the
PIC card’s select code. This map set (ie. port
map) will contain a copy of the current user map.
Contains the 15 bit logical memory address that
points to the LIB 2B instruction in the user map.
This instruction will be used by the "TRAP*"
microcoded driver.

Usr, prin{6), and prin(7) are used to pass information to the

ode completion routine.

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND” (Continued)

SEND: $origin 0x3090$
*
rdp, ip; *read return address
s0 := t; ssave it
*
All I/0 instructions must be executed with memory protect
disabled in order to function correctly. Otherwise, the iorgq
(input/output request) signal will not be recognized by this
+ microcoded driver.
#*
call MP_DIS; #disable memory protect
rdp, ip; sread select code

® & % % % & =%

- =

* % & % & & & ¥ % *x

* % % *

* * * %

Go set up the port map associated with the select code for the
PIC card. The port map information will be used by the trap
cell microcoded driver that is entered after the 1/0 card
interrupts. The select code is returned in the user reserved
register "USR".

call MAP_SAV; #go set up port map

Pull in the parameters passed by the calling program.

b := usr, #bsselect code
rdp, ip; sread R31 data

a := t, +a=R31 data
rdp, ip; #get R30 data

s5 := t, stemp save of R30 data
stf; sindicate no iohs

Broadcast the 1/0 instruction "0TB 2B,C" over the backplane for
the 1/0 cards to recognize. This [/0 instruction loads the
global registers (located on every 1/0 card) with the select
code in the B register. Since the PIC’s select code is in the
B register, we have "enabled" the PIC card to execute all further
I/0 instructions. Only the I/0 card whose select code matches
the current contents of the global register will execute the 1/0
instruction.

call I0_CMD; sbroadcast 0TB 2B,C

call OUT_GLB; +execute OTB 2B,C

ip, clf; #do I0OHS from now on
Output the 16 bit control word to Register 31 of the PIC card

call I0_CMD; sdo OTA 31B
Output the 16 bit data word to Register 30 or the PIC card

a := s5, +a=R30 data

ip; *
call 10_CMD; +do OTA 30B
ip; »

Send the Device Command signal to the device and clear the
flag so that the device flag will generate an interrupt.

call 10_CMD; +do STC 30B,C
Indicate that the I/0 operation is in progress. The "USR" register

register is used to communicate information to the trap cell
microcode.

12-17

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND” (Continued)

*

usr := 0x8000 ior usr; sset busy bit

ip; #+P=pointer to LIA 2B

n := 0x0007; sset index for PRIN

prin := p; ssave for trap cell code

call MP_ENB; #turn MP back on

i= 503 srestore user pc

fchp, rtn; sreturn to user
XX XXX Z TSRS SRR SRR EY SRR RERARR R R R R R R R R R AR AR 2 2 X J
* *
* Subroutine MP_DIS .
* *

BRBRRBBRRRRRARRRBRRRRRRBRRRRBRRRBRRRRBRBREABRRRRRRRAFRRRRRRRRRRRRONN
*

+ Disables the memory protect logic by setting bit bit 12 in the

#« CPU’s interrupt status register (ist). The subroutine also

*+ clears any outstanding memory protect violations by writing a

+ wvalue of 2 into the lower 4 bits of the ist register.
*
M

P_DIS: a6 := Oxfff0 and ist; #set MP bit in ist
ist := s6 ior 0x1000; *
86 := Oxfff0 and ist; sclear any generated
ist := 0x0002 ior =6; #«MP violations
rtn; *

*
IR EXEREERERRRRRRRRRERRRRRRRRRRRER XSS AER SRR R AR RS AR AR RS R AR R R 2 X J

* #*
* Subroutine MP_ENB *
* *

[X R X SR EERERR RS R R ER R RS S RS RN R AR AR R R A AR R AR R SRR S R
*

* Enables the memory protect logic by clearing bit 12

* in the CPU’s interrupt status register (ist).

*

*

MP_ENB: s6 := Oxfff0 and ist; sclear MP bit in ist
ist := s6 and not 0x1000; »
rtn; *

*
*
I EZIXZEEEREEEERZ R R ERERERRERRRRRRER R RS ESAES AR R RS R R R AR R AR R R R 2 X 4

* *
* Subroutine OUT_GLB »
* L]

[EXZEZEEZRERRRERRRERER RRERRR RARER ERRER SRS AE A AR AR RSS2 AR R R A RS X
*

* Executes a ‘0TB 2B,C’ I/0 instruction to load the global
* registers on every 1/0 card. The clear flag option is used
* to enable the global register. Prior to calling this routine,
* the 1/0 instruction must be broadcast over the [/0 backplane
* in order to work correctly. A command word of 12 decimal is
* output over the backplane to the I/0 cards. Then, the select
* code is output. Each of the 1/0 cards will save the value of
* the ?lobal register internally. The global register was
* enabled by the clear flag option in the 1/0 opcode and its state
* is recorded in a privileged CPU status register (prin(e)).
*
OUT_GLB: s7 := 12; scommand word for I0OP
CK_IORQ@: if not iorq goto CK_IORG; *wait for iorgq
nop := s7, wrio; ssend command to IOP
nop := b, wrio; #*send select code
n := 0x000e; supdate CPU status for CLF
prin := prin ior 1; #+bit 0=1 for GR enabled
rtn;

12-18

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND” (Continued)

*
*

Microprograms

AR AR AR R Z A R X R X X R R X R R X 2R R X R E X R R X R R R R R R R R R Y Y R Y R XX RS Xy

*
*
*

Subroutine MAP_SAV

*

\AAAR R R R 22 R 222 R R R R R R R EE R R R R R R R R N R Y R R R X S L)

*

*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
L
*
*
*
*
*
*
*
*
M

® % & % % ¢ & % & % * * & & T & ¥ T & & ¢ & ¥ & &k * ¢ & &

Copies the current user map into the port map reserved for the
select code of the PIC card. This is usually done by the
operating system prior to entry into a driver. Since our

microcoded driver is bypassing the operating system, the driver

has to perform the set up. The port map is used by the trap ce
microcode in order to access the user area. This driver was
written such that any user program could be executing when the

11

interrupt occurs. That is why the current user map must be saved.

On entry: =0 indicates first entry into the routine
= 1

e
e indicates set up has already been done

A read of the PIC card’s select code has already
been started by the calling routine.

On exit: The PIC card’s select code is loaded into the
user reserved register "USR", and the port
map is set to the current user map.

The user reserved privileged register (prin(6))
is loaded with the port map number. This value
is used by the trap cell microcode to enable the
port map when accessing the user space.

AP_SAV: if e then rtn, #1st entry?

usr := t; #save select code!
n := 0x0006; #index to priv register
prin := usr - 0x0008; ssave map set no. for PIC

In an AB00/A700/RTE-A.1 computer environment there are 32 sets
of 32 maps used to access greater than 32K of memory. The

map set allocation is as follows:

Program allocation:

map set #0 for the operating system
map set #3 for the current user map

1/0 allocation:

map set #8 for select code 20B
map set #9 for select code 21B

map set #31 for select code 47B

A map address register is used to access the individual

map registers (0-1023). Therefore, the map address register
(mpar) contains 0-31 to access the operating system’s map and
992-1023 for select code’s 47B port map.

The lower S bits of the "memr" register contains the active
map set number (0-31) that is currently being used for memory
accesses (ie. the execute map). Since we are executing in
the user space, this number better be 3!

12-19

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND” (Continued)

#*

s6 := memr and 0x001f; scalc source mpar
56 := rl4(s6); smpar=3#32

s6 := rl1(s6); »

57 := rl4(prin); scalc dest mpar
s7 := rl1(s7); smpar=map set#32
ct := 31; #loop count

*
#+ srin(0) = map address register (mpar)

n := zero; sindex for mpar
»
. transfer 32 user map registers to port map for the PIC
*
TR_MAP: srin := s6; #source mpar
s6 := s6 + one; »
s5 := map; ssave map value
srin := s7; sdestination mpar
57 := 57 + one; *
map := s5, #load map
if not ctz goto TR_MAP; +done ?
rtn; *

BRBBERRRBRRRRBRERARRRRBRRRERRRBRRRRRRBERRBERERRRBRREBRBRRRBRERRRRRRS

* Subroutine 10_CMD

*

XXX RRRSRRRRRERRERR RS R R RS RS RS RS R RS ESAR RS AR 2RSSR AR A0 AR

This routine is used to broadcast an I/0 instruction over the
backplane. The 1/0 cards monitor the instructions on the
backplane and execute the I/0 instructions when appropriate.

Entry: The program counter points to the I/0 instruction in
memory that is to be broadcast. In this example, the /0
instructions are passed by the calling program as
parameters in the user space. Make sure that the "memr"
register is set to the correct map when accessing memory!

The general purpose CPU flag is set if no 1/0 handshake
is required by the I/0 instruction. The flag is clear if

in order to execute the 1/0 instruction. All I/0
instructions with their lower 6 bits >17B require an 1/0
handshake (iohs)!

Note: Refer to the base set routines BCST and IOHS for
a more general purpose routine.

— % & % % ¥ % ¥ ¥ % % % ¥ % ¥ %k % & ¥ & & ¥

0_CMD: bfb, bbus/p; sbroadcast the I/0 instruction
ct := t; #+1/0 opcode to ct and freeze!
if f then rtn; +flag set for no handshake
*
CAUTION: We must wait a certain time period after the 1/0
* instruction has been broadcast over the backplane
* before checking for the input/output request (iorq)
» signal generated by the 1/0 cards. The current base
. set waits two cycles after the freeze (ct := t)
» instruction before checking for the iorq signal.
*
nop; #timing
if not iorq then rtn; sdoes I0P need our help?

12-20

the I/0 instruction requires a handshake from the microcode

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND” (Continued)

The CPU microcode must act as a slave processor to the 1/0
processor chip (I0OP) if the 1/0 card needs CPU resources in order
to execute the I/0 instruction (ie. access to the A register,

etc.).
slave processor’s help.

word

8 7 6 5 4
Nop X 0 0 0 O
Load program cnter X 0 0 0 1
Load A register X 0 0 1 O
Load B register X 0 0 1 1

X 0 1 0 O
Set 0 register X 0 1 0 1
Merge into A/B X 0 1 1 0
Inc program cnter X 0 1 1 1
Undefined X 1 0 0 O
Enable boot memory X 1 0 0 1
Read A register X 1 0 1 0
Read B register X 1 0 1 1
Clear E register X 1 1 0 0
Set E register X 1 1 0 1
Read P register X 1 1 1 0
Read and inc P X 1 1 1 1
X=0 if last handshake
X=1 if more handshakes are required

OHS_DO:

*

TORQ_WT:

#*

10HS_QT:

base

* % & & %

*
*
*
*
*
*
*
*
*
*
*
»*
*
#*
*
*
*
* Clear 0 register
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
I

is defined as follows:

(ie. continue looping)

rdio,
57 := ct;

nop := 0x0100 and t;

if yz then goto IOHS_QT,
ct := t;

call IOHS_TB, ct74,
ct := t;

if iorq goto IOHS_DO;
goto IORG_WT;

goto IOHS_TB, ct74,
ct := s7;

The command table is indexed by
The table must begin on an even 16 word boundry.

set’s iohs_tbl.

Data bus bit

The I0OP asserts the iorq to signal that it needs the
The CPU microcode must read a control
word from the I0OP that tells the CPU what to do.

The control

sread I0OP cntl word (CW)
ssave instruction opcode
scheck continue bit

+last one?

sput CW into counter
#*index into table via CW
#load opcode into counter

swait for handshake
#try again

+last time
#load opcode into counter

the I0P control word bits 4-7.

Refer to the

Microprograms

12-21

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “SEND” (Continued)

L]

IOHS_TB: $align 16¢

{00} rtn; *nop

{01} rdio, goto IOHS_LP; sload p from IOP

{02} rdio, goto IOHS_LA; #load a from IOP

{03} rdio, goto IOHS_LB; #load b from I0P

{04} sto, rtn; sset o

{05} clo, rtn; sclear o

{06} rdio, goto IOHS_MI; smerge into a/b

{07} ip, rtn; sincrement p

{10} rtn; swrite status to IOP

{11} goto IOHS_BT; senable BOOT memory

{12} nop := a, wrio, rtn; swrite a to IOP

{13} nop := b, wrio, rtn; swrite b to IOP

{14} cle, rtn; sclear e

{15} ste, ring sset e

{16} nop := p, wrio, rtn; swrite p to IOP

{17} nop := p, wrio, ip, rtn; twrite p to IOP, inc p

*

*

¢ Execution of individual commands

»

*

IOHS_LP: p := t, rtn; #load p from I0P

*

IOHS_LA: a := t, rtn; ¢load a from IOP

*

IOHS_LB: b := t, rtn; sload b from I0P

*

IOHS_MI: s6 := cab; #load current a/b
cab := 56 ior t, rtn; #merge in IOP value

»

IOHS_BT: rtn; #sorry charlie

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “TRAP”

MPARA,L;

*

UG_TRAP: sorigin 0x3100$

*

DESCRIPTION:

*

This microcode is entered directly from the trap cell upon an
interrupt from the parallel interface card. The main program
must write the instruction opcode into the trap cell associated
with the PIC card’s select code. The "TRAP" microcode is
essentially the privileged portion of the microcoded driver.
The TRAP microcode must save the current machine state, perform
the necessary 1/0 to the PIC card, and restore the machine state
upon exit.

The initiation of the [/0 on the PIC card was started by the
“SEND*" microcode.

* % & % & % % & & & &

12-22

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “TRAP” (Continued)

*

CALLING SEQ: JSB .SEND

» DEF RTN

* 0CT SCODE Select code of PIC card

» OCT CNTL Data for R31 of PIC

» OCT DATA Data for R30 of PIC

» 0TB 2B,C Output to Global Register

» OTA 31B Output to R31 of PIC

* 0TA 30B Output to R30 of PIC

* STC 30B,C Enable transfer and interrupt
* prin(7) ---> LIB 2B Save Global Register

* 0TB 2B,C Output to Global Register

* cLC 30B,C Disable PIC card

* 0TB 2B,C Restore Global Register

*

¢+ Subroutines located in the *“SEND" microcode routine

+ that are used by "TRAP".

*

EXTRNL: $define adrl/I0_CMD 0x30C7$ #Execute 1/0 command

$define adrl/0UT_GLB 0x30AF$ «0utput to global register
sdefine adrl/MP_ENB 0x30AC$ +Enable memory protect

*
*

sEnvironment: The “TRAP" microcode is entered directly from the trap

* cell upon interrupt. The CPU microcode has already
* disabled memory protect and saved the previous
. mapping information in a CPU privileged register.
» The CPU microcode has also modified the “memr*
* register by setting the active map set to 0 (ie. the
* operating system’s map). Therefore, all memory
* references will refer to the lower 32k of memory
» unless memr is modified.
-
#*Registers:
* usr -- Bits 0-5 contains select code of the PIC
* Bit 15 busy=1 available=0
* Register must be set by the "SEND"
* microcode.
* prin(6) -- Contains the map set number associated
» with the PIC card’s select code.
. Register must be set by the "SEND"
» microcode.
* prin(7) -- Contains the 15 bit logical address of the
» ‘LIB 2B’ 1/0 instruction in the user
* map of the program that called the
* “SEND"™ microcode.
* s0 -- A register save value
. 51 =-- B register save value
» 52 -- Program counter save value
» s3 -- Global register save value
. s5 -- Scratch reg
* s6 -- Scratch reg
» s7 -- Scratch reg
*
*
+ Save the state of the machine
»*
*
DVR_CON: s0 := a; ssave a
s1 := by *save b
52 = p; ssave
nop := usr; #check busy bit
if not y15 then goto EXIT; #not busy, ignore

12-23

Microprograms

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “TRAP” (Continued)

In order to gain access to the user area where the 1/0

the memr register needs to be modified
so that all memory references will be done in the previous user
map that called the "SEND" microcode. The map set number was

smemr save index
smemr=prin(6)
*pc save index

The program cntr is reset to point to the LIB instruction in the

*
*
*+ instructions are located,
#*
*
+ saved in prin(6) by the *"SEND" microcode.
]

n := 0x0006;

memr := prin,

in;

#*
#*
+ user map (this was also saved by the "SEND").
#*

p := prin,

+ Save the current state of the global

clf;
call 10_CMD;
s3 := b,
stf;
b := usr and 0x003f;

the device and exit.

the OTB 2B,C command

* * & & ¥ ¥ *

nop := b xor =53,

ips;

if yz then goto DIS_DEV;

*
+ Reset Global
*
call I0Q_CMD;
call OUT_GLB;
*

+ Disable the PIC card

*
DIS_DEV: clf, ip;

call I0_CMD;
»*
+ Restore Machine State
*

nop := s3 xor b;

if yz goto RST_MAP;
RST_GLB: b := s3,

stf,

ips
call I10_CMD;
call OUT_GLB;

m
>
—
-

spc=prin(7)
register

sset for iohs

+«do LIB 2B

s#save global

sset for no iohs
#b=P]IC select code

If the global register is still set to the PIC, then just disable

Otherwise, reset the global register to the PIC’s select code via

scmpr global to scode
+point to OTB 2B,C
sequal?

sbroadcast w/o iohs
+*do OTB 2B,C

sset for iohs
#do CLC 30B,C

sglobal reset ?

#if not skip it
sreset global

#no iohs

#*point to OTB 2B,C
sbroadcast w/o iohs
+«do OTB 2B,C

%* * % ¥ ¥ * % ¥ ¥ % * *

12-24

The interrupted mapping information was saved in prin(d) by the
base set microcode upon interrupt. The base set maintains three
separate maps; an execute map, datal map, and data2 map. The
execute map contains the map set number for the executing user
program (which is 3) or the map set number for the 0/S which is 0.

Since this driver is privileged, the interrupted execution map
could be either the user or the system (ie. we can interrupt
either a user program or the 0/S). The datal and data2 maps
could contain any one of the map set numbers (0-31). Refer to
the DMS instructions for details.

EXAMPLE 3: PRIVILEGED DRIVER, MICROPROGRAM “TRAP” (Continued)

MP -

data1
data?2
execute

The format

a/b = 1
a/b = 0
datai
data2

memr(0-4) =

Z % % % & % & & % & % % & * & & & & % F & £ & & * ¥k *x x X & X £ & X & & * x *x ¥

ST_MAP: n :=
sS :=
n o=
s6 :
57
57 :
56 :
56 :
s6 :
prin
prin
memr
if no
call
DONE: P :=
b :=
a:=
fchp,

prin(d)

Upon interrupt, the base set saves the current values of the
three maps and the state of memory protect (enb/dis) into a
privileged register (prin(d)) called IMAP (interrupted maps).
The format of this register is shown below:

state of memory protect at time of interrupt
MP=1 for enabled MP=0 for disabled

value of datal map at time of interrupt
value of date2 map at time of interrupt

value of execute map

is as follows:

prin(f)

a/b addressability
a/b addressability
map set number for
map set number for

Current execute map

0x000d;
prin;
ones;
rr1(sS);
rr1(s6);
0x1f00 and s7;
rl4(s6);
swzu(s6);
s6 and 0x001f;
:= 56 ior 0x2020;
t= prin ior s7;
:= a5 and 0x001f;
t b1S goto DONE;
MP_ENB;
52;
513
s0;
rtn;

at time of interrupt

The base set maintains the CURRENT value of the execute,
datal, and data2 maps in two registers (prin(f) and memr).

disabled
enabled

datal map
data2 map

set number.

sindex to IMAP
ssave [MAP
*reset data2/data?

*

*

sdata2 in upper byte

*

*

sdatal in low byte

*no a/b addressability
#set unpacked data2/data?
sreset exec map (s5/bbus)
senable MP if needed

*

srestore pc

srestore b

srestore a

sreturn to user/system

Microprograms

12-25/12-26

APPENDIX A
SUMMARY OF WORD TYPES I

SUMMARY OF WORD TYPES

APPENDIX

A

Summary of Word Types vs. Field Contents

wo
TY:g FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6 FIELD7
1 OP1 ABUS SPO SP2 ALU BBUS STOR
2 oP2 ABUS SPO CNDX ALU BBUS STOR
3 OP3 ADRS SP1 CNDX ALU BBUS STOR
4 OP4 ADRS SP1 SP2 ALU BBUS STOR
5 OP5 ADRL ALU BBUS STOR
6 OP6 DAT ALU BBUS STOR
1S OP1 ABUS ALUS SP2 SPEC BBUS STOR
2S oP2 ABUS ALUS CNDX SPEC BBUS STOR
3S OP3 ADRS ALUS CNDX SPEC BBUS STOR
4S8 OP4 ADRS ALUS SP2 SPEC BBUS STOR
58 OP5 ADRL* SPEC* BBUS STOR
*Go to microinstruction table for microorder long branch jump (lower four bits of destination address replaced by
bits 3-0 of CT).

A-1/A-2

APPENDIX B
SUMMARY OF MICROORDERS I

SUMMARY OF MICROORDERS

Summary of Microorders by Field

FIELD

CODE oP CNDX SPO SP1 SP2 ALUS ALU ABUS BBUS STOR
00000 IMM SF NOP* NOP* NOP* UMPY SPEC A A A
00001 IMM F LDQ LDQ CMDW TMPY SBAC B B B
00010 IMM ALOV RR1 RR1 DCT SM2C SBBC X X X
00011 IMM CF RL1 RL1 CLF RMLC ADDC Y Y Y
00100 IMM YZ LR1 LR1 STF DNRM ADBC ACC” ACC* ACC
00101 IMM Y15 LL1 LL1 P SNRM CMBC HP1** HP1** HP1**
00110 IMM B15 AR1 AR1 LWF DIV ADAC HP2** HP2** HP2**
00111 IMM INTF AL1 ALA1 LWE DIV1 CMAC USR** USR** USR**
01000 JMPL IORQ RDP RDP CMID SWAP ZERO* SO SO SO
01001 JMPL PON IN IN RDP SWzuU CAND S1 S1 S1
01010 JSBL MPEN RDB RDB WRIO sSwzy XNOR S2 S2 S2
01011 JSBL (0] STE STE DN ZUY XOR S3 S3 S3
01100 JMP E CLE CLE FCHP 2LY AND S4 S4 S4
01101 JMP INTP FCIN FCIN RDIO SRG INOR S5 S5 S5
01110 JSB CTz4 ACF ACF CT30 RL4 NAND S6 S6 S6
01111 JSB CTZ IP IP CT74 ASG 10R S7 S7 S7
10000 JMPF STOR GRIN GRIN
10001 JMPF —_ FA WRP
10010 JMPT — SRIN SRIN
10011 JMPT — P P
10100 JSBF — Q NOP*
10101 JSBF — T WRB
10110 JSBT — IST IST
10111 JSBT — N N
11000 JTAB IFCH PRIN PRIN
11001 — BFB MA CWRB
11010 RTN CK2 MEMR MEMR
11011 NOP* ENOE CT CT
11100 RTNF STO SR LR
11101 SPOF CLO MAP MAP
11110 RTNT FCHB CAB CAB
11111 SPOT LDBR CXY CXY
OP Field Divisions:
OP1=JTAB OP2=SPOT OP3=JMPF OP4=JMP OP5=JMPL OP6=IMM

NOP SPOF JMPT JsSB JSBL
RTN RTNT JSBF
RTNF JSBT

* Default Microorder.
**Reserved register for Hewlett-Packard (HP1 and HP2) and user (USR).

B-1/B-2

APPENDIX C
SUMMARY OF MICROORDER PHRASES I

SUMMARY OF MICROORDER PHRASES

APPENDIX

C

Summary of Microorder Phrases

BRANCHING PHRASES

PHRASE RESULTING FIELDS
GOTO adr OP4/UMPL ADRL/adr
GOTO adr OP5/JMP ADRS/adr
LGOTO adr OP5/JMPL ADRL/adr
SGOTO adr OP4/UJMP ADRS/adr
CALL adr OP5/JSBL ADRL/adr
CALL adr OP4/JSB ADRS/adr
LCALL adr OP5/JSBL ADRL/adr
SCALL adr OP4/JSB ADRS/adr
GOTOTBL adr OP5/JMPL ADRL/adr ALU/SPEC
CALLTBL adr OP5/JSBL ADRL/adr ALU/SPEC
NOP OP1/NOP
JTAB OP1/JTAB
RTN OP1/RTN

BASIC ARITHMETIC PHRASES

PHRASE RESULTING FIELDS
stor := bbus ALU/adbc STOR/stor BBUS/bbus
stor := abus ALU/adac STOR/stor ABUS/abus
stor := NOT bbus ALU/cmbc STOR/stor BBUS/bbus
stor := NOT abus ALU/cmac STOR/stor ABUS/abus
stor := ONES ALU/xnor STOR/stor BBUS/ACC ABUS/ACC
stor := ZEROS ALU/xor STOR/stor BBUS/ACC ABUS/ACC
stor := ZERO ALU/zero STOR/stor
stor := NOT abus AND bbus ALU/cand STOR/stor BBUS/bbus ABUS/abus
stor := bbus AND NOT abus ALU/cand STOR/stor BBUS/bbus ABUS/abus
stor := abus - bbus ALU/sbbc STOR/stor BBUS/bbus ABUS/abus
stor := bbus - abus ALU/sbac STOR/stor BBUS/bbus ABUS/abus
stor := abus + bbus AlLU/addc STOR/stor BBUS/bbus ABUS/abus
ator := bbus + abus ALU/addc STOR/stor BBUS/bbus ABUS/abus
stor := abus XNOR bbus ALU/xnor STOR/stor BBUS/bbus ABUS/abus
stor := bbus XNOR abus ALU/xnor STOR/stor BBUS/bbus ABUS/abus
stor := abus XOR bbus ALU/xor STOR/stor BBUS/bbus ABUS/abus
stor := bbus XOR abus ALU/xor STOR/stor BBUS/bbus ABUS/abus
stor := abus AND bbus ALU/and STOR/stor BBUS/bbus ABUS/abus
stor := bbus AND abus ALU/and STOR/stor BBUS/bbus ABUS/abus
stor := abus NAND bbus ALU/nand STOR/stor BBUS/bbus ABUS/abus
stor := bbus NAND abus ALU/nand STOR/stor BBUS/bbus ABUS/abus
stor := abus I0OR bbus ALU/ior STOR/stor BBUS/bbus ABUS/abus
stor := bbus IOR abus ALU/ior STOR/stor BBUS/bbus ABUS/abus
stor := abus INOR bbus ALU/inor STOR/stor BBUS/bbus ABUS/abus
stor := bbus INOR abus ALU/inor STOR/stor BBUS/bbus ABUS/abus

Appendix C

Summary of Microorder Phrases (Continued)

ARITHMETIC PHRASES WITH SHIFT OR ROTATE MICROORDERS

These phrases specify the shift or rotate microorders to shift or rotate the output of the ALU. The shift or rotate
microorders can be placed in either the SPO or SP1 fields which is indicated here by SP*.

The resulting fields are the shift or rotate microorders shown and the resulting fields from the basic arithmetic

phrase.
PHRASE RESULTING FIELD

stor := LL1 (right side of basic arithmetic phrase) SP*/LLA
stor := LR1 (right side of basic arithmetic phrase) SP*/LR1
stor := RL1 (right side of basic arithmetic phrase) SP*/RL1
stor := RR1 (right side of basic arithmetic phrase) SP*/RR1
stor := AL1 (right side of basic arithmetic phrase) SP*/AL1
stor := AR1 (right side of basic arithmetic phrase) SP*/AR1

ARITHMETIC PHRASES WITH CARRY-IN MODIFYING MICROORDERS

These phrases use the FCIN or ACF microorders to modify the carry-in of the ALU. In the following phrases, FCIN
or ACF will be placed in either the SPO or SP1 fields which is indicated here as SP™.

PHRASE RESULTING FIELDS
stor := bbus + ONE ALU/adbc STOR/stor BBUS/bbus SP*/FCIN
stor := abus + ONE ALU/adac STOR/stor ABUS/abus SP*/FCIN
stor := - BBUS ALU/cmbc STOR/stor BBUS/bbus SP*/FCIN
stor := NOT bbus + ONE ALU/cmbc STOR/stor BBUS/bbus SP*/FCIN
stor := - ABUS ALU/cmac STOR/stor ABUS/abus SP*/FCIN
stor := NOT abus + ONE ALU/cmac STOR/stor ABUS/abus SP*/FCIN
stor := abus - bbus - ONE ALU/sbbc STOR/stor BBUS/bbus ABUS/abus SP*/FCIN
stor := bbus - abus - ONE ALU/sbac STOR/stor BBUS/bbus ABUS/abus SP*/FCIN
stor := abus + bbus + ONE ALU/addc STOR/stor BBUS/bbus ABUS/abus SP*/FCIN
stor := bbus + abus + ONE ALU/addc STOR/stor BBUS/bbus ABUS/abus SP*/FCIN
stor := bbus + CF ALU/adbc STOR/stor BBUS/bbus SP*/ACF
stor := abus + CF ALU/adac STOR;/stor ABUS/abus SP*/ACF
stor := NOT bbus + CF ALU/cmbc STOR/stor BBUS/bbus SP*/ACF
stor := NOT abus + CF ALU/cmac STOR/stor ABUS/abus SP*/ACF
stor := abus - bbus - BR ALU/sbbc STOR/stor BBUS/bbus ABUS/abus SP*/ACF
stor := bbus - abus - BR ALU/sbac STOR/stor BBUS/bbus ABUS/abus SP*/ACF
stor := abus + bbus + CF ALU/addc STOR/stor BBUS/bbus ABUS/abus SP*/ACF
stor := bbus + abus + CF ALU/addc STOR/stor BBUS/bbus ABUS/abus SP*/ACF
SPECIAL ARITHMETIC PHRASES
PHRASE RESULTING FIELDS
stor := alus (bbus) ALU/SPEC STOR/stor BBUS/bbus ALUS/alus
stor := alus (bbus, abus) ALU/SPEC STOR/stor BBUS/bbus ABUS/abus ALUS/alus

C-2

Summary of Microorder Phrases (Continued)

Appendix C

ARITHMETIC PHRASES WITH IMMEDIATE DATA*

PHRASE RESULTING FIELDS
stor := data ALU/adac STOR/stor DAT/data OP6/IMM
stor := NOT data AlLU/cmac STOR;/stor DAT/data OP6/IMM
stor := NOT data AND bbus ALU/cand STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus AND NOT data ALU/cand STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data - bbus ALU/sbbc STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus - data ALU/sbac STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data + bbus ALU/addc STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus + data ALU/addc STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data XNOR bbus ALU/xnor STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus XNOR data ALU/xnor STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data XOR bbus ALU/xor STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus XOR data ALU/xor STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data AND bbus ALU/and STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus AND data ALU/and STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data NAND bbus ALU/nand STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus NAND data ALU/nand STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data IOR bbus ALU/ior STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus I0R data ALU/ior STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := data INOR bbus ALU/inor STOR/stor BBUS/bbus DAT/data OP6/IMM
stor := bbus INOR data ALU/inor STOR/stor BBUS/bbus DAT/data OP6/IMM
*Data can be immediate or a floating point control word.

CONDITIONAL PHRASES

PHRASE RESULTING FIELDS
IF endx GOTO adr OP3/JMPT CNDX/cndx ADRS/adr
IF cndx CALL adr OP3/JSBT CNDX/cndx ADRS/adr
IF endx RTN OP2/RTNT CNDX/cndx
IF endx THEN RTN OP2/RTNT CNDX/cndx
IF cndx sp0 OP2/SPOT CNDX/cndx SP0/sp0
IF cndx THEN sp0 OP2/SPOT CNDX/cndx SP0/sp0
IF NOT cndx GOTO adr OP3/JMPF CNDX/cndx ADRS/adr
IF NOT cndx CALL adr OP3/JSBF CNDX/cndx ADRS/adr
IF NOT cndx RTN OP2/RTNF CNDX/cndx
IF NOT cndx THEN RTN OP2/RTNF CNDX/cndx
IF NOT cndx sp0 OP2/SPOF CNDX/cndx SPO/spO
IF NOT cndx THEN sp0 OP2/SPOF CNDX/cndx SP0/sp0

SPECIAL PHRASES

PHRASE RESULTING FIELD
sp0 SP0/sp0
sp1 SP1/sp1
sp2 SP2/sp2

C-3

Appendix C

Summary of Microorders Phrases (Continued)

FIELD FORCING PHRASES

PHRASE

RESULTING FIELD

0P1/0p1
0P2/op2
0P3/0p3
OP4/op4
0PS/0p5
0P6/0op6
SP0/sp0
SP1/sp1
SP2/sp2
CNDX/cndx
ABUS/abus
BBUS/bbus
STOR/stor
AlLU/alu
ALUS/alus
DAT/dat
ADRL /adr
ADRS/adr

OP1/op1
OP2/op2
OP3/op3
OP4/op4
OP5/op5
OP6/op6
SP0/sp0
SP1/sp1
SP2/sp2
CNDX/cndx
ABUS/abus
BBUS/bbus
STORy/stor
ALU/alu
ALUS/alus
DAT/dat
ADRL/adr
ADRS/adr

C-4

APPENDIX D
FLOATING POINT MICROINSTRUCTIONS I

FLOATING-POINT MICROINSTRUCTIONS

Summary of Floating Point Control-Word Fields

CONTROL WORD FIELDS
FUNCTION
DESCRIPTION FUNCTION A-SOURCE B-SOURCE D-ADDR B-ADDR A-ADDR

SPF Addition add.f2 a__bus b__bus do b0 a0
SPF Subtraction sab.f2 a__acc b__acc d1 b1 al
DPF Addition add.f4 a__rom d2 b2 a2
DPF Subtraction add.f4 d3 b3 a3
0-63 right shift shr.i4
0-63 left shift shl.i4
Float SI to DPF ft.i1.f4
Float DI to SPF ft.i2.f2
Float DI to DPF ft.i2.f4
Convert DPF to SPF cv.f4.f2
Fix DPF to SI fx.f4.i1
Fix DPF to DI fx.f4.i2
DI Multiply mul.i2
DL Multiply mul.l2
SPF Multiply mul.f2
DPF Multiply mui.f4
DI Divide div.i2
DL Divide div.I12
SPF Divide div.f2
DPF Divide div.f4
Clear Opcode (default) clear
*Abbreviations used: Si = Single Integer, DI = Double Integer,

SPF = Single Precision Floating Point,

DPF = Double Precision Floating Point,

DL = Double Logical

Summary of Floating-Point Microinstructions

ALL OPERATIONS (GENERAL FORM)

stor:=fp(function,
a-operand source,
b-operand source,
a-operand address

b-operand address,

d-result address);

*what operation to perform

*source for the a-side operand

*source for the b-side operand
*accumulator address for a-side operand
*accumulator address for b-side operand
*accumulator address for result

D-1

Appendix D

Summary of Floating-Point Divide Microinstructions

PHRASE DIVIDE OPERATIONS
divsetup prepare for division sequence
qbit3 generate three bits of quotient
qbit2 generate two bits of quotient

Summary of Divide Operations vs. Sequence of Control Words
OPERATION SEQUENCE OF DIVIDE CONTROL WORDS
div.i2 1 divsetup, 11 gbit3, 1 qbit2
div.I2 1 divsetup, 11 gbit3, 1 gbit2
div.f2 1 divsetup, 9 gbit3
div.f4 1 divsetup, 19 gbit3

Divide Microinstruction Phrases

stor:=fp(divide operation); *divide operation to perform
or
stor:=fp(rom__addr/label); *address of ACR pointer

D-2

APPENDIX E
BASE SET LISTING I

BASE SET LISTING

APPENDIX

El

Appendix E

E.2

0001
0002
0003
D004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043

skARRRAKRAKRKKAKARKRKKAKKA KKK AR KA Ak Ak kA kkkhkkkhhkkhkhhhhhhhkhhhhkkkkhhrkk

ok

NAME :
PGMR:
DATE:

SRK, TMH
<820204.1442>

A700 PROCESSOR BASE SET

* ¥ ¥ ¥ *

shkkhkkdkhkhhkhdkhkhkdhhkkdhdhhkdkhkhikkhdkhdhkhhhkkhkhkkdkhhkhhhkhhkhhkhkkkkhkhkkhhikk

:* (C) Copyright Hewlett Packard Company 1982. All rights reserved.
:* No part of this program may be photocopied, reproduced or

:* translated to another program language without the prior written
:* consent of Hewlett Packard Company.

*
*
*
*

shkkdkkhkkkhkkhkhkhhkhkhkhhhkkhhhhkkhkhhhkhkhkkkhdhkhhhhhkhhhhkhhkhkkkrkhkkhrx

:LL, 6

:SL, 6, LIST, WRSA
:LI,*LIST
:LI,&JFPLA

:ST,” CONTROL_AND_I0G
: ST, "MRG

:ST, ASG

+ST,’ SRG

:ST, "EAG

:ST, “EIG

:ST, 'FPSG

:ST, ' DMS

ST, DIS

:ST, LIS
:ST, " VMA

:ST, 0SS

:ST, “USER
:ST,’SELFTEST

R

WY Y Y e Y v e e e e w w W

[o 23« e N \We e Ne NN NKe AN AN Al AR}

FPLA: 825100 SRK <820204.1442>

*

*
*ROW

*

xooo\:oxma.\uw»—-o'

PRODUCT TERM

111111
5432109876543210

OUTPUT
HHHHHHHH

76543210

g« g
=H-=] - ——————
P < T G
] —————————
—H- g~ ————

==H-H=~—=emmmm e

e Hm - ———————
HLLL-LHH-~L----—-
HLLL~LHH-L=====~
HLLL-LHHL-~-~---
HLLL-LHH----H-=~-
HLLL-LHHHHH=-=-=--
HLLL-LHHHHH-H---
HLLL-LHHHHH--H--
HLLL-LHHHHH---H-
HLLL-LHHHHH----H
HLLLHLHL=-——————
HLLLHLHLH-====—=
HLLLHLHL-H~----~—-
HLLLHLHL=---H= ===
HLLLHLHL~--=H-=~-
HLLLHLHLL--~--LLLL
HLLLHLHLL--~-LLHL
LLLL=-H===rmm———
LLLL-HLLLLLHLL=--
LLLL-HLLLLL-LLH-
LLLL-HLLLLL-LL-H
LLLL-H-HLLLLL-LL
LLLL-HH-LLLLL-LL
LLLL-H-~LLLLLHLL
LLLL~L-==t=m————e
LLLL-LLLLL=====-
LLLL-L-==~H=====
LLLL~L-=====H-=-
LLLL-L-=---L-LLL

Y P
YR
echecens
eoshecne
eeecAase

ceeedAa.

eecAl AL
eeecALAL
[SY-V. 8
A.A...A.
A.A..A..
A.A.A...
cecssedA
WAAeooes
<AAA....
<AA.A...
«AA..A..
<AA...A.
Acoveann
A.. Al
Acoc.Ae.
AsseecdA.
AcesassA
AceAcoss
A..AA...
AAA.....
AAA.A...
AAA..A..
AAA...A.
AAAA. .A.
AAAA.A..
AAAAA...
AA......
AA.A...
AA. .A...
AA...A..
AA....A.

* % % * ¥ ¥ ¥ F

* %

—~~

—

* ¥

~

*
1
[}

*® % % H F X N ¥ ¥ F

* Ok F % X X F F F *

—

—

memory reference group

1000 x011 xxxx XXXX group

(except EIG)

extended instruction group

1000 1010 xxxX XXXX group

(except fps)

FP single

FP double

- default
- SSA

- SZA

- RSS

ASG

\ CLA CMA cCA

/
- INA
- default
SRG - first NOP
- CLE
- sL@
- second NOP

0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

37 HLLLLLLH-LLLLLLL «A«.o.A. *\

38 HLLLLLL-HLLLLLLL .A.....A * | DIV, MPY, DLD, DST, JLA, JLB
39 HLLLHLL-HLLLLLLL .A...A.A * |
40 HLLLHLLH-LLLLLLL .A...AA, */

41 HLLLLL-LLLLH====A *~= ASL and ASR

42 HLLLLL-LLLHL---= ...¢¢sAs *== LSL and LSR

43 HLLLLL-LLHLL~==-=e+AA *-—= RRL and RRR

44 HLLL-H==~——————— eeAeees. *¥\ 10 group

45 HLLL~H~==-LL-——= ..A....A % | 10 group (low select codes)
46 HLLL-H-LLL-==~-= eeAessA. */ 10 group (hlt)

47 HLLLHLHLL---HHLL A.AA.... *-- double integer

MPARA source listing
0000 MPARA; *control routines and I/0 group instructions <820204.1442>

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Sorigin 0x000§ *file = &CONTR <820204.1442>
o e e e e s e v e e g e T ok e ke sk ke vk ok Tk e vk v e ke vk e T e e vk T e e vk gk e e v g ok vk vk ok ok e vk e ke e ok vk dke ok ke o vk ke ok e ek ok e ek k-

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

khkhkhkhkhkhkhkhkhhkkhkhkkhhkhkhkhhkhrhhhhhhkhhkhhkhkhhkhkkhkhkhkhhhkhhkikkhkhkikhkhkkhhhkhhk

*820119 SRK -~ CLC O now turns off TBG; PFW does a CLC 4
%820120 SRK - CLC O now enables PFW

Kkkkkkhhkkhkdkkhkdhkkkhhhkiorkkdhhkdrhhhhdddhkhhihhhkhhiihhhikkhkikikkk
- Power-up routine and the beginning of the selftest
- VCP boot routine
~ JTAB loops for instruction decoding:
- Normal JTAB loop
- Diagnostic JTAB loop
— Broadcasting JTAB loop
- Interrupt handlers:
- Diversion Handlers:
- A/B fetch
- Time Base Generator Tick
~ Macro Interrupt Handlers
- Parity Error
~ Unimplemented Instruction Trap
- Memory Protect Violation
- Slave Handler (Break to VCP)
- Floating Point Overflow (Not supported)
~ Time Base Generator Flag
- External Interrupts (of the I0 Master Variety)
— Jam Handlers:
- Jump to Nonexistent Micromemory
- Microcode Timeout
- I/0 Group Instructions:
- All HLT instructions
- I/0 Group with Select code >=20B (Executed by IOM)
- I/0 Group with Select code <=20B (Executed by IOM and CPU)*

- General routines for hardware manipulation
Sk kK kk ke Kok dek Aok dedkok ko ook bk Rk sk ke ek ke ke Rk kA kKA kR A XKk KAk KA RK

W % ok % N Ok Ok % Ok B % % O 2k A ¥ H N N X N N F F ¥ ¥
% % B % % % % N ok ¥ N ¥ O ¥ N ¥ F ¥ F H X ¥ F ¥

*ist asynchronous clear/set codes
$define dat/I_INT CLR 0x000c$ *ist: clear intf condition
Sdefine dat/I PE CLR 0x0000$ * clear parity interrupt

$define dat/I_PE SET 0x0001$ * set parity interrupt

$define dat/I MP CLR 0x0002$ * clear memory protect interrupt
$define dat/I MP SET 0x0003$ * set memory protect interrupt
$define dat/I MIO CLR 0x0006$ * clear mto jam indicator
$define dat/I TBGT CL 0x0004$ * clear tbgtick diversion
$define dat/I TBGT SE 0x0005% * set tbgtick diversion
$define dat/PE_CODE 0x0009$ * parity error interrupt code

*ist enable bits and backplane bits

$define dat/I_PEE 0x0010$ * parity error enable

$define dat/I_PFWE 0x00208 * power fail warning enable
$define dat/I_INTR 0x0100$ * external interrupt mask
$define dat/I_FLTO 0x0200$ * floating point overflow bit
$define dat/I_TBGOFF 0x0400% * time base generator on/off
$define dat/I_PSODD 0x0800§ * parity sense (0 is even)
$define dat/I_MPD 0x1000$ * memory protect disable
$define dat/I_SCHOD 0x2000$ * backplane schod line

Appendix E

E.3

Appendix E

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
€000
0000
¢000
0000
€000
0000
€000
0000
¢000
¢000
0000
€000
0000
0000
0000
0000
0000
0000
0001
0001
0001
0002
0003
0003
0004
0004
0005
0005
0005
0006
0007
0O0CF
0O0CF
0OCF

E-4

$define
$define
$define

*memr map bits and diagnostic

$define
$define
S$define
$define
$define
Sdefine
$define
$define
$define

dat/I_CRS 0x40008 * backplane crs line
dat/I_TBGF 0x8000$ * time base generator flag
dat/I_RESET 0x1C00$ * ist reset value

wi
dat/MEMR BOOT 0x0040$ * bootmemory select bit
dat/MEMR_AB 0x0020$ * ab addr disabling bit
dat/MEMR_TDI 0x8000§ * tdi indicator
dat/MEMR PFW 0x4000¢% * pfw indicator
dat/MEMR MLST 0x2000$ * mlost indicator
dat/MEMR:MIO 0x10008 * mto indicator
dat/MEMR_ABF 0x0800$ * abfetch indicator
dat/MEMR PE 0x0400% * parity error indicator
dat/MEMR_SLAV 0x0200$ * slave indicator

*privileged register allocation

$define dat/N_VMQ_START 0$ *prin: start of VMA

$define dat/N_CIR 108 * central interrupt register

$define dat/N TBGT C 11 * missed TBG tick counter

Sdefine dat/N MP VIOLAT 12§ * MP violation address

$define dat/N:LK- 9¢ * lights register (upper byte)
$define dat/N_IMAP 138 * packed IMAP

$define dat/N_ST 148 * status register (ST)

$define dat/N_WMAP 156 * unpacked WMAP (just DATAL,DATA2)
*special register specification

Sdefine dat/N_CIL 3$ *srin: central interrupt latch

¢define dat/N PEL] 1§ * parity error latch 1 (low 16 bits)
$define dat/N_PEL2 28 * parity error latch 2 (high 6 bits)
$define dat/N_MPAR 0$ * map address register

*status register definition (microcode status)

$define dat/ST GRDI 0x1000$ *st: global register disabled

Sdefine dat/ST LV2 0x0100$ * level 2 enable

$define dat/ST LV3 0x0010$ * level 3 enable

$define dat/ST LV23 OxFEEF$ * level 2 and 3 enabled

$define dat/ST LV23T OxFEEE§ * level 2 and 3 and TBG_E enabled
$define dat/Sl;TBG_E 0x0001s$ * time base generator interrupt enable
$define dat/ST RESET 0x1101$ * initial value GR di LV2 en TBG E en
$define dat/ST FWID 0x0200$ * firmware identification bit (see JNM)
*trap cell definition

$define dat/TRAP_PFW 048 *trap: power fail warning trap location
$define dat/TRAP_PE 058 * parity error trap location

$define dat/TRAP_MP 07$ * memory protect interrupt

$define dat/TRAP_TBG 06$ * TBG trap location

$define dat/TRAP_UIT 0108 * UIT trap location

*external addresses and links f

$define

adrl/SELFTEST 0x007$ *link to SELFTEST in &SELFTEST module

LOC_ZERO: S$origin 0§

{

Jam entrypoint ~-- handle the following conditions:
PON - power coming up
JNM - jump to non_existent micromemory
MTO - microcode timeout
}
if pon goto not_power_up; *Is power on or coming up?
power_up: *Power is coming up.
FAILTRAP: *
18t :=0x0CCO; * turn of tbg now-—prevent MTO
if not pon goto failloop; * and also check the conditional
if pon goto SELFTEST, * branching mechanism.
ace:i=acce Xor acc; * Execute SELFTEST
failloop: *Selftest will loop here on failure
goto failloop; *Should not get here,
* put the brakes on if possible.
not_power_up: *Is conditional branching bad?
if not por goto FAILTRAP; * y: shut of tbg and enter trap
goto int mtojnm; * n: must be JNM or MTO
?TARI;UPx Sorigin OxOcF$ *1ink from &SELFTEST module

Initialize the Phoenix and begin executing macroinstructions.

00CF
00CF
00D0
00D0
00D0
00D0
00D0
00D0
00D0
00DO0
00D0
00D0
00Dl
00D1
00D1
00D1
00Dl
00Dl
00D1
00Dl
00Dl
00D2
00D2
00D3
00D3
00D4
00D5
00DD
00DD
00DD
00DD
00DD
00DD
00DD
00DD
00DD
00DD
00DD
OODE
OODE
OODE
O0ODE
OODF
0O0DF
0ODF
00EO0
00EQ
00EO
00EO0
00EO
00EQ
00EQ
00E1
00E2
00E2
00E2
00E2
00E3
00E3
00E3
00E4
00E5
00E6
00E7
00E8
00E9
00E9
00E9
OOEA
00EA
0OEB
00EF
00EF
00EF

}
call BOOT; *Prepare to enter VCP.

INST RESTART:

PROCESS_DISPATCH: $origin 0xODO$

{
Fetch the first instruction of the instruction stream.
Do not move this location. (Link from many routines.)

}
fchp, *Fetch the first instruction
acc:=ones, * (acc=ones is used by many routines)
goto vector; *
vector:
{

Execute the process’s instruction stream until an

interrupt or exception condition comes true.

Decide on which jtab to use.

These locations must not be moved for WCS switching to work.

n:=N_VMA START; *prepare to null VMA register

if intf goto interrupt, *first fetch interrupted?
nop:=rl4(sr); *look for diagnostic looping

if not yl5 goto jtab, *should we use the diagnostic JTAB loop?
prin:=ones; *set the VMA register to ones

goto jtab diag;

jtab: Sorigin 0xODD$
{
Normal jtab location.
Loop until interrupt.
Do not move this location for mind-swaps to occur without UL.

}

jtab, *Subroutine call to macroinstruction

* emulation routine.
clf, * put the flag into known state
ip, * Inc P to address after opcode.
cwrb:=b, bbus/t; * Force orders that are required for
* the MRG decode to begin memory
* references in this cycle.
if not intf goto jtab, *Loop until interrupt causes
acc:=ones; * a fetching to be ignored.
interrupt: *INTERRUPT:
goto int_vector, * branch to interrupt handler
ct:=ist; * load priority code into ist

jtab_diag: Sorigin OxOE0$

{
Jtab location with diagnostic window.
Loop until interrupt.

}

nop:=t; *viewing of instruction on YBUS.

nop:=fa; *yiewing of fetch address.

jtab, *Subroutine call to macroinstruction routine
clf, * put flag into known state
ip, * Inc P to address after opcode.
cwrb:=b, bbus/t; * Force orders that are required for

* the MRG decode to begin memory
* references in this cycle.

nopi=a; *A reg

nop:=b; *B reg

nop:=ist; *{st reg

nop :=memnr; *memr reg

n:=N ST; *

nop:=prin; *microcode status register

if not intf goto *Loop until an interrupt condition
jtab_diag, * caused the fetch to be ignored.
acc:=ones; * Set acc to -1 for decrementing.

goto int_vector, *INTERRUPT out of JTAB loop
cti:=ist; *

int_vector: $origin OxOOEF$

BRANCH TO INTERRUPT HANDLER

Appendix E

Appendix E

E-6

OQOEF
0OEF
00EF
0QEF
0OO0EF
Q0EF
0OEF
00F0
0OF0
00FO0
0OF0
00F0
0O0F0
00F0
00F0
00FO0
00F0
NOFO
00F1
00F1
00F2
NOF2
0NOF3
00F4
QO0F5
00F6
0O0F7
0O0F8
0OO0F9
0O0FA
Q0FB
NOFC
0OFD
0OFE
00FF
DOFF
0100
0100
0100
0101
008A
008A
008A
008A
D08A
008A
D08A
008A
008A
008A
008A
008A
008A
008A
0088
008C
008D
008D
J08E
008F
008F
008F
008F
J08F
008F
0090
0091
0091
0092
0093
0093
0094
0094
0094
0094
0094

Remember :

}

DW might be enabled here

ACC is assumed to hold "ones" for many routines
Interrupt holdoff may be enabled in certain cases.

goto int_table, ct30,

int _table:

{

Branch to
the fetch
Locations
UIT, MTO,

ist:=ist;

to be ignored.

1610 viewing.

}
{00}

{01}
{02}

{03}
{04}
{05}
{06}
{07}
{10}
{11}
{12}
{13}
{14}
{15}
{16}
{17}

UIT:

goto INT UIT, p:=fa;
JNM:

goto INT UIT, p:=fa;
MTO:

goto INT UIT, p:=fa;

Sorigin O0x00F0$

*do table jump into interrupt table
*clear INT flip-flop

the interrupt or diversion that caused

6-F are entered because of INTF handling.
JNM just branch through here for

*Unimplemented instruction trap.
*

*Jump to non-existent micromemory
*

*Microcode timeout
*

PRIV_T%AP:_éoto int_priv;*Privileged instruction interrupt

goto INT UIT, p:=fa;

goto INT UIT, p:=fa;

goto IN'I:UIT, p:=fa;

ct:=t, goto VECTOR;

goto tbg tick;

goto inﬂZpe;

goto int mp, p:=fa;

goto int slav;

goto int pfw;

goto int _flv;

goto int tbgf;

goto ing:ext,
p:=ptacc;

JFPLA UIT: $origin 0x100$
goto UIT, nop:=ct;

ab f
{

etch: $Sorigin 0x008a$

*hardware failure

*hardware failure

*hardware failure

*ab fetch diversion

*time base generator tick diversion
*parity error macrointerrupt
*memory protect macrointerrupt
*slave macrointerrupt

*power fail warning macrointerrupt
*floating point overflow macrointerrupt
*time base generator macrointerrupt
*external (I/0) macrointerrupt
*decrement p (will be ip’d at JTAB)

*JTABLE entrypoint if no fpla terms match
*

The fetch that occurred was from the a or b registers.
Process the a or b fetch, and branch to the appropriate
vector point. This is not a macrointerrupt.

Wa
}

s handled in INT TABLE.

tbhg tick:

{
Pr
Th

sl
is
n:
ca

go

ocess
is is

:=ist and Oxfff0;
t:=I_ TBGT CLR ior sl;
=N_TBGT COUNTER;

11 SET TBG_INT,
prin:=prin-acc;

to PROCESS DISPATCH;

int_pe:

{
Pa

}
sl
is

s3

rity error interrupt.

:=ist and 0xffel;
t:=s]l ior I MP_ CLR;

:=TRAP_PE;

ist:=sl ior I PE CLR;

g0

to TRAP CELL FETCH,
p:=ptacc;

int priv:

{

a time base generator tick.
not a macrointerrupt.

*
*Clear TBGtick
*

*Enable TBG interrupt
*Increment the TBG tick counter
*Redispatch the process.

%

*Null a lower priority MP interrupt

* and shut off PE int

*save the trap cell address

*Null the PE interrupt and shut off PE int
*do trap cell fetch

*decrement p (will be ip’d at vector)

Privileged instruction interrupt.

(Just like memory protect.)

0094
0094
0095
0096
0097
0097
0097
0097
0097
0097
0098
0099
009A
0098
0098
009C
009C
009C
009C
009C
009C
009cC
009C
009cC
009¢C
009D
009E
009F
009F
009F
009F
009F
009F
00AO0
00Al
00Al
00A2
00A2
00A2
00A2
00A2
00A2
00A3
00A4
00A4
00A5
00A5
00A5
00A5
00A5
00A5
00A6
00A7
00A8
00A8
00A9
00A9
00AA
00AA
00AA
00AA
00AA
00AA
00AB
00AC
00AD
00AE
00AF
00B0
00B1
00B2
00B3
00B4
00B5
00B5

}

sl:=ist and Oxfff0;
ist:=gl ior I ._MP_SET;
goto PROCESS DISPATCH'

int mp:

{

Memory protect interrupt.

s3:=TRAP MP;

sl:=ist and Oxfff0;

ist:=]I MP_CLR ior sl;

n:=N_] MP VIOLATION'

goto TRAP CELL _FETCH,
prin:=fa;

int_slave:

{
}

*set the memory protect interrupt
*

*and refetch

*save trap cell addr

*

*clear interrupt

*save violation address

*perform trap cell fetch

*set IVR to fetch address

*p is set to fetch address, which will
be incremented in the jtab line.

* the trap cell JSB will always write

* FA+l into the return address NOP.

Process the slave condition - goto virtual control panel mode

call PULSE_SCHOD;
call IOHS, bbus/t;
goto PROCESS DISPATCH;

int_pfw:

{
}

*Assert and release SCHOD.
*Perform the IOHS.
* VCP process.

Process the power fail warning interrupt.

s3:=TRAP_PFW;

call CLR _LV2;

goto TRAP CELL FETCH,
p:=ptacc;

int flv:

{
}

*save trap cell address

*implicit CLC 4

*do trap cell fetch

*decrement p (will be ip’d at JTAB)

Process the floating point overflow interrupt.

s$3:=TRAP UIT;

ist:=not I FLTO and ist;

goto TRAP CELL FETCH,
p:=ptacc;

int_tbgf:

{
}

*save trap cell address
*

*do trap cell fetch
*decrement p (will be ip’d at jtab)

Process the time base generator flag interrupt.

ist:=ist and not I_TBGF;

s3:=TRAP_TBG;
n:=N_TBGT COUNTER;

call ! SET | ‘TBG ;_INT,
prin: -prin+acc'

goto TRAP_CELL FETCH,
p:=ptacc;

int ext:

{
}

*clear the TBG flag

*save trap cell address

*

*enable tbg int only if qualifiers are true
*decrement TBGT counter

*do trap cell fetch

*decrement P (will be ip’d at JTAB)
*

Process an external interrupt from an io card.

call WMAP _PACK, n:=ones;
ist:=ist ior I_MPD;
prin:= memr ior 0x2020;
menr :=0xffc0 and memr;
ifch, acc:=ones;
n:=N_IMAP;
prin:=s0;
n:=N CIL;
ct:=t, clf;
s0:=0x003f and srinj;
n:=N_CIR;
prin:=s0,

goto VECTOR;

*sQ0 = current WMAP

*turn off memory protect

*new DATAl = old EXECUTE

*new EXECUTE = zero

*Do the interrupt fetch (no a b addr!)
*

*load IMAP

*

*Load trap cell into instruction register
*Store Central Interrupt Latch

*

*into Central Interrupt Register

*and execute trap cell

Appendix E

Appendix E

E-8

00B6
00B6
00B6
00B6
00B6
00B6
00B6
00B7
00B7
00B8
00B8
00B9
00B9
00BA
00BA
00BA
00BB
00BC
00BD
00BE
00BF
00BF
00C0o
00C1
00Cl1
00C2
00C3
00C3
00C4
00C4
00C4
00C4
00C4
00C4
00C4
00C5
00C5
00C6
ooc?
00C8
00C9
00C9
00CA
00CA
00CB
0occ
00ccC
00CD
00CE
00CE
0OCE
00CE
00CE
00CE
00CE
00CE
00CE
0OCE
00CE
0OCE
0120
0120
0121
0121
0122
0122
0123
0123
0124
04C0O
04C0
04CO
04C1
¢4cCl
04c2

int_uit:
{
Process the unimplemented
}
nop:=memr and MEMR PE;
if yz goto uit_not pe,
acc:=ones;
uit is pe:
goto PROCESS DISPATCH;
uit not pe:
s3:=TRAP_UIT;

TRAP_CELL FETCH:
call WMAP PACK, n:=ones;
prin:=memr ior 0x2020;
menmr :=memr and OxFFCO;
ist:=ist ior I MPD;
n:=N_CIR, bbus/menmr;
if not bl5 goto tdireset,
rdb, prin:=s3;
cmid;
tdireset:
n:=N_IMAP;
prin:=s0, clf;
ct:=t,
goto VECTOR;

int mtojnm:

{

instruction interrupt

*If uit was caused by a PE on the fetch,
* then PE interrupt has priority.

*

*is PE pending?

* y: let it happen

* n: do a UIT
*

*Perform trap cell fetch for low SC’s
*s0 = current WMAP

*new DATAl = old EXECUTE

*new EXECUTE = zero

*disable memory protect

*load CIR with code

*(is tdi set?)

*read trap cell contents

*(make sure TDI is reset)

*

*1oad IMAP with old WMAP
*

*load trap cell into instruction register
*and execute trap cell

Process the microcode timeout and jump to nonexistent micromemory

interrupts.
}
nop:=memr and MEMR MTO;
if yz goto jnm_assume,
acc:=ones;
s1:=0xf£f0 and 1ist;
ist:=I_MTO CLR ior sl;
n:=N_TBGT COUNTER;
goto MTO,
prin:=prin-acc;
jnm_assume:
nop:=prin and ST FWID;
if yz goto JNM;
prin:=prin and
not ST FWID;
a:-ones,—fchp, rtn;

*MTO indicates that

*the microcode time out occurred.
* (acc must = ones for TRAP_CELL)
*MTO: clear out indicator

* and process as a UIT

*

* make up for the lost tbg tick

*

*JNM: process as a UIT

* (If firmware identification in progress
* then do not UIT!)

*firmware identification in progress!!

* clear bit

* a:=ones, and return

ek ke k kK ko Kk Rk Rk KRR kKRR KRR KR KRR KR I ARAR AR KA KRR ART KKK * KK Fk K hk
* Input/Output Group Macroinstructions

* organization:

* -the jump table microcode for

* - 10 Group HLT instructions (all select codes)
* = 10 Group instructions with select code >= 20B
* - 10 Group instructions with select code <= 20B
* -a decode table for select code <= 20B

*

~the microcode that executes the low select code instructions

Rdkdkkdkhihdkkdhidkkikhhkhhkhkhhhhhkihkhhkkkhkhkhkkkkhhkkkkhhkkhhkhhhhhkhkhkhhhkix

I0G HI: $origin 0x120%
goto ICG HIGH;

10G_LO: $origin 0x121$
gototbl SC TABLE, stor/n;

HLT HI: $origin 0x122$
goto HLT;

HLT LO: $origin 0x123$
goto HLT;

Sorigin 0x04c0$

SC_TABLE:

{0} goto SC 00, n:=acctacc;

{1} goto SC 01, ct:=srg(ct),
cmid;

{2} goto SC 02, n:=acc+acc;

*high select code instructions <> HLT
* (SC >= 20B)

*low select code instructions <> HLT
* (SC < 20B)

*high select code HLT

* (SC >= 20B)

*low select HLT

* (SC < 20B)

*THE LOW SELECT CODES ARE DEDICATED TO:
*interrupt system flag and interrupt mask
*0 register instructions

*and lights and switches

*global register

04C3
04C4
04C5
04C6
04C7
04C8
04C9
04CA
04CB
04cc
04CD
04CE
04CF
04D0
04DO
04D0
04D0
04D0
04D0
04D1
04D2
04D3
04D4
04D5
04D6
04D7
04D8
04D8
04D9
04D9
04DA
04DB
04DB
04DC
04DC
04DD
O04DE
04DF
04DF
04EQ
04EOQ
04EQ
04EQ
04EOQ
04EO
04El
04E1
04E2
04E3
04E3
04E4
04E5
04E5
04E6
04E7
04E8
04E8
04E8
04ES8
04E9
04EA
O4EB
O4EB
04EC
04EC
04ED
O4EE
04EE
O4EF
04F0
04F0
04F1
04F2
04F3
04F3

{3} goto SC 03, n:=acc+acc; *virtual control panel
{4} goto SC 04, n:=acc+acc; *power fail

{5} goto SC 05, n:=acctacc; *parity error

{6} goto SC 06, n:=acc+acc; *time base generator
{7} goto SC 07, n:=acc+tacc; *memory protect

{8} goto SC 10, n:=acctacc; *

{9} goto SC 11, n:=acctacc; *

{a} goto SC 12, n:=acc+acc; *

{b} goto SC_13, n:=acc+tacc; *

{c} goto SC 14, n:=acctacc; *

{d} goto SC 15, n:=acctacc; *

{e} goto SC 16, n:=acctacc; *

{f} goto SC_17, n:=acctacc; *

KEkEAKRAARA AKX Ak khkkhhkhhhrhkRRhkhdhdkdhkhkhkkhkkkikkkhkhhhihkhhhkhhhhhkrkhkhkhkkhkikkkk

* Select Code 00 Decoding and Execution *
Fekdddkkddkhhihhhdhhhkhhdokhkhh ik kkhkkhhkdkkkkkkkkkhkkhrhkdhhkkkdkihkkkkhkk

sc_00_tbl: $align 16$
{stf 00:} goto SET LV3;

{mi@ 00:} goto IOHS, bbus/t;

{c1f 00:} rtn;

{11€_00:} goto IOHS, bbus/t;
{sf@ 00:} goto sf@00,nop:=s0;
{ot@ _00:} goto ot@00, bbus/t;
{sf@ 00:} goto sf@00,nop:=s0;

*STF - set Interrupt System Flag

*MI@ - merge A w/Interrupt Mask Register
*CLF - clr Interrupt System Flag

*LI@ - load A w/Interrupt Mask Register
*SF? - skip if ISF

*0T@ - output A to Interrupt Mask Register
*SF? - skip if ISF

{@lc:po:} if not yl5 then rtn;*STC - NOP

clc00:
goto clc 00;
sc_00:
call BCST;
emid, cti:=srg(ct);
if mpen goto priv_00,
s0:=111(ct);
call sc_00 tbl, ct74,
nop:=rl4(ct);
if sf call clf 00;
fchp, rtn;
priv_00:
goto PRIV_TRAP;

*CLC - IO system reset

*

*DECODE SC_00:

broadcast this instruction
set tdi, transform instruction for decoding
check memory protect

set sf on the ’,C’ bit
execute instruction

set yl5 on the STC vs CLC bit
if 7,C’ then execute CLF_00
that’s all

* % ¥ F F ¥ ¥ ¥ F

*1ink to PRIV_TRAP

dhhkkhhkhkkhhhkhhhkkhkhhkhhhkkhkhhhkkhkhhhhkkhhkhkhhhkhkkhhhkkhhhkkhhkhkhhhhkhhhkhhhhhhkikkik

* Select Code 0l Decoding and Execution *
T T Ty T T T T

sc_0l tbl: $align 16§
{stf 0l:} rtm, sto;
{mi@ 01:} goto mi@01,
s0:=cab;
{clf_01:} rtn, clo;
{11@ 01:} goto 1i@01,
sO:=zero;

{sf@ 01:} goto sf@01,nop:=s0;

{ot@:blz} goto ot@01,

s0:=zuy(cab);
{sf@ 01:} goto sf@01,nop:=s0;

{@lc_01:} rtn;

SC 01:
call sc_0l tbl, ct74,
s0:=111(ct);
if sf then clo;
fchp, rtn;
sf@01:
if yl15 goto sfsOl;
sfcOl:
if o then rtn;
ip, rtn;
sfs0l:
if not o then rtn;
ip, rtn;
ot@01:
n:=N_LR;
s0:=prin ior s0;
1r:=not s0, rtn;
mi@01:
11@01:

*STO ~ set O register
*MI@ - merge from switch register
*

*CLO - clear O register

*LI@ - lbad from switch register

*

*SF? - skip if o set or clear

*0T@ -~ store into LED register

* zero out microcode side of switches
*SF? - skip 1if o set or clear

*STC,CLC - NOP

*

*DECODE SC_01:

call the select code table

set sf on the ’,C’ bit of instruction
if ‘,C’ then clear O

that’s all

* % * ¥ ¥ *

*S0C - skip if O clear
*

*
*S0S - skip 1if O set
*

*

*0T@ - output to lights register

* (The upper half of the lights register
*

*
* The value is kept in N _LR in prin.)
*load from switch register

Appendix E

E-9

Appendix E

04F3 sl:=sr; * (must be compatible with L-series)

04F4 ct:=ct ior OxQOff; *use opcode as count

04F5 1i@lp: *

04F5S sl:=111(sl), 1lwf; *reverse switches! (L-series funny)

04F6 82:=1rl1(s2), lwf; * low sl-s8 go in bits 15-8

04F7 if not ctz4 goto 1i@lp, * do 16 times

04F7 s2:=z1ly(s2); * zero out lower switches

04F8 nop:=111(ct); *restore SF to ,C request

04F9 s2:=g2 and not 0xCO00; *kill switches 14,15

04FA if not bl5 then rtn, *if switch 15 was zero

04FA cab:=s(ior s2; * that’s all (do MI@ and LIQ)

04FB nop:=MEMR MLST and memr; *and if memory is not lost

04FC if not yz then rtn; *

04FD cab:=cab ior 0x4000; *then set bit 14 of CAB

O4FE rtn; *NOTE: did not do TBG_E of L-series

O4FF * (only used for diagnostic purposes)
04FF

C4FF clf 00: *execute the ",C" function and CLF function
Q4FF goto CLR LV3; * for SCOO

€500

T L L e e
0500 * Select Code 02 Decoding and Execution *
0500 Fdekokskkskkesk Ak deoh dkdohoddodohd ok et ek ek dededededede e ok e e e
0500

0500 $align 64$

0500 sc_02 tbl: $align 16$

0500 {stf 02:} gotc stf02; *STF - disable global register state

0501 {mi@ _02:} gotc IOHS, bbus/t; *MI@ - merge @ w/ global register

0502 {clf 02:} rtn; *CLF - enable global register state

0503 {1i@ 02:} goto IOHS, bbus/t; *LI@ - load @ w/ global register

0504 {sf@ 02:} goto sf@02,nop:=s0; *SF? - skip if GR

0505 {ot@ 02:} goto fakeiohs, *0T@ - output @ to global register

0505 bbus/t; *

0506 {sf@ 02:} goto sf@02,nop:=s0; *SF? - skip if GR

0507 {@10_02:} rtn; *STC,CLC - NOP

0508

0508 SC 02: *DECODE SC 02:

0508 call BCST; * broadcast for IO master

0509 cmid, ct:=srg(ct); * get TDI, transform opcode for decode table
050A if mpen goto priv 02, * kill ‘em if memory protect is on

050A s0:=111(ct); * gave ‘,C’ state in SF

0508 call sc_02_tbl, ct74, * call decode table

050B nop:=rl4(ct); * get yl5 to SFC vs SFS opcode

050C if sf call clf 02; * if ,C’ then CLF_02

050D fchp, rtn; * that’s all

050E priv_02: *

050E priv_04: *

050E priv_05: *

050E priv_06: *

050E goto PRIV_TRAP; *1ink to PRIV_TRAP

050F

050F clf 02: *execute the ",C" function (and CLF)

050F goto clf02; *

0510

D510 Fkkkkkkskkskkkhhhkhkikhhhhkikkdkhhhidiiodhkkhhaiididkdkkhihiikhkhhiikkkkrrkrik
0510 * Select Code 03 Decoding and Execution *
0510 * (all instructions in this select code are NOPs that *
0510 * are not broadcast.) *
D510 Fkkskakdddkok sk kodhhdhkhiidhhikkhihhhhddhhihkhiddkihdkiikhtikkikihkiikkr
0510

0510 % e e e T T 3k o e ke o ok e ok ok sk ok o e ok ok o ok ok ok ok v ok e ok ok ok ok ok ok o ke ok ok ok ok ok e e e e e ek ke ok e e ok ke e e de ke de ek e ke e ek
0510 * Select Code 04 Decoding and Execution *
D510 *kkkhkikkkkhhhhrrRRRAARRRRRIIRRKKKXIKIIIIRKA KK RRARA SRR RRIAAREK A RA I KKK I KK
0510 sc_04_tbl: $align 16$

0510 {stf 04:} rtn; *STF - NOP

0511 {mi@ 04:} goto mi@04,sl:=cab; *MI@ ~ merge A w/ Central Interrupt Register
0512 {clf_04:} rtn; *CLF - NOP

0513 {11€ 04:} goto 1i@04,sl:=zero;*LI@ - load A w/ Central Interrupt Register
0514 {sf@ 04:} goto sf@04,nop:=s0; *SF? - skip if IIF

0515 {ot@ 04:} goto ot@04; *0T@ - output A to Central Interrupt Register
0516 {sf@ 04:} goto sf@04,nop:=s0; *SF? - skip if IIF

0517 {@lc_04:} if yl5 goto clc 04; *

0518 stc_04: *STC - clear Interrupt Inhibit Flag

0518 goto SET LV2; * set level 2 interrupt enable

0519 clc_04: - *CLC - set Interrupt Inhibit Flag

E-10

0519
051A
051A
051B
0518
051C
051C
051D
0S51E
051E
051E
051F
0520
0520
0520
0520
0520
0520
0520
0521
0522
0523
0524
0525
0526
0527
0528
0528
0529
052A
0524
0528
052C
052C
052D
052D
052E
052E
052F
0530
0530
0530
0530
0530
0530
0531
0532
0533
0534
0535
0536
0537
0538
0538
0539
053A
053A
053B
0538
053C
053C
053D
053D
053E
053F
0540
0540
0540
0540
0540
0540
0541
0542
0543
0544

goto CLR _LV2; * clr level 2 interrupt enable
sc_04: *DECODE SC 04:
cmid, ct:=srg(ct); * set TDI, transform instruction
if mpen goto priv_04, * flog him if memory protect 1s enabled
s0:=111(ct); * set SF if “,C’ is set
call sc_04 tbl, ct74, * decode instruction
nop: =r14(ct), * gset Y15 on STC vs CLC bit
fechp, rtn; * that’s all folks
odd ps: *continuation of CLF05
ist:=ist ior I_PSODD; *
rtn; *

KhkkkhkkhhkhhhhkhkhhdkhkAkhkhkdhhhhhkhhkhkhhhkkhkhhkkkhhkkkrhhkkkkkkkrkhkkkkkhkkikk

* Select Code 05 Decoding and Execution *
Fekk ke dkk ok deskdedk gk Kk ke g ok ok sk ok sk ok ok ok ok ok ok ok ek ek ek ek ek ok ek

sc_05 tbl: $align 16$
{stf 05:} ist:=ist and not *STF - set parity sense to even (0)

1_PSODD; *
{mi@ 05:} rtn; *MI@ - merge A w/ parity violation address
clf 05: goto ODD_PS; *CLF - set parity sense to odd (1)
{11@ 05:} goto 1i@05; *LI@ - load A w/ parity violation address
{s£@ 05:} goto sf@05,nop:=s0; *SF? - skip if PS
{ot@ 05:} rtn; *0T@ - output A to parity violation address
{sf@ 05:} goto sf@05,nop:=s0; *SF? - skip if PS
{@1lc_05:} if yl5 goto clec05; *
stc05: *STC - enable parity interrupts
ist:=ist ior I PEE;
rtn; - *
clc05: *CLC - disable parity interrupts
ist:=ist and not I_PEE;
rtn; *
SC_05: *DECODE SC 05:

cmid, ct:=srg(ct);

if mpen goto priv_05,
s0:=111(ct);

call sc_05 tbl, ct74,
nop:=rl4(ct);

fchp, rtn;

set TDI, transform instruction

zmag him if memory protect is enabled
set SF on “,C’ bit

decode instruction

set Y15 on STC vs CLC bit

that’s all

* % K * X F

KAk ok ek sk ek ek gk ok ek ok sk e ok ok ok ok ok ok ok ko ok ok ok ok ok ok ke ke ko ek e ek ok ek
* Select Code 06 Decoding and Execution *
Kdedekddkdokdkhkhkhkhdk Ak dek sk ko ok ok dk ko ok ook ook ok sk sk ok ek ek sk ek ek ke ok ek ek
sc_06 tbl: $align 16$

{stf 06:} goto stf06; *STF - set Time Base Generator Flag
{mi@ 06:} rtn; *MI@ - NOP

clf 06: goto clf06; *CLF - clr Time Base Generator Flag
{11@ ¢ | 06:} rtn; *LI@ - NOP

{s£@ ' 06:} goto sf@06,nop:=s0; *SF? - skip if TBGF

{ot@ (' 06:} rtn; *0T@ - NOP

{sf@ 06:} goto sf@06,nop:=s0; *SF? - skip if TBGF
{@1c ¢ > 06:} if yl15 goto clc 06; *

stq_06. *STC = turn on Time Base Generator
ist:=ist and not 1 TBGOFF; *
rtn; *

clc 06: *CLC - turn off Time Base Generator
goto OF TBG; *

sc_06: *DECODE SC_06:

cmid, ct:=srg(ct);

if mpen goto priv 06,
s0:=111(ct); -

call sc_06_tbl, ct74,
nop:=rl4(ct);

if sf call clf 06;

fchp, rtn; -

set TDI, transform instruction

plop him if memory protect is enabled
set SF on “,C’ bit

decode instruction

set Y15 on STC vs CLC bit

if ’,C’ call CLF_06

that’s all

* ¥ ¥ * % X ¥

FARKIRKARKKKI KRR K KK AR AR IR AR AR KRk Aok ek e e e o ok ek ke ok ke sk e ok
* Select Code 07 Decoding and Execution *
Fedd kAR Rk Ak hkdk ek dedede ok ded Ak dodkde ok dedk ok ook ok ok ook ko ke ko ko ok sk ok ok ok
sc_07_ tbl: $align 16$

{stf 07:} rtn; *STF - NOP
{mi1@ 07:} goto mi@07,sl:=cab; *MI@ - merge A w/ violation register
clf 07: rtn; *CLF - NOP
{11@ 07:} goto 11@07,sl:=aero;*LI@ - load A w/ violation register
{sf@ 07:} rtn; *SF? - NOP

Appendix E

E-11

Appendix E

0545
0546
0547
0548
0548
0549
054A
C54A
054B
C54B
054C
054C
054D
054E
054E
054F
054F
054F
(054F
054F
0550
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
055A
055B
055C
055D
055E
055F
0560
0560
0560
0560
0560
0560
0560
0560
0560
0560
0561
0562
0563
0563
0563
0564
0564
0565
0566
0566
0567
0567
0568
0568
0569
0569
056A
056A
056A
056A
056B
056B
056B
056C
056C
056D
056D
056E

E-12

{ot@ _07:} goto otl07;
{sf@ 07:} rtn;
{@lc_07:} if yl5 then rtn;
stc07:
ist:=ist and not I_MPD;
rtn;
sc_07:
cmid, ct:=srg(ct);
if mpen goto priv_07,
s0:=111(ct);
call sc_07_tbl, ct74,
nop:=rlé(ct);
fchp, rtn;
priv_07:
goto PRIV_TRAP;

*0T@ - output A into violation register

*SF? - NOP

*CLC - NOP

*STC - enable memory protect until interrupt
*

*

*DECODE SC 07:

set TDI, transform instruction

sqsh her if memory protect is enabled
set SF to ',C’ bit

decode instruction

set Y15 on STC vs CLC bit

that’s all

* X ¥ F ¥ ¥ F

*1ink to PRIV_TRAP

*************i**

* JTOHS and BCST utilities

*

**

iohs tbl: $align 16§

{00} rtn;

{01} rdio, goto iohs_ldp;
{02} rdio, goto iohs lda;
{03} rdio, goto iohs 1ldb;
{04} sto, rtn;

{05} clo, rtn;

{06} rdio, goto iohs mi@;
{07} ip, rtn;

{10} rtn;

{11} goto iohs boot;

{12} nop:=a, wrio, rtn;
{13} nop:=b, wrio, rtn;
{14} cle, rtn;

{15} ste, rtn;

{16} nop:=p, wrio, rtn;
{17} nop:=p, wrio, ip, rtn;
IOHS:

{

*execute the control word.

* nop

* load P from backplane
* load A from backplane
* Jload B from backplane
* STO

* CLO

* perge data into *

* inc(P)

* undefined

* enable bootstrap roms
* put A on backplane

* put B on backplane

* CLE

* STE

* put P on backplane

* put P on backplane, inc(P)

Perform an 10 Handshake with the L-series backplane

Calling sequence:
call BCST;

*broadcast the instruction at FA

call IOHS, bbus/t; *must freeze! do 10 handshake

}
clf;
H
if not iorq then rtn;
beginloop:
rdio,
s87:=ct;
iohs loop:
stf;
nop:=0x0100 and t;
if yz then goto iohs quit,
ctimt;
call iohs tbl, ct74,
ctimg7;
iorq_wait:

if not iorq goto iorq_wait;

goto iohs loop,
rdio, s7:=ct;

iohs quit:
goto iohs _tbl, ct74,
cti=g7;

iohs ldp:
p:=t, rtn;
iohs lda:
a:=t, rtn;
iohs 1db:
b:=t, rtn;
iohs mi@:

*F will be set if IOHS performed
*must wait for IORQ

*if no IORQ now then never.

*

*read first command word

* (save instruction)

*LOOP

*set flag to indicate IOHS performed
*freeze until I/0 device returns CW
*branch if this is the last IOHS

* prepare for table jump

*call IOHS table

* restore CW

*

*wait for IORQ (IOM has failed if forever)

* loop and wait for iorq.
*

*last execution of loop
*goto IOHS table (last IOHS)
* (save CW)

*load P
*

*]oad A
*

*]load B
*

*merge *

056E
056F
0570
0570
0571
0572
0573
0574
0574
0575
0575
0575
0575
0575
0575
0575
0575
0575
0576
0576
0577
0577
0578
0578
0579
057A
057B
057¢C
057C
057D
057D
057D
057D
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057E
057F
0580
0581
0582
0583
0583
0583
0583
0583
0583
0583
0583
0584
0584
0585
0585
0586
0587
0587
0588
0588
0589
058A
058A
058B
058C

s7:=cab;
cab:=s7 ior t, rtn;

iohs_boot:

memr :=0x0040 ior memr;
call WMAP_PACK, n:=ones;
s1:=0100;
ist:=ist ior I_MPD;
cmid,

wrb:=s0, bbus/sl, rtn;

BCST:

{

}

Broadcast routine

*
*

*enable boot rom.

* enable rom bit

*store the WMAP in location 2 of
*bootmemory

* disable MP

* must do tdi to prevent IO interrupt
* write packed WMAP into boot loc 100

BCST uses the BFB special to refetch the operand with RNI-.
ABFetches are written into Oorl of bootram and BFBed

from there.

nop :=0x0800 and memr;

if not yz then bfb,
bbus/fa;

if not yz then rtn,
s7:=ct;

best_abf:

s6:=memr;

memr :=0x0060;
wrb:=s7, bbus/fa;
bfb, bbus/fa;

memr :=s6, bbus/t, rtn;

iog mp:

goto PRIV_TRAP;

*if not AB fetch then

* then do backplane fetch of opcode
*

* and return

*

*else broadcast ABFetch

*save current map

*load MEMR with bootmemory mode (no abaddr)
*write instruction into bootmemory.

*fetch instruction from bootmemory,

* assert RNI- and freeze

* before restoring memr.

ek de e e e e e o ok e o o e ke ok ok ke ke e ek ek e ok e ke e e o e ke ok ok ke ok e ok ok ok ok e ok ok ok ok o ok o ok ke ok ok ok ok ok ok ok ok ke ok ok ok

* Select Codes >= 20, HLT and Unused Select Code Execution *
S L L T Y e e T
sc_03: *not implemented

sc_10: *not implemented

sc_11: *not implemented

sc_12: *not implemented

sc_13: *not implemented

sc_lé4: *not implemented

sc_15: *not implemented

sc_16: *not implemented

sc_17: *not implemented

I0G_HIGH: *

HLT: *HLT AND HIGH SELECT CODE IO INSTRUCTIONS

if mpen goto iog mp;
call BCST, acc:=zeros;
call IOHS, nop:=t;
cmid;

fchp, rtn;

*check memory protect
*broadcast
*

*do interrupt holdoff
*

Je kK dk e o e de ok o o ok ek ek ok ok ok vk ok e ok vk ok ok ok e sk e ok ok ke e e e ok o ok ok o o e e ok ok o o ok ok ok ok o ok ok ok ok ok ok ok ok ok

* Continuation of Select Code <= 20 Instructions *
ededededede e dedk e e ok ek ek ek ok ek ek ok ek ok ek ok ok ok ok ok ok ok ok ke sk ek e ek ke ok

*

sf@00:

if yl15 goto sfs00;

sfc00:

nop:=ST LV3 and prin;

sfc@@:

if not yz then rtn;
ip, rtn;

s£s00:

nop:=ST LV3 and prin;

sfs@@:

if yz then rtn;
ip, rtn;

ot@00:
prin:=not ST TBG_E and prin;*clear out TBG enable bit

nop:=cab and 0x6602;
if not yz goto ot@0Of;

*SELECT CODE 00:

*branch on sfc vs sfs
*

*skip 1f isf set
*

*(general purpose skip if flag set)
*

*

*skip if isf clear
*

*(general purpose skip if flag clr)
*

*
*output to interrupt mask register

*should I enable TBG?
*

Appendix E

E-13

Appendix E

058D
058E
058F
058F
058F
0590
0591

0591

0592
0593
0594
0594
0594
0594
0595
0596
0596
0597
0598
0598
0599
0599
059A
059B
0598
059C
059D
059D
C59E
059E
059F
05A0
05A0
05Al1

(05A2
05A2
05A2
05A3
05A4

05A4

05A5

0546

05A7

05A7

05A7

05A7

05A8

05A8

0549

(O5AA
05AA
05AB
05AC
05AC
05AD
J5AD
05AE
Q5AF
05AF
02FE
02FE
02FF
02FF
0300
077D
077D
077E
077F
0780
00D8
00D8
00D9
00D9
00DA
00DB

E-14

prin:=prin ior ST TBG E;

call SET TBG _INT;
ot@OO0f:
fakeiohs:

sl:=12;

nop:=0x0800 and ct;

if yz then fcin,

sl:=sl;
nop:=sl, wrio;
nop:=cab, wrio, rtn;

* Select code 2

stf02:
prin:=ST GRDI ior prin;
rtn;

clf02:

prin:=not ST GRDI and prin;

rtn;
sf@02:
if yl5 goto sfs02;
sfc02:
nop:=ST GRDI and prin;
goto sfc@@;
sfs02:
nop:=ST GRDI and prin;
goto sfs@@;
sf@04:
if yl5 goto sfs04;
sfc04:
nop:=memr and MEMR PFW;
goto sfc@@;
sfs04:
nop:=memr ard MEMR PFW;
goto sfs@@;
1i@04:
mi@04:
n:=N_CIR;
cab:=prin ior sl, rtn;
ot@04:

n:=N_CIR;
prin:=cab and 077;
rtn;

*SELECT CODE 5, CONTINUED
sf@05:
if not yl5 goto sfc05;
sfs05:
sl:=I_PSODD and 1ist;
goto sfc@@;
sfc05:
sl:=I_PSODD and ist;
goto sfs@@;
11@05:
n:=N PEL1;
if not sf then rtn, in,
cab:=srin;
cab:=zuy(srin), rtn;

*SELECT CODE 5, CONTINUED
stf06: $origin Ox2FE$
n:=N TBGT COUNTER;
goto SET TBG_INT,
prin:=prin-acc;

clf06: $origin 0x77D$
n:=N_TBGT COUNTER;
ist:=ist and not I TBGF;
prin:=zeros, rtn; -

sf@06: Sorigin O0xD8$

if yl15 goto sfs06;
sfc06:

n:=N_TBGT COUNTER;

goto sfc@@, nop:=prin;
sf£806:

*yes: set my flag and

* enable it if all qualifiers are enabled
*no: continue

* perform fake IOHS (CPU drives CW)
*fake out 10 control word for writing

* A or B to backplane

*if OTA then control word = 12

* else control word = 13

*write control word to backplane

*wyrite A or B to backplane

*Disable global register
* state

*

*Enable global register
state

*
*
*
*
*
*skip if GR is enabled
*
*

*skip if GR is disabled
*

*
*
*skip if power going down
*
*

*skip if power coming up
*

*

*load from central interrupt register

*merge from central interrupt register
*

*
*output to central interrupt register
*
*
*

*
*skip if parity sense is even
*
*

*skip if parity sense is odd
*

*
*load from parity error reglster
*LIQ@ = load low 16 bits of PE

*,I@,C = load high 8 bits of PE
*

*

*Set TBGflag
*

*
*

*Clear TBGflag
*

*
*

*
*

*Skip if TBGflag 1s clear
*

*
*Skip if TBGflag is set

00DB
00DC
02DF
02DF
02DF
02E0
02E1
02E2
O00EB
00EB
00EB
00EC
00ED
0OEE
00EE
OQEF
O00EF
00EF
00EF
O0OEF
00EF
O0CEF
0270
0270
0271
0272
0273
0274
0274
0274
0274
0275
0276
0277
0278
0279
027A
0278
027B
0278
027C
027D
027E
027F
0234
023A
023B
023C
023D
023E
023F
0240
0370
0370
0371
0372
0373
0373
0373
0373
0373
0373
0373
0373
0373
0374
0375
0377
0377
0377
0378
0379
037A
037B
037cC
037D

n:=N_TBGT COUNTER;

goto sfs@@, nop:=prin;
1i@07: $origin Ox2DF$
ni@07:

if not sf then rtn;

n:=N MP VIOLATION;

cab:=prin ior sl, rtn;

ot@07: $origin 0x0OEBS
if not sf goto ot@07h,
sl:=cab;
n:=N MP VIOLATION;
prin:=cab and Ox7fff;
ot@07h:
rtn;

*
*
*Load @ from MP violation register.
*Merge @ from MP violation register.

*LI@,H and MI@,H are NOPs
*

*

*Qutput @ to MP violation register. !!
*

*
*
*

*

e e e e e v o o e ok ok e ok ok ok ok o ke ok ok ok ok ok ke sle ke ok ok ok ok ok ok ok o ok ok ok vk ke ok e ok ok ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok ok e ok ok ok ke

* Interrupt enable routines

*

* These routines are origin’d throughout the base set to *
* fill in holes due to fragmentation *
e R gk ek ko ek ko sk ok ok ksl ok ke ok ke ok ok ok ok ke ok ke ek ok ok e ok ok ok ke

CLR_LV2: $origin 0x270$
n:=N ST;

prin:=prin and not ST LV2;
ist:=ist and not 0x8120;

rtn;

SET LV2:
n:=N ST;
prin:=prin ior ST LV2;
ist:=ist ior 0x0020;
nop:=prin inor ST LV23;
if not yz then rtn;
ist:=ist ior 0x0100;
goto SET TBG_INT;

CLR LV3:
n:=N_ST;

prin:=prin and not ST LV3;
ist:=ist and not 0x8100;

rtn;

SET LV3: $origin 0x23A$
n:=N_ST;
prin:=prin ior ST LV3;
nop:=prin inor ST LV23;
if not yz then rtn;
ist:=ist ior 0x0100;
goto SET TBG_INT;

cle 00: Sorigin 0x370$
sl:=0xfff0 and ist;
ist:=sl ior I CRS;

goto clcOflags, ist:=sl;

PULSE_SCHOD:
s1:=0xfff0 and ist;
ist:=sl ior I_SCHOD;
ist:=sl; rtn;

OF_TBG:
sl:=0xfff0 and ist;
1st:=0x0404 ior sl;
n:=N_TBGT COUNTER;

H

s1:=0xfff0 and ist;
ist:=I_TBGT CLR ior sl;
rtn, prin:=zero;

*CLEAR THE LEVEL 2 INTERRUPT ENABLE
(behind SRG code)

clear level 2 enable

0x0020 disable PFW interrupts
0x8000 disable TBGflag interrupts
0x0100 disable IO interrupts

*

* ¥ X ¥

*SET THE LEVEL 2 INTERRUPT ENABLE
emulate its functions.

set level 2 enable

enable PFW

should 1/0 and TBG be enabled?
no: then return

yes: enable I/0

yes: do the TBG flag thing

* N N % F N W

*CLEAR THE LEVEL 3 INTERRUPT ENABLE
* emulate its functions.

*

* 0x8000 disable TBGF

* 0x0100 disable I/0

*SET THE LEVEL 3 INTERRUPT ENABLE
(behind ASG code)
set level 3 enable
if level
2 and 3 are enabled,
then enable I/0 interrupts
then set a TBG interrupt

* * * ¥ O X

*system reset
*pulse CRS
*

*parity system on

*memory protect off

*clear pending memory protect interrupt
*enable level 2

*disable level 3

*or disabled

*tbg flag cleared, TBG turned off

*Assert SCHOD for one cycle

* to acknowledge SCHID.
*

*

*TURN OFF THE TIME BASE GENERATOR
*Clear possible tbgtick and

* turn it off in the same line

*

* and wait for tick to propogate.
*clear tbgtick that may have

* propogated because of turning off TBG
*

Appendix E

E-15

Appendix E

E-1

037E
02E2
02E2
02E3
02E4
02E5
02E6
02E6
02E6
02E7
02E8
02E9
02EA
02EB
02EC
02ED
02EE
02EE
02EE
02EF
02F0
02F1
02F1
02F1
02F2
02F2
02F3
02F4
02F4
02F5
02F6
02F6
02F6
02F7
02F8
02F9
02FA
02FB
02FC
02FD
02FE
02AB
02AB
02AC
02AD
02AE
02AE
02AF
02B0
02B0O
02B1
02B2
02B3
02B4
02B5
02B6
02B6
02B6
02B7
0287
02B8
02B9
0289
02BA
02BB
02BC
02BD
02BE
02BF
02BF
02C0
02Co
02Cl

DI_PE INT: $origin Ox2e2$
sl:=0xfff0 and ist;
ist:=sl ior I PE CLR;
ist:=sl and not I PEE;
rtn;

SET TBG INT:
ni=N ST,
nop:=prin inor ST LV23T;
if not yz then rtn;
n:=N_TBGT COUNTER;
nop:=prin;
if yz then rtn;
ist:=1ist ior 1 TBGF;
rtn; -

BOOT:
n:=N MPAR;
ct:=1023;
srin:=0;
set map:

if not ctz goto set map,
map:=srin;

RESET PU:
memr :=MEMR BOOT;
p:=020002, bbus/memr;
if not bl5 goto no_tdi,

n:=111(ones);

cmid;

no_tdi:

clcOflags:
call OF TBG;
call SET LV2;
call CLR LV3;
ist:=0x1¢30;
ist:=0x1c32;
ist:=0x1¢36, bbus/memr;
prin:=ST RESET;
nop:=zero, ldbr, rtn;

WMAP_PACK: $origin Ox2AB$
nop:=zero, ldq;
sO:=memr and 0x001lf;
sl:=prin and 0x1£00;
sl:=rll(sl),

if not mpen goto wmapnmp;

s0:=8(0 ior 0x8000;

wma pnmp ¢
sl:=rll(sl);
82:=prin and
82:=rll(s2);
82:=r14(s2);
80:=80 ior sl;
s0:=s0 ior s2, rtn;

0x001f;

WMAP_UNPACK:
82:=rrl(sl);
if not bl5 goto wmap nomp,
s3:=2rll(s2);
ist:=ist and not I MPD;
wmap nomp: -
83:=0x1£00 and s3;
82:=rl4(s2);
s2:=8wzu(s2);
s82:=82 and 0x001f;
prin:=82 ior 0x2020;
memr:=sl and OxQO01f;
prin:=prin ior s3,
rtn;

*Disable parity interrupts
* (behind EAG divide code)

*
*
*
*Set the TBGflag. (Called when one of the
* qualifiers is enabled).

* level 2 and 3 and TBG_E must be enabled
Is

TBG tick counter greater than zero?

n:
y:

then return;
then set TBGFLAG.

* % ¥ ¥ F

*SET THE PROCESSOR UP TO BOOT

Set up maps for logical to physical
mapping of pages
0 to 1023

* % ¥ ¥ X %

*RESET UPPER PROCESSOR (used by selftest)
*A700 will enter boot memory

*in Virtual Control Panel

*

*n:=N_ST;

*complement the interrupt holdoff

*

*

*TBG initialization: turn it off.
*enable level 2 interrupts
*disable level 3 interrupts
*reset PE int (PE enabled)

*reset MP int (PFW enabled)
*reset MTO indicator

*reset microcode-kept status
*initialize base regiseter

*STORE PACKED WMAP INTO SO
*DW might be enabled!
*get EXECUTE field

* ¥ ¥ ¥ ¥

*get DATA2 field
*

*
*get DATAl field
*

*that’s all.....

*load WMAP from sl
*(DW must be disabled!)
*

*

*turn on memory protect
*

*s3 = DATA2 field
*
*

*s2 = DATAL field

*set A/B addressibility off for DATAl, DATA2

*
*
*

MPARA source listing

0000 MPARA; *memory reference group and memory utilities <820204.1442>
$origin 0x104$ *file = &MRG <820204.1442>
e dede Aok ke ok ek ok ek ok ok ko ke e ke ko ke sk ok ek ok ok ke ke Ak Rk Kk ok

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

0104
0104
0104
0104
0104
0104
0104
0104
0104
0104
0104
0104
0104
0105
0106
0106
0107
0107
0108
0108
0108
0108
0109
0109
010A
010A
010A
010A
010B
oloc
o10c
010C
010D
010E
010E
010F
0110
0110
0110
0110
0111
0112
0112
0112
0113
0114
0114
0115
0115
0116
0l16
0116
0117
0117
0118
0118
0118
0118
0119
011A
01l1A
0l1A
011B
011B
ollc
0llC
011D
Ol1E
011E
Ol1F
0124
0124

Appendix E

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

oo Je e ke e e e e e e Je e e ok I e e e e ek e e e e sk e e v e e e A ok e o e sk e sk e e e e vk ok ok e e e e e e e e o e e de e e ke K ok

$define adrl/INST RESTART 0x00D0$

AND D: $origin 0x104$
a:=a and t,
fchp, rtn;

JSB D: $origin 0x106$
acc :=p, cmid;
wrb:=acc, bbus/ma,

goto jsbxl;

XOR D: $origin 0x108$
a:=a xor t,
fchp, rtn;

jsbxl: p:=mat+one, goto jsbx2;

JMP_D: $origin Ox10a$
p:=ma,
rtn;

IOR D: $origin 0x10c$
a:=a lor t,
fchp, rtn;

ISZ D: $origin 0x10e$
p:=ma;
wrp:=t-acc, goto isz dx;

ADA D: $origin 0x110$
a:=a+t, enoe,
fchp, rtn;

ADB D: $origin Ox112%
b:=b+t, enoe,
fchp, rtn;

CPA D: $origin Ox114$
acc:=cab;
nop:=acc xor t,
goto cplx;

CPB_D: $origin 0x116$
acc:=cab;
nop:=acc xor t,
goto cp@x;

LDA D: $origin 0x118$
a:=t,
fchp, rtn;

LDB D: $origin Oxlla$
b:=t,
fchp, rtn;

jsbx2:
STA D: $origin Oxllc$
fchp, rtn;

STB D: $origin Oxlle$
fchp, rtn;

AND I: $origin Ox124$
call INDREAD;

*AND,D (read of data was begun by JTAB)
* logical and A with memory data.
* fetch...

*JSB,D (JTAB latches MRG address in MA)
* store p value into return register

* write p value to MRG address
*

*XOR,D (read of data was begun by JTAB)
* logical xor A with data
* fetch...

* set p to MRG address plus one

*JMP,D (fetch was begun by JTAB)

* Stuff MRG address into p
*

*IOR,D (read of data was begun by JTAB)
* Jogical or A with data
* fetch...

*I1SZ,D (read of data was begun by JTAB)
* prepare for write
* write incremented value

*ADA,D (read of data was begun by JTAB)
* add memory to A, set E or O
* fetch...

*ADB,D (read of data was begun by JTAB)
* add memory to B, set E or O
* fetch,..

*CPA,D (read of data was begun by JTAB)
*

* compare A and data
*

*CPB,D (read of data was begun by JTAB)
*

* compare B and data
*

*LDA,D (read of data was begun by JTAB)
* Load A.
* fetche..

*L.DB,D (read of data was begun by JTAB)
* Load B.
* fetch...

*jsb extension 2 - just fetch and return
*STA,D (store of data was begun by JTAB)
* fetchs..

*STB,D (store of data was begun by JTAB)
* fetche...

*AND,I (read of indirect was begun by JTAB)
* indirect

E-17

Appendix E

0125
0125
0126
0126
0126
0126
0127
0128
0128
0129
0129
012A
012A
012A
0128
012C
ol2c
0l12C
012D
012D
012E
012E
012E
012F
0130
0130
0130
0131
0131
0132
0132
0132
0133
0133
0134
0134
0134
0135
0135
0136
0136
0136
0137
0137
0138
0138
0138
0139
0139
013A
013A
013A
013B
013B
013C
013C
013C
013D
013E
013E
013E
013F
0140
0700
0700
0701
0701
0702
0703
0703
0704
0704
0705
0705
0706

E-18

:=a and t,
fchp, rtn;

JSB I: $origin 0x126$
goto INDJSB,
acc :=p;

XOR I: $origin 0x128$
call INDREAD;
a:=a xor t,
fchp, rtn;

JMP_I: $origin Oxl2a$
cmid;
goto jmpind, nop:=t;

IOR I: $origin Oxl2c$
call INDREAD;
a:=a jor t,
fchp, rtn;

ISZ I: $origin Oxl12e$
call isz_ix;

wrp:=t-acc, goto isz dx;

ADA I: $origin 0x130$
call INDREAD;
a:=a+t, enoe,

fchp, rtn;

ADB I: $Sorigin Ox132$
call INDREAD;
b:=bt+t, enoe,

fchp, rtn;

CPA I: S$origin 0x134$
call INDREAD, acc:=cab;
nop:=acc xor t,

goto cplx;

CPB_I: S$origin 0x136$
call INDREAD, acc:=cab;
nop:=acc xor t,

goto cp@x;

LDA I: $origin 0x138$
call INDREAD;
a:=t,
fchp, rtn;

LDB_I: $origin Ox13a$
call INDREAD;
b:=t,
fchp, rtn;

STA I: $origin Ox13c$
call INDSTCRE, acc:=a;
fchp, rtnj;

STB I: $origin Oxl3e$
call INDSTORE, acc:=b;
fchp, rtn;

INDREAD: $origin 0x700$
nop:=t, rdb;
if not blS5 then rtn,
s6:=ma+tone;
nop:=t, rdb;
if not bl5 then rtn,
86 :=ma+orne;
indrd2:
nop:=t;, rdb;
if not bl5 then rtn,
s86:=ma+one;
call tdi disable,

* logical and a and data
* fetch...

*JSB,I (read of indirect was begun
* write p into return register,
* write into return register

*XOR,I (read of indirect was begun
* indirect

* logical xor a and data

* fetch...

*JMP,I (read of indirect was begun
* set TDI
* indirect

*I0R,I (read of indirect was begun
* indirect .

* logical ior A and data

* fetch...

*1SZ,I (read of indirect was begun
* indirect
* write incremented value back

*ADA,I (read of indirect was begun
* indirect

* add data to A

* fetch...

*ADB,I (read of indirect
* indirect

* add data to B

* fetch...

was begun

*CPA,I (read of indirect
* indirect

* compare A to data
*

was begun

*CPB,I (read of indirect
* indirect

* compare B to data
*

was begun

*LDA,I (read of indirect
* indirect

* load A

* fetch...

was begun

*LDB,I (read of indirect
* indirect

* load B

* fetch...

was begun

*STA,I (read of indirect
* indirect store
* fetch...

was begun

*STB,I (read of indirect
* indirect store
* fetch...

was begun

*indirect read utility

*]1st level: save t, start new read
* if t was direct then return

* save address+l in

*2nd level:

*

*
*
*3rd level:
*
*

*agsure that interrupts are enabled

by

by

by

by

by

by

by

by

by

by

by

by

by

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

JTAB)

0706
0707
0708
0708
0708
0709
0708
070B
070C
070C
070D
070D
070D
070E
070E
070F
0710
0710
0711
0712
0712
0713
0713
0714
0715
0715
0715
0716
0717
0718
0719
071A
071B
071cC
071D
071E
071E
071F
0720
0720
0720
0721
0721
0722
0722
0723
0723
0723
0724
0724
0725
0725
0726
0726
0727
0728
0728
0728
0729
0729
0729
072A
072A
072B
072C
072D
072D
072D
072E
072E
072F
0730
0730
0731
0732

nop:=memr;
goto INDREAD;

tdi_disable:

if not bl5 goto check_ints;

cmid;;
check ints:
if not intp then rtn;
goto INST RESTART,
p:=fa; -

INDSTORE:
cwrb:=acc, bbus/t;
s6:=ma+one,
if not bl5 then rtn;
cwrb:=acc, bbus/t;
s6:=ma+one,
if not bl5 then rtn;
cwrb:=acc, bbus/t;
s6:=ma+one,
if not bl5 then rtn;
call tdi disable,
nop :=memr ;
goto INDSTORE;

INDRSOLV:
s7:=t+s0;
if not bl5 then rtn;
rdb, bbus/t;
s7:=t+s0;

if bl5 then rdb, bbus/t;

if not bl5 then rtn;
87 :=t+s0;

if bl5 then rdb, bbus/t;

if not bl5 then rtn;
call tdi_disable,

nop :=memr;
goto INDRSOLV;

INDJMP:
nop:=t;
if not bl5 goto fetch,
pi=t;
rdb, bbus/t,
call indjshowt;
jmpind:
if not bl5 goto fetch,
p:=t;
rdb, bbus/t,
call indjshowt;
if not blS5 goto fetch,
p:=t;
call tdi_disable,
nop :=memr ;
goto INDJIMP;

ind jshowt:
nop:=t, rtn;

isz_ix:
nop:=t, rdb;
if not bl5 then rtn,
p:=ma;
call INDREAD;
p:=ma, rtn;

INDJSB: $origin Ox72D$

cwrb:=acc , bbus/t, cmid;

p:=matone,

if not bl5 goto fetch;

cwrbi=acc , bbus/t;
p:=ma+one,

if not bl5 goto fetch;

cwrb:=acc , bbus/t;
p:=matone,

*disable tdi and check interrupts
*if tdi is set

* then disable (and wait for intp)
*

*if no interrupts then return
*restart instruction

*reset program counter

*indirect store utility

*]st level: 1if direct then store

* and return, else read new memory
* address.

*2nd level:
*

*

*3rd level:
*

* ¥ ¥ F

*indirect resolution utility
*1st level: save t

* if direct then rtn,

* initiate read

*2nd level: save t

* 4if indirect initiate read
* if direct then return
*3rd level: save t

* {if indirect initiate read
if direct then return

*
*
*
*

*indirect branching utility

*level 1: freeze until data returned.
* if direct then fetch

*

*level 2:

*

*

* if direct then fetch and return

*

*level 3:

* freeze until data returned

* {if direct then fetch and return

*

*assure that interrupts are disabled.
*

*

*
*

*continue ISZ,I

*freeze until address is returned
*if direct then return

* load P

*do indirect

*load P

*Indirect jsb routine...
* lst level: if direct then write else read.
* p gets address to jump to
if direct then done.
2nd level:

3rd level:

* % % ¥ N ¥

Appendix E

E-19

Appendix E

0732
0733
0733
0734
¢735
0735
€735
0736
¢736
0737
0738
0738
0739
073A
073B
073B
073C
073C
073C
073C
C73D
073E
073E
073E
073F
073F
0740
0740
0741

if not blS goto fetch; *
call tdi disable, *
nop :=memr; *
goto INDJSB; *
INDRDBL: *DOUBLE READ UTILITY (intrpt after 2)
nop:=t, rdb; *get past DEF
if not bl5 goto dblrdone, *was it direct?
p:=ma+one; *y: prepare for second read
nop:=t, rdb; *n: start indirect read
if not bl5 goto dblrdone, *was it direct?
p:=ma+one; *y: prepare for second read

if not intp goto indrdbl; *check interrupts now
goto INST RESTART, p:=fa; *

dblrdone: *

s7:=t, rdp, rtn; *save high word, start second word read
isz dx: *isz extension:

if not yz goto fetch, * optimize for non skip case

p:=fa-acc; * p:=next opcode

p:=p-acc, goto fetch; * fetchess
cp@x: *cp@ extension:

if not yz then ip; * if not equal then skip
fetch: *

fchp, rtn; * fetch...

MPARA source listing
0000 MPARA; *alter skip group macroinstructions <820204.1550>

C1EQ
01EQ
01EQ
01EO0
01EO
01EOQ
01EO0
01EO
01EQ
01EOQ
01EO
01EO
01El
C1EL
C1E2
C1E2
C1E2
01E3
01E3
01E4
01E4
01E4
01ES5
C1E6
01E6
01E6
01E7
01E8
01E8
01E9
01EA
01EA
01EB
01EC
01EC
01ED
01EE
O1EE
0O1EF
01F0
01F0

E-20

$origin Ox1E0$ *file = &ASG <820204.1550>
e ek Ak ok e ok ko ok ke ok ok ok ok ok ok ok sk ok ok e ko ek ok e e ok ko ko ok ok ok ok ok ok ok ok ok ke

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

KAKKEKARSrhAkhkhhhkhhkhkkhkkkkkhkkkkhkhhkhhhhhkhkhkAXARAXRAk Rk kkkkhkkhkkkkkk

ASG_ALL: $origin 0Oxle0$ *ASG instructions (JTAB entry) 3 - 9 cycles

Sorigin OxleO$ *JTAB entry for non-simple ASG instructions.
n:=rll{cab); * set up n register for asg transformation.
ct:=asg(ct), * perform and execute complex ASG instruction.

goto asg ext; * (7-9)

Sorigin Oxle2$ *JTAB entry for RSS (4)

asg_skip: *
ip; *

asg noskip: *
fchp, rtn;) *

Sorigin Oxleé$ *JTAB entry for SZ@ (4)

8z@: *
1f yz then ip; *
fchp, rtn; *

$origin Oxle6$ *JTAB entry for SZ@,RSS (4)

sz@rss: *
if not yz then ip; *
fchp, rtn; *

Sorigin Oxle8$ *JTAB entry for SS@ (4)
1f not yl5 then ip; *
fchp, rtn; *

$origin Oxlea$ *JTAB entry for SS@,RSS (4)
if yl5 then ip; *
fchp, rtn; *

$origin Oxlec$ *JTAB entry for SS@,Sz@ (5-6)
if not yl5 goto asg skip;*
goto sz@; *

$origin Oxlee$ *JTAB entry for SS@,SZ@,RSS (5)

if yl5 goto asg _skip; *
goto sz@rss; *
in@noste: *
if not alov then rtn, *

Appendix E

01F0 fchb, bbus/p; *

01F1 sto, rtn; *

01F2 $origin Ox1£2$ *JTAB entry for CL@ (3)

01F2 cab:=zero, fchp, rtn; * A or B := zero

01F4 Sorigin Ox1f4$ *JTAB entry for CM@

01F4 cab:=not cab, fchp, rtn; * A or B := not Aor B (3)
01F6 Sorigin Ox1£6$ *JTAB entry for CC@

01F6 cab:=ones, fchp, rtn; * Aor B := ones

01F8 Sorigin Ox1£8$ *JTAB entry for IN@ (4)
O1F8 acc:= -acc, fchp; * Aor B := Aor B plus 1
01F9 cab:=cabtacc, enoe, rtn; * (can set E or 0)

OIFA $origin Ox1fa$ *JTAB entry for CLE@,IN@ (4)
OlFA cab:= -acc, fchp, rtn; * Aor B :=1

OlFC S$origin Ox1fc$ *JTAB entry for CM@,IN@ (4; 5 if setting O0)
O1FC if not yz goto in@noste, *

0lFC cab:= —cab; *

01FD ste, fchp, rtn; *

Ol1FE $origin Ox1fe$ *JTAB entry for CCQ,ING@ (3)
O1FE cab:=zero, ste, * Aor B :=0

0lFE fchp, rtn; * (E is set on rollover)
OlIFF

OlFF asg_ext: $origin Ox1FF$ *ASG extension (7-9)

O1FF goto asg_tbll, ct30, * fall into asg tbll,

O1FF acci= =acc; * put +1 in accumulator

0200

0200 asg_tbll:

0200 {

0200 Execute the following asg instructions within the table:
0200 CL@,CM@,CC@,NOP - through bbus,abus and alu fields
0200 CLE,CME,CCE,NOP - through ste or cle in store field
0200 SEZ,SS@,SL@ - increment p 1f skip equation is true.
0200 Branch to asg tbl2 if no skip occurred,

0200 otherwise to tbl3.

0200 }

0200 {00} nop:=cab, ct74, cle, goto asg_tbl2; *
0201 {01} cab:=zero, ct74, cle, goto asg tbl2; *
0202 {02} nop:=cab, ip, cle, goto asg iskp; *
0203 {03} cab:=zero, ip, cle, goto asg iskp; *
0204 {04} nop:=cab, ct74, ste, goto asg tbl2; *
0205 {05} cab:=zero, ct74, ste, goto asg tbl2; *
0206 {06} nop:=cab, ip, ste, goto asg iskp; *
0207 {07} cab:=zero, ip, ste, goto asg_iskp; *
0208 {10} cab:=not cab, ct74, cle, goto asg tbl2; *
0209 {11} cab:=ones, ct74, cle, goto asg_tbl2; *
020A {12} cab:=not cab, ip, cle, goto asg iskp; *
020B {13} cab:=ones, ip, cle, goto asg_iskp; *
020C {14} cab:=not cab, ct74, ste, goto asg tbl2; *
020D {15} cab:=ones, ct74, ste, goto asg_tbl2; *
020E {16} cab:=not cab, ip, ste, goto asg iskp; *
020F {17} cab:=ones, ip, ste, goto asg iskp; *
0210

0210 asg_tbl2:

0210 {

0210 If IN@ enabled then do 1it.
0210 If SZ@ enabled then branch to do SZ@ (with or with RSS).
0210 YZ condition is set to cab for sz@ test.

0210 }

0210 {00} fchp, rtn; *

0211 {01} fchp, rtn; * RSS
0212 {02} nop:=cab, goto asg sz@; * sz@
0213 {03} nop:=cab, goto asg_rsz@; * $2@,RSS
0214 {04} cab:=cab+acc, enoe, fchp, rtn; *IN@

0215 {05} cab:=cab+acc, enoe, fchp, rtn; *IN@, RSS
0216 {06} nop:=cab+acc, goto asg_in@sz@; *IN@,Sz@
0217 {07} nop:=cab+tacc, goto asg_in@rsz@; *IN@,SZ@,RSS
0218 {10} fchp, rtn; *

0219 {11} fchp, rtn; * RSS
021A {12} nop:=cab, goto asg_sz@; * sz@
021B {13} nop:=cab, goto asg_rsz@; * SZ@,RSS
021C {14} cab:=cab+acc, enoe, fchp, rtn; *IN@,

021D {15} cab:=cabtacc, enoe, fchp, rtn; *IN@, RSS
021E {16} nop:=cab+acc, goto asg_in@sz@; *IN@,Sz@
021F {17} nop:=cab+acc, goto asg_1in@rsz@; *IN@,SZ@,RSS
0220

0220 asg_tbl3:

E-21

Appendix E

E-22

0220
0220
0220
0220
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
022A
022B
022C
022D
022E
022F
0230
0230
0230
0231
0231
0231
0232
0232
0233
0233
0233
0234
0235
0235
0235
0236
0237
0237
0237
0238
0239
0239
023A

{

If IN@ enabled then do it.

fchp and return.
}
{00} fchp, rtn;
{01} fchp, rtn;
{02} fchp, rtn;
{03} fchp, rtn;

{04} fchp, rtn, cab:=cabtacc,
{05} fchp, rtn, cab:=cabtacc,
{06} fchp, rtn, cab:=cabtacec,
{07} fchp, rtn, cab:=cab+acc,

{10} fchp, rtn;
{11} fchp, rtn;
{12} fchp, rtn;
{13} fchp, rtn;

{14} fchp, rtn, cab:=cabtacc,
{15} fchp, rtn, cab:=cab+acc,
{16} fchp, rtn, cab:=cab+acc,
{17} fchp, rtn, cab:=cab+acc,

asg_iskp:
goto asg_tbl3, ct74;

asg_in@sz@:
if yz then ip;
asg_in@:

enoe;
enoe;
enoe;
enoe;

enoe;
enoe;
enoe;
enoe;

cab:=cab+acc, enoe, fchp, rtn;

asg_sz0:
if yz then ip;
fchp, rtn;

asg_inCrsz@:
if not yz then ip;

cab:=cabtacc, enoe, fchp,

asg_rsz@:
if not yz then ip;
fchp, rtn;

MPARA source listing
0000 MPARA; *shift/rotate group macroinstructions <820204.1550>
Sorigin Ox1lc0$ *file = &SRG <820204.1550>
6 e de e e e ok o ok ok ok ok ek ke s ke ok ek ok ok ok ok ek ek e e ek ek ek ke ok ok
* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *
* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior writtemn *

* consent of Hewlett Packard Company.
T T L T T e T e)

0lco
01co
01Co
01C0
01Co
01CO
01co
01co
0l1Co
01co
01Cco
0l1co
01C1
01C2
0l1Cc2
01c3
01C4
01Ca4
01C5
01C6
01cé
01c7
01cs
01Cc8
01c9
O1CA
0lCA

SRG_ALL: $origin Oxlc0$

Sorigin Ox1lc0$
call srgl, ct:=srg(ct);
goto srg2;

$origin Oxlc2$
call srgl, ct:=srg(ct);
fchp, rtn;

Sorigin Ox1lc4$
call srgl, ct:=srg(ct);
goto sl@srg2;

$origin Ox1cé6$
call srgl, ct:=srg(ct);
goto sl@;

$origin Oxlc8$
call srgl, ct:=srg(ct);
goto clesrg2;

$origin Oxlca$
call srgl, ct:=srg(ct);

rtn;

*JTAB entry

*JTAB entry

*
*

*JTAB entry

*
*

*JTAB entry

*
*

*JTAB entry

*
*

*JTAB entry

*
*

*JTAB entry

*

for

for

for

for

for

for

for

*

SRG instructions (3-llcycles)

srgl,NOP,NOP,srg2

srgl,NOP,NOP, NOP

srgl,NOP,SL@,srg2

srgl,NOP,SL@,NOP

srgl,CLE,NOP,srg2

srgl, CLE,NOP,NOP

01CB
01ccC
o1cc
01CD
01CE
01CE
OICF
01D0
01p0
01D1
01D2
01D2
01D4
01D4
01D5
01D6
01D6
01D8
01p8
01D9
01DA
01DA
01DB
01DB
01pC
01DC
01DD
O1DE
O1DE
01DF
0240
0240
0240
0240
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
024A
024B
024C
024D
024E
024F
0250
0250
0250
0250
0250
0250
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
025A
0258
025C
025D
025E
025F
0260
0260
0260

cle, fchp, rtn;
Sorigin Oxlcc$

call srgl, ct:=srg(ct);

goto clesl@srg2;
$origin Oxlce$

call srgl, ct:=srg(ct);

goto clesl@;
Sorigin 0x1d40$

ct:=srg(ct);

goto srg2;
Sorigin Ox1d2$

fchp, rtn;
Sorigin Ox1d4$

ct:=srg(ct);

goto sl@srg2;
Sorigin 0x1d6%

goto sl@;
$origin Ox1d8$

ct:=srg(ct);

goto clesrg?2;
Sorigin Oxlda$

cle, fchp, rtn;
srgl:

gototbl srg tbll;
Sorigin Oxldc$

cti=srg(ct);

goto clesl@srg?2;
Sorigin Oxlde$

goto clesl@;

srg_tbll: $origin 0x240$
{

Perform the lst instruction type of

}

{00}

{04}

{10} cab:=all(cab),
{14} acc:=arl(ones),
{01}

{05} nop:=rrl(cab),
{11} cab:=arl(cab),
{15} cab:=rrl(cab),
{02}

{06} nop:=rll(cab),
{12} cab:=rll(cab),
{16} cab:=rll(cab),
{03}

{07}

{13} cab:=rrl(cab),
{17} cab:=rlé4(cad),

srg tbl2:
{

Perform the 2nd instruction type of

fetch and return.
}
{oo}
{o1}
{02}
{03}
{04}
{05} nop:=rrl(cab),
{06} nop:=rll(cab),
{07}
{10} cab:=all(cab),
{11} cab:=arl(cab),
{12} cab:=rll(cab),
{13} cab:=rrl(cab),
{14} acc:=arl(ones),
{15} cab:=rri(cab),
{16} cab:=rll(cabd),
{17} cab:=rl4(cad),

srg @lrl:

cab:=111(acc and cab),

*

*JTAB entry for

*
*

*JTAB entry for

*
%

*JTAB entry for NOP

*
*

*JTAB entry for NOP

* (very NOP)

*JTAB entry for NOP
*

*

*JTAB entry for NOP
*

*JTAB entry for NOP

*
*

*JTAB entry for NOP

* (CLE only)
*

*

*JTAB entry for NOP
*

*

*JTAB entry for NOP

*

srgl,CLE,SL@,srg2

srgl,CLE, SL@,NOP

,NOP,NOP,srg2

,NOP, NOP,NOP

,NOP, SL@,srg2

,NOP, SL@,NOP

,CLE,NOP,srg2

,CLE,NOP,NOP

,CLE,SL@,srg2

,CLE, SL@,NOP

*grg instructions, continued

rtn;
rtn;
rtn;

lwf, goto srg @lrl;

rtn;
lwe, rtn;
rtn;
lwe, rtn;
rtn;
lwe, rtn;
rtn;
lwe, rtn;
rtn;
rtn;
rtn;
rtn;

fchp, rtn;
fchp, rtn;
fchp, rtn;
fchp, rtn;
fchp, rtn;
lwe, goto
lwe, goto
fchp, rtn;
fchp, rtn;
fchp, rtn;
fchp, rtn;
fchp, rtn;
lwf, goto
lwe, goto
lwe, goto
fchp, rtn;

srg tbl2;
srg tbl2;

srg @lr2;
srg tbl2;
srg tbl2;

the SRG instruction and return

*DISABLED *LS
*DISABLED *LR
*ENABLED *LS
*ENABLED *LR
*DISABLED *RS
DISABLED ER
*ENABLED *RS
ENABLED ER
*DISABLED R*L
DISABLED EL
*ENABLED R*L
ENABLED EL
*DISABLED R*R
*DISABLED *LF
*ENABLED R*R
*ENABLED *LF

the SRG instruction,

*DISABLED
*DISABLED
*DISABLED
*DISABLED
*DISABLED
*DISABLED
*DISABLED
*DISABLED
*ENABLED
*ENABLED
*ENABLED
*ENABLED
*ENABLED
*ENABLED
*ENABLED
*ENABLED

*perform first *LR and return

*

*LS
*RS
R*L,
R*R
*LR
ER*
EL*
*LF
*LS
*RS
R*L
R*R
*LR
ER*
EL*
*LF

Appendix E

E-23

Appendix E

0260
0261
0261
0261
0262
0262
0263
0263
0264
0265
0266
0266
0267
0268
0269
0269
026A
026B
0268
026C
026C
026D
026E
026F
026F
0270

clf, rtn;
srg @lr2:
cab:=111(acc and cab),
fchp, rtn;
srg2:
goto srg tbl2, ct74;
s1@:
nop:=1lrl(cab);
if not sf then ip;
fchp, rtn;
clesl@:
nop:=lrl(cab);
if not sf then ip;
fchp, cle, rtn;
clesl@srg2:
nopi=lrl(cab);
if not sf then ip;
clesrg2:
goto srg tbl2, ct74, cle;
sl@srg2:
nop:=lrl(cab);
if not sf then i1p;
goto srg tbl2, ct74;

MPARA source listing
0000 MPARA; *extended arithmetic group macroinstructions <820204.1550>
Sorigin 0x280% *file = &EAG <820204.1550>
e dek ek ek ok sk o e ok e v ok ok ok e ok ok ok ok e ek ok ke ek ek ke ek ek ek ek ek ek Ak Kk
* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *
* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *

* consent of Hewlett Packard Company.
ARRAkhhAERARXRKAIIIRAAARKKKKIRRKK KAk kkhkhhrhhhhkhkkhkkkhkhrrhhhhhhkkkikkx

0280
0280
0280
0280
0280
0280
0280
0280
0141
0141
0142
Cl42
0143
0143
0145
Cl45
0146
146
cl47
0147
0101
0101
0102
0102
0103
0103
0104
0140
0140
0141
0148
0148
0148
0149
014A
014B
014C
014C
014C
014D
014E
014F
0280
0280

E-24

MPY: $origin 0x141$
goto eag mpy, sO:=zero;
DIV: $origin 0x142$

goto eag div, ct :=acctacc;

JLA: $origin 0x143$
goto eag j1@, rdp;
DLD: $origin 0x145$
goto eag dld, rdp;
DST: $origin 0x146$
goto eag dst, rdp;
JLB: Sorigin Cx147$
goto eag jl€, rdp;
AS@: $origin (x101$
goto eag as@;
LS@: $origin (x102$
goto eag 1s€, s0:=ct;
RR@: $origin (x103$
goto eag rr€, sl:=a;

eag_jl@: Sorigin 0x140%
goto INDJMP, cab:=p-acc;

eag dld: $origin 0x148$
call INDREAD,
p:=p—acc;
ai=t;
bbus/sb, rdb;
b:=t, fchp, rtn;

eag dst:
call INDSTORE, acc:=a;
wrb:=b, bbus/s6, 1ip;
fchp, rtn;

eag mpy: $origin 0x280$
rdp,

*(clear flag

*perform 2nd
*

*

*perform
*
*perform
*
*
*
*perform
*
*
*
*perform
*
*

the

the

the

the

*perform the

*

*perform
*
*
*

the

*JTAB
*

*JTAB
*

*JTAB
*

entry
entry
entry

*JTAB
*

*JTAB
*

*JTAB
*

*JTAB
*

*JTAB
*

*JTAB
*

entry
entry
entry
entry
entry

entry

*JL@ extensi

for possible second *LR)
*LR , fetch and return

second SRG instruction

SL@, fetch and return

CLE and SL@, fetch and return

CLE, SL@ and second SRG

CLE and second SRG

SL@ and second SRG

for

for

for

for

for

for

for

for

for

on

*

MPY

DIV

JLA

DLD

DST

JLB

ASL and ASR

LSL and LSR

RRL and RRR

* load A or B with return address

*DLD continued

*read
*

*A
*read
*B =

.
=

*DST continu

first word

first word
second word
second word

ed

*store first word (A)
*gtore second word (B)

*fchp, rtn

*MPY continued

*read DEF

0280
0281
0281
0282
0282
0283
0284
0284
0284
0285
0286
0286
0286
0287
0287
0287
0288
0289
0289
028A
028A
028A
028A
028A
028B
028B
028C
028C
028C
028D
028D
028E
028F
028F
0290
0291
0291
0291
0292
0293
0294
0294
0294
0295
0295
0295
0296
0296
0296
0297
0297
0297
0298
0298
0298
0299
029A
029A
0298
0298
0298
0298
0298
029C
029¢C
029C
029D
029D
029D
029D
029D
029E
029E
029E
0297

Appendix E

cti=acctacc; *low 4 bits of ct := 14
call INDREAD, *indirect
acci=a; *
nop:=t, ldq, *Q holds the multiplier
det; *low 4 bits of ct := 13
b:=tmpy(s0), ip; *first multiply step
mloop: *Repeat 14 times:
if not ctz4 goto mloop, * B,Q := Two’s complement multiply of
b:=tmpy(b); * of ACC and Q. (see 2903 specials)
b:=tmle(b); *Two’s comp mult last step.
a:=q, *Two s complement multiply never
clo, * overflows.
fchp, rtn; *fetch...
eag as@: *Arithmetic shift left or right
nop:=0x0200 and ct; * decode between left and right
det; *synchronize count
if not yz goto eag asr, *
nop:=a, ldq; *prepare for double word shift or normalize
eag asl: *Arithmetic shift left
aslloop: * Loop until ct is zero:
if ctz4 goto asldone, * double normalize (B,A)
b:=dnrm(b); * and check
if not cf goto aslloop, * for arith overflow.
acc:=b; * remember b sign bit.
aslovlp: * Overflow occurred in loop:
1f not ctz4 goto aslovlp, * finish
b:=dnrm(b); * normalizing
aslovfl: * set sign bit
b:=b and Ox7fff; * correctly to opposite sign
acc:=0x8000, bbus/acc; * of acc, which held the overnormalized
if not bl5 then * value of b.
b:=b ior acc; *
fchp, a:=q, sto, rtnj; * fetch, set o and rtn;
asldone: * Overflow did not occur in loop:
if not cf goto aslok, * though it
acc:=b; * may have on exit.
b:=b xor 0x8000; * correct sign bit.
fchp, a:=q, sto, rtn; * end instructioneturn.
aslok: *
fchp, clo, * but it didn’t.
a:=q, rtn; *
eag asr: *Arithmetic shift right instruction
cmdw, clo; *Set double word bit.
asrloop: *Loop until CTZ4:
i1f not ctz4 goto asrloop, * decrement count,
b:=arl(b); * arithmetic shift B and Q
fchp, *Fetch,
a:i=q, * replace A with Q
rtn; * and end instruction
eag 1s@: *Logical left or right shift instruction
cmdw, ct:i:=ct+acc; * set DW, synch count
nop:=0x0200 and s0; * decode between LSL and LSR
if not yz goto eag_lsr, *
nop:=a, ldq; * prepare for double word shift
eag 1lsl: *LSL instruction
1slloop: *Loop until CTZ4:
if not ctz4 goto lslloop, * decrement count,
b:=111(b); * logical left shift B and Q
fchp, *Fetch,
ai=q, * replace A with Q
rtn; * and end instruction
eag lsr: *LSR instruction
1lsrloop: *Loop until CTZ4:
if not ctz4 goto lsrloop, * decrement count,
b:=1rl(b); * logical right shift B and Q
fchp, *Fetch,
at=q, * replace A with Q
rtn; * and end instruction

E-25

Appendix E

029F eag rr@: *RRL and RRR instructions
029F if ctz4 goto rr@_swap, * if count is 16 (represented by 0) then
029F s0:=ct; * swap!

02A0 cmdw; * get double word bit

02A1 nop:=0x0200 and s0; * decocde between RRL and RRR
02A2 if not yz goto eag_rrr, *

02A2 nop:=a, ldg; * prepare for double rotate
02A3

02A3 eag_rrl:

02A3 rrlloop: *Loop until CTZ4:

02A3 if not ctz4 goto rrlloop, * decrement count,

0243 b:=rll1(b); * rotate left B and Q

02A4 fchp, *Fetch,

02A4 a:=q, * replace A with Q

02A4 rtn; * and end instruction

02A5

02A5 eag rrr: *Rotate right instruction
02A5 rrrloop: *Loop until CTZ4:

02A5 if not ctz4 goto rrrloop, * decrement count,

02A5 b:=rrl(b); * rotate right B and Q

0246 fchp, *Fetch,

02A6 a:=q, * replace A with Q

02A6 ren; * and end instruction

02A7

02A7 rr@ swap: *special case for RRL and RRR: swap
02A7 a:=b, fchp; *

02A8 b:=sl, rtn; *

02A9

02C0 eag div: S$align 64§

02c0 {

02C0 integer divide continuation

02C0 at entry:

02C0 acc = divisor

02C0 a = dividend lower

02C0 b = dividend upper

02C0 during execution:

02C0 a partial remainder (lower word)

02C0O b partial remainder (upper word)
02C0 acc = holds divisor

02C0 q = holds partial remainder (lower word) and quotient as
02C0 developed

02C0 at exit:

02co acc = divisor

02C0 a = quotient

02Co b = remainder

02C0 o is set if overflow occurred

02C0 q,acc,ct are used

020 }

02C0 rdp, nop:=a, ldq; *

02C1 call INDREAD, *

02C1 cti=ct+acc; *low 4 bits of ct := 13

02C2 82:=b xor t; *g2:=expected sign

02Cc3 sl:=b xor b, clo, ip; *gl:=zero, assume no overflow

02C4 if not bl5 goto pr_pos, *make the partial remainder positive
02C4 acc:i=t; *

02C5 a:= sl-a, stf, 1ldq; *negate (b,a), f shows

02C6 b:= not b + cf; * that two quadrant fix occurred
02c7 if alov goto div_mneg, *if most negative number then quit
02c7 acc:i=t; *

02C8 pr_pos: *

02C8 if yz goto div zero, *if divisor is zero then quit

02c8 80:=div1(b); * generate quotient sign bit

02C9 if sf goto dvr_neg, *i1f quotient sign bit is 1, then
02C9 s0:=div(s0); * divisor was negative

02CA

02CA dvr_pos:

02cA {

02CA divisor is positive.

02CA }

02CA nop:=b-~acc; *compare |dnd] - |dvr| (must be <0)
02CB if not yl5 goto div_ovfl, *if quotient to be > 2**]16 then
02CB s0:=d1iv(s0); * integer overflow will occur
02CC qp rp loop: *Repeat

N2cc 1f not ctz4 goto * division step

n2cc qp_rp_loop, * to form

E-26

02CcC
02CDp
02CD
02CE
02CF
02CF
02CF
02D0
02D0
02D0
02D1
02D1
02p1
02p1
02p1
02p1
02D2
02Dp2
02D3
02D3
02D3
02D3
02D4
02D4
02D5
02D6
02D6
02D6
02p7
02p7
02D7
02p8
02p8
02Dp8
02D8
02D9
02D9
02DA
02DB
02DB
02DpC
02DD
02DE
02DE
02DE
02DE
02DE
02DF
02DF
02EO

s0:=div(s0);
if sf goto qp_rp check,
b:=1r1(s0);
b:=b ior 0x8000;
qp_rp_check:
if not yl5 goto div_done,
a:=q;
qp_rp_rc:
b:=b+acc,
goto div_done;

dvr_neg:

Divisor is negative.
}
nop:=b+acc;
if not yl5 goto div_ovfl,
s0:=div(s0);
qn_rp loop:
1f not ctz4 goto
qn_rp _loop,
s0:=div(s0);
if not sf goto qn_rp_sgn,
b:=1r1(s0);
b:=b ior 0x8000;
qn_rp_sgn:
if not yl5 goto div_done,
a:=q+one;
qn_rp_rc:
b:=b-acc,
goto div_done;

div_done:
if f then stor,
:= sl=b;
if f then stor,
a:= sl-a;
nop:=a xor s2, fchp;
if not yl5 then rtn,
nop:=a;
if yz then rtn;
sto, rtn;

div_zero:
div_mneg:
div_ovfl:

sto, fchp, rtn;

MPARA source listing

0000 MPARA; *extended instruction group macroinstructions <820204.1550>
$origin 0x300$ *file = &EIG <820204.1550>
Kkdkkdkdkhhhhhkhkkdhkhkhihhhhhkhkihkdkikkkikkikkkkhikrhrhrhhhhhhhiikkikk

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

0300
0300
0300
0300
0300
0300
0300
0300
0300
0160
0160
0170
0170
0162
0162
0172
0172
0164
0164
0174

* full quotient

*Fix remainder after shift of
* last divide step.

*

*Check for remainder correction.
*

*

*Remainder correction

*

*

*compare |dnd| - |dvr| (must be <0)

*If quotient to be > 2**16

* then integer overflow will occur.
*Repeat

* division step

* to fom

* full quotient.

*Fix remainder after it was shifted

* during last divide step.
*

*
*Need remainder correction?
* (fix one’s comp to two’s comp)

*Yes, do the remainder correction
*

%

*division is done, check results
*two quadrant reverse:

* remainder

*

* quotient

*is real quotient sign == dvr xor dnd?
* y: then return

*
* n: if quotient is zero then OK
* n: set o and return

*division by zero or

*dividend = most negative number or
*quotient > 2**16

* set o and return

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

kkkkkhkhkhkhhkhkhkhkhkhhkhkkkhhhkkhkhhhhikhhhhkhhkhkkkkkhkhkkkhhkhhkkkkhhkhhhkkkhik

*The following are entrypoints in the jumptable

S@X: $origin 0x160$

*store @ indexed by X

goto s@x_ext, rdp, ip, sO:=cxy;

S@Y: $origin 0x170$

*store @ indexed by Y

goto s@x_ext, rdp, ip, sO:=cxy;

C@X: Sorigin 0x162$
cxy:=cab, fchp, rtn;
C@Y: sorigin 0x172$
cxy:=cab, fchp, rtn;
L@X: Sorigin 0x164$
goto 1@x ext, rdp, ip;
L@Y: S$origin Ox174$

*copy @ to X
*copy @ to y
*load @ indexed by X

*load @ indexed by Y

Appendix E

E-27

Appendix E

0174 goto 1@x ext, rdp, ip;

0166 STX: Sorigin 0x166$ *store X

0166 goto stx ext, rdp, ip;

0176 STY: S$Sorigin 0x176$ *store Y

0176 goto stx ext, rdp, ip;

0168 CX@: S$origin 0x168$ *copy X to @

0168 cab:=cxy, fchp, rtn;

0178 CY@: S$origin 0x178$ *copy Y to @

0178 cab:=cxy, fchp, rtn;

016A LDX: Sorigin Oxl6a$ *load X

016A goto ldx ext, rdp, ip;

017A 1LDY: S$origin Oxl7a$ *load Y

017A goto ldx ext, rdp, ip;

016C ADX: S$origin Ox16c$ *add to X

016C goto adx ext, rdp, ip, sO:=cxy;

017C ADY: Sorigin Ox17c$ *add to Y

017¢ goto adx ext, rdp, ip, sO:=cxy;

016E X@X: Sorigin Oxlé6e$ *exchange @ and X

016E goto x@x_ext, sO:=cxy;

017E X@Y: S$origin Oxl7e$ *exchange @ and Y

017E goto xB@x_ext, sO:=cxy;

0161 ISX: Sorigin Ox161$ *increment X and skip 1f zero
0161 goto isx_ext, cxy:=cxy-acc;

0171 1ISY: Sorigin 0x171$ *increment Y and skip if zero
0171 goto isx_ext, cxy:=cxy-acc;

0163 DSX: Sorigin 0x163$ *decrement X and skip if zero
0163 goto isx_ext, cxy:=cxytacc;

0173 DSY: $origin 0x173$ © *decrement Y and skip if zero
0173 goto isx_ext, cxy:=cxy+acc;

0165 JLY: S$origin 0x165$ *jump and load Y

0165 goto jly ext, rdp, ip;

0175 JPY: Sorigin 0x175$ *jump to Y + DEF

0175 goto jpy_ext, rdp;

0167 LBT: S$origin 0x167$ *load byte

0167 goto EIG_LBT, acc:=b-acc;

0177 SBS: S$origin 0x177$ *set bits

0177 goto EIG_SBS;

0169 SBT: Sorigin 0x169$ *store byte

0169 goto EIG_SBT, s5:=p;

0179 CBS: Sorigin 0x179% *clear bits

0179 goto EIG CBS;

016B MBT: S$origin Ox16b$S *move bytes

016B goto EIG MBT;

017B TBS: S$origin 0x17b$ *test bits

017B goto EIG_TBS;

016D CBT: $origin O0x16d$ *compare byte

016D goto EIG_CBT;

017D CMW: S$origin 0x17d$ *compare word

017D goto EIG_CMW;

016F SFB: Sorigin Ox16f$ *scan for byte

016F goto EIG_SFB, s3:=p-acc;

017F MVW: S$origin Ox17f$ *move words

Q17F goto EIG_MVW;

0180

0180 *The following are extensions residing in the jumptable
0150 S$origin 0x150% *

0150 s@x ext: *S@X or S@Y

0150 call INDRSOLV, acc:=cab; * resolve address

0151 wrb:=acc, bbus/s7, * gstore A or B at resolved address
0151 goto fchrtn; *

0152 1@x ext: *L@X or L@Y

0152 call INDRSOLV, sO:=cxy; * resolve address

0153 rdb, bbus/s7; * load A or B from resolved address
0154 cab:=t, fchp, rtn; *

0155 stx _ext: *ST or STY

0155 call INDSTORE, acc:=cxy; * store X or Y at resolved address
0156 fchrtn: *

0156 fchp, rtn; *

0157 1dx ext: *LDX or LDY

0157 call INDREAD; * load X or Y from memory
0158 cxy:=t, fchp, rtn; *

0159 adx ext: *ADX or ADY

0159 call INDREAD, s0:=cxy; * Xor Y := X or Y plus memory
015A cxy:=s0+t, fchp, rtn, enoce; *

015B =x@x_ext: *X@X or X@Y

E-28

030C

030D
030D
030D
030D
030D
030D
030D
030D
030D
030D
030E
030F
030F
030F
030F
0310
0310
0311
0311
0312
0313
0314
0314
0314
0315
0315
0315
0316

cxy:=cab, fchp;

cab:=s0, rtn;
jpy_ext:

call INDRSOLV, sO:=y;

p:=s7, fchb, rtn;
jly_ext:

goto INDIJMP, y:=p;

elg continued: $origin 0x300$

isx_ext:
if yz then ip;
fchp, rtn;

EIG MVW:
{

}
call EIG_SETUP,
clf,
rdp, s5:=p-acc;
if ctz goto mvw_quit,
p:=b;
goto mvw_enter,
a:=a-acc;
mvw_loop:
rdb, a:=a-acc;
mvw_enter:
b:=b-acc,
if intp goto mvw_intp;
wrp:=t,
ip,
if not ctz goto
mvw loop;
qu_quff:
p:=s5;
mvw_end:
wrp:=ct+one,
ip;
mvw_endx:
if not yz then p:=fa;
fchp, rtn;
mvw_intp:
wrp:=t,
dct,
goto mvw_quit;

Move words macroinstruction

EIG_CMW:
{

* exchange A or B with X or Y
*

*JPY

* jump to Y plus resolved DEF
*

*JLY
* jump and load Y

*ISX or ISY

* increment X or Y, skip if zero
*

*call setup routine,

* F shows that I'm a word routine
* read def (move count)

*is count zero?

*load array2 address
*

*

*move words loop:

Read A and increment A
(entry to loop)

increment B

if interrupts then branch
write to "to" address
increment "to" address
check for end of loop

* % % % ¥ ¥ F ¥

*quit:

* load P with reserved word location

*

* write count residue in reserved word

* increment P to next opcode

*

* if residue not zero then P=reset opcode
* fetch...

*interrupt:

* write to "to" address, goto quit

* count would have been decremented in loop
*

Compare words macroinstruction

M[a], M[b] = memory arrays

a,b = memory addresses
}
call EIG_SETUP,
clf,
rdp,
s5:=p-acc;
if ctz then goto mvw quit;
cmw_loop: -
if intp goto mvw quit,
s0:=t, -
ip;
rdb,
bi:=b-acc;
if ctz goto cmw_done,
at=a-acc;
s2:=s0-t, rdp;
if yz goto cmw_loop;
cmw_neq:
if alov call cmw_alov,
p:=s85;
cmw_check:
wrp:=s2 xor s2,
ip;
if not bl5S call cmw_skip,

*Call the WORD and BYTE setup routine
*CLF to tell EIG SETUP that I'm a word routine
*Read DEF MOVE COUNT

*save the RESERVED WORD address

*was the count zero? yes: then quit now
*COMPARE WORDS LOOP:

interrupts? yes: then quit loop

save M[a]

increment

read M[b],

b:=b+1

is count zero? yes: then quit loop
b:=b+1

compare M[a] and M[b]

if equal then LOOP

*NOT EQUAL

* ghould have done two’s complement compare
* p = reserved word address

*DETERMINE NUMBER OF SKIPS

* write zeros into reserved word

* increment to next opcode

* add a skip 1f M[a] > M[b]

* % % ¥ N N N F*

Appendix E

E-29

Appendix E

0316
0316
0317
0317
0318
0318
0318
0319
031A
031A
031B
031B
031B
031C
031C
031D
031D
031D
031D
031E
031E
0D31E
031F
031F
031F
0320
0320
0320
1320
0321
0321
0321
0322
0323
0324
0324
0324
0324
0324
0324
0324
0324
0324
0324
0325
0326
0327
0327
0328
0328
0328
0328
0328
0328
0328
0328
0328
0329
032A
032A
032A
032B
0328
032B
032C
032C
032C
032D
032D
032D
032E
032E
032E
032F
032F

E-30

a:=atacc,

ip;
b:=b+ct+one,

fchp, rtn;

cmw_done:
s2:=s0~t;
if not yz goto cmw_neq;
goto mvw_end,
p:=s3;

cmw_alov:
s2:=not s2, rtn;
cow_skip: ip, rtn;
EIG_SETUP:
call INDREAD,
p:=p-acc;
ct:=t,
rdp,
if f goto setup byte;
p:=a,
clf,
goto setup continue;
setup_byte:
p:=1rli(a),
clf,
goto setup_continue;
setup continue:
s7:=t,
rdp;
if yz then rtn;
ct:=s7, rtn;

EIG MBT:
{

}
call EIG_SETUP,
stf,
rdp,
s5:=p~acc;
if ctz goto mvw quit;
call MOVE_BYTES;
goto mvw_end,
p:=s5;

Move bytes macroinstruction

EIG_CBT:
{

increment for M[a] <> M[b]
b:=original b + count
that’s all

* % X ¥ K

*REACHED END OF COUNT

but must do the very last count
M[a] <> M[b] ??

no: end just like move words
set p to reserved word address

*

* * ¥ X

*MUST FIX FOR 2°s COMP compare
*toggle sense of compare if alov
*

*SKIP FOR M[a] > M[b]

*SETUP ROUTINE FOR MVW,CMW,MBT,CBT
indirect on count

increment p to reserved word
ct:=COUNT

read reserved word

set up for CMW,MVW or CBT,MBT
load p with M[a] word address
cleared for later use(?)

load p with M[b] word address

cleared for later use(?)

look at reserved word
begin read of M[a] (word or byte)

be zero when count is zerol!

® N % N N F N H N % B ¥ ¥ F % * * F *

*call the setup routine

* F shows that I'm a byte routine
* begin read of DEF COUNT

* g5:=RESERVED WORD ADDRESS

*if count 1s now zero then quit

*until count is zero or interrupt: MOVE BYTES
*mvw_quit will handle writing into NOP

*

Compare bytes macroinstruction

}
call EIG SETUP,
stf,
rdp,
s5:=p—-acc;
if ctz goto mvw quit;
cb_loop: -
if sf goto cb_blodd,
a:=atone;
cb bleven:
p:=1rl(b),
if intp call cb_flag;
80:=swzu(t),
rdp,
goto cb_b2;
cb_blodd:
p:=1ri(b),
if intp call cb flag;
s0:=zuy(t), -
rdp,
goto cb b2;
cb_b2: -
if sf goto c¢b_b2odd,

*call the setup routine

* F shows that I'm a byte routine
* begin read of DEF

* §5:=RESERVED WORD ADDRESS

*if count is now zero then quit
*COMPARE BYTES LOOP:

* BRANCH ON STRING! ODD OR EVEN
increment stringl address
STRING1 EVEN

p gets string2 word address

save stringl byte
begin read of string2

STRING1 ODD
p gets stringl word address

save string? byte
begin read of string2

BRANCH ON STRING2 ODD OR EVEN

% % ¥ B ¥ % F H N ¥ ¥ N X * %

decrement A to point to not equal address.

if reserved word is zero then return
(this assumes that reserved word cannot

032F
0330
0330
0330
0331
0331
0331
0332
0332
0332
0333
0333
0333
0334
0334
0334
0335
0335
0336
0336
0337
0337
0337
0338
0338
0338
0339
0339
033A
033A
033B
0338
0338
033B
033B
0338
033C
033C
033C
033D
033D
033E
033E
033F
0340
0340
0340
0340
0340
0341
0341
0341
0342
0342
0343
0343
0344
0344
0345
0345
0346
0346
0347
0348
0348
0348
0348
0348
0348
0348
0348
0348
0349
034A
034B

b:=b+tone;
cb b2even:
p:=1rl(a),
if ctz call cb _flag;
acc:=swzu(t),
rdp,
goto cb_compare;
cb_b2odd:
p:=1rl(a),
if ctz call cb flag;
acc:=zuy(t), -
rdp,
goto cb_compare;
cb_compare:
s2:=s0-acc,
if f goto cb_quit;
if yz goto cb_loop,
acc:=ones;
goto cmw_check,
p:=s5;
cb_quit:

if not yz goto cbt check,

p:=s5;
goto mvw_endx,
wrp:=d€+one,
ip;
cb flag:
stf, rtn;
cbt_check:

goto cmw_check, acc:=ones;

EIG LBT:

Load A with the byte address

s0:=1r1(b);
rdb, bbus/s0,
b:=acc,
1f sf goto 1bt rbt;
1bt_1bt: -
a:=swzu(t), fchp, rtn;
1bt_rbt:
a:i=zuy(t), fchp, rtn;

EIG SBT: $align 64$
{

increment string2 address
STRING2 EVEN

p gets stringl word address
check for count zero

save string2 byte

read stringl

S TRING2 ODD

p gets stringl word address
check for count zero

save string2 byte

read stringl

COMPARE STRING1[a] to STRING2[b]
set conditions

look for ctz or intp flag

if not equal then loop

to be completed in CMW code

CTZ or INTP HAPPENED
do last compare

to be completed in MVW code
write count in reserved word
increment p to next opcode

*SET FLAG DUE TO CTZ OR INTP
*

*
*

X»’I-’(-***#}*#************&**I-

in B

*convert to word address

*read word

*]1oad incremented b value

* is it right byte or left byte?
*Left byte

* that’s all

*Right byte

* that’s all

Store A into the byte specified by B

}
p:=1rl(b);
spl/rdp,
b:=b-acc,
if sf goto sbt_rbt;
sbt_1bt:
s0:=swzl(a);
sl:=zuy(t),
goto sbt_end;
sbt_rbt:
sO:=zuy(a);
sl:=zly(t),
goto sbt_end;
sbt_end:
wrp:=s0 ior sl;
fchb, p:=s5, rtn;

EIG CBS:

{
CBS clear bits specified
DEF MASK
DEF WORD_TO MODIFY

rdp,
call bits setup;
p:=ma;
wrp:=t and not acc;
cbs_continue:

*convert to word address
*read byte address

*b :=b+1

*left byte or right byte?
*left byte:

* save new byte

* save old byte

*

*right byte:

* save new byte

* save old byte
*

*

*write new and old byte into memory
*restore program counter and that’s all

"1"s in mask

*read DEF
* get mask in s0 and word read in progress
*wasted cycle (load up p with word address)

*write clear bits in memory
*

Appendix E

E-31

Appendix E

E-32

034B
034C
034D
034D
034D
034D
034D
034D
034D
034D
034D
034E
034F
034F
0350
0350
0350
0350
0350
0350
0350
0350
0350
0351
0352
0353
0354
0354
0354
0354
0355
0355
0355
0356
0356
0357
0357
0357
0357
0357
0357
0357
0357
0357
0358
0359
035A
035A
035A
0358
035B
035C
035C
035C
035D
035D
035D
035E
035E
035E
035F
035F
0360
0360
0361
0361
0362
0362
0363
0363
0363
0364
0364
0364
0364

p:=fat+3;
fchp, rtn;

EIG SBS:
{

*set P to next opcode
*fetch and return

SBS set bits specified by "1"s in mask

DEF MASK
DEF WORD_TO MODIFY

rdp,

call bits_setup;
p:=ma;
wrp:=t ior acc,

goto cbs continue;

EIG_TBS:
{

*read DEF

* get mask in sO and word read in progress
*wasted cycle (load up p with word address)
*set bits in memory

*end just like CBS

TBS test bits specified by "1"s in mask and skip if any are zero

DEF MASK
DEF WORD_TO_TEST

rdp,

call bits setup;
nop:=sl inor t;
if not yz then 1ip;
fchp, rtn;

bits setup:

call INDREAD,
p:=p-acc;

acc:=t,
rdp,
ip;

goto INDREAD,
sl:= not acc;

EIG_SFB:
{
Scan for byte
A = hi byte: term byte
lo byte: test byte
B = byte address

s0:=zuy(a);
sl:=swzu(a);
s2:=1rl(b);
sfb_loop:
rdb,
sh:=s2 xnor s2;
if sf goto sfb rbt,
b:=btone;
sfb_1lbt:
acc:=swzu(t),
goto sfb_continue;
sfb rbt:
acc:=zuy(t),
goto sfb_continue;
sfb_continue:
nop:=s(xor acc,
if intp goto sfb_intp;
if yz goto sfb_eq,
nop:=sl xor acc;
if not yz goto sfb_loop,
s2:=1rl(b);
sfb_term:
fchb, p:=s3, rtn;
sfb_intp:
p:=fa;
sfb _eq:
fchp,
b:=b+s4, rtn;

MOVE_BYTES:
mb_loop:
if sf goto mb blodd,

*read DEF

* get mask in sO and word read in progress
*test (all bits tested must be "1"s)

*if all are not zero then skip

*fetch and return

*bit instruction setup routine
*resolve indirects for mask
*increment p

*save mask

*read word

*increment p to next opcode location
*resolve indirects for word

*save negated form of mask

*s0) = test
*s] = temm
*s2 = word
*1,00P
*read word
* g4:=ones
*which byte?

*increment byte address
*LEFT BYTE

*get left byte

*

byte
byte
address

containing byte

*RIGHT BYTE
*get right byte
*

*

*compare byte and test byte
*interrupt?

*equal test byte?

*compare byte and term byte
*equal term byte?

*

*FOUND TERMINATION BYTE
*skip

*INTERRUPTED

*

*FOUND TEST BYTE

*no skip

*back up the byte address

*DOES NOT SUPPORT RRR
*LOOP
*ig stringl address even or odd?

0364
0365
0365
0365
0365
0366
0366
0366
0366
0367
0367
0368
0368
0369
0369
036A
036A
0368
036B
036B
036C
036C
036C
036D
036D
036E
036E
036E
036F
036F
0370

p:=1ri(b);
mb_bleven:
s0:=swzu(t),
rdp,
goto mb b2;
mb_blodd:
s0:=zuy(t),
rdp,
goto mb b2;
mb_b2:
a:=atone;
if sf goto mb_b2odd,
b:=btone;
mb_b2even:
s0:=swz1(s0);
acc:=zuy(t),
goto mb write;
mb_b2odd:
acci=zly(t),
goto mb_write;
mb_write:
wrp:=acc ior sO,
if ctz then rtn;
sl:=1rl(a),
if intp then rtn;
mb_enter:
goto mb_loop,
rdb, bbus/sl;

MPARA source listing
0000 MPARA; *FP single precision <820204.1550>

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0190
0190
0190
0191
0191
0191
0192
0192
0192
0193
0193
0193
0194
0194
0195

*increment stringl address
*STRING1 ADDRESS EVEN

*align and mask stringl byte
*begin read of string2

*

*STRING1 ADDRESS ODD

*align and mask stringl byte

*begin read of string 2
*

*

*increment stringl address

*ig string2 address even or odd?
*increment string2 address
*STRING2 ADDRESS EVEN

*

*align and mask string2 byte
*
*#STRING2 ADDRESS ODD

*align and mask string2 byte
*

*

*insert stringl byte and write word to memory
*is count zero?

*create stringl word address

*are interrupts pending?

*

*goto LOOP

* begin read of stringl

Define better names for the internal register used for holding the
floating point operands.

FIM
FIL
F1X
F2M
F2L
F2X
F3M
F3L
F3X

B
s6

}
$define

$define

abus/FIM 010§
abus/FlL 011$
S$define abus/F1lX 012$
¢define abus/F2M 013§
$define abus/F2L 014$
$define abus/F2X 015%
$define abus/F3M 000$
$define abus/F3L 001%
$define abus/F3X 016$

FAD: $origin 0x190$
goto FPS FAD,
FlM:=a;
FSB: $origin O0x191$
goto FPS FSB,
FilM:=a;
FMP: $origin 0x192$
goto FPS FMP,
FilM:=a;
FDV: $origin 0x193$
goto FPS_FDV,
FlM:=a;
FIX: $origin 0x194$
goto FPS FIX;
FLT: $origin 0x195$

$define
$define
S$define
$define
Sdefine
$define
Sdefine
Sdefine
$define

s0 Flx,F2x,F3x refer to floating point operands

sl 1 (generally taken from A and B)

s2 2 (retrieved from memory pointed to by DEF)

s3 3 (result returned to A and B registers)

s4 FxM = most significant word of mantissa

s5 FxL = low byte of mantissa in high byte of register
A FxX = 2s comp representation of exponent

bbus/FIM 010$
bbus/FIL 011$
bbus/F1X 012$
bbus/F2M 013$
bbus/F2L 014§
bbus/F2X 015$
bbus/F3M 000$
bbus/F3L 001$
bbus/F3X 016$

$define
$define
$define
$define
$define
$define
$define
$define
$define

stor/FIM 010$
stor/F1L 011$%
stor/F1X 012$
stor/F2M 0133
stor/F2L 014$
stor/F2X 015$
stor/F3M 000$
stor/F3L 001$
stor/F3X 016$

Appendix E

E-33

Appendix E

0195

0196
0403
0403
0403
0403
0403
0404
0404
0405
0405
0406
0406
0406
0406
0407
0407
0408
0408
0409
0409
0409
0409
040A
040A
040B
040B
040C
040C
040C
040C
040D
040D
040E
040E
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
040F
0410
0411
0411
0412
0413
0413
0413
0414
0415
0415
0415
0416
0416
0417
0417
0417
0418
0418
0418

E-34

goto FPS_FLT;
Sorigin 0x403$ *begin FPS group
FPS_FAD: *floating point add
call FPS_UNPACK,
rdp, acc:=zly(acc);
call FPS_ADD,
acc:=FIlX;
goto FPS END,
ct:=F3X;
FPS_FSB: *floating point subtract
call FPS_UNPACK,
rdp, acc:=zly(acc);
call FPS SUB,
acc:=FTX;
goto FPS_END,
ct:=FiX;
FPS FMP: *floating point multiply
call FPS UNPACK,
rdp, acc:=zly(acc);
call FPS_MPY,
ct:=ones; *?can cut a cycle using later dcts
goto FPS_END,
ct:=FiX;
FPS_FDV: *floating point divide
call FPS UNPACK,
rdp, acc:=zly(acc);
call FP$ DIV,
cti=ones;
goto FPS5_END,
ct:=F3X;
FPS_UNPACK:
{
Floating Point Single precision unpack
Fl is the floating point operand in B and A
F2 is the floating point operand in memory pointed to by DEF
Upon entry:
P = DEF location and read of DEF in progress
FIL has been loaded with low 8 bits of mantissa (low byte = 0)
Upon exit:
FIM = most significant bits of Fl mantissa
FIL = least significant 8 bits of Fl mantissa (low byte = 0)
F1X = Fl exponent (full 16 bit 2s complement number)
F2M = most significant bits of F2 mantissa
F2L = least significant 8 bits of F2 mantissa (low byte = 0)
F2X = F2 exponent (full 16 bit 2s complement number)
double word bit set
P = next opcode location
}
call INDREAD, *Resolve indirection (may abort instruction)
FlL:=b and acc; *F1L:=b and Oxff00
nop:=lrl(b); *3F = sign of Fl exponent
ip, *Point P to next opcode
F2Mi=t; *Load F2M
bbus/s6, rdb; * (begin read of 2nd wd op2)
if not sf goto flunpack, *If exponent is positive
FlX:=rrl(b and * then and zeros onto FlX
not acc); *
F1X:=rrl(b ior acc); *if exponent is negative
* then ior ones onto F1X
flunpacked: *Fl is now unpacked
nop:=lrl(t); *Twos comp fix of oprnd2 exponent:
if not sf goto f2xpos, *if exponent is positive
F2L:=z1y(t); * then and zeros onto F2X
rtn, *if exponent is negative
F2X:=rrl(t ior acc), * then ior zeros onto F2X
cmdw; *
f2xpos: *
F2X:=rrl(t and not acc), *
rto, *

0418
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
0419
041A
041B
041B
041B
041B
041B
041C
041D
041D
041E
041E
041F
04 1F
041F
0420
0421
0422
0422
0422
0423
0424
0424
0424
0424
0424
0424
0424
0424
0425
0426
0426
0427
0428
0428
0428
0429
0429
0429
0429
0424
042A
0424
042B
042B
0428
042C
042D
042D
042E
042E
042E
042F
0430
0430

cmdw; *
FPS_DIV:
{
Divide F1 by F2 and put result in F3
Use following approximation:
F1 Fl F2L
Y= e = ke == F3M + F3L
F2 F2M F2M
where Fl = FIM + FIL (32 bit dividend)
F2 = F2M + F2L (32 bit divisor)
F3 = F3M + F3L (32 bit quotient)
= first approximation at F3M = F1/F2M
Answer may be +/~ one 1lsb (of the resulting 24-bit mantissa)
}
{

Determine the exponent.

F3X:=F1X~F2X;
F3X:=F3X+one;

*Exponent is the difference, plus one due
* to overflow-prevention shift

Form quotient based on F] divided by F2M only.

dct,
nop:=FIL, ldq;
FlM:=arl(FIM);
acc:=F2M,
if yz goto fdv flz;
FIM:=div1(FIM),
if yz goto fdv_zero;
divl:
if not ctz4 goto divl,
FIM:=div(F1M);
F3M:=q;
s7:=zero, ldq;
div2:
if not ctz4 goto div2,
FlM:=div(F1M);
F3L:=q;

{
Ad just for F2L

*ct = 14 (low four bits)

*Arith shift Fl one place to prevent ovfl
*

*acc = F2M = divisor

*(must special case Fl = zero and F2 neg)
*form sign bit

*

*LOOP

* do 15 times:

* form quotient bit

*save upper quotient (first shot)

*zero lower dividend (save zero for later)
*L00P

* do 16 times:

* form quotient bit

*save lower quotient (first shot)

(F2L/4)/F2M is the quotient adjustment

}
FlL:=zero, ldq,

dct;
F2L:=1r1(F2L);
F2L:=1rl1(F2L),

if yz goto skipadjust;

F2L:=div1(F2L);
div3:
if not ctz4 goto div3,
F2L:=div(F2L);

*low bits of dividend equal zero

*F1L being zero is used later

*ct = 14 (low four bits)

* these steps prevent overflow

* and allow full four—quadrant divide
*

*do first divide step

*LOOP

* do 15 times:

* form quotient bits

*At this point, a remalnder correction need not be done because the
*total answer is +/- one LSB.

det,
acc:=F3M;
divéa:
if not ctz4 goto divé4,
s7:=tmpy(s7);
skipadjust:
acc:=tmlec(s7),
cmdw
acc:=111(acc+acc);
if sf goto fdv_carry,
acc:=lll(acc);
fdv_borrow:
1f sf then fcin,
FlL:=FlL;
F3L:=F3L-acc, 1ldq;
F3M:=F3M-FlL-br,
cmdw,

*ct = 14 (low four bits)

*load multiplier (s7 is partial product)
*L0OOP

* do 15 times:

* form product bit of [(F2L/4)/F2M)]*F3M
*

*adjust for sign

*turn off double word bit

*mpy ad justment by 4 (because of "F2L/4")
*branch on sign of adjustment

*mpy adjustment by 2 (tmlc does extra shift)
*BORROW CASE

*check for double borrow

*(set FIL to 1 if double carry possible)
*subtract adjustment from final quotient
*subtract borrow (FIL = 0 or 1)

*turn on double word bit

Appendix E

E-35

Appendix E

0430 rtn; *

0431 fdv_carry: *CARRY CASE

0431 if not sf then fcin, *check for double carry

0431 FlL:=FlL; *(set FIL to 1 1f double carry possible)
0432 F3L:=F3L-acc, ldq; *subtract adjustment from final quotient
0433 F3M:=F3M+F1L+cf, *add carry (FIL = 0 or 1)

0433 cmdw, *turn on double word bit

0433 rtn; *

0434 fdv zero: *divide by zero

0434 F3X:=0x1FFF; *make exponent out of range to force
0435 F3M:=1rl(ones), rtn; *overflow in fps_pack

0436 fdv_flz: *

0436 F3M:=zero, *special case for zero/negative num
0436 if yz goto fdv_zero; * (but if dvr was zero, then take
0437 F3L:=zero, rtn; * that route)

0438

0438 FPS_MPY:

0438 {

0438 Multiply Fl by F2 and put result in F3

0438 }

0438

0438 F3X:=F1X + F2X *exponent 1s sum of exponents plus
0438 +one; *one due to extra shift by "tmlc"
0439 {

0439 Calculate F3L := (F2L/2)*FIM (most significant bits)

0439 }

0439 acc:=1r1(F2L); *form F2L/2

043A F3L:=zero, *]oad partial product

043A if yz goto fmullskip; *if F2L zero then skip multiplication
043B nop:=FIM, 1ldq, dct; *load multiplier into q

043C fmull: *

043C if not ctz4 goto fmull, *Loop:

043C F3L:=tmpy(F3L); * F3L := (F2L/2)*FIM

043D F3L:=tmlc(F3L); * take care of sign bit

043E fmullskip: *

043E

043E {

043E Calculate F3L := (FIL/2)*F2M (most significant bits)

043E }

043E acc:=1rl(F1lL); *form F1L/2

043F FlL:=zero, *]load initial partial product

043F if yz goto fmul2skip; *if FIL is zero then skip

0440 nop:=F2M, ldq, dct; *]oad multplier into ¢

0441 fmul2: *

0441 if not ctz4 goto fmul2, *Loop:

0441 FlL:=tmpy(F1L); * FIL := (FIL/2)*F2M

0442 FlL:=tmlc(FlL); * take care of sign bit

0443 fmul2skip: *

0443 F3L:=F3L+F1L; *if so then carry-in

0444 *no need to worry about alov here.
0444 * worst case is 8000*7FFF=C0008000
0444 {

0444 Calculate FIM*F2M (most significant bits and least significant bits)
0444 '}

0444 acc:=FIM; *]load multiplicand

0445 nop:=F2M, ldq, dct; *load multplier

0446 F3M:=zero; *zero partial sum

0447 fmul3: *

0447 if not ctz4 goto fmul3, *Loop:

0447 F3M:=tmpy(F3M); * F3M:=FIM*F2M

0448 F3M:=tmlc(F3M), * take care of sign bit

0448 cmdw; *turn off DW

0449 acc:=111(F3L), *align low bits for addition

0449 cmdw; *turn on DW

044A F3L:=q+acc, ldq, *add all low bit partial products
044A if sf goto fmul borrow; *is sum negative?

044B fmul carry: *carry:

044B F3M:=F3M+cf, *propogate carry

044B rtn; * and return

044C fmul_borrow: *borrow:

044C if c¢f then rtn, *is borrow necessary? no: return
044C acci=zero; *

044D F3M:=F3M-acc-one, *yes: do a borrow.

044D rtn; *

044E

E-36

044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044E
044F
0450
0451
0452
0452
0453
0454
0454
0455
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0456
0457
0458
0459
045A
045A
045B
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045C
045D
045D
045E
045E
045F

FPS_ADD:
{

Add Fl to F2 and store into F3

Upon entry:
acc = F1X
F3M = F3M
F3L = F3L
F3X = F3X

Upon exit:

F3L

F3M

7?7

F3L

q

F3M
F3L
F3L

wow

call fps adjust,
ct:=acE;F2X;
F3L:=F1L+F2L, ldq;
F3M:=F1M+F2M+cf, clf;
if not alov then rtn;

*Ad just Fl and F2 so that exponents are
* equal. (set YZ and ct to F1X-F2X)
*Add Fl

* to F2

*If no alov then done!

if not cf goto shift ready, *If alov then must add one to F3X

F3X:=F3X+one;
stf;
shift ready:
F3M:=1rl1(F3M),lwf;
F3L:=q, rtn;

FPS_SUB:
{

*

*and recover

* the sign bit
*

*

Subtract F2 from Fl and store into F3

Upon entry:
acc = F1X
F3M = F3M
F3L = F3L
F3X = F3X

Upon exit:
q = F3L
F3M = F3M
F3L = 7?7
F3L = F3L

call fps adjust,
cti=acc~F2X;
F3L:=Fl1L-F2L, ldq;
F3M:=FIM-F2M~br, clf;
if not alov then rtn;

if not cf goto shift ready,

F3X:=F3X+one;
stf, goto shift ready;

fps_adjust:
{
Ad just Fl and F2 so that

they have the same exponent,

and put that exponent into F3X.

Upon entry:

ct = F1X~-F2X and yz condition set

FIM = FIM
FIL = F1L
F2M = F2M
F2L = F2L
Upon exit:
F3M = upper word of sun
F3L = lower word of sun
F3X = exponent of sum
q =F
Performance:
2 and 7-22

if yz then rtn,
bbus/ct,
F3X:=F1X;

if bl5 goto fl small,
nop:=FIM;

£2 smaller:
1f yz goto flzero;
nop:=23-ct;

(unnormalized and unrounded)

*{f exponents are the same then done
*Check sign of F1X-F2X

*(guess that F1X is bigger or equal to F2X)
*Which is bigger, F2X or F1X?

*

*F2 needs to be adjusted
*if dirty zero then rtn
*Check for swamp

Appendix E

E-37

Appendix E

0460 if yl5 goto f2_swamp, *If swamp handle separately

0460 nop:=F2L, 1ldq; *Prepare for shifting

0461 dct; *Synchronize counter for loop
0462 £2 loop: *Loop:

0462 if not ctz goto f2 loop, * arith shift right F2 to equalize exponents
0462 F2M:=arl(F2M); *

0463 F2L:=q, rtn; *reload F2L and that’s all

0464 f£2 swamp: *F2 is swamped by shifting

0464 F2L:=zero; *

0465 F2M:=zero, rtn; *

0466 *

0466 f1 smaller: *F1 needs to be adjusted

0466 nop:=F2M; *Is F2M dirty zero?

0467 if yz then rtn, *YES: return

0467 nop:=FlL, 1ldq; *

0468 ct:=0xffff-ct; *count:=—count-1

0469 nop:=22-ct; *check for swamp

046A if y15 goto fl swamp, *1f swamp handle separately
046A F3X:=F2X; *F2X has the bigger exponent
046B £1 loop: *Loop:

046B if not ctz goto fl_loop, * arith shift right Fl to equalize exponents
0468 FiM:=arl(FIM); *

046C FlL:=q, rtn; *Reload FlL and that’s all
046D £f1_swamp: *Fl is swamped by shifting
046D FlL:=zero; *

046E FlM:=zero, rtn; *

046F flzero: *

046F F3X:=F2X, rtn; *

0470

0480 FPS END: $Salign 64$

0480 -

0480 Conclude the floating point instruction.

0480 Normalize and Pack F3 and store into a and b registers.
0480 Fetch next instruction.

0480 }

0480

0480 fps normalize:

0480 {

0480 Normalize the floating point operand in F3

0480 Transfer control to fps_round.

0480

0480 Upon entry:

0480 F3M = F3M

0480 F3L = F3L

0480 q = F3L

0480 ct = F3X

0480 Upon exit:

0480 F3M,F3L = normalized F3 mantissa

0480 ct = updated F3X (actual F3X register is garbage)
0480 }

0480 acc:=dnrm(F3M), *Try DNRM to set conditions:
0480 cmdw; * (shut off dw)

0481 if cf goto FPS_ROUND, % CF ==~ the number was normal
0481 s7:=zero;

0482 if yz goto fps_zero; * YZ -- the number was all zeros
0483 if not alov goto nrq_;p, * ALOV —— the number is now normal (fix)
0483 F3M:=acc; *

0484 fps nnrm: *Number is now normal

0484 F3L:=q, dct, * Decrement exponent one

0484 goto FPS_ROUND; *

0485 fps_zero: *Number is zero

0485 fchp, rtn, clo; * That’s all.

0486 nrm_lp: *Loop until normalized:

0486 F3M:=dnrm(F3M), dect; * look ahead for normalization
0487 if not alov goto nrm lp, * loop if not normalized

0487 F3X:=ct; *

0488 F3L:=q, * the number is now normal,
0488 dct, goto FPS ROUND; * decrement exponent and done
0489

0489 fps_round:

0489

{
0489 Round F3
0489 Upon entry:
0489 87 =0
0489 F3M,F3L = F3 normalized mantissa

E-38

0489
0489
0489
0489
0489
0489
0489
0489
048A
048A
0488
048B
048C
048C
048C
048D
048E
048E
048F
048F
0490
0490
0491
0492
0492
0493
0493
0493
0493
0493
0493
0493
0493
0493
0494
0495
0495
0496
0497
0498
0499
0499
0499
049A
049A
0498
0498
049B
049C
049D
049D
049E
049E
049F
049F
049F
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A0
04A1
04A2
04A2
04A3
04A4

ct = F3X
dw = off

Upon exit: (branches directly to FPS_PACK)
F3M,F3L = rounded floating point mantissa

ct = F3X
dw = off

acc:=0177, bbus/F3M;
if not bl5 then fcin,
F3L:=F3L+acc;
if not cf goto fps_pack,
F3M:=F3M+cf;
fcmcontinue:
if not alov goto rnd no,
acc:=111(F3M);
F3M:=1r1(F3M);
ct:=ct+one,
goto fps_pack;
rnd no:
nop:=acc xor F3M, stf;
if y15 goto fps_pack,
nop:=F3L, ldq;
cti=ct-s7-one;
F3M:=all(F3M),
goto fps_pack;

fps_pack:
{

*load rounding constant,

*if F3 is negative, add 0177

* is positive, add 0200

*if no carry then done

* propogate carry into F3M
*(continuation of ..FCM)

*if no overflow then branch

* (set sign condition)

*exponent was 01111l... and overflow occurred
* bump exponent

*

*No overflow on round

*check for normalization

*If still normalized then quit (10...)
*

*decrement exponent

*normalize (1100..)
*

Pack the floating point operand in F3.

Upon entry:
dw = off
That’s all

F3X:=rll(ct);
nop:=ct and OxFF80;
if yz goto pack ok,
F3X:=zuy(F3X);
nop:=ct inor 0x007F;
if yz goto pack ok;
if sf goto pack uf;
pack of:
F3M:=1rl(ones),
call FPS OVFL;
F3L:=111(ones),
fchp,rtn;
pack_uf:
F3M:=zeros,
call FPS OVFL;
F3L:=zeros, fchp, rtn;
pack_ok:
F3L:=z1y(F3L), fchp;
clo,
F3L:=F3L ior F3X, rtn;

fps_ovfl:
sto, rtn;

FPS_FIX:
{

*Pack the exponent: rotate sign bit

*check for positive sign within range

* (upper 8 bits zero)

*

*check for negative sign within range

* (upper 8 bits ones)

*Overflow or Underflow: was sign 07
*0Overflow

*set F3 to largest number

*set floating point overflow

* that’s all

*

*Underflow

*Set F3 to zeros

*set floating point overflow

* that’s all

*Pack exponent and low mantissa

*zero low byte of mantissa

*floating point is defined to clear 0 if ok
*merge exponent and mantissa and that’s all

Floating point to single word integer instruction.
If exp<0, store zero in A.
If exp>=16, store Ox7FFF’ in A and set 0
Otherwise convert oprnd to a single integer, truncate

trailing bits.

Performance:
underflow - 7
overflow - 10

otherwise - 11 to 28

cti=zuy(b);

ct:=1rl(ct), cmdw;

if sf goto fix small,
nop:=zero, ldq;

ct:=15-ct;

if yl15 goto fix big,

*Load ct with masked exponent.

*Ad just ct to hold positive exponent.

*If sign of exponent is one, then underflow

*

*ct:=]15-exponent (convert from lshift to rshift)
*if exponent >15 then overflow

Appendix E

E-39

Appendix E

04A4 acc:=zly(b); *save low bits of mantissa

04A5 if ctz goto fix trunc, *if exponent = 15 then no shifting

04A5 nop:=a; *a = mantissa (decrement ct)

04A6 fix loop: *Loop:

04A6 if not ctz goto fix loop, * wuntil count is zero

04A6 a:=arl(a); * arithmetic shift right of mantissa
04A7 fix trunc: *truncate the integer

04A7 if not yl5 goto fix done, *if mantissa is positive, then quit
04A7 * (assumed truncate on positive mantissa)
04A7 nop:=q ior acc; *

04A8 if not yz then fcin, *if any of the low mantissa bits or the
04A8 a:=a; * bits that were shifted out are 1, then
04A9 fix done: * truncate. (carry from 1l...1 to O can
04A9 fchp,rtn, clo; * occur. it provides for underflow)
04AA * that’s all

04AA fix small: *Underflow:

04AA a:=zero, fchp, rtn, clo; * set a to zero (o is clear)..that’s all
04AB fix big: *Overflow:

04AB sto; * get a to Ox7fff (o is set)

04AC fchp, rtn, * that’s all

04AC a:=1lrl(ones);

04AD

04AD FPS_FLT:

04AD {

04AD Single word integer to floating point instruction.

04AD Convert integer in A register to a packed floating

04AD point single precision number in the A and B registers.

04AD Performance:

04AD 7 or 10~25 microcycles.

04AD }

04AD b:=0xffef; *Load complement of 15 (an integer’s exponent)
04AE nop:=a, fchp, ldq; *Prepare for snrm

04AF if yz goto flt zero, *Is integer zero?

04AF b:=snrm(b); *

04BO if cf goto flt wmnrm; *Was integer normalized?

04B1 flt loop: *Loop

04B1 if not alov goto flt_loop,* until normalized

04B1 b:=snrm(b); * (decrement b)

04B2 flt nnrm: *Number is now normal.

04B2 at=arl(q); *snrm went one too many

04B3 at=a xor 0x8000; *fix sign bit

04B4 flt wnrm: *

04B4 clo; *floating point is defined to clear O
04B5 b:=rll(not b), rtn; *Format exponent.

04B6 *

04B6 flt zero: *Integer was zero.

04B6 a:=zero, clo; *Load dirty zero

04B7 b:=zero, rtn; * and return.

04B8

04B8 .pack: *PACK a floating point number (FROM LIS)
04B8 rdp, ip; *read a location

04B9 F3L:=F3L, 1dg; *load into Q

04BA goto FPS END, *use end

04BA cti=t; * count := next word location

04BB

078A goto $origin Ox78AS *opcode 105232 ..FCM

078A ..fcm, *

078A nop:=a; *

078B

06F7 ..fcm: $Sorigin Ox6F7$ *, .FCM single precision negate

06F7 if yz goto fcmquit, *if yz then special case

06F7 acc:=zly(acc); *acc:=0xf f00

06F8 nop:=1rl(b); *sign extend

06F9 if not sf goto fcmunpack, * then exponent

06F9 ct :=rrl(b and not acc); *

06FA ct :=rrl(b ior acc); *

06FB fcmunpack: *

06FB F3L:=0x00FF-b; *negate B(don’t worry about low bits)
06FC F3M:=not a + cf; *negate A

06FD goto fcmcontinue, *continue (can overflow and underflow)
06FD s7:=zero; *(s7=zero used in rounding routine)
O6FE fcmquit: *

06FE fchp, rtn; *that’s all

06FF

0700

E-40

MPARA source listing
0000 MPARA; *dynamic mapping system instructions <820204.1550>

03C0
03C0
03¢0
03Co
03co
03Co0
03C0o
03C0
01A2
01A2
01A2
01A2
01A2
01A2
01A3
01A3
01A4
03Co
03Co
03co
03¢0
03Co
03Cl1
03Cl1
03cl
03C2
03cC2
03C3
03C3
03C4
03C4
03C5
03C5
03Cé6
03Cé
03c7
03c7
03cs8
03C8
03c9
03p0
03D0
0300
03D0
03D0
03D1
03D2
03p2
03p2
03D2
03p3
03D4
03D4
03D4
03D4
03D4
03D5
03D6
03D6
03D6
03D7
03p7
03p8
03D9
03D9
03p9
03Dp9
03p9
03DA
03pA

$origin 0x3c0$ *file = &DMS <820204.1550>
L T T e e e e R T a e T e T

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

HERKKKKKKRKKRKRRKKI KK KK RkRkk kAR AkhkRhhhkkhkhhkkkkkkhkhkhhhhhhhhhkhkkhkikkkk

Sorigin Oxla2$
$define adrl/WMAP PACK Ox2AB$
$define adrl/WMAP_UNPACK 0x2B6$

DMSO_ENTRY: $ORIGIN 0Xla2$ *DMS jtab entry O
gototbl DMS_TBL1, stor/n; *opcodes 10(x01)700 - 10(x01)717
DMS1_ENTRY: $origin Oxla3$ *DMS jtab entry 1
gototbl DMS TBL2, stor/n; *opcodes 10(x01)720 - 10(x01)737
DMS TBL1: $origin 0x3CO$ *define block decode table for DMS opcodes
goto DMS LPMR, $origin 0x3C0$ *opcode 10(x01)700
in, *set n to 0 (point to MPAR)
a:=a-acc; *increment A
goto DMS_SPMR, $origin 0x3Cl$ *opcode 10(x01)701
in, *set n to 0 (point to MPAR)
a:=a—-acc; *increment A
goto DMS_LMAP, $origin 0x3C2$ *opcode 10(x01)702
rdp, ip;
goto DMS_SMAP, Sorigin 0x3C3$ *opcode 10(x01)703
rdp, ip;

goto DMS LWD1, $origin 0x3C4$ *opcode 10(x01)704
rdp, prin:=zly(prin);

goto DMS LWD2, $origin 0x3C5$ *opcode 10(x01)705
rdp, prin:=zuy(prin);

goto DMS_SWMP, $origin 0x3C6$ *opcode 10(x01)706
rdp, 1ip;

goto DMS SIMP, $origin 0x3C7$ *opcode 10(x01)707
rdp, n:=11l1(acc+acc);

goto DMS XJMP, $origin 0x3C8$ *opcode 10(x01)710
rdp;

$origin 0x3D0$ *begin code from Ox3CX opcode table

DMS_LPMR: *Load page mapping register instruction
1f mpen goto dms viol, *privileged opcode
srin:=atace; *]1oad pmr address register (non inc’d value)
map:=b, goto fetch rtn; *]oad map with non-incremented value in A
DMS_SPMR: *Load page mapping register instruction
if mpen goto dms_viol, *
srin:=a+acc; *privileged opcode
b:=map, fchp, rtn; *load pmr address register (non inc’d value)
DMS LMAP: *L,OAD MAP MACROINSTRUCTION and
call @map, *call the map setup routine
in, *set n to map address register srin
s2:=p-acc; *save next opcode address
p:=t—s0, rdb; *begin reading MAPBUF p:=t+l
lmap loop: *LOAD MAP loop (do 32 times)
83:=t, rdp, *save map value, start next read
if mpen goto dms_viol; *should I can him?
map:=s3, ip, *load value into map
if not ctz goto lmap loop;*
fchb, p:=s2, rtn; *that’s all
*
DMS_SMAP: *#5S TORE MAP MACROINSTRUC TION
call @map, *get map number
in, *set n to map address register srin
82:=p—-acc; *save next opcode address
p:=t, *load p with resolved address of MAPBUF
if mpen goto dms_viol; *

Appendix E

E-41

Appendix E

smap_loop:
wrpi=map, 1ip,

*SMAP LOOP:
* write map

if not ctz goto smap_loop;* into 32 memory locations

fchb, p:=s2, rtn;

Cmap:
call INDREAD, s(:=ones;
ct:=31;
acc:=rl4(t), rdp;
goto INDRSOLV,
srin:=acctacc;

dms_violation:
goto 0x46, nop:=t;

DMS_XJMP:
call INDREAD,
p:=p—acc;
if mpen goto dms_viol,
sl:=t,
rdp;
call INDRSOLV;
call WMAP UNPACK, n:=ones;
cmid, p:=t,
goto fetch _rtn;

DMS_LWD1:
call INDREAD,
p:=p-acc;
acc:=zuy(t),
fchp;
1wd@:
prin:=prin ior 0x2020;
prin:=prin ior acc, rtn;

DMS_LWD2:
call INDREAD,
p:=p—acc;
acc:=swzl(t), fchp,
goto 1wd@;

DMS_SWMP:
call WMAP PACK, n:=ones;
call INDSTORE,
acc:=s0;
fetch rtn:
fchp, rtn;

DMS SIMP:
1;’ in;
call INDSTORE,
acc:=prin;
fchp, rtn;

XMOVE_WORDS:
memr =80,
if ctz goto mwquit;
mw_loop:
rdb, a:i=a-acc;
memr:=sl;
wrp:=t, 1ip;
if ctz goto mwfinish;
memr :=80,
if not intp goto mw_loop;
mwfinish:
=p;
mwquit:
x:=ct+one, rtn;

*that’s all

*LMAP and SMAP setup
*indirect on map number
*a map has 32 PMRs
*save MAP_NUMBERS
*indirect on MAPBUF

*]1oad PMR address register with PMR address

*]1ink to violation routine

*(stop any memory reference started)

*XJIMP

*indirect on new WMAP
*increment p

*

*save new WMAP

*

*indirect on new P
*1oad WMAP

*that’s all
*

*LOAD DATAl MACROINSTRUC TION
*indirect on DATAl def

*increment to next opcode
*

*

*turn off a/b addressibility
*insert into unpacked wmap

*

*LOAD DATA2 MACROINSTRUC TION
*indirect on DATA2 def

*increment to next opcode
*
*

*S TORE WMAP MACROINSTRUC TION
*pack the WMAP

*store it away
*

*
*fetche ..

*STORE IMAP MACROINSTRUC TION
*

*store away the packed IMAP
*

*fetcheosos

*

*load "from" map value

*check for initial count zero
*cross move words loop:

load destination map
write to '"to" address
done?

load "from" map value
(check for interrupts)
*finish cross move words:
* update b with address

* ¥ %k O X *

* (branch here if initial count was zero?)

* uypdate x with count

sorigin 0x380% *define block decode table for DMS opcodes

DMS_TBL2:
XL@2: Sorigin 0x381$

*opcode 10(x01)721

goto DMS XL@2, rdp, sO:=memr; *

XS@2: Sorigin 0x382$

*opcode 10(x01)722

read source address and increment

0382
0383
0383
0384
0384
0385
0385
0386
0386
0387
0387
0387
0388
0388
0389
0389
038A
038A
038B
038B
038cC
038C
038D
038D
038E
038E
038F
038F
0390
0390
0390
0390
0390
0390
0390
0390
0391
0391
0392
0392
0392
0392
0392
0392
0393
0393
0394
0394
0394
0394
0395
0396
0396
0396
0396
0396
0396
0396
0397
0397
0398
0398
0398
0398
0398
0398
0398
0399
0399
039A
039A
039A
0398
0398
039C

Appendix E

goto DMS XS@2, rdp, sO:=memr; *

XC@2: Sorigin 0x383$ *opcode 10(x01)723
goto DMS XC@2, rdp, sO:=memr; *

XL@l: $origin 0x384$ *opcode 10(x01)724
goto DMS XL€l, rdp, sO:=memr; *

XS@1l: $origin 0x385% *opcode 10(x01)725
goto DMS XS@l, rdp, sO:=memr; *

XC@l: $origin 0x386$ *opcode 10(x01)726
goto DMS XC@l, rdp, sO:=memr; *

MOO:
s0:=memr, goto M 0;
MO1:
s0:=memr, goto M 1;
MO02:
sO:=memr, goto M 2;
M10:
s0:=prin, goto M 0;
Mll:
s0:=prin, goto M 1;
M12:
s0:=prin, goto M 2;
M20:
s0:=swzu(prin), goto M 0;
M21:
s0:=swzu(prin), goto M 1;
M22:
s0:=swzu(prin), goto M 2;

$origin 0x390$ *begin DMS instructions for 10(x01)720 - 10(x01)737

DMS_XL@1:
{
Load a or b from alternate map
}
call INDRSOLV; *resolve indirects in this map
menmr :=prin, *load memr with alternate map value
goto L@; *
DMS_XL@2:
{
Load a or b from data map
}
call INDRSOLV; *save o0ld map value, resolve indirects
memr :=swzu(prin), *load memr with data map value
goto L@; *
L@: *Load a or b from xxxx map (continued)
rdb, bbus/t, *read the cross map value
memr :=s0, 1ip; *restore execute map, inc(p) past DEF
cab:=t, fchp, rtn; *
DMS_XS@1:
{
Store a or b through alternate map
}
call INDRSOLV, *begin cross map read, resolve indirects
sl:=cab; *
menr :=prin, *load alternate map value
goto S@; *
DMS_XS@2:
{
Store a or b through data map
}
call INDRSOLV, *begin cross map read, resolve indirects
sl:=cab; *
memr :=swzu(prin), *load alternate map value
goto S@; *
S@: *Store a or b (continued)
wrb:=sl, bbus/t; *write value to resolved address
menmr :=s0, *restore execute map
ip, goto fchrtn; *increment p past def

E-43

Appendix E

039C
039C
039C
039C
039C
039C
039C
039D
039D
039E
039E
039E
039E
039E
039E
039E
039E
039F
039F
03A0
03A0
03A0
03A0
03Al1
03A2
03A2
03A3
03A3
03A4
03A4
03A4
03A5
03A5
03A6
03A6
03A7
03A7
03A7
03A7
03A7
03A7
03A7
03A7
03A7
03A7
C3A8
C3A9
C03AA
03AA
03AB
03AC
03AC
03AC
03AD
03AE
(03AE
(03AF
03AF
03AF
03AF
03B0O
03BO
03B1
03B1
03B1
03B2
03B3
03B3
03B3
03B4
03B4
03B4
03B5
03B5
03B5

E-44

DMS_XC@1:
{

Cross compare a or b through alternate map

skip 1f equal

call INDRSOLV,
sl:=cab;

menmr :=prin,
goto C@;

DMS_XC@2:
{

*resolve indirects in this map
*

*]oad memr with alternate map value
*

Cross compare a or b through data map

skip 1if equal

call INDRSOLV,
sl:=cab;

memr :=swzu{prin),
goto C@;

c@e:
rdb, bbus/t,
ip;
nop:=t xor slj;
if not yz then ip,
menr :=s0;
fchrtn:
fchp, rtn;

M 0O:

sl:=memr, goto MWMB;
M1:

sl:=prin, goto MWMB;
M 2:

“sl:=swzu(prin), goto MWMB;

MWMB:
{

*resolve indirects in this map
*

*load memr with data map value
*

*Cross compare (continued)
*read cross value

*

*compare

*if the same then skip
*restore execute map

*

*fetche ..

Common cross move routine for words and bytes

80:= source map

sl:= destination map
s2:= execute addr
s3:= execute map

s2:=p;
s3:=memr;
nop:=rl4(ct);
if not yl5 goto mb,
cti=x;
p:=b, call XMOVE WORDS;
mf inish:
if yz goto mwloadp,
memr:=s3;
p:=fa, fchb, rtn;
mwloadp:
p:=s2, fchb, rtn;

mb:
call XMOVE_BYTES,
memr :=s0;
goto mfinish,
x:=ct+one;

XMOVE_BYTES:

p:=1rl{a), if ctz then rtn;

rdp, memr:=sl;
mb_loop:
if sf goto mb_blodd,
p:=1rl(b);
mb_bleven:
s4:=swzu(t),
goto mb b2;
mb_blodd:
sh:=zuy(t),
goto mb_b2;

*save current P

*gave the execute map number

*decode

* between MW and MB

*load counter with count in X

*prepare for move words and do long call
*finish cross move...

*if final count is not zero then interrupt
*reload execute map

*restart due to interrupt

*

*count was zero, finished!

*

*call cross move bytes
*load "from" map

*time to quit

*1oad updated count into x

*

*]load word address, synch count
*

*is stringl address even or odd?
*jincrement stringl address
*STRING1 ADDRESS EVEN

*align and mask stringl byte

*

*STRINGl ADDRESS ODD

*align and mask stringl byte
*

03B6
03B6
0387
0387
03B8
0388
03B9
03B9
03BA
03BA
03BA
03BB
03BB
03BB
03BC
03BC
03BD
03BE
03BE
03BE
03BE
03BF
03BF
03C0

mb_b2: *
at=a-acc, sp0/rdp; *increment stringl address
if sf goto mb_b2odd, *is string2 address even or odd?
b:=b-acc; *increment string2 address
mb_b2even: *STRING2 ADDRESS EVEN
sb:=swzl(s4); *
s5:=zuy(t), *align and mask string2 byte
goto mb write; *
mb_b2odd: *STRING2 ADDRESS ODD
s5:=z1y(t), *align and mask string2 byte
goto mb_write; *
mb_write: *
wrp:= s5 ior s4, *insert stringl byte and write word to memory
if ctz then rtn; *is count zero?
p :=1lrl(a), *create stringl word address
if intp then rtn; *are interrupts pending?
menmr :=s0; *load source map
mb_enter: *
goto mb loop, *goto LOOP
spl/rdp, * begin read of stringl
memr:=sl; *

*

MPARA source listing
0000 MPARA; *double integer set (not in LIS) <820204.1550>

07¢C0
07Cco
07¢Co
07¢co
07¢0
07¢co
07C0
07¢co0
07Co
07¢co
07co
07Co
07¢o
07C0
07¢co
07¢C0
07¢C0
07¢Co
07Co
01BO
01BO
01B1
01B1
01B2
01B2
01B3
01B3
01B4
01B4
01B5
01B5
01B6
01B9
01B9
01BA
07¢C0
07co
07¢o
07co
07¢C1
07cC2
07Cc2
07c3
07C4
07c4
07¢C5

Sorigin 0x7C0$ *file = &DIS <820204.1550>
HRKAKARIRKAKIKRAKIKIKKKKRIRARIRAKA KT A KT RF KA KKK KKK ook ook ek ek ko ok ok ek ke e

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior writtem *
* consent of Hewlett Packard Company. *

dedeskdkd kg ek de ok ko ok ok ok ke ek ok e ek e koo ek ok ek ek ek ek ok
$define abus/DIM 010$ $define bbus/DIM 010$ $define stor/DIM 010$ *sO
$define abus/DIL 011§ $define bbus/DIL 011§ $define stor/DIL 011§ #*sl
$define abus/D2M 012$ $define bbus/D2M 012$ $define stor/D2M 012§ *s2
$define abus/D2L 013$ $define bbus/D2L 013$ $define stor/D2L 013§ *s3
¢define abus/D3M 016$ $define bbus/D3M 016$ $define stor/D3M 016$ *s6
$define abus/D3L 017$ $define bbus/D3L 017$ $define stor/D3L O17$ *s7
$define abus/D4M 014$ $define bbus/D4M 014$ $define stor/D4M 014§ *s4
$define abus/D4L 015$ $define bbus/D4L 015$ $define stor/D4L 015$ *s5
$define adrl/INST RESTART 0xD0$

$define adrl/INDRDBL 0x735$

goto Sorigin 0x1BOS *opcode 105014 .DAD
.dad, s5:=p-acc; *
goto $origin Ox1BlS *opcode 105034 .DSB
.dsb, s5:=p-acc; *
goto S$origin Ox1B2$ *opcode 105054 .DMP
.dmp, DIM:=a; *
goto $origin Ox1B3$ *opcode 105114 .DDI
.ddi, DIM:=a; *
goto $origin Ox1B4S *opcode 105134 .DSBR
.dsbr, s5:=p-acc; *
goto Sorigin 0x1B5$ *opcode 105154 .DDIR
.ddir, D2M:=a; *
goto $origin 0x1B9S *1ink from VMA code to firmware or hardware
dbl mpy enter, ct:=ones; *
Sorigin 0x7CO0$ *
.dad: *DOUBLE ADD
rdp, *read DEF
call indrdblink; *get memory operand in (s7,t)
b:=b+t, fchp, clo; *add low half
nop:=acct+s7+cf, *carry from low half
if not cf goto .dadsimple;* n: then simple case
1if cf then ste; *y: must to STE and STO explicitly
if not alov then rtn, *
a:=a+s7+one; *do the actual add with carry
sto, rtn; *set o on overflow

Appendix E

E-45

Appendix E

07C6 .dadsimple: *simple add (no carry)

07¢Cé a:=a+s’/, enoce, rtn; *add’em and do the E and O thing
07C7

07C7 .dsb: *DOUBLE SUBTRACT

07C7 rdp, *read DEF

07¢C7 call indrdblink; *get memory operand in (s7,t)
07C8 b:=b-t, fchp, clo; *subtract low half

07C9 a:=a-s/-br; *subtract high half

07CA .dsbflags: *do the E and O thing explicitly
07CA if not cf then ste; *if borrow then ste

07CB if not alov then rtn; *1f no alov then return

07cc sto, rtn; *overflow: set 0 and return
07CD

07CD .dsbr: *DOUBLE SUBTRACT REVERSE

07¢CD rdp, *read DEF

07CD call indrdblink; *get memory operand in (s7,t)
07CE b:=t-b, fchp, clo; *subtract low half

07CF a:=s7-acc-br, *subtract high half

07CF goto .dsbflags; *do the E and O thing

07D0

07D0 indrdblink:
0700 call INDRDBL,

*READ DOUBLE ROUTINE
*call the indirect read routine

07D0 acc:=a; *save high half in acc

07D1 p:=s5, rtn; *replace program counter

07D2

07D2 .dmp: *DOUBLE MULTIPLY INSTRUCTION
07D2 rdp, *read DEF

07D2 call indrdblink, * and get memory operand in (s7,t)
07D2 s5:=p—acc; *

17D3 D2M:=s7; *

07D4 DIL:=b; *

Q7D5 D2L:=t, *DIM,DIL,D2M,D2L are now loaded
J7D5 call dbl multiply; * so multiply

0706 a:=D3M, clo, fchp;
07D7 if bl5 goto .dmpneg,

*return D3M to A
*do overflow on four word to

07D7 b:=D3L; * two word conversion

07D8 nop:=D4M ior D4L; *are all upper sign bits zeros?
07D9 if yz then rtn; * y: return

07DA goto .dmpovfl, * n: overflow

07bA a:=lrl(ones); *

07DB .dmpneg: *

07DB nop:=D4M nand D4L; *are all upper sign bits ones?
07DC if yz then rtn; * y: return

07DD a:=1rl(ones); * n: overflow

O7DE .dmpovfl: *overflow: set result to most positive

07DE b:=ones, sto, rtn; * number and set O

07DF

07DF dbl_multiply:

Q7DF

07DF double integer multiply

07DF }

07DF ct:i=ones; *count = 15 (low four bits)

07E0 dbl mpy enter:
07EQ nop:=D1L, 1ldq;

* (entry from VMA code)
*prepare for multiply (unsigned)

07E1 acc:=D2L; * of low 16 bits of both operands
07E2 D4M:=zero; *clear the upper 32 bits
07E3 D4L:=zero; * of the final product

O7E4 D3M:=umpy(D4L), *first multiply step here to load D3M
07E4 det; *count = 14 (low four bits)

07E5 dmp_lloop: *MULTIPLY LOOP 1

07E5 if not ctz4 goto dmp lloop, *do unsigned multiply

07ES D3M:=umpy(D3M); * Jow * low

07E6 D3L:=q; *save low 16 bits of product

07E7 acc:=DIM; *prepare for multiply (signed) of low*high
07E8 if yz goto dmp 2skip, *special case: high bits zero, so skip
07E8 nop:=D2L, 1ldq; *load low bits into Q

07E9 dmp 2loop: *MULTIPLY LOOP 2

07E9 if not ctz4 goto dmp_2loop, *do signed multiply

07E9 D4L:=tmpy(D4L); * high * low
07EA if y15 then fcin, *if it’s negative, then set
07EA D4M:=acc-acc; * D4M to negative

07EB D3M:=q+D3M;
07EC D4L:=D4L+cf; *enough??

07ED D4M:=D4M+cf; *is this really needed?
O7EE dmp_2skip: *

*save low 16 bits of product

E-46

07EE
O7EF
O7EF
07F0
07F1
07F1
07F1
07F2
07F3
07F4
07F5
07F6
07F6
07F7
07F8
07F8
07F9
07F9
07F9
07FA
07FB
07FC
O07FD
07FD
01BA
O01BA
01BB
01BC
01BD
01BE
01BF
05B5
05B5
0585
05B6
0586
05B6
05B7
05B8
05B9
05BA
05BA
05BA
05BB
05BC
05BC
05BD
05BE
05BF
05BF
05SBF
05C0
05Cl1
05Cl1
05C1
05C2
05C3
05C3
05C3
05C4
05C5
05C5
05Cé
05Cé
05Cé
05C6
05C6
05C7
05C7
05C8
05C8
05C9
05CA
05CB
05CB

acc:=D2M;
if yz then rtn,
nop:=D1L, ldq;
D2L:=zero;
dmp_31loop:

if not ctz4 goto dmp_3loop,

D2L:=tmpy(D2L);
D3M:=q+D3M;
DAL :=D4L+D2L+cf;
D4M:=D4M+cf, bbus/D2L;
D2L:=zero;
if bl5 then fcin,
D4M :=D4M-D2L;
acc:=DIM, dct;
if yz then rtn,
nop:=D2M, 1ldq;
dmp 4loop:

if not ctz4 goto dmp_4loop,

D2L:=tmpy(D2L);
D2L:=tmlc(D2L);
D4L:=D4L+q;
D4M:=D4M+D2L+cf, rtn;

.ddir: Sorigin Ox1BA$
rdp, acc:= =acc;
call INDRDBL, D2L:=b;
DIM:=s7, clo;
call dbl divide, DIL:=t;
goto .ddicontinue;

$origin Ox5B5$
.ddiintp:
fchb, p:=fa, rtnj;

.ddi:
rdp, acc:= -acc;
call INDRDBL, DIlL:=b;
D2M:=s7, clo;
call dbl divide, D2L:=t;
.ddicontinue:
if intp goto .ddiintp,
acc:=111(ones);
a:=D3M, bbus/grin;
if bl5 goto nonegate,
bi=q;
b:= -b;
a:= not a + cf;
nonegate:
if o goto .ddiovfl,
p:=fa-acc;
fchp, rtn;

.ddiovfl:
a:=0x7FFF;
b:=ones, fchp, rtn;

.ddibigdnd:
nop:=D2M nand D2L;
if not yz then rtn;
.ddizero:
sto, rtn;

dbl_divide:

nop:=D2M ior D2L,
clo,
cmdw;

if yz goto .ddizero,
grin:=zero;

if bl5 goto d2neg,
nop:=D2M;

grin:=ones;

D2L:= -D2L;

D2M:= not D2M + cf,
bbus/D1M;

*prepare for multiply (signed) of high*low
*special case: high bits zero, so done!
*load low bits into Q

#initialize partial product

*MULTIPLY LOOP 3

*do signed multiply

* low * high

*save high 16 bits of product

*add (.x..) part of product

*carry to (x...) part of product

*

*do sign extend due to partial

*

*prepare for partial product of high*high
*special case: 1f zero then return
*

*MULTIPLY LOOP 4

*do signed multiply

* high * high

*last step due to sign

*add low words together

*add upper word to DA4M

* F % F * F

*

*,DDI INTERRUPTED
*

*DOUBLE INTEGER DIVIDE

*acc:=l

*get two word operand

*o will be set if overflow occurs

*do the divide

*

*if we were interrupted, then restart
*g:= -2

*1oad A; should we negate??

*if grin 15 is zero then negate

*replace b with D3L
*

*
*

*if o set the overflow occurred
*set p to next opcode
*that’s all

*DIVIDE OVERFLOW
*set (A,B) to 077777 177777
*that’s all

*check for 100000 000000 / 177777 177777
*

*if not so then ok
*

*else overflow!

*DOUBLE DIVIDE

*is the divisor zero?

*

* (set the double word bit)
*y: then return with O set
*

*make the divisor negative
* not negative?

save that fact in grin

*
* and make divisor negative
*
*

Appendix E

E-47

Appendix E

05CC d2neg: *

05cC if not bl5 goto dlpos, *make the dividend positive

05CC cti=zeros; * not positive?

05CD grin:=not grin; * save quotient sign in grin
05CE DiL:= -DIL; * negate dividend (unsigned)
05CF DiM:= not DIM + cf; *

05D0 dlpos: *

05D0 if alov call .ddibigdnd, *

05D0 nop:=D2L, 1ldq; *prepare for double word shift of divisor
05D1 shftloop: *SHIFT UNTIL DIVISOR < PARTIAL REMAINDER
05D1 nop:=D1L-+q, * (abs val)

05D1 if intp then rtn; *

05D2 nop :=DIM-+D2M+cf, *compare shifted dlm to d2m

05D2 dect; *keep count of number of shifts in ct
05D3 if cf goto shftloop, *is divisor > partial remainder?
0503 D2M:=111(D2M); *divisor := divisor * 2

05D4 if not sf goto toofar, *recover the most significant bit
05D4 D3M:=zero; *last bit shifted was one

05D5 D3M:=0xC000; *

05D6 toofar: *last bit shifted was zero

05D6 D3M:=D3M ior 0x8000; *

05D7 D2M:=1r1(D2M); *make up for extra shift

05D8 D2M:=1r1(D2M); *shift to make |DND| >= |DVR|
05D9 D2M:=D2M ior D3M; *fix sign and bit 14

05DA D2L:=q; *

05DB cti=not ct; *ct now holds the number of quotient bits
05DC D3M:=zeros, ldq, *load initial quotient

05DC cmdw; *clear double word bit

05DD goto dloop; *generate unsigned quotient

0SDE

0470 newbitl: $origin 0x470$ *generate a new quotient bit

0470 nop:=q ior acc, ldq, * put it back into Q

0470 stf, * set the flag for divisor shift
0470 goto shftdvrl; * do the divisor shift

0471 dloop: *

0471 loopl: *DIVIDE LOOP

0471 D4L:=D1L+D2L, *is partial remainder

0471 if ctz then rtn; * greater than

0472 D4M:=DIM+D2M+cf, * divisor?

0472 if intp then rtn; *

0473 if not yl5 goto newbit2, *y: add a quotient bit

0473 D3M:=dnrm(D3M); * quotient := quotient * 2

0474 stf; *

0475 shftdvri: *

0475 D2M:=ar1(D2M), 1lwf; *divisor := divisor / 2

0476 D2L:=1r1(D21), 1wf, *

0476 goto loopl; *

0477

0477 newbit2: *generate a new quotient bitt
0477 nop:=q ior acc, 1ldq, * put it back into Q

0477 stf, * set the flag for divisor shift
0477 goto shftdvr2; * do the divisor shift

0478 1loop2: *

0478 DIL:=D4L+DZL, *is partial remainder

0478 if ctz then rtn; * greater than

0479 DIM:=D4M+DZM+cf, * divisor?

0479 if {ntp then rtn; *

047A if not yl5 goto newbitl, *y: add a quotient bit

047A D3Mi=dnrm(D3M); * quotient := quotient * 2

0478 stf; *

047C shftdvr2: *

047C D2M:=ar1(D2M), 1lwf; *divisor := divisor / 2

047D D2L:=1r1(D2L), 1lwf, *

047D goto loop2; *

047E

047E

047F

MPARA source listing
0000 MPARA; *language instruction set and some double integer <820204.1550>

0740 S$origin Ox740$ *file = &LIS <820204.1550>
0740 Fkkkdkkdekiddhdkkdhdkddoksk ko sdddokdhhkihhiodhrhhhrhk ik kiorkk kit kdkkkik

0740 * (C) Copyright Hewlett Packard Company 1982. All rights reserved., *

E-48

0740

0740
0740
0740
0740
0188
0189
018A
0743
0743
0743
0744
0744
0744
0745
0745
0745
0747
0747
0748
0748
0748
0749
0749
0749
074A
074A
074A
074B
074B
0748
074C
074C
074D
0750
0750
0750
0750
0751
0751
0751
0751
0752
0753
0754
0754
0755
0756
0756
0757
0758
0758
0758
0759
075A
075A
075A
075B
075C
075¢C
075C
075D
075D
075E
075E
075F
0760
0760
0760
0761
0762
0763
0764
0764
0764

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

Kdkdekhdkhhkhhhhhhhhhhkhkhkkhkhkhkkkokhkkkhkhkkhkhkkhhhhkhhhhhkhkkkkkikhkkhkhhhkhhhkk

$define adrl/INDRDBL 0x735$
$origin 0x1885 gototbl 0x740;
$origin 0x189% gototbl 0x780;

goto Sorigin 0x743$
.dng, fchp,
b:= -b;

goto S$origin 0x744$
.dco, rdp,
s0:=p-acc;

goto $origin 0x745$%
.dfer, rdp, ip,
ct:= zero;

goto $origin 0x747$
0x11c0, p:=p-acc;

goto $origin 0x748$
.din, fchp,
b:=btone;

goto $origin 0x749$
.dde, fchp,
b:=btacc;

goto Sorigin Ox74A$
.dis, rdp,
sO:=p-acc;

goto $origin Ox74BS
.dds, rdp,
sO:=p-acc;

goto S$origin Ox74C$
Ox1lc3, p:=p-acc;

$origin 0x750$
.dng:
a:=not a + cf,
goto .dinflags;

.dco:
call INDRDBL,
sl:=s0=-acc;
acc:=a;
nop:=b-t;
if not yz goto .dcoending,
s2:=acc-s7-br;
if yz goto .dcosame;
.dcoending:
if alov goto .dcoswitch;
nop:=s2;
.dcoskip:
if not bl5 then fcin,
sli=sl;
fchb, p:=sl, rtn;
.dcoswitch:
if bl5 then fcin,
sli=sl;
fchb, pi=sl, rtn;

.din:
a:=at+cf;
.dinflags:
if cf then ste;
.dinovfl:
if not alov then rtn, clo;
sto, rtn;

.dde:
a:=acctatcf;
if not cf then ste;
if not alov then rtn, clo;
sto, rtn;

.dis:
call INDRDBL;

*opcode 105200 - 105217
*opcode 105220 - 105237

*opcode 105203 .DNG

* begin fetch

* negate low word
*opcode 105204 .DCO

* read DEF

* g0:=no skip location
*opcode 105205 .DFER

* read DEF

* get up counter
*opcode 105207 .BLE (link to FPP)
*

*opcode 105210 .DIN

* begin fetch

* increment low word
*opcode 105211 .DDE

* begin fetch

* decrement low word
*opcode 105212 .DIS

* read DEF

* g2:=no skip location
*opcode 105213 .DDS

* read DEF

* g2:=no skip location
*opcode 105214 .NGL (1link to FPP)
*

*DOUBLE NEGATE
*a:=a ~ br

*DOUBLE COMPARE

*read double integer into s7 and t
*g]l:= less than skip location

*

*subtract operand 2 (in memory)
*

* from operand 1 (A,B)
*

*
*if arithmetic overflow then switch sense

*if opl <> op2 then branch
*

*if opl > op2 then extra skip
*

*fetch one or two skips and return
*

*
*
*

*DOUBLE INTEGER INCREMENT
*add with carry
*

*if carry then set E

*if no alov then return, clear O
*set O and return

*DOUBLE INTEGER DECREMENT
*add with borrow
*if borrow then set E

*if alov then STO, else CLO
*

*DOUBLE INCREMENT AND SKIP
*read double integer into s7 and t

Appendix E

E-49

Appendix E

0765 wrp:=t+l; *increment low word of double
0766 i1f not yz goto noskip, *if yz then must carry
0766 p:=ptacc; * into next word

0767 wrp:=s7+cne; *carry into upper word
0768 zcheck: *check for zero result
0768 if yz then stor, *if yz then skip

0768 s0:=s0~acc; *

0769 mnoskip: *that’s all

0769 ..dcosame: *

0769 fchb, p:=s0, rtn; *

076A

076A .dds: *DOUBLE DECREMENT AND SKIP

076A call INDRDBL;
076B wrp:=t+acc;
076C if cf goto zcheck,

*read double integer into s7 and t
*decrement low word of double
*{f no borrow then check for zero

076C s2:=acc+s7+cf; *

076D p:=ptacc; *else propogate borrow
076E wrp:=s2, goto noskip; *and no skip possible
076F

076F .zfer: *EIGHT WORD MOVE

076F .cfer: *FOUR WORD MOVE

076F rdp, ip, *get the count (equal total words -2)
076F cti=ct-acc; *cti=ct+l

0770 .dfer: *THREE WORD MOVE

0770 call INDREAD, *indirect on destination DEF
0770 ct:=ct-acc; *ct:=ct+l

0771 p:=ma, rdp; *p:=first destination word
0772 call INDREAD, *indirect on source DEF
0772 ct:=ct-acc; *cti=ct+l

0773 a:=ma+one; *A gets memory address
0774 .dloop: *

0774 wrp:=t, ip, *

0774 if ctz4 goto .dfixp; *

0775 rdb, a:=a-acc, *read from address in A, inc A
0775 goto .dloop; *

0776 .dfixp: *

0776 p:=fa+3; *

0777 .dend: *

0777 fchp, b:=ma+one, rtn; *

0778

0778 .xfer: * ,XFER move three words
0778 ct:=2; *

0779 .xloop: *LOOP

0779 rdb, a:=a-acc; * read it

077A wrp:=t, ip, * write it

077A if not ctz4 goto .xloop; *

077B p:=fatone, goto .dend; *ready to fetch.

077¢C

0780 goto Sorigin 0x780$ *opcode 105220 .XFER
0780 xfer, p:=b; *

0781

0783 goto Sorigin 0x783$ *opcode 105223 .ENTR
0783 .entr, rdp, *

0783 clf, *

0783 p:=fa+acc; *

0784 goto $origin 0x784% *opcode 105224 .ENTP
0784 .entp, rdp, *

0784 clf, *

0784 p:=fatacc; *

0785 *opcode 105225 .PWR2
0785 *

0785 *opcode 105226 .FLUN
0785 *

0787 goto $origin 0x787$ *opcode 105227 .SETP
0787 .setp, p:=b, rdp; *

0788 *opcode 105230 .PACK
0788 *

0789 goto Sorigin 0x789$ *opcode 105231 .CFER
0789 .cfer, ct:=zero; *

078A

078A *opcode 105232 ..FCM
078A * (see &FPSG for code)
078A

078B goto $Sorigin 0x78b$ *opcode 105233 ..TCM (link to FPP)
078B Ox1llc6, n:=acctacc; *

E-50

078C
078C
078C
078C
078D
078D
078D
078D
078E
078E
078F
078F
0790
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0791
0792
0792
0792
0792
0792
0793
0794
0794
0795
0796
0796
0797
0798
0799
079A
079A
0798
079C
079C
079D
079D
079D
079D
079E
079E
079E
079F
079F
07A0
07A0
07A1
07A1
07A1
07A2
07A3
07A3
07A4
07A4

goto $origin 0x78C$
.entn, rdp,
stf,
p:=fatacc;
goto Sorigin 0x78D$
.entc, rdp,
stf,
p:=fatacc;
goto S$Sorigin Ox78E$
.cpm, rdp, ip;
$origin Ox78F$

*opcode 105234 .ENTN
*

*
*
*opcode 105235 .ENTC
*
*
*

*opcode 105236 .CPM
*

*opcode 105237 .ZFER

cti=4; *load up count (-4)
goto .zfer; *
{
.ENTR, .ENTP, .ENTC .ENTN support the following call sequences.
jsb subr pl bss m pl bss m
def rtn subr jsb .entr subr nop
def parml --> def pl nop
e nop
def parmn jsb .entp
rtn etc... def pl
(a=rtn)
jsb subr pl bss m pl bss m
def parml --> jsb .entn nop
e def pl nop
def parmn nop
rtn etce.. jsb .entc
def pl
(a=rtn)
}
.entp: *
.entc: *

p:=£fa~0100003;

.entr:
.entn:
s0:=p;
ct:i=s0-t;
p:=t+acc,
rdp;
ct:=ct and Ox7fff;
if f goto .entnenter,
sl:=t, rdb;
sl:i=sl-acc;
s2:=t-sl;
nop:=s2-ct;
if not yl5 goto .entloop,
s3:=t;
cti=s2;
.entloop:
rdb, bbus/sl;
.entnenter:
if ctz goto .entend,
s2:=sl-acc,
ip;
.entrslv:
if intp goto ,entquit,
wrp:=t;
if not bl5 goto .entloop,
sl:=s2;
goto .entrslv,
rdb, bbus/t;
.entend:
if not f then stor,
wrb:=s3, bbus/s0;
p:=fa+2;
if f then stor,
wrb:=gl, bbus/s0;
if not bl5 then rtn,
fchb, nop:=p;

*NOP is 3 before the .ENTP, .ENTC
*(bl5 of P says that A must be loaded

* on return)
*

*

*save NOP address

*ct:=callee count

*save callee parm block address (-1)
*read NOP to get rtn address

*mask off .ENTP/C flag

* (LENTN .ENTC do not do the chase)
*gs]l:=start of caller parm block (N,C)
*sl:=start of caller parm block (R,P)
*s2:=caller count

*compare callee count to caller count
*take the lesser

*save .ENTR,P return address

*

*MOVE LOOP (can I be tricky with cwrb?)
*read caller parm

*

*is that all?

*save next caller parm address
*increment callee parm block address
*RESOLVE INDIRECTS

*check for interrupts

*write caller parm into callee parm
*if caller parm was direct then loop
*sl:=sl+one (only once through loop)
*CHASE DOWN INDIRECT

*else indirect

*END THE INSTRUC TION

*write real return into NOP for .ENTR,P
*

*set next fetch address

*write real return into NOP for .ENIN,C
*write real return into NOP

*if .ENTR, .ENTN then

* that’s all folks.

Appendix E

E-51

Appendix E

07A5 a:=s3, 1if not f then rtn; *for .ENTP leave rtn in A

07A6 a:=sl, rtn; *for .ENTC leave rtn in A

07A7 .entquit: *INTERRUPT

07A7 p:=fa, fchb, rtn; *restart the instruction

07A8

07A8 .setp: *SET POINTERS

07A8 call INDREAD; *indirect on DEF (manual is wrongo)
07A9 cti=t; *retrieve count

07AA if yz goto .setpend, *is it zero??

07AA nop:=b; * y: quit

07AB if bl5 goto .setprst, * n: is it interrupted?

07AB ct:=ct+acc; * (synchronize count)

07AC .setplp: *SETP LOOP

07AC wrp:=a, *write location specified by B
07AC if intp goto .setpintp; *check for interrupts

07AD .setpcont: *

07AD a:=a-acc, 1ip, *increment location

07AD if not ctz goto .setplp; * UNTIL COUNT IS ZERO

O07AE .setpend: *END IT

07AE b:=p and Ox7fff; *b:=original b + count

07AF p:=fa+2; *point p to next opcode location
07B0 .setpfetch: *

07B0 .cpmeq: *

07B0 fchp, rtn; *

07B1 .setpintp: *INTERRUPT

0781 b:=p ior 0x8000; *save this location in B (bl5 flags intp)
07B2 a:=ct; *save count in A

0783 fchb, p:=fa, rtn; *that’s all

07B4 .setprst: *RESUME AFTER INTERRUPT

07B4 ct:=a, rdb, bbus/b; *count := A, read new value
07B5 p:=b; *place this address into P
07B6 a:=t, goto .setpcont; *replace next value into A
0787

07B7 .cpm: *COMPARE MEMORY LOCATIONS

0787 call INDREAD; *acci= =2

07B8 s0:=t, *save first operand

0788 rdp, ip; *read second def

07B9 call INDREAD, sl:=p-acc; *sl:=less than skip location
07BA s2:=s0-t; *compare them

07BB if yz goto .cpmeq; *equal? y: p is set up

078C goto .dcoending; *n: finish up using .dco routine
07BD

07BD

O07BE

MPARA source listing
0000 MPARA; *virtual memory access

<820204.1550>

0600 S$origin 0x600$ *file = &VMA <820204.1550>

0600 *Dedicated registers:

0600 * PRIN(0)=User map 30.

0600 * PRIN(1)=Page number of page table and working set offset.
0600 {The VM instructions are divided into two groups. .PMAP maps a logical
0600 page in A acording to a page ID in B. The others map a VM address into
0600 page 30 and 31 returning the appropriate logical address in B.

0600 .LBP has the VM address in A and B.

0600 .LBPR has a DEF to the VM address.

0600 .LPX has an address in AB and a DEF to an address. The addresses are
0600 added to form the VM address.

0600 .LPXR is like .LPX but uses two DEFs.

0600 .IRES resolves array parameters to form a VM address returned in AB.
0600 .IMAP Effectively .IRES then .LBP.

0600 .JRES Like .IRES but double-integer subscripts (and dimension sizes).
0600 «JMAP Like .JRES then .LBP.

0600 All of these have the "local reference" option. If the VM address is
0600 negative, the least-significant 16 bits are treated as a local address.
0600 Indirects are resolved and the direct address is returned in B.}

E-52

0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
0600
018A
018A
018B
018B
018B
018B
0188
018B
0188
0600
0600
0600
0601
0601
0604
0604
0605
0606

AhARRAKRRKRAKKKKRKKKKAXKR KAk KhAkkhhhkhkhhkhkhkhkhkhkkkhkhkhkhhhkhkhhkkhhhkkkkhkkk

EXECUTION TIMES (250 nsec. cycle)
cycles(usec.)

Normal case Local First VMA

(no fault) reference after intr.
.LBP 25 (6.25) 7 (1.75) 47 (11.75)
JLBPR 28 (7.00) 13 (3.25) 53 (13.25)
.LPX 31 (7.75) 17 (4.25) 59 (14.75)
LPXR 37 (9.25) 22 (5.50) 71 (17.75)
JIMAP 39 (9.75)+1 24(6.00)+1 58(14.50)+1
JJMAP 39 (9.75)+J 24(6.00)+J 58(14.50)+J

LIRES 20(5.00)+I - -

.JRES 20(5.00)+J - -

114(3.50) with FPP|

I=[#dimensions]x[12(3.00)+}26(6.50) without |]
| or 46(11.50) |

114(3.50) with FPP|

126(6.50) without |
J=[#dimensions]x[16(4.00)+| or 46(11.50) 1142(.50) if

| or 50(12.50) | at least

| or 88(22.00) | one dim.

For all instructions above except .IRES and .JRES add
3(.75) if last page in suit (one case in 1024), and
add 5(1.25) if last page of VMA. Add 4(1.00) per
indirect level in local-reference addresses and 2(.50)
per level of indirect in DEF reads

+PMAP
Normal 20 (5.00)
Sign bit
set in A 24 (6.00)

Last-plus-one
page mapped 23 (5.75)

Normal post
interrupt 37 (9.25)

A-register not

in range [0,31] 13 (3.25)
Ik hkkkkkrhhhhkkkkhrhkrkrkhkkhkkRARKARARKXARKAA LRI ARRKRRRARKR A KRRk * kK
$DEFINE ADRL/PROCESS_DISPATCH O0XDO$
$DEFINE ADRL/PRIV_TRAP O0XF3$
$DEFINE ADRL/DIM OX1B9$

Iv!l-**’(-*******ﬂ-*F****x—***********#**************#**3(-3!-
********a—*****"ﬂ'%**}****#****************#*********

SORIGIN OX18A$
VMA ENTR: GOTOTBL VMA BLOC, BBUS/A, STOR/N; Fekkkdkkkkkkkk
- *Location in jump table corresponding to 105240,
*Ones go to N. BBUS gets A to test for local reference
*in .LBP.

*This block decodes individual VMA instructions. In
*most cases the DEF is read and next address goes to SO.
*N is bumped to get zero in it.

VMA BLOC: $ORIGIN 0X600%

PMAP: {00}A:=A-ACC, IN, GOTO S1_PMAP;
{01} * ,PMAP bumps A early. This must be
{02} * accounted for later.
{03} SORIGIN 0X604$
IRES: {04}RDP, P:=P-ACC, GOTO S1_IRES, CLE;
JRES: {05}RDP, P:=P-ACC, GOTO S1_IRES, STE;
{06}

Appendix E

E-53

Appendix E

E-54

0608
0608
060A
060A
060C
060C
060D
060E
060F
0610
0610
0611
0612
0613
0614
0614
0614
0614
0614
0614
0614
0614
0615
0616
0617
0618
0618
0618
0618
0619
061A
061A
061A
061A
061A
061A
061A
061A
061A
061A
0618
061C
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061D
061E
061F
061F
0620
0621
0622
0623
0623
0623
0624
0624
0625
0625
0625
0626
0627
0627

{07} $SORIGIN 0X608%

IMAP: {08}RDP, P:=P-ACC, GOTO S1_IMAP, CLE;

{09} SORIGIN OX60A$

JMAP: {OA}RDP, P:=P-ACC, GOTO S1_IMAP, STE;

{OB} $ORIGIN 0X60C$

LPXR:{0C}RDP, 50:=P-ACC, GOTO Sl LPXR, IN;

LPX: {OD}RDP, $0:=P-ACC, GOTO SI_LPX,

IN;

LBPR: {OE}RDP, $0:=P-ACC, GOTO SI_LBPR, IN;

LBP: {OF}ACC:=0176000, BBUS/A;
S1:=RR1(B AND ACC),

IF Bl5 GOTO LR_LBP;

X:=RRI(NOT ACC AND A);
S0:=P, IN;

§7:=ACC IOR B, LGOTO VMA MAP2;

*,LBP immediately checks for local reference.

*of P 1is saved in SO.
*tion of PAGID begins.

N gets zero; ACC gets mask.
S7 gets value that will become

Return value
Extrac-

*physical address returned in B.

LR LBP: IF B15 CALL RES_INDB;
NOP:=T, RTN, FCHP;
RES_INDB: NOP:=B, RDB;
B:=T, LGOTO CONT RIB;

P:=T, RDB;
IF Bl5 CALL RES_INDR, IP;

X:=RRI(NOT ACC AND T), RDP;

Kekddkkoek
IF Bl5 GOTO LR LBPR,

S1:=RR1(ACC AND T);

$7:=ACC IOR T,
LGOTO VMA MAP2;

LR LBPR: B:=T, IF Bl5 CALL RES_INDB;

*Resolve any indirect
*address in B and return.
*Read address in B. Load

*to B and jump to "continue
*resolve indirect in B." -

*Go to "segment_ two."

N gets
*zero in IMAP because we need
*to get PRIN(0) to test for
*initialization of micro regs.
*S6 and S7 will get resolved VM
*address; they must be set to 0
*before entering resolve loop.
*Note that these also link JRES

*and JMAP. E is used to flag

*MPAR gets user data map
*register 31 to prepare for

N increments to 0.
*If A had sign bit set on entry
*we branch to "PMAP negative"
*code which handles the case
*when faults must cause

*a P+] exit. This lets $VMAS
*call PMAP without the poss—
*ibility of recursion.

*If PRIN(O):=ONES we branch to
*code that restores A then sets
*up PRINs. E is cleared since E
*set on return indicates LAST+l.
*MAP gets page where PTE is.

S1_IRES: LGOTO SZ_IRES, S6:=ZEROQ;
S1_IMAP: LGOTO 32 _IMAP, N:=ZERO;
*1 vs. J.
S1_PMAP: SRIN:=PRIN-ACC, IN, IF Bl5 GOTO PNEG;
IF YZ GOTO N_INITPl, CLE;
MAP:=PRIN, LGOTO S2_PMAP;
*PTE read.
PNEG: LGOTO 5_PNEG;
N INITPl: A:=A+ACC, LGOTO NOT INIT;
S1_LBPR: ACC:=0176000;

*ACC gets mask 6-1s-10-0s.
*P gets value of the DEF.
*Indirects resolved and P
*bumped to read second word
*of VM addr. Extraction of
*PAGID begins. LOCAL REF if
*sign of MSW is set. Start
*generation of log addr in
*S7(i.e. l1111laaaaaaaaaa).

*LOCAL_REF for LBPR. P is
*restored from SO.

P:=50, LGOTO FIN_LR;

RES_INDR: P:=T, RDB;

*RESOLVE_INDIRECT resolves
*indirect addr in P. P is

0628
0629
062A
062B
062B
062C
062D
062D
062D
062E
062F
062F
0630
0631
0632
0633
0633
0634
0634
0634
0635
0635
0636
0636
0637
0638
0639
063A
063B
063B
0638
063B
063B
063B
0638
0638
063B
063C
063C
063C
063C
063D
063D
063D
063E
063F
0640
0640
0641
0641
0642
0643
0643
0643
0643
0644
0645
0645
0645
0645
0645
0646
0646
0647
0647
0647
0647
0647
0647
0648
0648
0648
0648
0649
0649

IF NOT Bl5 THEN RIN, IP;
P:=T, RDB;

RES_LOOP: IF NOT Bl5 THEN RTN, IP;

LOC_REF:

S1_LPXR:

S1_LPX:

S2_LPXR:

VMA MAP1:

VMA MAP2:

P:=T, RDB,

*bumped to read possible
*double-word number.

IF NOT INTP GOTO RES _LOOP;
PRC_DSP1l: LGOTO PROCESS DISPATCH, P:=FAj;

B:=87, IF B15 CALL RES_INDB; *LOCAL REF other routines.

P:=80, LGOTO FIN_LR;

P:=T-ACC, RDB;

IF B15 CALL RES INDR;
S6:=T, SPO/RDP;
P:=50, LGOTO S2_LPXR;

LGOTO S2_LPX;

S$7:=T, SP2/RDP;

hkkkkkkkk

P:=T-ACC, RDB;

IF B15 CALL RES_INDR,
S0:=S0-ACC;

S6:=S6+T, SPO/RDP;

ACC:=0176000;

S§7:=87+T, IN;

$6:=564CF;

ABUS/ACC, BBUS/S6, STOR/X,
ALU/CAND, SPO/RRI1;
{X:=RR1(NOT ACC AND S6);}

S1:=RR1(ACC AND S7),
IF Bl5 GOTO LOC_REF;

§7:=ACC IOR S7, DN; %%
X:=RR1(X IOR S1);
X:=SWAP(X);

SRIN:=PRIMONE;

IF YZ GOTO NOT INIT,
P:=ACC IOR X, IN;

MAP:=PRIN, CLO, DN;

SRIN:=PRIN, SPO/RDP, IP;
BBUS/P, S4:=075777;

IF NOT B15 GOTO OVER,
S3:=NOT ACC AND T, IN;

IF YZ THEN STO,
MAP:=S3+PRIN;

*37 holds LSW of VM addr.

*DEF comes back for MSW
*of VM base address.

*S6 gets MSW. Read begins
*LSW. P gets addr of 2nd
*DEF.

*Branch while wait for DEF.

*LSW of VM base addr goes to
*S7. Read DEF for VM offset
*addr. Start read of MSW of
*offset. P gets addr of LSW.
*Resolve indrs. SO is inc’ed
*to point to instr after
*LPXR. Of fset added to S6,S7.
*ACC gets mask.

*N to 1, then 0 for com—
*patibility with IMAP.

*PAGID extracted by following
*operations. A ten-bit right
*shift of double word required

*Each word masked and shifted
*once. LOCAL REF test is also
*done here. Words merged and

*shifted, then byte-swap com—
*pletes shifting.

*This is the first step in
*calculating the addr returned
*in B.

*N=0 here. MPAR = user map 31l.
*If PRIN(0)=ONES registers are
*not initialized. P gets log
*address in pg 31 for PTE read.
*Map register 31 gets page# of
*PTE.

*MPAR gets user map 30. First
*PTE read begins. P tested to
*see if incr results in oflo.
*Mask for addr returned in B
*goes to S4.

*Mask off segment #. Set O if

*Last+l or null flag. Load map
*register 30 with base(PTE pg)
*plus offset.

{At this point mapping of page 30 has occurred. Even though we may
fault on this page, we are OK because the page will be mapped
again when the microcode is restarted.}

FIN MAP1:

Sl:=X XOR T, SPO/RDP;

IF 0 GOTO SP_CASEI,
NOP:=ACC AND S1, CLE;

*Do segment #’s match? Start
*read of second PTE entry.

*If 0 set(indicating 0’s in
*lower bits of PTE entry),
*branch to special case code.
*Complete test of segment #s.

Appendix E

E-55

Appendix E

0649
0649
0649
0649
0649
0649
0649
064A
064A
064A
064B
064B
064C
064D
064D
064E
064E
064F
064F
064F
064F
064F
064F
064F
064F
064F
064F
0650
0651
0651
0652
0652
0653
0654
0654
0654
0654
0654
0654
0655
0656
0657
0657
0658
0659
0659
065A
065A
065B
065B
065B
065B
065B
065B
065B
065C
065C
065D
065E
065E
065F
065F
065F
0660
0661
0662
0662
0662
0662
0662
0663
0664
0665
0665
0666

E-56

*E is used as a flag to show
*which page caused "problem."

{E is undefined after VMA call other than .PMAP. This code returns
with E clear. Coding restrictions forced me to use E as a flag.}

FIN MAP2:

FIN MAP3:

{The

OVER:

SP_CASEl:

SP_CASE2:

NF_P1:

NULL_FLT:

PG_FLT2:

PG _FLTI:

PFLT:

FAULT:

IF NOT YZ GOTO PG FLTI,
ACC:=NOT ACC AND T;

IF YZ GOTO SP_CASE2,
MAP:=ACC+PRIN, STE;

$3:=X XOR T, CLO;
NOP:=S3 AND 0176000;
IF NOT YZ GOTO PG _FLT2,
P:=S0;
B:=S7 AND S4, CLE,
FCHP, RTN;

*Fault on no match. Mask off
*segment # of 2nd PTE entry.

*Last+]l or null again. Load
*map 31. Again use E as flag.

*Segment #s match? Clear O
*for return.

*Restore program counter for
*return., B gets logical addr.
*E is returned clear. Fetch
*next instruction.

following code handles various "anomalies.'}

IF YZ THEN STO,

MAP:=S3+PRIN;
S3:=T, STF;
P:=ACC;

Sl:=X XOR T, SPO/RDP;

X:=X+ONE, GOTO FIN MAPI;

IF NOT F THEN STOR,
S§3:=S1 XOR X;
IF & THEN STOR, S3:=T;
NOP:=S3 INOR 01777;
IF ¥Z GOTO NULL FLT,
N:=ZERO;
SRIN:=SRIN-1;
MAP:=ACC XNOR ACC, IN,
IF E GOTO FIN MAP3;
NOP:=ACC AND S1,
GOTO FIN MAP2;

NOP:=P AND 01777;

IF YZ THEN STOR,
X:=X+ACC;

GOTO PG_FLTI;

IF NOT E GOTO NF_PI,
ACC:=O0NES;

IF NOT F THEN FCIN, X:=X;

Y:=074000;
N:=ZERO, CLF, CLO;

*QVER: handles case when lst
*entry read is last entry of
*PTE table.

*Last+l or null. Load map 30.
*Save second PTE entry. Set F
*so that SP CASEl and PG FLT2
*know we have been here.
*Set P to read first PTE
*location. (1111110000000000)
*Segment #s match? Read 2nd
*entry. Bump PAGID.

*This code handles "LAST+1"
*page of VMA and null entry
*faults.

*Determine what the PTE entry
*was that resulted in anomaly.
*A null flag perhaps?

*Must be L+l. Restore MPAR.
*Map register is R/W protected.
*Return to VMA MAP. Fault is
*still possibig on this page.

*The following code handles
*the various kinds of faults.
*The San Andreas not included.

*If OVER incremented PAGID,
*put it back the way it was!

*Fault due to null entry.

*Bump PAGID if OVER didn’t.
*Set Y to logical addr of lIst
*PTE entry. $VMAS manipulates
*PTE thru map 30 if non-PMAP
*fault on first page. F is
*cleared to avoid P+l return.
*0 clear cause fault not PMAP.

IF E THEN FCIN, SRIN:=PRIN;*MPAR=USER MAP 30+E

IF NOT E GOTO FAULT, IN;

Y:=076000;

P:=4;
MAP : =PRIN;

*Change Y 1f PMAP or 2nd page.

*Where is VMA? Addr is at 4.
*Load map reg with page of

0667
0668
0669
0669
066A
066A
066B
066C
066C
066D
066E
066F
066F
066F
066F
066F
066F
066F
066F
0670
0670
0670
0670
0670
0671
0672
0673
0674
0674
0674
0674
0674
0675
0676
0676
0677
0677
0677
0677
0678
0679
0679
0679
067A
0678
067C
067D
067D
067D
067E
067E
067E
067E
067E
067E
067F
0680
0680
0681
0682
0683
0684
0684
0685
0686
0687
0687
0688
0683
0689
068A
068B
068B
0688
068B

SPO/RDP, ACC:=ONES;
P:=T, CLE, IF F GOTO PNF;
WRP:=FA, IP,

IF YZ GOTO DM_ABORT;

SPO/RDP;
NOP:=T XOR 0104400;
IF NOT YZ GOTO DM_ABORT,
ACC:=0NES;
PNF: TIF F THEN STOR, P:=FA-ACC;
FCHP, RIN;

NOT INIT:
S1:=MEMR, LGOTO LINK2;

{LINK2: S2:=MEMR and 037;
MEMR:=ZERO, LGOTO LINKI;}

LINKl: P:=2;
SPO/RDP, P:=FA;
§2:=RL4(S2), IP;
$2:=LL1(S2);

PRIN:=T and 077777;

DN;

IF B15 GOTO VMN_INIT,
MEMR:=S1;

PRIN:=S2 IOR 036;
ACC:=ONES, LGOTO VMA ENTR;

VMN INIT: PRIN:=S2 IOR 036;
- SRIN:=PRIN+ONE;
Y:=0176000;
GOTC FAULT, IN;

DM_ABORT: :=FA, LGOTO PRIV_TRAP;

S2_PMAP: P:=B IOR 0176000;
NOP:=A+0177737;
CON_PMAP: IF CF GOTO REG_ERR,
RDP, N:=ZERO;
SRIN:=PRIN-ACC;
$3:=B XOR T, CLE;
S2:=T AND 01777;
IF YZ GOTO SP_PMAP,
MAP:=ACC;
S4:=PRIN-31;
SRIN:=A+S4, IN;

NOP:=S3 AND 0176000;
IF NOT YZ GOTO PMAP_FLT,
P:=FA-ACC;
MAP:=S2+PRIN, IP;
END_PMAP: B:=B-ACC, FCHP, RN;

*PTE. Read 4 and put addr in
*P., Store fetch address for
*restart at lst loc of $VMAS
*and abort if addr given is O.
*Do not store if PMAP P+l.
*Read lst instr of $VMAS,
*must be DST, abort if not.

*F is set if PMAP P+l exit
*required. Fetch next
*instruction.

*The following code initializes
*internal VMA registers after
*an interrupt.

*Save present MEMR.

*Get map set #.
*Set map set O.

*Read location 2 of system map.
*This is the page # of PTE.
*Set P to fetch addr plus one.
*We are going to '"restart" the
*instruction. Map set # is left
*shifted five so that we can
*calculate what user map 30 is.

*Mask sign bit off PTE page #.
*N goes to 0. Cond flags stay.
*1f PTE page had sign set, WM
*system is not initialized. We
*must do an "uninitialized
*fault." Also restore MEMR.

*PRIN(0O) gets user map 30.
*Restart instruction.

*PRIN(0) gets user map 30.
*MPAR gets user map 31.

*Sign bit set in Y tells $VMAS
*that this is an "uninitialized
*fault." N goes to one.

* ,PMAP code follows.

*P gets logical addr for PTE
*read. Is logical pg to be
*mapped > 31. If so ERROR!
*Read PTE. N gets zero.

*MPAR gets user map 31.
*Segment #s match? E is
*returned clear unless L+l.
*Null entry or LAST+l. R/W
*prot 31 so user can’t trash
*page table. Calculate abs
*page # given logical page #.
*Recall A has been bumped! N=1
*Segment #s match? Set P to
*Fetch address plus two.

*Map page.

*Bump B.

*Fetch next instruction.

*PMAP anomalies follow.

Appendix E

E-57

Appendix E

068B

068B

068C
068D
C68E
C68F
0690
0691
0692
0693
0693
0694
0695
0696
0697
0697
0698
0699
069A
069A
069A
069B
069C
069C
069C
069C
069D
069E
069F
06A0
06A1
06A1

06A2
06A2
06A2
06A2
06A2
06A3
06A4
D6AS5
D6A6
D6A7
06A7

06A8
06A8
J6A9
06A9

06A9
06A9
06A9
06AA
06AB
06AC
06AD
06AE
06AF
06AF
06B0O
06B0
06B1

06B2

06B2

0683

06B4

06B5

06B5

06B6

06B6

06B7

06B8

06B8

06B8

06B8

06B8

E-58

SP_PMAP: NOP:=T INOR 01777; *Null entry?
IF YZ GOTO PMAP_FLT;
NOP:=S3 AND 0176000; *Segment #s match?
IF NOT YZ GOTO PMAP_FLT;
S4:=PRIN-31; *Calculate abs page #. Set
SRIN:=A+S4, STE; *E to indicate LAST#l. Set
:=FA+2; *program counter for return.

MAP:=ACC, LGOTO END PMAP; *R/W protect LAST+l page.

*Restore A.

PMAP_FLT: A:=A+ACC, STO; *Set 0 so $VMAS knows
N:=ZERO; *PMAP faulted. N gets zero.
SRIN:=PRIN-ACC, IN; *MPAR = user map 31. N gets 1.
:=B, LGOTO PFLT; *X gets PAGID that caused flt.
REG_ERR: A:=80; *A gets error code 80 decimal.
- P:=FA+ONE; *Error return at P+l.
FCHP, RTN; *Fetch next instruction.
S PNEG: TIF YZ GOTO N INITP2, *Restore A.
A:=A+ACC;
MAP:=PRIN, CLE, STF; *Load map reg for PTE read.

*Clear E for normal return.
*Set F so fault will cause P+l

*return.

Sl:=A AND 077777; *Strip sign bit.
A:=A-ACC; *Bump A again.
P:=B IO0R 0176000; *p gets log addr for PTE read.
NOP:=S14+0177740; *Logical page # > 317
LGOTO CON_PMAP;

N_INITP2: LGOTO NOT INIT;

CONT RIB: TIF NOT Bl5 THEN RTIN; *Resolve indirect addresses
NOP:=BE, RDB; *and store direct addr in B.
B:=T;

RIB_LOOP: IF NOT B15 THEN RTN;
NOP:=E, RDB;
B:=T, IF NOT INTP

GOTO RIB LOOP; *Interrupt causes restart.

P:=FA, LGOTO PROCESS_DISPATCH;

S§2 LPX: P:=T, RDB; *DEF comes back. Resolve
IF B15 CALL RES IND8, IP; *if indr. load P and bump
S6:=A+T, SPO/RDP; *to read 2nd word. Add value
ACC:=0176000; *to A,B; store to S6,57. ACC
S§7:=B+T; *gets mask.
S6:=S6+CF;

ABUS/ACC, BBUS/S6, STOR/X, *See VMA MAPl. Must copy code

ALU/CAND, SPO/RR1; *cause long branch required.

S1:=RR1(ACC AND S7),

IF B15 GOTO LR LPX;

$7:=ACC TOR S7, LGOTO VMA MAP2;

LR_LPX:
PRC_DSP2:
RES_IND8:

FIN_LR:

LINK2:

{Begin

LGOTO LOC_REF;
P:=FA, LGOTO PROCESS DISPATCH;
LGOTO RES_INDR;

NOP:=T, FCHP, RIN; *Finishes local reference.
*NOP:=T makes sure read
S2:=MEMR AND 037; *is finished.

MEMR:=ZERO, LGOTO LINKI;
*See LINKI.

array address resolving code.}

06B8
06B8
06BF
06BF
06CO
06CO
06CO
06C1
06C2
06C3
06C3
06C3
06C3
06C3
06C3
06C3
06C3
06C3
06C3
06C4
06C4
06C5
06C6
06C7
06C8
06C8
06C9
06C9
06CA
06CB
06CB
06CC
06CD
06CD
06CE
06CF
06D0
06D0
06D1
06D2
06D3
06D4
06D5
06D6
06D7
06D8
06D9
06DA
06DA
06DB
06DC
06DD
06DE
06DF
06E0
06EQ
06E1
06E1
06EL
06E1
06E1
06E2
06E3
06E4
06ES5
06E6
06E7
06E8
06E8
06E8
06E8
06E8
06E8
06E9
06E9

S2_IRES:

S2_IMAP:

INI:

RESOLV:

MAP_RES:
RLOOP:

NOT J:

HERE:
ENTZ:

THERE:

END_RES:

RES_INDX:

$ORIGIN OX6BFS$

*X gets the addr of the 2nd

X:=T-ACC, RDB, CALL RESOLV;*elem in the array parameter

*table.

P:=80;
A:=86, FCHP;
B:=87, RTIN;

Call resolve subr.

*Save return point in SO.
*VMA address to S6,S7.
*Fetch next instruction.

*The code below has to test for
*uninitialized case before
*resolving the address. .IRES

*and
*all.,

«JRES do not test this at
This results in different

*entry points to RESOLV.

X:=T-ACC, RDB;

IF Bl5 CALL RES_INDX,
$6:=ACC+ONE, BBUS/PRIN;

IF B15 GOTO INI, S$7:=ZERO, IN;

Y:= -T, SP2/RDP, CALL MAP_RES;

LGOTO VMA MAP1;

LGOTO NOT INIT;

*As above followed by indr
*resolver. S6 gets zero.
*Test PRIN(0). Clear S7.
*N goes to one.

*Y gets -# of dimensions.
*Read lst subscript.

IF Bl15 CALL RES_INDX, IN, S7:=ZERO; *Resolve indrs loading

:= =T, SP2/RDP;

IF YZ GOTO END RES, ACC:=ONES,
S2:=T~ACC, RDB;

*addr to X. Y gets the
*negated loop count.
IP; *If loop count 0, ter-
*minate routine. Indrs
*are resolved for subs

IF Bl5 CALL RES_IND2, CT:=LL1(ACC); *DEF. CT gets +l.
IF NOT E GOTO NOT J, CT:=NOT CT;

S6:=S6+T, DCT;
RDB, BBUS/S2, IF INTP
GOTO PRC_DSP6;
S1:=S7+T;
S0:=86+CF, BBUS/T;
IF Bl5 THEN STOR, S0:=SO-CT;
X:=X-ACC, RDB, IF NOT E GOTO I;
NOP:=Y+ONE;
$2:=T, IF YZ GOTO I;
X:=X-ACC, RDB;
$3:=T, LCALL DIM;
Y:=Y+ONE, SP2/RDP, GOTO THERE;

¢ 83:=T, IF INTP GOTO PRC DSP6;

$2:=ZERO, IF YZ GOTO ENTZ;
LCALL DIM;

Y:=Y+ONE, SP2/RDP, GOTO THERE;
S6:=S1;

§7:=2ER0, LGOTO HERE;

IF NOT YZ GOTO RLOOP, ACC:=ONES, IP;

*CT goes to O for JRES/

* JMAP. Read 2nd word

*of subscript in Jxxx.
*Add word rtned to low
*word of VM addr. Prop
*carry & sign extend if
*Ixxx. Read next dim size.
*Last loop? The this is #
*words/elem. Treat like
*Ixxx. Read 2nd word of
*dim size and call mult.
*Start read of next subscr
*DEF. Last loop?

*Set up Ixxx multiply.
*Ixxx treats dim size of
*zero as 2%*16. Sp-case
*this. Last loop? Start
*read of next DEF.

B

*Finish array addr reso-
*lution. Must add array
*offset.

BBUS/T, ACC:=0176000;

*Finish pseudoDEF read.

SO:=P-1; *Mask to ACC. Return addr to
P:=X, RDB; *S0. Read lst word of off-—
IP, N:=ZERO; *set. N will soon be 1.

$6:=S6+T, SPO/RDP;
§7:=S7+T, IN;
S6:=56+CF, RIN;

*Read 2nd word.

*Propagate carry.

*INDIRECT ADDRESS RESOLVERS.

:=T-ACC, RDB;

NOP:=ACC, BBUS/PRIN;

*Table pointer will be in
IF NOT B15 THEN RIN, *X.

PRIN must be on BBUS

*to test for NOT INIT. ALU

Appendix E

E-59

Appendix E

06EA
06EB
06EB
06EC
06EC
06ED
C6EE
06EE
C6EF
C6F0
06F1
06F2
06F2
06F3
06F4
06F5

X:=T-ACC, RDB; *must not be zero so status
RSX_LCOP: IF NOT Bl5 THEN RIN, *will be updated.
NOP:=ACC, BBUS/PRIN;
X:=T-ACC, RDB,
IF NOT INTP GOTO RSX LOOP;
P:=FA, LGOTO PROCESS DISPATCH;

RES_IND2: S§2:=T-ACC, RDB; *32 gets bumped address for
IF NOT B15 THEN RTN; *read of possible 2nd word.
§2:=T-ACC, RDB;

RS2_LOOP: IF NOT B15 THEN RTN;
$2:=T-ACC, RDB,

IF NOT INTP GOTO RS2_LOOP;

PRC_D3P6: LGOTO PROCESS DISPATCH, P:=FA;

MPARA source listing
0000 MPARA; *operating system set <820204.1550>

05E0
05E0
05E0
05EOQ
D5E0
05E0
05SEO0
05E0
05EQ
05E0Q
05EO
05EO0
05E0
05EQ
05EQ
05E0
018C
018D
05E0
05E0
05EQ
0SEL
05E1
05E1
05E1
05E2
05E2
05E3
05E3
05E3
05E4
05E5
05SE6
05E7
05E8
05E8
05ES8
05E9
05EA
05EA
05EA
0S5EB
0SEB
05EB
05EC
05EC
05ED
05ED
05EE
05EE
05EE
O5EF
0S5EF
05F0

E60

$origin Ox5E0$ *file = &0SS <820204.1550>
Jedk R R Rk ok ok ok ek ek Ak ok ek ok kR Ak kR ko ke ke kkk ke k ko kkkkkkkkk

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

* No part of this program may be photocopied, reproduced or *
* translated to another program language without the prior written *
* consent of Hewlett Packard Company. *

kkkkkkkkhkkkk k***

*820107 SRK updated FWID to REV 2
*820114 SRK fixed .SIP (was pure NOP, now skip if I/0 interrupt)
*820119 SRK updated FWID to REV 3
*820128 SRK updated FWID to REV 4

$define adrl/INDRDBL 0x735$
$define dat/ST FWID 0x0200$

gorigin 0x18C$ goto os branch, n:=ones; *opcodes 105300 - 105317

os_table: Sorigin 0x5e0$ *opcodes 105300 - 105317
goto Sorigin 0x5e0$ *CPU IDENTIFICATION INSTRUCTION
.cpuid, acc:=1l11(acct+acc); * (loads A=3 for A700)
goto $origin Ox5el$ *FIRMWARE IDENTIFICATION INSTRUCTION
fwid, * (branches to the last two words of each
ct:=b, * 1K module noted by B.
dn; * set n to N ST for microcode status
goto $origin 0x5e2$ *WAIT FOR INTERRUPT INSTRUCTION
~wfi; *
Sorigin 0x5e3$ *SKIP IF I/0 INTERRUPT PENDING INSTRUCTION
.sip: *
ist:=ist xor 0x0100; *unmask I/0 interrupts (valid 2 cycles later)
ist:=1st xor 0x0100; *remask I/0 interrupts
if intp then ip; *skip if I/0 interrupt
if intp goto refetch; *refetch if any other interrupt pending
fchp, rtn; *that’s all
os_branch: *agsure that only four words of jumptable
ct:=ct and 0x0003; * are used
goto os_table, ct30; *
.cpuid: *A700 identification code is 3
fchp, a:=not acc, rtn; *
fwid: *pranch to code that identifies each 1k
acc:=ST FWID; *set special bit to indication that JNM
call .fwidtable, ct30, * may be caused by firmware checkout
prin:=prin ior acc; *
prin:=prin and not acc, *identification complete, clear the bit
fchp, rtn; *
wfis *
if not intp goto .wfij; *wait for interrupt
refetch: *
fchb, p:=fa, rtn; *

05F0

05F0

05F1

05F2

05F3
05F4
05F5
05F6
05F7

05F8
05F9
O5FA
05FB
05FC
05FD
05FE
O5FF
0600
03FE
03FE
03FF
O07FE
07FE
O7FF
0800
0801

.fwidtable: $origin OxS5F0$
{0} goto 0x03FE;
{1} goto O0xO7FE;
{2} goto OxOBFE;
{3} goto 0xOFFE;
{4} goto Ox13FE;
{5} goto Ox17FE;
{6} goto Ox1BFE;
{7} goto OxI1FFE;
{8} goto 0x23FE;
{9} goto Ox27FE;
{A} goto Ox2BFE;
{B} goto Ox2FFE;
{C} goto 0x33FE;
{D} goto 0x37FE;
{E} goto Ox3BFE;
{F} goto Ox3FFE;

$origin Ox3FE$
:=0x0401;
rtn;
$origin Ox7FES$
a:=0x0401;
rtn;

MPARA source listing
0000 MPARA; *USER and HP reserved opcodes <820204.1550>

Sorigin 0x180$ *file = &USER <820204.1550>

kkdkkhdkokdkkdokkkk gk gk kkdkkkkkkkkkkhkdkhkkkkhkikhkhkikkkkhkkkkkkkikkhkkhk

* (C) Copyright Hewlett Packard Company 1982. All rights reserved. *

0180
0180
0180
0180
0180
0180
0180
0180
0180
0181
0182
0183
0184
0185
0186
0186
0187
0187
0188
0189
018A
018B
018B
018C
018D
018E
018E
018F
018F
0190
OlAE
OlAE
O1AF
O1AF
0lAC
01AC
01AD
01AD
01AA
01AA
01AB
O01lAB
01A8
01A8

*
*

*0k
*1k
*2k
*3k
*4k
*5k
*6k
*7k
*8k
*9k
*]10k
*11k
*12k
*13k
*14k
*] 5k

*1ow

*hi

*1ow
*hi

This code causes a branch to a lk bank
specified by the contents of the
B-register. If firmware is installed,

it should contain two lines of microcode
to load the revision and package
information into the A-register and rtn.
If the firmware is not installed, the
jump-to-nonexistent micromemory code

in &CONTR will set the A-register

to OxFFFF and fetch the next instruction.

Thus, special selftest opcodes are not
required for checking firmware
installation.

byte = firmware package (l=base set)
byte = revision (revision 4)
byte = firmware package (l=base set)
byte = revision (revision 4)

No part of this program may be photocopied, reproduced or *
translated to another program language without the prior written #*

* consent of Hewlett Packard Company. *
T L T T T T T T R T P P P T TP T T T TP

$origin 0x180$ *VIS
$origin 0x181$ *VIS
Sorigin 0x182$ *VIS
Sorigin 0x183§ *VIS
Sorigin 0x184$ *reserved
Sorigin 0x185$ *reserved

$origin Ox186$ gototbl 0x(0900,

*opcodes 105000 - 105017 HP reserved
*opcodes 105020 - 105037 HP reserved
*opcodes 105040 - 105057 HP reserved
*opcodes 105060 - 105077 HP reserved
*opcodes 105100 - 105117 HP reserved
*opcodes 105120 - 105137 HP reserved

stor/n,bbus/cab;
Sorigin 0x187$ gototbl 0xOB0O, *opcodes 105160 = 105177 HP reserved
stor/n,bbus/cab;

$origin 0x188% *BASE SET:
Sorigin 0x189$ *BASE SET:

Sorigin Ox18A$ *BASE SET: VMA

Sorigin Ox18C$ *BASE SET: 0SS

$origin Ox18D$ *SIS

Sorigin Oxlae$ gototbl 0x0800, *opcodes 10(x01)400

*opcodes 105140 - 105157 HP reserved

*opcodes 105200 - 105217 HP reserved
*opcodes 105220 - 105237 HP reserved
*opcodes 105240 - 105257 HP reserved
$origin 0x18B$ gototbl 0Ox2800, *opcodes 105260 - 105277 HP reserved

stor/n,bbus/cab;

*opcodes 105300 - 105317 HP reserved
*opcodes 105320 - 105337 HP reserved
$origin Ox18E$ gototbl 0x0OD0OO, *opcodes 105340 - 105357 HP reserved
stor/n,bbus/cab;
Sorigin Ox18F$ gototbl OxCFO0, *opcodes 105360 -~ 105377 HP reserved
stor/n,bbus/cab;

10(x01)417 HP

stor/n,bbus/cab;

Sorigin Oxlaf$ gototbl 0x0A00, *opcodes 10(x01)420 - 10(x01)437 HP
stor/n,bbus/cab;

Sorigin Oxlac$ gototbl 0x0C00, *opcodes 10(x01)440 - 10(x01)457 HP
stor/n,bbus/cab;

Sorigin Oxlad$ gototbl OxCE00, *opcodes 10(x01)460

stor/n,bbus/cab;

Sorigin Oxlaa$ gototbl 0x3000, *opcodes 10(x01)500

stor/n,bbus/cab;

$origin Oxlab$ gototbl 0x3200, *opcodes 10(x01)520

stor/n,bbus/cab;

$origin Oxla8$ gototbl 0x3400, *opcodes 10(x01)540

stor/n,bbus/cab;

10(x01)477 HP

10(x01)517 user

10(x01)537 user

10(x01)557 user

Appendix E

E-61

Appendix E

01A9
01A9
01A6
01A6
01A7
01A7
01A4
01A4
01A5
01A5
01A2
01A3
01A0
01Al
O1AL
01A1
0196
0196
0197
0197
019E
019E
019F
019F
01B6
01B6
01B7
01B7
01B8
01B9

Sorigin Oxla9$ gototbl 0x3600, *opcodes 10(x01)560 10(x01)577 user
stor/n,bbus/cab;

Sorigin 0xlab6$ gototbl 0x2000, *opcodes 10(x01)600 10(x01)617 HP/user
stor/n,bbus/cab;

Sorigin Oxla7$ gototbl 0x2200, *opcodes 10(x01)620 10(x01)637 HP/user
stor/n,bbus/cab;

$origin Oxla4$ gototbl 0x2400, *opcodes 10(x01)640 — 10(x01)657 HP/user
stor/n,bbus/cab;

$origin Ox1a5$ gototbl 0x2600, *opcodes 10(x01)660 10(x01)677 HP/user
stor/n,bbus/cab;

Sorigin 0x1a2$ *BASE SET: DMS *opcodes 10(x01)700 10(x01)717 HP

Sorigin Ox1a3$ *BASE SET: DMS *opcodes 10(x01)720 - 10(x01)737 HP

Sorigin 0x1a0$ *BASE SET: EIG *opcodes 10(x01)740 - 10(x01)757 HP

Sorigin Oxlal$ *BASE SET: EIG *opcodes 10(x01)760 10(x01)777 HP

*include opcodes forced out for DIS,FPSG, FPDG

Sorigin 0x196% gototbl 0x0900, *opcodes 105140 - 105157 .HP reserved
stor/n,bbus/cab;

Sorigin 0x197$ gototbl 0xOB0O, *opcodes 105160 - 105177 HP reserved
stor/n,bbus/cab;

$origin Ox19E$ gototbl 0x0900, *opcodes 105140 — 105157 HP reserved
stor/n,bbus/cab;

Sorigin 0x19F$ gototbl 0xOBOO, *opcodes 105160 ~ 105177 HP reserved
stor/n,bbus/cab;

Sorigin 0x1B6$ gototbl 0x0900, *opcodes 105140 — 105157 HP reserved
stor/n,bbus/cab;

$origin 0x1B7$ gototbl 0x0B0O, *opcodes 105160 - 105177 HP reserved

MPARA source listing

stor/n,bbus/cab;

0000 MPARA; *microcoded selftest and boot routine <820204.1550>

0007 $origin 0x007$ *file = &SELFT <820204.1550>

0007 Fkkkkkskskkdkkhhhk Ak khhhdkiodkkkhkiidkkhkkhhihhkkkkkhkiiidkkkkikkkkkk ks
0007 * (C) Copyright Hewlett Packard Company 1982. All rights reserved. *
0007 * No part of this program may be photocopied, reproduced or *
0007 * translated to another program language without the prior written *
0007 * consent of Hewlett Packard Company. *
0007 *kkkksdhdddkhihk ko kkhoidkkihookiikdkhhhhiokkkdkhhkddkddkkidkddkkkkkkk
0007 $define adrl/RESET PU Ox2F2$

0007 sdefine adrl/STARI_HP 0x0CF$

0007 $define adrl/FAILTRAP 0x004$

0007 s$define adrl/TEST RESTART 0x001$

0007 -

0007 SELFTEST: $origin 0x007$ *link from &CONTR module

¢007

0007 PL_DIAGNOSTIC: *begin lower processor diagnostic

0007

0007 pl_branch:

0007 {

0007 Begin the microcoded selftest

0007 Assure that YZ condition and conditional branches work

0007 }

0007 if not yz goto FAILTRAP, *YZ condition: test true, no jump

0007 r00:=not acc and acc; *r00:=zeros

0008 if yz goto pl_b_false, * test true, jump

0008 rOl:=acc xnor acc; *

0009 pl failure: *

0009 Tgoto FAILTRAP; *no brains at all! (put brakes on)

000A pl b false: - *YZ condition set to FALSE

000A if yz goto FAILTRAP, *YZ condition: test false, mo jump

000A r02:=r00 xnor acc; *

000B if not yz goto * test false, jump

000B pl_regfile, *

000B cti=zeros; *CT:=zeros for later test.

000C lgoto FAILTRAP; *only half crazy!

000D

000D pl_regfile:

000D {

000D Load the register file with unique immediate data.

000D new microorders used:

000D ~ op/imm

E-62

000D

000D
000D
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
00l1C
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001D
001E
001E
001E
00IF
001F
0020
0020
0020
0021
0021
0022
0022
0023
0023
0024
0024
0025
0025
0026
0026
0026
0027
0027
0028
0028
0029
0029
0029
002A
002A
002B
002B
002C
002C
002C
002D
002D
002p
002E

~ alu/adac;
- stor/r00 - stor/rl7

r00:=0x0001;
r01:=0x0002;
r02:=0x0004;
r03:=0x0008;
r04:=0x0010;
r05:=0x0020;
r06:=0x0040;
r07:=0x0080;
r10:=0x0100;
r11:=0x0200;
r12:=0x0400;
r13:=0x0800;
rl4:=0x1000;
r15:=0x2000;
r16:=0x4000;
r17:=0x8000;

- abus or bbus r00-rl7
- bbus/q

- stor/q and r00-rl7

- sp2/stf,clf,

F ok % % % % % % Ok % ¥ % H X X F

Do an exclusive or of all of the register file values, in addition
to random checks. The exclusive or should come up all ones if

the register file checks and the random checks did not interfere.
new microorders used:

- sp0/cle,ste,sto,clo,stor, 1ldq

- alu/xor,ior,addc
- cndx/yz,yl5,0,e,f,bl5

r10:=rl10 ior rll,

cle,
stf;

acc:=acc xor r05,

if e goto faill,
1dq;

rl7:=rl16 xor rl7,

if not e then ste;

acci=acc+rlO,

if not e goto faill,
cle;

r00:=r00 xor r0l,

if not e then stor;

r00:=acc,

if e then stor;

rl4:=rl5 xor rlé4,

if not bl5 then clo;

r07:=r06 xor r07,

if yl5 then ste;

r13:=r12 xor rl3,

if o then ste;

r03:=r03 xor r02,

sto,
clf;

r01l:=r00 xor rl7,

if not o then ste;

rll:=r03 xor rl4,

if £ then ste;

rl15:=r13 xor r07,

stf,
1dq;

acc:=acc xor q,

if not f goto faillj;

rl12:=r01 xor rll,

if yl15 then ste;

acc:=acc xor rl2,

if e goto faill,
ldq;

if not yl5 goto faill,

nop:=not acc,
spl/acf;

if not yz goto faill,

*r10:=0300

*cle (pretest should further test sto in asgs)

*stf

*acc:=0030

*check e value

*load q

*r17:=c000

*try spOt--should ste
*acc:=0330

*check e--should be set
*cle

*r00:=0003

*try stor--should store
*r00:=0330

*try stor-—should not store!

*r14:=3000

*check bl5=-should clear o

*r07:=00c0

*check yl5--should be false

*r13:=0c00

*check alov-=-should be clear

*r03:=000c
*sto
*clf
*r01l:=c003

*check o--should not ste

*r11:=300c

*check f=--should not ste

*r15:=0ccO

*stf

*load q
*acc:=0ff0, use q
*

*r12:=FOOF

*check bl5--should not ste

*acc:=FFFF

*check e--if set then failed test

*

*acc should equal all ones

*nop:=0000
*try acf--no carry
*test for all ones

Appendix E

E-63

Appendix E

002E
002F
0030
0031
0031
0031
0031
0031
0031
0031
0031
0031
0031
0032
0033
0033
0034
0035
0035
0036
0036
0037
0037
0037
0038
0038
0039
0039
003A
003A
003B
003B
003B
003B
003B
0038
003C
003C
003D
003D
003E
003E
003E
003F
003F
0040
0040
0041
0041
0042
0042
0043
0043
0044
0044
0045
0045
0045
0046
0046
0047
0047
0047
0048
0048
0048
0049
0049
004A
004B
004B
004C
004C
004C
004C

E-64

nop:=111(zeros);
if yz goto pl_ct load;
cmdw;

pl ct load:

{

*nop:= 0 or 1 based on DW
*check for complementing the DW bit
*complement it to set it to zero

check ctz condition by hedging against alu.

new microorders used:
cndx/ctz,ctzé
bbus,stor/ct
spl/fcin

ct:=0x5555;

nop:=ct xnor OxAAAA;

if not yz goto faill,
ct:=not ct, ldq;

ct:=ct xor (xAAAA;

if not yz goto faill,
acc:=zeros;

if not ctz4 goto faill,
nop:=acc+ct;

pl_ctloop:

if not yz goto faill,
acci=acctone;

*Check for stuck at ones, stuck at zeros and
* stuck to adjacent.

*

*Try other sense. (load q with this pattern)
*CT gets zeros.

*

*ACC gets zeros

*Check for ctz4 condition initially.

*ACC and CT should be zero.

*

*If acc+ct do not equal zero, they are out of
* step. Increment acc.

if not ctz goto pl_ctloop,*If ct is zero, then check to make sure

nop:=acctct;

if not yz goto faill,
nop:=acc;

if not yz goto faill,
cti=ones;

pl_stack:

{
}

* acc is also zero.
*

*Check that ctz occured at the same time
* acc was zero.

Decrement ct.

Call rhrough the stack..even overwrite a location in stack.

r00:=0xF777;
lcall pl calll,

bbus/r00, alu/xor;

faill:

lgoto FAILTRAP;

pl calll:

1f not bl5 call faill,
rO01:=111(r00);
if not sf rtn,
r02:=rrl1(r0l);
if sf rtn,
r03:=rrl1(r02);
if not alov call
r04:=1r1(r03);
rtn,
nop:=zeros;

pl_call2:

lcall pl call3;
rtn,

ril:=r11(r10), lwf;
pl _call3:
scall pl calls,
r05:=r11(r04);
rtn,
r10:=rrl(r07), lwe;
pl_call5:
rtn,
r07:=rr1(r06), lwe;

pl_call4:

call pl_call5s,
r06:=r11(rr05);

if not yz then rtn,
r12:=r06 xor rll;

nop:=rl2 xor Oxé4cce;

if not yz goto fail2,
r0l:=r00+acc;

pl_alu:

{

Check the carry mechanism..also check no

*r00=F777
*Push first rtn address onto stack.

*Set up for bl5 check (remem status update)
*
*FAIL:
*
*Should not call or push stack.
*r01=EEEE
*

no overwrite. (stk 1)

Check for bad stack pop.
*r(02=7777 Do it twice to offset possible
* bad push at pl calll.
*r03=BBBB

pl_call2,*Should call pl call2.

*r04=5DDD
*Should not return to stackfail.
*

*

*Try a long call.

* (stk 3)
*r11=4779 (f was set)
*

*Try a short call.
*r05=BBBA

*

(stk 2)

(stk 4)

*r10=9DDD
*return down the chain.
*

*r(Q7=3BBA

*

*Should call, and overwrite
*r06=7775

*

*r12=4CCE

*

*

*

(stk 1)

status update.

004C
004C
004C
004D
004D
004E
004F
004F
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
0051
0051
0051
0051
0052
0052
0053
0053
0054
0054
0055
0055
0055
0056
0056
0056
0056
0056
0056
0056
0056
0057
0057
0058
0058
0058
0058
0059
0059
0059
005A
005A
005A
005A
005A
005A
005A
005A
005A
0058
0058
005C
005C
005¢C
005D
005E
005E
005F
005F
0060
0060
0061
0061
0062
0062
0063
0063

}

if not cf goto fail2,
acc:=r03-acc;

if not alov goto fail2,
r03:=r02 xor acc;

r16:=r03 xor Ox2aa9;

if not yz goto fail2,
nop:=sr;

End of PL diagnostic
Output 7FFF to lights

*cf should be true
*

*alov should be true
*

*(save zeros for later test)
*results should be 2aa9
*

Check for looping on selftest

}
{nop:=sr and 0x8000;}
if not yl5 goto
PU_DIAGNOSTIC,
acc:=11l1(ones);
blinky lights:
pl_dloop:
if not ctz goto pl_dloop,
lr:=acc;
if sf goto pl_dloop,
acc:=rll(acc);
goto TEST RESTART,
1r:=zeros;

fail2: goto FAILTRAP;

PU_DTAGNOSTIC:
lr:=not Ox7fff;

pu_preg:
{

Store every value possible
Check 1ip.
Check integrity of BBUS
}
p:=ones;
acc:=zeros, sp2/ip,
goto pu plpentry;
pu_ploop:
if not yz goto fail2,
stor/acc, abus/acc,
fcin, alu/adac;
pu_plpentry:
if not cf goto pu ploop,
n:=acc-p, spl/ip;

pu nreg:

{

*Check for diagnostic looping.

*If no loop then goto PU diagnostic

*

*set up for blinky lights.

*blinky lights routine

*rotate a zero through the lights register

* count to 64k

*

* ghift the zero until done.
*

*Restart pl selftest
* turn all lights on

*show that PL diagnostic finished

into the p register.

*Set p to -1

*Set acc to zeros, increment P to O

* using sp2/ip

*

*If acc and P are not equal, then fail.

*increment acc on ABUS.
*

*
*If increment of acc rolls over, then done.
*Else, compare acc and P and increment P.

Rotate a pattern through grin and prin.
Check for dual addressing of register files.
Load and check N register for all values.

Check IN and DN.
}
rl7:=1;
{ n:=zero; }
cti=ones;
n_loop:
rin setloop:
grin:=rl7, in;
r17:=r11(rl7), dn;
if not sf goto rin_setloop,
prin:=not rl7, in;
rin checkloop:
nop:=grin-rl7;
if not yz goto fail2,
rl7:=rll1(rl7);
nop:=prin xnor rl7,
in;
if not yz goto fail2,
acc:=zuy(n);
if not sf goto
rin_checkloop,

*Load the test pattern
*gstart at first grin,prin location
*will loop 16 times (ctz4)
*Loop while incrementing N
*Load up registers
* load pattern into grin (try IN)
* rotate pattern left (try DN)
* if not done then loop (try IN)
* load complement of test pattern into prin
*Check what was loaded
compare grin
if not equal then fail
rotate pattern
compare grin
(increment N)
if not equal then fail
save n for test (upper byte is ?)
if not done then continue test
compare ct and acc (n)

* ¥ %k ¥ ¥ N ¥ N N

Appendix E

E-65

Appendix E

0063
0064
0064
0065
0065
0065
0066
0066
0066
0066
0066
0066
0066
0067
0067
0068
0069
006A
006B
006B
006B
006B
0068
006B
006B
006C
006D
006D
N06E
006F
DO6F
0070
0071
0071
0072
0073
0073
2074
0074
0075
0076
2076
0077
0077
0077
0077
0077
0077
0077
0078
0078
0079
0079
007A
007A
007A
0078
007C
007D
007E
007F
0080
0080
0080
0081
0081
0082
0082
0083
0083
0084
0084
0085
0086
0086

E-66

p:=ct xnor acc; * (load p with zeros for later test)
if not yz goto fail2, * if ct is not complement of n then fail
n:=n+one; * increment n (sliding diagonal)
if not ctzé4 goto * loop 16 times (decrement ct)
n loop, *
mZﬁr:=q; * load memr with OxAAAA for following test
pu_memr :
{
check out memr and swzu,swap,swzl
}
r17:=zuy(menr), *00aa
if not mpen goto fail2; * check mpen condition
menmr:=not q, *5555
rdp, cle; * clear abfetch (p == 0)
acc:=swzl(menr); *5500 start "checksum'" of alu functions
p:=srg(rl7); * try srg PROM
acci=asg(rl7); * try ASG PROM
pu_ist:
{
check out ist
}
call RESET *U, *reset the IST
acci=ptacc; * continue checksum
i{st:=0xA80F; * set TBG flag (no FLTO)
acc:=ist+ace, * checksum ist (ist lags by 2 cycles)
if intp goto fail2; * interrupts should be false
ist:=0xAAQF; * set FLTO int
acc:=ist+acc, *
if not intp goto fail2; * interrupts should be true
ist:=0xBA53; * set MP int (turn MP on)
acc:=ist+acc, *
if iatf goto fail2; * intf should be false
ist:=0x55A1; * set PE interrupt (MP on)
acc:=ist+acc, *
if mpen goto fail2; * check if mpen condition works
call RESET PU, * reset him, but checksum the
acci=ist+acc; * parity error code
acc:=acc xor 0x789B; * look at the checksum (acc:= 0)
if not yz goto fail2, *
nop:=111(sr); *
{
end of PU diagnostic
}

{nop:=sr and 0x4000;}

if not yl5 goto MC DIAGNOS,
s3 :=111(ones);

goto blinky lights,
acci=s3;

fail3: goto FAILTRAP;

MC_DIAGNOSTIC:
Ir:= not Ox3FFF;
s1:=0x1FFE;
ct:=4095;
s4:=0x2000 and sr;
n:=9;
p:=020000;
checkloop:
rdp,
s2:=z1y(sl);
if not ctz goto checkloop,
acc:=t+acc, ip;
if not yz goto fails,
nop:=s4;
if not yz goto tstlink,
Ir:=not sl;
call FL DIAGNOSTIC,
prin:=s2;
goto START UP;

tstlink:

*If bit 14 is open then loop
*

*acc:= FFFE

*do the blinky lights stuff
*

*

*

*(not here until checksum is in VCP)
*store PU passed code to LEDs

*save passed LED code for LR
*

*

*(prepare to load PRIN LED copy)
*

*Checksum of VCP ROM from 020000-037777

* read bootrom location
*

* and checksum until count = 0
*

*is checksum zero? n: fail

*
*is MC loop bit set?

*store '""passed" LED code to LR
*

*save '"passed" LED code in prin reg
*

*go to blinky lights

0086
0086
0087
0087
0087
0088
01B8
01B8
01B9
01B9
01BA

goto blinky lights, *
acc:=s3; *
fails: *
goto FAILTRAP; *

FL_DIAGNOSTIC: $origin Ox1b&$ *if FL is installed, it will execute

rtn; *

selftest here and extinguish LEDs

Appendix E

E-67/E-68

APPENDIX F
FUNCTIONAL BLOCK DIAGRAM Il

FUNCTIONAL BLOCK DIAGRAM

F-1

Appendix F

BRANCH
ADDRESSING

MACROINSTRUCTION
FROM
INSTRUCTION REGISTER

16

ENTRY POINT
LOOK-UP TABLE
(FPLA)

PROCESSOR/ MEMORY

CONTROLLER FRONTPLANE

TO CONTROL STORE CARDS
AN

-~
CONTROL STORE BUS

ADDRESS DATA
S

Ny

MICROMACHINE

MICRO ADDRESS
MULTIPLEXOR

STACK
(4-DEEP)

SEQUENCER

| INCREMENTER

MICROPROGRAM

COUNTER

ON-BOARD
CONTROL
STORE

2K WORDS

MICROINSTRUCTION
REGISTER

IMMEDIATE DATA (1MM)

MICROCODES

DECODERS

YVVY

PROCESSOR
CONTROL LINES

4
[Y-BUS \ BACKPLANE
/X ‘} 16)
4
REGISTER FILES - 4
16BITS EACH mnp -1 e—
— LIGHT 33
-~ REGISTER
tR)
»
4 Ta “T16 16 @
F—— a
— 16 PRIV- L <
ILEGED >
REG. (PRIN) Y-BUS a
B8 REGISTER
) h
- Y A LA Y | y
16 NON- REGISTER | INSTRUC. | INTERRUPT BASE PROGRAM | MEMORY 1 yeviony
PRIVILEGED | INDEX TION STATUS REG. COUNTER AC"‘:TESS RETURN
REG. (GRIN) N) (IST) (BR) P CONTROL m 16
(MEMR)
= N
EXTERNAL P MAP
ALU 4 | seLECT >
Y REGISTER LOGIC -
2
A " a
I o)
| — Zho .
) gas &
SWITCH gak 8
HPt REGISTER <
(SR) ADDRESS
- GENERATION -3
L LOGIC
-
A\
i y i Y / Y 4 y /
USR B-8US \
|) * f)
! LAST LAST
ﬁ MEMORY | FETCH
1 ADDRESS | ADDRESS
! (MA) (FA) 3
m
2
:
. ARTHMETIC /o @
LOGIC I
UNIT* BUFFER o
[3
" “INTERNAL 2
ALU | = I
MNEMONIC IN () ARE EXTERNAL OFF-BOARD ™) v-BUS
REGISTER NAMES USED IN BUS /\ REGISTER X
[SHIFTER l L Q REG]4—4 PARAPHRASER PROGRAMMING MICROORDERS 4 r INDEX Y
N B — J
e Q SHIFTER ~~
PROCESSOR/MEMORY CONTROLLER FRONTPLANE

8200-6

Figure F-1. Functional Block Diagram
F-3/F-4

APPENDIX G
DEBUGGING MICROCODE

DEBUGGING MICROCODE

A logic analyzer can be used for efficient debugging of A700 processor microcode. With a logic
analyzer, the actual micromachine execution can be followed, and the logic analyzer can be pro-
grammed to trace the micromachine execution upon the detection of specified conditions. This appen-
dix describes the signals that are accessible and the method of connecting a logic analyzer.

G-1. DIAGNOSTIC CONNECTIONS

The most important signals for microcode tracing are on the Microaddress Bus (to follow microcode
execution) and the Y-Bus (to follow the results of arithmetic operations). The processor clock (PC-)
should be used by the logic analyzer as the data-gathering clock. This clock is frozen during cycles
when the micromachine is waiting for memory or map accesses; therefore, data-gathering will not
occur during frozen cycles. Signal TESTSC— (system clock) is not frozen during these memory accesses
and is equivalent to the backplane clock.

These signals and others are accessible through two connectors on the A700 frontplane. The A700
processor should be used with these cables attached only during microcode debugging and not during
normal operation. Be sure to turn power off before connecting or disconnecting diagnostic cables.

Connector J4 on the front plane is used for connection to the WCS and PCS cards. Pins 33 through 46 of
this connector contain the control store address bus. A special cable to connect the frontplane to the
WCS and also to the logic analyzer must be supplied and installed by the customer for debugging
microcode. Table G-1 shows the pin-to-signal identification for connector J4.

Connector J5 on the frontplane is used solely for connection to a logic analyzer. It contains the Y-Bus
and the processor clock signals, in addition to some other signals. This cable must be supplied and
installed by the customer. Table G-2 shows the pin-to-signal identification for connector J5.

G-2. PROGRAMMING THE LOGIC ANALYZER

The logic analyzer should be programmed with a format that accommodates these signals and with a
trace specification that corresponds to the conditions you want to trace.

The signals of the Y-Bus and control store address bus are positive-true, and the rising edge of the
processor clock should trigger data-gathering.

At the rising edge of the processor clock, the control store address bus has the microaddress of the next
microinstruction, while the Y-Bus has the output of the ALU from the current microinstruction. This
means that the contents of the Y-Bus due to a certain microinstruction are displayed in the cycle after
the contents of the microaddress for that microinstruction are displayed.

Appendix G

Table G-1. Connector J4 Signal Identification

PIN SIGNAL (* = RECOMMENDED FOR MICROCODE DEBUGGING)
1 Control Store Data Bit 0
through through
32 Control Store Data Bit 31
*33 Control Store Address Bit 0
*through through
*46 Control Store Address Bit 13
47 Unused
48 CSIDWC - Bottom of WCS/PCS Priority Chain (negative true)
49, 50 Ground

Table G-2. Connector J5 Signal Identification

PIN SIGNAL (* = RECOMMENDED FOR MICROCODE DEBUGGING)
“1-16 Y-Bus Data Bit 0 through Y-Bus Data Bit 15
17, 18 Ground
19 BBUS/SRIN Microorder (negative true)
20 CSADIS- Disable Processor Control Store (input for testing)
21 BPON+ Processor Power-On Line
22 OP1/JTAB Microorder (negative true)
*23 Processor Clock PC— (negative true, rising edge triggering)
24 INTP Condition Line
25, 26 Ground
27 FREEZE~ Memory Access Freeze Line (negative true)
28 TESTSC— Diagnostic Clock Line (negative true)
29 ECLK (external clock for testing)
30 CKDIS~ (disable internal clock for testing)
31, 32 Ground
33 INTF Condition
34 STOR/GRIN (negative true)
35 STOR/SRIN (negative true)
36 STOR/P (negative true)
37 STOR/PRIN (negative true)
38 STOR/IST (negative true)
39 FFRZ— (for testing)
40 STOR/MEMR (negative true)
41 N-Register Bit 1
42 N-Register Bit 0
43 N-Register Bit 3
44 N-Register Bit 2
45, 46 CSIDWC— Bottom of WCS/PCS Priority Chain (negative true)
48 Unused
49, 50 Ground

Appendix G

G-3. DIAGNOSTIC WINDOW MICROCODE

Special microcode is available in the A700 base set for debugging user microcode. This microcode,
called the “Diagnostic Window”, also provides a look at base set execution. The diagnostic JTAB loop is
employed to load the window contents onto the Y-Bus where it is available for display on the logic
analyzer. The diagnostic window is selected when switch 5 (labeled DW) on the frontplane is in the
“open” position.

The diagnostic JTAB loop is entered only after power-on, reset, or an interrupt. This loop adds about 2
microseconds per macroinstruction execution time; therefore, the execution speed of your A700
processor will be degraded while the diagnostic JTAB loop is selected. Be sure to reset switch DW to
the “closed” position when microprogram debugging is completed.

The diagnostic JTAB LOOP microcode is located at 0xEQ through 0xEA. Between macroinstructions,
the information is passed to the Y-Bus so that it can be displayed on the logic analyzer. The
information is displayed in the line following the line being executed due to the relation of the Y-Bus,
the microaddress bus, and the processor clock.

The information at the ten locations is as follows:

a. O0xEO (shown at location 0xE1). The T-register is on the Y-Bus at this point in the diagnostic JTAB
loop, the T-register contains the next macroinstruction to be executed.

b. 0xEl (shown at location 0xE2). The contents of the FA (fetch address) latch are displayed through
the Y-Bus. This is the logical address from which the macroinstruction (opcode) was fetched.

c. 0xE2. A microinstruction containing the JTAB microorder and a jump-to-subroutine is performed
to the “jump table area” (locations 0x100 through 0x1FF) of the base set.

d. Microprogram execution.

e. 0xE3 (shown at location 0xE4). Microprograms will return to the JTAB loop at location 0xE3,
where the A-register is displayed through the Y-Bus.

f. 0xE4 through 0xE6 (shown at locations 0xE5 through 0xE7). The B, IST, and MEMR registers are
displayed successively.

g. O0xE8 (shown at location 0xE9). The contents of the PRIN register that contains interrupt in-
formation is displayed.

h. 0xE9. Interrupts are checked before the loop is continued.

Appendix G

Summary of Diagnostic JTAB loop (as would be shown on a logic analyzer):

0xE1
0xE2
0xE4
0xE5
0xE6
0xE7
0xE9

Macroinstruction to be executed.

Logical Memory Address of macroinstruction
(Microprogram Execution)

A-register.

B-register.

IST-register.

MEMR-register.

PRIN-register (microcode-kept interrupt status).

Other microroutines of the base set microcode may be useful for tracing execution of the A700.
processor. The interrupt service routine jump table, at locations 0xFO through OxFF is useful for
tracing interrupt servicing. Microaddress 0 wll be executed on microcode timeout.

Refer to the base set listing for specific information about interrupt handling and instruction
execution. (Note: HP reserves the right to change the A700 base set. You should not branch into the
AT700 base set to make use of existing routines.)

G-4

INDEX

INDEX

A

A (R00), Macro A-register Microorder, Table 4-2, 4-11,

4-20, 4-21
ACC (R04) Microorder, Table 4-2, 4-11, 4-20, 4-21
Accessories, Microprogramming, 2-1
ACF Microorder, Table 4-2, 4-11
ADAC Microorder, Table 4-2, 4-19
ADBC Microorder, Table 4-2, 4-19
ADDC Microorder, Table 4-2, 4-19
AL1 Microorder, Table 4-2, 4-11
ALOV Microorder, Table 4-2, 4-18
ALU Functions, 2-8, 4-7
AND Microorder, Table 4-2, 4-19
AR1 Microorder, Table 4-2, 4-11
Arithmetic Data Paths, 4-7
Arithmetic Logic Unit (ALU), 2-8
ASG Microorder, Table 4-2, 4-13

B

B (R01), Macro B-Register Microorder, Table 4-2, 4-11,

4-20, 4-21
B15 Microorder, Table 4-2, 4-17
Base Set, 2-18
BFB Microorder, Table 4-2, 4-12
Boot Memory, 2-7
Bus System, 2-10

C

CAB Microorder, Table 4-2, 4-19, 4-21

CAND Microorder, Table 4-2, 4-19

CF Microorder, Table 4-2, 4-18

CK2 Microorder, Table 4-2, 4-12

CK2, Floating Point Data Transfers, 4-12, 11-5
CLE Microorder, Table 4-2, 4-11

CLF Microorder, Table 4-2, 4-16

CLO Microorder, Table 4-2, 4-12

CMAC Microorder, Table 4-2, 4-19

CMBC Microorder, Table 4-2, 4-19

CMDW Microorder, Table 4-2, 4-16

CMID Microorder, Table 4-2, 4-16

Comments, Paraphraser, 7-3

Computer Functions, Microprogram Controllable, 2-1
Control Statement, Paraphaser, 7-3

Control Store, 2-17

Control Store Mapping, 6-1

CT (Register) Microorder, Table 4-2, 4-19, 4-21
CT30 Microorder, Table 4-2, 4-17

CT74 Microorder, Table 4-2, 4-17

CTZ Microorder, Table 4-2, 4-18

CTZ4 Microorder, Table 4-2, 4-18

CWRB Microorder, Table 4-2, 4-21

CXY Microorder, Table 4-2, 4-19, 4-21

D

DCT Microorder, Table 4-2, 4-17
Debugging Microcode, 3-4, G-1
Directives, Paraphaser, 7-5
Directly-Accessed Registers, 2-10
DIV Microorder, Table 4-2, 4-14
DIV1 Microorder, Table 4-2, 4-14
DN Microorder, Table 4-2, 4-17
DNRM Microorder, Table 4-2, 4-14

E

E (Extend Register) Microorder, Table 4-2, 4-18
ENOE Microorders, Table 4-2, 4-12
Error Conditions, Floating Point, 11-5

F

F (Flag) Microorder, Table 4-2, 4-18

FA Microorder, Table 4-2, 4-20

FCHB Microorder, Table 4-2, 4-13

FCHP Microorder, Table 4-2, 4-17

FCIN Microorder, Table 4-2, 4-11

Field, Definition of, 2-15

Floating Point Processor, 11-1

Floating Point, Control Store Address, 11-10
Floating Point, Control Word Format, 11-6
Floating Point, Divide Operation Code, 11-9
Floating Point, Writing Microcode, 11-6

G

GRIN Microorder, Table 4-2, 4-20, 4-21

H

Hardware, Microprogramming, 3-1
HP1 (R05) Microorder, Table 4-2, 4-11, 4-20, 4-22
HP2 (R06) Microorder, Table 4-2, 4-11, 4-20, 4-22

I

IF Conditional Phrases, 7-23

IF Conditional RTN Phrases, 7-23
IF Conditional SPO Phrases, 7-24
IFCH Microorder, Table 4-2, 4-13
IMM Microorder, Table 4-2, 4-11
IN Microorder, Table 4-2, 4-12
Indirectly-Accessed Registers, 2-12
INOR Microorder, Table 4-2, 4-19
Input/Output Section, 2-10

Index-1

Interrupt Handling, 6-9

INTF Microorder, Table 4-2,

INTP Microorder, Table 4-2, 4-18
IOR Microorder, Table 4-2, 4-19
IORQ Microorder, Table 4-2, 4-18

IP Microorder, Table 4-2, 4-11, 4-17
IST Microorder, Table 4-2, 4-20, 4-21

J

JMP Microorder, Table 4-2, 4-10
JMPF Microorder, Table 4-2, 4-10
JMPL Microorder, Table 4-2, 4-10
JMPT Microorder, Table 4-2, 4-10
JSB Microorder, Table 4-2, 4-10
JSBF Microorder, Table 4-2, 4-10
JSBL Microorder, Table 4-2, 4-10
JSBT Microorder, Table 4-2, 4-10
JTAB Microorder, Table 4-2, 4-9

L

Labels, Paraphaser, 7-4

LDBR Microorder, Table 4-2, 4-13
LDQ Microorder, Table 4-2, 4-12
LL1 Microorder, Table 4-2, 4-12
LR Microorder, Table 4-2, 4-21
LR1 Microorder, Table 4-2, 4-12
LWE Microorder, Table 4-2, 4-17
LWF Microorder, Table 4-2, 4-17

M

MA Microorder, Table 4-2, 4-20
Macroinstruction Execution, 2-21
Macroinstruction Fetching, 2-19

MAP Microorder, Table 4-2, 4-20, 4-21
Maps, Data and Code, 4-28

Memory Section, 2-9

MEMR Microorder, Table 4-2, 4-20, 4-21
Microcycle, Definition of, 4-15
Microinstruction, Definition of, 4-15
Microorder Definitions, 4-9
Microorder, Definition of, 4-15
Microprogram Control Sections, 2-8
MPEN Microorder, Table 4-2, 4-18

N

N (Register) Microorder, Table 4-2, 4-20, 4-21

NAND Microorder, Table 4-2, 4-19

NOP Microorder, Table 4-2, 4-9, 4-12, 4-17, 4-21

Numbers, Paraphaser, 7-3

(0]

O (Overflow Register) Microorder, Table 4-2, 4-18

Index-2

P

P (Register) Microorder, Table 4-2, 4-20, 4-21
Paraphraser, 7-1

Paraphraser Error Messages, 8-5

Paraphraser Rules, 7-2

Paraphraser, Execution of, 8-2

Paraphraser, Floating Point Division Sentence, 11-10
Paraphraser, Floating Point Sentence, 11-8
Phrases, Arithmetic, 7-13

Phrases, Arithmetic with ALU Special, 7-19
Phrases, Arithmetic with Carry-in Modifier, 7-17
Phrases, Arithmetic with Immediate Data, 7-21
Phrases, Arithmetic with Shift or Rotate, 7-16
Phrases, Basic Arithmetic,7-14

Phrases, Branching, 7-11

Phrases, Conditional, 7-23

Phrases, Conditional Branching, 7-23

Phrases, Conditional Return, 7-23

Phrases, Conditional SPO, 7-24

Phrases, Field Forcing, 7-24

Phrases, Paraphaser, 7-9

Phrases, Special, 7-24

Phrases, Types of, 7-11

PON Microorder, Table 4-2, 4-18

Preparatory Steps, Microprogramming, 3-1, 3-4
PRIN Microorder, Table 4-2, 4-20, 4-21
Processor Cards, Overall Circuit Description, 2-5
PROM Burning, 10-1

Q

Q (Register) Microorder, Table 4-2, 4-20

R

R0O, Macro A-Register Microorder, Table 4-2, 4-11,
4-20, 4-21

RO1, Macro B-Register Microorder, Table 4-2, 4-11,
4-20, 4-21

R02, Macro X-Register Microorder, Table 4-2, 4-11
4-20, 4-21

RO03, Macro Y-Register Microorder, Table 4-2, 4-11
4-20, 4-21

R04, ACC Microorder, Table 4-2, 4-11, 4-20, 4-21

RDB Microorder, Table 4-2, 4-12

RDIO Microorder, Table 4-2, 4-17

RDP Microorder, Table 4-2, 4-12

RDPC Microorder, Table 4-2, 4-17

Registers Reserved For The User, 6-10

Restrictions Microcode, 4-27

RL1 Microorder, Table 4-2, 4-12

RL4 Microorder, Table 4-2, 4-14

RR1 Microorder, Table 4-2, 4-12

RTN Microorder, Table 4-2, 4-9

RTNF Microorder, Table 4-2, 4-10

RTNT Microorder, Table 4-2, 4-10

S

S0-S7 Microorders, Table 4-2, 4-11, 4-20, 4-22
SBAC Microorder, Table 4-2, 4-19

SBBC Microorder, Table 4-2, 4-19

Sentence, Microinstruction, 7-4

Sentence, Paraphaser, 7-7

SF Microorder, Table 4-2; 4-18

SM2C Microorder, Table 4-2, 4-15

SNRM Microorder, Table 4-2, 4-15

Software Entry Points, 6-2

Source File Example, 7-8

SPOF Microorder, Table 4-2, 4-10

SPOT Microorder, Table 4-2, 4-10

SPEC Microorder, Table 4-2, 4-19

SR Microorder, Table 4-2, 4-20

SRG Microorder, Table 4-2, 4-15

SRIN Microorder, Table 4-2, 4-20, 4-22
SRIN-C, SRIN-D, Floating Point Input Operands, 11-4
SRIN-E, SRIN-F, Floating Point Results, 11-5
STE Microorder, Table 4-2, 4-12

STF Microorder, Table 4-2, 4-17

STO Microorder, Table 4-2, 4-13

STOR Microorder, Table 4-2, 4-13

Support Software, Microprogramming, 3-2
SWAP Microorder, Table 4-2, 4-15

SWZL Microorder, Table 4-2, 4-15

T

T (Register) Microorder, Table 4-2, 4-21
Time-Out, Microcode, 6-10

Timing, computer, 5-1

Timing, I/O access, 5-1

Timing, memory access, 5-1

Timing, processor clock freeze, 5-2
TMLC Microorder, Table 4-2, 4-16
TMPY Microorder, Table 4-2, 4-16

U

UIG (User Instruction Group), 6-2

UIG Blocks, User Area, 6-4

UIG Mapping, 6-5

UIG Op Codes, 6-4

UMPY Microorder, Table 4-2, 4-16

USR (R07) Microorder, Table 4-2, 4-11, 4-20, 4-22

v

Virtual Control Panel (VCP), 2-7

A\

WCS Mapping, 9-1

WLOAD Commands, 9-2

WLOAD, Using, 9-2

Word Type 1, 4-3

Word Type 1: OP Field Microorders, Table 4-2, 4-9

Word Type 2, 4-4

Word Type 2: OP Field Microorders, Table 4-2, 4-10

Word Type 3, 4-5

Word Type 3: OP Field Microorders, Table 4-2, 4-10

Word Type 4, 4-5

Word Type 4: OP Field Microorders, Table 4-2, 4-10

Word Type 5, 4-6

Word Type 5: OP Field Microorder, Table 4-2, 4-10

Word Type 6, 4-6

Word Type 6: OP Field Microorders, Table 4-2, 4-11

Word Types 1-4, ALUS Field Microorders, Table 4-2, 4-13

Word Types 1 and 2: A-Bus Field Microorders, Table 4-2,
4-11

Word Types 1 and 2: SPO Field Microorders, Table 4-2, 4-2

Word Types 1 and 4: SP2 Field Microorders, Table 4-2,
4-16

Word Types 1-4: SPO and SP1 Fields Microorders,

Table 4-2, 4-11
Word Types 1-6: B-Bus Field Microorders, Table 4-2,
4-19

Word Types 1-6: ALU Field Microorders, Table 4-2, 4-19

Word Types 1-6: STOR Field Microorders, Table 4-2, 4-21

Word Types 2 and 3: CNDX Field Microorders, Table 4-2,
4-17

WRB Microorder, Table 4-2, 4-22

WRIO Microorder, Table 4-2, 4-17

WRP Microorder, Table 4-2, 4-22

X

X (R02), Macro X-Register Microorder, Table 4-2, 4-11,
4-20, 4-21

XNOR Microorder, Table 4-2, 4-19

XOR Microorder, Table 4-2, 4-19

Y

Y (R03), Macro Y-Register Microorder, Table 4-2, 4-11,
4-20, 4-21

Y15 Microorder, Table 4-2, 4-18

YZ Microorder, Table 4-2, 4-18

VA
ZERO Microorder, Table 4-2, 4-19

ZLY Microorder, Table 4-2, 4-16
ZUY, Table 4-2, 4-16

Index-3/Index-4

MANUAL UPDATE

MANUAL IDENTIFICATION UPDATE IDENTIFICATION

Title: HP 92045A Microprogramming Package Update Number: 2 (July 1982)
Reference Manual
This Packet
Part Number: 92045-90001 also Includes: 1 (May 1982)

THIS UPDATE GOES WITH: First Edition (February 1982)

THE PURPOSE OF THIS MANUAL UPDATE
is to provide new information for your manual to bring it up to date. This is important because it ensures that your manual
accurately documents the current version of the product..

THIS UPDATE CONSISTS OF

this cover sheet, a printing history page, all replacement pages, and write-in instructions (if any). Replacement pages are
identified by the update number at the bottom of the page. A vertical line (change bar) in the margin indicates new or
changed text material. The change bar is not used for typographical or editorial changes that do not affect the text. New
pages to be added do not contain change bars.

TO UPDATE YOUR MANUAL

identify the latest Update (if any) already contained in your manual by referring to the Printing History Page (page ii).
Incorporate only the Updates from this packet not already included in your manual. Following the instructions on the back -
of this page, replace existing pages with the Update pages and insert new pages as indicated. If any page is changed in two
or more Updates, such as the Printing History Page which is furnished new for each Update, only the latest page will be
included in the Update package. Destroy all replaced pages. If “write-in” instructions are included they are listed on the
back of this page.

(JP HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY

Data Systems Division

11000 Wolfe Road $2045-90001
Cupertino, California 85014 uo782

TECHNICAL MANUAL UPDATE
(92045-90001) -

Note that “’**" indicates a changed page.

UPDATE DESCRIPTION
1 A. Replace the following pages with the pages supplied:
Title page*/ii*
8-1%/9-2

B. Write the following changes of the pages indicated:
1. Page 9-6. In command
“LB, input file or lu’', delete “‘or lu”’.

2. Page 9-6. In sentence following “‘where’’ for the command in (1) above, delete
“or lu is the input device (e.g. cartridge tape) containing microcode."’

3. Page 11-10, last sentence. Change referenced manual to “HP 12166A Floating
Point Processor Kit installation and Reference Manual, part no. 12166-90001.

2 A. Replace the following pages with the pages supplied:

3-3*/3-4
12-3/12-4*

| HP 92045A
Microprogramming Package

Reference Manual

Includes:
Paraphraser Programming
WLOAD WCS Loader and
PROM Burn Program

(D Javi

HEWLETT-PACKARD COMPANY
Data Systems Division MANUAL PART NO. 92045-90001

11000 Wolfe Road Printed in U.S.A. February 1982
Cupertino, California 95014 uo782

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition.......... ... iiieiiiinnnn, Feb 1982
Update 1 ...t May 1982
Update 2 ..ot Jul 1982

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied. reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright ® 1982 by HEWLETT-PACKARD COMPANY

ii

Microprogramming Preparation Steps

3-3. THE PARAPHRASER MICROCODE MICROASSEMBLER

The paraphaser microcoding microassembler language converts a source microprogram into binary
object code which may be directed to an output device and/or stored in a disc file. The paraphraser is a
necessary tool for preparing microprograms since the microinstruction word length is 32 bits which
makes other coding methods difficult.

The source may be input from an input device or disc file. The disc file is easiest since this file can be
the same file developed when writing and editing the program with the HP 1000 Editor. The object
code will be in the standard microinstruction format which is recognized by the WLOAD utility
routine. The program can supply a source listing, a floating field listing of the microinstructions, a
label listing, and a list of any errors.

The paraphraser program name is MPARA. MPARA can run with or without the File Manager, and it
requires a minimum of 28k words of memory. All information on preparation of microprograms with
the paraphraser and output of the microprograms is contained in Sections 7 and 8 of this manual.

3-4. DRIVER ID.41

Driver ID.41 must be configured into the RTE system during system generation to provide software
linking between MPARA, WLOAD, and the WCS card.

NOTE

The microprogramming support software can be included either
during system generation or loaded into the system when
required.

Driver ID.41 drives HP 12153A WCS cards for reads and writes (from and to main memory) and allows
control of WCS board functions. The driver utilizes DMA which provides fast data transfer.

When configured in the RTE system, all WCS cards should have a select code of octal 20 or higher. In
the system, the driver can be called directly with an EXEC call, or through the WLOAD program
(refer to the RTE Driver ID.41 For HP 12153A WCS Cards Reference Manual).

3-5. WLOAD

The WCS I/O Utility program WLOAD uses driver ID.41 and transfers microprogram object code into
WCS when run by the user. Section 9 in this manual contains information on WLOAD used as an /O
utility. WLOAD also includes a PROM “burn tape” function (see paragraph 3-7).

3-6. LOADING THE MICROPROGRAMMING SUPPORT SOFTWARE

The WCS driver ID.41 must be loaded at system generation time. (Refer to RTE Driver ID.41 For HP
12153A WCS Card Reference Manual, part no. 92045-90002.) The WLOAD program must be loaded on
line using the RTE-A.1 LINK program. The MPARA microprogramming language can be loaded on an
RTE-A system using the LINK program or on an RTE-6/VM system using the LOADR program.

Update 2 3-3

Microprogramming Preparation Steps

3-7. PROM CODE GENERATOR

The process of loading the microcode into the PROMs (Programmable Read Only Memory) is ac-
complished for fusing (“burning”) the binary bits into the PROM chip. The binary code for the PROMs
is generated by the PROM “burn tape” function of WLOAD that uses the final binary object code of the
microprogram as input. The program should be tested and debugged by running the program from a
WCS card before making expensive PROMs. For additional information on PROM burning, refer to
Section 10 of this manual.

3-8. PREPARATORY STEPS

Condensed information on the required preparatory steps for microprogramming appear in Table 3-1
along with references to the sections of this manual (or to applicable documents). The letters in the
referenced column are keyed to entries in Table 3-2, and the numerals refer to sections in this manual.

Table 3-2 is a list of HP 92045A Microprogramming Software and HP manuals used by the
microprogrammer for the HP 1000 A700 computer systems. Section 12 provides examples of the
procedures you may want.

In preparation for microprogramming, the WCS cards to be used must be initialized before they can be
used.

3-9. DEBUGGING MICROCODE

After you have written your source microcode and fixed any errors found by MPARA, load the object
code into WCS and try running it. If its performance is not to your satisfaction you will want to
“debug” it. Microcode debugging on the A700 processor is most efficiently accomplished through the
use of a logic analyzer. Hewlett-Packard logic analyzers are recommended since they were used
throughout the development of the base set and floating point microcode and provided the desired
results.

A logic analyzer allows the actual micromachine execution to be followed, and it can be programmed to
trace the micromachine execution upon detection of certain conditions. Details on connecting a logic
analyzer and information on its use are given in Appendix G (Debugging Microcode).

3-4

WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE |[s

The previous section (Section 8) describes a method of preparing a microprogram and storing this
source program in a system file. The source program, prepared “off line” or on some other system, could
have been stored in a system file by loading it through a system input device. The source program is
then translated by the paraphraser (MPARA) microassembler program and filed as binary object code
(or microcode) in another system file. This later file is the ready-to-use microinstructions of your
program. In order to make use of this microcode it must be moved into the Control Store
(micromachine memory) of the computer.

The computer’s extended Control Store for user programs is provided by Writable Control Store (WCS)
and PROM Control Store (PCS) cards. Normally, the microprogram is initially loaded into a WCS card
so that test runs of the program can demonstrate that it has no “bugs” before burning PROMs to install
on a PCS card.

The WCS cards are loaded by using a program called “WLOAD.” WLOAD is a utility program which
loads WCS and generates PROM “burn tape” code under the RTE operating system. An understanding
of WCS memory mapping is essential for loading microprograms into it. This subject is summarized
below. For additional information on the WCS card, which can be useful to the user for a better
understanding of how to load it, refer to the HP 1000 A700 User Control Store Installation and
Reference Manual, part no. 02137-90003. The WLOAD PROM “burn tape” function is covered in
Section 10.

9-1. WCS MAPPING

The micromachine of the HP A700 computer has a microcode address space of 16k words of which the
user may use 8k words. The 16k words are conceptually divided into 16 logical 1k modules numbered
from 0 through 15. Each WCS card contains four banks of RAMs (Random Access Memory) for a total
of 4k-words per card. The banks are numbered 0, 1, 2, and 3.

A mapping RAM on each card maps the logical modules to the physical banks. The map RAM has 16
locations each of which corresponds to a logical module. On each card, the logical module may be
assigned a physical block that will be enabled when addressed through mapping, or it may be
unmapped. If a logical module is mapped on more than one card at a time, the card which is higher
priority in the control store chain will be enabled and will disable the other cards (including the
processor control store).

NOTE

On power-up, the mapping RAM will be in an unknown state. The
IN (initialize) command should always be used to unmap all
logical modules. Care should always be taken to assure that the
WCS has been properly loaded (mapping RAM and data RAMs)
before turning WCS on.

Update 1 9-1

WCS Support Software

9-2. USING WLOAD

To load a WCS card using WLOAD, the user assigns an LU to the card to identify its /O location for
program interaction. Next, the appropriate logical to physical mapping is set up, and then a file or files
are usually specified from which to download data.

An example of running WLOAD to load a WCS card follows:

RU,WLOAD
NOTE
The WLOAD prompt “xx>" will appear on your terminal where
xx is the WCS LU which is currently specified. In this example,
the WCS LU is specified by the user as 63 is the first step under
WLOAD.

Continue with this procedure while running under WLOAD execution:

PROCEDURE COMMENTS

0>LU,63 WLOAD starts up with LU=0; User enters LU of WCS.

63>IN Initialize. Turn off WCS and unmap all logical modules.

63>EQ,4,0 User equates the logical module 4 address (1000-13FF hex) to physical
bank 0.

63>LB,%EXMPL User loads microcode from the binary format file #EXMPL (example).

63>0ON User turns WCS on.

63>EX Exit program.

9-3. WLOAD COMMANDS

WLOAD commands are two characters. Some of the commands require parameters which may be
included on the command line separated by commas. If required commands are not included on the
command line, WLOAD will prompt for the parameters.

Commands which read from or write to either the data RAMs or the map RAMs require that WCS be
turned off. If WCS was on when such a command is executed, WCS will be automatically turned off,
and it will be turned back on after execution of the command, unless a WCS /O error occurs.

Before turning WCS off or executing the command, the input parameters are checked for validity. The
following checks are performed as applicable:

If the logical module is between 0 and 15.

If the physical bank is between 0 and 3.

If the WCS address or data is in hex format and the address <16k (4000).
If the input file (or LU) can be opened.

If the output file (or LU) can be opened or created.

O N~

9-2

Microprograms

12-2. BUFFER INITIALIZATION EXAMPLE

EXAMPLE 1: INITIALIZE BUFFER, FORTRAN PROGRAM

FTN7X,L,I,Y
PROGRAM JOKE3

MAIN PROGRAM:

Calls assembly routine ‘INIT’ to initialize a
user buffer. ‘INIT’ invokes the microcode.

RUN STRING: RUN,JOKE3,START,INC,NUMBR

START: Starting value of buffer
INC: Increment between values
NUMBR: Total number of elements

OO0 OO0OOO0

IMPLICIT INTEGER (A-2)

DIMENSION BUFF(10000)

DIMENSION PARMS(S)

EQUIVALENCE (PARMS(1),START), (PARMS(2),INC)
EQUIVALENCE (PARMS(3) ,NUMBR)

Get starting value, increment, and number of elements

OO0

CALL RMPAR(PARMS)
IF CIABS(NUMBR) .GT. 10000) GOTO 999

Initialize the buffer
CALL INIT(BUFF,START,INC,NUMBR)

Print the buffer to scheduling lu

OO0 (s NeNel

SESN = -1
LU = LOGLUCSESN)
WRITECLU,10)CBUFF(J),J=1,NUMBR)
10 FORMAT(8(2X,16))
999 END

EXAMPLE 1: INITIALIZE BUFFER, ASSEMBLER INTERFACE

MACRO,L
NAM INIT,?

Calls the microcode to initialize the buffer passed
by the calling program.

CALLING SEQUENCE:

CALL INIT(BUFF,START, INC,NUMBR)

T & & ¢ & & 8

ENT INIT

EXT .ENTR,.INIT
-
* .INIT must be declared as an entry point in a seperate
+ assembly module as follows: .INIT RPL 10S500B

[

BUFF BSS 1 BUFFER ADDRESS
START BSS 1 STARTING VALUE

INC BSS 1 INCREMENTS

NUMBR BSS 1 NUMBER OF ELEMENTS

12-3

Microprograms

*

INIT NOP
JSB .ENTR GET PARAMETERS
DEF BUFF

* Branch to control Store Address (0x3000)

.

JSB .INIT USER OPCODE

DEF @BUFF BUFFER ADDRESS

DEF @START STARTING VALUE

DEF @INC INCREMENT

DEF @ONUMBR NUMBER OF ELEMENTS
*

JMP @INIT RETURN

END INIT

EXAMPLE 1: INITIALIZE BUFFER, MICROPROGRAM

MPARA,L ,F;

*
UG_INIT:

Where:

XTRNL :

* 2 Ms & % &8 ¢ & & & % ¢ 8 & & & 8 8 8 & & & & & & 8 ¢ 88

INT_BUF;

sorigin 0x3030s

DESCRIPTION:

Instruction ‘INBUF’ initializes a buffer in the user
program as specified by the calling program. The
inatruction is non-interruptable and does not check
for interrupts after every write to user memory.

The memory protect logic is enabled so that any memory
violation will be detected before the next instruction
is executed (ie. before the next JTAB). Therefore,
memory is protected throughout the entire instruction.

CALLING SEQ:

JSB .INIT

DEF BUFF (,D)
DEF START (,I)
DEF INC «, D
DEF NUMBR (,1)

BUFF is the user buffer

START is the starting value to initialize
the buffer with (ie. buff(1)=start)

INC the increment to the next buffer value
(ie. buff(2) = start+inc)

NUMBR the number of words to initialize
(if numbr <0 use abs(numbr))

$define adrl/inst_restart 0x00D0$

rdp, ip; sread def buff
call RSV_IND; sresolve indirects

¢+ must complete read started by RSV_IND
*+ s7 has the direct buffer address on return

124

Update 2

READER COMMENT SHEET

HP 92045A MICROPROGRAMMING PACKAGE ‘
Reference Manual

92045-90001 February 1982

Update No.
(if Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

FROM:

Company

Address

Phone No. Ext.

I " |I I NO POSTAGE

NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 141 CUPERTINO, CA.

— POSTAGE WILL BE PAID BY —

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

L

(ﬁﬂ HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY

Data Systems Division

MANUAL PART NO. 92045-90001 11000 Wolfe Road
Printed in U.S.A. February 1982 Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-00
	01-000
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-00
	02-01
	02-03
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-00
	03-000
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	05-00
	05-01
	05-02
	05-03
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-00
	08-000
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-00
	12-000
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	A-00
	A-01
	B-00
	B-01
	C-00
	C-01
	C-02
	C-03
	C-04
	D-00
	D-01
	D-02
	E-00
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	E-51
	E-52
	E-53
	E-54
	E-55
	E-56
	E-57
	E-58
	E-59
	E-60
	E-61
	E-62
	E-63
	E-64
	E-65
	E-66
	E-67
	F-00
	F-01
	F-03
	G-00
	G-01
	G-02
	G-03
	G-04
	Index-00
	Index-01
	Index-02
	Index-03
	_0001
	_0002
	_001
	_002
	_03-03
	_03-04
	_09-01
	_09-02
	_12-03
	_12-04
	replyA
	replyB
	xBack

