HP 24307B
DOS-1I

Disc Operating System
reference manual

il

HEWLETT@ﬁ PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed: FEB 1975
Printed in U.S.A.

MANUAL PART NO. 24307-90006
MICROFICHE PART NO. 24307-90007

List of Effective Pages

Pages Effective Date
Title. Feb 1975
flitoxiii Feb 1975
1-1to1-17 Feb 1975
21to260 Feb 1975
31to346 Feb 1975
4-1tod4. Feb 1975
5-1to5-36 Feb 1975
6-1to6-3. Feb 1975
71to7-4. Feb 1975
81to825 Feb 1975
91t0o9-22 Feb 1975
10-1to 1046 Feb 1975
11-1to11-8. Feb 1975
12-1t012-10 Feb 1975
13-1to13-34 Feb 1975
14-1to14-3. Feb 1975
15-1to15-16 Feb 1975
AltoA-15. Feb 1975
Index1,1to3. Feb 1975
Index2,1to 2. Feb 1975
Index3,1to3. Feb 1975

Preface

This manual is a programming guide to DOS-III, a Hewlett-Packard Disc Operating System for 2000-
series computer systems. Programmers using this manual should be familiar with the functions of
batch-processing operating systems and one of the programming languages supported by the DOS-III
Operating System.

The Hewlett-Packard programming languages and program libraries that can operate under control
of DOS-III are described in the following reference manuals:

® HPALGOL (02116-9072)

® HP ASSEMBLER (24307-90014)

e HP FORTRAN (02116-9015)

® HPFORTRANIV (5951-1321)

® RELOCATABLE SUBROUTINES (02116-91780)

Other information, which may be useful to the programmer, is included in the SMALL PROGR AMS
MANUAL, the MANUAL OF DIAGNOSTICS and the SOFTWARE OPERATING PROCEDURES.
These manuals contain custom-assembled modules pertaining to each customer’s software and hard-
ware configurations, and are supplied with each Hewlett-Packard computer system.

This manual is divided into six functional parts:

® Part 1. DOS-III OPERATING SYSTEM

Part 1 defines the standard capabilities of DOS-III. It includes a summary of DOS-III organi-
zation, hardware and software; definitions of DOS-III directives, EXEC calls and I/O routines;
a description of the interaction of DOS-III and its subsystems; and a set of sample job decks.

® Part 2. DOS-III EXTENDED FILE MANAGEMENT PACKAGE (EFMP)

Part 2 describes the capabilities of the DOS-IIT Extended File Management Package (EFMP),
which allows the programmer to extend the file-handling capabilities of the DOS-III Operating
System. Part 2 contains sections on EFMP organization, EXEC calls and use of UTIL, the EFMP
Utility Program.

iii

Part 3. GENERATING AND LOADING DOS-III

Part 3 gives complete instructions for generating and loading a DOS-III System.

Part 4. DOS-III SYSTEMS PROGRAMMING

Part 4 contains information which will help the advanced programmer to write his own EXEC
modules, plan I/O drivers and use the DOS-III privileged mode capabilities.

Part 5. ERROR CODES AND MESSAGES
Part 5 is a complete set of all DOS-III Operating System error codes and messages.

Part 6. APPENDIX AND INDEXES

Part 6 contains an appendix of DOS-III system tables and three indexes: the first two are con-
venient summaries of DOS-III directives and EXEC calls; the third refers to terms discussed in
the manual.

iv

Contents

Preface iii

PART 1 DOS—III Operating System

SECTIONI DOS-III Organization 1-1
MAIN MEMORY LAYOUT 1-1
DOS-III OPERATION 1-3

Deleting Keyboard Errors 1-3
Batch Abort 1-3
DOS-III DIRECTIVES 1-3
DOS-III EXEC CALLS 14
DOS-III INPUT/OUTPUT 1-5
PRIVILEGED INTERRUPT 1-5
TIMING CAPABILITIES 1-6
Timer Buffer 1-6
Time-out Processor Routine 1-6
Calling Sequence 1-7
DOS-III FILES 1-8
Standard Files 1-8
DOS-III Extended File Management Package 19
DOS-III MEMORY MANAGEMENT 19
GENERATING A DOS-III SYSTEM 19
DISC STORAGE 1-10
HP 2883/2884 1-10

4 - Subchannel Mode 111

2 - Subchannel Mode 1-12

HP 7900/7901 1-13
DISC USAGE 1-13
DOS-III HARDWARE 1-15
Required Hardware 1-15

Hardware Options 1-15

DOS-III SOFTWARE 1-16

Required Software 1-16
Software Options 1-16
SECTION II DOS-III Directives 2-1
FORMAT FOR DIRECTIVES 2-1
ENTERING DIRECTIVES 2-1
ORDER OF DIRECTIVES 2-2
ABORT 2-3
BATCH 2-4
CLEAR 2-5
COMMENT 2-6
DATE 2-7
DOWN 2-8
DUMP (DISC-TO-DISC) 2-9
DUMP (FILE) 2-11
DUMP (PROGRAM) 2-13
DUMP (SECTOR) 2-15
EDIT 2-17
END-OF-FILE 2-21
END-OF-JOB 2-22
EQUIPMENT TABLE 2-23
GO 2-25
INITIALIZE 2-26
JOB 2-28
LIST 2-29
LOGICAL UNIT 2-33
MMGT 2-35
OFF 2-37
PAUSE : 2-38
PROGRAM 2-39
PURGE 2-40
RENAME 2-42
REWIND 2-43
RPACK 2-44
RUN 2-45

SPECIFY SOURCE FILE 2-46

STORE 2-417
SYSTEM SEARCH 2-52
TOP-OF-FORM 2-54
TRACKS 2-55
TYPE 2-57
UpP 2-58
USER DISC CHANGE 2-59
SECTION III DOS-IIT EXEC Calls 3-1
ASSEMBLY LANGUAGE EXEC CALLS 3-2
ALGOL EXEC CALLS 3-3
FORTRAN EXEC CALLS 3-5
BASE PAGE STORE 3-6
FILE CREATE 3-7
FILE NAME SEARCH 3-9
FILE PURGE 3-11
FILE READ/WRITE 3-13
FILE RENAME 3-15
I/0 CONTROL 3-17
I/O READ/WRITE 3-20
I/0 STATUS 3-23
MEMORY MANAGEMENT (BUFFER ALLOCATION) 3-24
MEMORY MANAGEMENT (BUFFER RELEASE) 3-25
MEMORY MANAGEMENT (INITIALIZE) 3-26
MEMORY MANAGEMENT (STATUS REQUEST) 3-28
MEMORY PROTECT CONTROL 3-29
PROGRAM COMPLETION 3-30
PROGRAM LOAD 3-31
PROGRAM SUSPENSION 3-33
SEGMENT LOAD 3-35
SEGMENT RETURN 3-37
TIME REQUEST 3-38
WORK AREA LIMITS 3-39
WORK AREA STATUS 3-41
USER DISC CHANGE 3-43

PARAMETER PROCESSING 3-46

vii

SECTION IV Input/Output 4-1

USER PROGRAM I/O 4-1
SYSTEM I/O PROCESSING 4-2
INPUT/OUTPUT DRIVERS 4-3
SPECIAL DRIVER CONSIDERATIONS 4-4
SECTION V DOS-III Subsystems 5-1
SOURCE PROGRAM FILES 5-1
LOAD-AND-GO FACILITY 5-1
ALGOL COMPILER 5-2
ALGOL I/O 5-2
Compiler Operation 5-2
PROG, ALGOL 5-3
Messages During Compilation 5-3
Language Considerations 5-5
ASSEMBLER 5-6
Assembler I/O 5-6
Assembler Operation 5-6
PROG, ASMB 5-7
Messages During Assembly 5-7
Language Considerations 5-9
FORTRAN COMPILERS 5-11
FORTRAN I/O 5-11
Compiler Operation 5-11
PROG,FTN(4) 5-12
Messages During Compilation 5-12
Language Considerations 5-13
Extended and Auxiliary Statements 5-14
PROGRAM Statement 5-15
DATA Statement 5-16
EXTERNAL Statement 5-17
PAUSE and STOP 5-18

ERRO LIBRARY ROUTINE 5-19

viii

DOS-IIT RELOCATING LOADER 5-20

PROG,LOADR 5-21
I/O Drivers 5-23
Loader Operation 5-23
Matching Entries with Externals 5-24

THE RELOCATABLE LIBRARIES 5-28

DEBUG LIBRARY SUBROUTINE 5-29

DEBUG OPERATIONS 5-29

SPECIAL CONSIDERATIONS 5-30

SEGMENTED PROGRAMS 5-31
FORTRAN Segments 5-35
ALGOL Segments 5-35

SECTION VI Typical DOS-III Job Decks 6-1

PART 2 DOS-III Extended File Management Package (EFMP)

SECTION VII EFMP Organization 7-1
ENVIRONMENT 7-1
FUNCTIONS AND STRUCTURE 7-1

DOS-III Files vs. EFMP Files 7-1
Duplicate Pack Numbers 7-2
EFMP Buffers and Tables 7-2
Logical Read vs. Physical Read 7-3
Logical Write vs. Physical Write 7-3
Update-Writes vs. Append-Writes 7-3
SET UP 7-3

SECTION VIII EFMP EXEC Calls 8-1
FORMAT FOR EFMP EXEC CALLS 8-1
DEFINE 8-2
CREATE 8-4
DESTROY 8-6
OPEN 8-7
CLOSE 8-8
READ 8-9
INITIALIZE 8-10
WRITE 8-11
RESET 8-12
STATUS 8-13
STATUS (FSTAT =1) 8-14
STATUS (FSTAT = 2) 8-15

STATUS (FSTAT = 3) 8-16

ix

STATUS (FSTAT = 4)
STATUS (FSTAT = 5)
STATUS (FSTAT = 6)
STATUS (FSTAT = 7)
REPACK (PURGE)
COPY

CHANGE FILE NAME
POST

SECTION IX EFMP Utility Program

:PROG,UTIL
BRIEF
CHANGE
CLOSE
COPY
CREATE
DESTROY
END
INITIALIZE
OPEN

POST
RESET
REPACK
STATUS-1
STATUS-2
STATUS-3
STATUS-4
STATUS-5
STATUS-6
STATUS-7

PART 3 Generating and Loading DOS-III

SECTION X Generating DOS-III
DSGEN

DSGEN Configuration from Paper Tape

HP 2100A/S
HP 21MX
DSGEN Start-up

USING DSGEN TO FORMAT DISCS

8-17
8-18
8-19
8-20
8-21
8-22
8-24
8-25

9-1
9-2
9-4
9-5
9-6
9-7

9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22

10-1
10-1
10-2
10-2
10-2
10-4
10-5

USING DSGEN TO GENERATE DOS-III
Restart
Initialization Phase
Program Input Phase
Parameter Input Phase
Disc Loading Phase
Sample System Generation
DSGEN DISC CARTRIDGE SYSTEM GENERATION
Sample DSGEN Cartridge Preparation and System Generation

SECTION XI Loading DOS-III
USING THE BMDL TO LOAD ABSOLUTE BINARY PROGRAMS
INITIATING DOS-III WITH THE BMDL
CONFIGURING THE DOS-III STAND-ALONE BOOTSTRAP LOADER

INITIATING DOS-III WITH THE STAND-ALONE BOOTSTRAP
LOADER

BMDL

PART 4 DOS-III Systems Programming

SECTION XII User-written EXEC Modules
USER EXEC MODULES: DIRECTIVES
USER EXEC MODULES: EXEC CALLS
USER EXEC MODULES: INTERNAL DESIGN
SAMPLE EXEC MODULE

SECTION XIII Planning 1/0 Drivers
STANDARD I/O DRIVERS
Initiation Section
Completion Section
SAMPLE I/O DRIVER
PRIVILEGED INTERRUPT I/O DRIVERS
Privileged Interrupt Section
Privileged Interrupt Completion Section
SAMPLE PRIVILEGED INTERRUPT I/O DRIVER

SECTION XIV Privileged Mode

10-7
10-7
10-8
10-11
10-12
10-15
10-18
10-28
10-35

111
11-3
11-4
11-5
11-6

11-7

12-1
12-1
12-3
12-4
12-6

13-1
13-1
13-1
13-4
13-7
13-20
13-22
13-24
13-26

14-1

PART 5 Error Codes and Messages

SECTION XV Halt Codes and Error Messages 15-1
DSGEN ERROR HALTS 15-2
DSGEN ERROR MESSAGES 15-2

Messages During Initialization and Input Phases 15-2
Messages During the Parameter Phase 15-3
General Messages 15-3
Messages During I/O Table Entry 15-4
DOS-III BOOTSTRAP ERROR HALTS 15-5
DOS-III ERROR HALTS 15-6
DOS-III ERROR MESSAGES 15-6
DOS-III EFMP ERROR CODES 15-15

PART 6 Appendix and Indexes

APPENDIX A System Tables A-1

INDEX 1 Summary of Directives

INDEX 2 Summary of EXEC Calls

INDEX 3 Terms

Table 2-1.
Table 11-1.
Table 11-2.
Table 15-1.
Table 15-2.
Table 15-3.
Table A-1.
Table A-2.

Figure 1-1.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 7-1.

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.

Figure A-1.
Figure A-2.
Figure A-3.
Figure A-4.

TABLES

:DUMP Formats

HP 7900/7901 BMDL

HP 2883 BMDL

DSGEN Error Conditions

DOS-III Bootstrap Error Halts

DOS-III Error Conditions

DOS-III Base Page Constants

DOS-III Base Page Communication Area

FIGURES

Functional Diagram of DOS-III
Segmented Programs

Main Calling Segment

Segment Calling Segment
Main-to-Segment Jumps

EFMP File Directory Format
I/O Driver Initiation Section

I/O Driver Completion Section

Privileged Interrupt I/O Driver Initiation Section
Privileged Interrupt I/O Driver Privileged Interrupt Section

Privileged Interrupt I/O Driver Completion Section

Main Memory Allocations in DOS-III
Disc Structure in DOS-III

Disc Directory Entry Format

The Equipment Table

xiii

2-11
11-7
11-8
15-2
15-5
15-6

A-3

A-4

1-2
5-31
5-32
5-33
5-34

13-3
13-6
13-21
13-23
13-25
A-2
A-9
A-10
A-14

PART 1
DOS-IIl Operating System

SECTION |
DOS-IIl Organization

The DOS-III supervisory software consists of a Disc Monitor (DISCM) that resides in main memory;
EXEC modules which may reside either in main memory or on disc; and a Job Processor (JOBPR)
that is disc-resident. Together these modules manage I/O processing, interrupt processing, executive
processing, job processing, and file handling.

Other DOS-III software consists of a series of relocatable binary software modules. Since each
module is an independent, general-purpose program, the hardware and software configuration of

the system is flexible. Modules can either reside in main memory or on the disc, at the user’s option
(specified during system generation). In a system with a small main memory, the modules can reside
on the disc to save main memory space; in a large main memory system, modules can reside in main
memory for greater efficiency.

MAIN MEMORY LAYOUT

When DOS-III is active, the main memory is divided into a User Area and a System Area (as shown
in Figure 1-1). The Disc Monitor program handles all EXEC calls and, if they are legal, transfers
them to the proper module for processing. The I/O drivers handle all actual I/O transfers of infor-
mation. If some I/O drivers are disc-resident, they are read into main memory by the supervisor
when needed. The User Area provides space for execution of user programs.

In addition, large DOS-III software modules, such as the FORTRAN Compilers, Assembler, Relocat-
ing Loader, and Job Processor, reside on the disc and execute in the User Area. (See Appendix A
for figures on disc and main memory layout.)

If the memory protect option is present, a memory protect boundary is set between the System
Area and the User Area. This boundary interrupts whenever a user program attempts to execute an
I/0O instruction (including a HALT') or to modify the System Area. (Instructions can reference the
switch register and overflow register.) Programs to be run in the User Area must use EXEC calls for
input/output, termination, suspension, and other external processes.

11

Listings, punched tapes,
etc. to output device(s)

System Area

User Area

Work Area

Job Binary Area

I

Directives, source
statements and data
from system console
and batch input device

v

System Area

|1

v o

User Area

low memory

high memory

Figure 1-1. Functional Diagram of DOS-III

1-2

DISC MEMORY

MAIN MEMORY

DOS-III OPERATION

DOS-III operates in either keyboard or batch mode. In keyboard mode, the user enters statements
and commands to the system (called directives) to control his programming job through a keyboard
device (system console). Each line entered must terminate with a return and a linefeed. In batch
mode, the user enters directives through a batch input device, sometimes integrated with a source
program on punched cards, paper tape or magnetic tape, thus forming a job deck. Jobs can be
stacked one upon another in a queue.

Deleting Keyboard Errors

To delete an entire line of input, strike rubout then linefeed. To delete the character just entered,
strike Control-A (simultaneous ‘“A”’ and control key striking). Each Control-A deletes one addi-
tional preceding character.

Batch Abort

Some errors when encountered in batch mode cause a batch abort. When such an error occurs
(mostly in response to a directive) DOS-III takes the following action:

1. The offending directive and an error message is printed on the list device.
2. JOB ABORTED is printed on both the system console and the list device.

3. The offending statement and subsequent statements are ignored until a JOB, EJOB, or TYPE
directive is encountered. The current operation is aborted and the next input is processed.

DOS-III DIRECTIVES

The DOS-III Supervisor operates in response to directives input by the programmer or operator.
Directives are strings of up to 72 characters that specify tasks to DOS-III. They are entered in one
of the two modes of DOS-III operation: keyboard or batch.

The DOS-III directives are used for the following functions:

® (Create, rename, edit, list, and dump user files (relocatable, absolute, loader-generated,
source statements, and ASCII or binary data)

® Search the various disc subchannels for specified file names
® Check status of user disc tracks
® Turn on user programs or system programs such as FORTRAN and Assembler

® Examine and modify the logical organization of the I/O; rewind magnetic tapes and output
end-of-file commands to magnetic tapes; output top-of-form commands to list devices

® Start and stop a job; type comments; suspend operations; resume execution of suspended
programs

o Assemble or compile, load and execute a user program
o Dump main or disc memory

® Set the date; abort programs; transfer to batch mode (from keyboard mode or batch mode);
return to keyboard mode (from batch mode)

® Change the subchannel of the user disc

® Initialize (label) a disc subchannel

® Dump all (or part of) a disc to another disc

® Purge file name entries from the user file directory
L Repack discs to eliminate purged user files

o Reserve logical memory space for specific subsystems (Memory Management)

DOQS-III directives are described in Section II.

DOS-III EXEC CALLS

After being translated and loaded, an executing user program communicates with DOS-III by means
of EXEC calls. An EXEC call is a JSB instruction which transfers control to the DOS-III Supervisor.

The EXEC calls perform the following functions:

° I/O read and write operations

L] User file and work area read and write operations
[I/0O control operations (backspace, EOF, etc.)

® Request 1/0 status

o Change the subchannel of the user disc

° Request limits and status of WORK area (temporary disc storage)
L Program completion

L Program suspension

L Loading of program segments or main programs
L Request the time

® Control of memory protect

L Store values into base page memory locations

® Memory Management

® Programmatic file control

DOS-III EXEC calls are described in Section III.

1-4

DOS-IIT INPUT/OUTPUT

All I/O operations and interrupts are channeled through the DISCM section of the DOS-III Super-
visor. DISCM is always main-memory resident and maintains ultimate control of the computer
resources.

I/O programming is device-indepéndent. Programs written in FORTRAN, ALGOL, and Assembler
specify a logical unit number (with a predefined function, such as data input) in I/O statements
instead of a particular device. Logical unit numbers initially are assigned to appropriate devices by
the operator during system generation, depending upon what is available and can be assigned during
a job. Thus, the programmer need not worry about the type of input or output device performing
the actual operation.

PRIVILEGED INTERRUPT

For DOS-III system interrupt processing, the I/O channel select codes are assigned decreasing priority.
Channel 105 has the highest priority and channel 37 has the lowest. When an interrupt occurs on an
1/0O channel, system interrupt processing is disabled on all channels having a lower priority (higher
number) until the higher priority interrupt processing is completed.

DOS-III provides an optional capability which permits privileged interrupts on specific I/O devices
(channels). These devices have their own user-supplied interrupt routines and have their interrupts
processed without going through the system’s central interrupt processor ($CIC). The system guaran-
tees a response time of 100 microseconds for privileged device interrupts. (For a description of
privileged interrupt driver routines, see Section 13.)

The privileged interrupt capability is obtained by including a “fence” board in the system hardware
configuration and notifying the system software of the existence of the fence during system gener-
ation (see Section 10). The privileged interrupt fence physically separatés privileged devices from
system devices. Privileged devices are those with interface boards in I/O channels of a lower number
(higher priority) than the fence. System devices are those with interface boards in I/O channels with
a higher number than the fence.

The DMA channels are always considered system devices although they reside on the privileged side
of the fence. When the privileged interrupt option is included in the system, any DOS-III drivers
which require DMA interrupts must explicitly inform the system of this fact. This is accomplished
by issuing the following subroutine call from the driver before returning control to the system:

EXT $SDMA
JSB $SDMA

When the last DMA interrupt has been received, the driver should inform the system that no further
DMA interrupts are expected by issuing the following subroutine call:

EXT $CDMA
JSB $CDMA

When the privileged interrupt fence is installed in the system and necessary privileged interrupt
drivers are included, the user can access his privileged devices with standard I/O calls (JSB EXEC).

1-5

TIMING CAPABILITIES

A library subroutine called $TIME is available to both system programs and user programs. The
Time Base Generator is required to use this subroutine (see ‘“Hardware Options’’). $TIME provides
the capability to set, reset, or release a timer (100 millisecond resolution).

Note: Upon return from the $TIME subroutine, Memory Protect is
disabled until a system request (JSB EXEC) is issued.

When setting (activating) a timer, an initial time value is placed into a user-supplied buffer and this
timer buffer is added to a linked list of currently active timers. When the timer expires, the sub-
system, driver, or user receives temporary control from the system. A timer is reset by placing a
new time value into an active timer buffer. A timer is released (deactivated) by removing the timer
buffer from the linked list of active timers. It is possible to remove all timer buffers from the list
with one calling sequence.

To use $TIME, the program must include a timer buffer, a time-out processor routine, and a calling
sequence.

Timer Buffer

A 4-word timer buffer must be available to $TIME. The address of this buffer is passed to $TIME
to identify the desired timer. Timer buffer format is:

Word 1: 16-bit buffer identifier
Word 2: Address of time-out processor routine

Word 3: Current time value
System use only
Word 4: Address of next timer buffer in linked list

Program must not modify word 3 or 4.

Time-out Processor Routine

Control is passed to the time-out processor routine when a specified timer expires. Unless the
system was generated with the privileged interrupt option, the interrupt system will be OFF and
should remain OFF during execution of the time-out processor routine. If the privileged interrupt
option is included in the system, the interrupt system will be ON upon entry into the time-out
processor. To prevent further privileged interrupts from occurring during execution of the time-out
processor, the time-out processor must disable the interrupt system.

Caution: Interrupts should not be disabled for more than 100 microseconds.

On entry into the time-out processor routine, the timer buffer is released from the timer list and
the A- and B-registers set as follows:

A = 16-bit identifier of the timer just expired (this allows one time-out
processor to service many timers).

B = 15-bit address of the timer buffer associated with the expired timer.

Calling Sequence

To set or reset a timer:

EXT $TIME
LDA VALUE (Time specified in —100 milliseconds)
LDB ATMBF (Address of timer buffer)
JSB $TIME (Set/reset timer)
SZA (If A =0, no error; A =1, illegal address)
JMP ERROR

VALUE DEC -2 (Set timer for 200 milliseconds)

When this request is received, the list of timers is scanned for a matching timer buffer. If no match
is found, a set request is assumed and the new entry is placed in the timer list. If a match is found, a
reset request is assumed and the new value is stored into the existing timer buffer.

On return from $TIME, the contents of the A-register indicate the termination condition:

A = 0; normal termination

A = 1; illegal timer buffer address

1-7

To release a timer:

ATMBF
TMBUF

TOP

EXT $TIME

CLA

LDB ATMBF
or

CLB

JSB $TIME

<return point>
DEF TMBUF[,I]
OCT n

DEF TOP[,I]

BSS 2
NOP
JMP TOP,I

(Indicates release request)
(Release a specific timer)
or } Choose one
(Release all timers)
(Release timer)

(Address of timer buffer)

(16-bit identifier)

(Address of time-out processor) } Time Buffer
(Reserved for system)

Time-out Processor

Note: Routines using $TIME must remain main-memory resident during
program execution because the system uses a linked list mechanism

to keep track of the timers.

DOS-III FILES

Two types of files can be included in the DOS-III system: standard files (created by the STORE or
EDIT directives) and files created under the Extended File Management Package (if EFMP is in-

cluded in the system).

Standard Files

The disc provides quick access and mass storage for user files consisting of source statements, re-
locatable, absolute and loader-generated object programs, or ASCII or binary data. Each file has
a name that is used to reference it.

Programs use the Work Area of the disc for temporary storage. The System Area contains files of
systems programs, EXEC modules, a system directory, and system library subroutines.

DOS-III Extended File Management Package

DOS-III installations can use the DOS-III Extended File Management Package (EFMP). This set of
optional EXEC modules allows the user to exploit a more powerful file structure than that provided
by DOS-III. EFMP files allow logical record sizes of varying lengths for different files, security codes,
flexible buffering, sequential reads and writes with a pointer, and detailed status information. In
addition, a utility program (UTIL) is available that operates in the User Area. UTIL makes those
EFMP functions (except reads and writes), normally only usable through EXEC calls, usable from
the keyboard. For more information on EFMP, see Part 2.

DOS-III MEMORY MANAGEMENT

A memory management EXEC module allows user and system programs to allocate and release
buffer space within memory. The following memory management capabilities are provided:

° A directive (:MMGT) to specify and list subsystem names and block sizes.

° An initialization call (RCODE=35) to reserve a block of memory under a unique block name.
° A status call (RCODE=36) to interrogate the state of various blocks of memory.

® A buffer allocation call (RCODE=38) to subdivide blocks of memory into individual buffers.
A unique buffer identification is assigned each buffer allocated.

® A buffer release call (RCODE=41) to release previously allocated buffer space.

GENERATING A DOS-III SYSTEM
DOS-III is generated and loaded using two programs:

® Configured DSGEN (the system generator)

® BMDL (a bootstrap loader which loads the configured DOS-III from the disc into
main memory); or an equivalent program contained on a ROM.

First, DSGEN outputs instructions to the operator asking for information about the system. At the
appropriate point in the dialogue, the operator loads in the relocatable binary modules which make
up DOS-III and specifies whether the modules are to be disc- or main-memory resident. Finally,
DSGEN stores the configured DOS-III system on the disc in absolute form. (The disc is protected
from alteration by a hardware override switch.) ’

DOS-III then resides as a Systéem Area and User Area on the disc. Each area is labeled and contains
a directory of all the files contained within the area. The System Area contains system main-memory
resident and disc-resident modules, while the User Area contains user files.

To load DOS-III into main memory and begin system execution, the user executes a disc loader.
The Loader loads all the modules designated main memory resident into main memory. (The disc-
resident modules are brought into main memory when needed by the main-memory resident
modules.)

1-9

DISC STORAGE

Disc storage is divided into subchannels. Each subchannel is a logical disc, i.e., the dimensions do
not necessarily correspond to the physical characteristics of the disc. Each subchannel contains
203 tracks — typically three of which are reserved as spares. The smallest addressable unit on a
disc is a sector. One sector contains 128 sixteen-bit words of storage.

HP 2883/2884

During system generation, the HP 2883 disc drives can be configured for one of two modes — four
subchannels per drive or two subchannels per drive. In either case, the controller supports one or
two drives (one drive is required).

For the four subchannel per drive mode, each drive contains a removable pack of twenty disc sur-
faces divided into four subchannels. Thus, the controller can support up to eight subchannels.

For the two subchannel per drive mode, each drive contains a removable pack of twenty disc sur-
faces divided into two subchannels. One controller supports up to four subchannels. A second
controller (optional) can be added to provide support for up to eight subchannels. Subchannel
assignments follow:

2883/2884 2883/2884
with four with two
Subchannels Subchannels
per drive per drive
0 1 Disc Drive Numbers 0 1 2 3
0 4
0 2 4 6
1 5 Subchannel
9 6 Assignments
1 3 5 7
3 7

When two controllers are used (two subchannels per drive mode only) they must reside in contigu-
ous I/O channel slots. In addition, the subchannels associated with the second controller (sub-
channels 4 through 7) can contain only user discs — no generation or bootstrap operations are
permitted on these subchannels.

When an HP 2883/2884 is configured to the four-subchannel mode, each track contains 115 sectors.
If it is configured to the two-subchannel mode, each track contains 230 sectors. Perhaps the con-
cept of logical disc organization can be more clearly understood by studying the accompanying
illustrations.

1-10

HP 2883/2884
4-SUBCHANNEL MODE
LOGICAL ORGANIZATION

TOP SURFACE
5 SURFACES = IS NOT USED
1 SUBCHANNEL

5 PHYSICAL TRACKS =
SUBCHANNEL 0 1 LOGICAL TRACK

115 SECTORS PER LOGICAL
TRACK (23 SECTORS PER
SURFACE TIMES 5 PHYSICAL

SUBCHANNEL 1 TRACKS)

203 TRACKS

SUBCHANNEL 2

SUBCHANNEL 3

BOTTOM SURFACE IS

IN 4-SUBCHANNEL MODE,
IS NOT USED

4 LOGICAL TRACKS =
1 CYLINDER

1-11

HP 2883/2884
2-SUBCHANNEL MODE
LOGICAL ORGANIZATION

TOP SURFACE
IS NOT USED.
10 SURFACES=
1 SUBCHANNEL

~

10 PHYSICAL TRACKS=
1 LOGICAL TRACK
SUBCHANNEL @

230 SECTORS PER TRACK
(23 SECTORS PER SURFACE
TIMES 10 PHYSICAL TRACKS)

SUBCHANNEL 1

IN 2-SUBCHANNEL
MODE, 2 LOGICAL
TRACKS=1CYLINDER

BOTTOM SURFACE
ISNOT USED.

1-12

HP 7900/7901

The controller for the moving-head disc supports up to four disc drives (one is required). Each 7900
drive contains two discs: a fixed disc and a removable cartridge. Each 7901 drive contains one disc:
a removable cartridge. Each disc is referenced through a subchannel of the controller. Therefore,
the controlier has a maximum of eight subchannels (numbered O to 7). The subchannels are
assigned as follows:

7900 7901
0]1}2]|3 Disc Drive Numbers o|l11]121]3
1 3 5|7 Removable Subchannels 1 3 5| 7
0214 6| Permanent Subchannels None

On the HP 7900/7901 disc drive, eaeh-track on the disc contains 48 sectors as shown in the
following illustration.

HP 7900/7901
DISC ORGANIZATION

2 SURFACES=
1 SUBCHANNEL 203 TRACKS
\\\ |
SUBCHANNEL 1 48 SECTORS PER TRACK
(REMOVABLE) (24 SECTORS PER SURFACE)

THE HP 7901 HAS NO PERMANENT
SUBCHANNEL @ ‘ '
(PERMANENT) u DISC; THUS NO CORRESPONDING
SUBCHANNEL.

DISC USAGE

DOS-III normally allows two subchannels to be available to the user: one subchannel contains the
system disc and the other contains the user disc (which may be the same subchannel as the system
disc). The user subchannel assignment can be changed during job or program execution. In addi-
tion, an optional system search mode is available to allow searching for user files on any specified
subchannels.

1-13

The disc storage has four parts:

1. The System Area

Executable code created by the system generator and hardware protected; includes
DOS-III Supervisor and other system programs.

2. The User Area (optional)

User file directory and user files (data, object programs, source statements, etc.).

3. The Work Area

Temporary storage for the current job.

4. Job Binary Area

Temporary storage for relocatable object code generated by the Assembler and compilers; this
is an area of variable size and starts from the end of the disc.

All four of these areas can reside on the system subchannel, or the User Area can be on a separate
subchannel. Only one User Area is available to the system at a time. The standard user subchannel
is assigned at system generation time; this can be the system disc or another subchannel (removable
or permanent disc). The UD directive and an analogous EXEC call allow the user to temporarily
change the User Area to another subchannel.

Automatic track switching is provided within each subchannel.

1-14

DOS-III HARDWARE REQUIREMENTS

DOS-III controls the operation of HP 2100A and HP 2100S Computer systems, and HP 21MX Com-
puter Series systems. Minimum hardware requirements depend on the type of computer system
selected.

The minimum hardware required for DOS-III dperation is:

1. a) An HP 2100A or HP 2100S Computer, with 16,384 words of main memory, and DMA; or,

b) An HP 21MX-series Computer with 16,384 words of main memory, and a Dual-Channel
Port Controller.

2. Moving-head Disc device (HP 7900 Moving-head Disc Drive with fixed disc and removable
cartridge; or HP 7901 Moving-head Disc Drive with removable cartridge; or HP 2883 Disc
File with one removable pack).

3. System Console device.

4. Paper Tape Reader.

Hardware Options

The following hardware options are available:

Time-base Generator (provides accounting times and time-of-day).
Privileged Interrupt Fence.

Floating-point hardware (standard for 21MX Computer Series).
Additional main memory to a total of 24,576 or 32,768 words.
Using extenders, additional I/O channels (up to channel 37g).
Memory Protect (not available for the HP 2105 Processor).

Paper Tape Punch.

Line Printer.

®© X e s b

Card Reader.

—
e

Magnetic Tape Unit.

—
—

Additional Disc Drives. (Maximum is four on HP 7900/7901 ; two on HP 2883 with four sub-
channels per drive; and four on HP 2883 with two subchannels per drive.)

12. CRT Display Console.
13. Writable Control Store.
14. Fast FORTRAN Processor.

1-15

DOS-III SOFTWARE

Required Software

The minimum software requirements for DOS-III are

1.

Absolute Programs

a.
b.

C.

DOS-III System Generator (DSGEN)
DOS-III Bootstrap Loader
SIO Drivers

Relocatable Programs

a.

b.

DOS-III Disc Monitor (DISCM)

DOS-III Exec Modules

DOS-III Job Processor (JOBPR)

DOS-III Disc Driver (DVR31)

DOS-III System Console Driver (DVR00, DVRO0O5 or DVR26)

DOS-III Paper Tape Reader Driver (DVRO01)

Software Options

In addition, the following programs can be included when DOS-III is generated:

1.

2.

DOS-III Relocating Loader

DOS-IIT Assembler

DOS-III FORTRAN Compiler

RTE/DOS FORTRAN IV Compiler

RTE/DOS FORTRAN IV Compiler — 10K Compiler Area

RTE/DOS ALGOL Compiler

RTE/DOS Relocatable Library (EAU, or floating point)

RTE/DOS FORTRAN IV Library (extended-precision arithmetic)

1-16

9. RTE/DOS FORTRAN Formatter

10. DOS-III Standard Drivers (either main-memory or disc resident):
Paper Tape Punch Driver (DVR02)
Digital Plotter Driver (DVR10)
Card Reader Driver (DVR11) — uses DMA or Dual Channel Port Controller
Line Printer Driver (DVR12)
Optical Mark Reader Driver (DVR15)
Magnetic Tape Driver (DVR23) —uses DMA or Dual Channel Port Controller
Terminal Printer Driver (DVR26)
Writable Control Store Driver (DVR33) — uses DMA
Card Reader Punch Driver (DVR34)
Hardwired Serial Interface Driver (DVR67)

11. DOS-III Physical Drivers
Synchronous Data Set Interface Driver (DVR70)
Synchronous Modem Interface Driver (DVR71)
Asynchronous Data Set Interface Driver (DVR72)
Asynchronous Multiplexer Interface Driver (DVR73)
Buffered Asynchronous Data Set Interface Driver (DVR74)

12. DOS-III Logical Drivers
Asynchronous Terminal Driver Number One (ATDO01)
Asynchronous Terminal Driver Number Two (ATD02)
Asynchronous Card Reader Driver Number One (ACRO01)
Page Mode Terminal Driver Number One (PMTO01)
Page Mode Terminal Driver Number Two (PMTO02)
Synchronous Line Control (SLC)

13. DOS-III Extended File Management Package

14. RTE/DOS Fast FORTRAN Processor Subroutine Library

1-17

SECTION [/
DOS-IIl Directives

Directives are the direct line of communication between the keyboard or batch input device and
DOS-III. Directives may enter DOS-III in two modes: keyboard and batch. In either mode, all
directives are listed on the system console. Certain directives can be used in one mode only; others
can be used in both modes. In keyboard mode, the operator manually inputs the directives through
the system console keyboard. In batch mode, the programmer prepares the directives (commonly
on punched cards, paper tapes, or magnetic tape) and inputs them along with programs, data, etc.,
in a complete job.

FORMAT FOR DIRECTIVES
Directives have the same format, regardless of the mode in which they occur: a colon (:) followed
by a directive word (first two characters are significant) and, if necessary, a list of parameters
(maximum is 15) separated by commas. For example,

:PURGE,FILE1,FILE2,FILE3
When the sequence and position of parameters is significant, missing parameters must be represented
by commas if the following parameters are to be recognized. The first blank character not preceded
by a comma is the end of the directive. Comments may appear after this blank; they are ignored by

DOS-III.

Note: The total length of an input string cannot exceed 72 characters.

ENTERING DIRECTIVES
DOS-III has two conventions for notifying the operator that directives may be entered:

1. DOS-III outputs a “commercial at’’ sign (@) and rings a bell (at the system console). At this
time, the operator may enter any directive.

2. DOS-III outputs an asterisk (at the system console). At this time the operator may enter an
“operator attention’ directive only. The ‘“‘operator attention’’ directives are

:ABORT
:DN

:EQ

:LU

:OFF
:PAUSE
:TRACKS
:TYPE
:UP

Should the operator type any other directive, DOS-III outputs the following message:
IGNORED
and returns to the executing program.

To attain control of DOS-III (to enter an “‘operator attention’ directive) the operator can

strike any system console keyboard key. If the system console is available, DOS-III immediately
outputs an asterisk (*); if the system console is busy, DOS-III will output the asterisk as soon

as it releases the system console.

Notes: 1. Operator attention is disabled during the completion phase of :EDIT and
during :PURGE.

2. Some system conditions restrict allowable directives; e.g., after an I/0
ERR NR EQT# nn, the system is waiting for an :UP,nn, followed by :GO.
Under such conditions, otherwise legitimate directives will be ignored.

3. Some operations, such as editing, require perceptible waits while DOS-III
processes the directive.

ORDER OF DIRECTIVES

The DOS-III directives described in this section are presented in alphabetic order (by function name).
If a directive must be used in keyboard mode only, a note to that effect is placed at the top of each
page describing the directive. A quick cross-reference index of DOS-III directives, ‘“‘Summary of
Directives,” is included at the back of this manual.

Keyboard Mode Only

ABORT

Purpose

To terminate the current job before the next JOB or EJOB directive.

Format

:ABORT

Comments

Abort carries out all the operations of a batch mode EJOB directive. All I/O devices are cleared.

2-3

BATCH

Purpose

To switch from keyboard mode to batch mode, or to reassign the batch device.

Format
:BATCH,logical unit

where logical unit is the logical unit number of the desired batch input device.

Comments

A BATCH, JOB, TYPE, OR TRACKS directive must be the first directive entered following
system start.

See “TYPE” in this section for the opposite procedure of returning batch mode to keyboard
mode. Assigning a null device or logical unit numbers 2 or 3 as the batch device results in an
ILLEGAL LUN error (see LOGICAL UNIT directive).

CLEAR

Purpose

To clear the Job Binary Area on the disc, or to issue a clear command to an I/O device.

Format
:CLEAR/,logical unit]

where logical unit is the logical unit number of the device to be cleared. If logical unit is omitted,
the disc Job Binary Area is cleared.

Comments

Using logical units 1, 2, or 3 results in an LU error.

The effect of clearing an I/O device is the transmittal of a clear function to the appropriate driver.

2-5

COMMENT

Purpose

To print a message on the system console.

Format
:COMMENT character string

where character string is a message to be printed on the system console.

Comments
A space (but not a comma) is required between the directive word and the comment string.
The programmer can use :COMMENT or :PAUSE to send a message to the operator at the system

console; using :COMMENT causes no suspension of processing. Use :PAUSE when a processing
delay is desired, for example to request that the operator mount a magnetic tape.

EXAMPLES:

:COMMENT BEGINNING OF PAYROLL JOB

Keyboard Mode Only

DATE

Purpose

To set the date and time for accounting purposes whenever DOS-III is activated.

Format
:DATE,day[,hour,min]

where day is any string of ten or fewer characters (commas not permitted) chosen by the operator
(such as 7/10/69, 10.JULY.69, etc.);

hour and min are the current time in hours and minutes on a 24-hour clock. If not given or
a Time-base Generator is not present, they are set to zero.

Comments

The DATE directive is legal only as the first directive in a start-up procedure. The directive is not
accepted any other time.

EXAMPLES:

:DATE,7/10/69,12,23
:DATE,WEDNESDAY,7,45
:DATE,10JULY1969

:DA,,

2-7

DOWN

Purpose

To declare an I/O device unavailable for use during the remainder of a job.

Format
:DN,n

where n is the equipment table entry number for the device to be set down.

Comments

The system console and the disc (logical units 1, 2, and 3) cannot be set down.

DUMP (DISC-TO-DISC)

Purpose
1. To dump an entire disc onto another subchannel (:DD)
2. To dump the System Area (including system buffer) onto another subchannel (:DD,X)

3. To dump all or specified files of the User Area (optionally assigning some new file names) onto
another subchannel (:DD,U ...) or, onto the current subchannel (assigning new file names).

Formats
1. :DD
2. :DD,X

3. :DD,U[\file 1[,(file A)] ,file 2[,(file B)] ...]

where X specifies the System Area,
U specifies the User Area,
file 1, file 2, ... specify the files to be dumped (the entire User Area if no files are specified),

file A, file B, ... specify the optional new names for file 1, file 2, etc. (renamed files can be
intermixed with unchanged files).

Note: No more than 14 parameters can be specified after :DD,U.

The destination disc must be specified by a :UD immediately following the :DD. Any other direc-
tive will negate the :DD. (For :DD and :DD,X, the directive must be :UD,*,n where n is not the
system disc.)

Comments
When the destination for a :DD,U is a system disc, other than the current system, the user files are

dumped in the User Area following the system files. This allows the user to dump a system and
selected user files to a single disc. (See also “INITIALIZE”)

The SS directive does not apply to :DD.

If the files of the source disc cannot completely fit on the destination disc, DOS-III transfers as
many whole files as possible and outputs

TRAC # TOO BIG

If DOS-III cannot find some of the files specified to be dumped, the message
file
UNDEFINED

is output. This does not effect dumping of the files which are defined.

If a file specified to be dumped has the same name (after the optional renaming) as an existing file
on the destination disc, the message

file
DUPLICATE FILE-NAME

is output and the file is not dumped. This does not effect dumping of other files.

Caution: A DOS-III system created through the :DD directive
(disc-to-disc dump) cannot be protected with the
Protect/Override switch on the disc drive because the
protect bits on the system portion of the original disc
are not copied during the dump operation.

2-10

DUMP (FILE)

Purpose

To dump a user file to a specified peripheral I/O device in a format appropriate to the file content.

Format
:DUMP,logical unit,file[,S1[,S2]]

where logical unit is the logical unit number of output device to be used for the dump
file is the user file to be dumped

S1 and S2 are the first and last relative sectors to be dumped

If S1 and S2 are not given, the entire file is dumped. If only SI is given, then the file, starting with
S1, is dumped.

Comments

Files may be dumped on list devices or punch devices (including magnetic tape). The dump format
varies with the type of file and the type of device. See Table 2-1.

Table 2-1. :DUMP Formats

File Type Punch Device List Device
ASCII data 64 characters/record 64 characters/record
Binary data 64 words/record 8 octal words/line
Absolute binary Absolute binary records 8 octal words/line
Relocatable binary Relocatable binary 8 octal words/line

records (loadable)

Source statements 1 statement/record 1 statement/line

Note: Sector numbers on listings are not related to the S1 and S2 parameters.

2-11

Source statements are packed and do not necessarily start on sector boundaries. Thus, if the S1 and
S2 parameters are used, dumping begins with the start of the first statement beginning in sector S1,
and ends with the last statement beginning in sector S2 (this will probably end in the following sector).

Files in the System Area cannot be dumped.
An error message occurs when S1 > S2, or when either SI or S2 is greater than the length of the file.

Source statements, relocatable binary and absolute binary files can be dumped to a punch device and
later restored by using the appropriate STORE directive. In general, however, this cannot be done
with ASCII data and binary data files.

EXAMPLES:

Where L is a source file:
:DUMP,1,L
A
BB
cce
DDDD
ErFEE
FFFFFF
GGGGGGG
@

Where SSERH is a binary file:
(On the system console:)
:DU,6,SSERH, 1,1
@

(On the list device:)

001 000000 062125 072121 114535 010010 010075 010156 010100
002400 052100 026014 026036 062006 042154 072023 114535
010025 010076 010077 010006 010153 114535 010033 010076
010077 010101 010117 102501 002002 026056 062006 072046
114535 010050 010123 010076 010127 010124 010006 010122
114535 010056 010076 010077 010126 010153 036006 036006
036006 036121 026003 114535 010071 010076 010077 010106
010120 114535 010074 010074 000006 000022 000002 000001
000000 020116 047524 020106 047525 047104 020120 051117
043522 040515 020103 047515 050114 042524 042504 000005
000011 000000 000000 000016 000002 177746 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 000003 177777 020040 020501 040440
020040 041102 041040 020040 041503 041440 020040 042104
042040 020040 042505 042440 020040 043106 043040 020040

2-12

DUMP (PROGRAM)

Purpose

To request that a user program be dumped to the standard list device (logical unit 6) when it com-
pletes execution. Two directives are provided: PDUMP for dumping on a normal completion, and
ADUMP for dumping when the program aborts.

Format

:PDUMP[,FWA[,LWA]] [,B] [,S]
:ADUMP[,FWA[,LWA]][,B] [,S]

where FWA is the octal address, relative to the program origin, of the first word to be dumped
LWA is the octal address, relative to the program origin, of the last word to be dumped
B means dump the base page linkage area of the program

S means dump the entire system area.

If LWA is missing, the entire program, starting with FWA, is dumped. B alone dumps all the main
program, plus base page linkages, but not the system routines. S alone dumps only the system.

If no parameters are given, everything except the system area is dumped.

Comments

The dump directives, PDUMP and ADUMP, must precede the RUN or PROG request in a job. They
implicitly refer to the next program to be executed. DOS-III sets a flag when it encounters either
PDUMP or ADUMP, then checks the flag the next time a program is executed. Only one of the
requests will be honored, depending upon whether the program runs normally or is aborted. The
dump is labeled accordingly. These flags are cleared when a program terminates.

Any parameter following S in the directive is ignored. If FWA is greater than LWA, this message is
output:

LIMIT ERROR

2-13

The main program and library subroutines are dumped eight octal words per line, along with the
octal starting address for that line. For example,

adr8 wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

adr,+10, wd-1 wd-2 wd3 wd4 wd5 wd6 wd7 = wd8

If present, the base page dump follows the main program and library. Base page linkages exist for
page boundary crossings and subroutines. For each line, the starting octal address appears first,
followed by four pairs of octal numbers. The first number of each pair records the content of the
base page word (an address elsewhere in main memory). The second number of each pair records the
contents of the address specified by the first item. If the first item is the address of a subroutine, then
the second item contains the last address from which the subroutine was called. For example,

pair-1 pair-2 pair-3 pair-4
adr item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2
adr+4 item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2

Note: :OFF before a program executes clears the dump flags.
:OFF during a program execution causes an abort dump.
:OFF during a dump terminates the dump.

EXAMPLE:

:ADUMP,0,15,B (Set up dump flag)
:RUN,PRG9,6 (Run program)
LU 012140

(Main program dump)
ADUMP

12000 160001 002002 130573 170574 006004 160001 002003 026012
12010 130575 170576 006004 160001 170577 006004 160001 170600

(Page Eject)
(Base page dump)

00570 010137 002045 010711 003237 010763 002045 017014 000300
00574 017641 000000 017015 000400 017641 000406 017601 000000
00600 017650 000000 017615 000000 017664 000000 017662 000573
00604 017637 000573 017571 177205 017563 001204 017714 017715
00610 017562 021121 017534 021122 017536 021122 017633 160656
00614 017544 037626 017546 037626 017673 000000 017605 000040

2-14

DUMP (SECTOR)

Purpose

To dump any specified sector or sectors of the current user disc on the standard list device (logical
unit 6) in either ASCII or octal format.

Format

:SA,track,sector[,number] (ASCII)
:SO,track,sector[,number] (OCTAL)

where track and sector give the starting disc address for the dump

number gives the number of sectors to be dumped. If number is absent, only one sector is
dumped.

All three parameters are decimal numbers.

Comments

The ASCII dump format (:SA) is 64 characters per record. The octal dump format (:SO) is eight
octal numbers per line. Two ASCII characters equal one computer word (also represented by one
octal number). Although :SA dumps 64 characters per record, these do not necessarily appear on
one line since the binary numbers are converted to ASCII characters, some of which might be
linefeeds or returns.

2-15

EXAMPLE:

(On the system console:)

:80,0,1
@

(On the list device:)

001

000000
017613
010072
160001
067304
033774
067304
006004
003004
033774

067303

067761
067762
067777
050175
000000

067767
064120
073773
001727
044066
170001
160001
160001
170001
001727
017606
006003
006003
006003
064115
057766

017570
007004
053774
013733
037310
063773
073766
033773
067304
001723
002400
027540
027546
002004
074200
127570

067744
077310
077761
073305
027415
073302
164000
170001
077311
070154
067774
044055
023775
064155
047740
037766

2-16

077743
064117
053775
050060
027505
002004
017570
006004
027440
063761
017606
160001
033303
070155
074157
163766

017613
044055
077762
027460
044052
073303
063305
063730
060154
067302
063311
023774
170001
054175
064175
002021

017613
160001
077304
053763
160001
063774
050060
170001
001722
017606
067775
033302
063776
070175
074161
027571

017613
044051
044056
027445
023773
073773
027440
006004
013765
063762
017606
170001
001200
006400
124003
013764

EDIT

Purpose

To perform listed edit operations on a user source file (follows the :SS condition).

Format
:EDIT file,logical unit[,new file]

where file is the name of a source file (the primary file) to be edited according to an edit list (edit
operations plus associated source statements) input on the specified logical unit. If new file
appears, the edited source file is stored in a new file (with the name new file) on the same
subchannel and the old file is not purged. Otherwise, the edited source file destructively
replaces the old file. (Follows :SS in searching for duplicate file names.)

Comments

An edit list consists of one or more edit commands and, optionally, a series of associated source
statement (i.e., following REPLACE, INSERT). Edit operations are executed when they are
entered. When using the system console, the operator must not enter the next operation until the
“@”” prompt is output on the console.

All edit operations begin with a slash(/), and only the first character following the slash is required.
The rest are ignored (until a comma is reached).

In the edit operation formats, the letters m and n are the sequence numbers of the source statements
to be edited, starting with one. Letter m signifies the starting statement, and n is the ending
statement of the operation, inclusively. In all cases, n must be greater than or equal to m;

neither can be less than one, nor greater than the last source statement of the file. The m must be
greater than the n of the previous operation. Sequence numbers refer to the criginal sequence of
the unedited file; inserted statements cannot be referenced until the current editing process is com-
pleted and the file automatically resequenced prior to another EDIT directive.

Source statements following /REPLACE or /INSERT on the current batch device cannot contain a
colon (:) in column 1, although those entered from the system console can, with the exception of
:OFF and :ABORT (which are interpreted as directives instead of data). Source statements can
never contain a slash (/) in the first column. Source statements on any device other than the system
console and the current batch device can contain anything else in column 1 (including :OFF or
:ABORT).

Input is terminated only by an /END.

2-17

If the edit file is entered on the system console and either a

PARAMETER ILLEGAL
or

NO SOURCE
error occurs, the user merely re-enters the statement in error. If the edit list is entered on any other

device, the EDIT directive is aborted (if the EDIT directive was entered in keyboard mode) or the
entire job is aborted (in batch mode).

EDIT OPERATIONS
/DELETE,m/[,n]

Deletes source statements m through n, inclusively, from the source file. If only m is specified,
that one statement is deleted.

/INSERT,m

Inserts the source statements in the edit list immediately following this command into the primary
file following statement m.

/MERGE/[,k] ,secondary file[,m[,n]]
Merges source statements from the secondary file into the primary file named in the EDIT directive.

k is the sequence number of the primary file (named in the EDIT directive) after which
source statements of the secondary file are merged. If k=0, the secondary file source state-
ments are merged at the beginning of the primary file; if £ is omitted, the secondary file
source statements are merged at the end of the primary file.

Secondary file is the name of the source file to be merged with the primary file. If
m and n are specified, then only lines m through n of the secondary file are merged.
If only m is specified, then only that one line is merged.

/REPLACE m/[,n]

Replaces source statements m through n (inclusively) in the primary file with source statements
following the /R in the edit list. If n is omitted, then only statement m is replaced.

Note: Directives cannot be inserted or replaced but can be merged from
another file.

2-18

/SUPPRESS
Suppresses echoing of the edit operations on the system console, providing that the logical unit
specified in the EDIT directive was not the system console. Normally, echoing occurs after each
EDIT directive unless /S is entered.

/UNSUPPRESS
Resumes echoing of the edit operations on the system console.

/FND

Terminates the edit file and returns DOS-III to its previous mode for further directives. (The last
edit command must be /END.)

EXAMPLES:
If a file named SOURC contains:

Statement 1 ASMB,R,B,L

Statement 2 NAM START
Statement 3 A EQU 30
Statement 4 B EQU 20
Statement 5 START NOP
Statement 6 LDA A
Statement 7 END

and the EDIT directive is

:EDIT,SOURC,5

and the edit list, which follows :EDIT on the batch device, is

/R,3
A EQU 100
B NOP
/D,4
/1,6

STA B
/E

2-19

then the new file SOURC equals:

Statement 1 ASMB,R,B,L

Statement 2 NAM START
Statement 3 A EQU 100
Statement 4 B NOP
Statement 5 START NOP
Statement 6 LDA A
Statement 7 STA B
Statement 8 END

Assume now that there exists a source file named FILE2:

Statement 1 ALF,ALF
Statement 2 JMP START

To merge FILE2 into the new SOURC, the following EDIT directive, along with its edit
list, is required:

:ED,SOURC,5
/M,7,FILE2
/E

The new file SOURC looks like this:

Statement 1 ASMB,R,B,L

Statement 2 NAM START
Statement 3 A EQU 100
Statement 4 B NOP
Statement 5 START NOP
Statement 6 LDA A
Statement 7 STA B
Statement 8 ALF ALF
Statement 9 JMP START
Statement 10 END

2-20

END-OF-FILE

Purpose

To write an end-of-file mark on a magnetic tape.
Format

:EF/[,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-21

END-OF-JOB

Purpose

To terminate the current job normally and return to keyboard mode.

Format

:EJOB

Comments

The EJOB directive outputs a message recording the total run time of the job and execution time,
then returns to keyboard mode.

If :SS condition is active, :EJOB purges temporary files on all specified user subchannels. If :SS
condition is not active, :EJOB purges temporary files on the current user subchannel. (See STORE

directive and ““DOS-III Relocating Loader,”” Section V.) All directives except :TRACKS, :OFF,
:TYPE or :BATCH are ignored until the next JOB directive.

:EJOB resets logical units 1 through 9 and resets the :SS condition. :EJOB resets the user disc
assignment to the standard subchannel unless that subchannel is not ready or a new cartridge has

been inserted (with a different label and without a UD directive).

When the EJOB directive occurs, a message is printed, similar to that of :JOB, giving the total run
time of the job and total execution time (if a Time-base Generator is present). For example,

END JOB START RUN = 0007 MIN. 52.6 SEC. EXEC = 0001 MIN. 21.0 SEC.
or
END JOB START

This message is printed on the system console and on the standard list device (logical unit 6). A
top-of-form is issued on the list device prior to the message.

2-22

EQUIPMENT TABLE

Purpose

To list one or all entries in the equipment table on the system console (see Appendix A for equip-
ment table format).

Format
:EQ[,n]

where n, if present, indicates the one entry to be listed.

If n is absent, the entire equipment table is listed.

Comments
Each entry is output in the following format:
EQT nn CHvv DVRmm dr Uu Ss

where nn is the decimal number of the entry
vv is the octal channel number of the device
mm is the I/O driver number for the device
d specifies DMA if equal to D, no DMA if zero
r specifies main-memory resident if equal to R, disc-resident if zero
u is a single decimal digit used for subchannel addressing
s is the availability status of the device:
0 for not busy, and available,
1 for disabled (down),
2 for busy

2-23

EXAMPLE:

Following is a listing of a DOS-III Equipment Table.

RIS

EOT A1 CH 11 DUAEE
FAT 22 CH 13 DURML
EQT @3 CH 14 DUnR31
EOT 24 CH 16 DURES
EQT @5 CH 28 DURIL2
EQT #6 CH 21 DUR11
FQT 27 CH 22 DUA23
)

B UB S
U 53
Ja 5a
U7 50
o 5@
Ja 89
us sS4

o Bl S TGS Wi BRGN RGN |
D™ LW

2-24

Keyboard Mode Only

60

Purpose

To resume a program that has been suspended, and optionally, to transfer up to five parameters to
that program.

Format
:GO[,P.P,,.P,]

where P, through P5 are optional parameters and must be decimal values between 0 and 32767.

Comments

When a program suspends itself (see ‘‘Program Suspension” in Section III), it is restarted by a GO
directive. Upon return to a suspended program, the initial address of the five parameters is located
in the B register. A FORTRAN program calls the library subroutine RMPAR to transfer the
parameters to a specified 5-word array. The first statement after the suspend call, in a FORTRAN
program, must be the call to RMPAR. For example,

DIMENSION I (5)
CALL EXEC (7)
CALL RMPAR (I)

An assembly language program should use the B register upon return from the suspend to obtain
and save the parameters prior to making any EXEC request or I/O request.

2-25

Keyboard Mode Only

INITIALIZE

Purpose

To label or unlabel the current user disc, and to destroy an existing System Area (and, optionally, a
User Area).

Format

:IN,label

(X334

where label is a six-character name to be written on the disc, or which means unlabel the

disc.

Comments
Four basic cases are possible:

1. :IN,* An unlabeled disc (a disc containing only a User Area). The user directory and all
user files are destroyed.

2. :IN,* A labeled disc. The message
DOS (or TSB) LABEL xxxxxx
OK TO PURGE?

is output. To purge both the System and User Areas, the operator must respond with

YES
If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect

switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored.

2-26

3.

4.

:IN,label An unlabeled disc. Only the label is changed; no files are destroyed.

:IN,label A labeled disc. The message
222 LABEL xxxxxx
OK TO PURGE?

is output. To purge an existing DOS or TSB system, move the user files to the beginning of
the disc, and assign the new label to the User Area, respond with

YES
If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect

switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored.
Initialization does not affect the protect bits. They remain set.

Refer to Section VI for an example of how to copy the System from one subchannel to
another.

2-27

JOB

Purpose

To initiate a user job and assign it a name for accounting purposes.

Format
:JOB/[,name]

where name is a string of up to five characters (starting with a non-numeric character) which
identifies the job.

Comments

A JOB, BATCH, TYPE, or TRACKS directive must be the first directive entered following system
start.

When DOS-III processes the JOB directive, it issues a top-of-form to the list device (logical unit 6),
prints an accounting message on the system console and the list device recording the job’s name
(as specified in the JOB directive), the date (as specified in the DATE directive), and the current
time (if a Time-base Generator is present).

For example,

:JOB,START
JOB START MON 6.16.9 TIME = 0013 MIN. 41.6 SEC.

or
JOB START MON 6.16.9
If an EJOB directive has not been encountered, : JOB also acts as the :EJOB for the previous job.

In this case, all actions of the :EJOB are carried out (except for returning to keyboard mode from
batch mode) before starting the new job.

2-28

LIST

Purpose

To list file information recorded in the user or system directories; or to list and sequentially number
the contents of all or part of a source file.

Format

(System) :LIST,X,logical unit/,file ,...]
(Unaffected by :SS)

(User) :LIST,U,logical unit[,file] yeord
(Lists the specified directory entries from all the subchannels defined by :SS.)

(Source) :LIST,S,logical unit, file[,m[,n]]
(follows :SS)

where X specifies the System Area directory
U specifies a User Area directory
S specifies a user source file
logical unit specifies the list device

file,, ... names up to 13 entries to be listed (if none is specified, the entire directory is
listed)

m and n, if present, specify the first and last statements to be listed. If n is absent, then

all statements beginning with m are listed. If neither appear, then the entire file
is listed. The restrictions for m and n are the same as those for the EDIT directive.

Comments

A top-of-form is issued to the list device prior to listing.

2-29

DIRECTORY LISTING OUTPUT
The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB
SUBCHAN =n

The following lines are then printed:
name type sctrs trk sec lowerp upper, lowery upper, entry fwam p-b

where name identifies the file,

type tells what kind of file name is

AB = absolute binary program

AD = ASCII data

BD = binary data User File Only
RB = relocatable binary program

SS = source statements
LB = library

. System File Only
XS = supervisor module

DR = disc resident I/O driver
UM = user main program Either File
US

user program segment

sctrs is the number of sectors in the file,
trk is the track origin of the file,

sec is the starting sector of the file within the track specified.
The information below does not appear for types AB, AD, BD, LB, RB, and SS.

lowerp is the lower limit (octal) of the program,

upper, is the upper limit (octal) of the program,

lower,, is the upper limit (octal) of the program base page links,
upper,, is the upper limit (octal) of the program base page links,
entry is the absolute octal address where execution begins,

fwam is the octal address of the first word of available memory following the
program, and

p-b is equal to T if the file is temporary and will be purged by :EJOB unless stored by
:STORE,P.

2-30

If the requested file does not exist, a message appears:

file. UNDEFINED

SOURCE LISTING OUTPUT
Each source statement is preceded by a four-digit decimal sequence number.
If the requested file is not a source file, the following message appears,

file
ILLEGAL

The list is terminated by the message

EXAMPLES:

(on the system console:)
:LILU,6
@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY FWAM PB
SUBCHAN=4

EX9 SS 00080 T001 000

EXM RB 00063 T004 008

BBB SS 00001 T006 023

SRCH RB 00003 TO07 000

SSERH UM 00002 TO07 003 10000 10271 00713 00713 10000 10271 T
ASCII AD 00200 T007 005

BINRY BD 00300 TO015 013

Note: T in the “PB” column means that the entry is temporary.

2-31

(On the system console:)

:ST.P (To make all temporary files permanent.)
@

:LI,U,6

@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB
SUBCHAN=4

EX9 SS 00080 T001 000

EXM RB 00063 T004 008

BBB SS 00001 T006 023

SRCH RB 00003 T007 000

SSERH UM 00002 T007 003 10000 10271 00713 00713 10000 10271
ASCII AD 00200 T007 005

BINRY BD 00300 TO015 013

Note: “PB’ no longer equals T.

(On the system console:)
:LI,S,6,EX19,926,936
@

(On the list device:)
0926 ASMB,L,R,X,C,N,B

0927 HED DUMMY $LIBR AND $LIBX FOR RTS SIMULATION ON DOS

0928 NAM DUMRX,6

0929 ENT $LIBR,3LIBX

0930 SPC 2

0931 * CALLING SEQUENCES: ENTRY TERMINATION

0932 *

0933 *

0934 * PRIVILEGED JSB $LIBR JSB $LIBX

0935 * NOP DEF (PROGRAM ENTRY POINT)
0936 *

2-32

LOGICAL UNIT

Purpose

To assign logical unit numbers (4 through 63) for a job or to list the device reference table (logical
unit assignments) on the system console.

Format
:LU[,n;[,n,]]

where n; and n, (if present) are decimal numbers.
If neither n, nor n, is present: the entire device reference table is printed.

If only n, is present: the equipment table entry number assigned to logical unit number
n, is printed. (See EQUIPMENT TABLE directive.)

If both n, and n, are present (and n, does not equal zero): the device recorded in equipment
table entry n, is assigned to logical unit n, .

If both n; and n, are present (and n, does equal zero): the logical unit specified by n,
becomes a null device, and any I/O request on that device is ignored.

Comments

Assignments made by :LU for logical units 4 through 9 are only valid during the current job.
Assignments for 10 and above remain after EJOB. At the beginning of each new job, the device
reference table for the first nine logical units is reset to the assighments given when the system was
generated. This insures a standard I/O organization for all users.

If n, = 0 (that device is to be made null), the logical unit specified by n, may not be equal to 1, 2,
3, or the logical unit number of the current batch device.

2-33

EXAMPLE:

LU
LUO1
LUO2
LUO3
LU04
LUO5
LUO6
LUo7
LU08
LU09
@

:LU9,5

EQTO03
EQTO01
EQTO1
EQTO05
EQT04
EQTO06
EQTO07
EQT02
EQTO00

:DU,9,FILE1

:LU,9

LU09 EQTO05

@

:LU,6,0

:PR,FTN4,99

(null device)

(Logical unit 9 becomes punch)
(Dumps FILE1 to punch)

(Checks EQT for LU9)

(Assigns line printer to null device)
(Reads from paper tape reader, no list, object to JBIN)

2-34

MMGT

Purpose

To reserve logical memory address space for specific subsystems.

Note: This directive applies to memory associated with system programs only.
Memory associated with user programs is strictly under program control.

In addition, this directive may be used to obtain a report of memory space previously reserved for
subsystems.
Format

:MMGT[,subsystem-name ;, wwwww g, subsystem-namez, WWwwag, . . ., subsystem-name
wwwww, |

n’

subsystem-name is a 4-character ASCII name defined for a subsystem at system generation.
wwwww is the number (decimal) of logical words to be reserved for the associated subsystem.
If no parameters are entered, the directive is interpreted as an inquiry request and a list of subsystem

names and the number of reserved words previously set is printed on the console. The list appears in
the following form:

SUBSYSTEM WORDS

subsystem-name Wwwwww g
subsystem-namegq wwwwwo
subsystem-namen wwwww,

2-35

Comments

The :MMGT directive is entered just prior to the :PROG or :RUN directive and reserved memory
space is released at program termination. If the subsystem name specified was not defined at system
generation, the system prints:

subsystem-name — UNDEFINED

where subsystem-name is the 4-character subsystem name. Any defined subsystem names is included
in the parameter string are accepted.

If an attempt is made to update or display the subsystem table and no subsystems were defined
when the system was generated, the system prints:

NO SUBSYSTEMS DEFINED

If the cumulative sum of words requested for subsystems exceeds the amount available, the system
prints:

LIMIT ERROR

Any requests up to the available space limit are accepted. If more than one subsystem name is in-
cluded in the parameter string, the user may determine which requests have been accepted by enter-
ing the :MMGT directive with no parameters. This causes a list of subsystem names together with
the number of words reserved for each name to be printed on the console.

Note: The subsystem names discussed here must be included as entry points
(ENT) within the associated subsystem routines which are included as
part of the system at generation time.

2-36

Keyboard Mode Only

OFF

Purpose

To abort the currently executing user program or system operation without terminating the job.

Format

:OFF

Comments
:OFF returns the system to keyboard mode.

:OFF can be used to terminate undesired lists, edits, disc-to-disc dumps, program loops, Loader
operations, assemblies, and compilations.

:OFF cancels any pending DD, ADUMP, or PDUMP directives, unless a program is running, in
which case, a pending : ADUMP is executed.

2-37

PAUSE

Purpose

To interrupt the current job, optionally print a comment on the system console, and return to the
system console for operator action.

Format

:PAUSE [character string]

Comments

PAUSE may be entered through the keyboard even when DOS-III is in batch mode. PAUSE suspends
the current job until the operator inputs a GO directive. During this time the operator may mount
magnetic tapes or prepare I/O devices. (A series of COMMENT directives or a remark in the

PAUSE directive itself can be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS-III to the job in the previous mode.
EXAMPLE:

:PAUSE MOUNT MAG TAPE (Operator mounts magnetic tape)
:GO

2-38

PROGRAM

Purpose

To turn on (i.e., load from the disc and begin executing) a program from the System Area or a
program from the User Area which was generated with the DOS-III Relocating Loader. (Follows
the :SS condition in searching for the program.)

Format

:PROG,name[,PI D S P5]

where name denotes a system program, such as FTN for the DOS-M FORTRAN Compiler,
FTN4 for the RTE/DOS FORTRAN IV Compiler, ASMB for the DOS-M Assembler,
LOADR for the DOS-III Relocating Loader, or ALGOL for the RTE/DOS ALGOL
Compiler.

A user program is specified via the file name assigned by the DOS-III Relocating
Loader (the name specified in the program’s PROGRAM, HPAL, or NAM statement).

P, through P, are optional parameters which DOS-III transfers to the program named.
P, through P, must be positive integers less than 32767. The program must retrieve
the parameters immediately. This procedure is described under :GO.

Comment

Consult Section V for the parameters required by FTN, FTN4, ASMB, ALGOL, and LOADR.
Additional programs may be added during system generation, if desired.

Note: User programs can be run using :PROG or :RUN. :PROG is useful when
the program needs parameters. DOS-III first searches the user files for

the program, then the system files. :RUN is useful when an execution
time limit is desired (and a Time-base Generator is present).

EXAMPLES:

:PROG,FTN,2,99
:PROG,MYFIL,0,3,84

2-39

PURGE

Purpose

To remove the directory entry associated with a user file. (Follows the :SS condition.)

Format
.'PURGE[,filel,filez, .

where file 1 file2, ... (up to 15 file names or 72 characters per directive) designate files in the
User Area. The directory entry for the specified file name is purged (marked for removal)

If no file names are given, all directory entries for temporary files are purged.

Comments

After the directory entries are purged, the remaining User Area files may be repacked for efficiency
by entering the :RPACK directive. However it should be noted that the repacking function is per-
formed automatically each time an :EJOB directive is executed.

If the end of the User Area moves below a track boundary during the purge, the Work Area becomes
a track larger. As each file’s directory entry is purged, DOS-III prints its name on the system
console.

The presence of undefined files in the list has no effect on the purging of named (and existing)
entries. However, if an entry cannot be found, this message is output to the system console:

file UNDEFINED

The fastest way to purge all files on a single disc is to use :IN,* (see ‘‘Initialize” in Section 2).

CAUTION: OPERATOR ATTENTION IS DISABLED DURING :PURGE.

2-40

EXAMPLE:

Original contents of user directory: F1, F2, F3, F4, FLONG, and F5 (at least)
Directive: :PURGE,FLONG,F1,F2,D3,D7,F3,F4,F5
Output: FLONG
Fi1
F2

D3 - - UNDEFINED
D7 - - UNDEFINED
F3
F4
F5

2-41

RENAME

Purpose

To rename a specified user file and, optionally, change its program type. (Follows the :SS
condition.)

Format
:RNAME, oldname,newname/,type]

where oldname is the name of the user file to be renamed
newname specifies the new name for the file

type specifies the new type for the file.

Comments
If a file name on one of the active subchannels is the same as newname, the message
DUPLICATE FILE NAME

is output and the file name is not changed. If the file named oldname cannot be found on any of
the active subchannels, the message

oldname UNDEFINED
is output.
The type parameter must be a decimal number from 3 to 12. File types 3-5 require 11-word
directory entries and types 6-12 require 5-word directory entires. If the file type is incompatible
in this respect, a

PARAMETER ILLEGAL

message results. (File type numbers are described in Appendix A.)

Note: It is the users responsibility to insure that the format and structure of
the file contents are compatible with its new file type.

2-42

REWIND

Purpose

To rewind a magnetic tape.
Format

:RWND/,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-43

RPACK

Purpose

To repack the disc, eliminating purged files.

Format

:RPACK

Comments
When a :PURGE directive is issued, the directory entry for specific or implied files is purged. The

:RPACK directive is used to search the directory for purged entries. If any are detected, the user
file area is repacked, eliminating those files.

Note: This repacking function is automatically performed at the end of
each job.
EXAMPLE:

:RPACK

scans the user directory for purged entries and repacks the disc to eliminate files
associated with those entries.

2-44

RUN

Purpose

To run a user or system program. (Follows the :SS condition.)

Format
:RUN,name/,time] [, N]

where name is a user file containing the desired program

time is an integer specifying the maximum number of minutes the program may run
(default is five minutes). DOS-III ignores time if a Time-base Generator is not present.

N, if present, tells DOS-III to allow the program to continue running even if it makes
EXEC calls with illegal request codes.

Comments

Programs which have been relocated during the current job but not stored (see STORE directive)
permanently in a user file, may be run using this directive.

If a program executes longer than the time limit, the current job is aborted and DOS-III scans to
the next JOB directive.

If N is not present in the RUN directive, the current job will be aborted by any illegal request codes.
The N option is provided so that programs can be written and tested on DOS-III ultimately to exe-
cute with other HP software not having the same request codes.

EXAMPLE:
:RUN,ROUT,15

executes program ROUT up to fifteen minutes, not allowing illegal request codes.

T™ 13421
@
System responds, indicating a time-out condition.

2-45

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the Assembler and compilers. (Follows the
:SS condition.)

Format
:JFILE,file

where file is the name of a source file on any active subchannel.

Comments

If logical unit 2 is specified as the input device when the compiler or Assembler is turned on (using
:PROG) and a :JFILE has been defined, then the compiler or Assembler reads the source statements
from the :JFILE.

Only one program can be translated from a file; any statements beyond the end of the source pro-
gram will be ignored. The JFILE assignment is only valid for the current job, and can be reassigned
by another JFILE directive.

When using a 21MX Assembler, up to fifteen files may be specified in the :JFILE directive so long
as these files constitute one program having one END statement.

It is highly recommended that the JFILE directive immediately precede the corresponding PROG
directive.

Example 3 in Section VI illustrates using the JFILE directive.

2-46

STORE

Purpose
To create a user file on the current user disc and assign it a name. The STORE directive can create
relocatable object program files (type-R), loader-generated object program files (type-P), source

statement files (type-S), ASCII data files (type-A), binary data files (type-B), and absolute binary
program files (type-X). (Follows :SS in checking for duplicate file names.)

Format
The format varies according to what type file is being created. See Comments below for details:

TYPE-R :STORE,R,file[,logical unit]
TYPE-P :STORE,P[file, file, ...]
TYPE-S :STORE,S,file,logical unit [,C]
TYPE-A :STORE,A,file,sectors
TYPE-B :STORE,B,file,sectors

TYPE-X :STORE, X, file,logical unit

Note: Control @ should not be used in file names.

Comments
TYPE-R FILES. The directive format is
:STORE,R,file[,logical unit]

where file is a name consisting. of five (or fewer) characters and must not duplicate another
name already present in the user files.

2-47

A user file is created under this name, and relocatable binary programs are read into it from the
logical unit specified or from the Job Binary Area of the disc if none is specified. The Job Binary
Area remains as it was before the STORE,R directive.

If DOS-III comes to an end-of-tape, it asks:
DONE?

If there are more tapes, the operator places the next tape in the reader and replies NO; otherwise,
he answers YES.

EXAMPLES:
:STORE,R,RINE

(Stores all of the relocatable programs from the Job Binary Area into the file RINE
created for that purpose.)

:STORE,R,JUGG,5

(Stores relocatable programs from logical unit 5, the standard input device, into the
file JUGG.)

TYPE-P FILES. The directive format is
:STORE,P[,name, ,name,,....|

where name,,name, ... are programs that the DOS-IIIT Relocating Loader had relocated into
executable format during the current job. A program is stored in a file of the same
name. Up to 14 programs per directive are allowed. If none are specified, all programs
loaded during the current job are stored. DOS-III finds these temporary programs in
the user file and converts them to permanent user files by removing their ‘“temporary”
flags (see the description of the LIST,U directive).

Programs loaded during the current job but not stored as permanent files (as shown above) may be
executed normally (RUN or PROG directive) and appear in the user file directory. At the end of a
job, however, they are purged from the directory unless they have been converted to user files by
a STORE,P directive.

2-48

EXAMPLES:
:STORE,P

(Changes all programs loaded during the current job using the Relocating Loader into
permanent user files.)

:STORE,P,ARITHMATH,TRIG,ALGEB

(Searches for the programs listed and makes them permanent user files.)

TYPE-S FILES. The directive format is
:STORE,S,file,logical unit [,C]

where file is the name of the user file to be filled with source statements from the logical unit
specified. File is a name of five or fewer characters, and must not duplicate a name
already present in the user files. The source statement input must be terminated by a
record containing a double colon (::) if the C option is omitted; or a triple colon (:::) if
the C option is included. If the termination record is omitted, DOS-III stores the succeeding
data on the disc as if it were source statements.

If DOS-III comes to an end-of-tape before finding the termination record (:: or :::), it outputs
DONE?
on the system console.
If there are more tapes, the operator replies NO; otherwise, he answers YES.
When DOS-III completes the STORE,S it outputs
nnnn LINES
where nnnn is the number of statements stored.
If the C parameter is included in the STORE direcﬁve, statements with a colon in column 1 are
interpreted as data and transferred to the designated source file. In this case, input is terminated
with a triple colon (:::). When the C parameter is omitted in the STORE directive, those statements
with a colon in column 1 will attempt execution. The logical unit specified in the STORE, S direc-
tive (when the C parameter is used) must not be the current batch device logical unit. If it is,

DOS-III outputs the message

ILLEGAL LUN

2-49

If the user is in keyboard mode, DOS-III outputs an @ and waits for a new directive. If the user is
in batch mode, a batch abort occurs.

If the C parameter is used and the logical unit specified is the system console, then all input received
prior to ::: is transferred to the designated source file, except OFF and ABORT directives. If

either of the two are encountered during keyboard entry, they are interpreted as directives and
executed. (:OFF returns control to keyboard mode without terminating the job. :ABORT aborts
the current job if the directive was entered from the keyboard, or DOS-III performs a batch abort

if the STORE, S directive was entered from the batch device.) Files containing :OFF and : ABORT
can be created by storing from a device other than the system console or the current batch device.

EXAMPLE:
:STORE,S,SOURC,5

(Reads source statements from the standard input device and stores them in a new file
SOURC.)

TYPE-A AND TYPE-B FILES. The directive format is
:STORE, type,file,sectors
where type is either A (for ASCII character data) or B (for binary data), and file is the name
assigned to a file containing the number of sectors requested. These requests are made
prior to executing a program to reserve a file area; no data is involved.
The program must store and retrieve data from the file through a call to EXEC. It is the programmer’s
responsibility to store the right kind of data in the file. The EXEC call must specify the file name

and the relative sector within the file. DOS-III checks only that the file name exists and that it
contains the sector specified.

EXAMPLE:
:STORE,A,ASCII, 20

(Creates a file name ASCII, 20 sectors in length. A sector equals 128 sixteen-bit
words.)

2-50

TYPE-X FILES. The directive format is
:STORE, X, file,logical unit

where file is the name of the user file to be filled with absolute binary programs from the device
specified by logical unit.

When an end-of-tape is encountered, DOS-III outputs
DONE?

To continue loading tapes, place the next tape in the reader and type NO; otherwise, type YES.

2-51

Optional Directive

SYSTEM SEARCH

Purpose

To specify a list of disc subchannels which may be searched for file names. This is the :SS condition
which applies to all EXEC calls and directives that require a file search. (No check is made for
existing duplicate file names during searches; the first file found is used.)

Format

:SS All active subchannels are searched, starting with the current user subchannel,
then continuing from the highest to the lowest number.

:88,n;,ny,n,.... Where n,,n,... are subchannel numbers. The current user subchannel is
searched first, then the subchannels specified, starting with the lowest
number.

:8S,99 Only the current user subchannel is searched. This is the default condition.
Every job starts out in this condition.

Comments

The SS directive can only be used if it was specifically allowed during system generation. (See
“Generating and Loading DOS-III,” Part 3.) Otherwise, any SS directive will cause the following
message:

BAD CONTROL STATE
If a file search results in the file being found, the current user subchannel is changed to the sub-
channel containing the file. If the file was not found, the current user subchannel is restored to
its previous assignment
The LIST,U, file directive is an exception: this directive does not stop after it finds the file; it con-

tinues to look for duplicate entries. When the LIST search is complete, the original user subchannel
is always restored.

2-52

However, if a search is interrupted before completion, the current user disc may be on any sub-
channel. (This should be checked with a :UD directive.) '

More than one :SS can occur during a job. The job starts in :SS,99 condition until a different SS
directive is issued. Each SS directive remains in effect until another is issued. SS directives do not
apply to file searches initiated by the Relocating Loader or to disc dumps initiated by the DD
directive.

Whenever the user subchannel assignment is changed (except by a running program through the
appropriate EXEC call), the system outputs a message:

SUBCHAN =n

EXAMPLE:

:UD
SUBCHANNEL = 1
LABEL = UNLBL

: RUN MYPRG

FILE NAME UNDEFINED (file not on subchannel 1)

:SS (search all subchannels for file MYPRG)
:RUN

SUBCHANNEL =0
(MYPRG now begins execution)

2-53

TOP-OF-FORM

Purpose

To issue a top-of-form command to a list device.

Format
:TOF/,logical unit]

where logical unit is the logical unit number of the desired list device. If logical unit is omitted,
then logical unit 6 receives the command.

2-54

TRACKS

Purpose

To output information about the next available track on the current user disc.

Format

:TRACKS

Comments

A TRACKS, JOB, BATCH, or TYPE directive must be the first directive entered following system
start.

The decimal number corresponding to the first track beyond the end of the current user area (and
the number of faulty tracks encountered, if any) is output to the system console.

Faulty tracks are replaced by spares when parity errors occur on read or write.

EXAMPLES:
The following is an example in which no faulty tracks are reported.

(INPUT) :TRACKS
(OUTPUT) NEXT AVAIL TRACK = 0010
@ (End of directive processing)

In this example, the system reports that 2 tracks have been replaced by spares.

(INPUT) :TRACKS
(OUTPUT) NEXT AVAIL TRACK =0012
BAD =2
@ (End of directive processing)

2-55

In this example, the system reports that there are no more tracks available in the user area.

(INPUT) :TRACKS
(OUTPUT) NEXT AVAIL TRACK = NONE
@ (End of directive processing)

2-56

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

:TYPE

Comments

A TYPE, JOB, BATCH or TRACKS directive must be the first directive entered following system
start.

Control is returned to the system console. :TYPE may be entered through the batch device or the
keyboard device; when it is entered from the keyboard, DOS-III waits until the currently executing
program is completed or is aborted before returning to keyboard mode. If :TYPE is entered while
already in keyboard mode, the directive is ignored.

2-57

UpP

Purpose

To declare an I/O device ready for use.

Format
:UP,n

where n is the equipment table entry number corresponding to the device.

Comments

The UP directive (followed by a :GO) is usually used in response to one of the following messages
from DOS-III:

I/0 ERR ET EQT #n
I/O ERR NR EQT #n
I/0 ERR PE EQT #n

where ET indicates end of tape,
NR indicates device not ready,
PE indicates parity error, and

n is the equipment table entry number.

If the incorrect n is entered, DOS-III outputs a list of all the down devices.

2-58

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Format
:UD[,[label] [,n]]

where label is a six-character disc label (* for an unlabeled disc)

n is the new subchannel.

Comments
Discs are labeled by the INITIALIZE directive.

Each form of the UD directive has a different purpose.

EXAMPLES:

:UD Interrogates the current user disc subchannel and outputs its

(without label label on the system console: '

or subchannel) SUBCHAN = n

LBL = label (or UNLBL)

:UD,,n If n is labeled, DOS-III outputs

(no label) LBL = label (or UNLBL)
No assignment is made.

:UD, label, n If n is labeled with the specified label, DOS-III assigns n as the
user disc. If n is unlabeled or has a different label, DOS-III
outputs

LBL = label (or UNLBL)

Operator can then reissue :UD,label,n with the correct label.

2-59

:UD,label DOS-III searches for the label, starting with the highest number
(no subchannel) subchannel (determined at system generation). If label is found,
DOS-III makes it the user disc and outputs

SUBCHAN =n
If label is not found, DOS-III outputs
DISC NOT ON SYS

:UD,*n If n is unlabeled, DOS-III assigns n as the user disc.
If n is labeled, DOS-III makes no assignment and outputs
LBL = label

:UD,* Assigns the highest number unlabeled disc as the user disc
and outputs

SUBCHAN =n
If there are no unlabeled discs, DOS-III outputs
DISC NOT ON SYS

If the UD directive specifies a subchannel with an incorrect system proprietary code (see ‘‘Disc
Labels” in Appendix A), DOS-III still makes the assignment, and outputs
TSB DISC or 222 DISC

If the UD directive specifies a subchannel whose system generation code does not match that of the
current system disc, DOS-III still makes the assignment but outputs

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS
The changes made by :UD are only temporary; the user disc is reset at the end of each job.

Notes: 1. Before executing a :DD or :DD,X to a TSB or 22?2 DISC, the disc should
be initialized with :IN,*; otherwise, bad tracks may be reported erroneously.

2. If a disc pack is changed on a DOS-III system, the subchannel assigned to
that pack must be explicitly reassigned using a :UD directive or EXEC call.

Refer to item 5 in Section VI for an example of copying a System from one subchannel to another.

2-60

SECTION II
DOS-IIl EXEC Calls

DOS-IIT EXEC calls are the line of communication between an executing program and DOS-III.
An EXEC call is a block of words, consisting of an executable instruction and a list of parameters
defining the request. The execution of the instruction transfers control to DOS-III. DOS-III then
determines the type of request (from the parameter list) and, if it is legally specified, initiates
processing of the request.

In FORTRAN, EXEC calls are coded as CALL statements. In ALGOL, procedure calls are used.

In Assembly Language, EXEC calls are coded as a JSB EXEC, followed by a series of parameter
definitions. For any particular call, the object code generated for the FORTRAN CALL Statement
and the ALGOL procedure call is equivalent to the corresponding Assembly Language object code.

This section describes the basic formats of FORTRAN, ALGOL and Assembly Language EXEC
calls; presents each EXEC call in detail; and concludes with a discussion of how parameters are
passed to and from a program.

The EXEC calls detailed in this section are presented alphabetically, according to their function.
The Request Code (RCODE) value they have in the Assembly-language calling sequence appears
at the top of each page.

Note: DOS-III may include two user-created EXEC modules, loaded along with
the DOS-III system EXEC modules during system generation. The pur-
pose of the EXEC modules (called $EX36 and $EX37) and the number
of parameters needed in the EXEC call are defined by the user. User EXEC
module calling sequences are defined in Section XII, ‘‘User-written EXEC
Modules.”

3-1

ASSEMBLY LANGUAGE EXEC CALLS

The following is a general model of an EXEC call in Assembly Language:

EXT EXEC

JSB EXEC

DEF *+n+1

DEF P,

DEF P,

return point

P, ---

(Used to link program to DOS-III)

(Transfer control to DOS-III)

(Defines point of return from DOS-III, n is number of
parameters; may not be an indirect address; must be the
location immediately following the last parameter
address)

(Define addresses of parameters which may occur any-
where in program; may be multi-level indirect. Seven is
the maximum number of allowable parameters for any
EXEC call.)

(Continue execution of program)

(Actual parameter values)

3-2

ALGOL EXEC CALLS

In ALGOL, certain conventions must be followed in making EXEC calls. First, since EXEC is
external to the program it must be declared a CODE procedure. Second, parameters that are
going to be changed must not be declared VALUE. Third, when arrays are passed as parameters,
the first element of the array (not just the array name) must be passed as a type INTEGER and
not by VALUE. Fourth, since ALGOL requires that the format of each procedure call be defined,
a program must declare a dummy external procedure for each EXEC call requiring a different
number of parameters. (These dummy procedures must be compiled as separate procedures to
provide proper linkage in the Loader.)

EXAMPLE:

The program below (DXFER) reads one sector from the work area and writes the
information into a different location in the work area. DXFER calls EXEC through

the CODE procedure EXECX (compiled externally). EXECX is compiled in the program
DSKIO, although that program name is irrelevant to the linkage between DXFER and
EXECX.

MAIN PROGRAM

HPAL,B,L,"“DXFER”
BEGIN
INTEGER ARRAY BUFFER([1:128];
BOOLEAN READX;
INTEGER TRACK,SECTOR;
FORMAT F1(*“SOURCE TRACK,SECTOR?”),
F2(“DESTINATION TRACK,SECTOR?”);
PROCEDURE EXECX(RD,TRK,SCTR,BFR);
VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;
CODE;
WRITE(1,F1);
READ(1,* TRACK,SECTOR);
READX<TRUE;
EXECX(READX,TRACK,SECTOR,BUFFR[1]);
WRITE(1,F2);
READ(1,*, TRACK,SECTOR),
READX<FALSE:
EXECX(READX,TRACK,SECTOR,BUFFR[1]);
END$

3-3

PROCEDURE

HPAL,P,B,L, DSKIO”
PROCEDURE EXECX(RD,TRK,SCTR,BFR);
VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;
BEGIN
PROCEDURE EXEC(IO,LU,BFR,BFSZ,TRK,SCTR);
INTEGER I0O,LU,BFR,BFSZ,TRK,SCTR;
CODE;
INTEGER REQCD;
IF RD THEN REQCD<1 ELSE REQCD<2;
EXEC(REQCD,2,BFR,128,TRK,SCTR);
END;

3-4

FORTRAN EXEC CALLS

In FORTRAN, the EXEC call consists of a CALL Statement and a series of assignment statements
defining the variable parameters of the call:

CALL EXEC (P,,P,,...,P)

where P, through P, are either integer values or integer variables defined elsewhere in the program.

EXAMPLE

CALL EXEC (7)
or
IRCDE =7
CALL EXEC (IRCDE)

Equivalent calling sequences

Some EXEC call functions are generated automatically by the FORTRAN compiler or special sub-
routines. (Refer to “FORTRAN,” in Section V and the specific EXEC calls in this section.)

RCODE = -19

BASE PAGE STORE

Purpose

To store values into base page memory locations.

Assembly Language
EXT EXEC
LDA NUMB
LDB ADDR
JSB EXEC (Transfer control to DOS-III)
DEF *+2 (Point of return from DOS-III)
DEF RCODE (Request code)
return point (Continue execution)
RCODE DEC -19 (Request code = -19)
NUMB DEC n (n is value to be stored)
ADDR DEF LOC (LOC is a base page location)
FORTRAN

This feature must not be invoked by a FORTRAN program.

Comments

Base Page Store stores values into base page locations normally protected by memory protect.

Prior to using the calling sequence specified above, the user loads the value to be stored into the

A register and the absolute address of the base page location in the B register. Base Page Store then
performs a store indirect through the B register.

CAUTION: CARE MUST BE TAKEN NOT TO MODIFY SYSTEM-ESSENTIAL
BASE PAGE LOCATIONS.

3-6

Purpose

RCODE=32

FILE CREATE

To allow the user to create a user disc file under program control.

CAUTION: Because of the relationship between disc space used for the work area
and disc space used for creating new files, care must be taken to create
all files before issuing requests that access the disc work area (work
area limits requests, disc allocation requests, work area I/0 requests).

Assembly Language

EXT

JSB
DEF
DEF
DEF
- DEF
DEF
DEF

EXEC

EXEC
46
RCODE
RSTAT
FNAME
TYPE
DSKLN

return point

RCODE DEC
RSTAT BSS

32
1

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)

(Return status)

(File name)

(Program type)

(File length)

(Continue execution)

(Request code = 32)
(Return status from system:

-4 = illegal parameter

-3 = invalid file name

-2 = invadlid file type

-1 = insufficient file space

0 normal termination
>0 = duplicate file name — content is
address of old directory entry)

3-7

RCODE=32

FNAME ASC 3,xxxxx (6-character file name)
TYPE OCT nnnnnn (Program type:
bit 7 = (0, permanent
=1, temporary

bits 5-0. = 6-144,; program type as defined
in Disc Directory “Entry Type,”’

Appendix A)

DSKLN DEC s . (Length in sectors)
FORTRAN

DIMENSION INAM(3) (File name)

INAM(1) = xxxxxB (First two characters)

INAM(2) = xxxxxB (Next two characters)

INAM(3) = xxxxxB (Last character and blank)

ITYPE = n (n is numeric program type)

IDSK =s (s is disc length in sectors)

IRCDE = 32 (Request code)

CALL EXEC(IRCDE,IRST,INAM,ITYPE,IDSK)

EXAMPLE:

DATA NAME/2HDA,2HIL,2HY/

C CREATE TEMPORARY ASCII FILE OF 72 SECTORS
CALL EXEC(32,LSTAT,NAME,213B,72)
IF (LSTAT .NE. 0) GO TO error routine

continue normal program path

- 3-8

RCODE =18

FILE NAME SEARCH

Purpose

To check whether a specific file name exists in the directory of user or system files. (Follows the
:SS condition.)

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+4 (or 5) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF FNAME (File name)
DEF NSECT (Number of sectors)
DEF IPRAM (Optional parameter)
return point (Continue execution)
RCODE DEC 18 (Request code = 18)
FNAME ASC 3,xxxxx (xxxxx is the file name)
NSECT NOP (Number of sectors returned here; 0 if not
found)
IPRAM DEC n r =0 userarea with wait
n=1 userarea without wait
n=2 system area with wait
n=3 system area without wait

3-9

RCODE =18

FORTRAN
DIMENSION NAME (3) (File name)
IPRAM =2 (System search, with wait)
IRCDE =18 (Request code)
NAME (1) = xxxxxB (First two characters)
NAME (2) = xxxxxB (Next two characters)
NAME (3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE, NAME, ISECT, IPRAM)

Comments

File searches can be performed on either the system or user area, with or without wait, according
to the value of IPRAM. If IPRAM is omitted, the search is performed on the user area with wait.
If the search is requested with wait, the A register contains the track/sector address of the file, and
the B register contains the memory address of the track/sector address, upon return to the user
program.

Before executing a File Name Search without wait, NSECT should be initialized to some value
other than zero (for example, —1) to distinguish between ‘‘file not found” and “operation still in
process” conditions on completion of the search. EXEC calls issued while the File Name Search is
still in progress are queued by DOS-III and the system goes into the wait loop until the search is
completed.

EXAMPLE:

EQUIVALENCE (AREG,IREG(1))
DATA NAME/2HFI,2H1/

AREG =EXEC(18,NAME,ISECT,0)

IF (ISECT .NE. 0) GO TO error routine
IREG(1) = track/sector address of the file
ISECT = number of sectors in FILE1

Note: The FORTRAN function variable (AREG) is a copy of the
A-register or the A- and B-registers.

3-10

RCODE=33

FILE PURGE

Purpose

To allow the user to purge a user disc file directory entry or to purge all temporary file entries.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+3 (or4) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF RSTAT (Return status)
DEF FNAME (Optional file name)
return point (Continue execution)
RCODE DEC 33 (Request code = 33)
RSTAT BSS 1 (Return status from system:
-4 = llegal parameter
-3 = invalid file name
-1 = undefined file name
0 = normal termination
FNAME ASC 3,xxxxx (5-character file name)

3-11

RCODE=33

FORTRAN
DIMENSION INAME(3) (File name)
INAME(1) = xxxxxB (First two characters)
INAME(2) = xxxxxB (Next two characters)
INAME(3) = xxxxxB (Last character and blank)
IRCDE = 33 (Request code = 33)

CALL EXEC(IRCDE,IRST,INAME)

Comments

If the file name parameter is omitted, all temporary file entries are deleted from the directory.

3-12

RCODE =14, RCODE = 15

FILE READ/WRITE

Purpose

To transfer information to or from a file on the user disc; the file must be referenced by name.
(The :SS condition is followed.)

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+7 (or 8) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF CONWD (Control information)
DEF BUFFR (Buffer location)
DEF BUFFL (Buffer length)
DEF FNAME (File name)
DEF RSECT (Relative sector within file)
DEF IPRAM (Area which could have been legally transferred
if an overflow occurred-optional parameter)
return point (Continue execution)
RCODE DEC 14o0rl15 (Request code: 14 =read, 15 = write)
CONWD OCT conwd (See Comments, I/O READ/WRITE EXEC call)
BUFFR BSS n (Buffer of n words)
BUFFL DEC nor-2n (Same n; words (+) or characters (-))
FNAME ASC 3,xxxxx (User file name = xxxxx)
RSECT DEC m (Relative sector number)
IPRAM NOP (Optional parameter,; see Comments)

3-13

RCODE = 14; RCODE =15

FORTRAN
DIMENSION NAME (3), IBUF(10)
NAME(1) = xxxxxB (First two characters of file name)
NAME(2) = xxxxxB (Second two characters)
NAME(3) = xxxxxB (Last character and blank)
ICRDE =14 (or15) (Request code)
ICON = conwd (See comments)
IRSCT =0 (Relative sector number)

CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT, IPRAM)
or
CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT)

Comments

See the Comments under I/O READ/WRITE EXEC call (RCODE =1 or 2) for a description of the
conwd fields needed in the above calling sequences.

To read or write on the mth sector of a file, set RSECT = m—1. To determine the size of a file, use
the FILE NAME SEARCH EXEC call (RCODE = 18).

Data files to be written (or read) should be created with a STORE directive before executing the
EXEC call.

Any type of file may be read, but only ASCII or binary data files may be written.

If the DOS-III installation is likely to have more than one user disc, the program should use the
USER DISC CHANGE EXEC call (RCODE = 23) without a subchannel specified to check
whether the correct user disc is currently assigned. Alternatively, the user can use an SS directive
to set up a system search condition for referencing files on many subchannels.

This call provides an optional parameter, IPRAM, to provide the user with information concern-
ing a file read/write overflow (where the buffer length exceeds the sector contents). If IPRAM is
omitted, an overflow causes an IT error. If IPRAM is included and an overflow occurs, control
is returned to the user program with IPRAM set equal to the number of words (+) or characters
(=) (as defined by BUFFL) that could legally have been transferred. If an overflow occurs, no
disc transfer takes place, whether IPRAM is included or not. If IPRAM is included and no over-
flow occurs, the value of the parameter is set to zero.

EXAMPLE:

DATA NAME /2HFI,2HLE,2H1/ ")
DIMENSION IBUF(128)

> Read the first sector of FILE].

CALL EXEC(14,3,IBUF,128,NAME,0))

3-14

RCODE=34

FILE RENAME

Purpose

To allow the user to change a file name (and optionally, its type) under program control.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+5 (or6) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF RSTAT (Return status)
DEF ONAME (Old file name)
DEF NNAME (New file name)
DEF NTYPE (Optional new file type)
return point (Continue execution)
RCODE DEC 34 (Request code = 34)
RSTAT BSS 1 (Return status from system:
-4 = llegal parameter
-3 = invalid old or new file name
-2 = invalid old or new file type
-1 = undefined old or new file name
0 = normal termination
>0 = duplicate new file name; content
is address of duplicate directory
entry)
ONAME ASC 3,xxxxx (5-character file name to be changed)
NNAME ASC 3,xxxxx (5-character new file name)
NTYPE OCT nnnnnn (New program type:
bit 7 = (0; permanent
= 1, temporary
bits 5-0 = 6-144; program type as defined

b

in Disc Directory “Entry Type,’
Appendix A)

3-15

RCODE=34

FORTRAN
DIMENSION INAMO(3), INAMN(3) (Old file name, new file name)
INAMO(1) = xxxxxB (First two characters)
INAMO(2) = xxxxxB (Next two characters)
INAMO(3) = xxxxxB (Last character and blank)
INAMN(1) = xxxxxB (First two characters)
INAMN(2) = xxxxxB (Next two characters)
INAMN(3) = xxxxxB (Last character and blank)
IRCDE = 34 (Request code = 34)

ITYPE =n (File type)

CALL EXEC(IRCDE,IRST,INAMO,INAMN,ITYPE)

Comments

The specified old name may match the new name — no error message is returned, the new program
type (if specified) will be changed.

3-16

RCODE=3

I/0 CONTROL

Purpose

To carry out various I/O control operations, such as backspace, write end-of-file, and rewind.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+3 (or4, or5) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF CONWD (Control information)
DEF PRAMI1 (First optional parameter)
DEF PRAM2 (Second optional parameter)
return point (continue execution)
RCODE DEC 3 (Request code = 3)
CONWD OCT conwd (See Comments)
PRAM1 DEC n (Optional value parameter; see ‘“‘Comments”)
PRAM2 BSS m (Optional buffer address)
FORTRAN

Use the specific FORTRAN auxiliary I/O statements (see Comments) or an EXEC calling sequence.

DIMENSION IPRM2(m) (Define buffer of m words)
IRCDE =3 (Request code)

ICNWD = conwd (See Comments)

IPRAM =n (Optional; see Comments)

CALL EXEC (IRCDE,ICNWD,IPRAM)
or

CALL EXEC (IRCDE,ICNWD)
or

CALL EXEC (IRCDE,ICNWD,IPRAM,IPRM2)

3-17

RCODE=3

Comments
CONWD

The control word value (conwd) has three fields:

010 | W FUNCTION CODE (see below) LOGICAL UNIT NUMBER

BITS (15 {14 |13 |12}11])10| 9| 8 (| 7 | 6 | 5|4 | 3|2 ([1]0

WAIT FIELD (W)
If W =1, DOS-III returns to the calling program after starting the control request.

If W = 0, DOS-III waits until the control request is complete before returning.

FUNCTION CODE FIELD

Function codes are defined programatically within the various I/O drivers. Thus the following list
of standard function codes is general in nature. Detailed information on specific peripheral-
associated function codes is available in the DOS-III Standard Drivers Reference Manual
(24307-9007 3).

Function Code

(Octal) Action
000 Clear the device (all drivers)
001 Write end-of-file (magnetic tape), select hopper (optical mark reader)
002 Backspace one record (magnetic tape)
003 Space forward one record (magnetic tape)
004 Rewind (magnetic tape), bell request (optical mark reader)
005 Rewind standby (magnetic tape)
006 Dynamic status (all drivers)
007 Set end-of-paper tape (paper tape punch)
010 Generate paper tape leader (paper tape punch)
011 List output line spacing (line printers) (PARM1 or IPRAM required)
012 Write file gap (magnetic tape)
013 Space forward one file (magnetic tape)
014 Backspace one file (magnetic tape)
017 Extended function code present (card reader punch)

For function code values 000 through 0775, no DMA is assigned. For function code values 100
through 1775, DMA is assigned if required by the I/O driver.

LOGICAL UNIT FIELD

This field specifies the logical unit number of the device which is to receive the control request.

3-18

RCODE =3

OPTIONAL PARAMETERS

Specification of Parameter, (PRAM1 or IPRAM) or Parameter, (PRAM2 or IPRM2) depends on
the contents of the function code field in the control word. Function code 115 requires Parameter; .
This parameter designates the number of lines to be spaced on the specified logical unit. A negative
value specifies a page eject on a line printer or the number of lines to be spaced on the System Con-
sole. For details on line printer formatting, refer to Section IV in the DOS-III Standard Drivers
Reference Manual (24307-90073). When Parameter, is specified, its value is passed to EQT10
prior to entering the driver. If Parameter, is specified, Parameter, must be specified. The value of
Parameter, is passed to the driver via EQT11.

Compiler Considerations

Within FORTRAN and ALGOL programs, various control operations for magnetic tape may be
performed by the following auxiliary I/O statements:

BACKSPACE
ENDFILE
REWIND

Refer to the appropriate compiler manual for a detailed description of these statements.

EXAMPLES:

C CLEAR I/ODEVICES 1 TON
DO 10 LU=1,N
10 CALL EXEC (3,LU)

C SPACE 5 LINES ON THE LINE PRINTER
CALL EXEC (3,1106B,-5)

C SPACE FORWARD ONE FILE MARK
CALL EXEC (3,1310B)

C FOR DATA COMMUNICATION —SET TERMINAL OPTION ENABLE AUTO L.F.
CALL EXEC (3,4000B+LU,1)

3-19

RCODE = 1; RCODE = 2

I/0 READ/WRITE

Purpose

To transfer information to or from an external I/O device or the work area of the disc. (DOS-III
handles track switching automatically.)

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+5 (or 7) (Point of return from DOS-III; 7 is for disc request)
DEF RCODE (Request code)
DEF CONWD (Control information)
DEF BUFFR (Buffer location)
DEF BUFFL (Buffer length)
DEF DTRAK (Track number — disc transfer only)
DEF DSECT (Sector number — disc transfer only)
return point (Continue execution)
RCODE DEC 1 (or2) (Request code: 1 =read, 2 = write)
CONWD OCT conwd (conwd is described in comments)
BUFFR BSS n (Buffer of n words)
BUFFL DEC n(or-2n) (<n; words (+) or characters (—))
DTRAK DEC f (Work area track number, decimal)
DSECT DEC g (Work area sector number, decimal)

Note: Single I/O transfers within the DOS-III environment
cannot exceed 16K words.

3-20

RCODE =1; RCODE = 2

FORTRAN
DIMENSION IBUF (n) (Define buffer of n words)
IRCDE =1 (or 2) (Request code)
ICON = conwd (See Comments)
IBUFL = n (or -2n) (Buffer length in words (+) or characters (-1))
ITRAK =150 (Disc track number)
ISECT =0 (Disc sector number)

CALL EXEC (IRCDE, ICON, IBUF, IBUFL, ITRAK, ISECT) for disc transfers
CALL EXEC (IRCDE, ICON, IBUF, IBUFL) for non-disc transfers.

Comments

CONWD

The conwd, required in the calling sequence, contains the following fields:

010

Wi Jd A K|V (M LOGICAL UNIT #

BITS | 15| 14

131121110 9 (8| 7|6 5|4 |3|2]1/|O0

FIELD

FUNCTION

w If 1, tells DOS-III to return to the caﬂing program after starting the I/O transfer.
If W = 0, DOS-III waits until the transfer is complete before returning.

J If 1, and logical unit number is 2 or 3 (disc), a backward track increment will be
performed (for example, JBIN read/write). (This field is applicable only to
RCODE =1 or RCODE = 2.)

A When transferring variable length binary records (M =V = 1), A =1 indicates
absolute binary format.

K 1)

2)

v 1)

2)

When used with console keyboard input, if K=0 ‘“no printing”’ is specified.
If K=1 printing the input as received is specified.

When used with disc write requests, if K=0 execute cyclic check after disc
write. If K=1 eliminate cyclic check after disc write.

When reading variable length records from punched tape devices in binary
format (M = 1), if V = 0 the record length is determined by buffer length.
If V = 1, the record length is determined by the word count in the first
non-zero character read in.

When outputting ASCII records to a list device (M = 0), if V = 0 the first
character in the buffer is interpreted as a carriage control character (see
Section IV). If V = 1, single spacing occurs, and the entire buffer (including
the first character is output to the list device.

M Determines the mode of data transfer. If M = 0, transfer is in ASCII character
format, and if M = 1, binary format.

3-21

RCODE =1; RCODE = 2

“Waiting and No Waiting”

If the program requests the ‘‘waiting’’ option in the conwd (W = 0), DOS-III will return the trans-
mission log in the B register upon completion. (The transmission log is a positive number, repre-
senting the number of words or characters transmitted, depending upon which was originally
requested.)

If the program requests the “no waiting” option in the conwd (W = 1), it can check for the com-
pletion of the I/O operation with the I/O STATUS EXEC call (RCODE = 13). When the operation
is complete (STATS = 0), the transmission log can be retrieved from the TLOG parameter.

Notes: When using ‘“‘no waiting”’ I/0O and loading program segments:

1. Under :RUN, DOS-III waits for all I/0O to complete before loading the
segment.

2. Under :PROG, DOS-III does not wait.

If a read or write is issued to a disc address that does not lie in the Work Area, the message IT nnnnn
is output and the program is terminated.

Compiler Considerations

Within FORTRAN and ALGOL programs, I/O transfers to standard devices are programmed by
the READ and WRITE statements.

I/O transfers to the Work Area and the disc may be done through the BINRY library routine. The
user must specify: an array to be used as a buffer, the length of the buffer in words (equal to the
number of elements in an integer array, double that for a real array), the disc logical unit number,
track number, sector number, and offset in words within the sector. (If the offset equals 0, the
transfer begins on the sector boundary. If the offset equals N, then N words of the sector are
skipped before starting the transfer.) BINRY has two entry points, BREAD and BWRIT, for read
and write operations respectively. An example below gives the calling procedure.

DIMENSION IBUF(10), BUF(20)

LUN =2

ITRK =120

ISECT = 36

IOFF =0

CALL BREAD (BUF, 40, LUN, ITRK, ISECT, IOFF)
or

CALL BWRIT (IBUF, 10, LUN, ITRK, ISECT, IOFF)

3-22

RCODE =13

1/0 STATUS

Purpose

To request the status of a particular I/O device, and the amount transmitted in the last operation.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+4 (or5) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF LUN (Logical unit)
DEF STATS (Status returned)
DEF TLOG (Transmission log returned, optional)
return point (Continue execution)
RCODE DEC 13 (Request code = 13)
LUN DEC n (Logical unit number)
STATS NOP (Status returned here)
TLOG NOP (Transmission log returned here)
FORTRAN
IRCDE =13 (Request code) .
LUN=n (n is decimal logical unit number)

CALL EXEC (IRCDE, LUN, ISTAT, ITLOG)

Comments

The status returned in the A register and in STATS is the hardware status of the device specified by
the logical unit number. The transmission log in the B register and in TLOG contains the amount of
information which was last transferred (a positive number of words or characters, depending on
which was requested by the call initiating that transfer).

3-23

Purpose

RCODE=38

MEMORY MANAGEMENT
(BUFFER ALLOCATION)

To allocate buffer space within an area reserved under a block name identifier (see ‘“Memory
Management (Initialize)”’) or from unassigned available memory.

Assembly Language

RCODE
RSTAT

LENG
SADR
ID
BID

Comments

EXT EXEC
JSB EXEC
DEF *+6 (or7)
DEF RCODE
DEF RSTAT
DEF LENG
DEF SADR
DEF ID

DEF BID

return point

DEC 38

BSS 1
DEC n
BSS 1
BSS 1
ASC 2,xxxx

(Transfer control to DOS-III)

(Point of return from DOS-III)

(Request code)

(Return status)

(Desired buffer length)

(Buffer starting address is returned here)
(Buffer identifier is returned here)
(Optional block name identifier)
(Continue execution)

(Request code = 38)
(Return status from system:

-4 = llegal parameter
-3 = BID not present
-1 = no memory available
0 = normalreturn
>0 = requested amount not available;

contents is actual number of
words available)
(Buffer length in words)
(Actual starting address from system)
(Buffer identifier from system 1 <ID < 1023)
(4-character unique memory management block
name identifier)

If a block name identifier is specified, the buffer will be allocated space within the area reserved
for that identifier. If the block name identifier is omitted, space is allocated from unassigned
available memory.

3-24

RCODE = 41

MEMORY MANAGEMENT
(BUFFER RELEASE)

Purpose

To release reserved buffer space.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+4 (Point of return from DOS-III)
DEF RCODE (Request code)
DEF RSTAT (Return status)
DEF ID (buffer identifier)
return point (Continue execution)
RCODE DEC 41 (Request code = 41)
RSTAT BSS 1 (Return status from system:
-4 = llegal parameter
-1 = llegal ID
0 = normal return
ID DEC n (Buffer identifier 1 <ID < 1023)

Comments
This request releases space allocated to buffers. If the specified buffer resides within the area

reserved under a block name identifier, the logical address space remains reserved. Otherwise,
the released space is returned to the system.

3-25

Purpose

RCODE = 35

MEMORY MANAGEMENT

(INITIALIZE)

To reserve a block of memory under a block name identifier specified by the user.

Assembly Language

RCODE
RSTAT

LENG
SADR
BID

LADR

EXT

JSB

DEF
DEF
DEF
DEF
DEF
DEF
DEF

EXEC

EXEC

*+6 (or 7)
RCODE
RSTAT
LENG
SADR
BID
LADR

return point

DEC
BSS

DEC
BSS
ASC

oCT

35
1

n
1
2,xxxx

n

(Transfer control to DOS-III)

(Point of return from DOS-III)
(Request code)

(Return status)

(Desired block length)

(Block starting address is returned here)
(Block name identifier)

(Optional starting address parameter)
(Continue execution)

(Request code = 35)
(Return status from system:

-4 = llegal parameter

-2 = another block name identifier
assigned to area specified by LADR

-1 = no memory available

0 = normal termination

>0 = space requested not available;
content is number of words
available)

(Block length in words)

(Actual starting address of block—from system)
(4-character memory management block name
identifier)

(Requested starting address—0 = don’t care)

Note: A non-zero LADR value must be an

address between ending program address
and last word of available memory.

3-26

RCODE = 35

Comments

This request reserves a block of memory under the block name identifier (BID) specified by the
user. Subsequent user requests for allocation of buffer space within this area may be made. If the
memory management initialize request (RCODE=35) is not included in a user program prior to
buffer allocation requests (RCODE=38) for buffers within the specified BID, an error return con-
dition results. If LADR is specified and is non-zero, the value must be an address between the end
of program address and the last word of available memory.

3-27

RCODE = 36

MEMORY MANAGEMENT
(STATUS REQUEST)

Purpose

To determine the number of words reserved under a block name identifier or the number of
unallocated words remaining.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF (+3(or4) (Point of return from DOS-III)
DEF RCODE (Request code)

DEF LENG (Word count from system)

DEF BID (Optional block name identifier)
return point (Continue execution)

RCODE DEC 36 (Request code = 36)

LENG BSS 1 (Number of words allocated to BID or number of
available words if BID is not present. If BID
parameter is specified but not found, a -3 value
is returned)

BID ASC 2,xxxx (Unique memory management block name identi-

fier)

Comments

When the BID parameter is specified, this request returns the number of words reserved under a
user-specified block name identifier (BID). If the BID parameter is specified but not found, a -3
value is returned. If the BID parameter is not specified, the request returns the number of unalloc-
ated words remaining in the system.

3-28

RCODE = 30

MEMORY PROTECT CONTROL

Purpose

To enable or disable the memory protect option from a user program.

CAUTION: THE SYSTEM IS NOT PROTECTED WHEN MEMORY PROTECT IS

IS DISABLED.
Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+3 (Point of return from DOS-III)
DEF RCODE (Request code)
DEF MPTK (Define the memory protect parameter flag)
return point (Continue execution)

RCODE DEC 30 (Request code = 30)

MPTK DECn (If n = 0, memory protect is activated, and
is activated following any interrupt
completion. If n # 0, then memory protect
is deactivated and remains off after
interrupt completion)

FORTRAN
IRCDE =30

MPTK =0 (or 1)
CALL EXEC (IRCDE MPTK)

Comments
Any program termination, either normal or aborted, enables memory protect. Program segments

can make memory protect EXEC calls to turn memory protect on or off, but calling and exiting
from segments has no effect on memory protect settings.

3-29

RCODE =6

PROGRAM COMPLETION

Purpose
To notify DOS-III that the calling program is finished and wishes to terminate.
Note: Every program must terminate and return to DOS-III using this

EXEC call, whether the EXEC call is explicitly coded or indirectly
generated by a compiler.

Assei.ibly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2 (Define end of parameter list)
DEF RCODE (Request code)
RCODE DEC 6 (Request code = 6)
FORTRAN
IRCDE =6
CALL EXEC (IRCDE)

Compiler Considerations

The FORTRAN and ALGOL compilers automatically generate a PROGRAM COMPLETION EXEC
call when they compile an END or STOP statement.

3-30

RCODE =10

PROGRAM LOAD

Purpose

To load a main program from the disc into main memory and transfer control to its entry point.
Follows the :SS condition.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF *+3 (to 8) (Determine number of parameters)
DEF RCODE (Request code)

DEF PNAME (Program name)

DEF PRAMI (First optional parameter)

DEF PRAMS (Fifth optional parameter)

RCODE DEC 10
PNAME ASC 3,xxxxx (Program name)
PRAM1 --- (Up to 5 words of parameter information
: passed to the program. See ‘‘Parameter
Processing’ at the end of this section.)

PRAMS5

FORTRAN
DIMENSION NAME(3) (Program name)
IRCDE = 10
NAME(1) = xxxxxB (First two characters)
NAME(2) = xxxxxB (Next two characters)
NAME(3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE,NAME[,p,...])

3-31

RCODE =10

Comments

During main program loading, the system interrogates a system flag called AEPF (location 135;).
This flag is normally zero unless specifically set by a user program. If AEPF is not zero, the contents
of AEPF are treated as an alternate entry point address. The system transfers control to the alter-
nate entry point by performing a JMP AEPF,I (jump indirect). AEPF is then cleared. If AEPF =0,
control transfers to the program main entry point.

The Assembly language user can alter the contents of AEPF (and any other base page location) by
using the BASE PAGE STORE EXEC call (RCODE = -19).

3-32

RCODE =17

PROGRAM SUSPENSION

Purpose

To suspend the calling program from execution until restarted by the GO directive.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2 (Point of return from DOS-III)
DEF RCODE (Request code)
return point (Continue execution)
RCODE DEC 7 (Request Code = 7)
FORTRAN
IRCDE =7
CALL EXEC (IRCDE)
Comments

DOS-III prints a message on the system console when it processes the PROGRAM SUSPENSION
EXEC call:

name SUSP

When the operator restarts the program with a :GO, up to five parameters may be passed to the sus-
pended program. (See ‘‘Parameter Processing” at the end of this section.)

3-33

RCODE =7

Compiler Considerations

The FORTRAN and ALGOL compilers automatically generate a PROGRAM SUSPENSION EXEC
call when they compile a PAUSE statement.

3-34

Purpose

To load a segment of the calling program from the disc into the segment overlay area and transfer
execution control to the segment’s entry point. (See Section V, “DOS-III Subsystems,” for infor-

RCODE = 8

SEGMENT LOAD

mation on segmented programs.) Follows the :SS condition.

Assembly Language

RCODE
SNAME
PRAMI
PRAMS5

FORTRAN

EXT EXEC

JSB EXEC
DEF *+3 (to 8)
DEF RCODE
DEF SNAME
DEF PRAMI

DEF PRAMS

DEC 8
ASC 3,xxxxx

DIMENSION NAME (3)
IRCDE =8

NAME (1) = xxxxxB
NAME (2) = xxxxxB
NAME (3) = xxxxxB

CALL EXEC (IRCDE, NAME [,p,...])

(Transfer control to DOS-III)
(Determine number of parameters)
(Request code)

(Segment name)

(First optional parameter)

(Fifth optional parameter)

(Request code = 8)

(xxxxx is the segment name)

(Up to 5 words of parameter information
passed to the segment. See ‘‘Parameter
Processing’ at the end of this section.)

(Segment name)
(First two characters)

(Next two characters)
(Last character and blank)

3-35

RCODE =8

Comments

In the FORTRAN or ALGOL calling sequence, the user must convert the name of the segment from
ASCII to octal and store it in the NAME array, two characters per word. The RTE/DOS FORTRAN
IV Compiler, however, can convert this automatically through Hollerith constants.

During program segment loading, the system interrogates a system flag called AEPF (location 135,).
This flag is normally zero unless specifically set by a user program. If AEPF = 0, control transfers
to the program segment main entry point. If AEPF is not zero, the contents of AEPF are treated

as an alternate entry point address. The system transfers control to the alternate entry point by
performing a JMP AEPF I (jump indirect). AEPF is then cleared. (The Assembly language user can
alter the contents of AEPF (and any other base page location) by using the BASE PAGE STORE
EXEC call (RCODE = -19).)

See “Segmented Programs,” in Section V, for a description of segmented programs.

3-36

RCODE = 29

SEGMENT RETURN

Purpose

To return control from a segment to the main program at the instruction immediately following the
program segment load call. (This provides a subroutine-like return from a segment to a main

program.)

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2(to 7) (Point of return from DOS-III)
DEF RCODE (Define the request code)
DEF PRAMI1 (Define the first parameter)
DEF PRAMS5 (Define the fifth optional parameter)

RCODE DEC 29 (Request code = 29)

PRAM1 = - - (Up to five words of parameter information
are passed from the segment to the main
program. See ‘‘Parameter Processing’ at
the end of this section)

PRAM5 = - -

FORTRAN
IRCDE =29

CALL EXEC (IRCDE [,P1,... ,P5])

3-37

Purpose

RCODE =11

TIME REQUEST

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RCODE
DEF ARRAY
return point

RCODE DEC 11
ARRAY BSS 5

FORTRAN

DIMENSION ITIME (5)

IRCDE =11

CALL EXEC (IRCDE, ITIME)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)

(Time value array)

(Continue execution)

(Request code =11)
(Time value array)

When DOS-III returns, the time value array contains the time on a 24-hour clock:

ARRAY

ARRAY +1
ARRAY + 2
ARRAY + 3
ARRAY +4

or ITIME (1)
or ITIME (2)
or ITIME (3)
or ITIME (4)

-or ITIME (5)

Tenth of seconds

Seconds

Minutes

Hours

Not used, but must be present (always = 0)

If DOS-III does not contain Time-base Generator, all values in the time array are set to zero.

3-38

RCODE =17

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the Work Area on the system or current user disc and the
number of sectors per track.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+5(oré6) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF FTRAK (First track)
DEF LTRAK (Last track)
DEF SIZE (Number of sectors/track)
DEF DISC (Optional parameter — see Comments)
return point (Continue execution)
RCODE DEC 17 (Request code =17)
FTRAK NOP (Returns first work track number here)
LTRAK NOP (Returns last work track number here)
SIZE NOP (Returns number of sectors per track here)
DISC DEC n (n = 0 for system disc; n # 0 for current user disc)
FORTRAN
IRCDE = 17 (Request code)

CALL EXEC (IRCDE, IFTRK, ILTRK, ISIZE, IDISC)
or
CALL EXEC (IRCDE, IFTRK, ILTRK, ISIZE)

3-39

RCODE =17

Comments

This call returns the limits of the Work Area, which is that area of the system or user disc which pro-
grams use for temporary storage with the I/O READ/WRITE EXEC call (RCODE =1 or 2). If the
DISC parameter is omitted from the calling sequence, or if DISC = 0, the system disc information is
returned. If DISC # 0, user disc information is returned.

3-40

RCODE = 16

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable tracks exist in the Work Area of
the system disc.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+5 (Point of return from DOS-III)
DEF RCODE (Request code)
DEF NTRAK (Number of tracks desired)
DEF TRACK (Starting track desired)
DEF STRAK (Actual starting track)
return point (Continue execution)
RCODE DEC 16 (Request code = 16)
NTRAK DEC n (Consecutive tracks desired)
TRACK NOP (Desired track; from LIMITS call)
STRAK NOP (Actual starting track available, 0 if n tracks
not available)
FORTRAN
IRCDE = 16 (Request code)
NTRAK= n (Consecutive tracks desired)
ITRAK = m (Desired starting track)

CALL EXEC (IRCDE, NTRAK, ITRAK, ISTRK)

3-41

RCODE =16

Comments

This call is used with the WORK AREA LIMITS EXEC call (RCODE = 17) to establish the nature

of the Work Area. The READ/WRITE EXEC call (RCODE =1 or 2) then transmits information to
and from this area, using the track numbers determined by this call. DOS-IIT handles track switching
automatically.

DOS-III checks whether there are n consecutive tracks starting at the track specified. If n tracks are
available, DOS-III returns the starting track number to the program. If DOS-III does not locate n
consecutive tracks, it returns 0 in STRAK or ISTRK.

3-42

RCODE = 23

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+3 (or 4) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF LABEL (Disc label)
DEF SUBCH (Disc subchannel; optional)
return point (Continue execution)

RCODE DEC 23 (Request code = 23)

LABEL ASC 3,xxxxxx (Label = xxxxxx)

SUBCH DEC (0to7)

FORTRAN
DIMENSION LABEL (3) (New label)
IRCDE = 23
LABEL (1) = xxxxxB (First two characters)
LABEL (2) = xxxxxB (Next two characters)
LABEL (3) = xxxxxB (Last two characters)
ICHNL =M (0 through 7)

CALL EXEC (IRCDE, LABEL, ICHNL)
or
CALL EXEC (IRCDE, LABEL)

3-43

RCODE = 23

Comments

If both the label and subchannel are specified, DOS-III checks whether the subchannel has that
label. If it does, the assignment is made and DOS-III returns. If not, DOS-III outputs

LBL = name (name is label on the subchannel)
or

UNLBL

UD nnnnn (nnnnn = address of EXEC call)
xxxxx SUSP (xxxxx = name of program)

The operator can load a correctly labeled disc on the subchannel and input
:GO

to return to the beginning of the EXEC call (not the normal return point) so that the program can
reissue the EXEC call. If the operator does not have a properly labeled disc (or the subchannel is
a permanent disc), he should use :OFF or :ABORT.

If only a label is specified, DOS-III searches for the label, starting with the highest subchannel. If
DOS-III finds the label, it makes the assignment. If DOS-III cannot find the label, it suspends the
program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load a properly labeled disc then input

:GO
to return to the beginning of the EXEC call.
If the label equals ““*”” and a subchannel is specified, DOS-III checks whether the subchannel is
unlabeled. If it is, DOS-III makes the assignment. If the subchannel is labeled, DOS-III suspends
the program and outputs

LBL = name

UD nnnnn

xxxxx SUSP (xxxxx is the program)

The operator can then abort the program or load an unlabeled disc on the proper channel then
input

:GO

to return to the beginning of the EXEC call.

3-44

RCODE = 23

If the label equals ““*”” and a subchannel is not given, DOS-III searches for an unlabeled disc, starting
with the highest subchannel. DOS-III assigns the first unlabeled disc as the user disc, or if no un-
labeled discs are found, it suspends the program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load an unlabeled disc then input
:GO

to return to the beginning of the EXEC call.

Notes: 1. If the EXEC call specifies a subchannel with an incorrect system
proprietary code (see Appendix A), DOS-III still makes the assign-
ment but outputs

TSB DISC or 222 DISC

2. If the EXEC call specifies a subchannel whose system generation
code (see Section VII) does not match that of the system disc,

DOS-III still makes the assignment, but outputs
DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POS

3. The changes made by this EXEC call are only temporary, and will be
reset at the end of each job to the user subchannel specified during
system generation.

4. If the specified subchannel is not active (physically present), DOS-III
suspends the programaand outputs
I/O ERR NR USER DISC

or
1/0 ERR PE USER DISC

UD nnnnn (nnnnn = address of EXEC call)
xxxxx SUSP

3-45

PARAMETER PROCESSING

Certain user programs require parameters for their execution. DOS-III allows passing of parameters
in the following environments:

(1) from a main program to a main program

(2) from a main program to a segment

(3) from asegment to a main program

(4) from a user to a suspended program
Parameter transferral from program to program (1-3) is handled programmatically by specifying

parameters in an EXEC calling sequence. Parameter transferral from a user directly to a program (4)
is handled by passing parameters back to the suspended program through the GO directive.

All the programs receiving parameters retrieve them in the same way. The parameters to be passed

(if any) are located in the base page parameter buffer RONBF (see Appendix A). In the Assembly
language environment, the B register contains the address of the parameter buffer. In the FORTRAN/
ALGOL environment, a library routine (RMPAR) is provided to transfer parameters to a user-defined
buffer. (This call must be the first statement executed upon entry.)

ASSEMBLY LANGUAGE EXAMPLE

EXT EXEC

JSB EXEC (Call EXEC to suspend program)
DEF *+2

DEF RCODE

LDA B, (Get parameter from GO directive)
SZA,RSS

JMP NOPAR

RCODE DEC7

B EQU 1
FORTRAN EXAMPLE
DIMENSION I(5) (Define user parameter buffer)
CALL EXEC (7) (Suspend program)
CALL RMPAR (I) (Get parameters from :GO)

3-46

SECTION IV
Input/Output

In DOS-III, centralized control and logical referencing of I/O operations effect simple, device-
independent programming. Each I/O device is interfaced to the computer through one or more I/O
channels which are linked by hardware to corresponding main memory locations for interrupt
processing. By means of several user-defined I/O tables, multiple-device drivers, and program
EXEC calls, DOS-III relieves the programmer of most I/O problems.

Note: Refer to Section XIV, ‘Privileged Mode,” for a discussion of privileged
mode processing.

USER PROGRAM I/0

The user program requests I/O by means of an EXEC call (see Section IIT) which specifies the
logical unit, control information, type of operation, buffer location and buffer length.

Note: Within the DOS-III environment, it is possible to transfer up to 16K
words in a single operation.

All references to I/O devices are made through logical unit numbers. This relieves the program-
mer of the burden of knowing which physical device or which I/O channel is actually going to
perform the I/O transfer.

4-1

DOS-IIT has the following standard function assignments for logical unit numbers:

Logical Unit Number Function
1 System console
2 System mass storage
Restored 3 User mass storage

4 Standard punch device

after
5 Standard input device

each
6 Standard list device

:JOB. .

7 Unassigned
8 Recommended for magnetic tape
9 Can be assigned to any device
10 by user
6310

The user determines the number of logical units when the system is generated. At the beginning of
each JOB, logical units 1 through 9 are restored to the values established at system generation
(see Section X), whereas 10 through 63 are restored only on a start-up from the disc.

SYSTEM I/0 PROCESSING
System I/O processing is controlled by three I/O tables:

1) Equipment Table (EQT) — which records all devices, I/O channels, driver entry
points, DMA requirements, and disc location (if disc-resident).

2) Logical Unit Table (LUT) — which assigns an gquipment table number to each
of its entries, thus allowing the programmer to reference changeable logical units

instead of fixed physical units.

3) Interrupt Table (INT) — which relates each I/O channel to its corresponding
equipment table entry.

For a detailed description of these tables see Appendix A.

4-2

When the system recognizes an EXEC call that performs I/O, the request is sent to the I/O supervisor
EXEC module ($EX18). $EX18 determines if the driver for the requested device is main-memory
resident; if not, the driver is loaded into main memory from the disc. Once the driver is in main-
memory, the addresses of its EQT entries are placed in the base page communication area and control
is transferred to the driver’s initiation section. After the driver initiates the I/O operation, it returns
to $EX18. If the I/O was requested “without wait”’, DOS-III immediately returns control to the

user program,; if the I/O was requested “with wait”, DOS-III waits until the I/O transfer is complete
before returning to the user program.

Once a driver has been initiated, interrupts from the device are channeled through a central inter-
rupt processing routine ($CIC). (All interrupt locations in main memory contain a JSB $CIC.)
$CIC determines which device interrupted, resets the addresses of the EQT entries into the base
page communication area (if necessary), and transfers control to the driver’s continuation section.
The driver either continues or completes the I/O operation, and control is then returned to the

executing user program.

INPUT/OUTPUT DRIVERS

The I/O driver routines, either main-memory or disc-resident, handle the actual transfers of infor-
mation between the computer and external devices. They are responsible for initiating and continu-
ing operations on all devices of equivalent type. When a transfer is initiated, DOS-III places the

EQT entry addressed into the base page communication area and executes a subroutine jump to the
driver entry point. The driver configures itself for the particular channel (in this way the same
driver can handle several devices of the same type on many channels), initiates the transfer, and re-
turns to DOS-III. When an interrupt occurs on the channel, indicating continuation or completion
of the transfer, DOS-III again transfers control to the driver. DOS-III requires only three drivers: the
Moving-Head Disc Driver (DVR31), the System Console Driver (DVR00, DVRO05, or DVR26), and
the Paper Tape Reader Driver (DVRO1).

The following standard drivers are fully compatible with DOS-III:

Driver Number

DVROO
DVRO1
DVRO02
DVRO05
DVR10
DVR10
DVR11
DVR12
DVR15
DVR23
DVR26
DVR31
DVR33
DVR34
DVR67

Description

System Console Driver (TTY)
Paper Tape Reader Driver
Paper Tape Punch Driver
System Console Driver (TTY)
Digital Plotter Complete Driver
Digital Plotter Minimum Driver
Card Reader Driver

Line Printer Driver

Optical Mark Reader Driver
Magnetic Tape Unit Driver
Terminal Printer Driver

Disc Driver

Writable Control Store Driver
Card Reader Punch Driver

Hardwired Serial Interface Driver

4-3

Part Number

20985-60001
20987-60001
20989-60001
24157-60001
07210-16001
07210-16002
24272-60001
24307-16011
24307-16017
13024-60001
24307-16018
24156-60001
24278-60001
12989-16002
24341-16001

The driver name consists of the letters “DVR” prefixed to the equipment type code. In addition,
the programmer can write drivers for special devices, following the guidelines in Section XIII,
“Planning I/O Drivers.”” The driver is only responsible for updating the status field in the EQT
entry; DOS-III handles the availability field.

SPECIAL DRIVER CONSIDERATIONS

Since the various peripheral devices are unique, the drivers designed for use with these devices are
also unique. This diversification creates the need for special considerations when planning input/
output operations. The DOS-III Standard Drivers Reference Manual (24307-90073) deals at length
with such subjects as creating plotter drawings (Section II), line printer formatting (Section IV),
magnetic tape error recovery (Section VI), and using the writable control store driver (Section VIII).

4-4

SECTION V
DOS-IIl Subsystems

This section describes conventions for using the following DOS-III subsystems:
® ALGOL Compiler
® Assembler
® FORTRAN and FORTRAN IV Compilers
® Relocating Loader
® Relocatable libraries, including the DEBUG subroutine

and concludes with a discussion of program segmentation.

SOURCE PROGRAM FILES

Using the DOS-III STORE,S and EDIT directives, the operator creates and edits files of source pro-
grams written in FORTRAN, ALGOL, or Assembly language. In load-and-go operations the
FORTRAN Compiler, FORTRAN IV Compiler, ALGOL Compiler, and Assembler generate
relocatable binary code onto temporary disc storage. The Relocating Loader can then relocate

and merge the code with referenced subroutines of the Relocatable Library. Once loaded, a pro-
gram is executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

DOS-III provides the facility for ‘‘load-and-go,” which is defined as compilation or assembly,
loading, and execution of a user program without using intervening object paper tapes. To
accomplish this, the compiler or assembler generates relocatable object code from source statements
and stores it on the disc in the Job Binary Area. Then separate directives initiate loading (PROG,
LOADR) and execution (RUN,program).

DOS-III can store the object code of several programs and associated segments and subroutines on
the disc. The Relocating Loader retrieves them from the disc, and relocates them into executable
absolute program units.

ALGOL COMPILER

The ALGOL Compiler consists of a main program and a data segment which operate under the
control of DOS-III. The compiler resides on the disc and is read into main memory when called
for by a PROG directive.

Source programs written in ALGOL are accepted either from an input device or from a user disc
file and are translated by the ALGOL Compiler into relocatable object programs optionally
punched on paper tape (and optionally stored in the Job Binary Area of the disc). The object pro-
gram can be loaded using the DOS-III Relocating Loader and executed using the RUN or PROG
directive.

ALGOL I/0

The HP ALGOL I/O statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

Compiler Operation

The ALGOL Compiler is initiated with a PROG directive, and inputs the source program from an
input device, or, if from a source file, from a file specified by a JFILE directive. The PROG direc-
tive for the ALGOL Compiler should take the following form:

PROG,ALGOL

:PROG,ALGOL[,P, P, P, P, 99]

where P, = logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

P, = logical unit number of list device (default is 6)

P, = logical unit number of punch device (default is 4)

P , = lines/page on the source listing (default is 56)

99 = the job binary parameter. If present, the object program is stored in the Job Binary

Area for later loading. Any requested punch output still occurs. (The 99 may occur
anywhere in the parameter list, but terminates the list.)

All parameters are optional. If p; through p, are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-3

At the end of the compilation, the following message is output to the system console:

$8END, ALGOL

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG
directive) overflows, the following message is output and compilation continues:

JBIN OVF
The compilation will be completed, but there will be no further loading of binary code into the job
binary area.

The compiler terminates if

® Logical unit 2 has been given for input and no :JFILE has been declared. The
following message is output:

NO SOURCE

® The first statement of the source file specified by the PROG directive p 1 barameter
does not begin with the word HPAL. (Or the control statement contains an error.)
The following message is output:

HPAL??

® A colon occurs in the first position of a source statement line. The following message
is output:

IE nnnnn

where nnnnn is the memory location of the input request.

5-4

Language Considerations
The HP ALGOL control statement has this format:

HPAL [L,A,B,P], “name” [P,] [,P,]

where HPAL is mandatory

L,A,B,P are symbols (any combination is allowed) representing:
L produce source program listing
A produce object code listing
B produce object tape
p

a procedure only is to be compiled
“name” is the program name (the quotes and a program name are mandatory)

p is a decimal digit between 0 and 9 specifying the name of the error routine to be
called if an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI,
TAN. The name of the error routine is ERRn, wheren =P ,orn =0if P, is not
specified. ERRO is supplied in the Relocatable Library; all other error routines
must be supplied by the user.

P is a decimal digit specifying the type of the program: 3 for a main program, 5 for
a segment, and 6 or 7 for a utility subroutine or procedure. If P, is not specified,

the type is set to 3 for main programs and to 7 for procedures (P option in the
control statement).

If no symbols are specified, the program will run but will not produce any output other
than diagnostic messages and job binary (if requested). A program name in quotes (the NAM-record
name which must be a legitimate identifier without blanks) must follow the symbols.

Sense switch control is not used with DOS-III.

EXAMPLE

HPAL,L,B,“TEST”,1,3

5-5

ASSEMBLER

The Assembler, a segmented program that executes in the main-memory User Program Area,
operates under control of DOS-III. The Assembler consists of a main program (ASMB) and six
segments (ASMBD, ASMB1, ASMB2, ASMB3, ASMB4, ASMB5), and resides on the disc. The
main program is read into main memory when called by a PROG directive.

Source programs, accepted from either an input device or a user source file on the disc, are trans-
lated into absolute or relocatable object programs; absolute code is punched in binary records,
suitable for execution only outside of DOS-III. ASMB can store relocatable code in the Job Binary
Area of the disc for on-line execution, as well as punch it on paper tape.

A source program passes through the input device only once, unless there is insufficient disc storage
space. In the latter case, DOS-III informs the user that two passes are required.

Assembler I/0

The Assembly Language I/O EXEC calls should specify the proper logical unit numbers for the
DOS-III configuration. (See Section IV.)

When preparing input for the batch device, the programmer must remember to never put a colon (:)
in column one of the source statement. DOS-III aborts the current program if a directive (signified
by : in column one) occurs during data input.
If the memory protect hardware option is present (and enabled), it protects the resident supervisor
from alteration. It interrupts the execution of a user program under these conditions:

® Any operation that would modify the protected area or jump into it.

® Any I/O instruction, except those referencing the switch register or overflow register.

® The halt instruction.

Memory protect gives control to DOS-III when an interrupt occurs, and DOS-III checks whether it
was an EXEC call. If not, the user program is aborted.

Assembler Operation

The DOS-III Assembler is initiated with a PROG directive. However, before entering the PROG
directive, the operator must place the source program in the input device. If the source program is
on the disc, the operator must first specify the file with a JFILE directive, and set parameter

Py = 2 in the PROG directive. The PROG directive for Assembler should take the following form:

5-6

PROG,ASMB

:PROG,ASMB/,P, P, P,.P,,99]

where P, = logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

P, = logical unit number of list device (default is 6)

P, = logical unit number of punch device (default is 4)

P, = lines/page on the source listing (default is 56)

99 = the job binary parameter. If present, the object program is stored in the Job

Binary Area for later loading. Any requested punch output still occurs. (The 99
may occur anywhere in the parameter list, but terminates the list.)

All parameters are optional. If p; through p, are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Assembly

When the end of a source tape is encountered, the following is output on the system console:

I/0O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-7

The following message on the system console signifies the end of assembly:

$END ASMB

If another pass of the source program is required, this message is output at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and enter:

:GO

If an error is found in the Assembler control statement, the following message is output on the
system console:

$END ASMB CS

and the current assembly stops.
If an end-of-file condition on source input occurs before an END statement is found, the console
signals:

$END ASMB XEND

and the current assembly stops.
If source input from logical unit 2 (disc) is requested, but no file has been declared (see :JFILE,
Section II), the system console signals:

$END ASMB NPRG

and the current assembly stops.

If the Job Binary Area, where binary code is stored by a 99 parameter, overflows, assembly continues
but the following message is output on the system console:

JBIN OVF
However, no further binary code is stored in the Job Binary Area.

5-8

The next message is printed on a separate line just above each error diagnostic printed in the pro-
gram listing during pass 1.

nnn

nnn is the ‘“‘tape’ number on which the error (reported on the next line of the listing) occurred.

A program may consist of more than one tape. The tape counter starts with one and increments by
one whenever an end-of-tape condition occurs (paper tape) or a blank card is encountered. When
the counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the assembly is associated with
a different message (printed on a separate line just above each diagnostic):

PG ppp

ppp is the page number (in the listing) of the previous error diagnostic. PG 000 is associated with
the first error found in the program.

Language Considerations

ASSEMBLER CONTROL STATEMENT. Although only relocatable code can be run under DOS-III
the DOS-III Assembler is able to assemble absolute code if it is specified. Absolute code is never
stored in the Job Binary Area. To get absolute code, the control statement must include an “A”
parameter. The “R” parameter, however, is not required for relocatable code. An “X”’ causes the
assembler to generate non-Extended Arithmetic Unit code.

b

EXAMPLES
ASMB,L.B List and Punch Relocatable Binary.
ASMB,R,L.B,X List and Punch Relocatable, non-EAU Binary.
ASMB,T,L List and Print Symbol Table.
ASMB,A,B,L List and Punch Absolute Binary.

NAM STATEMENT. The NAM statement allows up to eight optional parameters. Only the first
two parameters are significant in DOS-III.

NAM name [,type] [,link mode]
where name is the program name (it should not equal any file name).

type is the program entry type code (octal):

0 — System main memory resident (default)
1 — Disc resident executive supervisor module
2 — Reserved for system
3 — User program, main
4 — Disc resident device driver
5 — User program segment
6 — Library routine
7T — Subroutine
10 — Relocatable binary
11 — ASCII source statements
12 — Binary data
13 — ASCII data
14 — Absolute binary

link mode is the mode of linkage to be performed:

0 — current page linking
non-zero — base page linking (default)

If type is 0, 1, 2, or greater than 7, the assembler and DSGEN will accept it, but the Relocating
Loader will not.

The link mode parameter specifies the mode of linking that will occur at system generation time. If
zero, current page linking occurs. If non-zero, base page linking occurs. If omitted, the default con-
dition (non-zero) is assumed and base page linking occurs.

In addition to the name defined by NAM, each program, with the exception of the main program,
has one or more entry points defined by an ENT statement. For the main program (type = 3), the
transfer address of the END statement is sufficient. The program name is used for programmer-to-
DOS-III communication, while the entry point is used for program-to-program communication.

Note: DOS-III Assembly language does not contain the ORB statement because
information cannot be directly loaded into the protected base page area
by user programs. However, programs can read information from base
page using absolute address operands up to 17775.

5-10

FORTRAN COMPILERS

The FORTRAN Compilers operate under control of the DOS-III Supervisor. The compilers reside
on the disc and are read into main memory only when needed.

FORTRAN and FORTRAN IV are problem-oriented programming languages. Source programs,
accepted from either an input device or a user disc file, are translated into relocatable object
programs, optionally punched on paper tape, and optionally stored in the Job Binary Area of the
disc. The object program can be loaded using the DOS-III Relocating Loader and executed using
the RUN or PROG directive.

FORTRAN I/O

FORTRAN I/O statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

When preparing input data for the batch device, the user should never put a colon (:) in column one

of the record because the colon in the first position signifies a directive. DOS-III aborts the job if a
directive occurs during data input.

Compiler Operation
The FORTRAN compilers are initiated with a PROG directive, and input the source program from

an input device, or, if from a source file, from a file specified by a JFILE directive. The PROG
directive for FORTRAN compilers should take the following form:

5-11

PROG,FTN[4]

:PROG,FTN[,P, P, P, P,,99]
:PROG,FTN4[,P,,P,.P,.P,99]

P, = logical unit number of input device (default is 5; set to 2 for source file input indicated
by a JFILE directive)

P, = logical unit number of list device (default is 6)

P, = logical unit number of punch device (default is 4)

P, = lines/page on the source listing (default is 56)

99 = the job binary parameter. If present, the object program is stored in the Job Binary Area

for later loading. Any requested punch output still occurs. (The 99 may occur anywhere
in the parameter list, but terminates the list.)

All parameters are optional. If py through p, are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n
:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

At the end of compilation, the following message is output on the system console:

$END, FTN[4]

5-12

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG direc-
tive) overflows, the following message is output and compilation continues:

JBIN OVF

There is no further loading into the Job Binary Area.
The compiler terminates if
® logical unit 2 has been given for input and no JFILE has been declared.
($END,FTN[4] is not output.)

® There are not enough work tracks for the compiler. The following message is output:

TRACKS UNAVAILABLE

® A colon occurs in the first column of a source program entered through the batch
device. (Blank cards in the source program are ignored.) The following message is
output.

IE nnnnn

where nnnnn is the memory location of the input request.

Language Considerations

FORTRAN CONTROL STATEMENT. Besides the standard options described in the FORTRAN
manual, two compiler options, T and n, are available. A “T”’ lists the symbol table for each program
in the compilation. If a “u” follows the address of a variable, that variable is undefined (the program
does not assign a value to it). The A option includes this T option. If n appears, n is a decimal digit
(1 through 9) which specifies an error routine. The user must then supply an error routine, ERRn.
If this option does not appear, the standard library error routine, ERRO, is used. The error routine
is called when an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .TROI, EXP, .ITOI, or TAN.

5-13

Extended and Auxiliary Statements

In addition to the standard FORTRAN statement, the FORTRAN compiler running under DOS-III
supports the following extensions and additions:

1. extended PROGRAM statement
2. additional DATA statement

3. additional EXTERNAL statement

Execution of the following two FORTRAN statements results in special processing in the DOS-III
environment:

1. PAUSE

2. STOP

5-14

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [,type] [,link mode]

name is the five-character name of the program (and its main entry point.
When the program is executed using a RUN or PROG directive, this
name is used.

type is a decimal digit specifying the program type. Only types 3 (main),
5 (segment), and 6 or 7 (library) are significant in DOS-III. The type

is set to 3 if not given.

link mode is the mode of linkage to be performed: 0 indicates current page
linking and any non-zero digit indicates base page linking (default).

5-15

DATA STATEMENT

The DATA statement sets initial values for variables and array elements. The format of the DATA
statement is

DATAk,/d,/k,/d,/,. ...k /d]

where k is a list of variables and array elements separated by commas, d is a list of (optionally
signed) constants, separated by commas and optionally preceded by j* (j is an integer
constant).

The elements of d; are serially assigned to the elements of k ;. The form j* means that the constant
is assigned j times. The & 1 and d; must correspond one-to-one.

Elements of k; must not be from COMMON.
Arrays must be defined (i.e., DIMENSION) before the DAT A statements in which they appear.
DATA statements may occur anywhere in a program following the specification statements.
EXAMPLE

DIMENSION A(3), 1(2)

DATA A(1),A(2),A(3)/1.0,2.0,3.0/,1(1),1(2)/2*1/

5-16

EXTERNAL STATEMENT

With the EXTERNAL statement, subroutines and functions can be passed as parameters in a sub-
routine or function call. For example, the routine XYZ can be passed to a subroutine if XYZ is
previously declared EXTERNAL. Each program may declare up to five EXTERNAL routines.

The format of the EXTERNAL statement is
EXTERNAL UysUgs e vt 5V

where v is the entry point of a function, subroutine, or library program.

EXAMPLE

EXTERNAL XYZ FL1
Z =Q-RMX(XYZ,FL1,3.56,4.75)

FUNCTION RMX(X,Y,A,B)
RMX = X(A)*Y(B)
END

ERROR E-0018 means too many externals.

Note: If alibrary routine, such as SIN, is used as an EXTERNAL, the compiler
changes the first letter of the entry point to “%”. Special versions of the
library routines already exist with the first character changed to “%”.

5-17

PAUSE AND STOP

PAUSE causes the following message to be output to the system console:
PAUSE xxxx
where xxxx is an optional octal number.

To restart the program, the operator uses a GO directive.

STOP causes the program to terminate after the following message:
STOP program name xxxx

where xxxx is an octal number.

5-18

ERRO LIBRARY ROUTINE

ERRO, the error print routine referred to under the FORTRAN or ALGOL control statement, out-
puts the following message to the system console whenever an error occurs in a library routine:

name. nn xx

where name is the name of the user’s program,
nn is the routine identifier, and
xx is the error type.

The compiler generates calls to ERRO automatically. If the FORTRAN (or ALGOL) control
statement includes an n option, the call will be to ERRn, a routine which the user must supply.

5-19

DOS-III RELOCATING LOADER

The DOS-III Relocating Loader accepts relocatable object programs which have been translated by
the Assembler, ALGOL Compiler, or FORTRAN Compilers. It generates an executable main-
memory image of each such program. The relocatable programs may enter the loader as

® Job Binary Area programs translated during the current job
® User files
® Punched tapes, magnetic tapes

® Subroutines from the disc-resident Relocatable Library

Each main program is relocated to the start of the User Area and linked to its external references,
such as library routines. Segments will overlay the area following the main program and its sub-
routines. Programs may run under control of the DEBUG library routine. The main program, plus
its subroutines and its longest segment, can be as large as the User Area. With a RUN or PROG
directive, the program is called by name from the disc and executed. With the STORE,P directive,
the program may be stored as a permanent user file to be run during a later job. If the Loader is
to be re-executed during a single job, the Job Binary Area must be cleared (using the CLEAR
directive) to prevent duplicate program names.

5-20

PROG,LOADR

The DOS-III Relocating Loader is initiated by a PROG directive from the batch or keyboard device.

Format

:PROG,LOADR/[,P, P, ,P P, P,]

P, = 0 for loading from JBIN and relocatable library (default)
= 2 for loading from JBIN, user files, and relocatable library

= n for loading from JBIN, user files, relocatable library, and paper tape or
magnetic tape (logical unit n)

P, = list device logical unit number (default is 6)
P, = 0 for no DEBUG, # 0 for DEBUG (default is 0)
P, = 0 for base page linking, # 0 for current page linking (default is 0)

P_ = 0 for system default program bounds (e.g., UBFWA-UBLWA and
UMFWA-UMLWA); = 1 for user-specified program bounds (default is 0)

Comments

INPUT PARAMETER [P]. Note the hierachy here. If n is specified, the JBIN area is still scanned
first, then user files are requested and, finally, the peripheral relocatable input is accepted.

If Py # zero, the Loader first expects a list of relocatable file names. In keyboard mode, the
Loader requests:

ENTER FILE NAME(S) OR /E

then waits for input. After each list of files is entered, the message repeats until a /E is entered.
In batch mode the list of files is entered as
file-name 1, file-name 2, . . . ,/E

following the PROG directive (or following the bounds parameters if P 5 = 1). If there are no
user files, a /E record must be entered.

5-21

The file list is a series of records containing file names separated by commas, ending with a /E.
All programs in each file are loaded unless a particular subset of the file is specified:

file-name (prog 1, prog 2. . .)

Only the programs specified within the parentheses are loaded from the file-name. The file list is
simply a “/E” if no files are to be loaded. (The search for these files is made only on the current
user disc; the Loader is unaffected by :SS.)

DEBUG PARAMETER [Pg]. Selecting the DEBUG option causes DEBUG to be appended to each
main program and segment. The Loader sets the primary entry point of each to DEBUG, rather
than the user routine. When the program is run, DEBUG takes control of the program’s execution
and seeks instructions from the system console.

CURRENT PAGE LINKING PARAMETER [P4]. If requested to do so (P 4 7 zero), the Loader
attempts to place necessary program links on the current page of memory as opposed to the base
page, to provide more area on the base page for large programs.

Note: While using the Loader with the current page linking option, remember that:

a. Current page linking cannot be used on programs which use main
memory following the program area for writing data (at execution
time). For instance, the Assembler builds its symbol table imme-
diately following the last word of the largest segment.

b. Programs should be broken into subroutines of less than 2K
because links are generated only at the beginning and end of
the program. Links cannot be inserted into the middle of a
program since the boundary between program and links may
fall in the middle of a skip or jump sequence. If the program
spans more than two pages, the middle page(s) will have no
area available for current links and will use base page links; thus,
the potential for greater efficiency will be lost.

PROGRAM BOUNDS SPECIFICATION PARAMETER [Pg]. The user has the option of specifying
the base page bounds and the main memory bounds for the relocatable modules being loaded. If
parameter Pg in the PROG,LOADR directive is zero, the program bounds are determined by the
system pointers:

UBFWA lower base page bound

UBLWA upper base page bound

UMFWA lower main memory bound

UMLWA upper main memory bound

If Py is equal to one, the user can specify his own memory bounds. In batch mode, the Loader
reads the bounds from the input device immediately following the :PROG, LOADR directive. The
bounds are in the form of two records: the first record is interpreted as the lower and upper base
page bounds, specified by two octal constants separated by a comma. If an error occurs in the first

5-22

record, the Loader outputs an LL18 error message. The second record is interpreted as the lower
and upper main memory bounds, specified by two octal constants separated by a comma. If an
error occurs in the second record, the Loader outputs an L19 error message. If any of the bounds
are omitted, the appropriate system default value is used. In keyboard mode, the two records are
entered in response to the messages

BP BND [L,U]?
PROG BND [L,U]?

If an error occurs while entering the bounds in keyboard mode, the user can re-enter the bounds
(after an LL18 or L19 error message). If an L18 or L19 error message occurs in batch mode, the
Loader aborts the job.

I/0 Drivers

The Loader will accept Type 4 programs (Disc Resident Device Drivers) and store them as such in
the user directory. Type 4 programs cannot be combined with any other program type during any
given load operation.

Loader Operation

The DOS-III Relocating Loader is a two-pass Loader. The first pass consists of setting the bounds,
inputting and scanning relocatable programs to build the necessary tables (program name table
and a table of entry points and externals), and matching entry points with externals. The second
pass involves the relocation of the programs into an absolute core image format on the disc.

INPUTTING AND SCANNING THE PROGRAMS. Programs are scanned (and input, if necessary)
according to Py in the PROG,LOADR directive. (Only non-disc relocatable programs must be input;
there are stored temporarily on the Work Area of the disc for processing during the second pass.)
Since main programs are matched with segments during the scan, each main program must be loaded
before any of its segments.

If paper tape input is requested, the following messages are output to the system console:

LOAD TAPE
LOADR SUSP
@

The loader suspends. The operator places a tape in the input device and types

:GO

5-23

When an end-of-tape condition occurs, three messages are output to the system console:

I/O ERR ET EQT# nn (paper tape only—not magnetic tape)
LOAD TAPE

LOADR SUSP

@

The operator places the next tape in the input device, enters :UP,nn and :GO to read the next tape.
Enter :UP,nn and :GO,1 to indicate that all tapes have been read in.

If a checksum error occurs when loading relocatable programs from paper tape, the Loader prints
an LO1 error message and returns to the paper tape load point with the messages

LOAD TAPE
LOADR SUSP
@

The operator can attempt to reload the program by placing the tape in the reader at the beginning
of the program and typing :GO.

Matching Entries with Externals

After matching all possible entry points and external references in the user programs, the loader
scans the Relocatable Library (disc-resident) looking for entry points to match the undefined
external references. If undefined external references still exist,

UNDEFINED EXTS

is output and the external references are listed, one per line.

To load additional programs from a peripheral device, the operator types
:GO,0[,n]

where n is the logical unit number of the input device, if different from P, of the PROG,LOADR
directive.

To continue without fulfilling external references, the operator types

:GO,1

To specify a file name from the keyboard, enter

:GO,2

and the appropriate prompt is output:

ENTER FILE NAME(S) OR /E

5-24

RELOCATING PROGRAMS. The main and segment names (from the PROGRAM, HPAL, or NAM
records) become user file names once the programs are loaded. To ensure unique file names, the
Loader compares all program and segment names against the names of existing user files (current
user disc only). If duplicate names occur, an error message is printed and loading stops.

The Loader converts each main program into an absolute main memory image, stores it on the disc,
places the name in the user directory where it remains during the current job, and lists (on the
logical unit specified by the P parameter) the program address map and entry points. After each
main program, any associated segments are loaded in the same way. When the Loader is completely
finished, the following message is output:

LOADR COMPLETE

During the current job, the absolute main memory images appear in the user file area (see LIST
directive, Section II) and can be executed by name (see RUN and PROG directives). At the end of
the job, however, they disappear from the file area, unless they are made permanent files by means
of the STORE, P directive.

If no programs are entered, the Loader outputs the following messages and terminates:

NO PROGRAMS LOADED
LOADR COMPLETE

Loader error messages are given in Section XV.

5-25

EXAMPLE

In the following example, DOS-III is in keyboard mode.

:CLEAR Eliminate any programs from the job binary area
@

:PROG,LOADR, 5 Paper tape input is specified
ENTER FILE NAME(S) OR /E

ALGLM, /E One disc file is specified

LOAD TAPE

LOADR SUSP Place paper tape in input device
8:G0 Return to Loader

I/0 ERR ET EQT# 02 End of paper tape

LOAD TAPE

LOADR SUSP

@:UP, 2 Declare input device ready
@:G0, 1 Specify no more paper tapes

5-26

The following is then output on the standard list device (logical unit 6):

RELOCATING LOADER

NAME PROG BOUNDS BP BOUNDS
AL.GOL
*HPAL 26601 Main program
*ZHPST 27985 Main’s entry points
« EAU. 32379 21422 Subroutine
* o MPY 30370 Subroutine’s entry points
*. DIV 38375
*e DLLD 32402
*e¢DST 39437
ZWRIT 33440 21427
*TWRIT 30626
*%ZWRIF 38522
*ZWBUF 30725
SREAD 31141 141l
*ZREAD 31141
*ZJFIL 31612
*ZRDSC 31563
DUMRX 31677 21412
*$LIBR 31677
*SLIBX 31724
«0PSY 31757 gl4a12
*e OPSY 31757
(BOUNDS) 16903 32217 P0716 B1415 Main programs bounds
ALGL 1 Segment
*ALGL1 32461 Segment’s entry points
*ZLNAL 32029
*ZABAL 32217
(BOUNDS) 32017 32463 21415 1416 Segment’s bounds

LLOADR COMPLETE Console message to indicate normal Loader completion

@:ST,P Make newly created programs permanent disc files

5-27

THE RELOCATABLE LIBRARIES

There are two System libraries, or collections of relocatable subroutines that can be used by DOS-
III: the RTE/DOS Relocatable Library (EAU or Non-EAU versions) and the RTE/DOS FORTRAN
IV Library. These libraries contain mathematical routines such as SIN and COS, and utility routines
such as BINRY. A program signifies its need for a subroutine by means of an ‘‘external reference.”
External references are generated by EXT statements in Assembly language, by CALL statements and
external function references in FORTRAN, and by CODE procedures in ALGOL.

When the system is generated, several combinations of libraries are possible. Every system should
contain an RTE/DOS Relocatable Library: either an EAU version or a non-EAU version, depending
on the computer hardware. This library does not contain a formatter, but the FORTRAN IV Library
contains a formatter that handles extended precision numbers. If extended precision arithmetic is
not needed, a separate RTE/DOS Basic FORTRAN Formatter is available to take the place of the
FORTRAN IV Library.

All of these libraries and the subroutines they contain are documented in the manual Relocatable
Subroutines (02116-91780).

5-28

DEBUG LIBRARY SUBROUTINE

RTE/DOS DEBUG, a subroutine of the Relocatable Library, allows the programmer to check for
logical errors during program execution. If the third parameter specified in the PROG, LOADR
directive is non-zero, the DEBUG subroutine is appended to the user program being loaded. The
primary entry point (where execution begins) is set to DEBUG. When the program is executed
with a RUN directive, the DEBUG subroutine has control and displays the message:

BEGIN ‘DEBUG’ OPERATION

The programmer may enter any DEBUG operation directive. Illegal entries are ignored but result
in the message:

ENTRY ERROR

Re-enter the DEBUG operation directive correctly.

DEBUG OPERATIONS

B,n Instruction breakpoint at octal address n (Note: if n = JSB EXEC, a
memory protect violation occurs)

D,A,nyl,ngl ASCII dump of octal main memory address n; or from n; through ng

D,B,n; [,n 2] Binary dump of octal main memory address n 1 or from ny through ngy

M,n Sets absolute base of relocatable program unit at octal address n

R[,n] Execute user program starting at octal address n or execute starting at

next location in user program (used after a breakpoint or to initiate the
program at the transfer point in the user program)

S,n.d Set octal value d in octal address n

S,n,d 1,d 9 - - Ay Set octal values d 1 through d,, in successive memory locations beginning
at octal address n

W,A,d Set A-register to octal value d

W,B,d Set B-register to octal value d

W,E.d Set E-register to octal value d (0=off; non-zero = on)

W,0,d Set Overflow to octal value d (0 = off; non-zero = on)

X,n Clear breakpoint at octal address n

A Abort DEBUG operation.

5-29

SPECIAL CONSIDERATIONS

Because of the extended instruction group coding available to the programmer using an HP 21MX
Computer Series system, the current RTE/DOS DEBUG subroutine should not be used within these
systems.

For systems based on an HP 21 MX series processor, a modified version of the subroutine called HP
21MX RTE/DOS DEBUG is available and should be used in place of the current subroutine. HP
21MX RTE/DOS DEBUG can be used only on HP 21MX Computer Series systems, it cannot be
executed successfully on systems based on an HP 2100A or HP 21008 processor.

During the Program Input Phase of RTE or DOS-III system generation, load the HP 21MX RTE/
DOS DEBUG subroutine from paper tape (relocatable binary code) immediately after loading the
RTE/DOS Relocatable Library. An error message indicating the existence of a duplicate program
name will be displayed but the system generator will proceed to replace the current RTE/DOS
DEBUG subroutine with the HP 21MX version.

Externally, with a few differences, the HP 21MX RTE/DOS DEBUG subroutine appears the same
as the current version in the RTE/DOS Relocatable Library. The differences are as follows:

1. HP 21MX RTE/DOS DEBUG allows the programmer to set breakpoints on instructions which
are extensions to the base set microcode. Breakpoints set on standard HP 21MX instructions—
specifically, base set, base set extension (extended instruction group), single precision floating
point arithmetic, or extended arithmetic unit (EAU) instructions — are processed normally;
that is, the break occurs before execution of the instruction and is not cleared if the program-
mer resumes execution of his program. Breakpoints set on instructions which are extensions
to the standard instruction set — FFP, user written instructions, and so forth — result in the
breakpoint being cleared after execution of the break.

Note: In the current RTE/DOS DEBUG subroutine, sctting a breakpoint on
a non-EAU multiple-word instruction results in the incorrect execution
of the instruction at the breakpoint.

2. HP 21MX RTE/DOS DEBUG displays the contents of the X-register and Y-register as part
of the standard breakpoint message.

3. HP 21MX RTE/DOS DEBUG provides two additional operation directives which allow the
programmer to set the X-register or Y-register to specific values. These directives are:

wW,X,d Set X-register to octal value d

W,Y.d Set Y-register to octal value d

5-30

SEGMENTED PROGRAMS

User programs may be structured into a main program and several segments, as shown in Figure 5-1.
The main program begins at the start of the user program area. The area for the segments starts
immediately following the last location of the main program. The segments reside on the disc and

are read into main memory by EXEC calls, when needed. Only one segment may be in main memory
at a time. When a segment is read into main memory, it overlays the segment previously in main
memory.

The main program must be type 3, and the segments must be type 5. When using DSGEN to con-
figure the system or loading programs with the Loader, the main program must be entered prior

to its segments. One external reference from each segment to the main routine is required for
DSGEN or the Loader to link the segments and main programs. Also, each segmented program
should use unique external reference symbols., Otherwise, DSGEN or the Loader may link segments
and main programs incorrectly.

Main Program

Segment 1 DISC MEMORY

Segment 2

Segment 3

low memory

Main Program

MAIN MEMORY

(User program area)

Segment Overlay
Area

high memory

Figure 5-1. Segmented Programs

5-31

Figure 5-2 shows how an executing program may call in any of its segments from the disc using the
SEGMENT LOAD EXEC call (1-2). DOS-III locates the segment on the disc (3-4), loads it into
main memory (5) and begins executing it. The segment may call in another of the main program’s
segments using a similar EXEC call (6).

DISC MEMORY MAIN MEMORY
low memory
Main DOS-111
Program Supervisor
ament 1 (@) EXT EXEC
™ ENT M Main
Program
Segment 2 @ JSB EXEC User
Program
Area
NAM SEG1
Segment 3 EXT EXEC, M Segment
. Overlay
> @ . Area
1——— (® usBEXEC
(CALL for High
Segment 2) igh memory

Figure 5-2. Main Calling Segment

5-32

Figure 5-3 shows how DOS-III processes the call from the segment (7) by locating the segment on
the disc (8-9), loading it into main memory (10), and beginning execution of it.

DISC MEMORY

Main
Program

Segment 1

Segment 2 @

/N

Segment 3

MAIN MEMORY

—

@

DOS-III
Supervisor

(CALL from
Segment 1)

NAM MAIN
EXT EXEC
ENTM

Figure 5-3. Segment Calling Segment

v

NAM SEG2
EXT EXEC, M

|

5-33

low memory

Main

Program
User
Program
Area

Segment

Overlay

Area

high memory

When a main program and segment are currently residing in main memory, they operate as a single
program. Jumps from a segment to a main program (or vice versa) can be programmed by declaring
an external symbol and referencing it via a JMP or JSB instruction. (See Figure 5-4.) A matching
entry symbol must be defined as the destination in the other program. DSGEN or the Loader
associates the main programs and segments, replacing the symbolic linkage with actual absolute a
addresses (i.e., a jump into a segment is executed as a jump to a specific address). The programmer
should be sure that the correct segment is in main memory before any JMP instructions are
executed.

MAIN MEMORY

low memory
EXT S1
ENT M1
—» M1 JMP S1 ————
Main
Program
User
Program
Area
EXT M1
ENT S1 Segment
e JMP M1 Overlay
S1... —— Area

high memory

Figure 5-4. Main-to-Segment Jumps

5-34

FORTRAN Segments

Segmented user programs may be written in FORTRAN, but certain conventions are required. A
segment must be defined as type 5 in the PROGRAM statement. The segment must be initiated by
using the SEGMENT LOAD EXEC call (RC DE = 8) from the main or another segment. A dummy
CALL to the main must appear in each segment to ensure that proper linkage will be established be-
tween the main and its segments.

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 135g). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and seg-
ments may be through COMMON or via parameters passed in the SEGMENT LOAD or SEGMENT
RETURN EXEC calls.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call (RCODE = 8) by executing a SEGMENT RETURN EXEC call
(RCODE = 29). (See Section III for a description of these EXEC calls.) However, segments may
not return directly to other segments.

ALGOL Segments

ALGOL programs can be segmented if certain conventions are followed. A segment must be defined
as type 5 in the HPAL control statement. The segment must be initiated by using the SEGMENT
LOAD EXEC call (RCODE = 8) from the main or another segment. In order to establish the proper
linkage between a main program and its segments, each segment must declare the main a CODE
procedure. For example, if MAIN is the main program, each segment must declare the following:

PROCEDURE MAIN;CODE;

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 135g). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and its seg-
ments may be through parameters passed in the EXEC call.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call by executing a SEGMENT RETURN EXEC call (RCODE = 29). (See
Section III for a description of these EXEC calls.) However, segments may not return directly to
other segments.

5-35

SECTION VI
Typical DOS-IIl Job Decks

1. ASSEMBLE A PROGRAM AND STORE IN FILE

:JOB,ASMBS
:PROG,ASMB,5,6,4,56,99
ASMB,B,L

NAM TEST,3

Source Program

END ENTER
:STORE,R,AFILE
:JOB,NEXTJ

2. LOAD AND EXECUTE A RELOCATABLE FILE

:JOB,LOADE
:PROG,LOADR,2
AFILE,/E
:STORE,P,TEST
:RUN, TEST
10
23
. Data

51
:JOB,NEXTJ

6-1

3. STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM

:JOB, EVERY
:STORE,S,SOURC,5
FTN,B,L

PROGRAM ZOOM

DIM I(10)
. Source Program

END$

:LIST,S,6,SOURC
:EDIT,SOURC,5
/1,2

Edit List
/E
:JFILE SOURC
:PROG,FTN,?2,6,4,56,99
:PROG,LOADR
:RUN,ZOOM
123.62

Data for first run

00001
:RUN,ZOOM
321.5

Data for second run

0.56
:JOB,NEXTJ

4. LIST ONLY ERROR STATEMENTS ON SYSTEM CONSOLE IN A COMPILE

:PR,FTN4,,1
FTN4
PROGRAM EX1

END

6-2

5. COPY A SYSTEM FROM SUBCHANNEL 1 TO SUBCHANNEL 0

:JO

JOB TODAY TIME=0831 MIN. 43.3 SECS.

@

:UD,,0 Interrogates the system as to what label
LBL=SYSTEM is on subchannel 0.

@

:UD,SYSTEM,0 Change current user disc to subchannel 0
@

:UD Verify

SUBCHAN=0

LBL=SYSTEM

@

:IN,* Purge system and user files on subchannel 0
DOS LABEL SYSTEM

OK TO PURGE?

YES

@

:UD Verify purge

SUBCHAN=0

UNLBL

@

:UD,*,1 Change current user disc to subchannel 1
@

:UD Verify

SUBCHAN=1

UNLBL

@

:DD,X

@ Copy system to subchannel 0

:UD,*,0

@

:UD

SUBCHAN=0

LBL=SYSTEM

@

:EJ

END JOB RUN=0008 MIN. 01.7 SEC. EXEC=0000 MIN. 00.0 SEC.
@

6-3

PART 2

DOS-1ll Extended File
Management Package (EFMP)

SECTION VII
EFMP Organization

The DOS-III Extended File Management Package (EFMP) extends the file handling capabilities of
DOS-III by allowing the user to create and use files with different record lengths, security codes,
and other conveniences. EFMP consists of a series of additional EXEC modules and a utility pro-
gram; it maintains a file structure that operates within, and in addition to, the standard DOS-III
file structure.

ENVIRONMENT

EFMP functions in the DOS-III environment. It is implemented through a set of EXEC modules
which are incorporated into DOS-III at system generation time: the EXEC modules are invoked
using the standard EXEC call mechanism.

FUNCTIONS AND STRUCTURE

The EFMP modules themselves allow any program executing in the user area to Initialize EFMP
areas, Create/Destroy, Open/Close, Read/Write, Reset, Repack, Copy, Change Name, and Post files
on the moving-head disc. Also, EFMP makes available detailed status information on all files and
packs known to it. EFMP may be accessed conversationally from the keyboard by using UTIL, a
utility program that executes in the User Area.

DOS-III Files vs. EFMP Files

DOS-III maintains files that are referenced by five-character names and relative sector numbers. The
user can access these files in either a keyboard mode (via directives) or in a programming mode

(via EXEC calls). In keyboard mode, the user creates a file with the STORE directive and operates
on that file with directives such as :EDIT and :DUMP. In programming mode, the DOS-III files are
accessed by EXEC calls such as FILE READ/WRITE and FILE NAME SEARCH.

In addition to the file structure, DOS-III maintains a subchannel (or user disc) identification scheme.
User discs are first formatted either during system generation or by a special function of the system
generator. These functions format the hardware tracks and set up information such as the Label
Presence Code and System Proprietary Code. After a disc pack is formatted, the INITIALIZE directive
is used to set up labels (six-character codes), change labels, and purge old discs.

7-1

EFMP operates within this file structure of DOS-III to set up and maintain additional—but distinctly
different— files. Areas of discs within DOS-III (hereafter referred to as EFMP areas) are turned over
to EFMP exclusively. The user must identify them with a pack number of the form PNxxx, where
xxx is a decimal integer. The procedure for doing this is described under “Set Up.”

Within an EFMP area, EFMP creates files of its own that are not known to DOS-III. They are identi-
fied by a fixed-length name, contain a grouping of specified length records, and have a security code.
Since only the DOS-III files can be created and accessed by directives, all EFMP files must be used
through the EFMP EXEC calls or the UTIL program. EFMP files are limited in size only by the re-
quirement that they fit within one subchannel or pack.

Note: All references to files within this Part will mean EFMP files, not
DOS-III files, unless specifically stated otherwise.

Duplicate Pack Numbers

EFMP pack numbers are always unique on any given platter, but not necessarily unique across
platters. To minimize the possibility of accessing a duplicate pack number, the user should (if
possible):

1. Create unique pack numbers.

2. Have platters containing EFMP areas mounted on the subchannel designated as the current
user subchannel.

EFMP Buffers and Tables

To provide maximum flexibility in main memory size and speed of file accessing, EFMP allows the
user to define (at execution time) the size and location of the tables and buffers required in main
memory by EFMP. Two areas are defined by the user and provided in his program space:

1. Opened File Table

2. Temporary Record Buffers

The Opened File Table contains all information necessary for EFMP to identify and access files
belonging to the user. The minimum size of the Opened File Table is one sector (128 words) and
allows up to seven files to be opened concurrently.

EFMP uses the Temporary Record Buffers as an intermediate storage area between the disc and
the user’s record buffer. The user defines the number of Temporary Record Buffers and the size of
each. There must be at least one buffer and it must be at least two sectors (256 words) long. Par-
ticular files and buffers can be linked to increase the access speed of files. The effect of varying the
number and size of these buffers cannot be predicted exactly and must be determined empirically
by trial and error.

CAUTION: SINCE THESE TABLES AND BUFFERS EXIST IN THE USER
AREA AND ARE NOT PROTECTED, EXTREME CAUTION
MUST BE TAKEN NOT TO MODIFY THEM IN ANY WAY.

7-2

Logical Read vs. Physical Read

A logical read occurs each time the user requests a record from a file. At that time EFMP checks
the appropriate Temporary Record Buffer to determine if the requested record is already in main
memory. If in main memory, the record is transferred to the user’s record buffer without actually
physically reading the disc. If the record is not present in main memory, the necessary disc transfers
are performed (physical reads—and writes, if necessary) to bring the record into main memory. If
the Temporary Record Buffer is larger than the record size, several records are brought into main
memory at once.

Logical Write vs. Physical Write

A logical write occurs each time a user requests that a record be written to a file. At that time,
EFMP determines if that record is present in the Temporary Record Buffer; if it is, EFMP simply
transfers the data in the user’s record buffer to the Temporary Record Buffer and flags it as ‘““must
be written.”” Each succeeding read or write is treated in the same manner until a logical record trans-
fer occurs for which the record is not in main memory, or until the last record in the Temporary
Record Buffer is logically written. In these cases, the EFMP must physically write the records in the
Temporary Record Buffer (i.e., post them) on the disc.

If the record is not present in main memory on a write request, EFMP locates the record on the
disc and transfers it physically into the Temporary Record Buffer. The data to be written is then
transferred from the user buffer to the Temporary Record buffer and flagged as ‘“must be written.”
The read before write is necessary because records do not necessarily fall on sector boundaries in
the disc. If a CLOSE or POST request occurs, all buffers flagged are written to the disc.

Update-Writes vs. Append-Writes

The purpose of an update-write is to change the contents of an existing record; the purpose of
append-write is to add new records onto the end of a file. EFMP writes a record as an update-write
whenever the record specified exists in a previously accessed section of a file.

EFMP writes a record as an append-write whenever the record specified is beyond the previously

accessed section of a file. In this case, EFMP automatically inserts zeros into all records (if any)
between the highest record previously written and the new record.

SET UP
There are two prerequisites for EFMP. First, the EFMP EXEC modules must be included in

DOS-III when the system is generated. Second, when DOS-III is running, the user must create
EFMP areas on formatted DOS-III packs or cartridges.

7-3

An EFMP area is created by issuing a STORE, B directive in this format:
:STORE,B,PNxxx,sectors

where xxx is a unique decimal number,
PNxxx is the unique pack number, and

sectors is the number of sectors of the EFMP area.

Note: EFMP changes the file from Type-B to Type-A during initialization
(see “Initialize”).

WORD CONTENTS
0 first character second character
1 third character fourth character
2 fifth character (not used)
3 starting relative sector
4 file length (in records)
5 record length (in words)
6 security code
7 user-supplied status
8 highest record number accessed
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BITS

Figure 7-1. EFMP File Disc Directory Format

7-4

SECTION VviI
EFMP EXEC Calls

The method of communication between a user program and EFMP is through the standard DOS-III
EXEC call format (discussed in Section III of this manual).

One standard DOS-III request code (RCODE = 24) is reserved for EFMP requests. The DOS-III
operating system combines this request code with an EFMP function number to determine which
action the user EXEC call is requesting. The EFMP function numbers are one element in each of the
EFMP EXEC calling sequences.

FORMAT FOR EFMP EXEC CALLS

In this section, only the Assembly language calling sequences are given for the EFMP EXEC calls.
The methods for converting these calling sequences to FORTRAN or ALGOL are described in
Section III.

The EFMP EXEC calls described in this section are presented in ascending order, by EFMP function

number. The STATUS EXEC call (EFMPF = 10) has several status function numbers: these are
presented in ascending order, by status function number.

Note: A complete list of EFMP error codes can be found in PART 5 of this manual,
“Error Codes and Messages.”’

81

Purpose

EFMPF =1

DEFINE

To define, before any other EFMP calls are made, the number of 16-bit words within the user
program to be used by EFMP for its internal buffers and tables.

Assembly Language

RCODE
EFMPF
OPNTB
OPNSZ

TRBUF
NOTRB
(NOTRB+1)

TRBSZ
ERRNO

Comments

JSB

DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
return

DEC
DEC
BSS

DEC

BSS
DEC
DEC

DEC
BSS

EXEC
*+9
RCODE
EFMPF
OPNTB
OPNSZ
TRBUF
NOTRB

TRBSZ
ERRNO

24

~Q

Return address

Request code

EFMP function number
Opened-file table address
Opened-file table size

Temp. record buffer address
Number of temp. record buffers and number of
active pack numbers

Temp. record buffer size
Error number

Continue execution

Opened-file table (n is the size)

Size of opened-file table (in 16-bit words,

see Comment 1)

Beginning of temp. record buffers, see Comment 2
No. of temp. record buffers, see Comment 2

n = the maximum number of unique EFMP pack
numbers active(MAXPK), see Comment 4

Size of each temp. record buffer (in sectors)
Return point for error codes

1. The size of the Opened-file table (n) can be calculated by this formula:

n=4*(MAXPK)+ 3*(NOTRB)+16*(Max. no. of files to be opened)

The minimum size of this table is 128 words. This allows approximately seven files to be
opened concurrently.

8-2

EFMPF =1

There must be at least one temporary record buffer and it must be at least two sectors long
(256 words). There may, however, be more buffers and they may be more than two sectors
in size. All of the space for these buffers must be allocated starting at the location TRBUF.
Increasing the number of buffers allows disc efficiency to be increased by assigning a buffer
exclusively to one file. Increasing the size of each buffer increases the speed of disc accessing
by allowing more than one sector to be transferred per disc access.

The total size of the Temp. Record Buffers (m) can be calculated by the following formula:
m = NOTRB * TRBSZ * 128

(The minimum value for TRBSZ is 2.)

All the tables and buffers are fixed by DEFINE until the end of a program, or until another
DEFINE. Each time a DEFINE occurs, all information contained in tables and buffers is lost,
all pointers are reset, and EFMP assumes a fresh start. At the end of each program, DOS-III
calls EFMP to perform a POST on any records flagged as ‘“must be written.”

MAXPK indicates the maximum number of unique EFMP pack numbers a user will have

active at any one time. A pack number is active when one or more of its files are opened by
a user through an OPEN call (or for PNOOO through a CREATE call).

8-3

Purpose

EFMPF = 2

CREATE

To set up a directory on disc with all of the information necessary to create a file that can be
accessed at a later time.

Assembly Language

RCODE
EFMPF
FNAME

PAKNO
FLGTH

RLGTH

SCODE
(SCODE+1)

ERRNO

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
ASC

DEC
DEC

DEC

oCcT
oCcT

BSS

EXEC
*+9
RCODE
EFMPF
FNAME
PAKNO
FLGTH
RLGTH
SCODE
ERRNO

24
2
3,XXXXX

p
q

Return address

Request code

EFMP function number

File name

Pack number

File length (in records)
Record length (in words)
Security code and user status
Error number

Continue execution

xxxxx is the name to be applied to the file

(first two characters cannot be zero or 177400y)

p is the pack number, see Comments

q is the numaber of records in the file;
(1<q<32767)

ris the number of words in a record;

r must be less than or equal to 1/2 the size

of the temp. record buffer

s is any 16-bit combination to be checked by EFMP
during OPEN and DESTROY

t is any 16-bit combination of status information
desired by the user (referred to as USTAT elsewhere)
Return point for error codes

8-4

EFMPF = 2

Comments

1. If PAKNO is a number between 1 and 999 it indicates the EFMP area in which the file is to
be created. When EFMP creates a file, it reserves the necessary area on the disc after the last
previous file generated. No attempt is made to search for an area between files. If PAKNO is
equal to -1, the file is to be created in any EFMP area that is available.

2. If PAKNO equals zero, the file is placed on the Work Area of the disc and no area will be
reserved in the EFMP areas. When such a temporary file is created, the only directory in-
formation that is maintained is in the Opened-File Table. A disc-based directory is not main-
tained. Also, since the directory information is established in main memory during the
CREATE function, the OPEN function is not required. The only reason for using an OPEN
call for a temporary file is to assign it to a specific Temporary Record Buffer or to change
the starting record number to a value other than 1. If no OPEN call is given, the first
Temporary Record Buffer is used.

3. When the Work Area is used for temporary files, EFMP reserves this whole area and identifies
it as PN0OQO. In order to keep PNOOO from using the entire Work Area, the user must enter a
STORE,B,PNOOO directive for the system disc with the desired number of sectors. When
EFMP has terminated, the user should PURGE the file PNOOO from the Work Area.

8-5

EFMPF = 3

DESTROY

Purpose

To eliminate the directory information for a particular file from main memory and the disc. The
user must specify the correct security code for the file. The disc area is repacked only for temporary
files. To repack the EFMP areas use the REPACK EFMP call.

Assembly Language

JSB EXEC

DEF *+7 Return address

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF SCODE Security code

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 3
FNAME ASC 3, xxxxx
PAKNO DEC n If n = 0, then FNAME refers to a temporary file

(ifn>1and n < 999, FNAME is to be located in
this EFMP area; if n = -1, EFMP searches all of its
areas until it finds a file that matches FNAME)
SCODE OCT s s is the security code for the file established by the
CREATE EFMP call; security code ignored on
temporary files
ERRNO BSS 1 Return point for error codes

EFMPF =4

OPEN

Purpose

To make a previously created file accessible by extracting the necessary file information from the
disc directories and placing it in main memory. The number of files that can be opened at any one
time is limited by the size of the Opened File Table (see DEFINE).

Assembly Language

JSB EXEC

DEF *+9 Return address

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF RCDNO Record number
DEF SCODE Security code

DEF BUFNO Buffer number

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 4
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, the file is a temporary file on the work area;

if n is between 1 and 999, EFMP looks for FNAME in
the appropriate area; if n = -1, EFMP searches all
available areas for the requested file

RCDNO DEC r If r = 0, EFMP sets the next record to be accessed
(for sequential READS or WRITES) to the highest
record previously accessed + 1. Otherwise, r can be
any number between 1 and the maximum record
number contained in the file. This allows sequential
access to be initialized at any record.

SCODE OCT s s is the security code established by the CREATE
call. It must match.
BUFNO DEC b b must be a number between 1 and the maximum

number of Temp. Record Buffers available. For
any other number, EFMP uses 1
ERRNO BSS 1 Return point for error codes

8-7

EFMPF =5

CLOSE

Purpose

To remove information about a particular file from the Opened-File Table. This allows an additional
file to be opened. Also, CLOSE updates the user status information (USTAT) and the highest record
accessed on the disc.

Assembly Language
JSB EXEC
DEF *+6 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF USTAT User status
DEF ERRNO Error number
return Continue execution
RCODE DEC 24
EFMPF DEC 5
FNAME ASC 3,xxxxx See Comment 2
USTAT OCT u User status information (any 16-bit combination) to
be written into the disc directory for the file
ERRNO BSS 1 Return point for error codes
Comments

1. If a CLOSE is requested for a temporary file, the directory information in the Opened-File
Table is deleted and the Work Area is automatically repacked. If a file has been copied to the
Work Area, the user status (USTAT) and highest record assessed are not updated on the
original copy of the file.

2. To CLOSE all files in the Opened-File Table set the first word of FNAME equal to a binary
Zero.

EFMPF =6

READ

Purpose

To retrieve a specified record (random access) or the next record (sequential access) from a file
that has previously been opened and written.

Assembly Language
JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF RCDNO Record number
DEF BUFFR Buffer for data
DEF ERRNO Error number
return Continue execution
RCODE DEC 24
EFMPF DEC 6
FNAME ASC 3,xxxx
RCDNO DEC n n is a record number between 1 and 32,767. For
sequential access and backspacing, see Comments.
BUFFR BSS m m is the length of the buffer in words. It must be
at least the record length.
ERRNO BSS 1 Return point for error codes
Comments

If RCDNO = 0, a sequential read or write is implied. This feature provides the program with the
next record available relative to the last read or write performed (or OPEN operation). If RCDNO
is a negative number, it specifies a backspace, relative to the current record (last record accessed
plus 1), before the read or write. If an attempt is made to backspace the record number indicator
to a value less than one, the EFMP issues an error and terminates the read or write. Unless needed,
care should be taken so as not to backspace the record number indicator beyond the range of
records held in the Temporary Record Buffer at that time, since this will initiate a posting oper-
ation and a physical disc access.

8-9

Purpose

EFMPF =7

INITIALIZE

To initialize an EFMP area previously created by means of a DOS-III STORE directive.

Assembly Language

RCODE
EFMPF
PAKNO
DIRSZ
ERRNO

Comments

JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEF
DEC
DEC
DEC
BSS

EXEC
*+6
RCODE
EFMPF
PAKNO
DIRSZ
ERRNO

R R
\1%

Return address
Request code

EFMP function number
Pack number

Directory size

Error number

Continue execution

(1<p<999)
(n = number of entries, one entry /file; see Comment 2)
Return point for error codes

1. Pack number PNOOO cannot be initialized.

2. The directory occupies the first sector(s) of the EFMP area.

The number of sectors allocated to a directory is determined as follows:

The variable n is used to calculate the number of sectors to be reserved for the directory. It does
not indicate the maximum number of file entries allowed in the directory. If the nth file entry

does not completely fill the last sector of the directory, the space remaining may be used to con-
tain additional file entries.

#Sectors =

(1+n)*9
128

(add 1 to #Sectors if remainder is > zero)

8-10

EFMPF = 8

WRITE

Purpose

To write into a specified record (random access) or into the next record (sequential access) of a
file that has previously been opened.

Assembly Language

JSB EXEC

DEF *+7 Return address

DEF RCODE Request code

DEF EFMPF EFMP function number
DEF FNAME File name

DEF RCDNO Record number

DEF BUFFR Buffer for data

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 8
FNAME ASC 3,xxxxx
RCDNO DEC n Same as for the READ EXEC CALL
BUFFR BSS m Same as for READ
ERRNO BSS 1 Return point for error codes

8-11

EFMPF =9

RESET

Purpose

To reset the highest record accessed pointer for a file to a lower value. The information beyond the
pointer is lost. The file must be open before it can be reset. (PAKNO below provides an additional
check.)

Assembly Language

JSB EXEC

DEF *+7

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF RCDNO Record number
DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 9
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, EFMP searches the work area to find the

desired file name; if n is a number between 1 and 999,
EFMP searches EFMP area PNn to find the desired
file name; if n = —1, EFMP searches all EFMP areas
RCDNO DEC m m is a number between 0 and 32,767 to which the
highest record accessed pointer will be set (m must
be lower than the current value)
ERRNO BSS 1 Return point for error codes

8-12

EFMPF =10

STATUS

Purpose

To allow the user program access to various types of status information relative to EFMP. Several
separate status functions (identified by unique Status Function Numbers) are provided; all have
basically the same form of calling sequence, but they vary in the parameters used.

Assembly Language

JSB EXEC

DEF *+9 Return address

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FSTAT Status function number
DEF FNAME File name

DEF PAKNO Pack number

DEF DUMMY Not used

DEF STATB Status buffer

DEF ERRNO Error number

return Continue execution

Note: Above is the general format for Status EFMP calls. The use
and meaning of each parameter in the calling sequence varies
from status call to status call. The parameters for each call
are given separately. below. Common to all status functions

are
RCODE DEC 24
EFMPF DEC 10

DUMMY BSS 1

8-13

FSTAT =1

STATUS

Purpose

To provide the user with all information, except the security code, contained in the directory for
a file.

Parameters
FSTAT DEC 1
FNAME ASC 3,xxxxx
PAKNO DEC m If m = 0, EFMP searches the Work Area for the

requested file. If m is between 1 and 999, EFMP
searches the EFMP area of that pack number. For
m = —1, EFMP searches all available EFMP areas
for the requested file.

STATB BSS 10 The pack number is returned in the first word if
PAKNO = -1. The remaining nine words will
receive the directory status information in the
same format as the directory itself (see Figure 7-1).

ERRNO BSS 1 Return point for error code.

8-14

Purpose

To determine if a file is open.

Parameters

FSTAT
FNAME
PAKNO
STATB

ERRNO

DEC 2
ASC 3, xxxxx
OCT 0
BSS 2
BSS 1

FSTAT = 2

STATUS

Not used

The first word returns the pack number if the
file is open. The second word returns a value
of 0 if the file is open or 1 if the file is not
open.

Return point for error codes.

8-15

Purpose

To check the security code of a file.

Parameters

FSTAT
FNAME
PAKNO
STATB

ERRNO

DEC 3

ASC 3,xxxxx
DEC m

BSS 3

BSS 1

FSTAT=3

STATUS

Same as function number 1

The first word returns the pack number if
appropriate. The second word is used by the
user program to give the security code to be
checked. The third word returns 0 if the code
checks or 1 if it does not check.

Return point for error codes.

8-16

FSTAT =4

STATUS

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file.

Parameters

FSTAT DEC 4

FNAME ASC 3, xxxxx

PAKNO DEC m Same as function number 1

STATB BSS 2 The first word returns the pack number if
appropriate. The second word returns the
number of sectors available.

ERRNO BSS 1 Return point for error codes.

8-17

FSTAT =5

STATUS

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area.

Parameters

FSTAT DEC 5

FNAME OCT O Not used

PAKNO DEC m Same as function number 1, but cannot equal -1

STATB BSS 2 The first word must be present, but is not used.
The second word returns the number of sectors
available.

ERRNO BSS 1 Return point for error codes.

8-18

FSTAT =6

STATUS

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 and the
maximum number of files in an EFMP area.

Parameters
FSTAT DEC 6
FNAME BSS 3 Return point for file name or all zeroes if no
file is present
PAKNO DEC m m is a number between 1 and 999
STATB DEC n n indicates the nth file
ERRNO BSS 1 Return point for error codes

8-19

FSTAT =17

STATUS

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer (speci-
fying the ordinal position of the pack number) between 1 and the maximum number of pack
numbers on a subchannel.

Parameters

FSTAT DEC 7

FNAME DEC m m = the desired subchannel
: On return, FNAME is zero if the EFMP area of

the pack number is initialized and 1 if the EFMP

) area of the pack number is not initialized.

PAKNO BSS 1 Return point for the pack number

STATB DEC n n indicates the nth pack number.

ERRNO BSS 1 Return point for error codes.

8-20

EFMPF =11

REPACK (PURGE)

Purpose

To repack the existing files on an EFMP area(s), removing empty spaces left when files have been
destroyed.

Assembly Language
JSB EXEC
DEF *+5
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF PAKNO Pack number
DEF ERRNO Error number
return Continue execution
RCODE DEC 24
EFMPF DEC 11
PAKNO DEC n For n between 1 and 999, only the specified EFMP
area is repacked; for n = -1, all the EFMP areas
available to EFMP are repacked
ERRNO BSS 1 Return point for error codes

CAUTION: IF THE EFMP DISC DIRECTORY CONTAINS A LARGE NUMBER
OF FILES AND THE SIZES OF THE TEMPORARY RECORD
BUFFERS ARE SMALL, REPACKING MAY REQUIRE CONSIDER-
ABLE TIME. THEREFORE, REPACK SHOULD BE PERFORMED
WHEN SUFFICIENT TIME IS AVAILABLE. UNDER NO CIRCUM-
STANCES SHOULD AN ABORT BE PERFORMED DURING A
REPACK.

8-21

EFMPF =12

CoOPY

Purpose

To transfer a copy of an opened file and its directory from an EFMP area to the Work Area of
DOS-III, from one EFMP area to another EFMP area or from the Work Area to an EFMP area.

Assembly Language

JSB EXEC

DEF *+6

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF ERRNO Error number

return Continue execution
RCODE DEF 24
EFMPF DEC 12
FNAME ASC 3,xxxxx See Comment 1
PAKNO DEC n If n =0, EFMP copies the file onto the Work Area;

if n is between 1 and 999, EFMP copies the file
into the specified EFMP area; if n is between —1
and -999, EFMP copies the file from the Work
Area to an EFMP area specified by the 10°’s
complement of n (see Comment 2)

ERRNO BSS 1 Return point for error codes

Comments

1. Remember that a file must be opened before it can be copied. This is necessary to determine
from which pack to copy the file. When a file has been copied to the Work Area, all reads and
writes referericing that file use the Work Area version until the file is closed. (Files copied
from the Work Area to an EFMP area continue to use the Work Area version for reads and
writes.) Temporary copies of files do not have security codes. Therefore, files copied from the
Work Area to a pack have a security code of 0. When a file is copied from pack to pack, the
original security code is retained. See “CLOSE”’ for further notes on Work Area files.

8-22

EFMPF =12

If there is already a file with the same name in the destination EFMP area directory, an error
code is returned and the copy is aborted. In this case, the user can first destroy the name in
the destination EFMP area, and then perform the copy again.

When copying from one EFMP area to another EFMP area not on the drive (and only a single
removable pack is available), EFMP automatically requests that the user continually swap
packs until the entire file has been copied. EFMP outputs:

INSERT DESTINATION [SOURCE] PACK AND PRESS RUN.
and halts the computer with 102076 in the DISPLAY register.

After the user inserts the appropriate pack and presses RUN, a check is made to determine if
the proper pack has been entered. If EFMP cannot find the correct pack, the message is re-

peated. To allow the user an orderly exit in case the correct pack is not available, the following
question is asked after each question:

ENTERCORT
where C means to continue copying, and

T means to terminate the copy and return to the program.

Care must be taken to insert the original pack (if it has been removed during the copy function)
into its original subchannel.

8-23

EFMPF =13

CHANGE FILE NAME

Purpose

To change a file name (file need not be opened).

Assembly Language

JSB EXEC

DEF *+7

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF SCODE Security code

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 13
FNAME ASC 3,xxxxx Current file name
ASC 3,zzzzz Neuw file name
PAKNO DEC n n = 0, indicates that the file is on the Work Area;

if n is between 1 and 999, n indicates the EFMP
area containing the file; if n = =1, EFMP searches
all available EFMP areas for the current file name
SCODE OCT m Security code, see CREATE
ERRNO BSS Return point for error codes

~

8-24

EFMPF =14

POST

Purpose

To physically write on the disc all buffers that have been flagged as ‘“must be written” in the
Temporary Record Buffer. (That is, convert all outstanding logical writes into physical writes.)

Assembly Language
JSB EXEC
DEF *+4
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF ERRNO Error number
return Continue execution
RCODE DEC 24
EFMPF DEC 14
ERRNO BSS 1 Return point for error codes
Comments

The POST operation updates the highest record accessed pointer in the disc directories, but not
the user status word (USTAT).

8-25

SECTION IX
EFMP Utility Program

The EFMP Utility Program (UTIL) allows the user to access most of the EFMP functions through
the keyboard. UTIL accepts commands or directives from the operator and converts these into
EFMP calling sequences. After EFMP has processed the call, UTIL reports back (to the operator) a
successful operation or an EFMP error.

This section describes how to initiate the UTIL program using the DOS-III PROG directive and
then describes the following UTIL commands (presented in alphabetic order):

BRIEF
CHANGE
CLOSE
COPY
CREATE
DESTROY
END
INITIALIZE
OPEN
POST
REPACK
RESET
STATUS-1
STATUS-2
STATUS-3
STATUS-4
STATUS-5
STATUS-6
STATUS-7

All are EFMP functions, except BRIEF and END,
which are UTIL program functions.

Note: UTIL requires the FORTRAN IV version of the Formatter program to
operate properly.

9-1

:PROG,UTIL

Purpose

To initiate execution of the UTIL program.

Format
:PROG, UTIL,n

where n = 0 to print a list of commands or

n # 0 to skip printing the list.
List of commands message (all parameters are decimal):

/INILPAKNO,DIRSZ
/CRE,FNAME,PAKNO,FLGTH,RLGTH,SCODE, USTAT
/DES,FNAME PAKNO,SCODE .
/OPE,FNAME,PAKNO,RCDNO,SCODE
/CLO,FNAME,USTAT
/RES,FNAME,PAKNO,RCDNO
/STA,DF,FNAME,PAKNO
/STA,FO,FNAME
/STA,SC,FNAME,PAKNO,SCODE
/STA,LR,FNAME,PAKNO
/STA,LF,PAKNO
/STA,NF,PAKNO,STATB

/STA,AP

/REP,PAKNO

/COP,FNAME,PAKNO
/CHA,FNAM1,FNAM2,PAKNO,SCODE
/POS

/BRI,FNAME,SCODE

/END

UTIL begins by outputting a message to indicate that it is ready for a directive:
UTIL READY

After it processes the directive, UTIL outputs the results of the operation (where appropriate) or
any error codes that may have been returned by EFMP. When it is ready for another directive,
UTIL outputs

UTIL READY

If an incorrect directive is entered, UTIL outputs

ILLEGAL OPERATION
UTIL READY

UTIL is terminated when the operator inputs the command /END.

UTIL outputs any error messages on the system console; normal output is output on the list device.

BRIEF

Purpose

To increase or decrease the amount of disc storage reserved for a file. BRIEF is a UTIL program
function, not an EFMP function.

Format
/BRI, fname,scode

fname is the name of the file, and

scode is the security code of the file.
BRIEF first outputs the status of the file:

AVAILABLE RECS. = m RECORDS USED =r
NEW RECORD COUNT?

The operator inputs either:
/E to terminate the command and prepare UTIL for more commands,
n ::)cl; change the available record count to n
BRIEF stores the contents of fname on the Work Area, destroys the current file, repacks the EFMP

area, and creates and opens a new file. The contents of fname are transferred from the Work Area
to the new file and BRIEF prints out a message:

AVAILABLE RECS. =n RECORDS USED =r

BRIEF then terminates.

Comment

BRIEF creates and uses a temporary file named “AAAAAA” (all blanks).

9-4

CHANGE

Purpose

To change the name of a file (i.e., to invoke the CHANGE FILE NAME function of EFMP).

Format
/CHA,fnam1,fnam2,pakno,scode

fnaml is the current file name

fnam2 is the new file name.

See CHANGE FILE NAME EFMP CALL for explanation of other parameters.

EXAMPLE

/CHA,LOB70,XXXXX,120,0

Example print-out:

FILE LOB70 OLD FILE

FILE XXXXX NEW FILE

THE FILE IS ON PACK# 120
THE SECURITY CODEIS 0

9-5

CLOSE

Purpose

To close a previously opened file (i.e., to invoke the CLOSE function of EFMP).

Format
/CLO,fname,ustat

See CLOSE EFMP CALL for explanation of parameters. Note, however, that all the files in the
Opened-File Table cannot be closed by setting the first word of FNAME (in the CLOSE calling
sequence) to a binary zero.

EXAMPLE

/CLO,LOB70,0

Example print-out:

FILE LOB70 CLOSED
THE USER STATUS WORD IS 0

9-6

COPY

Purpose

To copy a file (i.e., to invoke the COPY function of EFMP).

Format
/COP,fname,pakno

See COPY EFMP CALL for explanation of parameters and messages.

EXAMPLE

/COP,LOB70,120

Example print-out:

FILE LOB70 COPIED

THE FILE IS TEMPORARY IN WORK AREA
FILE LOB70 COPIED

THE FILE IS ON PACK# 120

9-7

CREATE

Purpose

To create a new file (i.e., to invoke the CREATE function of EFMP).

Format
/CRE,fname,pakno,flgth,rigth,scode,ustat

See CREATE EFMP CALL for explanation of parameters.

EXAMPLE

/CRE,C0,120,8,8,0,0

Example print-out:

FILE C0 CREATED

THE FILE IS ON PACK# 120

THE FILE LENGTHIS 8 RECORDS
THE RECORD LENGTHIS 8 WORDS
THE SECURITY CODEIS 0

THE USER STATUS WORDIS 0

DESTROY

Purpose

To destroy a file by eliminating its directory entry (i.e., to invoke the DESTROY EFMP function).

Format
/DES,fname,pakno,scode

See DESTROY EFMP CALL for explanation of parameters.

EXAMPLE

/DES,C0,120,0

Example print-out:

FILE Co0 DESTROYED

END

Purpose

To terminate the operation of the UTIL program. END is an UTIL program function, not an EFMP
function.

Format

/END

9-10

INITIALIZE

Purpose

To initialize an EFMP area previously allocated space by means of a DOS-III STORE directive.

Format
/INI,pakno,dirsz

See INITIALIZE EFMP CALL for explanation of parameters.

EXAMPLE

/INI,100,20

Example print-out:

PACK #100 INITIALIZED

9-11

OPEN

Purpose

To OPEN a previously CREATED file (i.e., to invoke the OPEN function of EFMP).

Format
/OPE,fname,pakno,rcdno,scode

See OPEN EFMP CALL for explanation of parameters.

EXAMPLE

/OPE,L0OB70,120,1,0

Example print-out:

FILE LOB70 OPENED
THE FILE IS ON PACK# 120
THE RECORD #18 1

THE SECURITY CODEIS 0

9-12

POST

Purpose

To post files (i.e., to invoke the POST function of EFMP).

Format

/POS

Example print-out:

ALL FILES POSTED

9-13

RESET

Purpose

To reset the highest record number accessed for a file (i.e., to invoke the RESET function of EFMP).

Format
/RES, fname,pakno,rcdno

See RESET EFMP CALL for explanation of the parameters.

EXAMPLE

/RES,LOB70,120,0

Example print-out:

FILE LOB70 RESET
THE FILE IS ON PACK# 120
THE RECORD #1IS 0

9-14

" REPACK

Purpose

To repack existing EFMP areas (i.e., to invoke the REPACK EXEC CALL function of EFMP).

Format
/REP pakno

See REPACK EFMP CALL for explanation of parameters.

EXAMPLES
/REP,42 (repacks EFMP area in pack 42)
/REP, -1 (repacks all EFMP areas)
Example print-out:
PACK # 42 REPACKED
or

ALL PACKS AVAILABLE REPACKED

9-15

STATUS-1

Purpose

To print out directory information about a file (i.e., to invoke STATUS function number 1 of
EFMP).

Format
/STA,DF,fname,pakno.

See STATUS EFMP CALL (FSTAT = 1) for explanation of the parameters and results.

EXAMPLE

/STA,DF,LOB70,120

Example print-out:

FILE LOB70 STATUS

THE FILE IS ON PACK# 120
STARTING TRACK #1IS 6

STARTING SECTOR #1S 9

THE FILE LENGTHIS 12 RECORDS
THE RECORD LENGTHIS 128 WORDS
THE USER STATUS WORDIS 0
HIGHEST RECORD # ACCESSED IS 0

9-16

STATUS-2

Purpose

To determine if a file is OPEN (i.e., to invoke STATUS function number 2 of EFMP).

Format
/STA,FO,fname

See FSTAT = 2 for explanation of the parameters and results.

EXAMPLE

/STA,FO,LOB70

Example print-out:

FILE LOB70 STATUS
FILE IS OPEN

9-17

STATUS-3

Purpose

To check the security code of a file (i.e., to invoke STATUS function number 3 of EFMP).

Format

/STA,SC,fname,pakno,scode

See FSTAT=3 for explanation of parameters and results.

EXAMPLE

/STA,SC,LOB70,120,0

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
THE SECURITY CODEIS 0
CODE CHECKS

Note: The security code returned is a restatement of the security code
entered; it is not necessarily the correct security code.

9-18

STATUS-4

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file (i.e., to invoke STATUS function number 4 of EFMP).

Format
/STA,LR,fname,pakno

See FSTAT=4 for explanation of parameters and results

EXAMPLE

/STA,LR,LOB70,120

Example print-out:
FILE LOB70 STATUS

THE FILE IS ON PACK# 120
OF AVAILABLE SECTORS IS 12

9-19

STATUS-5

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area (i.e., to invoke STATUS function number 5 of EFMP).

Format
/STA,LF ,pakno

See FSTAT=5 for explanation of parameters and results.

EXAMPLE

/STA,LF,120

Example print-out:

FOR PACK# 120
OF AVAILABLE SECTORS IS 4610

9-20

STATUS-6

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 é.nd the
maximum number of files in an EFMP area (i.e., to invoke STATUS function number 6 of EFMP).

Format
/STA,NF pakno,statb

See FSTAT=6 for explanation of parameters and results.

EXAMPLE

/STA,NF,120,1

Example print-out:
FILE LOB70 STATUS

THE FILE IS ON PACK# 120
FILE # 1IN THE DIRECTORY

9-21

STATUS-7

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer
(specifying the ordinal position of the pack number) between 1 and the maximum number of
pack numbers on a subchannel.

Format

/STA,AP,subch,statb

See FSTAT = 7 for explanation of parameters and results.

EXAMPLE

/STA,AP,1,1

Example print-out:

PACK #120 IS AVAILABLE AND INITIALIZED

9-22

PART 3
Generating and Loading DOS-II/

SECTION X
Generating DOS-I1]

HP 24307B DOS-III Disc Operating System software must be generated and then loaded into the
computer’s memory before DOS-III system operation is possible. Generating a DOS-III system con-
sists of two operations:

1. Configuring the system to the available hardware.

2. Storing the configured system on disc memory.
In addition, the discs included in the system must be formatted before they can be used by DOS-III.

This section describes the procedures required to format a disc and to generate DOS-III system soft-
ware. Both disc formatting and system generation are performed using a stand-alone program, DSGEN.

Depending on the type of moving-head disc device selected for the DOS-III system, generation can be
performed either from relocatable modules and drivers punched on paper tape or contained on a master
disc cartridge. Systems including an HP 7901, HP 2883, or HP 2884 disc device initially must be
generated from paper tape. Systems including an HP 7900 disc device are delivered with a master

disc cartridge (HP part number 24307-13001) labeled DSGEN. The DSGEN disc cartridge con-
tains a DOS-III software system together with a set of relocatable modules and drivers. The cartridge
may be used to generate DOS-III software. A procedure for preparing to generate DOS-III software
from the DSGEN disc cartridge is described later in this section (see “DSGEN Disc Cartridge Sys-

tem Generation’).

DSGEN

DSGEN (the DOS-III System Generator) is an absolute program which is loaded into main memory:
1) by the paper tape portion of the main-memory loader, BMDL, when using an HP 2100A/S com-
puter or, 2) by the Bootstrap loaders contained in either the paper tape loader ROM or in the disc
loader ROM when using an HP 21MX computer. Since DSGEN input/output is independent of the
DOS-III system it generates, the I/O operation of DSGEN requires SIO drivers which are distributed
with the DOS-III software. The SIO drivers must be configured to the user’s hardware configuration.
A copy of the configured DSGEN program can be punched on paper tape using SIO System Dump,
if desired. SIO drivers and SIO System Dump are absolute programs — not part of DOS-III — needed
only for DSGEN operation. An optional utility program which uses SIO drivers is the Prepare Tape
System (PTS). PTS can be used to transfer relocatable modules from paper tape to magnetic tape to
expedite the DSGEN program input phase. DSGEN has two independent functions:

10-1

1. To format new disc cartridges (or packs).

2. To generate a DOS-III software system that fits the user’s main-memory size, I/O equipment,
and programming needs.

DSGEN CONFIGURATION FROM PAPER TAPE

DSGEN is executed in a Software Input/Output environment to generate DOS-III. First, ensure
that equipment power is on and disc storage is unprotected (Disc Protect Override or Format
enabled). At this point in DSGEN configuration, the procedure for loading paper tape depends on
the computer being used.

HP 2100A/S

The main-memory loader, BMDL, is used to load programs from paper tape into memory. BMDL
is described in detail in Section XI. A simplified procedure follows:

A. Place the paper tape into the paper tape reader and press READ to ready the reader.

B. On the computer front panel, set the P-register to the BMDL starting address 377005 for 16K
words of memory; 577005 for 24K words; or 777005 for 32K words.

C. Press PRESET (INTERNAL and EXTERNAL); then press RUN. After a successful load, the
computer will halt with 102077 in the display register.

HP 21MX

The HP 21MX processor is equipped with a paper tape loader ROM, the contents of which are

equivalent to the Basic Binary Loader portion of the BMDL used on HP 2100A/S computers. The

contents of the ROM must be loaded into memory before the drivers or DSGEN (or any program

on paper tape) can be placed into main memory. Use the following procedure to accomplish paper

tape ROM loading.

A. Press PRESET.

B. Select the S-register for display.

C. Pressthe CLEAR DISPLAY.

D. Bits 15 and 14 of the Display Register must be 00 to select the paper tape loader ROM.

E. Change bits 11 through 6 of the Display Register to the octal select code of the tape reader.

Since bits 13, 12, and 5 through 0 are not used in conjunction with the paper tape loader,
they are ignored.

F. Press STORE to store the contents of the Display Register in the S-register.

10-2

G. Press IBL to load the contents of the paper tape loader ROM into the uppermost 64 locations
in memory. The computer halts with 1020774 in the T-register.

H. Place the DSGEN paper tape in the paper tape reader, press READ to ready the reader, and
press RUN at the main processor. After a successful load, the computer halts with 102077,

in the T-register.
To configure DSGEN (using either an HP 2100A/S or HP 21MX computer), proceed as follows:

1. Specific SIO drivers must be configured before DSGEN can be executed. To configure a
driver:

a. Load the driver program into memory via the paper tape reader using the proper set of
procedures from those described above (HP 2100A/S Steps A through C or HP 21MX

Steps A through H).

b. Set the I/O channel select code of the device (lower numbered select code if there are
two I/O channels) in bits 5-0 of the switch register.

c. Start the driver program by setting the P-register to address 2 ; then press RUN. Upon
successful completion of the driver configuration, the computer will halt with 102077,
in the display register.

2. Configure the SIO console driver (HP part no. 24127-60001) using Steps 1-a through 1-c. (If
the console device is an HP 2754B teleprinter, switch register bit 15 must be set to one at

Step 1-b.)

3. If program input is to be from the paper tape reader, configure the SIO paper tape reader
driver (HP part no. 20319-60001) using Steps 1-a through 1-c.

4. If a high-speed paper tape punch is included in the system, configure the SIO punch driver
(HP part no. 20320-60001) using Steps 1-a through 1-c.

5. Load DSGEN via the paper tape reader using the appropriate procedure described above (HP
2100A/S Steps A through C or HP 21MX Steps A through H).

6. If program input is to be from magnetic tape, configure the SIO magnetic tape driver (HP part
no. 13022-60001) using Steps 1-a through 1-c.

7. If the system includes a high-speed or console punch, a configured DSGEN can be punched on
paper tape using the following procedure:

a. Load the SIO System Dump program (HP part no. 20335-60001) via the paper tape
reader using the procedure described in HP 2100A/S Steps A through C or the procedure

described in HP 21 MX Steps A through H.

b. Set switch register bit 15 to one.

c. Start the SIO System Dump program by setting the P-register to address 23 ; then press
RUN. After tape punching is successfully completed, the computer will halt with 102077,
in the display register. For an additional copy of the configured DSGEN, press RUN.

10-3

8. If the disc or discs to be used by DOS-III have been formatted, DOS-III system generation can
begin immediately. Proceed as follows:

a. Set switch register bit 15 to zero.
b. Set the P-register to DSGEN starting address 1005.

c. Press RUN. DOS-III system generation dialog begins (see ‘““Using DSGEN to generate
DOS-IIT1").

9. To format discs before executing system generation:
a. Set switch register bit 15 to one.
b. Set the P-register to DSGEN starting address 1005
c. Press RUN. The disc formatting dialog begins (see ‘“Using DSGEN to Format Discs”).

DSGEN Start-up
To start either disc formatting or DOS-III system generation from a configured DSGEN program
(on paper tape) perform a standard paper-tape load. These procedures are described in HP 2100A/S
Steps A through C or in HP 21MX Steps A through H. Then proceed as follows:
® For disc formatting:

a. Set switch register bit 15 to one.

b. ° Set the P-register to the DSGEN starting address 1005 .

c. Press RUN. The disc formatting dialog begins (see ‘“Using DSGEN to Format Discs”’).
° For DOS-III system generation:

a. Set switch register bit 15 to zero.

b. Set the P-register to the DSGEN starting address 1005 .

c. Press RUN. DOS-III system generation begins at the initialization phase (see ‘“Using
DSGEN to generate DOS-IIT”’).

10-4

USING DSGEN TO FORMAT DISCS

Before a fresh disc can be used in DOS-III, it must be formatted by DSGEN. System discs (including
a possible User Area) are formatted during system generation, but dedicated user discs must be for-
matted by running DSGEN again in a special mode. Formatting a disc involves assigning it a system
generation code, reading every sector, clearing any existing user or system directory, and so forth.
The result is an unlabeled user disc ready for use in DOS-III. The following operator responses are
only examples, actual responses should be appropriate to the particular system being generated.

Operating Instructions

b

10.

Turn on all equipment.

Unprotect the disc (enable Disc Protect Override).

Load a configured DSGEN using the main-memory resident BMDL or the paper tape loader
ROM. (See “DSGEN Configuration and Start-up” in this section.)

Set up a starting address at location 100g.
Set switch register bit 15 equal to 1.

Start the computer executing (press RUN).

DSGEN asks for a decimal number to be written on the disc
label. This number is used for identification

Operator responds with a 1- to 4-digit decimal number

DSGEN requests the octal channel number (select code) of
the disc controller

Operator responds with the appropriate octal number .

DSGEN requests the type of disc storage .

Operator responds with 7900, 7901, 2883, or 2883B
(A response of 2883 implies four subchannels per disc
drive; 2883B implies two subchannels per disc drive.) .

DSGEN requests the subchannel number (0 to 7) of the
user disc to be formatted .

Operator responds with a number between 0 and
7 inclusive

10-5

SYS GEN CODE?
79

. SYS DISC CHANNEL?
10
DISC TYPE?

7900

USER DISC SUBCHANNEL?

11.

12.

13.

DSGEN requests that the disc be unprotected (if it is
still protected). TURN ON DISC PROTECT OVERRIDE — PRESS RUN

Operator unprotects the disc and starts the
computer executing.

DSGEN carries out formatting on the specified subchannel
and halts with a code of 102007 .

This procedure should be repeated for each proposed user disc.

Operator can start the computer (press RUN) to format

a new disc of the same type (switch bit 15 must still be

equal to 1).

DSGEN repeatsfromUSER DISC SUBCHANNEL?

Operator can set switch bit 15 equal to 0 and start the
computer (press RUN) to proceed to system generation.

10-6

USING DSGEN TO GENERATE DOS-III

The operation of DSGEN involves four phases:

1.

INITIALIZATION PHASE. DSGEN requests specifications for DOS-III, including description
of available disc space, memory, Time-base Generator channel, system generation code, system
and user disc subchannels, and program input devices.

PROGRAM INPUT PHASE. DSGEN reads the relocatable programs to be included in the sys-
tem. The relocatable program modules can be input via paper tape, disc, or magnetic tape (the
magnetic tape must be prepared off-line using the Prepare Tape System).

PARAMETER INPUT PHASE. Parameters to change EXEC modules or drivers from disc- to
main-memory resident may be entered. The programs’ NAM records are already set for a
minimum main-memory system except that two console drivers have been included. DISCM,
$EX30 (if EFMP is used), moving-head driver DVR31, and one console driver must be main-
memory resident,

DISC LOADING PHASE. DSGEN requests a specification of the base page linkage, and begins
loading programs onto the disc in absolute format. Systems programs (i.e., the modules of
DOS-III) are loaded first, after which DSGEN requests information for the equipment table,
device reference table (logical unit table), and interrupt table and proceeds to load the rest of
the programs onto the disc.

Restart

If an error occurs during execution of any phase, the operator can restart that phase by restarting
DSGEN at location 100g.

10-7

Initialization Phase

During the initialization phase, DSGEN requests information necessary to begin generating the
DOS-III. After each output on the system console, the operator responds by entering the required
information terminated by a return linefeed. The following responses are typical. (The operator
responses are only examples, actual responses should be appropriate to the particular system being
generated.)

1. DSGEN requests a decimal system generation code. This
code is written in the label field of the system disc for
identification SYSGENCODE?

Operator responds with a 1- to 4-digit decimal integer. 79
2. DSGEN requests the octal channel number (select code) of
the disc controller . SYSDISCCHNL?

Operator responds with the high priority (low number)
channel L. L0000 s s 14

Note: BMDL requires that the SYS DISC CHNL ? response must be the same
value as the EQT entry for the system.

3. DSGEN requests the type of disc storage. DISCTYPE?

Operator responds with 7900, 7901, 2883, or 2883B. A response
of 2883 implies four subchannels per disc drive; 2883B implies
two subchannels per discdrive. 7900

4. DSGEN requests the number of tracks (decimal) on the
systemdisc SYSDISCSIZE?

Operator responds with a decimal number less than

or equal to 200. (A response of 200 leaves three

tracks as spares. A response less than 200 leaves

extratracksasspares.) ... 200

5. DSGEN requests the number of driveson thesystem #DRIVES?

If response to Step 3 was 2883, the operator responds with 1 or 2;
if response to Step 3 was 2883B, 7900, or 7901, the operator
responds with a number between 1 and 4 inclusive. 8

6. DSGEN requests the decimal number of the first track
on the system disc which is available toDOS-III FIRSTSYSTEM TRACK?

Operatorresponds 0

7. DSGEN requests the decimal number of the first sector
availabletoDOS-III FIRSTSYSTEM SECTOR?

Operator responds. (The system area cannot begin
before track O,sector3) 8

10-8

10.

11.

12.

13.

14.

DSGEN requests the subchannel number of the system disc

Operator responds with a number between 0 and 7

SYS DISC SUBCHNL?
0

Note: On a 7901 disc, only odd numbered subchannels are available.

DSGEN requests the subchannel number of the user disc.
(This may be the same as the system disc.) .

Operator responds with a number between 0 and 7.
(System efficiency increases if the user disc is on a
different drive from the system disc.) .

DSGEN requests the octal channel number (select code) of
the Time-base Generator .

Operator responds with the proper select code or 0
if the Time-base Generator is not present

DSGEN now requests the select code of the privileged-
interrupt card . .

Operator responds with the channel (octal) of the privileged

interrupt fence if privileged interrupt is desired; otherwise,
type O.

DSGEN requests the number of DMA channels in the
system .

Operator responds with the number of DMA
channels available

DSGEN requests the last word of available main memory
in octal

Operator responds

DSGEN asks whether SS directives are to be allowed in the
system .

Operator responds either YES or NO

DSGEN requests the type of primary input unit for relocatable
program modules .

Operator responds with PT (for paper tape), TY (for

teleprinter), DF (for disc file), or MT (for magnetic
tape; see PREPARE TAPE SYSTEM (02116-91751)) .

10-9

.USER DISC SUBCHNL?

. TIME BASE GEN CHNL?

PRIV INT CARD CHNL?

DMA CHANNELS?

LWA MEM?

27677

. ALLOW :SS?

YES

PRGM INPT?

DF

15.

16.

17.

If the previous answer is DF, DSGEN requests the subchannel
number of the disc containing the relocatable program
modules INPUTDISCSUBCHNL?

Operator responds with the appropriate subchannel

number. The subchannel must contain a disc (prepared

by a pre-existing DOS-IIT) whose user area contains only

relocatable modules of DOS-III. By specifying PT to the

next question (LIBR INPT?) the operator can include

programs from the paper tape reader in addition to those

onthediscfile. 38

DSGEN requests the type of optional input unit for relocatable
programmodules . LIBRINPT?
Operator responds with PT, TY, DF, orMT PT

Note: Any type of relocatable program can be entered through the Program
Input Unit or the Library Input Unit.

DSGEN requests the type of input unit for the parameter
inputphase PRAMINPT?

Operator responds with PTorTYTY

When DSGEN finishes the initialization phase, the computer halts.

10-10

Program Input Phase

During the program input phase, DSGEN accepts relocatable programs from the Program Input
Unit and Library Input Unit specified during the initialization phase. The operator selects the input
device by setting switch register bits 0-1 (00, for the Program Input Unit, or 10, for the Library
Input Unit), and places the programs in the input device. Main programs must be entered prior to
their segments. DISCM should be the first module loaded.

The suggested order of module input is

DOS-III MAIN-MEMORY RESIDENT SYSTEM (DISCM)

DOS-III 1/O DRIVERS (DVRO05, DVRO1, DVR71, . . . ETC)

DOS-III EXEC MODULES ($EXO01 .. .)

EFMP EXEC MODULES (IF DESIRED-$EX30 .. .)

DOS-III JOB PROCESSOR/FILE MANAGER (JOBPR)

DOS-III RELOCATING LOADER (LOADR)

DOS-III ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENT1, .. .)

DOS-1II FORTRAN (MAIN CONTROL, PASS1, .. .)

DOS-III EFMP UTIL (IF $EX30... AND FORTRAN IV LIBRARY ARE INCLUDED)

RTE/DOS ALGOL

RTE/DOS FORTRAN IV LIBRARY OR RTE/DOS BASIC FORMATTER

RTE/DOS RELOCATABLE PROGRAM LIBRARY (EAU OR FLOATING POINT) — See Note 1

RTE/DOS FAST FORTRAN PROCESSOR (FFP) SUBROUTINE LIBRARY AND $SETP
SYSTEM SUBROUTINE — See Note 2

Any relocatable user programs to be made a permanent part of DOS-III

Notes: 1) For systems based on an HP 21MX series processor only, the HP
2IMX RTE/DOS DEBUG subroutine should be loaded immedi-
ately following the Relocatable Program Library (see ‘Special
Considerations’ under “DEBUG Library Subroutine’ in Section
V).

2) When the FFP and $SETP tapes are loaded, ERR08 and ERR05
will occur and messages will be printed on the console because
the entry point names used by these subroutines replace the
FORTRAN and library subroutine entry point names.

Load the first input module and start the computer executing. When entering paper tape, the
message ‘“*EOT” is output whenever an end-of-tape occurs. The computer halts. Program input can
be switched back and forth between the input units by varying the switch register bits between 00,
and 10, before starting the computer.

To terminate the program input phase, the operator must set switch register bits to 01,, and start
the computer. If there are no undefined externals, this message is printed on the system console:

NO UNDEF EXTS

If there are undefined externals, the following message is output:

UNDEF EXTS

10-11

The externals are listed one per line and the computer halts. External references are satisfied by
loading more programs. The operator must set switch register bits to 00, (for Program Input Unit)
or 10, (for the Library Input Unit) and start the computer executing. If the externals are to be left
unsatisfied, set the switch register bits to 01, and start the computer executing.

Note: $EX30 through $EX33 (the EFMP EXEC modules) and $EX36 and
$EX37 (user EXEC modules) are not listed when missing.

Parameter Input Phase

During the parameter input phase, the operator can change selected 1/O drivers and EXEC modules
from disc-memory to main-memory resident or vice versa. In addition, an optional parameter
allows the operator to change the linking mode for each module. Either current page or base
page linking can be selected.

The console driver must always be main-memory resident. Console drivers DVR0O0 and DVR05
are distributed as main-memory resident while terminal printer driver DVR26 is distributed as
disc-resident. The console model to be used in the configured system determines which driver
must be main-memory resident. Any unnecessary 1/O drivers must be eliminated at this time.
If the memory management capability is not desired, delete modules $EX22 and $$MGT from
the system by specifying them as type 8 (see below).

DVR31, DISCM, and $EX30 are distributed as main-memory resident modules; they must not
be changed to disc-resident.

Each parameter record has the form:
name,type[,link mode]
where name is the name of the program to be changed.

type is the program type code:

0 — System main-memory resident
1 — System disc-resident EXEC modules
3 — User disc resident main
4 — Disc resident I/O driver
5 — User segment

6,7 — Library

>T — Program is deleted from the system

link mode is the mode of linking to be performed:
0 — current page linking (default)

non-zero — base page linking

When changing the linking mode, the program type must be specified. An error in either the type
or link mode parameter results in an error message (ERR10).

10-12

The following modules are designed to execute with base page linking and must not be changed to
current page linking mode:

Program Module Name

HP ALGOL ALGOL

HP Assembler ASMB

HP FORTRAN FTN

HP FORTRAN IV .FTN4 (4K area)
FTN4 (10K area)

HP DOS-III Job Processor JOBPR

For programs changed to current page linking mode, the programs should be structured into sub-
routines of less than 2048 words (two pages of memory) in length. Current page links are generated
only at the beginning and end of a program. They cannot be inserted into the program area because
the boundary between program code and current page links might occur within a skip or jump
sequence. If a program spans more than two pages, there is no area available for current page links
in the middle pages, so base page links will be used; thus, the potential for greater efficiency is lost.

Parameter input is terminated by entering the slash character followed by the letter E (/E). This
ends the parameter input phase.

EXEC modules and drivers that are often used may be changed from disc- to main-memory resident.
The functions of the EXEC modules are

Module Name Request Codes Function

$EXO01 16 Disc work tracks status

$EX02 17 Disc work tracks limits

$EXO03 6 Program completion

$EX04 7 Program suspension and associated messages

$EX05 8,10 Program main or segment search
(Note: $EXO05 calls $EX10)

$EX06 18 User file name search

$EXO07 11 Current time processor

$EXO08 4 (RT) Real-time disc allocation

$EX09 :EQ processor

$EX10 8,10 Load and execute main program or segment
(Note: see also $EX05)

$EX11 14,15 System file name search
(Note: used for file read/write)

$EX12 System startup

10-13

Module Name Request Codes Function

$EX13 Error message processor
$EX14 :UP, :DN, :LU processor
$EX15 Abort and post-mortem dump
$EX16 :GO parameter processor
$EX17 23 :UD processor
$EX18 1,2,3, I/0O initiation processor
14,15 (Note: See also $EX11)
$EX19 :IN processor
$EX20 Disc parity processor
$EX21 32,33,34 Programmatic file control
$EX22 35,36,38,41 Memory management
$EX36 27 User written module
$EX37 28 User written module

Functions of EFMP EXEC Modules

$EX30 — Always main-memory resident (common routines and values).
$EX31 — DEFINE, CREATE, DESTROY, OPEN, CLOSE

$EX32 — READ, WRITE, RESET, STATUS, CHANGE

$EX33 — COPY, REPACK

When changing program types, it is not necessary to explicitly specify all subroutines called by an
EXEC module which is made main-memory resident. The generator automatically makes the
proper linkages. In addition to making the subroutine main memory resident, the generator places
it in the system library, thus making it available to user programs.

10-14

Disc Loading Phase

1.

DSGEN asks for the number of base pagelinks # LINKS?

The operator responds with the decimal number of
links. If the operator responds with a blank character,
DSGEN allocates the maximum number of links (800) 540

Loading of the absolute, resident supervisor begins after the establishment of the user and
system linkage areas. As each program is loaded, DSGEN prints a memory map giving the
starting and ending locations of both main memory and base page portions of the program.
In addition, if bit 15 is set (ON), the entry points for main programs and subroutines are
printed. (Subroutines are indented two spaces, and entry point addresses are preceded by
an asterisk.)

DSGEN requests memory management subsystem names . . ENTER SUBSYSTEM NAMES

The operator responds with a series of one line entries which specify the
subsystem name (1-4 characters) of each subsystem that utilizes memory
management (see :MMGT directive). Terminate the input list with the

characters ““/E” S 1 0/ o 5]
' SUB7

/E

Note: Next, DSGEN generates the three I/0 tables; equipment table,
device reference table (logical unit table) and the interrupt table.

DSGEN requests the equipment table entries * EQUIPMENT TABLE ENTRY

Operator responds with a series of one-line EQT entries, which

are assigned EQT numbers sequentially from one as they are

entered. The EQT entry relates the EQT number to an I/O

channel and driver, in thisformat nnDVRnn[,D] [u]

where nn is the octal channel number (lower number if multi-board, maximum is 37g)

DVRnn is the driver name (nn is the equipment type code)

D, if present, means DMA channel required
u is the physical subchannel (unit) number (valid responses; 0-31)

Operator terminates the equipment table entries by typing. /E

Here is a sample Equipment Table:
* EQUIPMENT TABLE ENTRY

10,DVR31,D (EQT entry #1 = disc)
12,DVR23,D (EQT entry #2 = magnetic tape)
14,DVRO5 (EQT entry #3 = system console)
15,DVRO1 (EQT entry #4 = photoreader)
16,DVRO2 (EQT entry #5 = tape punch)
17,DVRI12 (EQT entry #6 = line printer)

/E (End of table)

10-15

4. DSGEN requests the logical unit assignments for the device
referencetable. *DEVICE REFERENCE TABLE

For each logical unit number, DSGENprintsn=EQT#?

Operator responds with an EQT entry number (m)
appropriate to the standard definition of n. Numbers
above 6 may be assigned any EQT entry desired m

Operator terminates entry by typing /E
Here is a sample Device Reference Table:

* DEVICE REFERENCE TABLE

1 = EQT #? (System console on channel 14, EQT #3)

32 = EQT #? (Disc on channel 10, EQT #1)

13 = EQT #? (Disc on channel 10, EQT #1—reserved for system use)
14 = EQT #? (Standard punch unit on channel 16, EQT #5)

55 = EQT #? (Standard input unit on channel 15, EQT #4)

4