(40 HEWLETT

PACKARD

NS-ARPA/1000

Quick Reference Guide

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 91790-90040 Printed in U.S.A. April 1995
E0495 Sixth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (i) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1986 through 1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any up-
dates that are included. Periodically, update packages are distributed
which contain replacement pages to be merged into the manual, includ-
ing an updated copy of this printing history page. Also, the update may
contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however,
no new information will be added. Thus, the reprinted copy will be identi-
cal in content to prior printings of the same edition with its user-inserted
updateinformation. New editions of this manual will contain new informa-
tion, as well as all updates.

To determine what manual edition and update is compatible with your
current software revision code, refer to the Manual Numbering File. (The
Manual Numbering File is included with your software. It consists of an
“M” followed by a five digit product number.)

First Edition Feb 1986 Rev. 2608

. Update1 May 1986 Rev. 2626

. Update2 Oct 1986 Rev. 4.1

. Update3 Aug 1987 Rev. 5.0
... Update4 Feb 1988 Rev. 5.05
Second Edition ... Oct 1989 Rev.5.16
... Updatet..... May 1990 Rev. 5.2
Third Edition Aug 1991 Rev.5.24
Fourth Edition Dec 1992 Rev. 6.0
Fifth Edition Nov 1993 Rev. 6.1
Sixth Edition Apr 1995 Rev. 6.2

3/4

Preface

Hewlett-Packard Network Services for the HP 1000 (NS-ARPA/1000) provides
the networking software that allows HP computer systems to communicate with
each other.

Audience

The NS-ARPA/1000 Quick Reference Guide is a condensed version of the
following two manuals: NS-ARPA/1000 User/Programmer Reference Manual and
NS-ARPA/1000 DS/1000-1V Compatible Services Reference Manual, which are the
primary reference sources for programmers and operators who will be writing or
maintaining programs for NS-ARPA/1000 systems. The purpose of this guide is
to provide a quick reference for users who are already familiar with the concepts
and syntax presented in the above two manuals.

For your convenience, the NS-ARPA/1000 Quick Reference Guide also contains a
master index of NS-ARPA/1000 manuals. This is a combined index from the
NS-ARPA/1000 manuals to help you find information that may be in more than
one manual.

Assumptions

Since the services described in this manual are both interactive and
programmatic, this manual is intended for interactive users as well as
programmers. As one of these interactive users or programmers, you should be
familiar with the operating systems on the HP 1000, especially the RTE-A
operating system. For those operations that deal with HP 3000 systems, a
working knowledge of the Multiprogramming Executive (MPE) is also
recommended. For those operations that deal with HP 9000 systems, a working
knowledge of the HP-UX operating system is also recommended. Network
Managers, who have responsibility for generating and initializing nodes and
configuring networks, should consult the NS-ARPA/1000 Generation and
Initialization Manual and the NS-ARPA/1000 Maintenance and Principles of
Operation Manual.

Organization

Section 1 TELNET—describes the commands, format,
parameters, and usage of TELNET. TELNET
provides a virtual terminal connection to remote
nodes in your network.

Section 2 File Transfer Protocol—describes the commands,
format, parameters, and usage of the File Transfer
Protocol (FTP). FTP allows you to transfer files to
and from remote nodes in your network. FTP also
provides file management operations such as
changing, listing, creating, and deleting remote
directories.

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Section 12

Section 13

Section 14

HP 1000 File Server—describes the runstring
parameters of the FSRV server program and the
program’s eIror messages.

Berkeley Software Distribution Interprocess
Communication— describes a set of programming
development tools for interprocess communication,
originally developed by the University of California at
Berkeley. BSD IPC allows programs on the HP 1000
to communicate with programs on HP and non-HP
machines that have BSD IPC 4.3.

Network File Transfer—describes the commands,
format, parameters, and usage of the file copying
program DSCOPY. DSCOPY allows you to copy files
from one node to another in your network.

Network Interprocess Communication—describes a
set of programmatic calls that provide a data exchange
interface between peer processes located at the same
or different nodes in your network. Their format,
parameters, and usage are explained.

Remote Process Management—describes a set of
programmatic calls that provide remote scheduling,
controlling, and terminating of programs located at
the same or different HP 1000 nodes in your network.

REMAT—describes the REMAT commands to send
RTE commands or special DS/1000-IV commands to
any HP 1000 node in your network.

RMOTE—describes the RMOTE commands to direct
commands to an HP 3000 node.

Remote File Access—describes the RFA calls to
manage remote disk and non-disk files from your
programs.

DEXEC—describes the DEXEC calls to control I/O
devices located at remote HP 1000 computers in your
network.

Program-to-Program Communication—describes the
programmatic PTOP calls that provide remote
scheduling, controlling, and terminating of programs
located at HP 1000 nodes in your network.

Remote I/O Mapping—describes IPMAP to redirect
I/O requests destined for an LU on an HP 1000 node
to an LU at a remote HP 1000 node on your network.

Maintenance Utilities—summarizes the maintenance
utilities available on NS-ARPA/1000. These include
NSINE NSINIT, NS Message Tracing, NS Event
Logging, NSLIST, DS/1000-IV (RTE-MPE) Message
Tracing, TRC3K, and DSMOD. This section also lists
the utility subroutines provided for use in conjunction
with PTOP, RFA, and DEXEC calls.

Guide to NS-ARPA/1000 Manuals

The following are brief descriptions of the manuals included with the
NS-ARPA/1000 product.

91790-90020 NS-ARPA/1000 User/Programmer Reference Manual

Describes the user-level services provided by NS-ARPA/1000. The NS services
are network file transfer (NFT), network interprocess communication (NetIPC),
and remote program management (RPM). The ARPA services are TELNET
and FTP. Because there are interactive and programmatic services, this manual is
intended for interactive users as well as programmers. It should also be read by
Network Managers before designing an NS-ARPA/1000 network so that they will
have a clear understanding of the full implications of various NS-ARPA/1000
functions and features.

91790-90030 NS-ARPA/1000 Generation and Initialization Manual

Describes the tasks required to install, generate, and initialize NS-ARPA/1000.
This manual is intended for the Network Manager. Before reading this manual,
the Network Manager should read the NS-ARPA/1000 User/Programmer
Reference Manual to gain an understanding of the NS-ARPA/1000 user-level
services. The Network Manager should also be familiar with the RTE-A
operating system and system generation procedure.

91790-90031 NS-ARPA/1000 Maintenance and Principles of Operation Manual

Describes the NS-ARPA/1000 network maintenance utilities, troubleshooting
techniques, and the internal operation of NS-ARPA/1000. The Network
Manager should use this manual in conjunction with the NS-ARPA/1000
Generation and Initialization Manual. This manual may also be used by advanced
users to troubleshoot their applications.

91790-90040 NS-ARPA/1000 Quick Reference Guide

Lists and briefly describes the interactive and programmatic services described in
the NS-ARPA/1000 User/Programmer Reference Manual and the NS-ARPA/1000
DS/1000-1V Compatible Services Reference Manual. The purpose of this guide is
to provide a quick reference for users who are already familiar with the concepts
and syntax presented in those two manuals.

The NS-ARPA/1000 Quick Reference Guide also contains abbreviated syntax for
certain programs and utilities described in the NS-ARPA/1000 Generation and
Initialization Manual and the NS-ARPA/1000 Maintenance and Principles of
Operation Manual. For your convenience, the NS-4ARPA/1000 Quick Reference
Guide also contains a master index of NS-ARPA/1000 manuals. This is a
combined index from the NS-ARPA/1000 manuals to help you find information
that may be in more than one manual.

91790-90045 NS-ARPA/1000 Error Message and Recovery Manual

Lists and explains, in tabular form, all of the error codes and messages that can
be generated by NS-ARPA/1000. This manual should be consulted by
programmers and users who will be writing or maintaining programs for
NS-ARPA/1000 systems. Because it contains error messages generated by the
NS-ARPA/1000 initialization program NSINIT and other network management
programs, it should be consulted by Network Managers.

91790-90050 NS-ARPA/1000 DS/1000-IV Compatible Services Reference
Manual

Describes the user-level services provided by the DS/1000-IV backward
compatible services. These services are Remote File Access (RFA), DEXEC,
REMAT, RMOTE, program-to-program communication (PTOP), utility
subroutines, remote I/O mapping, remote system download to memory-based
DS/1000-IV nodes only, and remote virtual control panel.

91790-90054 File Server Reference Guide for NS-ARPA/1000 and ARPA/1000

Describes information on using and administering the HP 1000 file server,
including runstring parameters, files needed for configuration, troubleshooting
guidelines, and error messages.

91790-90060 BSD IPC Reference Manual for NS-ARPA/1000 and ARPA/1000

Describes Berkeley Software Distribution Interprocess Communication (BSD
IPC) on the HP 1000. BSD IPC on the HP 1000 offers a programmatic interface
on the HP 1000 for multi-vendor connectivity to systems that offers BSD IPC 4.3.

5958-8523 NS Message Formats Reference Manual

Describes data communication messages and headers passed between computer
systems communicating over Distributed System (DS) and Network Services
(NS) links.

5958-8563 NS Cross-System NFT Reference Manual

Provides cross-system NFT information. It is a generic manual thatis a
secondary reference source for programmers and operators who will be using
NFT on NS-ARPA/1000, NS3000/V, NS3000/XL, NS/9000, NS for the DEC
VAX* computer, and PC (PC NFT on HP OfficeShare Network). Information
provided in this manual includes file name and login syntax at all of the systems
on which NS NFT is implemented, a brief description of the file systems used by
each of these computers, and end-to-end mapping information for each
supported source/target configuration.

*DEC and VAX are U.S. registered trademarks of Digital Equipment Corporation.

Conventions Used in this Manual

NOTATION

nonitalics

italics

DESCRIPTION

Words in syntax statements that are not in italics must
be entered exactly as shown. Punctuation characters
other than brackets, braces, and ellipses must also be
entered exactly as shown. For example:

EXIT;

Words in syntax statements that are in italics denote a
parameter that must be replaced by a user-supplied
variable. For example:

CLOSE filename

An element inside brackets in a syntax statement is
optional. Several elements stacked inside brackets
means the user may select any one or none of these
elements. For example:

[§:| User may select A or B or neither.

When several elements are stacked within braces in a
syntax statement, the user must select one of those
elements. For example:

A
B User mustselect A or Bor C.
C

A horizontal ellipsis in a syntax statement indicates
that a previous element may be repeated. For
example:

[, itemname] ... ;

In addition, vertical and horizontal ellipses may be
used in examples to indicate that portions of the
example have been omitted.

A shaded delimiter preceding a parameter in a syntax
statement indicates that the delimiter must be
supplied whenever (a) that parameter is included or
(b) that parameter is omitted and any other parameter
that follows is included. For example:

itemal, itemb] [, itemc]
means that the following are allowed:

itema

itema, itemb
itema, itemb, itemc
itema, , itemc

underlining

—

char

When necessary for clarity, the symbol A may be used
in a syntax statement to indicate a required blank or
an exact number of blanks. For example:

SET[(modifier)]A(variable) ;

‘When necessary for clarity in an example, user input
may be underlined. For example:

NEW NAME? ALPHA

Brackets, braces, or ellipses appearing in syntax or
format statements that must be entered as shown will
be underlined. For example:

LET var([[subscript]] = value

Output and input/output parameters are underlined.
A notation in the description of each parameter
distinguishes input/output from output parameters.
For example:

CREATE (parml,parm2, flags, error)

The symbol [___J may be used to indicate a key
on the terminal’s keyboard. For example,
indicates the carriage return key.

Control characters are indicated by [[coNTroL]
followed by the character. For example, [conTroL Jv

means the user presses the control key and the
character Y simultaneously.

10

TELNET

Table of Contents

Applicationand Connectivity Considerations
Connection Considerationsouuuuuinnitiiiniinneeeennnnn..
Terminal Settings to DEC VAX Computersoouiiiiinnnn..
Chained TELNET Sessionsttt
Block Mode Considerationsuuieeeiiiiineeeennuinnneans

P R e e e e e e e
OO UNUNUNE BRWLNDNDN -

Application and Connectivity Considerations

There are several considerations to keep in mind when using TELNET:

In certain cases, it may take longer to send terminal data from the physical terminal
over the network to the remote node than the time allowed by an application program.
If the program fails to receive the needed data, it will result in error. User written
applications that are expected to run over TELNET should be written with this in
mind.

TELNET does not support HP 12040D MUX firmware with revision earlier than
5.02.

Make sure your application runs locally without errors before executing it over a
TELNET connection.

Different terminals and computers may have different configuration requirements.

Block mode applications have a limited number of supported configurations when
using TELNET. Refer to “Block Mode Considerations.”

Connection Considerations

There are several connectivity considerations:

Only one connection for each TELNET user can be open at a time. HP does not
support multiple connections per each TELNET user.

A chained session is one where you have TELNET open to one computer and then
you use TELNET from that computer to access another (a third) computer. Select a
unique escape character for each host you wish to communicate with in a chained
session. Refer to the subsection, “Chained TELNET Sessions” later in this section.

For connections to any computer, always set the HP 1000 host terminal RECVPACE
configuration (receive direction) to XON/XOFE

For block mode applications, terminals directly connected to an HP 1000 require
XON/XOFF in both the transmit and receive directions. If the terminal is not set to
XON/XOFF in both directions, a slow TELNET session may be overrun by the
terminal and data will be lost or the application may hang.

For block mode applications, terminals attached to the TS-8 with LSM 2.1 (or greater)
software require XON/XOFF in only the receive direction. If XON/XOFF is set for
the transmit direction, block mode applications may hang.

You cannot initiate a remote session to a PC. Remote sessions between an HP 1000
and PC can only be initiated from the PC.

TELNET 1-1

Terminal Settings to DEC VAX Computers

If you are using TELNET on the HP 1000 to connect to a remote DEC VAX host, you
should set the communication protocol of the HP 1000 host terminal to XON/XOFF. The
steps are as follows:

1. On the HP 1000, enter WH to display information about your terminal. Locate your
session number.

2. Execute this command to set your terminal to XON/XOFF protocol:
CI> cn,$session, 34b,1b

3. Use TELNET to log on to the remote DEC VAX host.

4. Once you are logged on to the DEC VAX host, execute this command:
$ set terminal/vt100. You can put this command in your LOGIN.COM file for
automatic execution whenever you log on to the DEC VAX system.

5. Setyour terminal to ANSI term type. See your terminal documentation for
instructions.

6. When you have completed your TELNET session on the DEC VAX host and returned
to the local HP 1000 host, reset your terminal to HP term type. See your terminal
documentation for instructions.

7. Restore the local host to ENQ/ACK protocol by executing:
CI> cn,$session, 34b,2b

Chained TELNET Sessions

Chaining makes it possible to hop across the network to different hosts.

If you chain several TELNET sessions, you may want to select a unique escape character
for each host in the chain, using the ESCAPE command. Then you can escape to the node
of your choice by issuing the appropriate escape character.

If all nodes use the same escape character, you can only escape to your local node; you
cannot escape to an intermediate node.

If you chain TELNET sessions, the QUIT or EXIT command will terminate all sessions,
close all connections, and return you to the local host. If, however, you log off the remote
host, only the most recent TELNET session is closed. Any other chained sessions are still
active.

If TELNET terminates abnormally or is aborted, any remote session chained from your
session is automatically terminated.

Block mode applications over chained TELNET sessions are not supported.

Block Mode Considerations
The TELNET standard specifies a character mode protocol. Character mode is the
normal operation of a terminal.

‘With block mode, data is not transmitted one character at a time. Instead, an entire block
of data is typed in locally on the terminal. When the enter key is pressed, the data is
transmitted from the terminal to the computer.

1-2 TELNET

Block mode for the HP 1000 is technically defined in the RTE-A Driver Reference Manual,
part number 92077-90011.

The following products support block mode applications to the HP 1000:

® ARPA/Vectra revision 2.0 (or later) with the Advlink B.02.00 Emulator. On
ARPA/Vectra, the RS (record separator) is the default escape character for TELNET.
The RS character is also a special character in block mode. The TELNET escape
sequence on the PC must be changed to another character.

® ARPA/9000 revision 7.0 (or later) with direct connect terminals only. HPTERM is
not supported.

e TS-8with LSM 2.1 (or later) software.
® Datacommunications and Terminal Controller (DTC).

Block mode applications over TELNET are not supported on the PC OfficeShare
products.

Any TELNET user can communicate with a block mode application on the HP 1000 as
long as the local terminal or terminal emulator can handle block mode I/O.

Block mode applications over chained TELNET sessions are not supported.

For block mode applications, terminals directly connected to an HP 1000 require
XON/XOFF in both the transmit and receive directions. If the terminal is not set to
XON/XOFF in both directions, a slow TELNET session may be overrun by the terminal
and data will be lost or the application may hang.

For block mode applications, terminals attached to the TS-8 with LSM 2.1 (or greater)
software require XON/XOFF in only the receive direction. If XON/XOFF is set for the
transmit direction, block mode applications may hang.

Using Telnet

TELNET is scheduled at the RTE Command Interpreter level (CI>). TELNET can be
invoked with or without the following parameter.

TELNET [, host]
host The name of the remote node to which you want to log on. The
syntax of the host name is node [. domain[.organization]],
which is further described in the NS-4RPA/1000 User/Programmer

Reference Manual. If host is not specified, TELNET displays a
TELNET prompt and waits for you to enter a TELNET command.

?

Displays TELNET commands and help information. Same as the HELP command.
? [command]
command Any TELNET command. If no command is specified,
TELNET lists the TELNET commands, with a one-line

description for each command. When a command is specified,
TELNET displays a brief description of the command.

TELNET 1-3

CLOSE

Closes the remote connection and logs off the remote session.

CL [OSE]

ESCAPE

Defines the TELNET escape character.
ES [CAPE] escape char

escape char Any seven-bit ASCII character except those listed in the table
below. The default is] .

The escape character, when typed at the remote session, allows
you to temporarily return to the local node. To go back to the
remote node, enter a single carriage return at the TELNET
prompt.

lllegal TELNET Escape Characters

Decimal Value ASCII Character Terminal Keys

0 NUL (null) CONTROL @
4 EOT (end of transmission) CONTROL D
8 BS (backspace) CONTROL H
10 LF (linefeed) CONTROL J
13 CR (carriage return) CONTROL M
17 DC1 (XON) CONTROL Q
18 DC2 CONTROL R
19 DC3 (XOFF) conTrOL | S
24 CAN (cancel) CONTROL X
25 EM (end of medium) CONTROL Y
30 RS (record separator) CONTROL ~

31 US (unit separator) CONTROL

127 DEL (rubout) DEL

The characters in the table cannot be defined as the remote
escape character, because they have special terminal functions.
Using one of these characters may cause communication
problems with the remote node.

Do not define escape char to be the same as the TELNET

interrupt character. The TELNET interrupt character default
is Y and can be redefined by the INTERRUPT

command.

1-4 TELNET

EXIT

Closes the remote connection, logs off the remote session, and terminates TELNET. Same
as QUIT

EX[IT]

HELP

Displays TELNET commands and help information. Same as ?.
HE [LP] [command]

command Any TELNET command. When a command is specified, HELP
displays a brief description of the command. If no command is
specified, HELP lists the TELNET commands, their syntax, and
a one-line description for each command. See ?, covered
earlier in this section.

INTERRUPT

Changes the TELNET remote interrupt character.
IN [TERRUPT] intr char

intr char Any seven-bit ASCII character except those listed in the table
below. The default is[CoNTROL] v.

The interrupt character is used to send a “BREAK?” indication
to the remote system without hitting the key on the
terminal.

lllegal TELNET Escape Characters

Decimal Value ASCII Character Terminal Keys

0 NUL (null) CONTROL

®

4 EOT (end of transmission) CONTROL D
8 BS (backspace) CONTROL H
10 LF (linefeed) CONTROL J
13 CR (carriage return) CONTROL M
17 DC1 (XON) CONTROL Q
18 DC2 CONTROL R
19 DC3 (XOFF) conTrOL | S
24 CAN (cancel) CONTROL X
27 ES (cape) CONTROL]

30 RS (record separator) CONTROL ~

31 US (unit separator) CONTROL

127 DEL (rubout)

g
el
=

TELNET 1-5

The characters in the table cannot be defined as remote
interrupt characters, because they have special terminal
functions. Using one of these characters may cause
communication problems with the remote node.

Do not define intr char to be the same as the TELNET

escape character. The TELNET escape character default is
] and can be redefined by the ESCAPE command.

MODE

Changes the data transmission to either by line or by character.

{Idmm }
MO [DE]
C [HARACTER]

L [INE] Sends data a line at a time from the local terminal to the remote
node. In RTE-A, each line of data ends with a carriage return.

C [HARACTER] Sends data a character at a time from the local terminal to the
remote node. Each character is sent without waiting for an
end-of-line character.

OPEN

Establishes a connection to a remote host.
OP [EN] host
host The name of the remote node to which you want to log on. The
syntax of the host name is node [. domain[.organization]],

which is further described in the NS-4RPA/1000 User/Programmer
Reference Manual.

If host is not specified, TELNET connects you to your local
node.

QuiT

Closes the remote connection, logs off the remote session, and terminates TELNET. Same
as EXIT

QUIT

RUN

Runs a program at the local node.
RU[N] program

program The name of a program on the local system.

1-6 TELNET

SEND

Sends special characters or commands to the remote node.

E [SCAPE]
IN [TERRUPT]
SE [ND] A[YT]
B [REAK]
Ip
E [SCAPE] The SEND ESCAPE command sends the TELNET escape

character as a data character to the remote node. Normally, the
TELNET escape character is removed from any data sent to the
remote node. The SEND ESCAPE command is needed and
helpful when you do need to send the escape character as a data
character.

If the application program running on the remote system
requires you to input the current escape character, you can do
one of two things:

e Change the escape character for the duration of the
program with the ESCAPE command.

e Press the escape character to return to the TELNET
prompt (TELNET>), then use SEND ESCAPE to send the
escape character as input to the remote application
program. (See example below.)

IN [TERRUPT] The SEND INTERRUPT command sends the interrupt
character as a data character to the remote node. Normally, the
interrupt character will suspend, interrupt, abort, or terminate
the remote process. The SEND INTERRUPT command is
needed and helpful when you do need to send the interrupt
character as a data character.

A[YT] The SEND AYT command asks the remote node to return
evidence that the TELNET connection is still open. If the
connection is still open, the remote node returns an affirmative
response (e.g., terminal beep, yes, etc.). AYT stands for “Are
you there?”

B [REAK] The SEND BREAK command invokes a break at the remote
node. This command is equivalent to pressing the [BrEax_] key

at the remote node.

IP The SEND IPcommand sends an interrupt to the remote
node. This command is equivalent to pressing the interrupt

character Y) at the remote node.

STATUS

Displays the current state of the TELNET connection.

ST [ATUS]

TELNET 1-7

Error Messages

The following error messages are returned to the current list device when an error is
encountered by the TELNET user program. After a message is printed, the user may
again be presented with the TELNET prompt.

TELNET User Error Messages

Message

Meaning

Internal TELNET error
(TELNET ERR 1)

An internal TELNET error has occurred.

Unable to connect to target
computer
(TELNET ERR 2)

A connection could not be established to the target computer,
because of one of the following problems:

(1) the target computer name is incorrect,

(2) the target computer is not connected to the network,

(3) there are not enough system resources, or

(4) TELNET has not been initialized at the target computer.

Input line too long
(TELNET ERR 3)

The input line was greater than 80 characters.

Cannot find closing
quotation mark
(TELNET ERR 4)

An opening quotation mark was found but not the closing quotation
mark.

Illegal command
(TELNET ERR 5)

A TELNET command was entered incorrectly with the wrong syntax or
parameter(s).

Unknown command
(TELNET ERR 6)

A TELNET command was entered incorrectly.

Input command is too big
(TELNET ERR 7)

You typed in a command with more than 256 characters.

Unable to initialize TELNET
(TELNET ERR 8)

This error may be returned for one of the following reasons:

(1) TELNET was unable to acquire sufficient system resources (such
as sockets); or

(2) an error occurred in accessing Distributed System Available
Memory (DSAM) or tables in DSAM;

(3) user’s terminal is not connected to a D-MUX or A400 MUX, or is
not a remote TELNET session.

Illegal escape character
(TELNET ERR 9)

An illegal escape character was entered.

Y is the interrupt
character
(TELNET ERR 10)

The interrupt character was specified in the ESCAPE command
instead of an escape character.

Illegal interrupt character
(TELNET ERR 11)

An illegal character was specified for the interrupt character in the
INTERRUPT command.

*[is the escape character
(TELNET ERR 12)

The escape character was specified in the INTERRUPT command
instead of an interrupt character.

Mode change unavailable
(TELNET ERR 13)

A MODE command was entered when there is no remote connection
open.

Already line
(TELNET ERR 14)

A line MODE command was entered, and the transmission mode is
already in line mode.

Already character
(TELNET ERR 15)

A character MODE command was entered, and the transmission mode
is already in character mode.

Unknown parameter
(TELNET ERR 16)

The parameter entered is unknown for the command.

Ambiguous parameter
(TELNET ERR 17)

Not enough characters have been entered for a parameter to
differentiate it from another parameter.

No connection open
(TELNET ERR 18)

A TELNET command was entered that requires an open connection.

Node name is too long
(TELNET ERR 19)

A node name was entered with more than 50 characters.

1-8 TELNET

FTP

Table of Contents

RENAME . ..

2-A

BB BB EI B B BI B B B BRI B B B B B B B B B B B DI B B B B B B B 1 B 12 12

T

NNNNI}JNNNN
= e e

2-B

NNNN[I\)NNNN
= e
LWL =

Using FTP

FTP is scheduled at the RTE Command Interpreter level (CI>). FTP can be invoked with
or without the following parameters.

FTP [-1] [-1[filenamel] [-n] [-tfilename]l [-v] [-g] [-q]
[-u[username:password]] [host]

-1 Disables interactive prompting during multiple-file
operations. Interactive prompting lets you selectively
proceed with each file.

-1 [filename] Logs FTP output to £i1ename in addition to the user’s

terminal. If £ilename is omitted, then FTP . LOG is used.
There must be no space between -1 and the file name. If
filename already exists, output is appended to the file.

-n Disables auto-login. If auto-login is disabled, you must
use the USER command to login to a remote host. If
auto-login is enabled, FTP prompts for a user name once a
connection is established to a remote host.

-tfilename Accepts input from the transfer file specified by
filename. There must be no space between -t and the
file name.

-v Enables verbose output. Verbose output displays all

responses from any remote host that you are connected to.
These responses indicate whether FTP commands
completed successfully and the file transfer statistics.

-g Disables file name globbing during multiple file
operations. Globbing expands the wild card characters
before proceeding with the multiple command.

-q Enables quiet mode for transfer files. The normal
informative messags are not output to the terminal.

-u [username:password] Specifies the user and password to use. FTP will use the
username and password to automatically logon to the host
system. If either one needs lower case characters, the
string must be surrounded by back quotes (*). An example
is: —u’MyName :mypass’.

host Specifies the host to which you want to log on. You may
use the host’s node name or IP address for the host
parameter. The syntax for the host’s node name is
node. [.domain|.organization], and the syntax
for the IP address is nnn.nnn.nnn. nnn. Both are
further described in the NS-4ARPA/1000 User/Programmer
Reference Manual.

If host is not specified, FTP displays the FTP prompt and
waits for you to enter an FTP command. In this case, you
must specify the OPEN command to open a connection to a
host.

FTP 2-1

Invokes CI or runs the specified program on the local HP 1000 host.
! [prog name]

prog name Any program that you can execute singly. Once the command is
executed, you automatically return to FTP. If no command is
specified after the exclamation mark, you will remain in CI until
you execute the CI EX command.

?

Displays FTP commands and help information. You may use a single question mark (?) or
double question marks (??). Same as HELP command.

?[?] [command]

command Any FTP command. If no command is specified, FTP lists the
currently supported FTP commands. When a command is
specified, FTP displays a brief description of the command. A
space or comma must separate the question mark and the
command parameter.

Sets the working directory on the remote host to the parent directory.

/

Displays the FTP command stack. Similar to the command stack display function (/) in
RTE-A.

linecount

/ /...

. text

linecount Optional command line count integer, from 1 to 12, that
specifies the number of command lines from the last command
entered to be displayed.

/oo Optional extra slashes, up to 12 slashes, that you may specify. If
two extra slashes are specified, the last two commands executed
are displayed. If three extra slashes are specified, the last three
commands are displayed, and so on.

. text String of text that FTP uses to search the command stack. The
text must be preceded by a period (.). FTP displays commands
in the stack that contain the specified string of text.

2-2 FTP

APPEND

Transfers a local file to the end of a remote file.

AP[PEND] local file [remote filel

local file Specifies a valid file on the local host to be appended to the
remote file.
remote file Specifies a valid file path on the remote host to append the local

file. If the remote file does not exist, FTP creates it before
appending the local file. If the remote file parameter is
omitted, FTP uses the local filename asthe

remote filename.

ASCII

Sets the file transfer type to ASCII.

AS[CITI]

BELL

Specifies that a bell sound is generated after each file transfer completes. This command
toggles.

BE [LL]

BINARY

Sets the FTP file transfer type to binary.

BI [NARY]

BYE

Closes the remote connection and exits from FTP. Same as EXIT and QUIT

BY [E]

CcDh

Sets the working directory on the remote host to the specified directory.

CD remote directory

remote directory Specifies a valid directory on the remote host to be the
working directory. By default, the working directory is the
default login directory.

FTP 23

CLOSE

Closes the remote connection and remains in FTP.

CL [OSE]

DEBUG

Prints the commands that are sent to the remote host. Used for debugging the current
FTP session. This command toggles debug mode.

DEB [UG]

DELETE

Deletes the specified remote file or remote directory.
DEL [ETE] remote file

remote file Specifies a valid file path on the remote host to be deleted.
This can be a file or an empty directory.

DIR

Writes an extended directory listing of a remote directory or file to the terminal or to an
output file.

DI[R] [remote listing] [local file]

remote listing Specifies the remote directory or file mask from which a
directory listing is to be generated. If this parameter is not
specified, a directory listing of the remote working directory is
generated.

local file Specifies the output file on the local host to store the directory
listing. If this parameter is not specified, the directory listing is
written to your terminal.

DL

Writes an extended RTE-A directory listing of a remote directory or file to the terminal or
to an output file.

DL [remote listing] [local file]

remote listing Specifies the remote directory or file mask from which a
directory listing is to be generated. If this parameter is not
specified, a directory listing of the remote working directory is
generated.

local file Specifies the output file on the local host to store the directory
listing. If this parameter is not specified, the directory listing is
written to your terminal.

2.4 FTP

EXIT

Closes the remote connection and exits from FTP. Same as BYE and QUIT.

E[XIT]

FORM

Sets the FTP file transfer form to the specified format. The only supported format is
non-print.

F[ORM] format
format Specifies the file transfer format. Currently the only supported

format is non-print. Non-print format specifies that no
vertical format information is contained.

GET

Transfers a remote file to a local file. Same as RECV.

GE[T] remote file [local filel

remote file Specifies a valid file path on the remote host to be copied to the
local host.
local file Specifies the file on the local host to copy into. If this

parameter is not specified, FTP uses the remote file path as the
local file path. If a local file name is specified without a
directory, the current working directory on the local host is
used. If a local file with the same file name already exists before
the file transfer, it is overwritten without warning.

GLOB

Toggles file name globbing (expansion) for multiple file operations. When file name
globbing is enabled, FTP expands wild card characters in multiple file and directory
operations. In other words, FTP uses the wild card characters as wild cards and not as the
characters they normally represent. The wild card characters used depend on the file
system processing the FTP command.

GL [OB]

HASH

Specifies the printing of a hash sign (#) for each data block transferred. The size of the
data block is 1024 bytes. This command toggles the printing of hash signs.

HA [SH]

FTP 25

HELP

Displays FTP commands and help information. Same as ? or 2?.
HE [LP] [command]

command Any FTP command. When a command is specified, FTP
displays a brief description of the command. If no command is
specified, FTP lists the currently supported FTP commands.

LCD

Sets the local working directory to the specified directory.

LC[D] [local directoryl]

local directory Specifies a valid directory on the HP 1000 host to be the
local working directory. If Jocal directoryisnot
specified, FTP returns you to your home directory.

LL

Specifies a local log file to which FTP sends commands and messages in addition to
displaying them on the user’s terminal.

LL [local file]

local file Specifies a valid file name on the HP 1000 host as a log file. All
terminal output generated by FTP is logged into this file in
addition to your terminal. If Jocal fileisnot specified,
FTP prompts you for the log file name. If the file already exists,
output is appended to it. To close the log file, use LL, 1.

LS

Writes an extended directory listing of a remote directory or file to your terminal or to a
local file on the HP 1000.

LS [remote listing] [local file]

remote listing Specifies the remote directory or file mask from which a
directory listing is to be generated. If this parameter is omitted,
LS lists the remote working directory.

local file Specifies a valid file path on the local HP 1000 host to store the
directory listing. If this parameter is omitted, the directory
listing is displayed on your terminal.

2-6 FTP

MDELETE

Deletes multiple remote files.
MDE [LETE] remote file [remote file ...]

remote file Specifies a valid file path on the remote host to be deleted.
This can be a file or an empty directory. The ellipsis (. . .)
means that you may specify multiple remote files or directories,
delimited by a comma or by one or more blank spaces. You
may use wild card characters in the remote file names.

MDIR

Writes an extended directory listing of multiple remote directories or files to a local file.

MD [IR] remote listing [remote listing ...] local file

remote directory Specifies the remote directories or file masks from which a
directory listing is to be generated. The ellipsis (. . .)
means that you can specify multiple remote directories or
files, delimited by a comma or by one or more blank
spaces.

local file A valid file path on the local HP 1000 host to store the
remote listing. This parameter is required, because MDIR
does not output the remote listing to the terminal. FTP
always uses the last parameter in the MDIR command
string as the Jocal file.

MGET

Transfers multiple remote files to the local host.
MG [ET] remote file [remote file ...]

remote file Specifies a valid file path on the remote host for the file to be
transferred. The ellipsis (...) means that you may specify
multiple remote files, delimited by a comma or by one or more
blank spaces. You may use wild card characters in the remote
file names. The files are transferred to local files with the same
directory paths and names as the source files. If a local file with
the same file name already exists before the file transfer, it is
overwritten without warning.

MKDIR

Creates a directory on the remote host.

MK [DIR] remote directory [Ilu]
remote directory Specifies a valid directory path on the remote host.

Iu Specifies the LU on which the remote directory will reside.

FTP 2.7

MLS

Writes an abbreviated directory listing of multiple remote directories or files to a local file.

ML [S]

remote listing

local file

MODE

remote listing [remote listing ...] local file

Specifies the remote directories or file masks from which a
directory listing is to be generated. The ellipsis (. . .) means
that you may specify multiple remote directories or files,
delimited by a comma or by one or more blank spaces.

A valid file path on the local host to store the remote listing.
This parameter is required, because MLS always outputs the
remote listing to a local file and not to a terminal. FTP always
uses the last parameter in the MLS runstring as the

local file.

Specifies the file transfer mode.

MO [DE]

mode name

MPUT

mode name

Avalid FTP file transfer mode. The only currently supported
mode is stream. Stream mode specifies that the data is
transmitted as a stream of bytes. There is no restriction on the
representation type used. If the structure is a file structure
(which is the default), the End-Of-File is indicated by the
sending host closing the data connection and all bytes are data
bytes.

Transfers multiple local files to the remote host.

MP [UT]

local file

2-8

FTP

local file [local file ...]

Specifies a valid file path on the local host to be transferred to
the remote host. The ellipsis (. . .) means that you can specify
multiple local files, delimited by a comma or by one or more
blank spaces. You may use wild card characters in the file
names. The files are transferred to the remote host, under the
same directory and file names as the source files. If a remote file
with the same file name already exists before the file transfer, it is
overwritten without warning.

NLIST

Writes an abbreviated directory listing of a remote directory or file to your terminal or to a
local file on the HP 1000.

N[LIST] [remote listing] [local file]

remote listing Specifies the remote directory or file mask from which a
directory listing is to be generated. If this parameter is omitted,
NLIST lists the remote working directory.

local file Specifies a valid file path on the local HP 1000 host to store the
directory listing. If this parameter is omitted, the directory
listing is displayed on your terminal.

OPEN

Establishes a connection with a specified remote host.
O[PEN] host

host Specifies the host to which you want to log on. You may use the
host’s node name or IP address. The syntax for the host node
name is node [. domain|[.organization], and the syntax
for the IP address is nnn. nnn.nnn. nnn. Both are further
described in the NS-ARPA/1000 User/Programmer Reference
Manual.

PROMPT

Toggles interactive prompting for multiple file operations. Interactive prompting occurs
during multiple file operations to allow you to selectively proceed with each file. By
default, interactive mode is enabled.

PR [OMPT]

PUT

Transfers a local file to the remote host. Same as SEND.
PU[T] local file [remote file]

local file Specifies a valid file path on the local host to be transferred.

remote file Specifies a valid file path on the remote host to be transferred
into. If this parameter is omitted, FTP uses the local file path
as the file name on the remote host. If a remote file name is
specified without a directory, the current working directory on
the remote host is used. If a remote file with the same file name
already exists, it is overwritten without warning.

FTP 29

PWD

Writes the name of the remote working directory to the terminal.

PW [D]

QuiT

Closes the remote connection and exits from FTP. Same as BYE and EXIT.

QUI [T]

QUOTE

Sends arbitrary server commands to the remote host.
QUO [TE] arguments
arguments Specifies a valid FTP server command to be sent to the remote

host. The arguments are sent “as is,” including commas if
included. Use for debugging purposes.

RECV

Transfers a remote file to the local host. Same as GET.

REC[V] remote file [local file]

remote file Specifies a valid file path on the remote host to be transferred
to the local host.
local file Specifies a file on the local host to be copied into. If this

parameter is omitted, the local file will have the same directory
path and file name as the remote file. If a local file name is
specified without a directory, the current working directory of
the local host is used. If a local file with the same file name
already exists, it is overwritten without warning.

REMOTEHELP

Displays the currently supported FTP server commands on the remote host.
REM [OTEHELP] [command]
command Any FTP server command on the remote host. FTP displays
help information on the specified server command from the

remote host. If command is omitted, FTP displays a list of
currently supported FTP server commands on the remote host.

2-10 FTP

RENAME

Renames a remote file or remote directory.

REN [AME] remote old remote new

remote old Specifies the original name of a remote file or remote directory
to be renamed.

remote new Specifies the new name for the remote file or remote directory.
If remote newalready exists, FTP issues a warning and
ignores the command.

RMDIR

Removes an empty directory from the remote host.

RM[DIR] remote directory

remote directory Specifies a valid directory path on the remote host to be
removed. The directory must be empty or FTP issues a
warning and ignores the command.

RTEBIN

Sets the transfer type to BINARY such that for subsequent PUT or MPUT commands if only
the filename is specified, then the file type, size, and record length are included in the
destination file descriptor.

RT [EBIN]

SEND

Transfers a local file to the remote host. Same as PUT.
SE[ND] local file [remote filel

local file Specifies a valid file path on the local host to be transferred.

remote file Specifies a valid file path on the remote host to be transferred
into. If this parameter is omitted, FTP uses the local file path
as the remote file name. If a remote file name is specified
without a directory, the current working directory of the remote
host is used. If a remote file with the same file name already
exists, it is overwritten without warning.

SITE

Sends arguments, verbatim, to the server host as a SITE command.
SI[TE] arguments
arguments Specifies a valid FTP server SITE command to be sent to the

remote host. The arguments are sent “as is,” including
commas if they were included.

FTP 2-11

STATUS

‘Writes the current status of FTP to the terminal.

STA [TUS]

STRUCT

Sets the FTP file transfer structure to the specified structure.
STR[UCT] struct name

struct_name Specifies the FTP file transfer structure. Currently, the only
supported file transfer structure is £ile. File structure means
that there is no internal structure and the file is considered to
be a continuous sequence of data bytes.

SYSTEM

Returns the type of the operating system running on the server.

SY [STEM]

TR

Specifies a local command input file (also called a transfer file) containing FTP commands.
TR local file

local file Specifies a local transfer file containing FTP commands. FTP
executes the commands in this file. The TR command lets you
execute FTP from a command file rather than entering each
FTP command via your terminal keyboard. You may include
any valid FTP commands in the transfer file. FTP terminates
when the EXIT, BYE, or QUIT command is executed. If the
end-of-file is found before any of these commands, control is
passed back to FTP.

TYPE

Sets the FTP file transfer type to the specified type.
TY [PE] [type name]

type name Specifies the FTP file transfer type. Currently, type name
may be one of the following:

- ASCII, A = set the file transfer type to ASCIIL.
- BINARY, B, I, = set the file transfer type to binary.

If this parameter is omitted, TYPE displays the current FTP file
transfer type on the terminal.

2-12 FTP

USER

Logs on as a different user on the currently connected remote host.
U[SER] [user name] [password]

user name Specifies the account on the remote host to log on. If the
user name is not specified, FTP prompts you for it.

password Specifies the password for the account, if required. If a
password is required and not specified, FTP prompts you for it.

VERBOSE

Specifies verbose output. This command toggles verbose output. Verbose output displays
all responses from any remote host to which you are connected. These responses tell you
whether or not FTP commands completed successfully. By default, verbose output is
enabled if FTP input comes from your keyboard. Verbose output is disabled if FTP input
comes from an FTP transfer file.

V [ERBOSE]

FTP 2-13

Error Messages

The following error messages are returned to the current list device when an error is
encountered by the FTP user program. After a message is printed, the user may again be

presented with the FTP prompt.

FTP User Error Messages

Message

Meaning

(FTP ERR 1)

FTP internal error encountered.

An internal FTP error has occurred.

Unable to connect to specified
computer.
(FTP ERR 2)

A connection could not be established to the remote host,
because of one of the following problems:

(1) the remote computer name is incorrect,

(2) the remote computer is not connected to the network,
(3) there are not enough system resources,

(4) FTP has not be initialized at the remote host.

Illegal option found. Valid
ones are -G, -I, -L, -N, -Q,
-T, -U, -V.
(FTP ERR 3)

An FTP runstring was entered incorrectly with an invalid option.

Two nodenames in runstring;
ignoring second one.
(FTP ERR 4)

An FTP runstring containing more than one host parameter was
entered. FTP will use the first host parameter.

Ambiguous command.
(FTP ERR 5)

An FTP command was entered incorrectly without enough
characters to make it a legal FTP command.

Invalid command.
(FTP ERR 6)

An invalid FTP command was entered.

FTP login failed.
(FTP ERR 7)

FTP server did not recognize the user name or password that
was specified.

Illegal reply code.
(FTP ERR 8)

An illegal reply code was received from the FTP server. Legal
reply codes begin with 1, 2, 3, 4, or 5.

Unexpected reply code from

server. Expected reply code
code.
(FTP ERR 9)

An incorrect reply code was received from the FTP server. The
command sequence between FTP and FTP server can be out of
sequence.

Unable to retrieve information
on local host.
(FTP ERR 10)

FTP unable to obtain IP and port address information on local
node for sending the port command to FTP server.

Not connected. Please use the
OPEN command first.
(FTP ERR 11)

You are currently not connected to a remote host.

Already connected to host.

(FTP ERR 12)

Please use USER or CLOSE first.

You are already connected to a remote host.

Not a valid type. Only ASCII
and BINARY are supported.
(FTP ERR 13)

An invalid transfer type was specified.

Unimplemented command.
(FTP ERR 14)

A command, not implemented on ARPA/1000, was specified.

Unimplemented option.
(FTP ERR 15)

An option, not implemented on ARPA/1000, was specified.

No transfer file specified.
Ignoring option -T.
(FTP ERR 16)

No file name was specified with the —T option in the FTP
runstring.

2-14 FTP

Message

Meaning

Two log files in runstring.
Ignoring second one.
(FTP ERR 17)

Two log files were specified in the FTP runstring. The second
log file was ignored.

Two transfer files in
runstring. Ignoring second one.
(FTP ERR 18)

Two transfer files were specified in the FTP runstring. The
second file was ignored.

Same name given for log and
transfer files. Ignoring both.
(FTP ERR 19)

The same file name was used for log and transfer file.

Unknown nodename. No such node
exists.
(FTP ERR 20)

An unknown remote host was specified.

No username or password
specified
(FTP ERR 21)

The username and password were not specified for the -u
option.

Error encountered sending
command to the server.
(FTP ERR 22)

FTP received a NetlPC error.

Error encountered receiving
reply code from server.
(FTP ERR 23)

FTP encountered an error when receiving reply code from the
server.

Network is not up.
(FTP ERR 24)

The network is currently down.

Require network resource is not
available.
(FTP ERR 25)

A required resource, such as DSAM, resource number, or
sockets, is not currently available.

Connection aborted. Remote host
unreachable.
(FTP ERR 26)

Connection to remote host was aborted, because
(1) remote host has been shut down,

(2) some network links are malfunctioning,

(3) the network is extremely congested.

Illegal nodename. Possible
syntax error.

(FTP ERR 27)

An invalid remote host was specified.

A timeout has occurred. Try
request later.
(FTP ERR 28)

An internal timeout occurred while running FTP.

Break acknowledged. Terminating
transfer.
(FTP ERR 29)

A break was issued by the user, and accepted by FTP.

FTP: Connection lost to peer
node. Connection reset.
(FTP ERR 30)

The connection to the peer node was aborted, so the
connection has been reset.

Unexpected network error
encountered.
(FTP ERR 31)

An internal NetIPC error has occurred.

Input line too long.
(FTP ERR 32)

The input line was greater than 256 characters.

APPEND is not allowed in BINARY
mode.
(FTP ERR 33)

APPEND is not supported for binary file transfers.

FTP internal error encountered
(FTP ERR 34)

An internal FTP error has occurred.

Unable to use CMNDO editing.
HpStartCmndo error
(FTP ERR 35)

An error was returned from HpStartCmndo.

FTP

2-15

FSRV — HP 1000 File Server

Table of Contents

Using FSRV - HP 1000 File Server

FSRV Error Messages

3-A

Using FSRV — HP 1000 File Server

Networking must already be initialized and enabled before running the FSRV file server
program. Only one copy of FSRYV is allowed to run at one time. FSRV is typically
scheduled in the welcome file with any of the following runstring parameters required for
your environment:

fsrv [-cemnuv] [-a type]l [-d seconds] [-s blks] [-t timezone]

where,

-a type (ASCII conversion) Variable length RTE files of the
type specified are transferred in ASCII mode. A
line-feed character is added at the end of every record in
the file. FSRV always converts type 4 files. Note that file
types used for binary data should not be specified.

-c (Case folding) Inhibit the case folding of all file names.
When you select this option, file names specified with any
uppercase characters are rejected.

-d seconds (Directory timeout) Use the seconds argumentas the
timeout for the server’s directory buffer cache. This
timeout specifies the maximum length of time that a
directory buffer can remain in cache on the server. A
timeout of “0” disables the directory buffer cache.
(Default: 10 seconds)

-e (EOF cache) Disable EOF caching of the server. By
default, the server caches eof information for files being
written by a client. The —e runstring option causes the
~ EOF pointer to be updated on the disk each time a
write request extends a file.

-m (File name mapping) Inhibit the reserved character
mapping. When you specify this option, all of the RTE file
name restrictions are in effect when accessing or creating
files from a client.

-n (Mount table file) Specifies not to use the mount table
file to restore previous mount requests and not to update
the mount table file after mounts and umounts.

-s blks (Default file size) Use the blks argumentas the
default file size for files created from a client.
Performance considerations apply when using this option.
(Default: 128 blocks)

-t timezone (Time Zone) Use the informationin /etc/tztab for
the time zone specified in the timezone argument. If
the —t option is not used, the local RTE system is assumed
to be running in UTC (Coordinated Universal Time).

FSRV — HP 1000 File Server 3-1

-u (Update) The update mode causes the modification time
for all directories to always be returned as the current
time.

-v (Verbose) The verbose mode is provided for diagnostic
purposes only. Usage of this option is not recommended
under normal conditions. Setting the break flag on the
FSRV server program also toggles the state of the verbose
flag. The verbose mode messages are written to the NS
event logger as protocol-specific information (P bit, class
1). The LOGCHG utility can be used to change the log
mask that EVMON is using.

FSRV Error Messages

The following error messages are returned by the FSRV server program. When these
errors occur they are reported to the event logger for NS-ARPA. Event logging is enabled
with the EVMON utility. An explanation of the error and suggested action are indicated
as appropriate. The actual error message returned to the NFS* client under these
conditions will depend upon the error handling by the client.

fsrv: atach error : <#>
FSRV was unable to attach to the new session. See the ATACH utility

information in the RTE-A Relocatables Reference Manual, part number
92077-90037, for an explanation of error numbers returned by ATACH.

fsrv: Cannot find the time zone information for <TIMEZONE >

The time zone specified in the —t runstring option could not be found in the
/etc/tztab file.

fsrv: clgon error : <#>

FSRV was unable to logon. (Requires LOGON Rev.6200.) See the CLGON
utility information in the RTE-A Relocatables Reference Manual, part number
92077-90037, for an explanation of error numbers returned by CLGON.

fsrv: Error decoding /etc/tztab.

The /etc/tztab file cannot be decoded. Verify that the file entries are in
the correct format.

fsrv: Invalid file type specified with —a option.

The —a option can only be used with variable record length file types.

* NFS is a trademark of Sun Microsystems, Inc.

3-2 FSRV - HP 1000 File Server

fsrv:

fsrv:

fsrv:

fsrv:

fsrv:
fsrv:

fsrv:

fsrv:

fsrv:

fsrv:

MOUNT procedure: DUMP is not implemented.

MOUNTPROC_DUMP procedure to return server’s mount entries is not
implemented.

Multiuser session not enabled.

Multiuser session must be enabled for the HP 1000 file server to operate.

NFS procedure: LINK is not implemented.

NFSPROC_LINK procedure to create a link to a file is not implemented; links
to a file are not supported on RTE-A.

No more room in mount table.

There is insufficient free space in the program to store the mount table.
Increase the HEAP area of the FSRV program. If the HEAP area cannot be
increased, the size of the time zone table may possibly be reduced. This can be
achieved by eliminating the tztab rule in your time zone for future years and/or
past years.

Not enough room to restore the mount table from
/etc/fsrv.mnt. Only mounting <#> directories.

There is insufficient free space in the program to read the prior mount table.
Increase the HEAP area of the FSRV program. If the HEAP area cannot be
increased, the size of the time zone table may possibly be reduced. This can be
achieved by eliminating the tztab rule in your time zone for future years and/or
past years.

Not enough room to store the time zone table.

There is insufficient free space in the FSRV program to store the time zone
table. The time zone table is stored in the HEAP area of the FSRV program. If
the HEAP area cannot be increased, the size of the time zone table must be
decreased. This can be achieved by eliminating the tztab rule in your time zone
for future years and/or past years.

PORTMAP procedure: CALLIT is not implemented.

PMAPPROC_CALLIT procedure to allow remote procedure (RPC) calls to
any registered RPC program is not implemented.

PORTMAP procedure: SET is not implemented.

PMAPPROC_SET procedure to allow users to register an RPC program with
the port mapper is not implemented. RTE users are unable to register their
own applications with FSRV.

PORTMAP procedure: UNSET is not implemented.

PMAPPROC_UNSET procedure to allow users to unregister an RPC program
with the port mapper is not implemented. RTE users are unable to register
their own applications with FSRV.

FSRV — HP 1000 File Server 3-3

fsrv:
fsrv:

fsrv:

fsrv:

fsrv:

fsrv:

fsrv:

fsrv:

fsrv:

fsrv:

3-4

retry request from <000.000.000.000>
prog=<PROG NAME> proc=<PROC NAME>

Client’s request timed out. FSRV detected the retry.
RPC authentication error.

Only the AUTH_UNIX and AUTH_NONE authentication protocols are
supported.

RPC version mismatch.
Only RPC version 2 is supported.
Syntax error in /etc/hosts.
Review the entriesin the /etc/hosts file for syntax errors.
Unable to get a session number.
GETSN failed; the system is out of session numbers.
Unable to obtain RTE group ID for <GROUPNAME >

A group name was found in the /etc/ux_groups file that is not a valid
group on the RTE system.

Unable to obtain RTE user ID for <USERNAME >

A user name was found in the /etc/ux_users file that is not a valid user on
the RTE system.

Unknown host <HOSTNAME >

AHOSTNAME specifiedin /etc/exports could not be found in the
/etc/hosts file.

Unknown option in /etc/exports.

Review the entries in the /etc/exports file for syntax errors.

FSRV — HP 1000 File Server

BSD IPC Errors Returned by FSRV

The following types of errors are reported by FSRV when any of the networking calls used

by FSRV report an error. See the BSD IPC Reference Manual for NS-ARPA/1000 and
ARPA/1000, part number 91790-90060, for information on the specific BSD IPC error
message number that is returned by FSRV.

fsrvisocket error: <#>
fsrv:bind error: <#>
fsrv:setsockopt error: <#>
fsrvigetsockname error: <#>
fsrv:listen error: <#>
fsrv:select error: <#>
fsrv:accept error: <#>
fsrvirecv error: <#>
fsrv:recvfrom error: <#>
fsrv:send error: <#>
fsrvisendto error: <#>
fsrv:shutdown error: <#>
fsrv:getpeername error: <#>

FSRV — HP 1000 File Server

3-5

Berkeley Software Distribution
Interprocess Communication

Table of Contents

LSEEN() oottt et
TECV() ottt ettt e e e

SEIALO() « ottt
SEESOCKOPL() « v v ettt e
Shutdown() . ..ot
SOCKEL() .+ ettt
BSD IPC Utilities
Special Considerationsccooiiiiiiiiiiiiiiiia.
endhoStent()ttt
endNetent()t
endprotoent()t
ENASEIVENT() .« v vttt e
gethostbyaddr()
gethostbyname() ...ttt
gethostent()ttt
getlocalname()oo i
getnetbyaddr()o
getnetbyname()outit e
GELNELEIE() « « v vttt t et e
GEPEETNAME() « . o v et ettt et e e e et e
getprotobyname()
getprotobynumber()
GEtPIOtOCTIE() « v v e ettt ettt e e e
GetSEIVhyNaAmMeE() . ..o v vttt e
GetSEIVDYPOIL() ..ottt
GEESEIVENT() .« v vttt ettt e e
@etSOCKNAME() « . v v et ettt et
htonl() ..o

4-A

R N N N N N N L L L AL AL AL AL A N N N N N N N
LR T R R RN

OV OVOVWLLXIINANVNERRLWLWLWRNRDNDNDNDE, P RPOONOUNRERNDFE OO WA WEN =

i s sl ol s ol ol el e ol ol e ol e el e e i R R R EE ek e ek ek

03 19 1 1D 12 12 1D 19 1 19 B 1 1 B 19 1 1 1 T 1 1 T 1 R R T [1= hm i i i

inet_netof()
inet_network
inet_ntoa() .
ntohl()
ntohs()
sethostent()
setnetent() .
setprotoent()
setservent()

() et

Socket Descriptor Utilities i

FD_CLR() .
FD_ISSET()
FD_SET() .
FD_ZERO()
Error Messages .

4-B

e e e e et e i st e sl sl sl anll sl ot
(VSRVSRUSRVSRUS RIS RIS RIS RIS RIS RUS RUS RIS RIS RIS
NERPRLLWLNRDNODNERERERLOO

Using BSD IPC

Berkeley Software Distribution Interprocess Communication (BSD IPC) provides a
programming interface for client-server processes on the same or different machines to
exchange data in a peer-to-peer manner. BSD IPC processes communicate with each
other via sockets. Sockets are local data structures with associated resources used for
interprocess communication. Table 4-1 lists the BSD IPC calls involved in creating, using,
and terminating a BSD IPC connection with stream sockets, and Table 4-2 lists the calls
used for datagram sockets.

Table 4-1. Building a BSD IPC Connection

Server Process Client Process
1. socket () creates a socket 1. socket () creates a socket
2. bind() binds an address 2. bind() binds an address

3. listen() sets up alisten queue

4. accept () waits & accepts a connection

5. connect () requests a connection

6. send() sends data 6. send() sends data
recv () receives data recv () receives data
sendmsg () sends vectored data sendmsg () sends vectored data
recvmsg () receives vectored data recvmsg () receives vectored data

7. shutdown () shuts down a connection 7. shutdown () shuts down a connection

Usually, the server process is scheduled first. It creates a socket, binds an address to the
socket, sets up a listen queue, and waits for requests from client processes.

The client process creates a socket and requests connection to the server. Once the server
accepts the request, full-duplex connection is established between the two processes and
the distinction between client and server can cease to exist. Both peer processes can send
and receive data, as well as terminate the connection.

With datagram sockets there is no concept of a connection between the client and server
processes. A client initiates a transaction by sending a datagram to the server. Both
processes can send and receive datagrams to complete the transaction.

Table 4-2. Using Datagram Sockets

Server Process Client Process
1. socket () creates a socket 1. socket () creates a socket
2. bind() binds an address (See note below) 2. bind() binds an address (See note below)

3. recvfrom() waits and receives datagram

4. sendto() sends datagram

5. sendto () sends datagram 5. sendto () sends datagram
recvfrom() receives datagram recvfrom() receives datagram
6. shutdown () releases a socket 6. shutdown () releases a socket

The BSD IPC calls are summarized on the following pages in alphabetical order.

Berkeley Software Distribution Interprocess Communication 4-1

accept()

Accepts a connection on a socket and creates a new socket. The call returns the new
socket descriptor. The accept () call is used by the server process to wait for and accept
a connection request from the client process.

Syntax

newsocket = accept (socket, addr, addrlen)

int newsocket, socket, *addrlen;
struct sockaddr in *addr;

Parameters

newsocket New socket descriptor created by accept (). If the call is
successful, the value returned is an integer equal to or greater
than 0. If the call fails, it returns - 1.

socket Original socket descriptor, created by a previous socket ()
call.

addr Pointer to address structure. The address structure should be
of sockaddr_intype. Refer to “Preparing Socket Addresses”
in the BSD IPC Reference Manual for NS-ARPA/1000 and
ARPA/1000 for details.

On return, this structure contains the socket address of the
client process that is connected to the server’s new socket.

addrlen Pointer to an integer variable that contains the length, in bytes,
of the address structure specified by addr (for example, length
of structure sockaddr in, which is 16 bytes).

On return, addrlen contains the length, in bytes, of the actual
client socket address returned in addr.

4-2 Berkeley Software Distribution Interprocess Communication

bind()

Binds the specified socket address to the socket.

Syntax

result = bind(socket, addr, addrlen)

int result, socket, addrlen;
struct sockaddr in *addr;

Parameters

result 0 if bind () is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket.

addr Pointer to socket address structure that is to be bound to
socket.
The socket address should use a structure of sockaddr in
type. Refer to “Preparing Socket Addresses” in the BSD IPC
Reference Manual for NS-ARPA/1000 and ARPA/1000 for
details.

addrlen Length (in bytes) of the socket address structure (for example,

size of structure sockaddr in, which is 16 bytes). Addr
should be at least 16 bytes.

Berkeley Software Distribution Interprocess Communication 4-3

connect()

Initiates a connection request on a socket. This call is issued by the client process to
connect to a specified server process.

Syntax

result = connect (socket, addr, addrlen)

int result, socket, addrlen;
struct sockaddr in *addr;

Parameters

result 0 if connect () is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket requesting a connection.

addr Pointer to a structure containing the socket address of the
remote (server) socket to which the connection is to be
established. The socket address should be of sockaddr in
type. Refer to “Preparing Socket Addresses” in the BSD IPC
Reference Manual for NS-ARPA/1000 and ARPA/1000 for
details.

addrlen Length, in bytes, of the address structure specified by addr (for

example, length of structure sockaddr_in, which is 16 bytes).
Addrlenshould be at least 16 bytes.

4-4 Berkeley Software Distribution Interprocess Communication

fcntl()

Provides socket I/O control. Can be used to set nonblocking I/O mode for the specified
socket.

Syntax
result = fentl (socket, cmd, status)
int socket, cmd;

long result, status;

Parameters

result 0if fcntl () is successful.
-1 if a failure occurs.

socket Socket descriptor of a local socket.

cmd Command to get or set socket status. The possible values for
cmd are:

F_GETFL Get the socket status. The status value is
returned in status.

F_SETFL Set the status to value as specified in
status. The only status setting currently
supported is O NONBLOCK.

status Specify the socket status. It is a 32-bit data type, each bit of

which represents a characteristic of the socket. Setting and
unsetting the bit in this parameter sets or unsets the socket
characteristic, respectively.

For F_SETFL, fcntl () sets the current status to the value
specified in status.

The currently supported value for status is:

O_NONBLOCK This option designates the socket as
nonblocking. A request on a nonblocking
socket that cannot complete immediately
returns to the caller and sets errno to
EAGAIN. This option affects the following
calls: accept (), connect (), recv (),
and send (). In a nonblocking connect ()
call, the errno value returned is set to
EINPROGRESS instead of EAGAIN.

Sockets are created in blocking mode by
default.

Berkeley Software Distribution Interprocess Communication 4-5

getsockopt()

Returns status of current socket options.

Syntax

result = getsockopt (socket, level, optname, optval, optlen)

int result, socket, level, optname;
char *optval;
int “*optlen;

Parameters
result 0 if getsockopt () is successful.
-1 if a failure occurs.
socket Socket descriptor of a local socket.
level The protocol level at which the socket option resides.
To specify “socket” level, Ievel should be SOL_SOCKET.
To specify “TCP” level, 1evel should be IPPROTO_TCP.
optname Socket option name.

The following options are supported for “socket” level

(SOL_SOCKET) options:

SO_KEEPALIVE (Toggle option) Sets a timer for 90 minutes
for connected sockets. After 90 minutes
expire, and if the connection has been idle
during this period, SO_ KEEPALIVE forces a
transmission every 60 seconds for up to 7
minutes, after which the idle connection is
shut down. In summary, SO KEEPALIVE
allows an idle period of 97 minutes before
connection shutdown. If this option is
toggled off, an indefinite idle time is allowed.
This option is set by default.

SO _REUSEADDR (Toggle option) Allows local socket address
reuse. This allows multiple sockets to be
bound to the same local port address.

This option modifies the rules used by

bind () tovalidate local addresses.
SO_REUSEADDR allows more than one
socket to be bound to the same port number
at the same time; however, it only allows one
single socket to be actively listening for
connection requests on the port number.
The host will still check at connection time to
be sure any other socket with the same local
address and local port does not have the
same remote address and remote port.
Connect () fails if the uniqueness
requirement is violated.

4-6 Berkeley Software Distribution Interprocess Communication

optval

optlen

getsockopt()

SO_RCVBUF Returns the buffer size of a socket’s receive
socket buffer. The default buffer size is 4096
bytes. A stream socket’s buffer size can be
increased or decreased only prior to
establishing a connection.

SO_SNDBUF Returns the buffer size of a socket’s send
socket buffer. The default buffer size is 4096
bytes. A stream socket’s buffer size can be
increased or decreased only prior to
establishing a connection.

The following options are supported for “TCP” level

(IPPROTO_TCP) options:

TCP_MAXSEG Returns the maximum segment size in use for
the socket. The value for this option can only
be examined, it cannot be set. If the socket is

not yet connected, TCP returns a default size
of 512 bytes.

TCP_NODELAY (Toggle option) Instructs TCP to send data as
soon as it receives it and to bypass the
buffering algorithm that tries to avoid
numerous small packets from being sent to
the network.

Byte pointer to a variable into which an option value is
returned. optval returns a NULL if the option information is
not of interest and not to be passed to the calling process.
Although optval is typed as (char *), the value that it
points to is not terminated by \ 0.

Pointer to a variable containing the maximum number of bytes
to be returned by optval.

On return, it contains the actual number of bytes returned by
optval.

Berkeley Software Distribution Interprocess Communication 4-7

listen()

Sets up a listen queue for the specified socket on the server process and listens for
connection requests.

Syntax

result = listen(socket, backlog)

int result, socket, backlog;

Parameters
result 0if listen() issuccessful.
-1 if a failure occurs.
socket Socket descriptor of a local socket.
backlog Defines the maximum allowable length of the queue for

pending connections. The current valid range for backIogis 1
to 5. If any other value is specified, the system automatically
assigns the closest value within range. If the queue is greater
than the backlog, additional incoming requests will be rejected.

4-8 Berkeley Software Distribution Interprocess Communication

recv()

Receives data from a socket. The recv () call may be used by both the server and client

processes.

Syntax

count= recv (socket, buffer, len, flags)

int

Parameters

count

socket
buffer

len

flags

socket, len;
char *buffer;
long flags;

Returns the number of bytes actually received.

Returns 0 if the remote process has gracefully shut down and
there is no more data in the receive buffer.

Returns -1 if the call encounters an error.
Socket descriptor of the local socket receiving data.
Byte pointer to the data buffer.

Maximum number of bytes that will be returned into the buffer
referenced by buffer. No more than Ien bytes of data are
received. If there are more than 1en bytes of data on the
socket, the remaining bytes are received on the next recv ().

Optional flag options. The currently supported values for
flags are:

0 No option.

MSG_PEEK Option to preview incoming data. If this
option is set on the recv () call, any data
returned remains in the socket buffer as
though it had not been read yet. The next
recv () call returns the same data.

Berkeley Software Distribution Interprocess Communication 4-9

recvfrom()

Receives datagrams from a socket. The recvfrom () call may be used by both the server
and client processes.

Syntax

count= recvfrom(socket, buffer, len, flags, addr, addrlen)

int count, socket, len, *addrlen;
char *buffer;
long flags;
struct sockaddr in *addr;
Parameters
count Returns the number of bytes actually received.

Returns -1 if the call encounters an error.

socket Socket descriptor of the local socket receiving data.
buffer Byte pointer to the data buffer.
len Maximum number of bytes that will be returned into the buffer

referenced by buffer. No more than Ien bytes of data are
received. If the next datagram is larger than 1en bytes, the
remaining bytes are discarded.

flags Optional flag options. The currently supported values for
flags are:
0 No option.
MSG_PEEK Option to preview incoming data. If this

option is set on the recvErom () call, any
data returned remains in the socket buffer as
though it had not been read yet. The next
recvfrom () call returns the same data.

addr Pointer to a structure containing the socket address of the
remote socket which sent the data.

addrlen Length, in bytes, of the returned address structure.

4-10 Berkeley Software Distribution Interprocess Communication

recvmsg()

Receives vectored data on a socket. The recvmsg () call may be used by both the server

and client processes.

Syntax

count= recvmsg (socket, msg, flags)

int

count, socket;

struct msghdr *msg;

long

Parameters

count

socket

msg

flags

flags;

Returns the number of bytes received.

Returns 0 if the remote process has gracefully shut down and
there is no more data in the receive buffer.

Returns -1 if the call encounters an error.
Socket descriptor of a local socket that is receiving the data.

A pointer to the data structure, msghdr, which has two fields
calledmsg_iovandmsg iovlen. Msg iovisa pointer to
an array of data elements, and msg_iovlen contains the
number of data elements in the array. See “Discussion” below
for more information.

Optional flag options. The currently supported values for
flags are:

0 No option.

MSG_PEEK Option to preview incoming data. If this
option is set on the recvmsg () call, any
data returned remains in the socket buffer as
though it had not been read yet. The next
recvmsg () call returns the same data.

Berkeley Software Distribution Interprocess Communication 4-11

select()

Provides synchronous socket I/O multiplexing.

Syntax
result = select (count, reads, writes, exceptions, timeout)
int result, count;
fd set *reads, *writes, *exceptions;

struct timeval *timeout;

Parameters

result Returns the number of socket descriptors contained in the
select () call bitmasks.

-1 means an error has occurred.

0 means the time limit has expired and all the bitmasks are
cleared.

count Specifies the number of sockets for select () to examine.
Select () examines socket descriptors from 0 to (count-1).
Currently, users are allowed a maximum of 31 socket
descriptors, so the valid range for count is 1 to 31. Since socket
descriptors are numbered starting with 0, callers should specify
count as their highest socket descriptor + 1. (Note: count
specifies the number of socket descriptors for selection. Hence,
a count of 5 means that the select () call will examine socket
descriptors from 0 through 4.)

reads Pointer to a bitmask to specify which socket descriptors (from 0
to count-1) to select for reading. Set the bitmask to 0 with
FD_ZERO if no descriptors need to be selected for reads.

On return, it contains a pointer to the bitmask specifying which
socket descriptors (from 0 to count -1) are ready for reading.

Use the FD_SET macro and £d_set variable type to set the
socket descriptors for reads before you issue the select ()
call. Afterissuing select (), use FD_ISSET to test for the
bits in the bitmask. Refer to “Socket Descriptor Utilities” for
more information on clearing, setting, and testing the bits in the
bitmasks.

writes Pointer to a bitmask to specify which socket descriptors (from 0
to count-1) to select for writing. Set the bitmask to 0 with
FD_ZERO if no descriptors need to be selected for writes.

On return, it contains a pointer to the bitmask specifying which
socket descriptors (from 0 to count -1) are ready for writing.

Use the FD_SET macro and £d_set variable type to set the
socket descriptors for writes before you issue the select ()
call After issuing select (), use FD_ISSET to test for the
bits in the bitmask. Refer to “Socket Descriptor Utilities” for
more information on clearing, setting, and testing the bits in the
bitmasks.

4-12 Berkeley Software Distribution Interprocess Communication

exceptions

timeout

select()

Pointer to a bitmask to specify which socket descriptor (from 0
to count -1) to select for exceptional conditions. Set the
bitmask to 0 with FD_ZERO if no descriptors need to be
selected for exceptions.

On return, it contains a pointer to the bitmask specifying which
socket descriptors (from 0 to count -1) have an exceptional
condition pending.

Use the FD_SET macro and £d_set variable type to set the
socket descriptors for exceptions before you issue the

select () call. Afterissuing select (), use FD_ISSET to
test for the bits in the bitmask. Refer to “Socket Descriptor
Utilities” for more information on clearing, setting, and testing
the bits in the bitmasks.

The currently supported condition is when connections get
terminated.

Pointer to the t imeval structure which specifies the interval in
which to examine the socket descriptors. The timeval
structure contains two fields: tv_secand tv_usec.

The timeout parameter works as follows:

If both tv_secand tv_usec are 0, select () returns
immediately after checking the descriptors.

If either tv_sec or tv_usec is non-zero, then select ()
returns when one of the specified descriptors is ready for I/O,
but select () does notwait beyond the specified amount of
time (in number of seconds and microseconds).

If the t imeval pointer itself is 0, then select () waits
indefinitely and returns only when one of the selected
descriptors is ready for I/O.

Berkeley Software Distribution Interprocess Communication 4-13

send()

Sends data on a socket. The send () call may be used by both the server and client
processes.

Syntax

count = send(socket, buffer, len, flags)

int count, socket, len;
char *buffer;

long flags;

Parameters

count Returns the number of bytes actually sent. Returns -1 if the
call encounters an error.

socket Socket descriptor of a local socket that is sending the data.

buffer Byte pointer to a buffer which contains the data to be sent.

len Number of bytes that need to be sent from the data buffer.
In blocking mode, there is no restriction on the size of data to
be sent except for that imposed by the system, which currently
is 32767 bytes.
In nonblocking mode, if the data is too long to pass atomically
through the underlying protocol, the message is not
transmitted, -1 is returned and errno is set to EMSGSIZE.

flags Optional flag options. Currently there are no supported

options.

4-14 Berkeley Software Distribution Interprocess Communication

sendmsg()

Sends vectored data on a socket. The sendmsg () call may be used by both the server and

client processes.
Syntax
count = sendmsg (socket, msg, flags)
int count, socket;
struct msghdr msg;
long flags;
Parameters
count Returns the number of bytes actually sent.
Returns -1 if the call encounters an error.
socket Socket descriptor of a local socket that is sending the data.
msg Pointer to a msghdr structure, which has two fields called
msg_iovandmsg iovlen. Msg_iov isa pointer to an array
of data elements, and msg_iovlen contains the number of
data elements in the array.
flags Optional flag options. Currently there are no supported

options.

Berkeley Software Distribution Interprocess Communication 4-15

sendto()

Sends data on a socket. The sendto () call may be used by both the server and client
processes.

Syntax
count = sendto(socket, buffer, len, flags, addr, addrlen)
int count, socket, len, addrlen;
char *buffer;
long flags;
struct sockaddr in *addr;
Parameters
count Returns the number of bytes actually sent. Returns -1 if the
call encounters an error.
socket Socket descriptor of a local socket that is sending the data.
buffer Byte pointer to a buffer which contains the data to be sent.
len Number of bytes that need to be sent from the data buffer. The
size of data that can be sent is limited to 32767 bytes. However,
the HP 1000 cannot receive UDP datagrams larger than 9216
bytes.
flags Currently there are no supported options.
addr Pointer to a structure containing the address of the remote
socket to which the data will be sent. The socket address should
be of sockaddr intype.
addrlen Length, in bytes, of the address structure specified by addr (for

example, length of structure sockaddr _in, which is 16 bytes).
Addrlenshould be at least 16 bytes.

4-16 Berkeley Software Distribution Interprocess Communication

setsockopt()

Sets socket options.

Syntax

result

int

= setsockopt (socket, level, optname, optval, optlen)

result, socket, level, optname, optlen;

char *optval;

Parameters
result 0 if setsockopt () is successful.
-1 if a failure occurs.
socket Socket descriptor of a local socket.
level The protocol level at which the socket option resides.
To specify “socket” level, Ievel should be SOL_SOCKET.
To specify “TCP” level, 1evel should be IPPROTO_TCP.
optname Socket option name.

The following options are supported for “socket” level

(SOL_SOCKET) options:

SO_KEEPALIVE (Toggle option) Sets a timer for 90 minutes
for connected sockets. After 90 minutes
expire, and if the connection has been idle
during this period, SO KEEPALIVE forces a
transmission every 60 seconds for up to 7
minutes, after which the idle connection is
shut down. In summary, SO KEEPALIVE
allows an idle period of 97 minutes before
connection shutdown. If this option is
toggled off, an indefinite idle time is allowed.
This option is set by default.

SO _REUSEADDR (Toggle option) Allows local socket address
reuse. This allows multiple sockets to be
bound to the same local port address.

This option modifies the rules used by

bind () tovalidate local addresses.
SO_REUSEADDR allows more than one
socket to be bound to the same port number
at the same time; however, it only allows one
single socket to be actively listening for
connection requests on the port number.
The host will still check at connection time to
be sure any other socket with the same local
address and local port does not have the
same remote address and remote port.
Connect () fails if the uniqueness
requirement is violated.

Berkeley Software Distribution Interprocess Communication 4-17

setsockopt()

SO_RCVBUF Changes the buffer size of a socket’s receive
socket buffer. The default buffer size is 4096
bytes. The maximum buffer size is 32766
bytes. A stream socket’s buffer size can be
increased or decreased only prior to
establishing a connection.

SO_SNDBUF Changes the buffer size of a socket’s send
socket buffer. The default buffer size is 4096
bytes. The maximum buffer size is 32766
bytes. A stream socket’s buffer size can be
increased or decreased only prior to
establishing a connection.

The following options are supported for “TCP” level

(IPPROTO_TCP) options:

TCP_MAXSEG Returns the maximum segment size in use for
the socket. The value for this option can only
be examined, it cannot be set. If the socket is
not yet connected, TCP returns a default size
of 512 bytes.

TCP_NODELAY (Toggle option) Instructs TCP to send data as
soon as it receives it and to bypass the
buffering algorithm that tries to avoid
numerous small packets from being sent over
the network.

optval Byte pointer to a value or boolean flag for the specified option.

(Since optval is a byte pointer, Pascal and FORTRAN users
should use ByteAdrOf£ to get the byte address of the option
value.) Although optval is a byte pointer, the value itself is
not terminated by a \ 0.

optlen Size, in bytes, of optval.

4-18 Berkeley Software Distribution Interprocess Communication

shutdown()

Shuts down a socket. This call may be used by either the server or client process.

Syntax

result = shutdown (socket, how)

int result, socket, how;

Parameters
result 0 if shutdown () is successful.
-1 if a failure occurs.
socket Socket descriptor of local socket to be shut down.
how Method of shutdown, as follows:

0 Disallows further receives.

Once the socket has been shut down for
receives, all further recv () calls return -1,
with errno set to ESHUTDOWN.

1 Disallows further sends.

Once the socket has been shut down for
sends, all further send () calls return -1,
with errno set to ESHUTDOWN.

2 Disallows further sends and receives.

Berkeley Software Distribution Interprocess Communication 4-19

socket()

Creates a socket, an endpoint for communication, and returns a socket descriptor for the
socket. This must be the first BSD IPC call used in the process. Both server and client
processes need to create a socket with the socket () call.

Syntax

socket = socket (af, type, protocol)

int socket, af, type protocol;

Parameters

socket Socket descriptor for the newly-created socket. It is an integer
with a valid range of 0 to 30.

This socket descriptor is used in subsequent BSD IPC calls to
reference this socket.

If the call fails, a -1 is returned in socket and the global
variable errno contains the error code.

ar Address family for the socket being created. It must be set to
AF_INET, for Internet address family.

The address family defines the address format used in socket
operations. The AF INET address family uses an address
structure (sockaddr in) of 16 bytes. Refer to “Address
Family Type” in Appendix D of the BSD IPC Reference Manual
for NS-ARPA/1000 and ARPA/1000 for more information.

type Type of socket being created. It must be set to SOCK_STREAM.

The socket type specifies the semantics of communication for
the socket. A SOCK_STREAM type provides sequenced,
reliable, two-way, connection-based bytes streams. Refer to
“Socket Type” in Appendix D of the BSD IPC Reference Manual
for NS-ARPA/1000 and ARPA/1000 for more information.

protocol Underlying protocol to be used. 0 causes the system to choose
a protocol type to use. The default is tcp.

4-20 Berkeley Software Distribution Interprocess Communication

BSD IPC Utilities

BSD IPC utilities are used for the following purposes:

® Manipulate and return information on the following database files: /etc/hosts,
/etc/networks, /etc/protocols,and /etc/services.

® Obtain the socket address of the local and peer sockets.

® Manipulate Internet (IP) addresses and ASCII strings that represent IP addresses in
Internet “dot” notation.

® Convert bytes from network order to host order and vice versa. (HP 1000, HP 9000,
and TCP/IP protocols all use network order. These functions are provided for
portability.)

The utilities are summarized here in alphabetical order for easy referencing.

Special Considerations

In order to successfully use the BSD IPC utilities, you must be aware of the following:
® The /ETC directory must be created before you run the BSD IPC utilities.

® Most of the utilities return pointers to structures that are dynamically allocated. If
any of these functions that allocate dynamic memory are called repeatedly without
freeing the allocated memory, they will eventually fail and return a null pointer.

The BSD IPC utility functions that allocate dynamic memory include:

gethostbyaddr getnetbyaddr getprotobyname getservbyname
gethostbyname getnetbyname getprotobynumber getservbyport
gethostent getnetent getprotent getservent

inet ntoa

In order to release space that has been dynamically allocated by the above utility functions,
use free () from the standard C library (generally found in HPC . LIB).

endhostent()

Closes the /etc/hosts file.
result = endhostent ()
int result

result 0 if the call is successful.
-1 if a failure occurs.

Berkeley Software Distribution Interprocess Communication 4-21

endnetent()
Closes the /etc/networks file.
result = endnetent ()
int result
result 0 if the call is successful.
-1 if a failure occurs.
endprotoent()
Closes the /etc/protocols file.
result = endprotoent ()
int result
result 0 if the call is successful.
-1 if a failure occurs.
endservent()
Closes the /etc/services file.
result = endservent ()
int result
result 0 if the call is successful.
-1 if a failure occurs.
gethostbyaddr()
Returns host information on the host with the specified IP address.
host = gethostbyaddr (addr, len, type)

struct hostent *host;

char *addr;
int len, type;
host Pointer to hostent structure that contains the host
information.

The hostent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

addr Character pointer to a variable that contains the IP address of
the host. The IP address must be in network order (that is,
bytes ordered from left to right).

len Number of bytes of an IP address.
type The type of socket address family used. Must be set to
AF_INET

4-22 Berkeley Software Distribution Interprocess Communication

gethostbyname()

Returns host information on the host with the specified host name.

host = gethostbyname (name)

host struct *host;
char *name;
host Pointer to the hostent structure that contains host
information.

The hostent structure is defined in the include files
<netdb.h>, SOCKET . PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

name Pointer to string that contains the name of the host about whom
you need to obtain information. Terminate the string with the
\ 0 character.

gethostent()

Reads the next line of the /et c/hosts file and returns the host information.
host = gethostent ()
struct hostent *host;

host Pointer to a hostent structure containing host information.

The hostent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

getlocalname()

Returns the name of the host/local system.

error = getlocalname (hostname)

character* (*) hostname;
integer*2 error;
error Is an integer that returns 0 for success or non-zero if the

network is down.

hostname Returns a FORTRAN character string for the local node name.
The hostname string is limited to 50 characters.

Berkeley Software Distribution Interprocess Communication 4-23

getnetbyaddr()

Returns network information on the specified network number.
network = getnetbyaddr (net, type)

struct netent *network;

long net;
int type;
network Pointer to a netent structure that contains network

information returned by getnetbyaddr ().

The netent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET . FTNI, for C,
Pascal, and FORTRAN programs, respectively.

net Network number from which to get network information.
type The socket address family type. It must be set to AF_INET.
getnetbyname()

Returns network information on the specified network name.
network = getnetbyname (name)

struct netent *network;
char *name;

network Pointer to a netent structure that contains network
information returned by getnetbyname ().

The netent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET . FTNI, for C,
Pascal, and FORTRAN programs, respectively.

name Pointer to string that contains the network name from which to
get network information. Terminate the name string with the
character \ 0.

getnetent()

Reads the next line of the /et c/networks file and returns the network information.
network = getnetent ()
struct netent *network;

network Pointer to a netent structure that contains network
information returned by getnetent ().

The netent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET .FTNI, for C,
Pascal, and FORTRAN programs, respectively.

4-24 Berkeley Software Distribution Interprocess Communication

getpeername()

Returns the socket address of the peer socket connected to the specified local socket.

result = getpeername (socket, addr, addrlen)

int

result, socket, *addrlen;

struct sockaddr in *addr;

result

socket

addr

addrlen

getprotobyname()

0 if the call is successful.
-1 if a failure occurs.

Socket descriptor of a local socket.

Pointer to an address structure that contains the socket address
of the peer socket that is connected to socket. The address
structure should be of sockaddr in type. Refer to
“Preparing Socket Address Variables” in the BSD IPC Reference
Manual for NS-ARPA/1000 and ARPA/1000 for details.

Pointer to an integer variable that contains the length, in bytes,
of the address structure specified by addr (for example, length
of structure sockaddr in, which is 16 bytes).

On return, pointer to an integer variable that contains the
actual length of the peer socket address. If addr does not
point to enough space to contain the whole socket address of
the peer socket, only the first addrIen bytes of the address are
filled in the structure pointed to by addr.

Returns protocol information on the specified protocol name.

protocol = getprotobyname (name)

struct protoent

char

protocol

name

*protocol;
*name;

Pointer to a protoent structure that contains the protocol
information returned by getprotobyname ().

The protoent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

Pointer to string that contains the protocol name from which to
get protocol information. It can be either an official protocol
name or an alias. Terminate the string with the character \ 0.

Berkeley Software Distribution Interprocess Communication 4-25

getprotobynumber()
Returns protocol information on the specified protocol number.
protocol = getprotobynumber (protonumb)

struct protoent *protocol;
int protonumb;

protocol Pointer to a protoent structure that contains protocol
information returned by getprotobynumber ().

The protoent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

protonumb Protocol number from which to get protocol information.

getprotoent()

Reads the next line of the /etc/protocols file and returns the protocol information.
protocol = getprotoent ()
struct protoent *protocol;

protocol Pointer to a protoent structure that contains protocol
information returned by getprotoent ().

The protoent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

4-26 Berkeley Software Distribution Interprocess Communication

getservbyname()
Returns service information on the specified service name.
service = getservbyname (name, proto)

struct servent *service;
char *name, *proto;

service Pointer to a servent structure that contains service
information returned by get servbyname ().

The servent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET . FTNI, for C,
Pascal, and FORTRAN programs, respectively.

name Pointer to string that contains the service name from which to
get information on the service. It can be either an official
service name or an alias. Terminate the string with the
character \ 0.

proto Pointer to string that contains the name of the transport
protocol to use when contacting the service. Use “tcp” or 0 if
TCP is the only protocol for the service. (Remember to
terminate the string with the character \ 0.)

getservbyport()
Returns service information on the specified port number.
service = getservbyport (port, proto)

struct servent *service;

int port;
char *proto;
service Pointer to a servent structure that contains service

information returned by get servbyname ().

The servent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET.FTNI, for C,
Pascal, and FORTRAN programs, respectively.

port Port number from which to get information on the service.

proto Pointer to string that contains the name of the transport
protocol to use when contacting the service. Use “tcp” or 0 if
TCP is the only protocol for the service. Terminate string with
character \ 0.

Set this value to NULL if you do not want to specify any specific
protocol.

Berkeley Software Distribution Interprocess Communication = 4-27

getservent()

Reads the next line of the /etc/services file and returns information on the service.
service = getservent ()
struct servent *service;

service Pointer to a servent structure that contains service
information returned by get servent ().

The servent structure is defined in the include files
<netdb.h>, SOCKET.PASI, and SOCKET . FTNI, for C,
Pascal, and FORTRAN programs, respectively.

getsockname()

Returns the socket address of the specified local socket.

result = getsockname (socket, addr, addrlen)

int result, socket, *addrlen;
struct sockaddr in *addr;

result 0 if the call is successful.
-1 if a failure occurs.
socket Socket descriptor of a local socket.
addr Pointer to a socket address variable to contain the address of

the specified socket. The socket address should be of
sockaddr intype.

On return, the socket address structure will contain the local
socket address information.

addrlen Pointer to an integer variable that contains the length, in bytes,
of the address structure specified by addr (for example, length
of structure sockaddr in, which is 16 bytes).

On return, it is the pointer to an integer that contains the actual
length of the socket address returned in addr. If addr does
not point to enough space to contain the whole address of the
socket, only the first addrlen bytes of the address are
returned.

htonl()

Converts a 32-bit quantity from host order to network order.
netlong = htonl (hostlong)
u_long netlong, hostlong;

netlong 32-bit integer in network order, returned by htonl ().

hostlong 32-bit integer in host order.

4-28 Berkeley Software Distribution Interprocess Communication

htons()
Converts a 16-bit quantity from host order to network order.
netshort = htons (hostshort)

u_short netshort, hostshort;

netshort 16-bit integer in network order, returned by htons ().
hostshort 16-bit integer in host order.
inet_addr()

Interprets character strings representing numbers in the Internet standard “dot” notation,
and returns numbers suitable for use as Internet (IP) addresses.

IPaddr = inet addr (string)

struct in addr IPaddr;

char *string;
IPaddr Internet (IP) address returned by inet addr ().
string Pointer to a character string representing numbers expressed in

the Internet standard “dot” notation, such as: “192.41.233.2”.
Terminate the string with the character \ 0.
inet_Inaof()

Breaks apart an IP address and returns the node address portion of the IP address.

node = inet lnaof (IPaddr)

u_long node;
struct in addr IPaddr;

node Node address portion of the IP address returned by
inet 1lnaof ().

IPaddr IP address of a host. IP addresses for the Internet family are
stored in an address variable of type in_addr.

Berkeley Software Distribution Interprocess Communication 4-29

inet_makeaddr()

Constructs an Internet (IP) address from an Internet network address and a local node
address.

IPaddr = inet makeaddr (net, node)

struct in addr IPaddr;
u_long net, node;

IPaddr Internet (IP) address constructed from the specified network
address and node address.

IP addresses for the Internet family are stored in an address
variable of type in_addr. Refer to “Preparing Socket
Addresses” in BSD IPC Reference Manual for NS-ARPA/1000
and ARPA/1000 for more information on in_addr.

net Internet network number that defines the network on which a
node resides. The network number makes up a portion of an IP
address.

node Internet node address that defines the address of a node within
anetwork. The node address makes up a portion of an IP
address.

inet_netof()
Breaks apart an IP address and returns the network address portion of the IP address.
network = inet netof (IPaddr)

u_long network;
struct in addr IPaddr;

network Network address portion of the IP address returned by
inet netof ().

IPaddr IP address of the local host. IP addresses for the Internet
family are stored in an address variable of type in_addr.

inet_network()

Interprets character strings representing numbers in the Internet standard “dot” notation,
and returns numbers suitable for use as Internet network numbers.

network = inet network (string)

struct in addr network;

char *string;
network Internet network number returned by inet network ().
string Pointer to character string representing numbers expressed in

the Internet standard “dot” notation, such as: “192.41.233.2”.
Terminate the string with the character \ 0.

4-30 Berkeley Software Distribution Interprocess Communication

inet_ntoa()

Takes an Internet (IP) address and returns an ASCII string representing the address in
“dot” notation.

string = inet ntoa (IPaddr)

char *string;
struct in addr IPaddr;

string Pointer to character string representing numbers expressed in

the Internet standard “dot” notation, such as: “192.41.233.2”.
Terminate the string with character \ 0.

See “Internet Dot Notation” in Appendix D of the BSD IPC
Reference Manual for NS-ARPA/1000 and ARPA/1000 for more

information on dot notation.

IPaddr Internet (IP) address. IP addresses for the Internet family are

stored in an address variable of type in_addr.

ntohl()
Converts a 32-bit quantity from network order to host order.
hostlong = ntohl (netlong)

u_long hostlong, netlong;

hostlong 32-bit integer in host order, returned by ntohl ().
netlong 32-bit integer in network order.
ntohs()

Converts a 16-bit quantify from network order to host order.
hostshort = ntohs (netshort)
u_short hostshort, netshort;

hostshort 16-bit integer in host order, returned by ntohs () .

netshort 16-bit integer in network order.

Berkeley Software Distribution Interprocess Communication

4-31

sethostent()

Opens and rewinds the /etc/hosts file.
result = sethostent (stayopen)
int result, stayopen;

result 0 if the call is successful.
-1 if a failure occurs.

stayopen A zero value closes the /etc/hosts file after each call to the
file by one of the following calls: gethostbyaddr (),
gethostbyname (), and gethostent ().

A non-zero value leaves the /etc/services file open after a
gethostbyaddr (), gethostbyname (), or

gethostent () call. This allows the next gethostent () to
read from the next line of the /et c/hosts file rather than
from the beginning of the file.

setnetent()

Opens and rewinds the /etc/networks file.
result = setnetent (stayopen)
int result, stayopen;

result 0 if the call is successful.
-1 if a failure occurs.

stayopen A zero value closes the /etc/networks file after each call to
the file by one of the following calls: getnetbyaddr (),
getnetbyname (), and getnetent ().

A non-zero value leaves the /etc/services file open after a
getnetbyaddr (), getnetbyname (), or getnetent ()
call. This allows the next getnetent () to read from the next
line of the /et c/networks file rather than from the
beginning of the file.

setprotoent()

Opens and rewinds the /etc/protocols file.
result = setprotoent (stayopen)
int result, stayopen;

result 0 if the call is successful.

-1 if a failure occurs.

stayopen A zero value closes the /etc/protocols file after each call
to the file by one of the following calls: getprotobyname (),
getprotobynumber (), and getprotoent ().

A non-zero value leaves the /etc/protocols file open after
agetprotobyname (), getprotobynumber (), or
getprotoent () call. This allows the next getprotoent ()
to read from the next line of the /etc/protocols file rather
than from the beginning of the file.

4-32 Berkeley Software Distribution Interprocess Communication

setservent()

Opens and rewinds the /etc/servicesfile.
result = setservent (stayopen)
int result, stayopen;

result 0 if the call is successful.
-1 if a failure occurs.

stayopen A zero value closes the /etc/services file after each call to
the file by one of the following calls: getservbyname (),
getservbyport (), and getservent ().

A non-zero value leaves the /etc/services file open after a
getservbyname (), getservbyport (), or

getservent () call. This allows the next getservent () to
read from the next line of the /etc/services file rather
than from the beginning of the file.

Socket Descriptor Utilities

BSD IPC socket descriptor utilities operate on socket descriptor bitmasks. Socket
descriptor bitmasks are used by the select () call to specify which sockets are ready for
reading, writing, or have exceptional conditions pending.

The socket descriptor utilities are summarized here in alphabetical order.

Note The bitmasks are stored in a special data type defined as
fd_set, which is defined in the header files for C (types . h),
Pascal (SOCKET . PAST), and FORTRAN (SOCKET . FTNI).

FD_CLR()

Clears the specified socket descriptor’s bit in the bitmask.
FD CLR (socket, bitmask)

int socket;
fd set *bitmask;

socket Socket descriptor of a local socket.

bitmask Pointer to a variable of £d_set type which contains the
bitmask of the socket descriptors.

Berkeley Software Distribution Interprocess Communication 4-33

FD_ISSET()

Tests whether the specified socket descriptor’s bit is set in the specified bitmask.
result = FD _ISSET (socket, bitmask)

int result, socket;
fd set *bitmask;

result Result of FD ISSET () call.

result = 1 means the bit is set for the specified socket
descriptor, socket. Otherwise, result = 0.

socket Socket descriptor of a local socket.

bitmask Pointer to a £d_set variable type which contains the bitmask
of the socket descriptors.

FD_SET()

Sets the specified socket descriptor’s bit in the bitmask.
FD SET (socket, bitmask)

int socket;
fd set *bitmask;

socket Socket descriptor of a local socket.

bitmask Pointer to a variable of type £d_set which contains the
bitmask of the socket descriptors.

FD_ZERO()

Clears the entire bitmask.
FD ZERO (bitmask)
fd set *bitmask;

bitmask Pointer to a variable of type £d_ set which contains the
bitmask of the socket descriptors.

4-34 Berkeley Software Distribution Interprocess Communication

Error Messages

Errnois a standard error variable used in UNIX* programming. For portability, the C
library (HPC . LIB) also returns error values in a global variable called errno. The
following is a list of the error messages for HP 1000 BSD IPC.

Table 4-3. Error Messages

Value of
errno Error Mnemonic Meaning

1 [ENFILE] Currently there are no resources available.

13 [EINVAL] One of the following occurred:

The value of a specified parameter is invalid.
The socket is not a BSD IPC socket.

The socket has already been shut down.
The socket is not ready to accept
connections yet. Alisten () call must be
done before an accept () call.

The socket is already bound to an address.

202 [EAGAIN] Nonblocking I/O is enabled and:

1. foraccept (), no connection is present
to be accepted.

2. for send (), the socket does not have
space to accept any data at all.

203 [EEFAULT] For getsockopt () and setsockopt (),
the optval or optlen parameter is not
valid.

204 [EMFILE] The maximum number of socket descriptors
for this process are already currently open.
This could happen since sockets need to be
created for internal use.

205 [EPIPE] An attempt was made to send on a socket
whose connection has been shut down by
the remote peer process.

215 [EMSGSIZE] In nonblocking mode, the socket requires
that messages be sent atomically, and the
message size exceeded the outbound buffer
size.

216 [ENOTSOCK] The socket descriptor, socket, is not a valid
socketdescriptor.

220 [ENOPROTOOPT] The requested socket option is currently not
set.

221 [EPROTONOSUPPORT] | The specified protocol is not supported.

222 [ESOCKTNOSUPPORT] | The specified socket type is not supported in
this address family.

223 [EOPNOTSUPP] The socket descriptor, socket, does not
support this call or a parameter in this call.

*UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited.

Berkeley Software Distribution Interprocess Communication 4-35

Value of
errno Error Mnemonic Meaning

225 [EAFNOSUPPORT] Addresses in the specified address family
cannot be used with this socket.

226 [EADDRINUSE] The specified address is already in use.

227 [EADDRNOTAVAIL] The specified address is invalid or not
available.

232 [ECONNRESET] Connection has been aborted by the remote
process.

233 [ENOBUFS] No buffer space is available. The call cannot
be completed.

234 [EISCONN] The socket is already connected.

235 [ENOTCONN] The socket has not been connected yet.

236 [ESHUTDOWN] The network software on the system is not
running. Or the socket has already been
shut down for send or receive.

238 [ETIMEDOUT] Connection establishment timeout without
establishing a connection.

239 [ECONNREFUSED] The attempt to connect was rejected by the
server.

240 [EREMOTERELEASE] The remote side has done a send shutdown;
hence, there will be no more data to receive.

241 [EHOSTDOWN] The network software on the local host is not
running.

242 [EHOSTUNREACH] The network software was unable to
determine a route to the destination host.

245 [EINPROGRESS] Nonblocking I/O is enabled and the
connection has been initiated. Thisis nota
failure. Use select () to find out when the
connection is complete.

299 [EINTERR] This error requires HP notification.

4-36 Berkeley Software Distribution Interprocess Communication

Network File Transfer

Table of Contents

File Copying Formats i 5-1
Interactive Network File Transfer oo, 5-1
Copy DesCIiptoro 5-1
Interrupting the Copy Process i 5-4
DSCOPY Commandsooiiiiiiii i 5-5
+CLEAR 5-5
+DEFAULT ... 5-5
+ECHO . .. 5-5
FE X 5-5
FLL 5-5
+RU 5-6
FSHOW o 5-6
+TRANSFER o 5-6
FW D 5-6
PHELP) ..o 5-6
Programmatic Network File Transfer o it 5-7
DSCOPY .. 5-7
DSCOPYBUILD ... e 5-8
Error MESSAZES . . . v v ottt ettt e e e e e e 5-10

5-A

File Copying Formats

NFT uses two file copying formats: Transparent Format and Interchange Format.

Transparent Format is invoked by default when files are copied between NS-ARPA/1000
systems. Transparent Format does not alter a file’s attributes, but simply copies the file.

You must invoke Interchange Format explicitly by specifying one or more of the
Interchange Format options. (These options are explained later in this section.)
Interchange Format is useful when you want to change certain source file attributes, such
as record length, at the target file.

Interactive Network File Transfer

You can use NFT interactively by running the program DSCOPY.

, copydescriptor
DSCOPY I: , dscopycommand :I

copydescriptor A copy descriptor. May be a maximum of 256 characters long.
The syntax of copydescriptor is provided below.
dscopycommand A DSCOPY command. The DSCOPY commands are

described later in this section.

Copy Descriptor
The copy descriptor allows you to specify the files or directories you wish to copy.

sfile([slogon]] [>snode] { ’ATOA} tfile[[tlogon]] [,option] [,option]...]

sfile The source file; the name of the file to be copied.

[slogon] The logon and password, if any, at the node where the source
file resides. Must be enclosed in brackets ([1). This
parameter is required if the source node is a remote multiuser
HP 1000.

Default: 1f slogonis omitted and the source node is the local
node, the account under which DSCOPY was scheduled is used.

>snode The name of the source node. Must be preceded by “>.” Must
be in the form node [. domain[.organization]].
Default: You may omit the organization, organization and
domain, or all parts of the node name. If the organization, or
organization and domain, are omitted, the local organization
and/or domain will be used. If the entire node name is omitted,
it will default to the local node.

tfile The target file; the name the source file will acquire at the
target node.

Network File Transfer 5-1

[tlogon]

>tnode

option

The logon and password, if any, at the target node. Must be
enclosed in brackets ([]). This parameter is required if the
target node is a remote multiuser HP 1000.

Default: 1f t 1ogonis omitted and the target node is the local
node, the account under which DSCOPY was scheduled is used.

The name of the target node. Must be preceded by “>.” Must
be in the form node [. domain[.organization]].
Default: You may omit the organization, organization and
domain, or all parts of the node name. If the organization, or
organization and domain, are omitted, the local organization
and/or domain will be used. If the entire node name is omitted,
it will default to the local node name.

May be one or more of the options described below; there is no
limit to the number of options you can specify. Each option
must be separated by a comma, semicolon, or space, but
different delimiters cannot be used in the same copy descriptor.
If conflicting options are given (for example, ASCIT and
BINARY), DSCOPY will issue a warning and the last option
given will take precedence. The first eight options described
below cause Interchange Format to be used.

AS[CII] Specifies that records contain printable
ASCII characters and that spaces should be
used as padding when creating fixed length
records. This option may be used in
conjunction with the STRIP option to
indicate that spaces should be stripped from
the ends of records.

Default: 1f the source file is ASCII, the target
file will be ASCII.

BI [NARY] Specifies that records contain binary
information and that null characters (numeric
zeros) should be used as padding when
creating fixed length records. This option
may be used in conjunction with the STRIP
option to indicate that nulls should be
stripped from the ends of records.

Default: 1f the source file is binary, the target
file will be binary.

FI [XED] Specifies that source file records should be
formed into fixed length records. (Record
size can be specified using the RSIZE option
and the type of padding used can be specified
using the ASCII or BINARY options.)
Default: For HP 1000 type 1 and 2 source
files, the target file will have fixed length
records. For other types of HP 1000 files, the
target file will have variable length records.

5-2 Network File Transfer

FS[IZE]=
filesize

IN [TERCHANGE]

RS[IZE]=

recordsize

ST [RIP]

VA [RIABLE]

Specifies how much space (filesize) to
allocate for the target file. If the target file
has fixed length records, filesizeis in
records. If the target file has variable length
records, filesize is the number of
maximum size records. This option can be
used instead of the HP 1000 file descriptor
size parameter to specify the size of an

HP 1000 target file.

Default: The target file will be the same size
as the source file.

Overrides the default copy format and causes
the file or files to be copied using Interchange
Format.

Default: DSCOPY will use Transparent
Format. Interchange Format is also used if
the ASCII, BINARY, FIXED, FSIZE,
RSIZE, STRIP, or VARIABLE options are
specified.

Specifies the record size (recordsize) in
bytes. If fixed length records are being
produced, recordsize is the size of each
record. If variable length records are being
produced, recordsi ze limits the size of the
largest record. DSCOPY will issue a warning
if it must truncate records in order to execute
this option.

Default: The target file will have the same
record size as the source file.

Strips any record padding from the ends of
records. You can use this option to create
variable length records from fixed length
records. (Also see the VARIABLE option.)
The type of padding to strip is based on the
type of the source file. For HP 1000 type 4
files, spaces are stripped. In other HP 1000
file types, null characters are stripped. You
can use this option in conjunction with
RSIZE to truncate records. Records will be
truncated before padding is stripped.
Default: Padding is not stripped.

Specifies that source file records should be
formed into variable length records. The
maximum size of a variable length record may
be given using the RSIZE option.

Default: For HP 1000 type 1 or 2 files, the
target file will have fixed length records. For
all other HP 1000 file types, the target file
will have variable length records.

The next four options can be used when a file is copied using
Transparent Format. They can also be used in conjunction with
Interchange Format options.

Network File Transfer 5-3

MO [VE] Purges the source file after it has been
successfully copied to the target system.
DSCOPY will issue a warning if the file
cannot be purged. You must have proper
access rights, including any security code, to
purge the file. If a directory is copied, the
files within the directory and any
subdirectories will be purged, but the
directory and subdirectories will not be
purged.

Default: The source file is not purged.

QU [IET] Suppresses the printing of warnings and file
names to the list file or device. Error
messages cannot be suppressed.

Default: Warnings, file names, and error
messages are printed to the list file.

RE [PLACE] If the target file exists, this option causes it to
be purged and a new file created by the same
name. The original file is purged only after
the new file is copied successfully to the
target system.

Default: The target file is not replaced and an
error message is returned if it already exists.

SI[LENTI] Suppresses the printing of warnings, file
names, and error messages to the list file or
device. Same as the QUIET option, except
that error messages are also suppressed.
Default: Warnings, file names, and error
messages are printed to the list file.

Interrupting the Copy Process

To interrupt DSCOPY, hit any key to enter breakmode and then type one of the following
commands: A to Abort, C to Cancel, S for Status information, or H for Help.

5-4

Abort. Terminates DSCOPY and saves the portion of the target file that has been
created thus far. You can also use the A command to exit an active transfer file and
return control to the scheduling terminal. Although you can abort a copy descriptor at
any time, the target file may be in an inconsistent state if aborted prematurely.

Cancel. Terminates DSCOPY and purges the target file. You can also use the C
command to exit an active transfer file and return control to the scheduling terminal.
You can cancel a copy descriptor at any time.

Status. Indicates the percentage of the file that has been transmitted to the target
node; not all of this data may actually have been received at the target. This number is
not exact and should be considered an estimate.

Help. Provides an explanation of the A, C, and S commands.

Network File Transfer

DSCOPY Commands

+CLEAR

Clears all currently active copy descriptor defaults that have been set with the +DEFAULT
command.

+CL [EAR]

+DEFAULT

Sets defaults for portions of subsequently issued copy descriptors.
+DE [FAULT] , copydescriptor

copydescriptor A copy descriptor.

+ECHO

Causes commands to be echoed, or not echoed, to the list file or device.

OoN
EC[HO] |
+ECI][ﬁﬁé]
N

OFF Turns echo off. (DSCOPY does not echo commands to the list
file or device by default.)

Causes commands to be echoed to the list file or device. This is
the default if +ECHO is issued without a parameter.

O

+EX

Exits DSCOPY.

+EX

+LL

Changes the list file or device.
+LL, 1filedev

1filedev The name of a list file or the LU of a device.

Network File Transfer 5-5

+RU

Runs a program from within DSCOPY.
+RU, progname

progname The name of the program to be run.

+SHOW

Shows all currently active copy descriptor defaults set with the +DEFAULT command.

+SH [OW]

+TRANSFER

Transfers control to a command file or device.
+TR [ANSFER] , cmdfiledev

cmdfiledev The name of the command file or the LU of the device that will
have control.

+WD

Displays or changes the current working directory.
+WD [, directoryname]

directoryname The name of the new working directory. May be a subdirectory.

? (HELP)
Requests help information for any command or copy descriptor option.
? [, commandoption]

commandoption Any DSCOPY command or copy descriptor option.

5-6 Network File Transfer

Programmatic Network File Transfer

Two calls are provided to copy files programmatically: DscopyBuild and Dscopy. The
DscopyBuild call creates a copy descriptor that can be used by the Dscopy call to copy

the file or files specified.

DSCOPY

Copies a file or files.

DSCOPY (builtdescriptor, result)

builtdescriptor

result

Character array (FORTRAN); String (PASCAL). A
buffer of variable length that contains a copy descriptor or a
DSCOPY command. The builtdescriptor parameter may
be created programmatically by calling DscopyBuild.
(DscopyBuild is described later in this section.)

Array of 16-bit integers. A five-word array returned
by Dscopy. The first word contains the number of errors that
occurred while the file, or files, were being copied. The second
word returns the error code, if any; zero is returned if the file or
files are copied successfully. (If multiple files are copied, the
error code is the result of the last attempted file copy.) The last
three words of this parameter are reserved for future use. The
DSCOPY error codes are described in the NS/1000 Error
Message and Recovery Manual.

Note If your program is written in Pascal/1000, Version 2, you must set
the FIXED STRING option before declaring Dscopy. In
addition, the routines Set St rLen and St rMax must be used to
initialize the builtdescriptor string. FIXED STRING,
SetStrLen and StrMax are described in the Pascal/1000
Reference Manual. If your program is written in Pascal/1000,
Version 1, you must use the routine StrDsc to convert the
builtdescriptor string to a format that can be processed by
both the calling program and DSCOPY. This routine is
described in the RTE-A Programmer’s Reference Manual.

Network File Transfer 5-7

DSCOPYBUILD

Builds a copy descriptor to be used in the Dscopy call.

DSCOPYBUILD (builtdescriptor,sfile, slogon|, snode] ,tfilel[, tlogon]
[, tnode] ,options, rsize, fsize)

builtdescriptor Character array (FORTRAN); String (PASCAL).
The returned copy descriptor to be used in the Dscopy call.
Will be blank-padded if less than the length declared.

sfile Character array (FORTRAN); String (PASCAL).
The source file; the name of the file to be copied.

slogon Character array (FORTRAN); String (PASCAL).
The logon and password, if any, at the node where the source
file resides. Do not enclose in brackets. This parameter is
required if the source node is a remote multiuser HP 1000.
Default: If this parameter omitted and the source node is the
local node, the account under which the program is running is
used.

snode Character array (FORTRAN); String (PASCAL).
The name of the source node. Must be in the form
nodel[.domainl.organization]].
Default: You may omit the organization, organization and
domain, or all parts of the node name. If the organization, or
organization and domain, are omitted, the local organization
and/or domain will be used. If the entire node name is omitted,
it will default to the local node name.

tfile Character array (FORTRAN); String (PASCAL).
The target file; the name the source file will acquire at the
target node.

tlogon Character array (FORTRAN); String (PASCAL).

The logon and password, if any, at the target node. Do not
enclose in brackets. This parameter is required if the source
node is a remote multiuser HP 1000.

Default: If this parameter is omitted and the target node is your
local node, the account under which the program is running is
used.

tnode Character array (FORTRAN); String (PASCAL).
The name of the target node. Must be in the form
nodel[.domainl.organization]].
Default: You may omit the organization, organization and
domain, or all parts of the node name. If the organization, or
organization and domain, are omitted, the local organization
and/or domain will be used. If the entire node name is omitted,
it will default to the local node name.

options 32-bit integer. A two-word (32-bit) parameter which
identifies specific options. An option is included if its
corresponding bit is set. If no bits are set, no options are
specified. The options and their corresponding bits are listed
below (zero represents the least significant bit). These options
are equivalent to those that can be used with DSCOPY
interactively. For an explanation of the meaning of the

5-8 Network File Transfer

following options, refer to the “Copy Descriptor” discussion in
this section.

0 Reserved for future use.
1 ASCIT

2 BINARY

3 Reserved for future use.
4 FIXED

5 INTERCHANGE

6 MOVE

7 OVERWRITE

8 QUIET

9 REPLACE

10 STRIP

11 VARIABLE

12 SILENT

13 through 31 Reserved for future use.

rsize 32-bit integer. Appendsthe RSIZE option to the
builtdescriptor. The value in rsizeis in bytes. If fixed
length records are being produced, rsize is the size of each
record. Ifvariable length records are being produced, rsize
limits the size of the largest record and records may be padded
or truncated. If rsize is zero, the RSIZE option is not
appended to the builtdescriptor and the target file will
have the same record size as the source file. You cannot copy
files with records longer than 4400 bytes to or from an
HP 1000.

fsize 32-bit integer. Appendsthe FSIZE option to the
builtdescriptor. The value in £size specifies how much
space to allocate for the target file. If the target file has fixed
length records, £sizeisin records. If the target file has
variable length records, fsi ze is the number of maximum size
records. You can use this option instead of the HP 1000 file
descriptor size parameter to specify the size of an HP 1000
target file. If fsizeis zero, the FSIZE option is not appended
to the builtdescriptor and the target file will be the same
size as the source file.

If your program is written in Pascal/1000, Version 2, you must set the FIXED STRING
option before declaring DscopyBuild. In addition, the Pascal routines Set StrLen and
StrMax must be used to initialize the builtdescriptor string prior to calling
DscopyBuild. FIXED STRING, SetStrLen, and StrMax are described in the
Pascal/1000 Reference Manual. 1f your program is written in Pascal/1000, Version 1, you
must use the routine StrDsc to convert the builtdescriptor string to a format that
can be processed by both the calling program and DSCOPY. This routine is described in
the RTE-A Programmer’s Reference Manual.

Network File Transfer 5-9

Error Messages

The following error messages are returned to the current list device when DSCOPY is run

interactively.

DSCOPY User Error Messages

Message

Meaning

APPEND overrides REPLACE or
OVERWRITE
(NFT/1000 WARN -1)

Only APPEND, OVERWRITE, or REPLACE can be in effect at one
time.

option overrides previous data
type setting
(NFT/1000 WARN -2)

Only ASCII or BINARY may be in effect at one time. One of
these options was given while the other was in effect.

OVERWRITE overrides APPEND or
REPLACE
(NFT/1000 WARN -4)

Only APPEND, OVERWRITE, or REPLACE may be in effect at one
time. OVERWRITE was given while APPEND or REPLACE was in
effect.

option overrides previous
setting
(NFT/1000 WARN -5)

An option (option) was given a value while a previous value
was in effect.

option overrides previous
record type setting
(NFT/1000 WARN -6)

Only FIXED or VARIABLE may be in effect at one time. One of
these options was given while the other was in effect.

REPLACE overrides APPEND or
OVERWRITE
(NFT/1000 WARN -7)

Only REPLACE, APPEND, or OVERWRITE may be in effect at one
time. REPLACE was given while APPEND or OVERWRITE was in
effect.

Source logon or node name
overrides previous setting
(NFT/1000 WARN -8)

The source logon or node name given in the copy descriptor will
override the default setting for the current copy descriptor.
Subsequent copy descriptors will not be affected.

Target logon or node name
overrides previous setting
(NFT/1000 WARN -9)

The target logon or node name given in the copy descriptor will
override the default setting for the current copy descriptor.
Subsequent copy descriptors will not be affected.

Input line too long
(NFT/1000 ERR -10)

The input line was greater than 80 characters.

Cannot find closing quotation
mark
(NFT/1000 ERR -13)

An opening quotation mark was given in the command but the
closing quotation mark could not be found.

No source file was given
(NFT/1000 ERR -14)

No source file was specified in the copy descriptor.

Cannot find last square bracket
for logon string
(NFT/1000 ERR -15)

A logon string must be terminated by a square bracket (1).

Logon string is too long
(NFT/1000 ERR -16)

A logon string must not be greater than 60 characters.

Node name is too long
(NFT/1000 ERR -17)

A node name must not be greater than 50 characters.

File name is too long
(NFT/1000 ERR -18)

A file name must not be greater than 256 characters.

Illegal command
(NFT/1000 ERR -19)

The command issued is illegally formed.

Unknown command
(NFT/1000 ERR -20)

DSCOPY does not recognize the command.

option is an unknown copy
descriptor option
(NFT/1000 ERR -21)

DSCOPY does not recognize the copy descriptor option.

5-10 Network File Transfer

Message

Meaning

Error in option value for
option option
(NFT/1000 ERR -22)

The value associated with option is invalid.

File names cannot be defaulted
(NFT/1000 ERR -23)

An attempt was made to default a file name.

Input command is too big
(NFT/1000 ERR -24)

The input command is greater than 256 characters.

Cannot open file filename
(NFT/1000 ERR -25)

DSCOPY was unable to open the given file due to an unknown
error.

Unable to initialize DSCOPY
(NFT/1000 ERR -26)

This error returned because: (1) DSCOPY was unable to acquire
sufficient resources; or (2) an error occurred in accessing DSAM
or DSAM tables.

Cannot create a sparse/variable
length record file
(NFT/1000 ERR -27)

The target computer does not support sparse files with variable
length records.

Cannot schedule PRDC1 helper
program
(NFT/1000 ERR -28)

PRDC1 could not be scheduled. Either it could not be found, or
there are insufficient resources.

Cannot schedule DSCOPY program
(NFT/1000 ERR -29)

The Dscopy call could not schedule the DSCOPY program.

DSCOPY aborted
(NFT/1000 ERR -30)

The DscopY call noticed that the DSCOPY program was
terminated for some reason.

Cannot schedule Producer
program on source computer
(NFT/1000 ERR -31)

The Producer program could not be scheduled.

Cannot schedule Consumer
program on target computer
(NFT/1000 ERR -32)

The Consumer program could not be scheduled.

Record size is too large
(NFT/1000 ERR -33)

The source computer or the target computer could not accept
the interchange file copy request because of buffer space
limitations.

File is of inappropriate type
(NFT/1000 ERR -34)

Either the TR or LL command was given a file which is of an
unacceptable type.

Read from input file failed
(NFT/1000 ERR -35)

An unknown error occurred in reading from the input file. The
file may be corrupt or the record read was too long.

Transfer succeeded
(NS/NFTERR 0)

The file copy process was successful.

Internal NFT error
(NS/NFTERR 1)

An internal NFT error has occurred.

Unable to logon to source
computer
(NS/NFTERR 2)

An error occurred in logging on to the source computer, or no
logon string was given when one was required.

Unable to logon to target
computer
(NS/NFTERR 3)

An error occurred in logging on to the target computer, or no
logon string was given when one was required.

Unable to open or access source
file or device
(NS/NFTERR 4)

A file system error occurred in opening or accessing the source
file because of protection violation or unsupported device.

Unable to connect to source
computer
(NS/NFTERR 5)

A connection could not be established to the computer where
the source file resides.

Unable to connect to target
computer
(NS/NFTERR 6)

A connection could not be established to the computer where
the target file resides.

Insufficient resources at
source computer
(NS/NFTERR 7)

There are insufficient resources at the source computer to copy
the file or files. Refer to the qualifying error string.

Network File Transfer 5-11

Message

Meaning

Insufficient resources at
target computer
(NS/NFTERR 8)

There are insufficient resources at the target computer to copy
the file or files. Refer to the qualifying error string.

Source file not found
(NS/NFTERR 9)

The source file does not exist or the name was misspelled.

Target file not found
(NS/NFTERR 10)

The target file does not exist or the name was misspelled.

Transfer terminated by user
(NS/NFTERR 11)

Acknowledges the user’s abort or cancel request.

Requested data type refused
(NS/NFTERR 14)

The user-defined data type (ASCII or BINARY) was refused.

Requested record type refused
(NS/NFTERR 15)

The user-defined record type (FIXED or VARIABLE) was
refused.

Requested record size refused
(NS/NFTERR 17)

The user-defined record size value (RSIZE) was refused.

Requested file size refused
(NS/NFTERR 18)

The user-defined file size value (FSIZE) was refused.

Conflicting attributes or
options
(NS/NFTERR 19)

An attempt was made to send a sparse file with variable length
records to a target computer that does not support this file type,
or that contains conflicting attributes.

Target record size is invalid
(NS/NFTERR 20)

The user-defined record size (RSIZE) value is out of the
acceptable range.

Target file size is invalid
(NS/NFTERR 21)

The user-defined file size (FSIZE) value is out of the acceptable
range.

Target file already exists
(NS/NFTERR 22)

The target file exists and neither APPEND, REPLACE, Or
OVERWRITE was specified.

Need password to access source
file
(NS/NFTERR 23)

The source file could not be accessed without the proper
password.

Need password to access target
file
(NS/NFTERR 24)

The target file could not be accessed without the proper
password.

Out of disk space
(NS/NFTERR 25)

The target computer is out of disk space.

Connection to source computer
went down
(NS/NFTERR 26)

An error was detected on the connection to the computer where
the source file or files reside.

Connection to target computer
went down (NS/NFTERR 27)

An error was detected on the connection to the computer where
the target file or files are to be created.

Unable to purge target file
(NS/NFTERR 28)

The existing target file could not be purged for some reason.

Invalid target file name
(NS/NFTERR 29)

The target file name is not valid for the target computer.

Unable to purge source file
(NS/NFTWARN 30)

The source file could not be purged for some reason after the
file copy succeeded (the MOVE option was given).

Read from source file failed
(NS/NFTERR 31)

An unexpected source file system error occurred when reading
from the source file.

Write to target file failed
(NS/NFTERR 32)

An unexpected file system error occurred when writing data to
the target file.

Unable to create or open target
file
(NS/NFTERR 33)

An unexpected file system error occurred in creating or opening
the target file.

Invalid or unsupported source
device
(NS/NFTERR 34)

A request was made to copy a file from a non-disk device. This
is not supported.

5-12 Network File Transfer

Message

Meaning

Invalid or unsupported target
device
(NS/NFTERR 35)

A request was made to copy a file to a non-disk device. This is
not supported.

Unable to close target file
(NS/NFTERR 36)

An unexpected file system error occurred in closing the target
file.

Incorrect source file password
(NS/NFTERR 38)

The given source file password was incorrect.

Incorrect target file password
(NS/NFTERR 39)

The given target file password was incorrect.

Removed invalid characters in
target file name
(NS/NFTWARN 41)

The target file name contained some characters which were
invalid for the target computer, and they were removed from the
target file name before it was created.

Target file name was truncated
(NS/NFTWARN 42)

The target file name was too large for the target computer and
was truncated.

Source and target file
attributes differ
(NS/NFTWARN 43)

The source file attributes had to be modified so that the file
could be copied to the target computer.

Records were truncated to fit
in target file
(NS/NFTWARN 44)

The user-defined record size value (RSIZE) was smaller than the
size of the largest record in the source file and one or more
records in the source file were truncated.

Not compressing for this
transfer
(NS/NFTWARN 45)

Either the source and/or the target computer does not support
data compression (the COMPRESS option) or the file is being
copied locally.

Unable to turn on tracing
(NS/NFTWARN 46)

Indicates that an internal error has occurred.

Cannot strip padding from fixed
length records
(NS/NFTWARN 47)

The source file has fixed length records but the VARIABLE
option was not given, or the target computer requested that the
target file should have fixed length records.

Unable to access target file or
device
(NS/NFTERR 48)

An unexpected file system error occurred in accessing the target
file.

Invalid source file name
(NS/NFTERR 49)

The source file name is invalid on the source computer.

No files matched source
specification
(NS/NFTERR 50)

The source file name contained one or more wildcard
characters, or was a directory, but no files or directories were
matched by it.

APPEND option is not supported
(NS/NFTERR 51)

The APPEND option is not supported on the target computer.

OVERWRITE option is not
supported
(NS/NFTERR 52)

The OVERWRITE option is not supported on the target computer.

Unable to create directory
(NS/NFTERR 53)

An unexpected file system error occurred in creating a directory
on the target computer.

Error creating or accessing
scratch file on source node
(NS/NFTERR 54)

An unexpected file system error occurred in reference to a
scratch file on the source computer.

Unable to start NFT service on
the source node
(NS/NFTERR 55)

An NFT server program could not be initialized on the source
computer. Either the server program could not be scheduled or
the server could not enter the proper session.

Unable to start NFT service on
the target node
(NS/NFTERR 56)

An NFT server program could not be initialized on the target
computer. Either the server program could not be scheduled or
the server could not enter the proper session.

Incoming connection has gone
down
(NS/NFTERR 57)

An incoming connection to an NFT server program has gone
down for an unknown reason.

MOVE option is not supported
(NS/NFTWARN 58)

The source computer does not support the MOVE option.

Network File Transfer 5-13

6

Network Interprocess Communication

Table of Contents

NetIPC Common Parametersiuiiini et
Flags Parameter.ttt i
OptParameter.............. i
Data Parameterou i e
Result Parameter. i
Socketname Parameter
Nodename Parameterttt

Loading NetIPCPrograms ittt

ProcessScheduling

TPCCONNECT .. e e e e e e e e

IPCCONTROL . ..o e e e e et

IPCCREATE e e e e e

TP CDES T ..o e

TP CGET .. e

IPCGIVE .. e

IPCLOOKUP . ..o e e e e

IPCNAME .. e

IPCNAMERASE . . .o e

TPCRECY .. e

TPCRECV N .. e e e e

TPCSELECT . .. e e

TPCSEND ..o e

IPCSHUT DOWN .. e e e et

ADDOPT ..

ADROF ..

INITOPT ..o e e e e e e

READ OPT ... e e

NetIPCError Codesttt ettt et et

009929 aaadaaay

(oY JeoJe Yo e Je Yo Jo o o Yo No o)
ALWNNROOVIAPRWNDFRFOOJUNERNDNNN == ==

NNNNNPI—‘P—‘P—‘P—‘HP—‘P—‘P—‘H

6-A

NetlIPC Common Parameters

The flags, opt, data, result, socketname, and nodename parameters are
common to many NetIPC calls. The flags, opt, and result parameters are also
common to the Remote Process Management (RPM) calls. RPM calls are explained in the
“Remote Process Management” section in the NS-ARPA/1000 User/Programmer Reference
Manual. These calls can be used to schedule remote NetIPC programs.

The opt parameter provides functionality for NetIPC and RPM calls; opt usually has
data associated with it. The £1ags parameter enables or disables certain functions for
NetIPC calls. The result parameter returns error codes for NetIPC calls. The
socketname and nodename parameters identify sockets and nodes, respectively.

Refer to the NS-ARPA/1000 User/Programmer Reference Manual for detailed information
on NetIPC calls and their parameters.

Flags Parameter

The flags parameter is a bit map of 32 special request bits. By setting bits in the f1ags
parameter, you can invoke various services in some NetIPC calls.

NetIPC and RPM calls assume that the bits in the £1ags parameter are numbered from
left to right with the most significant bit being one and the least significant bit being bit 32.
In the NetIPC and RPM sections, whenever the £1ags parameter is discussed, bit one is
the most significant bit:

MSB

123456 ... 32 Pascal, NetIPC, and RPM
MSB

31 30 29 28 ... 0 FORTRAN

Opt Parameter

The opt parameter allows you to request optional services when invoking certain NetIPC
and RPM calls. It enables calls that include the opt parameter to accept an arbitrary
number of arguments that are either protocol or operating system specific. To help you
distinguish between the opt parameter and a £1ag parameter, remember that the opt
parameter is an array and usually has data associated with it.

Data Parameter

The data parameters reference data vectors or data buffers.

Result Parameter

Every NetIPC call has a result parameter. If an error occurs when a program uses a
NetIPC call, an error code is returned to this parameter. The NS-ARPA/1000 Error
Message and Recovery Manual lists and explains the NetIPC error codes.

Network Interprocess Communication 6-1

Socketname Parameter

A socket name (the socketname parameter) may be a maximum of 16 characters long
and may consist of any ASCII character. Upper and lower case characters are not
considered distinct.

Nodename Parameter

A node name (the nodename parameter) refers to a remote node and has a hierarchical
structure as follows:

nodel[.domain|.organization]]

Each node, domain, and organizationname may be a maximum of 16 characters
long. The maximum total length of a fully-qualified node name is 50 characters. All
alphanumeric characters are allowed, including the underscore (_) and dash (—)
characters, but the first character of each parameter must be alphabetic.

Loading NetIPC Programs

HP 1000 NetIPC programs should be compiled and linked as CDS programs. Refer to the
RTE-A Programmer’s Reference Manual and RTE-A Link Manual for more information on
CDS programs. After the program is linked, an RTE executable file (type 6) is ready to be
scheduled.

Process Scheduling

There are at least six different ways (listed below) to schedule a remote HP 1000 NetIPC
process from another HP 1000 node. A remote HP 1000 NetIPC process must be ready to
execute by being an RTE type 6 file.

® Remote Process Management (RPM). The RPMCreate call programmatically
schedules a program.

® Program-to-Program communication (PTOP). The POPEN call programmatically
schedules a program.

® Distributed EXEC (DEXEC). One of the DEXEC scheduling calls, such as DEXEC 9,
10, 12, 23, 24, programmatically schedules a program.

® REMAT. The REMAT QU (queue schedule a program without wait) command
interactively schedules a program.

® TELNET virtual terminal. Logon remotely with TELNET and use the RTE x0Q
(schedule a program without wait) command to interactively schedule a program.

® RTEWELCOME file. The WELCOME file can have RTE run commands to schedule
programs after system boot up.

You cannot use any of the above NS-ARPA and DS/1000-IV compatible services to
schedule a remote HP 1000 process from a non-HP 1000 node. These services are not
provided with cross-system support.

Remote HP 1000 processes that are to work with non-HP 1000 processes can be manually
started or can be programs that are started at system start up.

6-2 Network Interprocess Communication

® To manually start up a NetIPC program, simply logon to the HP 1000 system and run
the NetIPC program with the RTE XQ (run program without wait) command.

® To have the NetIPC program execute at system start up, put the RTE X0 command in
the WELCOME file.

The XQ command is explained in the RTE-A User’s Manual.

Remote HP 9000 NetIPC processes can be manually started or can be scheduled by
daemons that are started at system start up. To manually start up a NetIPC program,
simply logon to the HP 9000 system and run the NetIPC program. HP recommends that
you write a NetIPC daemon to schedule your NetIPC programs. You can start the daemon
at system start up by placing it in your /etc/netlinkrc file. Refer to the HP 9000
LAN software installation documentation for more information about this file and system
start up.

To manually startup an HP 3000 NetIPC program, log on to the HP 3000 and run the
NetIPC program with the RUN command. You can schedule the program to start at a
particular time by writing a job file to execute the program, and then including time and
date parameters in the : STREAM command that executes the job file.

To manually start up a PC NetIPC program, enter the NetIPC name at the MS-DOS
prompt.

To execute from within MS-Windows, copy the NetIPC program files to your Window
directory and double click with the mouse on the executable file.

Network Interprocess Communication 6-3

IPCCONNECT

Requests a connection to another process.

IPCCONNECT (calldesc, pathdesc, flags, opt, vedesc, result)

calldesc

pathdesc

flags

opt

vcdesc

result

32-bit integer, by value in Pascal, by
reference in FORTRAN. Callsocket descriptor. Refers to
a call socket owned by the calling process.

32-bit integer, by value in Pascal, by
reference in FORTRAN. Path report descriptor. Refers to
the path report which indicates the location of the destination
call socket (this is the call socket to which the connection
request will be sent). A path report descriptor can be obtained
by calling IPCLookUp or IPCGet.

32-bit integer, by reference. A 32-bit map of
special request bits. The following option is defined for this
call:

flags [22] —CHECKSUMMING (input). When set, this
flag causes TCP to enable checksumming. However, not setting
this bit does not ensure that checksumming will not occur. TCP
checksum will always be performed if: the peer process calls
IPCRecvCn with the checksumming bit set. TCP checksum is
performed in addition to data link checksum. If TCP performs
checksumming, increased overhead is required and real-time
integrity cannot be guaranteed.

Byte array (Pascal); Integer array

(FORTRAN) , by reference. An array of options and
associated information. The following options are defined for
this call:

maximum send size (optioncode = 3, datalength = 2). A
two-byte integer that specifies the maximum number of bytes
you expect to send with a single IPCSend call on this
connection. Range: 1 to 8,000 bytes. Default: 100 bytes. If this
option is not specified, IPCSend will return errors if a call
attempts to send greater than 100 bytes.

maximum receive size (opt ioncode = 4, datalength = 2).
A two-byte integer that specifies the maximum number of bytes
you expect to receive with a single IPCRecv call on this
connection. Range: 1 to 8,000 bytes. Default: 100 bytes. If this
option is not specified, IPCRecv will return errors if a call
attempts to receive greater than 100 bytes.

32-bit integer, by reference. VCsocket descriptor.
Refers to a VC socket that is the endpoint of the virtual circuit
connection at this node. May be used in subsequent NetIPC
calls to reference the connection.

32-bit integer, by reference. The error code
returned; zero if no error.

6-4 Network Interprocess Communication

IPCCONTROL

Performs special operations on sockets.

IPCCONTROL

IPCCONTROL (descriptor, requestfd, wrtdata, wlen, readdata, rlen,
flags, result)

descriptor 32-bit integer, by value in Pascal, by
reference in FORTRAN. The descriptor that refers to the
socket to be manipulated. May be a call socket descriptor or
VCsocket descriptor depending on the request code specified
in the request parameter.

requests 32-bit integer, by value in Pascal, by
reference in FORTRAN. Request code. Defines which
operation is to be performed. May be one of the following:

e 1 = Place the socket referenced in the descriptor
parameter in asynchronous mode. For IPCSend and
IPCRecv calls, this is the VC socket described by the VC
socket descriptor in the vedesc parameter. For
IPCRecvCn, it is the call socket described by the call
socket descriptor in the calldesc parameter.

e 2 = Place the socket referenced in the descriptor
parameter in synchronous mode. For IPCSend and
IPCRecv calls this is the VC socket described by the VC
socket descriptor in the vedesc parameter. For
IPCRecvCn, it is the call socket described by the call
socket descriptor in the calldesc parameter.

e 3 = Change the referenced socket’s synchronous timeout.
The default timeout value is 60 seconds. For IPCSend
and IPCRecv calls, this is the VC socket described by the
VC socket descriptor in the vedesc parameter. For
IPCRecvCn, it is the call socket described by the call
socket descriptor in the calldesc parameter. The
timeout value is given in tenths of seconds. (For example,
avalue of 1200 would indicate 120 seconds.) The new
timeout value must be placed in the wrtdata parameter.
The timeout value must be in the range of zero to 32767.
Negative values have no meaning and will result in error.
A value of zero sets the timeout to infinity. The timeout
will not be reset if the referenced socket is switched to
asynchronous mode and then back to synchronous mode.

e 1000 = Change the read threshold of the VC socket
referenced in descriptor parameter. (Read thresholds
are one byte by default.) The descriptor parameter
must reference a VC socket descriptor. The new read
threshold value must be placed in the wrtdata
parameter.

e 1001 = Change the write threshold of the VC socket
referenced by the descriptor parameter. (Write
thresholds are one byte by default.) The descriptor
parameter must reference a VC socket descriptor. The
new write threshold value must be placed in the wrtdata
parameter.

Network Interprocess Communication 6-5

IPCCONTROL

wrtdata

wlen

readdata
rlen
(input/output)
flags

result

16-bit integer, by reference. A databuffer or data
vector used to pass timeout and threshold information. If a
request of 3, 1000, or 1001 is specified, the wrtdata and
wlen parameters are required.

32-bit integer, by value in Pascal, by
reference in FORTRAN. Length in bytes of the wrtdata
parameter. Must be set to 2 bytes.

Array, by reference. This parameter is reserved for
future use.

32-bit integer, by reference. This parameter is
reserved for future use.

32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero).

32-bit integer, by reference. The error code
returned; zero if no error.

6-6 Network Interprocess Communication

Creates a call socket.

IPCCREATE

IPCCREATE (socketkind, protocol, flags, opt, calldesc, result)

socketkind

protocol

flags

opt

calldesc

result

32-bit integer, by value in Pascal, by
reference in FORTRAN. Indicates the type of socket to be
created. Must be 3 to indicate a call socket. (Other values are
reserved for future use.)

Default: 1f zero is specified, a call socket will be created.

32-bit integer, by value in Pascal, by
reference in FORTRAN. Indicates the protocol module
that the calling process wishes to access. Must be 4 to indicate
Transmission Control Protocol (TCP). (Other values are
reserved for future use.)

Default: If zero is specified, TCP will always be chosen for call
sockets.

32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero).

Byte array (Pascal); Integer array

(FORTRAN) , by reference. An array of options and
associated information. The following options are defined for
this call:

e maximum connection requests backlog (opt ioncode =
6, datalength = 2). A two-byte integer that specifies
the maximum number of unreceived connection requests
that may be queued to a call socket. The value can be
from 0 to 10. Default: Three requests. (NOTE: A queue
limit of three may be too few if many processes attempt to
initiate connections to the call socket simultaneously. If
this occurs, some connection requests may be ignored.)

e protocol address (optioncode = 128, datalength
= 2). Atwo-byte integer that specifies a TCP protocol
address to be used by the newly created call socket. The
valid range for IPC address is 1 to 32767. If this option
is not specified, NetIPC will dynamically allocate an
address. Recommended Range: The recommended range
of TCP addresses for user applications is from 30767 to
32767 decimal.

32-bit integer, by reference. Callsocket descriptor.
Refers to the newly created call socket.

32-bit integer, by reference. The returned error
code; zero if no error.

Network Interprocess Communication 6-7

IPCDEST

Creates a path report descriptor.

IPCDEST (socketkind, nodename, nodelen, protocol, protoaddr, protolen,
flags, opt, pathdesc, result)

socketkind 32-bit integer, by value in Pascal, by
reference in FORTRAN. Defines the type of socket. Must
be 3 to specify a call socket. Other values are reserved for
future use.

nodename Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. Avariable length
array of ASCII characters identifying the node on which the
path report descriptor is to be created. The syntax of the node
name is node [.domain|[.organization]], whichis
further described in the NS-4ARPA/000 User/Programmer
Reference Manual.

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization or
organization and domain are omitted, they will default to the
local organization and/or domain. If the nodelen parameter is
set to zero, nodename is ignored and the node name defaults
to the local node.

nodelen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the
nodename parameter. If this parameter is set to zero, the
nodename parameter is ignored and the node name defaults to
the local node. A fully-qualified node name length may be 50
bytes long.

protocol 32-bit integer, by value in Pascal, by
reference in FORTRAN. Defines the Transport Layer
protocol to be used. Must be 4 to indicate the Transmission
Control Protocol (TCP). Other values are reserved for future
use.

protoaddr integer array, by reference. A databuffer that
contains a TCP protocol address. Recommended Range: The
recommended range of TCP addresses for user applications is
from 30767 to 32767 decimal.

protolen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the
protocol address. TCP protocol addresses are two bytes long.

flags 32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero).

opt No options are defined for this call.

pathdesc 32-bit integer, by reference. Pathreport
descriptor. Describes the location of named call socket. May
be used in a subsequent IPCConnect call to establish a
connection to another process.

result 32-bit integer, by reference. The error code
returned; zero if no error.

6-8 Network Interprocess Communication

IPCGET

Receives a descriptor that has been given away via IPCGive.

IPCGET (givenname,nlen, flags,descriptor, result)

givenname Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. An arraycontaining
the ASCII-coded socket name that was assigned to the
descriptor when it was given away via a call to IPCGive.
Upper and lower case characters are not considered distinct.

nlen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in characters of
givenname. Maximum length is 16 bytes.

flags 32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero). If IPCGet is called
repeatedly, this field must be cleared before each successive
call.

descriptor 32-bit integer, by reference. The descriptor that
was given away via a call to IPCGive. May be a call socket
descriptor, path report descriptor, or VC socket descriptor.

result 32-bit integer, by reference. The error code
returned; zero if no error.

Network Interprocess Communication 6-9

IPCGIVE

Gives up a descriptor so that another process may obtain it.
IPCGIVE (descriptor, givenname,nlen, flags, result)

descriptor 32-bit integer, by value in Pascal, by
reference in FORTRAN. The descriptor to be given up.
May be a call socket descriptor, VC socket descriptor or path
report descriptor.

givenname Packed array of characters (Pascal); Integer

(input/output) array (FORTRAN), by reference. An arraycontaining
the ASCII-coded socket name to be temporarily assigned to the
specified descriptor. Upper and lower case characters are not
considered distinct. NetIPC can also return a randomly
generated, eight-character name to this parameter (see nlen).

nlen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in characters of
givenname. Maximum length is 16 bytes.

Default: 1f zero is specified, NetIPC will generate a random
eight byte name and return it in the givenname parameter.
(The length eight is not returned through nlen.)

flags 32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero).

result 32-bit integer, by reference. The error code
returned; zero if no error.

6-10 Network Interprocess Communication

IPCLOOKUP

Obtains a path report descriptor.

IPCLOOKUP (socketname, nlen, nodename, nodelen, flags, pathdesc,
protocol, socketkind, result)

socketname Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. An arraycontaining
the ASCII-coded name of the call socket to be “looked up.”
Upper and lower case characters are not considered distinct.

nlen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length of the socket name in
characters. Maximum length is 16 characters.

nodename Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. Avariable length
array of ASCII characters identifying the node where the socket
specified in the socketname parameter resides. The syntax of
the node name is node [. domain|[.organization]],
which is further described in the NS-ARPA/1000
User/Programmer Reference Manual.

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization or
organization and domain are omitted, they will default to the
local organization and/or domain. If the nodelen parameter is
set to zero, nodename is ignored and the node name defaults
to the local node.

nodelen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the
nodename parameter. If this parameter is zero (0), the
nodename parameter is ignored and the node name defaults to
the local node. A fully-qualified node name length may be 50
bytes long.

flags 32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero).

pathdesc 32-bit integer, by reference. Pathreport
descriptor. Refers to the path report descriptor which indicates
the location of the named call socket. May be used in
subsequent NetIPC calls (IPCConnect, IPCName, IPCGive,
etc.).

protocol 32-bit integer, by reference. Identifies the
protocol module with which the “looked up” socket is
associated. May be used in an IPCCreate call to create a call
socket with the appropriate protocol binding.

socketkind 32-bit integer, by reference. Identifies the socket’s
type.
result 32-bit integer, by reference. The error code

returned; zero if no error.

Network Interprocess Communication 6-11

IPCNAME

Associates a name with a call socket descriptor.

IPCNAME (descriptor, socketname,nlen, result)

descriptor 32-bit integer, by value in Pascal, by
reference in FORTRAN. The call socket descriptor to be
named.

socketname Packed array of characters (Pascal); Integer

(input/output) array (FORTRAN), by reference. An arraycontaining

the ASCII-coded socket name to be associated with the
descriptor. Upper and lower case characters are considered
equivalent. NetIPC can also return a randomly-generated name
in this parameter (see nlen).

nlen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in characters of
socketname. Maximum length is 16 characters.

Default: 1f zero is specified, NetIPC will return a random,
eight-byte name in the socketname parameter. The
eight-byte length is not returned in the nlen parameter.

result 32-bit integer, by reference. The error code
returned; zero if no error.

6-12 Network Interprocess Communication

IPCNAMERASE

Deletes a name associated with a call socket descriptor.
IPCNAMERASE (socketname,nlen, result)

socketname Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. An arraycontaining
an ASCII-coded name that was previously associated with a call
socket descriptor via IPCName. Upper and lower case
characters are considered equivalent.

nlen 32-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the
specified name. Maximum length is 16 bytes.

result 32-bit integer, by reference. The error code
returned; zero if no error.

Network Interprocess Communication 6-13

IPCRECV

Establishes a virtual circuit connection by receiving a response to a connection request, or
receives data on a previously established connection.

IPCRECV (vcdesc, data,dlen, flags, opt, result)

vcdesc

data

dlen
(input/output)

flags
(input/output)

32-bit integer, by value in Pascal, by
reference in FORTRAN. VCsocket descriptor. Refers to
a VCsocket that: (1) is the endpoint of a virtual circuit
connection that has not yet been established, or (2) is the
endpoint of a previously established virtual circuit on which
data will be received.

Packed array of characters (Pascal); Integer

array (FORTRAN), by reference. A databuffer that
will hold the received data, or a data vector describing the
location where the data is to be placed.

32-bit integer, by reference. When the data
parameter is a data buffer, d1en is the maximum number of

bytes you are willing to receive. When the data parameter is a

data vector, d1en refers to the length of the data vector in
bytes. As a return parameter (output), dIen indicates how
many bytes were actually received.

If IPCRecv is used to establish a connection (not to receive
data), the d1en parameter is meaningless on input and a value
of 0 1s returned on output.

If the DATA_WAIT flag (see £lags [21] below) is zero,
then dlenreturns with the length of whatever data there is. If
the DATA_WAIT flag is set to one, then either dIen returns
with the same amount requested or a “WOULD BLOCK”
€ITOr OCCUTS.

32-bit integer, by reference. A 32-bit map of
special request bits. The first IPCRecv call establishes a

virtual connection and fI1ags has no meaning. For subsequent
IPCRecv calls, fI1ags will then be invoked for the established

connection. Flags must be initialized each time it is used by
any NetIPC call. The following flags are defined for this call:

e flags [21]—DATA_WAIT (input). When this flag is
set, IPCRecv waits until all the data that it requested in

the d1en parameter has been received. If this bit is set to

zero, IPCRecv may complete receiving less data than it
requested in dlen.

Note

User programs written prior to software Revision 5.0 that wait
on the IPCRecv call until d1en amount of data has been
received must change to set the DATA_WAIT flag to continue
operating as they did before.

e flags [31]—PREVIEW (input). When set, this flag
allows you to preview the data queued on the connection.
Data is placed in the data parameter but not dequeued
from the connection. Because the data is not dequeued,
another IPCRecv call is needed to delete the same data.

6-14 Network Interprocess Communication

IPCRECV

e flags [32]—VECTORED (input). When set, this flag
indicates that the data parameter is a data vector and not
a data buffer.

opt Byte array (Pascal); Integer array
(FORTRAN) , by reference. An array of options and
associated information. The following option is defined for this
call:

e data offset (optioncode = 8, datalength =2). A
two-byte integer that defines a byte offset from the
beginning of a data buffer where NetIPC is to begin
placing the data. This option is valid only if the data
parameter is a data buffer and not data vector.

result 32-bit integer, by reference. The error code
returned; zero if no error.

Network Interprocess Communication 6-15

IPCRECVCN

Receives a connection request on a call socket.
IPCRECVCN (calldesc, vedesc, flags, opt, result)

calldesc 32-bit integer, by value in Pascal, by
reference in FORTRAN. Socket descriptor. Refers to a
call socket owned by the calling process.

vedesc 32-bit integer, by reference. VCsocket descriptor.
Refers to a VC socket that is the endpoint of the
newly-established virtual circuit connection.

flags 32-bit integer, by reference. A 32-bit map of
special request bits. The following flags are defined for this
call:

e flags [22] —CHECKSUMMING (input). When set,
this flag causes TCP to enable checksumming. However,
not setting this bit does not ensure that checksumming will
not occur. TCP checksum will always be performed if: the
peer process calls IPCConnect with the checksumming
bit set. TCP checksum is performed in addition to data
link checksum. If TCP performs checksumming, increased
overhead is required and real-time integrity cannot be
guaranteed.

opt Byte array (Pascal); Integer array
(FORTRAN) , by reference. An array of options and
associated information. The options are:

e maximum send size (optioncode = 3, datalength =
2). A two-byte integer that specifies the maximum
number of bytes you expect to send with a single call to
IPCSend on this connection. Range: 1 to 8,000 bytes.
Default: 100 bytes. If this option is not specified,
IPCSend will return an error if a call attempts to send
greater than 100 bytes.

e maximum receive size (opt ioncode = 4, datalength
= 2). A two-byte integer that specifies the maximum
number of bytes you expect to receive with a single call to
IPCRecv on this connection. Range: 1 to 8,000 bytes.
Default: 100 bytes. If this option is not specified,
IPCRecv will return errors if a call attempts to receive
greater than 100 bytes.

result 32-bit integer, by reference. The error code
returned; zero if no error.

6-16 Network Interprocess Communication

IPCSELECT

Determines the status of a call socket or VC socket.

IPCSELECT (sdbound, readmap, writemap, exceptionmap, timeout, result)

sdbound 32-bit integer, by reference. Specifies the upper

(input/output) ordinal bound on the range of descriptors specified in the
readmap, writemap, and exceptionmap parameters. An
IPCSelect call will be most efficient if this parameter is set to
the maximum ordinal value of the sockets specified in these
parameters. Because a NetIPC process may have concurrent
access to a maximum of 32 descriptors, sdbound may be given
a maximum value of 32. As an output parameter, sdbound
contains the upper ordinal boundary of all of the descriptors
that met the select criteria. If none of the criteria were met,
sdbound will be set to zero.

readmap 32-bit integer, by reference. A bit map indexed by

(input/output) VC socket descriptors. When readmap is an input parameter,
this map should have bits set for all of the VC sockets from
which you would like to receive data. As an output parameter,
readmap is a bit map describing all of the read-selected VC
sockets that are readable.

writemap 32-bit integer, by reference. A bit map indexed by

(input/output) either call socket descriptors or VC socket descriptors. When
writemap is an input parameter, this map should have bits set
for all of the call sockets on which you would like to initiate
connections, or all of the VC sockets to which you would like to
send data. As an output parameter, writemap is a bit map
describing all of the write-selected sockets that are writeable.

exceptionmap 32-bit integer, by reference. A bit map indexed by

(input/output) either call socket descriptors or VC socket descriptors. When
exceptionmap is an input parameter, this map should have
bits for all of the sockets for which notification of exceptional
conditions is desired. As an output parameter,
exceptionmap is a bit map describing all of the
exception-selected sockets that are exceptional. For call
sockets, an exceptional condition is present if a connection
request is queued to the socket; for VC sockets, an exceptional
condition is present if the connection referenced by the socket
has been aborted.

timeout 32-bit integer, by value in Pascal, by
reference in FORTRAN. The number of tenths of seconds
the calling process is willing to wait for some event to occur
which would cause IPCSelect’s report to change. This
timeout is put into effect only when none of the sockets
referenced can immediately satisty the select criteria (i.e., none
are readable, writeable or exceptional). If this value is set to
zero, the call will not block. If it is set to -1, the timeout will be
set to infinity (i.e., the call will block).

result 32-bit integer, by reference. The error code
returned; zero if no error.

Network Interprocess Communication 6-17

IPCSEND

Sends data on a virtual circuit connection.

IPCSEND

IPCSEND (vedesc, data,dlen, flags, opt, result)

vcdesc

data

dlen

flags

opt

result

32-bit integer, by value in Pascal, by
reference in FORTRAN. VCsocket descriptor. Refers to
the VC socket endpoint of the connection through which the
data will be sent. A VC socket descriptor can be obtained by
calling IPCConnect, IPCRecvCn, and IPCGet.

Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. A buffer that will
hold the data to be sent, or a data vector describing where the
data to be sent is located.

32-bit integer, by value in Pascal, by
reference in FORTRAN. If datais a data buffer, dlenis
the length of the data in the buffer. If data is a data vector,
dlenis the length of the data vector.

32-bit integer, by reference. A 32-bit map of
special request bits. The following flags are defined for this
call:

e flags [27]—HIGHTHROUGHPUT (input).
Indicates that you would prefer high throughput to low
delay.

e flags [32]—VECTORED (input). Indicates that the
data parameter refers to a data vector and not to a data
buffer.

Byte array (Pascal); Integer array

(FORTRAN) , by reference. An array of options and
associated information. The following option is defined for this
call:

e data offset (optioncode = 8, datalength =2). A
two-byte integer that indicates a byte offset from the
beginning of the data buffer where the data to be sent
actually begins. Only valid if the data parameter is a data
buffer.

32-bit integer, by reference. The error code
returned; zero if no error.

6-18 Network Interprocess Communication

IPCSHUTDOWN

Releases a descriptor and any resources associated with it.
IPCSHUTDOWN (descriptor, flags, opt, result)

descriptor 32-bit integer, by value in Pascal, by
reference in FORTRAN. The descriptor to be released.
May be a call socket descriptor, VC socket descriptor, or path
report descriptor.

flags 32-bit integer, by reference. A 32-bit map of
special request bits. This parameter is reserved for future use.
All bits must be clear (set to zero).

opt Byte array (Pascal); Integer array
(FORTRAN) , by reference. An array of options and
associated information. This parameter is reserved for future
use. You must initialize the opt parameter to contain zero
arguments.

result 32-bit integer, by reference. The error code
returned; zero if no error.

Network Interprocess Communication 6-19

ADDOPT

Adds an argument and its associated data to the opt parameter.

ADDOPT (opt, argnum, optioncode, datalength, data, error)

opt

argnum

optioncode

datalength

data

error

Byte array (Pascal); Integer array
(FORTRAN) , by reference. The opt parameter to which
you want to add an argument.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The number of the argument to
be added. The first argument is number zero.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The option code of the argument
to be added. These codes are described in each NetIPC call
opt parameter description.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the data to
be included. This information is provided in each NetIPC call
opt parameter description.

Packed array of characters (Pascal); Integer
array (FORTRAN), by reference. Anarraycontaining
the data associated with the argument.

16-bit integer, by reference. The error code
returned; zero if no error.

6-20 Network Interprocess Communication

ADROF

Obtains the byte address of any byte within a data object.
ADROF (firstobjword, of fset, byteaddress)

firstobjword 16-bit integer, by reference. The name of the first
(16-bit) word of the data object.

offset 16-bit integer, by value in Pascal, by
reference in FORTRAN. An offset from the beginning of
the data object. May be positive or negative. (The first byte of
a data object resides at offset zero.)

byteaddress 16-bit integer, by reference. The byte address of
the byte that is of fset bytes away from the first object word.

Network Interprocess Communication 6-21

INITOPT

Initializes the opt parameter so that arguments can be added.

INITOPT (opt, optnumarguments, error)

opt Byte array (Pascal); Integer array
(FORTRAN) , by reference. The opt parameter to be
initialized.

optnumarguments 16-bit integer, by value in Pascal, by

reference in FORTRAN. The number of arguments that
will be placed in the opt parameter. If this parameter is zero,
the opt parameter will be initialized to contain zero arguments.

error 16-bit integer, by reference. The error code
returned; zero if no error.

6-22 Network Interprocess Communication

READOPT

Obtains the option code and argument data associated with an opt parameter argument.

READOPT (opt, argnum, optioncode, datalength, data, error)

opt

argnum

optioncode

datalength

(input/output)

data

error

Byte array (Pascal); Integer array
(FORTRAN) , by reference. The opt parameter to be
read.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The number of the argument to
be obtained. The first argument is number zero.

16-bit integer, by reference. The option code
associated with the argument. These codes are described in
each NetIPC call opt parameter description.

16-bit integer, by reference. The length of the data
buffer into which the argument should be read. If the data
buffer is not large enough to accommodate the argument data,
an error will be returned. On output, this parameter contains
the length of the data actually read. (The length of the data
associated with a particular option code is provided in each
NetIPC call opt parameter description.)

Array, by reference. An array which will contain the
data read from the argument.

16-bit integer, by reference. The error code
returned; zero if no error.

Network Interprocess Communication 6-23

NetlPC Error Codes

These error codes are returned to the result parameter of Network Interprocess
Communication (NetIPC) calls. Refer to the NS-ARPA/1000 Error Message and Recovery
Manual for more complete explanations of these error codes.

NetIPC Error Codes

Code Meaning
0 The call was successful.

4 The network is down.

5 lllegal socket type.

6 lllegal protocol.

7 lllegal flags.

8 lilegal option.

10 Protocol type mismatch.

1 No memory.

12 Messages queued option error.
14 lllegal TCP address.

15 Socket limit exceeded.

16 No path records.

19 Message size option error.
20 Data offset error.

21 Duplicate option.

24 Connection queued option error.
28 lllegal name length.

29 lllegal descriptor.

30 Cannot name VC socket.

31 Duplicate name.

34 Aborted locally.

35 Name limit exceeded.

36 Name table full.

37 Name not found.

38 No ownership.

39 lllegal registry name.

40 Unknown registry.

44 No registry response.

46 Could not interpret path.

50 Bad length.

51 Not a path report descriptor.
52 Protocol mismatch.

53 Socket type mismatch.

6-24 Network Interprocess Communication

Code

Meaning

54 Not a call socket.
55 No sockets available.
56 Would block error.
59 Timed out.
62 IPCRecv expected.
64 Aborted by peer.
65 Connection aborted.
66 Not a VC socket.
68 Remote has gracefully released this socket.
70 Cannot give.
74 lllegal request.
76 lilegal timeout.
98 Bad vector address.
99 Bad vector data length.
106 Address in use.
107 NS-ARPA is not initialized;
NS-ARPA is going up or down; or
the NS-ARPA memory area is corrupt.
109 Remote has gracefully released this socket.
111 An NS-ARPA internal software error has been encountered.
116 No useable paths.
122 Too many users.
123 No resource numbers.
124 Bad entry number in option parameter.
125 Bad option data length.
126 Bad option total.
127 Cannot read option.
128 lllegal read threshold.
129 lilegal write threshold.
130 Write threshold too big.
131 Resource error.
132 No PXP path records.
133 No IP path records.
134 No 802 path records.
135 No TCP path records.
136 Bad upper bound
1001 Cannot read select on the socket now.

Network Interprocess Communication

6-25

Remote Process Management

Table of Contents

RPM Common Parametersuuuienen e ie e
Flags Parameter.ttt i

Opt Parameter

Result Parameter. i
Nodename Parameterttt it
Loading RPM Programsttt

RPMCONTROL .
RPMCREATE ...
RPMCREATE

OPLONS .

RPMCreate Option 20000—Pass String
RPMCreate Option 23000—Set Working Directory
RPMCreate Option 23010—Restore Program
RPMCreate Option 23020—Assign Partition
RPMCreate Option 23030—Change Program Priority
RPMCreate Option 23040—Modify Working SetSize
RPMCreate Option 23050—Modify VMASize
RPMCreate Option 23060—Modify Code PartitionSize
RPMCreate Option 23070—Modify Data PartitionSize
RPMCreate Option 23080—Time Scheduling
RPMCreate Option 23090—Program Scheduling (Immediate No Wait) . ..
RPMCreate Option 23100—Queue Program Scheduling
RPMCreate Option 23110—Program Scheduling

RPMGETSTRING
RPMKILL
RPM Error Codes

7-A

PEAPRARIIRAIRIPTIRN

......
g R R E R TN ERETY) SRS VR N VR N UL

\]\]\]\]\]\]I\]\]\]\]\]\]\]\]
DD = = = = = = b s s

RPM Common Parameters

The flags, opt, result, and nodename parameters are common parameters used in
the RPM calls. They follow the same conventions as the NetIPC parameters. For further
information on these parameters, refer to “NetIPC Common Parameters” in the “Network
Interprocess Communication” section and the “Remote Process Management” section in
the NS-ARPA/1000 User/Programmer Reference Manual.

Use the InitOpt, AddOpt, and ReadOpt NetIPC calls to facilitate your use of the opt
parameter. These NetIPC calls are explained in “Special NetIPC Calls” also in the
“Network Interprocess Communication” section of the NS-ARPA/1000 User/Programmer
Reference Manual.

Flags Parameter

The flags parameter is a bit map of 32 special request bits. By setting bits in the f1ags
parameter, you can invoke various services in RPMControl and RPMCreate. The
flags parameter must be initialized to set the desired bits before it is used in these RPM
calls. Make sure you also clear the unused bits.

Note NetIPC and RPM calls assume that the bits in the f1ags
parameter are numbered from left to right with the most
significant bit being bit one and the least significant bit being bit
32. In NetIPC and RPM, whenever the f1ags parameter is
discussed, bit one is the most significant bit:

MSB

123456 ... 32 Pascal,NetIPC, and RPM
MSB

31 30 29 28 ... 0 FORTRAN

Opt Parameter

The opt parameter allows you to request optional services when invoking the
RPMCreate call. The opt parameter is an array which enables a varying number of
arguments to be specified.

Use the InitOpt, AddOpt, and ReadOpt NetIPC calls to facilitate your use of the opt
parameter.
Result Parameter

Every RPM call has a resul t parameter. If an error occurs when a program makes an
RPM call, an error code is returned in this parameter. The NS-ARPA/1000 Error Message
and Recovery Manual lists and explains the RPM error codes.

Remote Process Management 7-1

Nodename Parameter

A node name (the nodename parameter) refers to a node and has a hierarchical structure
as follows:

nodel[.domain|.organization]]

The NS-ARPA node name syntax is described in “Node Names” in the “Introduction”
section of the NS-ARPA/1000 User/Programmer Reference Manual.

Loading RPM Programs

RPM parent programs must be compiled and linked as CDS programs. RPM child
programs can be either CDS or non-CDS programs. If an RPM child program makes an
RPM call, then it must be a CDS program. Refer to the RTE-A Programmer’s Reference
Manual and RTE-A Link Manual for more information on CDS programs.

7-2 Remote Process Management

RPMCONTROL

Controls the execution of a child program.

RPMCONTROL (pd, nodename, nodelen, regcode, wrtdata, wrtlen,
readdata, readlen, flags, result)

pd Byte array (Pascal); Word array (FORTRAN),
by reference. An array of 16 bytes containing the program
descriptor of the child program to which control requests are
sent. The program descriptor is a unique value returned from
the RPMCreate call. Refer to the RPMCreate description in
this section for more information about pd.

nodename Packed array of characters (Pascal); word array
(FORTRAN) , by reference. Avariable length array
identifying the node on which the child program resides. The
syntax of the node name is node [. domain[.organization]],
which is further described in the NS-4RPA/1000 User/Programmer
Reference Manual.

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization or
organization and domain are omitted, they will default to the
local organization and/or domain. If the nodelen parameter is
set to zero, nodename is ignored and the node name defaults
to the local node.

nodelen 32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. The length in
bytes of the nodename parameter. If nodeleniszero (0), the
nodename parameter is ignored and the node name defaults to
the local node. The maximum length of a fully-qualified node
name length is 50 bytes.

If nodelenis zero, it is assumed that the parent is either
sending the RPMControl request to a dependent child
program that it previously scheduled or to a child program on
the parent’s node (which is the local node).

regcode 32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. The request code
for the control operation to be performed on the child program.
The request codes are RTE-A specific, and you should refer to
the RTE-A User’s Manual and RTE-A Programmer’s Reference
Manual for detailed explanations of these RTE-A commands
and calls. The request codes for RPMControl are as follows:

e 20001—Suspend execution of the child program. No data
is required and none is returned. Therefore, wrtlenand
readlenmust be zero.

This request is equivalent to the RTE-A SS (suspend
program) command. Asin RTE-A, if a child program is in
a state that prevents it from being suspended, the program
is not suspended until it is in the right state. No error is
returned in result in this case (similarly as in RTE-A).

e 20002—Resume execution of the child program at the
point it was suspended. No data is required and none is
returned. Therefore, wrtlen and readlen must be
Zero.

This request is equivalent to the RTE-A GO (resume
program) command.

Remote Process Management 7-3

RPMCONTROL

wrtdata

wrtlen

readdata

readlen
(input/output)

flags

result

e 23120—Set the IFBRK break flag in the child program’s
ID segment. The child program must check this flag with
the RTE-A IFBRK system call to respond to it. No data is
required and none is returned. Therefore, wrtlenand
readlen must be zero.

e 23030—Change the child program’s priority. The priority
number is a 16-bit integer from 1 to 32767 with the
smaller number representing the higher priority. The
priority number is placed in the wrtdata parameter.
This request is equivalent to the RTE-A PR (change
program priority) command, except that you cannot
request the program priority.

e 23130—Get the child program’s status. RPM invokes the
RTE-A IDINFO call to obtain the status. Refer to the
RTE-A Programmer’s Reference Manual for more
information and for a list of possible status values. The
status is a 16-bit integer returned in the readdata
parameter. The readlen parameter must be set to at
least two bytes.

Due to a network time delay, the actual execution of any of the
above requests may be delayed.

Byte array (Pascal); Word array (FORTRAN),
by reference. A variable length array with data to be sent
to the child program for the request. When a regcode of
23030 is specified, the program priority is placed in wrtdata.
The program priority is declared as a 16-bit integer, and the
wrtlen parameter is two bytes.

32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. Length in bytes
of wrtdata.

Only regcode 23030 (PR command) sends information from
the calling parent program in wrtdata. The parameter
wrtlenmust be two. All other request codes must specify a
zero for wrtlen.

Byte array (Pascal); Word array (FORTRAN),

by reference. Avariable length array with the data
returned to the calling parent program. If regcode of 23130 is
used, then the program status is returned in readdata.

32-bit non-negative integer, by reference. On
input, readlen is the maximum number of bytes expected in
the readdata parameter. On output, readlenis the actual
number of bytes received in the readdata parameter. If
result is non-zero (an error has occurred), readlenis set to
zero, and no data is in readdata.

Only regcode 23130 (IDINFO call) receives information from
a child program (program status) in readdata. The
parameter readlen must be two. All other request codes
must specify a zero in readlen.

32 bits, by reference. A 32-bit map of special request
bits. This parameter is reserved for future use. This parameter
must contain all zeroes (cleared).

32-bit non-negative integer, by reference.
The result of the RPMControl request; zero if no error. If
result is not zero, an error has occurred. Errors are defined
in the NS-ARPA/1000 Error Message and Recover Manual.

7-4 Remote Process Management

RPMCREATE

Schedules a program and, if necessary, creates a session for that program to run in.

RPMCREATE (progname, namelen,nodename, nodelen, login, loginlen,

progname

namelen

nodename

nodelen

login

loginlen

password, passwdlen, flags, opt,}ii, result)

Packed array of characters (Pascal); word
array (FORTRAN), by reference. Avariable length
array of ASCII characters containing the name of the child
program to be scheduled. If the child program does not reside
in the working directory, the full path name of the child
program must be specified. The child program must be an
executable file. Although RPMCreate may accept program
names up to 256 characters, the child program name on an
HP 1000 RTE-A system may not exceed 64 characters. The
progname parameter is not case sensitive.

32-bit positive integer, by value in Pascal,
by reference in FORTRAN. The length in bytes of the
program name. This must always be a positive integer.

Packed array of characters (Pascal); word
array (FORTRAN), by reference. Avariable length
array of ASCII characters identifying the node on which the
child program resides. The syntax of the node name is
node[.domain(.organization]], which is described in
the NS-ARPA/1000 User/Programmer Reference Manual.

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization or
organization and domain are omitted, they will default to the
local organization and/or domain. If the nodelen parameter is
set to zero, nodename is ignored and the node name defaults
to the local node.

32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. Length in bytes
of the nodename parameter. If nodelenis zero (0), the
nodename parameter is ignored, and the child program is
scheduled on the same node as the parent. A fully-qualified
node name length may be 50 bytes long.

Packed array of characters (Pascal); word
array (FORTRAN), by reference. Alogonsequence
for the (local or remote) node on which the child program is to
be scheduled. Ioginisan RTE-A logon without the password
(defined in the password parameter described below). RPM
needs the logon name to logon to the local or remote node.

32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. The length in
bytes of the logon sequence. The maximum length for a logon
on RTE-A is 16 bytes. If Ioginlenis zero (0), passwdlen
must be zero.

When the loginlenand passwdlen are both zero and
nodename is the local node, the child program is scheduled
and attached to the parent program’s session. Even if the
session-sharing flag (Elags [31]) is not set to disable
session-sharing, the child program will session-share with the
parent program in this case.

If nodename is NOT the local node and Ioginlenis zero,
RPMCreate will return an error in result.

Remote Process Management 7-5

RPMCREATE

password

passwdlen

flags

opt

Packed array of characters (Pascal); word
array (FORTRAN), by reference. Avariable length
array with the password for the RTE-A logon specified in
login. If no password is required, the passwdlen parameter
must be zero (0).

32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. The length in
bytes of the password parameter. If passwdlenis zero (0),
passwordis ignored. The maximum password length in
RTE-A is 14 bytes.

32 bits, by reference. A 32-bit map of special request
bits representing various functions. Refer to “Flags Parameter”
in the “Network Interprocess Communication” section of the
NS-ARPA/1000 User/Programmer Reference Manual for
explanations of the 32 special request bits and how to use them
in Pascal/1000 and FORTRAN 77. The following flags are
defined on input (bit 1 is the most significant bit); all other flags
must be set to zero:

e flags [2]—wait for child (input). When set, this flag
causes the calling parent program to wait until the child
program terminates.

The default is zero (0) for no waiting. The parent
program resumes execution immediately after it is notified
that the child program is successfully scheduled or an
error occurs. Check the result parameter for an error.

e flags [31]—session-sharing (input). When set, this flag
causes the child program to share a session with other
child programs. The parent must set this bit for each child
that is to share the same session.

The default is zero (0) for no session-sharing—the child
program is scheduled in a new session.

Regardless of how £1lags [31] is set, session-sharing will
occur on the local node in the parent program’s session if
nodename and loginlen are specified as follows:

e nodename specifies the local node or nodelenis zero.
e Ioginleniszero.

e flags[32]—dependent (input). When set, this flag
causes the scheduled child program to be dependent on
the parent program. When the parent program
terminates, the child program terminates automatically.

The default is zero (0) making the child program
independent. The scheduled child program continues
executing on its own even after the parent program
terminates.

Byte array (Pascal), Word array (FORTRAN),

by reference. An array of options and associated
information. The format of an opt array is the same as the
NetIPC opt. The options are equivalent to some RTE-A
commands and calls dealing with program scheduling. Refer to
the RTE-A User’s Manual and RTE-A Programmer’s Reference
Manual for more information on the RTE-A commands and
calls.

A detailed description of RPMCreate options is given later in
this section under the subsection, “RPMCREATE Options.” A
list of RPMCreate options is presented in Table 7-1.

7-6 Remote Process Management

pd

result

RPMCREATE

If no options are specified, the child program is assumed to

reside in the current working directory of the session to which it
logged on or in the : : programs directory. RPM causes the
child program to be restored with the clone name returned by
FmpRpProgram. The child program is then scheduled with an

EXEC 10 (immediate schedule without wait) call with no
parameters.

The total length of the opt array must be 996 bytes or less.

Byte array (Pascal), word array (FORTRAN),
by reference. An array of 16 bytes containing a unique

program descriptor returned by RPM. This program descriptor

is used to identify the scheduled child program. This value,

randomly generated, is presumed to be unique across all nodes.

A valid program descriptor is always a non-zero value. If
RPMCreate is unsuccessful, pd is set to all zeroes.

The program descriptor is used in subsequent RPM calls to

identify the child program.

32-bit non-negative integer, by reference.

The result of the RPMCreate request; zero if no error. If

result is not zero, an error has occurred. Errors are defined

in the NS-ARPA/1000 Error Message and Recover Manual.
Table 7-1. RPMCREATE Options

Numeric Code Description RTE-A Equivalent
Group 1:
23000 Set working directory name FmpSetWorkingDir
Group 2:
23010 Restore program RP command
Group 3:
20000 Pass string none
23020 Assign partition AS command
23030 Set program priority PR command
23040 Change working set size WS command
23050 Change VMA space size VS command
23060 Change CDS code size CD command*
23070 Change CDS data size DT command*
*not exactly like RTE
Group 4: If used, only one can be specified:
23080 Time list scheduling EXEC 12 call
23090 Immediate schedule w/o wait EXEC 10 call
23100 Queue schedule w/o wait EXEC 24 call
23110 Run program FmpRunProgram

Remote Process Management

7-7

RPMCREATE

RPMCREATE Options

At the same time that a child program is scheduled, some equivalent RTE-A commands
can be sent to the child program using the RPMCreate options. The options are listed in
Table 7-1 and are explained in the following subsections.

The options and related data are placed into the opt array by using the AddOpt call. This
call is documented in “Special NetIPC Calls” in the “Network Interprocess
Communication” section of the NS-ARPA/1000 User/Programmer Reference Manual. The
Addopt call uses all the parameters listed below. However, the following subsections
present only the opt ioncode, datalength, and data parameters, because these are
the parameters that have specific values for each RPMCreate option.

ADDOPT (opt, argnum, optioncode, datalength,data, error)

AddOpt Parameters

opt Byte array (PASCAL); Word array (FORTRAN),
by reference. The opt parameter to which you want to
add an argument. Refer to “Opt Parameter” in the “Network
Interprocess Communication” section for information on the
structure and use of this parameter.

The total length of the opt array must be 996 bytes or less.

argnum 16-bit integer, by value in Pascal, by
reference in FORTRAN. The number of the argument to
be added. The first argument number is zero.

optioncode 16-bit integer, by value in Pascal, by
reference in FORTRAN. An RPMCreate option code.
These codes are explained in the subsequent subsections.

datalength 16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of the data to
be included. This information is provided in each RPMCreate
option description on the following pages.

data Array, by reference. Avariable length array of data to
be passed to the child program. Null strings are valid.

error 16-bit integer, by reference. The error code
returned; zero if no error. Error codes are documented in the
NS-ARPA/1000 Error Message and Recover Manual.

7-8 Remote Process Management

RPMCREATE

RPMCreate Option 20000—Pass String

RTE-A System Equivalent: none.

AddOpt Parameters

optioncode 16-bit integer, by value in Pascal, by
reference in FORTRAN. 20000 to indicate the “Pass
String” option.

datalength 16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. A maximum of 256
bytes can be passed.

data Array, by reference. Avariable length array of data to
be passed to the child program. Null strings are valid.

012345678910 ... 255 bytes
| data |

RPMCreate Option 23000—Set Working Directory

RTE-A FMP Equivalent: FmpSetWorkingDir call (documented in the RTE-A
Programmer’s Reference Manual).

AddOpt Parameters

optioncode 16-bit integer, by value in Pascal, by
reference in FORTRAN. 23000 to indicate “Set Working
Directory” option.

datalength 16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. The dataisa
working directory name. The datalength can be up to 63
bytes for an RTE working directory name.

data Packed array of characters (Pascal); word
array (FORTRAN), by reference. A packed array of
characters specifying the working directory. The directory
name must be fully-qualified. An exception would be ifitisa
subdirectory of the current working directory for the session
created with the 1ogin parameter of RPMCreate. In this
latter case, the current directory path can be omitted.

0123456782910 ... 62 bytes

directory

Remote Process Management 7-9

RPMCREATE

RPMCreate Option 23010—Restore Program

RTE-A FMP Equivalent: FmpRpProgram call (documented in the RTE-A Programmer’s

Reference Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23010 to indicate the “Restore
Program” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be only one of
the following values: 0, 6, or 7. No other values are allowed.

e If the length is 0, there is no data. The child program is
restored under a system-assigned name. The child is
always restored as a permanent ID segment.

e If the length is 6, it is assumed that the program name is
specified in data and no cloning is to occur.

e If the length is 7, both the program name and letter C are
specified. The letter C signifies to create a clone name.

Packed array of characters (Pascal); word
array (FORTRAN), by reference. A six- or seven-byte
array. The first six bytes are the name under which the child
program should be restored. If the name is not specified, the
program will be restored under a system-assigned name. The
returned name is the first five characters of the child program
name (minus the directory path and file type extension).

If the seventh byte contains the character C, a clone name is to
be created. If the specified or assigned name from the first six
bytes is already assigned, a clone name is created. For more
information about cloning, refer to the RTE-A User’s Manual.

0 1 2 3 4 5 &6 bytes

child program name| C

7-10 Remote Process Management

RPMCREATE

RPMCreate Option 23020—Assign Partition

RTE-A System Equivalent: AS command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23020 to indicate the “Assign
Partition” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be only one of
the following values: 2 or 3. No other values are allowed.

o If the length is 2, the 16-bit partition number is specified.
The default is to assign the data section of the program to
the reserved partition.

e If the length is 3, the 16-bit partition number should be
followed by a C for code section or D for data section.

Array, by reference. A three-byte array. The first two
bytes are a 16-bit integer specifying the reserved partition
number in which the child program is to run.

The third byte is the character C or D to indicate either the code
(¢) or data (D) section. The code or data section of the
program is assigned to the reserved partition. This argument
applies only to CDS child programs. This argument can be in
either upper or lower case.

0 1 2 bytes
partition C or
number D

RPMCreate Option 23030—Change Program Priority

RTE-A System equivalent: PR command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23030 to indicate the “Change
Program Priority” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be a 2. No other
values are allowed.

16-bit integer, by reference. Aninteger from 1 to
32767 specitying the child program priority.

0 1 bytes

priority

Remote Process Management 7-11

RPMCREATE

RPMCreate Option 23040—Modify Working Set Size

RTE-A System equivalent: WS command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23040 to indicate the “Modify
Working Set Size” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be a 2. No other
values are allowed.

16-bit integer, by reference. Aninteger from 2 to
1022 specifying the working set size in pages.

0 1 bytes

working

set size

RPMCreate Option 23050—Modify VMA Size

RTE-A System equivalent: VS command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23050 to indicate the “Modify
VMA Size” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be a 2. No other
values are allowed.

16-bit integer, by reference. An integer from 32 to
32767 specifying the virtual EMA size in pages.

0 1 bytes

virtual

EMA size

7-12 Remote Process Management

RPMCREATE

RPMCreate Option 23060—Modify Code Partition Size

RTE-A System equivalent: ¢D command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23060 to indicate the “Modify
Code Partition Size” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be a 2. No other
values are allowed.

16-bit integer, by reference. A 16-bitinteger
specifying the maximum number of code segments permitted to
remain in memory at once. This number must be less than or
equal to the actual number of code segments for the program.

0 1 bytes
code
partition
size

RPMCreate Option 23070—Modify Data Partition Size

RTE-A System equivalent: DT command (documented in the RTE-A User’s Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23070 to indicate the “Modify
Data Partition Size” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be a 2. No other
values are allowed.

16-bit integer, by reference. A 16-bitinteger
specifying the size of the data partition in pages.

0 1 bytes
data
partition
size

Remote Process Management 7-13

RPMCREATE

RPMCreate Option 23080—Time Scheduling

RTE-A System Equivalent: EXEC 12 call (documented in the RTE-A Programmer’s

Reference Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23080 to indicate the “Time
Scheduling” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be 2, 4, 6, 8, 10,
or 12 bytes. No other values are allowed. The exact length
depends on the parameters specified.

If the length is 2, only units is specified. The call is an
Absolute Start Scheduling call to schedule the child
program immediately.

If the length is 4, the units and oftenvalues are
specified. The call is an Absolute Start Scheduling call to
schedule the child program immediately and how often it
should be scheduled.

If the length is 6, the values for units, often, and
delay/hour are specified. If the delay/hour
parameter is negative, the call is an Initial Offset
Scheduling call. If the delay/hour parameter is
non-negative, the call is an Absolute Start Scheduling call.

If the length is 8, the values for units, often, hour, and
min are specified. The callis a Scheduling Absolute
Starting Time call.

If the length is 10, the values for units, often, hour,
min, and sec are specified. The call is a Scheduling
Absolute Starting Time call.

If the length is 12, the values for units, often, hour,
min, sec, and msec are specified. The callis a
Scheduling Absolute Starting Time call.

Array, by reference. A2 to12byte array with the

following contents:
0 1 2 3 4 5 bytes
units often delay
o 1 2 3 4 5 6 7 8 9 10 11 bytes
|units often| hour | min sec | msec |
units A resolution code that specifies the time

units. In conjunction with parameter of ten,
units specifies the time between each
execution of the child program.

7-14 Remote Process Management

often

delay

RPMCREATE

units is one of the following values:

1 = tens of milliseconds

2 = seconds
3 = minutes
4 = hours

An integer value (0 to 4095) indicating the
execution multiple or how often the program
is to run.

The initial offset. A negative number

indicating the starting time of the first
execution (not zero).

The following parameters collectively specify the starting time:

hour

min

sec

msec

The starting hour (0 to 23).

The starting minute (0 to 59).

The starting second (0 to 59).

The starting tens of milliseconds (0 to 99).

RPMCreate Option 23090—Program Scheduling (Immediate No

Wait)

RTE-A System Equivalent: EXEC 10 call (documented in the RTE-A Programmer’s

Reference Manual).

AddOpt Parameters

optioncode

datalength

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23090 to indicate the “Program
Scheduling—Immediate No Wait” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be one of the
following values: 0,2, 4, 6, 8, 10, 13, or greater than 13 bytes.
Any parameter that is not specified defaults to zero. The exact
length depends on the parameters specified:

If the length is 0, all parameters are omitted and take their
default value to be zero.

If the length is 2, only pr1 is specified.

If the length is 4, pr1 and pr2 are specified.

If the length is 6, pr1, pr2, and pr3 are specified.

If the length is 8, pr1, pr2, pr3, and pr4 are specified.

If the length is 10, pri, pr2, pr3, pr4, and pr5 are

specified.

If the length is 13 or more, all seven parameters are

specified.

Remote Process Management 7-15

RPMCREATE

data Array, by reference. Avariable length array with the
following contents:
0123456789 1011 ... nn + 1 bytes
| prl |pr2 |pr3 |pr4 |pr5| bufr | buflnl

pri, pr2, pr3, Five optional integer parameters to be passed

pr4, pr5 to the child program. If any of the
parameters pri, pr2, pr3, pr4, or prsare
omitted, the remaining parameters all default
to 0.

bufr A variable length buffer containing data to be
sent to the child program. The child program
can recover the buffer by using the RTE
GETST subroutine or the RTE string passage
EXEC 14 call. Refer to the RTE manual for
usage. NOTE: Any string that is retrieved
with GETST must be structured so that two
leading commas exist in the string. GETST
discards the information preceding the two
commas and returns the string following
them.

bufln The length of bufr. If a positive integer,
buflnindicates the number of words. If a
negative integer, buf 1nindicates the
number of bytes in bufr. If a positive
integer, bufInindicates the number of
words in bufr. If the bufr parameter is
specified, the last two bytes of data are
buflin.

7-16 Remote Process Management

RPMCREATE

RPMCreate Option 23100—Queue Program Scheduling

RTE-A System Equivalent: EXEC 24 call (documented in the RTE-A Programmer’s

Reference Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23100 to indicate the “Queue
Program Scheduling” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array. Must be one of the
following values: 0,2, 4, 6, 8, 10, 13, or greater than 13 bytes.
Any parameter that is not specified defaults to zero. The exact
length depends on the parameters specified:

e If the length is 0, all parameters are omitted and take their
default value to be zero.

o If the length is 2, only pr1 is specified.

e If the length is 4, pr1 and pr2 are specified.

e If the lengthis 6, pri, pr2, and pr3 are specified.

e Ifthelengthis 8, pri, pr2, pr3, and pr4 are specified.

e Ifthelengthis 10, pri, pr2, pr3, pr4,and pr5 are
specified.

o If the length is 13 or more, all seven parameters are
specified.

Array, by reference. Avariable length array with the
following contents:

0123456789 1011 ... nn + 1 bytes

| prl |pr2 |pr3 |pr4 |pr5 | bufr | buflnl

pri, pr2, pr3, Five optional integer parameters to be passed

pr4, pr5 to the child program. If any of the
parameters pri, pr2, pr3, pr4, or prsare
omitted, the remaining parameters all default
to 0.

bufr A variable length buffer containing data to be
sent to the child program. The child program
can recover the buffer by using the RTE
GETST subroutine or the RTE string passage
EXEC 14 call.

Remote Process Management 7-17

RPMCREATE

bufln The length of bufr. If a positive integer,
buflnindicates the number of words. If a
negative integer, buf Inindicates the
number of bytes in bufr. If a positive
integer, bufInindicates the number of
words in bufr. If the bufr parameter is
specified, the last two bytes of data are
buflin.

Caution

Option 23100 should be used with extreme care and is recom-
mended only for child programs which execute only for a very
short duration. If this option is issued for a child program that is
currently executing, RPM will suspend and will not be able to
process other requests that arrive while waiting for the currently
executing child program to terminate. If requests to RPM are
frequent enough and RPM suspends for a long time, this may
cause many requests to be rejected.

RPMCreate Option 23110—Program Scheduling

RTE-A FMP Equivalent: FmpRunProgram call (documented in the RTE-A Programmer’s

Reference Manual).

AddOpt Parameters

optioncode

datalength

data

16-bit integer, by value in Pascal, by
reference in FORTRAN. 23110 to indicate the “Program
Scheduling” option.

16-bit integer, by value in Pascal, by
reference in FORTRAN. The length in bytes of data
which is to be included in the opt array.

A variable length character string that contains the runstring.

Note that the XQ command must be specified at the beginning of

the runstring, or RPM will insert it. If the RUcommand is
specified at the beginning of the runstring, RPM replaces it with
an XQ. Also, the program name should be the same as the
progname parameter of the RPMCreate call. An error is
returned if this is not the case. This program name will be

replaced by RPM by the name of the ID segment under which it is

restored. The IH option of the RTE RU (Run Program)

command is not permitted to follow the program name. Cloning

can be inhibited by specifying option 23010 (Restore Program
Option) beforehand in the opt array of the RPMCreate call.

The last two bytes of data is a 16-bit integer indicating how
FmpRunProgram is to handle the string parameter. The
possible values are as follows:

1 The string is converted to uppercase and each group of one or
more consecutive blanks is converted to a comma.

0 The string is not altered.
0 1 2 .. . n n+ 1 bytes

string | 1 or O |

7-18 Remote Process Management

RPMGETSTRING

Allows the child program to retrieve strings passed to it by the parent program.

RPMGETSTRING

rpmstring

rpmstringlen
(input/output)

result

(rpmstring, rpmstringlen, result)

Packed array of characters (Pascal); word
array (FORTRAN), by reference. Avariable length
array containing the string passed in the opt parameter of the
RPMCreate call which scheduled this child program.

32-bit non-negative integer, by reference. On
input, rpmstringlenis the maximum byte length allowed for
the rpmstring. On output, rpmstringlenindicates the
actual length of the returned rpmstring. A string longer than
what the buffer can accommodate will be truncated. In RTE-A
the maximum string length retrieved with RPMGet String is
256 bytes.

If there is no string received in rpmstring, an error is
returned in result.

32-bit non-negative integer, by reference.
The result of the RPMGet St ring request; zero if no error. If
result is not zero, an error has occurred. Errors are defined
in the NS-ARPA/1000 Error Message and Recover Manual.

Remote Process Management 7-19

RPMKILL

Terminates a specified child program scheduled by an RPMCreate call.

RPMKILL

pd

nodename

nodelen

result

(pd, nodename, nodelen, result)

Byte array (Pascal); Word array (FORTRAN),
by reference. An array of 16 bytes containing the program
descriptor returned by the RPMCreate call.

Packed array of characters (Pascal); word array

(FORTRAN) , by reference. Avariable length array
identifying the node on which the child program resides. The
syntax of the node name is node [. domain[.organization]],
which is further described in the NS-4ARPA/1000 User/Programmer
Reference Manual.

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization or
organization and domain are omitted, they will default to the
local organization and/or domain. If the nodelen parameter is
set to zero, nodename is ignored and the node name defaults
to the local node.

32-bit non-negative integer, by value in
Pascal, by reference in FORTRAN. Length in bytes
of the nodename parameter. If nodelenis zero (0), the
nodename parameter is ignored. In this case, it is assumed
that the parent is either terminating a dependent child program
that it previously scheduled or the child program is on the local
node.

32-bit non-negative integer, by reference.
The result of the RPMK111 request; zero if no error. If
result is not zero, an error has occurred. Errors are defined
in the NS-ARPA/1000 Error Message and Recover Manual.

7-20 Remote Process Management

RPM Error Codes

These error codes are returned in the resul t parameter of Remote Process Management
(RPM) calls. Refer to the NS-ARPA/1000 Error Messages and Recovery Manual for more
complete explanations of these error codes.

RPM Error Codes

Code

Meaning

The call was successful.

Network is down.

lllegal name length.

lllegal flags.

lllegal option or request code.

lllegal option format.

Invalid login or password.

Child program not found on child node.

Invalid program descriptor.

Ol ©| N| O]l O] M|l] N

Remote process limit exceeded.

-
o

Insufficient memory to create a child program.

-

Security violation or device error.

-
N

Unknown internal error.

-
w

Bad RPM packet structure.

-
>

Network transport error.

-
o

Incompatible version number ID.

-
(o}

Unsupported RPM option or request.

-
J

RPMCreate request message too long.

-
©

Bad parameter in opt array parameter.

-
©

Invalid node name.

n
o

No RPM parameter string.

I

lllegal string length.

22

The child program terminated abnormally.

23

Unsupported RPM call.

Table is full.

304

RPM attach failed.

305

Schedule error.

306

Cannot find child program’s ID segment.

307

Logoff failed.

Group 3 option error.

Remote Process Management

7-21

REMAT

Table of Contents

REMAT Operationot
REMAT Scheduling o e
REMAT Commandsuuuuitiitiine et

8-A

GO 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO0 00 00 OO 0O OO GO OO 0O 0O 00 00 OO

..
P oo muIalNaa et LG OEREEALROLGOLOLOLLLLLLAER

00 00 Co oo
—

REMAT Operation

CI>RU, REMAT
$

Local RTE command processing now in effect.

$SW,570,572,DS
Set up origin (570) and destination (572) nodes. Network user’s security code (DS) must
be specified.

SEX

Terminate REMAT.

Note Physical node locations are designated by the notation
NODE1l = xxandNODE2 = xxwhere xx is the Router/1000
node address assigned by the Network Manager. Logical node
location, those locations obtained using the REMAT Sw
command, are designated by the notation NODE1 (the origin
node) and NODE2 (the destination node).

REMAT Scheduling

REMAT can be scheduled with or without the following runstring parameters.

REMAT Efiledesc :I[, log]l [, 1ist] [, severity codel

, input

filedesc The name of a command file that provides REMAT commands.
All commands in the file must be preceded by a §.

input The LU of the system input device. Must be less than 64.
Default is your terminal.

log The LU of the interactive message logging device. Must be less
than 64. Default is input LU (if interactive) or the value
returned by LOGLU.

list The LU of the list device. Must be less than 64. Default is the
log LU.

severity code The error reporting code. If 0 is specified, all commands will be

echoed and all errors will be reported (this is the default). If 1
is specified, the command echo is inhibited.

REMAT 8-1

REMAT Commands

AT

Attaches to an account at a remote Session Monitor node. Do not use this command if
you want the default account, if the remote node does not have Session Monitor, or if the
remote node is an RTE-A system.

AT [, user.group|/password]] [user.group[/password]]

user.group/password The account and optional password in the corresponding node
for which a non-interactive session is to be created and to which
subsequent REMAT commands will non-interactively attach.
Previous session at this node will be released. For non-session
access, this parameter is password only. The first parameter
indicates the logon at NODE1; the second parameter is the
logon at NODE2. The AT command must be specified with one

or the other; it is meaningless without parameters. User, group,
and password may each be up to 10 characters in length.

BC

Broadcasts a message to each node in your Nodal Routing Vector.
BC, message

message An ASCII string of up to 72 characters in length.

CL

Lists the mounted cartridges at the currently switched node (NODE1) on a local list LU.

CL[, LU]

LU The logical unit number for the local list device. Must be less
than 64. If LUis not specified, the current list device set up by
the LL command, or the list LU assigned by REMAT.

CR

Creates a disk file on the currently switched node (NODE1). No data is transferred to the
file.

CR, namr

namr A file descriptor that describes a FMGR file. It must not be a
logical unit number. All omitted subparameters (except
filename) default to zero. However, the file type and file size
must be specified as greater than zero or an error will be
returned.

8-2 REMAT

DE

Detaches from a remote account established at an RTE system with Session Monitor.

DE[, N1] [,N2]

N1 Specifies the current NODEL.
N2 Specifies the current NODE2.
DL

Lists the file directory of the currently switched node (NODEL1) on the local list device.

, cartridge
DL I:,namr :I[,msc][,lu]

cartridge Cartridge identifier of a FMGR cartridge. Must be numeric,
positive for cartridge reference number, negative for logical
unit number. If omitted or zero, the directories of all cartridges
mounted to the current account are listed.

msc The system master security code. If specified correctly, the
security code of each file will be listed.

namr A file descriptor that describes a FMGR file. Minus signs may
be used in the file name to specify a match with any single
character.

Iu The logical unit number of the local list device. Must be less

than 64. If specified, the directory will be listed on this LU.
Default is the list device specified when REMAT was scheduled,
or with the LL command.

DU

Transfers data from a file or logical unit at NODE1 to a logical unit at NODE2.

DU, namr, lul[, format]

namr A file descriptor that describes a FMGR file, or logical unit
(less than 64) from which the records will be dumped.

Iu The logical unit to which the records will be dumped. Must be
less than 64.

format Format of the data being transferred. Default is derived from

namr, if namr is a file, otherwise default is ASCII. The format
may be AS (ASCII), BR (Binary Relocatable), BN (Binary, no
checksum is performed), or BA (Binary absolute, checksum is
performed).

EX
Terminates REMAT.

EX

REMAT 8-3

FL
Closes a disk file at NODEL to users at a specified node.
FL, namr, node

namr A file descriptor that describes a FMGR file. The crn
subparameter of namr must be supplied and be non-zero.

node The node number at which the user to whom the file is being
closed resides. If nodeis —1, the file is closed to all users.

10

Lists the system I/O configuration on RTE-A systems only.

IO

LC

Displays the local node Router/1000 node address.

LC

LI

Prints the contents of a file at NODE1 to a logical unit at NODE2.

LI, namr[, lu]

namr A file descriptor that describes a FMGR file. If the file has a
negative security code, you must specify it.

Iu The optional logical unit where the file is to be listed. Must be
less than 64.

LL

Changes or displays the LU of the list and/or log device.

LL[, 1ist] [, 1o9]

list The logical unit number of the new list device. Must be less
than 64.

log The logical unit number of the new log device. Must be less
than 64.

8-4 REMAT

LO

Loads an absolute program file from NODE1 into a memory-based RTE-A system at
NODE2.

LO, namr
namr A file descriptor that describes a FMGR type 6 file (executable
program file, memory-image) that contains the program to be

loaded. The first five characters of the file name are used as the
name of the program in building the program’s ID segment.

PL

Lists all programs that are in memory at a remote memory-based RTE-A node.
PL[, status]
status One of the program status codes (ASCII) described under the
command PL (list programs) in the RTE-A Quick Reference
Guide. Only those programs with the specified status will be

listed. If no option is specified, all programs, their status,
priority, and point of suspension are listed.

PU

Removes a file from the disk at NODE1.
PU, namr

namr A file descriptor that describes a FMGR file.

Qu

Queue schedules a program to run without wait at NODE1. If NODEL1 is an RTE-A system,
the program to be scheduled must have an ID segment and be loaded as a system utility.

QU'pnameE,pll [,p2] [,p3] [, p4] [,p5]:|

, string]
pname The name of the program to be scheduled.
pl,...,p5 Up to five optional parameters to be passed to the program.
string ASCII string to be passed to the program. The command line,

including the $ prompt if commands are being read from a
non-interactive device or file, must not exceed 80 characters.

REMAT 8-5

Qw

Queue schedules a program to run with wait at NODE1. If NODE1 is an RTE-A system, the
program to be scheduled must have an ID segment and be loaded as a system utility.

lepnam{%,pl] [,p2] [,p3] [, p4] [,p5]:|

, string]
pname The name of the program to be scheduled.
pl,...,p5 Up to five optional parameters to be passed to the program.
string ASCII string to be passed to the program. The command line,

including the $ prompt if commands are being read from a
non-interactive device or file, must not exceed 80 characters.

RN

Changes a file name to a new name. None of the file characteristics are changed except the
name.

RN, namr, nuname

namr A file descriptor that describes a FMGR file.

nuname New file name unique to the disk cartridge. Security code and
cartridge identifier cannot be altered.

RW

Schedules a program to run with wait at NODE1. If NODE1 an RTE-A system, the program
to be scheduled must have an ID segment and be loaded as a system utility.

Rw'pmmeﬂ,pu [,p2] [,p3] [, p4] [,p5]:|

, string]
pname The name of the program to be scheduled.
pl,...,p5 Up to five optional parameters to be passed to the program.
string ASCII string to be passed to the program. The command line,

including the $ prompt if commands are being read from a
non-interactive device or file, must not exceed 80 characters.

SD

Shuts down a session created by NS-ARPA at NODE1. Sessions are created at Session
Monitor nodes only.

The SD command releases tables at NODE1 only, not at the node which created the session.
Its purpose is to clean up when catastrophic events (such as rebooting) occur at the
creating node, causing discrepancies between the creator’s Process Number List (PNL)
and NODE1’s POOL. Do not shut down a session with the SD command for any other reason.

SD, session ID,NMSC

session ID The session ID at NODE1 that you wish to shut down. (Your
session ID can be found by using the NSINF utility.)

NMSC The Network Management Security Code at the node where
REMAT is running.

8-6 REMAT

SL
Lists all program-to-program (PTOP) slave programs.
SL[, Iist 1lu]
list Iu The logical unit number of the local list device. Must be less

than 64. Default is either the list device specified in the LL
command or the list LU assigned by REMAT.

SO

Terminates a program-to-program (PTOP) slave program.
SO [, program name]
program name The name of the program to be terminated. If no program is

specified, all current PTOP slaves are terminated at NODE]I.
NODEL is specified in the SWcommand.

ST

Transfers data from NODE1 and creates a file at NODE2.

ST, namrl,namr2|[, format] [, mode]

namrl A file descriptor that describes an existing FMGR file, or a
logical unit number. Data is transferred from namr1. LU must
be less than 64.

namr2 A file descriptor that describes a FMGR file to which data will

be transferred. Cannot be an LU number. The following

namr2 subparameters have non-standard default values.

type If zero or not specified, defaults to the type of
namr if namr1is afile. If namr1 is nota
file, default is type 3.

size If given, must be positive; default is 10 blocks
if namr1 is an LU, or is equal to the size of
namrl when namrl is a file.

format The format of the data being transferred. Default is derived
from namr1 if namr1 is a file, otherwise default is ASCII. The
choices are:
AS ASCII
BR Binary relocatable; checksum is performed
BN Binary; no checksum is performed
BA Binary absolute; checksum is performed
mode Transfer mode. May be entered when both namri1 and namr2

are files. A non-zero value causes both files to be opened as
type 1 to increase the rate of data transfer. Extents are copied
if both source and destination nodes support extendable type 1
or 2 files.

You cannot use non-zero transfer mode for storing hierarchical file system files with odd
byte length records to nodes with non-hierarchical file systems.

REMAT 8-7

Sw
Changes or displays the origination and/or destination nodes of subsequent REMAT
commands. The SWcommand can be used in four different ways.

To display the current values of NODE1 and NODE2:
SW

To set NODE1 and NODE2:
SW[, NODE1] [, NODE2] , security code

To set NODE1 and NODE?2 to the local node address:
SW, LO [CAL]

To attach to a specific account.

SW[, NODE1[: user.group/password]] [, NODE2[: user.group/password]],
security code

NODE1 If a REMAT command requires one node it uses NODE1. If the
command requires two nodes, then NODE1 is the node from
which action originates when a REMAT command is issued.
Must be the Router/1000 node address of the desired node. (If
NODEL is a neighboring node, may also be the negative logical
unit number of that node.)

NODEZ2 If a REMAT command requires two nodes, NODE?2 is the node
to which the results of the action taken are destined when a
REMAT command is issued. Must be the Router/1000 node
address of the desired node. (If NODE2 is a neighboring node,
may also be the negative logical unit number of that node.)

security code The local node’s Network User’s security code assigned to the
node at network initialization time.

LO[CAL] A literal parameter that forces NODE1 and NODE2 to the local
node number.

user.group/password (Can be used to attach to specific accounts at DS/1000-1V
nodes with Session Monitor only.) The account and optional
password for which a non-interactive session will be created at
the specified node and to which subsequent REMAT
commands will non-interactively attach. The previous session
at this node will be released. This parameter is not required if
the default account is desired. For non-session access, this
parameter is the password only. User, group, and password
may each be up to 10 characters in length.

8-8 REMAT

Table 8-1. Effect of SW

Command NODE1 NODE2 Local
AT Session created here Session created here
(Session Monitor nodes (Session Monitor nodes
only) only)
BC Message delivered at all Message delivered at all Message delivered at all
nodes nodes nodes
CL Cartridges mounted here List here
CR File created here
DE Detaches session here Detaches session here
(Session Monitor nodes (Session Monitor nodes
only) only)
DL File directory here List here
DU From file or lu To lu
EX Only used here
FL File closed here
10 From RTE-A 1/0 configuration listed here
LC Only used here
LI From file To lu
LL Only used here
LO From file To memory-based RTE-A
PL From RTE-A Programs listed here
PU File purged here.
QU Scheduled program here
oW Scheduled program here
RN File renamed here
RW Scheduled program here
sSD Shut down a session here
sSL Slave program here List here
so Slave program here
ST From file or lu To file or lu
SW Only used here
TE Message sent here
TR Transfer to file at any node Transfer to file at any node Transfer to file at any node

REMAT 8-9

TE

Sends a message to NODEL.
TE, message

message An ASCII string of up to 72 characters in length.

TR
Transfers control of REMAT to a file at any node or a logical unit.

[, filedesc] [, node]

T [, -integer]
[, 1ul

filedesc File name of transfer file containing RTE commands.

node Positive node number or negative logical unit number of a node
where the command file exists. If £iledescis an LU, node is
ignored.

-integer Negative integer that denotes a transfer back through the
stacked transfer files. Current command file is not included in
the count.

Iu Logical unit of input device.

WHZAT

Schedules the DS version of the RTE system status utility WHZAT.
RW,WHZAT [, Iu] , option, nodeaddress

RW Used to schedule WHZAT.

Iu The system LU to which the output will be printed. Must be
less than 64. If this parameter is omitted, the output LU will
default to system LU 1 at the node specified by nodeaddress.

option The WHZAT program option. Refer to the appropriate
programmer’s reference manual for an explanation of the
WHZAT program options.

nodeaddress The Router/1000 node address of the node where the output is

to be returned. This must be your local node to display the
WHZAT output at your local system.

Note You cannot schedule WHZAT at NODEL if that node is an
NS-ARPA/1000 system or a DS/1000-1V system with an RTE-A
operating system.

8-10 REMAT

Error Messages

The following error messages are returned to the current list device when an error is
encountered by the program REMAT.

Table 8-2. REMAT Error Messages

Message Meaning
/LOGOFF :DSERR SSEE (QQ) , This message can appear if the node being accessed by
REPORTING NODE NNNNN REMAT is a Session Monitor node.
/LOGON:DSERR SSEE (QQ) , This message can appear if the node being accessed by
REPORTING NODE NNNNN REMAT is a Session Monitor node.
/REMAT: DSERR SSEE(QQ), See error code (EE) in specific subsystem (Ss).
REPORTING NODE NNNNN
/REMAT: xxX Numerical error message equivalent to FMGR error.

REMAT 8-11

RMOTE

Table of Contents

RMOTEOperationooiiiiiiiiiiiiiiiiiiiiiiiiiiiaee
MPE Commandsouuiute ettt ettt et
RMOTEScheduling o e
RMOTECommandsuiniinetee ettt eieieeiaannn

9-A

PPLLLPLLLLrLLrLeLLeLLeye
QAUNE B PBRWWWNRNDNDNN ===

RMOTE Operation
CI>RU, RMOTE
$
Local RTE command processing now in effect.
$SW
Switch to the HP 3000 node.
#HELLO user.group

Once the HELLO command is issued, standard HP 3000 command processing can take
place.

#EX
Exit RMOTE.

MPE Commands

RMOTE provides a remote interface to all MPE commands. In order to use RMOTE,
you should be familiar with the HP 3000 and the MPE commands. These commands are
described in the appropriate MPE commands reference manual.

RMOTE Scheduling

RMOTE can be scheduled with or without the following runstring parameters.
Alternately, RMOTE can be scheduled from a program with DEXEC or EXEC call.

REMAT Efiledesc :I [, 1og] [, severity code]
, lnput

filedesc The name of the file that provides all input commands; a
command file. All local commands must be preceded by the “$”
prompt and all remote commands must be preceded by the “#”
prompt. Comments must be preceded by an asterisk (*).

input The LU of the input device for $STDIN. Default is your
terminal, the Multiterminal Monitor LU, or the value returned
by LOGLU.

log The LU of an output device for $STDLIST requests and for

logging errors. The default log LU is the input LU (if
interactive) or the value returned by LOGLU.

severity code The display code. Default is zero. If an invalid code is entered,
it is defaulted to zero. The options are:
0 All commands are echoed on the log device.
Any error causes an appropriate error
message to be printed.
Inhibit command echo on log device.
2 Inhibit messages to log device unless error is
severe enough to cause control to transfer to
log device for command input.

—_

RMOTE 9-1

RMOTE Commands

EX

Terminates RMOTE execution.

EX

LL
Changes the $STDLIST device.
LL, Iu
Iu The logical unit number of the new $STDLIST device at the
local node.
MO

Moves files between an HP 1000 and an HP 3000.

If input is from an interactive LU, RMOTE prompts for data with a slash (“/”).
D terminates a data entry.

HP 1000 to HP 3000 File Transfer Format

When a file is moved from an HP 1000 to an HP 3000 (“$” prompt), use the following
command:

,filedesc X :CC
Mog " lu § , filename [,UN] ESP:I

filedesc The file to be transferred.

Iu The logical unit that specifies the location of the file to be
moved. Must be less than 64.

filename The filename created on the HP 3000. If the length of the file
to be transferred is more than 1023 records, a larger file size
must be established on the HP 3000 before the move can be
successfully completed. To set the file size, switch to the
HP 3000 and type:

#FILE filename;DISK=number of records

Then switch back to the HP 1000 to complete the move under
the HP 1000 “$” prompt. Any MPE file attribute can be
changed from its default by using the FILE command. This
equation does not alter the characteristics of an existing file.

UN Indicates the file is to be written as fixed length records.
RMOTE uses a default size of 80 characters, but this can be
overridden by the MPE FILE command.

cc Indicates column 1 is to be used for carriage control at MPE.

SP Indicates the RTE file is spooling system format. I/O control
embedded in the file will be translated to MPE carriage control
characters.

9-2 REMOTE

MO

Moves files between an HP 3000 and an HP 1000.

HP 3000 to HP 1000 File Transfer Format

When a file is moved from an HP 3000 to an HP 1000 (“#” prompt), use the following
command:

X ,filedesc
MO,fllename% ' lul:sP)] ; [,UN]
filename The name of the HP 3000 file to be transferred to the HP 1000.
filedesc The name the HP 3000 file will acquire at the HP 1000.
Iu The logical unit number specifying the destination of the

HP 3000 file on the HP 1000. If the LU is a magnetic tape
drive, an EOF is written when the move completes. If the LU is
a line printer, column one is interpreted as carriage control
unless octal 200 (decimal 128) is added to set the V bit. A top
of form is written when the move completes.

UN Removes the last 8 characters of each line regardless of line
length. This feature is useful for moving numbered MPE text
files. Numbered files created by the MPE text editor have an
8-digit sequence number at the end of each line. The UN option
would remove those eight digits on each line before moving the

file.
sSP Indicates output is to be spooled to the RTE LU (at priority
DS/1000-1V and 99). If this is specified, RMOTE creates a spooling file
RTE-6/VM only RMLUnn on the spool disk, where LU s the logical number of

the log device and nn is a number between 00 and 99 (e.g.,
RM0900). The file is purged when outspooling is completed.

ON, RU

Schedules a local HP 1000 program.
RU
ON

program Name of the program to be scheduled. The program must have
an ID segment and be loaded as a system utility.

,program[,NOW] [, parameters]

NOW If specified, schedules the program immediately. Commands
with the NOW option are passed directly to RTE and are not
upshifted.

parameters Up to five parameters or a string can be passed to the program.
If the first parameter is not provided, it is set to the value
returned by LOGLU. If the fifth parameter is not provided, it is
set to the negative session number obtained if RMOTE
successfully establishes an HP 3000 session.

RMOTE 9-3

RW

Queues, with wait, a local HP 1000 program.
RW, program|, parameters]

program Name of the program to be scheduled. The program must have
an ID segment and be loaded as a system utility.

parameters Up to five parameters or a string to be passed to the program.
If the first parameter is not provided, it is set to the value
returned by LOGLU. If the fifth parameter is not provided, it is
set to the negative session number obtained if RMOTE
successfully establishes a session.

Ssv

Sets or changes the severity code.

SV, severity

severity Severity may be:
0 Display error codes and echo commands on
log device (default).
1 Inhibit command echo on log device.
Command echoed only if RMOTE error
occurred.
Sw

Establishes which HP 3000 a HELLO will be sent and toggles between the HP 3000 and
HP 1000.

ol [,1u]
, #x.25address[,x.251u]

Iu The positive LU number of a BISYNC link to an HP 3000. If
this parameter is omitted, the first BISYNC HP 3000 LU
specified at NS-ARPA initialization is used.

x.25address The X.25 network address assigned to the HP 3000. The pound
sign (#) must appear before the address. The address can
consist of up to fifteen digits. There is no default X.25 network
address.

x.251u Specifies the physical X.25 link to use. Only necessary when
more than one X.25 I/O board is in use. This is not the virtual
circuit LU but is the network LU as defined by XINIT, the X.25
initialization program.

9-4 REMOTE

TR

Transfers command input to a file or logical unit at the local node.

,filedesc
TR |, 1u
, -integer
filedesc The file name of transfer file where commands are to be read.
Iu Logical unit of input device where commands are to be read.
Must be less than 64.
-integer Negative integer that denotes a transfer back through the

stacked command files. The current command file is not
included in the count. The maximum number of command files
is seven.

RMOTE 9-5

Error Messages

The following error messages are returned to the current list device when an error is
encountered by the program RMOTE.

Error Messages

Message Meaning
AUTO “BYE” FAILED BYE generated automatically when EX command is entered with a HELLO
outstanding has failed. May occur if the link has been disconnected since
the HELLO was entered.
BAD LU A negative LU number was specified in a MO command.

DS/1000 ERROR nnn

The reported numeric NS-ARPA/1000 error occurred during a file move
operation.

DS/3000 ERROR nnn

The reported numeric DS/3000 error occurred during a file move operation.

HELLO FAILED OR LINE
DOWN

HELLO command was not correct or could not be transmitted due to a line
error.

ILLEGAL STATUS

RTE returned an sco3 scheduling error for an RU, ON, or RW command.

INVALID INPUT

Wrong or missing parameter or wrong prompt on transfer file input.

INVALID REMOTE LU

Either LU is not in the 3000 LU table when NSINIT was executed, or it is not
the LU of the currently active session on the 3000.

LINK IS DISCONNECTED

The link to the HP 3000 is not functioning.

MPE FILE ERROR nnn

FS/3000 error occurred during a file move operation.

NEED “HELLO”

Attempt to send a command to the HP 3000 before issuing HELLO.

NEED TO RUN “DINIT”

Attempt to switch to remote node before local node has been initialized for
communications to HP 3000.

NO BUFFER SPACE

Less than 256 words of memory are available for the PTOP file move buffer
used with the MO command.

NO SLAVE AT 3000

Slave program does not exist as COPY3K.PUB.SYS.

NO SUCH PROGRAM

RTE returned an scos scheduling error for a RU, ON, or RW command.

NOT ENOUGH SAM

RTE returned an sc10 scheduling error for an RU, ON, or RW command.

NOT LOCAL COMMAND

HELLO or BYE under the $ prompt from RMOTE.

OLD COPY3K VERSION ON
3000 MOVE FAILED. LOAD
NEW VERSION

Slave program on HP 3000 for MO command is not most recent version.

OLD RMOTE VERSION ON
1000 MOVE FAILED. LOAD
NEW VERSION

Version of RMOTE is incompatible with slave program on HP 3000 for
RMOTE Mo command.

OVERWRITE?

Asked when the “to” file in a file move already exists.

PROGRAM BUSY

RU or ON specified a non-dormant program.

REQUEST FAILED

The HP 3000 rejected the last request.

RMOTE IOxx

RTE-reported 1/O errors.

RMOTE SCxx

Indicates bad parameters.

RTE FILE ERROR nnn

An FMP error occurred during a file access.

TIMEOUT: NO REPLY FROM

REMOTE

The HP 3000 did not respond to the last command: try again.

TR STACK OVERFLOW

The transfer stack is more than seven levels deep.

UNINITIALIZED @ READ

Local and/or remote ID sequences do not match the HP 3000.

WARNING--ILLEGAL OPTION

Printed only if severity = 0. sp specified with input from RTE LU or an RTE
file in non-spooled format.

WARNING: RMOTE BUFFER

TOO SMALL!

Printed only if severity = 0. RMOTE has insufficient buffer space at the end
of the partition to hold some of the messages from the HP 3000.

9-6 REMOTE

Remote File Access

10

Table of Contents

REA Common Parametersouunit ittt et

DAPOS/DXAPO .
DCLOS/DXCLO .
DCONT

Function Code

FunctionSub-Code i

DCRET/DXCRE .
DLOCF/DXLOC .
DNAME
DOPEN
DPOSN/DXPOS .
DPURG
DREAD/DXREA
DSTAT
DWIND
DWRIT/DXWRI .
HP 3000 RFA Calls

10-A

10-1
10-2
10-3
10-4
10-4
10-4
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-15
10-16
10-17

The RFA calls that do not begin with DX can define files up to 16383 blocks. Those that do
begin with DX (for example, DXCRE) can define larger files up to 32767 times 128 blocks in

size.

RFA Common Parameters

The following list defines frequently used RFA parameters. Refer to this list when using
calls that employ these parameters.

dcb
(input/output)

err
(input/output)

len
(input)

cr
(input)

eric
(output)

The RFA Data Control Block. A 4-word array of any type. The
dcb array resides in the same partition as your program and
must not be modified. Programs having the standard 144-word
dcb are accepted although 4-words is the minimum required.
This debis used to store parameters when the file is opened so
that any calls that reference this dcb will obtain the same file.
The true deb (144 words) is maintained by the RFA Monitor at
the node where the file resides.

Error code parameter. Produces an error code if an error
condition is encountered during execution of a RFA call. Must
be defined as a 16-bit integer. Upon successful completion of a
DCRET call, the number of sectors allocated to the file is
returned. Upon successful completion of a DOPEN call, a value
representing the file type is returned. If a value less than zero is
returned, DSERR may be called to obtain an ASCII message
describing the problem.

Length parameter. A value that declares the length of data for
aread or write request (DREAD or DWRIT). Must be defined as
a 16-bit integer. This value is limited to a maximum of 128
words. In extended file calls, Ien can be up to 512 words long.

Cartridge identifier parameter. Must be defined as an array of
two 16-bit integers. Word 1 declares the type of cartridge
reference. Itis an integer value that can be positive, negative,
or zero. If positive, the file search is restricted to the cartridge
reference declared by the specified integer value. The Session
Monitor nodes, any private, group, or system cartridge available
to this specific user’s account will be searched. If negative, the
file search is restricted to the logical unit number declared by
the specified integer value. If zero, the file search is not
restricted to any particular cartridge. For DCRET, if cris zero,
the file will be allocated on the first cartridge encountered that
has enough room for the file; calls other than DCRET search the
cartridges in the order in which they were mounted until the file
is found. Word 1 is the cartridge identifier. If positive, it
specifies the crn; if negative, it specifies the LU. Word 2
declares the address of the node at which the call is to be
executed. If this value matches the address of the local node, or
is —1, the call is executed locally. This parameter may also be
specified as the negative value of the communications line
logical unit number. If this parameter is omitted, word 1
defaults to zero and word 2 defaults to —1 (local node).

An error condition location variable. Must be defined as a
16-bit integer. If an error condition is encountered, the address
of the node at which the error occurred is returned.

Remote File Access 10-1

DAPOS/DXAPO

DAPOS and DXAPO set the address of the next record to be accessed within a file by
calling these routines. The record position set may be defined via a prior call to DLOCF.
DAPOS is equivalent to the FMGR routine APOSN; DXAPO is equivalent to EAPOS. This
routine cannot be used with Type 0 (non-disk) files.

The rband ioff parameters must be present for all files having variable record length to
ensure correct operation.

DAPOS (dcb, err, recl, rb] [, off] [,erlc])

DXAPO (decb, err, recl, rb] [, off] [,erlc])

dcb Four-word array. Data Control Block. (See “RFA
(input/output) Common Parameters” for more information.)
err 16-bit integer. Errorreturnvariable. (See “RFA

Common Parameters” for more information.)

rec 16-bit integer/32-bit integer. Nextrecord. A
variable set to the number of the next sequential record in the
file. Can be determined by a prior call to DLOCF or DXLOC.
For DXAPO, recis a double-word variable with the same
meaning.

rb 16-bit integer/32-bit integer. Relative block
address of the next record. A variable set to the block number
of the next record. This parameter is required for files of type
3,4,5,7, or greater (variable length records). For DXAPO, rbis
a double-word variable containing the block number of the next
record.

off 16-bit integer. Block offset of next record. A variable set
to the offset in the block of the next record. This parameter is
required for files of Type 3 or greater.

erlc 16-bit integer. Optional error condition location. (See
“RFA Common Parameters” for more information.)

10-2 Remote File Access

DCLOS/DXCLO

Following access operations, you may close a file using a call to DCLOS or DXCLO. DCLOS
is equivalent to the FMGR call CLOSE; DXCLO is equivalent to ECLOS.

DCLOS (decb, err|[, trun] [,erlc])

DXCLO (decb, err|[, trun] [,erlc])

dcb
(input/output)
err

trun

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for further information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for further information.)

16-bit integer/32-bit integer. File truncation
variable. Contains an integer value that defines the number of
blocks to be deleted from the file upon closing. If zero or not
specified, no truncation occurs. If negative, only file extents are
truncated. If greater than the number of blocks in the file, no
action occurs. If equal to the number of blocks in the file, the
file is purged. For DXCLO, trunis a double-word variable
containing a 32-bit number of blocks to be deleted from the
main file at closing.

16-bit integer. Error condition location. (See “RFA
Common Parameters” for further information.)

Remote File Access 10-3

DCONT

The RTE input/output control requests to Type 0 files are transmitted using this routine.
DCONT is equivalent to the FMGR call FCONT.

DCONT (dcb, err, conl [, con2] [,erlc])

dcb Four-word array. Data Control Block. (See “RFA

(input/output) Common Parameters” for more information.)

err 16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

conl 16-bit integer. Functioncode. A variable containinga
numeric value defining an input/output function (see the
following table).

con2 16-bit integer. Functionsub-code. A variable containing

a numeric value. This sub-code is required for some functions.
(See the following discussion.)

erlc 16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

Function Code

Bits 6 through 10 of parameter con1 are used for the function code.

BITS:
151413121110 9 8 7 6 5 4 3 2 1 0

The function codes are defined in Table 10-1. These function codes are driver dependent.
Consult the appropriate RTE driver reference manual for more information.

Function Sub-Code

Function sub-codes are required for line spacing (function 11) and finding files (function
27). If the function code is 11 octal, then DCONT expects a value in con2. This value
controls output line spacing on the line printer or a keyboard display device:

® () to suppress line spacing on the next line
® >(toindicate the number of lines to space before the next line
® <(to page eject the line printer; space specified lines on keyboard device

If the function code is 27 octal, then DCONT expects a value in con2. This value declares
the absolute file number to be located in the range 1 through 255.

10-4 Remote File Access

DCONT

Table 10-1. DCONT Function Codes

FUNCTION CODE FUNCTION DEVICE
(OCTAL)
00 Unused Magnetic Tape Cartridge Tape Unit
01 Write end-of-file Magnetic Tape Cartridge Tape Unit
02 Backspace one record Magnetic Tape Cartridge Tape Unit
03 Forward space one record Magnetic Tape Cartridge Tape Unit
04 Rewind Magnetic Tape Cartridge Tape Unit
05 Rewind Standby Rewind Magnetic Tape Cartridge Tape Unit
06 Actual Device Status Magnetic Tape Cartridge Tape Unit
07 Set end-of-tape Paper tape/TTY
10 Generate leader/Write end-of-file if not Paper tape/TTY Cartridge Tape Unit
just written or not at load point
11* List output line spacing Line printer
12 Write 3 inch inter-record gap Magnetic Tape
13 Forward space one file Magnetic Tape Cartridge Tape Unit
14 Backspace one file Magnetic Tape Cartridge Tape Unit
15 Conditional top-of-form Line Printer or Display Device
20 Enable terminal—allows terminal to Codes 20-27 are defined for a keyboard
schedule its program with any terminal (DVRO00). Refer to the DVR0O
keystroke manual, 29029-60001 for other uses.
21 Disable terminal—inhibits scheduling of
terminal program
22 Set timeout—sets new timeout interval
23 Ignore all further requests until the
request queue is empty, an input
request is received, or a restore control
request is received
24 Restore output processing (this request
is usually not necessary)
26 Write end-of-data Cartridge Tape Unit
27** Locate file number Cartridge Tape Unit

* When function code 11

is specified in con1, then con2 must be included in the parameter list to specify
the particular line spacing.

** \When function code 27 is specified in con1, then con2 must be included in the parameter list to specify
the particular file number.

Remote File Access 10-5

DCRET/DXCRE

The DCRET and DXCRE routines define a new file. DCRET is equivalent to the FMGR call
CREAT; DXCRE is equivalent to ECREA.

DCRET (dcb, err, name, size, typel, secu] [, cr] [, erlc])

DXCRE (dcb, err, name, size, typel, secul [, cr] [, xsize] [,erlc])

dcb

err

name

size

type

secu

cr

xsize

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for more information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

Integer array (FORTRAN); Packed character
array (PASCAL). File name. A 3-word array containing the
ASCII-coded name of the file to be created. Must be a FMGR
file.

Array of 16-bit integers/Array of 32-bit
integers. Filesize. A 2-word array in which word 1 contains
a positive value declaring the number of blocks to be allocated
for this file. Word 2 is used only for Type 2 files. It contains the
record length of the file specified in number of words. For
DXCRE, a two-entry array where each entry is a 32-bit integer.
The first entry contains the file size in double-word number of
blocks. The second entry is used only for Type 2 files and is the
double-word record length.

16-bit integer. File type (0 — 32767).

16-bit integer. File security code. A variable in the range
0 through —32767 or +32767. A positive value declares file
write protection. A negative value declares file read and write
protection. A value of 0 declares no file protection.

Array of 16-bit integers. Cartridge reference label.
A 2-word array which defines cartridge search and node
destination conditions. (See “RFA Common Parameters” for
more information.)

Array of 16-bit integers. Actual created file size in
sectors. In DXCRE, an optional two-word array that contains
the actual file size if DXCRE is successful.

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

10-6 Remote File Access

DLOCF/DXLOC

These calls are used to retrieve the location of the current record pointer within disk files.
DLOCF is equivalent to the FMGR routine LOCF; DXLOC is equivalent to ELOCF.

DLOCF (dcb, err, rec[, rb] [, of£] [, sec] [, 1ul [1 [, recsz] [, erlc])

DXLOC (dcb, err, rec[, rb] [, of£] [, sec] [, 1ul [, tyl [, recsz] [, eric])

dcb
(input/output)

err

rec

rb

off

sec

Iu

ty

recsz

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for more information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

16-bit integer/32-bit integer. Nextrecord. A
variable to which the number of the next sequential record in
the file is returned. For DXLOC, recis a double-word variable
containing the next sequential record number.

16-bit integer/32-bit integer. Relative block
number containing the next record. A variable to which the
number of the next block is returned. For Type 0 files, nothing
isreturned. For Type 1 files, rb=rec—1. If the file is
extended, extents are accounted for within the value returned.
For DXLOC, rbis a double-word variable with the same
meaning.

16-bit integer. Offset of the next record in the block. A
variable to which the location of the next word within the record
is returned. For Type 0 files, nothing is returned.

16-bit integer/32-bit integer. File size in sectors. A
variable to which the number of sectors allocated to the file at
creation is returned. To determine the block count, divide the
sector count by 2. For Type 0 files, nothing is returned. For
DXLOC, sec is a double-word variable.

16-bit integer. Logical unit number. A variable to which
the logical unit number of the device upon which the file resides
is returned.

16-bit integer. File type. A variable to which the file type
determined at opening is returned.

16-bit integer. Record size. A variable to which the
record length is returned for Type 1 and Type 2 files or the
read/write access code for Type 0 files. This parameter is not
applicable to a file type equal to or greater than Type 3.

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

Remote File Access 10-7

DNAME

Renames an existing file. DNAME is equivalent to the FMGR routine NAMF.

DNAME (dcb, err, name, nname [, secul [, cr] [,erlc])
dcb Four-word array. Data Control Block. (See “RFA
(input/output) Common Parameters” for more information.)
err 16-bit integer. Errorreturnvariable. (See “RFA

Common Parameters” for more information.)

name Integer array (FORTRAN); Packed character
array (PASCAL). File’s current name. A 3-word array
containing the ASCII coded current name of the file. Must be a
FMGR file.

nname Integer array (FORTRAN); Packed character
array (PASCAL). The file’s new name. A 3-word array
containing the ASCII coded new name of the file. Must be a
FMGR file.

secu 16-bit integer. File security code. A variable in the range
0 through +32767 or —32767. This parameter must be
declared if the file specified in the name parameter was created
having a security code.

cr Array of 16-bit integers. Cartridge reference label.
A 2-word array which defines cartridge search and node
destination conditions. (See “RFA Common Parameters” for
more information.)

erlc 16-bit integer. Optional error condition location. (See
“RFA Common Parameters” for more information.)

10-8 Remote File Access

DOPEN

Opens defined files to access by your programs. DOPEN is equivalent to the FMGR call

OPEN.

DOPEN (dcb, err,name [, optn] [, secul [, cxr] [,erlc])

dcb

err

name

optn

secu

cr

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for more information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

Integer array (FORTRAN); Packed character
array (PASCAL). File name. A 3-word array containing the
ASCII coded name of the file to be opened. Must be a FMGR
file.

16-bit integer. File access specifications. A variable
containing a numeric value that specifies non-standard
conditions upon opening a file. For a detailed description of
the options available, refer to the NS-ARPA/1000 DS/1000-1V
Compatible Services Reference Manual.

16-bit integer. If the file was created (see DCRET/DXCRE
call description) with a non-zero security code, this parameter
must be specified and it must match the original security code
assigned to the file.

Array of 16-bit integers. Cartridge reference label.
A 2-word array which defines cartridge search and node
destination conditions. (See “RFA Common Parameters” for
more information.)

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

Remote File Access 10-9

DPOSN/DXPOS

These calls are used to position any type of file to a point relative to its current position or
to a specific record number. DPOSN is equivalent to the FMGR call POSNT; DXPOS is
equivalent to EOPSN.

DPOSN (decb, err, nur[, rec] [,erlic])

DXPOS (dcb, err, nur(, rec] [,erlc])

dcb Four-word array. Data Control Block. (See “RFA
(input/output) Common Parameters” for more information.)
err 16-bit integer. Errorreturnvariable. (See “RFA

Common Parameters” for more information.)

nur 16-bit integer/32-bit integer. Record countor
record number. A variable containing either the number of
records to skip forward (positive value) or backwards (negative
value), or the absolute record number to which the file is to be
positioned (positive integer only). The rec parameter
determines how nur is interpreted. For DXPOS, nuris a
double-word variable with the same meaning.

rec 16-bit integer. Avariable that, if zero, declares that nur
is the number of records to skip. If recis not zero, nuris
interpreted as an absolute record number.

erlc 16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

10-10 Remote File Access

DPURG

A call to DPURG removes a file from the file directory. DPURG is equivalent to the FMGR

routine PURGE.

DPURG (dcb, err,name [, secul [, cr] [,erlc])

dcb
(input/output)

err

name

secu

cr

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for more information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

Integer array (FORTRAN); Packed character
array (PASCAL). File name. A 3-word array containing the
ASCII coded name of the file to be purged. Must be a FMGR
file.

16-bit integer. If the file was created (refer to DCRET
earlier) with a non-zero security code, this parameter must be
specified and it must match the original security code assigned
to the file.

Array of 16-bit integers. Cartridge reference label.
A 2-word array which defines cartridge and node destination
conditions. (See “RFA Common Parameters” for more
information.)

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

Remote File Access 10-11

DREAD/DXREA

These routines read data from your file (currently open to the Data Control Block) into
your program’s data buffer. DREAD is equivalent to the FMGR call READF; DXREA is

equivalent to EREAD.

DREAD (dcb, err, buf, len|, rlen] [, num] [,erlc])

DXREA (dcb, err, buf, len|, rlen] [, num] [,erlc])

dcb
(input/output)

err

buf

len

rlen

num

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for more information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

Integer array (FORTRAN); Packed character
array (PASCAL). Databuffer. An array, with a size equal
to or greater than the value of the 1en parameter, into which
the requested data is placed by the system.

16-bit integer. Datalength. A variable specifying the
number of words to be read. (See “RFA Common Parameters”
for more information.)

16-bit integer. Actuallength (in words) of data read. A
variable to which the actual count of words transferred is
returned. Set to —1 if end-of-file is read.

16-bit integer/32-bit integer. Record number. A
variable that, if positive, contains the record number from
which data is to be read. If negative, numis the number of
records to backspace. If omitted, the record at the current
position is read. Meaningful for type 1 and type 2 files only.
For DXREA, numis a double-word variable >32767.

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

10-12 Remote File Access

DSTAT

This routine is called to obtain status information for all mounted cartridges in the
cartridge directory. DSTAT is equivalent to the FMGR routine FSTAT.

DSTAT (stat, err,dest[, eric] [1en] [, form] [, op] [, add])

stat

err

dest

erlc

len

form

op

add

Integer array. Statusbuffer. An array to which the
cartridge directory status is returned. Default is 125 words.

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

16-bit integer. Router/1000 node address of the
destination node. A variable that contains a decimal value
specifying the nodal address for which the status information is
to be obtained. The value of this parameter may either be
positive to denote the node number or negative to denote the
communications line logical unit number.

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

16-bit integer. Length in words of buffer stat. Default
is 125 words.

16-bit integer. If formiszero, the disk directory will be
written in FORMAT I (default). If it is non-zero, the disk
directory will be written into the buffer in FORMAT II. This is
exactly as it appears on disk. (Refer to the following tables for
information on the two formats.)

16-bit integer. A one-word variable specifying the type of
cartridges about which information is to be returned. If equal
to 1, all disks mounted to the system are returned in stat. If
equal to 0, system disks and non-session disks are returned in
that order. (If opis equal to 0 and the remote node is an
RTE-6/VM system with Session Monitor, private and group
disks mounted to the session and system disks are returned, in
that order.)

16-bit integer. Returned non-zero by the system if not all
of the cartridge list could be returned in stat (buffer not large
enough).

Remote File Access 10-13

DSTAT

The formats that can be used with the DSTAT call are shown below.

10-14

Table 10-2. stat Format |

Word

Contents

Cartridge

Logical Unit Number
Last FMP Track
Cartridge Reference Number

Lock Word

First Cartridge

Logical Unit Number
Last FMP Track
Cartridge Reference Number

Lock Word*

Second Cartridge

©|l oo N O ol s~ W0 N

Logical Unit Number

Third Cartridge

0 = no more disks

*

Lock word is the ID segment address of the locking program. [f 0,
the cartridge is not locked.

Table 10-3. stat Formatll

Word Contents Cartridge
1 Lock Word | Logical Unit# First Cartridge

2 Last FMP Track

3 Cartridge Reference Number

4 ID**

5 Lock Word* | Logical Unit# Second Cartridge
6 Last FMP Track

7 Cartridge Reference Number

8 ID**

9 Lock Word* | Logical Unit# Third Cartridge

0 = no more disks

*

Lock word is the offset of the ID segment in the Keyword Table or 0
(not locked). If 0, the cartridge is not locked.

** |D identifies who mounted the cartridge (user or group ID).

Remote File Access

DWIND

DWIND may be used to rewind (position to the beginning of first record) a Type 0 file or
set disk files so that the next record in the file is the first record (position to beginning of
first record). DWIND is equivalent to the FMGR call RWNDF.

DWIND (dcb, err[,ericl)

dcb Four-word array. Data Control Block. (See “RFA
(input/output) Common Parameters” for more information.)
err 16-bit integer. Errorreturnvariable. (See “RFA

Common Parameters” for more information.)

erlc 16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

Remote File Access 10-15

DWRIT/DXWRI

These routines write data from a data buffer to your file (currently open to the Data
Control Block). DWRIT is equivalent to the FMGR call WRITF; DXWRI is equivalent to

EWRIT

DWRIT (dcb, err, buf, len(, num] [,erlc])

DXWRI (dcb, err, buf, len(, num] [,erlc])

dcb
(input/output)
err
buf

len

num

erlc

Four-word array. Data Control Block. (See “RFA
Common Parameters” for more information.)

16-bit integer. Errorreturnvariable. (See “RFA
Common Parameters” for more information.)

Data buffer; an array of a size equal to or greater than the value
of the Ienparameter.

16-bit integer. Datalength variable. (See “RFA
Common Parameters” for more information.)

16-bit integer/32-bit integer. Record number. A
variable containing the record number to which data is to be
transferred (if positive), or the number of records to backspace
(if negative). Used only for type 1 and 2 files. If omitted,
record at current file position is written to. For DXWRI, numis
a double-word variable up to (2**31)—1.

16-bit integer. Error condition location. (See “RFA
Common Parameters” for more information.)

10-16 Remote File Access

HP 3000 RFA Calls

You can issue calls from your NS-ARPA/1000 application programs to a set of compatible
HP 3000 RFA intrinsics. These intrinsics provide file access at NS/3000 and DS/3000
nodes. Only a brief description of the HP 3000 intrinsics is shown in the following pages.
Refer to the appropriate MPE intrinsics manual for a complete description of these calls.
In addition, HP 3000 to HP 1000 RFA is discussed in the DS/3000 HP 3000 to HP 1000

Reference Manual.
Table 10-4. HP 3000 Intrinsics
HP 1000 Equivalent Description
Intrinsic MPE Intrinsic

FCHEK FCHECK Obtains file 1/O error information. It can be used when a call to a file intrinsic
returns a condition code value that indicates an 1/O error.

FCLOS FCLOSE Terminates access to a file by your program. When FCLOS is executed,
buffers and control blocks through which you accessed the file are deleted
and the device on which the file resides is deallocated. If you do not issue a
call to the FCLOS intrinsic for each file opened during your session, MPE will
issue FCLOS calls automatically when your session is terminated.

FCNTL FCONTROL Performs special control operations on a file or device.

FINFO FGETINFO Obtains file access and status information. Once a file is opened, a call to
FINFO can be issued to obtain this information.

FLOCK FLOCK Dynamically locks a file for exclusive access by your program.

FOPEN FOPEN Opens an HP 3000 file for access by your program. When FOPEN is executed,
a file number is returned. This file number must be used by your program in
all subsequent file references in order to access the proper file. You must
explicitly declare FOPEN as an integer function in your FORTRAN 77 and
Pascal/1000 programs.

FPOIN FPOINT Sets the logical record pointer to any record within a disk file. The file must
have only fixed-length records.

FRDIR FREADDIR Performs a read operation on a specified logical record from a disk file to the
user’s buffer. The file must have only fixed-length or undefined-length records.

FRDSK FREADSEEK Seeks out and performs a transfer of a specific logical record from a disk file
to a buffer prior to a call to the FRDIR intrinsic. The file referenced must allow
1/0 buffering and have fixed-length or undefined-length records.

FREAD FREAD Performs a read operation of a logical record from a file on any device to the
user’s buffer. The record read is determined by the current position of the
logical record pointer. This intrinsic returns an integer value representing the
number of words or bytes read. You must explicitly declare FREAD as an
integer function in your FORTRAN 77 and Pascal/1000 programs.

FRLAB FREADLABEL Performs a read operation on your disk file label.

FRLAT FRELATE Obtains information about the interactive/duplicative attributes of a specified
file pair. A value is returned that represents the current attributes of the files.
You must explicitly declare FRLAT as an integer function in your FORTRAN 77
and Pascal/1000 programs.

FRNAM FRENAME Renames a disk file.

FSPAC FSPACE Performs forward or backward spacing over a specified number of logical
records on a disk file, or physical records on a magnetic tape file. The file
must have fixed-length or undefined-length records.

FSTMD FSSETMODE Sets or resets file access modes such as automatic error recovery, critical
output verification, and user terminal control. Any file access mode set by a
call to FSTMD remains in effect until either reset by another call to FSTMD or
until the file is closed.

FUNLK FUNLOCK Dynamically unlocks a file that was previously locked via a call to FLOCK.

FUPDT FUPDATE Performs a write update of a logical record to a disk file.

FWDIR FWRITEDIR Performs a write operation of a specified logical record to a disk file from a
user’s buffer. The file must have only fixed-length or undefined-length records.

FWLAB FWRITELABEL | Performs a write operation of your label to a disk file. FWLAB overwrites any
existing label.

FWRIT FWRITE Performs a write operation of a logical record from a user’s buffer to a file on
any device. Following FWRIT execution, the logical record pointer is set to the
record immediately following the record written.

Remote File Access 10-17

DEXEC

11

Table of Contents

DEXECCallSyntax
DEXEC1 (RemoteRead)
Interactive Write/Read
DEXEC2 (Remote Write)
DEXEC 3 (Remote I/O Control) ...

DEXEC 6 (Remote Program Termination)

DEXEC9,10,23,24
DEXEC 11 (Remote Time Request)

DEXEC 12 (Remote Timed Program Schedule)

DEXEC 13 (Remote I/O Status) ...
DEXEC 25 (Remote Partition Status)
DEXEC 99 (Remote Program Status)
StatusCodes

11-A

11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-12

DEXEC Call Syntax

Parametric compatibility is maintained between DEXEC calls and EXEC calls with one
additional parameter: DEXEC calls include a destination node parameter, dest, that
declares the network node at which the call to DEXEC s to be processed. The dest
parameter may be either a positive value declaring the Router/1000 node address of the
destination node, or a negative value declaring the communication line logical unit
number. A value of negative one (—1) indicates the local address.

The DEXEC call syntax in this section applies to destination nodes with RTE-A operating
systems only. The syntax used when addressing DS/1000-IV nodes with RTE-6/VM
operating systems may be different. It is therefore recommended that you refer to the
appropriate RTE reference manual for the equivalent EXEC call syntax.

DEXEC 11-1

DEXEC 1 (Remote Read)

Transfers one record from an I/O device to a buffer. (Read or write requests that
reference disk LUs are not supported.)

DEXEC (dest, code, cnwd, bufr,bufl(, prmi] [, prm2] [, 0,0, keywd])

dest

code

cnwd

bufr
bufl

prml

prm2

keywd

11-2

DEXEC

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest equals the local node address.

16-bit integer. Readrequestcode = 1.

Control word. Unlike an EXEC 1 call, bit 11 of cnwd in a
DEXEC 1 call cannot be used to specify control information to
the driver in RTE-A systems. Refer to the “Interactive
Write/Read” call description for more information on this
restriction. (For further information on this parameter, refer to
the RTE-A Programmer’s Reference Manual.)

Do not specify the logical unit number of any NS-ARPA/1000
communication line in the control word. Doing so may destroy
the integrity of your network.

Read buffer.

16-bit integer. Read buffer length (+ for words, — for
characters). The maximum buffer size for a remote DEXEC
read operation is 512 words (—1024 characters). If the Z-bit in
the control word is equal to 1 (indicating double word
buffering), the combined buffer length, bufl + prm2, must be
less than or equal to 512 words.

See the EXEC call descriptions in the RTE-A Programmer’s
Reference Manual for an explanation of this parameter. If the
Z-bit in the control word is equal to 1 (indicating double
buffering), this parameter specifies the address of the second
buffer.

See the EXEC call descriptions in the RTE-A Programmer’s
Reference Manual for an explanation of this parameter. If the
Z-bit in the control word is equal to 1 (indicating double
buffering), this parameter specifies the length of the second
buffer (+ for words, — for characters). The combined buffer
length, bufl + prm2, must be less than or equal to 512 words.

Formal place holders that must be included whenever keywd is
specified.

The locked LU’s keyword number. (See the RTE-A
Programmer’s Reference Manual for more information.)

Interactive Write/Read

The interactive WRITE/READ uses the same request code as a Remote Read call and is
useful for programs that must communicate with an operator using a question/answer
format for the exchange of information. (Read or write requests that reference disk LUs
are not supported.)

DEXEC (dest, code, cnwd, bufr,bufl(, prmi] [, prm2] [, 0,0, keywd])

dest 16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates local
node. Local execution will also be performed whenever dest
equals the local node address.

code 16-bit integer. Readrequestcode = 1.

cnwd Control word. Set bit 11 equal to 1 to indicate interactive
write/read. Define the read buffer in bufr/bufl and write
buffer in prmi1/prm2. Bit 12 must equal zero. (See the RTE-A
Programmer’s Reference Manual for more information on this
parameter.)

Because DEXEC 1 uses bit 11 to indicate an interactive
write/read, this bit cannot be used to send control information
to the driver in RTE-A systems. (Bit 11 can be specified to the
driver in DEXEC 2 and 3 calls.) Do not specify the logical unit
number of any NS-ARPA/1000 communication line in the
control word. Doing so may destroy the integrity of your

network.

bufr Read buffer.

(input/output)

bufl 16-bit integer. Read buffer length (+ for words, — for
characters). The maximum combined write/read buffer size
(bufl + prmil)is512words (—1024 characters).

prml Write buffer.

prm2 16-bit integer. Write buffer length (+ for words, — for
characters). The write buffer length should be less than or
equal to the read buffer length. The maximum combined
write/read buffer size (bufl + prmi)is 512 words (—1024
characters).

0,0 Formal place holders which must be included whenever keywd
is specified.

keywd The locked LU’s keyword number. (See the RTE-A Programmer’s

Reference Manual for more information on this parameter.)

DEXEC 11-3

DEXEC 2 (Remote Write)

A call to DEXEC with request code 2 results in the transfer of one record from a buffer to
an I/O device. (Read or write requests that reference disk LUs are not supported.)

DEXEC (dest, code, cnwd, bufr,bufl(, prmi] [, prm2] [, 0,0, keywd])

dest

code

cnwd

bufr
bufl

prml

prm2

keywd

11-4

DEXEC

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest is equal to the local node address.

16-bit integer. Write request code = 2.

Control word. (See the RTE-A Programmer’s Reference Manual
for an explanation of this parameter.)

Do not specify the logical unit number of any NS-ARPA/1000
communication line in the control word. Doing so may destroy
the integrity of your network.

Write buffer.

16-bit integer. Write buffer length (+ for words, — for
characters). The maximum buffer size for a remote DEXEC
write operation is 512 words (—1024 characters). If the Z-bit in
the control word is equal to 1 (indicating double buffering), the
combined buffer length, bufl + prm2, must be less than or
equal to 512 words.

See the EXEC call descriptions in the RTE-A Programmer’s
Reference Manual for an explanation of this parameter. If the
Z-bit in the control word is equal to 1 (indicating double
buffering), this parameter specifies the second buffer.

See the EXEC call descriptions in the RTE-A Programmer’s
Reference Manual for an explanation of this parameter. If the
Z-bit in the control word is equal to 1 (indicating double
buffering), this parameter specifies the length of the second
buffer (+ for words, — for characters). The combined buffer
length, bufl + prm2, must be less than or equal to 512
words.

Formal place holders that must be included whenever keywd is
specified.

The locked LU’s keyword number.

DEXEC 3 (Remote I/O Control)

DEXECrequest code 3 performs remote I/O control operations such as backspace, write

end-of-file, and rewind.

DEXEC (dest, code, cnwd] [, p1[, p2] [, p3]1 [, p4]1[,0,0, keywd])

dest 16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest equals the local node address.

code 16-bit integer. 1/O control request code = 3.

cnwd Control word. (See the RTE-A Programmer’s Reference Manual
for an explanation of this parameter.)

pl,...,p4 Required for list output line spacing and various other

(input/output) functions. (See the RTE-A Programmer’s Reference Manual for
details of the contents of these parameters.)

0,0 Formal place holders that must be included whenever keywd is
specified.

keywd The locked LU’s keyword number.

Note DEXEC 3 calls to HP-IB devices that do double buffering are

not supported. Use PTOP to implement I/O control operations
to HP-IB devices.

DEXEC 11-5

DEXEC 6 (Remote Program Termination)

Using this DEXEC call your program can inform an RTE operating system that it wants to
terminate execution of itself or another program. DEXEC 6 works only on programs that
were originally started by a DEXEC 9, 10, 23, or 24 call.

DEXEC (dest, code, name, numb)

If the program is to terminate itself (local operation only), optional parameters can be

used as follows:

DEXEC (dest, code, name, numb [, opl] [, op2] [, op3] [, op4] [, op5])

dest

code

name

numb

opl,...,op5
(input/output)

11-6 DEXEC

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest equals the local node address.

16-bit integer. Remote program termination code = 6.

Integer array (FORTRAN); Packed character
array (PASCAL). A 3-word array containing the program
name to be terminated in the first five bytes (the sixth byte is
not significant). name can be the value zero which causes a
program to terminate itself (local operations only). Contrary to
usage in an EXEC call, this parameter is not optional.

16-bit integer. Completion type code. Contrary to usage

in an EXEC call, this parameter is not optional. The

completion type codes follow. Note that only 0 and 1 can be

executed remotely.

-1 Serial reusability completion. When
rescheduled, the program is not reloaded if it
remained resident in memory. If this callis a
“father” program’s request, it is the same as

numb = 0.
0 Normal completion.
1 Place program in dormant state; save current

suspension point and resources.

2 Terminate and remove named program from
the time list. If program is in I/O suspend
state, system waits until I/O completes before
terminating program. However, this call does
not wait. The program’s disk tracks are not
released.

3 Terminate named program immediately,
remove it from the time list, and release
program’s disk tracks. If program is in I/O
suspend state, a system-generated clear
request is issued to the driver. An abort
message is printed at the system console.

Up to five parameters that can be passed to the caller the next
time the program executes. Works when name = 0 only.

DEXEC 9, 10, 23, 24

A call to DEXEC9, 10, 23, or 24 schedules a dormant program for execution.

DEXEC (dest, code, name[, prml] [, prm2] [, prm3] [, prm4] [, prm5] [, bufr, bufl])

dest

code

name

prml, ...,prm5
(input/output)

bufr
bufl

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest equals the local node address.

16-bit integer. Schedule request code:
9 Immediate schedule, wait

10 Immediate schedule, no wait

23 Queue schedule, wait

24 Queue schedule, no wait

Integer array (FORTRAN); Packed character
array (PASCAL). A 3-word array containing the program
name to be scheduled in the first five bytes (the sixth byte is not
significant). This parameter must reference an ASCII-coded
program name. If a value of zero is referenced for a remote
schedule call or if the program named does not exist, an error
results.

Up to five optional one-word parameters may be passed to the
named program.

Data string that can be passed to the scheduled program.

16-bit integer. Buffer length (+ for words, — for
characters). The maximum length of this string buffer is 512
words (—1024 characters). If you specify bufr you must also
specify bufl.

Note

Programs scheduled with DEXEC 9, 10, 23, or 24 calls at RTE-A
systems must be loaded as system utilities.

DEXEC 11-7

DEXEC 11 (Remote Time Request)

You can use this DEXEC (request code 11) to obtain the current time from the real-time
clock at a specific node within your network.

DEXEC (dest, code, time[, year])

dest 16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest is equal to the local node address.

code 16-bit integer. Remote time request code = 11.

time Array of 16-bit integers. 5-word time value array
where time (1) is tens of milliseconds, t ime (2) is seconds,
time (3) is minutes, time (4) is hours, and time (5) is the
day of the year.

year 16-bit integer. Year value (1 word).

11-8 DEXEC

DEXEC 12 (Remote Timed Program Schedule)

This DEXEC call (request code 12) schedules a program for execution at specific time
intervals. Execution may be scheduled either at an absolute start time or following a
specified initial offset value.

Programs scheduled on RTE-A systems with a DEXEC 12 call must be loaded as system

utilities.

Schedule execution at an absolute start time with the following syntax:

DEXEC (dest, code, name, resl, mtple, hrs, mins, secs, msecs)

Schedule execution following a specified initial offset value with the following syntax:

DEXEC (dest, code, name, resl, mtple, ofst)

dest

code

name

resl

mtple

hrs,...,msecs

ofst

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest is equal to the local node address.

16-bit integer. Remote timed schedule request code = 12.

Integer array (FORTRAN); Packed character
array (PASCAL). A 3-word array containing the program
name to be added to the time list in the first five bytes (the sixth
byte is not significant). This parameter must reference an
ASCII-coded program name. If a value of zero is referenced
for a remote schedule call, if the program named does not exist,
or if the program named is not dormant, an error will result.

16-bit integer. Resolution code. 1 = tens of
milliseconds; 2 = seconds; 3 = minutes; 4 = hours.

16-bit integer. Execution multiple.

16-bit integers. Absolute start time in hours, minutes,
seconds, and tens of milliseconds on a 24-hour clock.

16-bit integer. A negative value that declares the initial
execution offset time based upon the content of the resl
(resolution code) parameter.

DEXEC 11-9

DEXEC 13 (Remote I/O Status)

You can use this DEXEC call (request code 13) to obtain the status and type of a device
identified by a logical unit number.

DEXEC (dest, code, cnwd, stall, sta2] [, sta3] [, sta4])

dest

code
cnwd
stal
staz

sta3

sta4

11-10 DEXEC

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest is equal to the local node address.

16-bit integer. Remote I/O status request code = 13.
Control word containing the LU of the I/O device.

First status word. Device Table word 6 is returned here.
Second status word. Interface Table word 6 is returned here.

Third status word. If the Z-bit in the control word is equal to 0,
driver parameter word 1 is returned here. If the Z-bit is equal
to 1, the buffer address for return of driver information is
specified here.

Fourth status word. If the Z-bit in the control word is equal to
0, driver parameter word 2 is returned here. If the Z-bit is
equal to 1, the buffer length for return of driver information is
specified here. When the Z-bit is equal to 1, the sta4 length
specification must be less than or equal to 512 words.

DEXEC 25 (Remote Partition Status)

Obtains the current status of a specific partition at an RTE-6/VM node. This call is not
supported to RTE-A systems.

DEXEC (dest, code, part, page, pnum, stat)

dest

code

part

page

pnum

stat

16-bit integer. The Router/1000 node address of the
node where the call is executed. Must be a DS/1000-1V node
with an RTE-6/VM operating system. Cannot be —1 or the
local node number to indicate the local node.

16-bit integer. Remote partition status request code = 25.

16-bit integer. A decimalvalue that declares the
partition number whose status is desired.

16-bit integer. The starting page number (plus 1) of the
partition is returned here. This value represents the ordinal
page number (i.e., first, second, etc.). A zero is returned if
part contains an invalid partition number.

16-bit integer. The size of the user area available in the
partition (in pages, minus 1 for the base page) is returned here.
A value of —1is returned if part contains an invalid partition
number.

16-bit integer. The status of the partition is returned
here. Upon return, the parameter stat has the following
status format: bit 15 will equal zero if the partition is reserved
for programs requesting its; 1 if the partition is not reserved; bit
14 will equal zero if it is a real-time partition, 1 ifitis a
background partition.

DEXEC 11-11

DEXEC 99 (Remote Program Status)

A call to DEXEC with request code 99 results in the return of status information for a
specific program. The program status codes are defined in the appropriate operating
system reference manual. Programs controlled by this call on RTE-A systems must be
loaded as system utilities and have an ID segment.

DEXEC (dest, code, name [, stat])

dest

code

name

stat

16-bit integer. The Router/1000 node address of the
node where the call is executed. A value of —1 indicates the
local node. Local execution will also be performed whenever
dest equals the local node address.

16-bit integer. Remote program status code = 99.

Integer array (FORTRAN); Packed character
array (PASCAL). A 3-word array containing the program
name for which status is requested in the first five bytes (the
sixth byte is not significant). This parameter must reference an
ASCII-coded program name. If a value of zero is referenced
for a remote program status call, an error will result.

Return parameter for program status. Status is returned in
both this parameter and the A-register. The status word
returned has the following format: bit 15 is zero if the program
named is not a segment, 1 if it is a segment; bit 14 is zero if the
program named is not in the time list, 1 if it is dormant but in
the time list; bits 3 through 0 contain the actual program status
code. The status word will contain —1 if the program named
does not exist. The status codes returned in bits 3 through 0 are
listed in the following table.

The RTE-A expanded status code are mapped to the RTE-6/VM equivalent in Table 11-1.

11-12

DEXEC

Table 11-1. Status Codes

Original Mapped RTE-6/VM

RTE-A Status Returned Equivalent
0 0

1 ERROR
2 2

3 3

4 ERROR
5 ERROR
6 6

7 6

47 0

50 3

51 3

52 3

53 3

54 3

55 3

56 2

57 1

60 1

61 4

Program-to-Program
Communication (PTOP)

12

Table of Contents

PTOP Common Parametersiuiinininen e
Master PTOP Calls i e et

POPEN
HP 100
HP 100

PREAD

0 to HP 1000 Calling Sequence
0 to HP 3000 Calling Sequence

12-A

12-1
12-1
12-1
12-1
12-2
12-3
12-4
12-4
12-4
12-5
12-5
12-5
12-6
12-7
12-7
12-7

PTOP Common Parameters

Several parameters are common to more than one PTOP call. These common parameters
are described in detail in the following paragraphs. Parameters that are unique to a
specific call are described within the parameter description area of that call.

pcb PTOP control block. A 4-word array of any type. The contents

(input/output) of the pcb parameter serve as a control block for the data link.
The pcb array resides within the calling program and must not
be modified.

err Error code. Produces an error code if an error condition is

(output) encountered during execution of a PTOP call. Must be defined

as a 16-bit integer. If a slave program responds with a REJCT
during execution, a “1” is returned in err. If the slave program
responds with an ACEPT, the value “0” will be returned. Any
other value returned in this parameter represents an error in
the handling of the message.

tag Tag field. A 20-word array of any type. You can define

(input/output) information to be exchanged between the master and slave
programs within the tag field. This parameter is passed from a
master program via a POPEN, PREAD, PWRIT, or PCONT call. A
slave program obtains the tagvia a call to GET. A slave
program may then pass tag data back to the GET. A slave
program may then pass tag data back to the master program
via an ACEPT or REJCT call.

Master PTOP Calls
POPEN

A POPEN call directed to a remote node causes the named slave PTOP program at that
node to be scheduled.

HP 1000 to HP 1000 Calling Sequence

For PTOP communications between HP 1000 nodes, you must call POPEN within a master
program to initiate the communication link with a slave program.

POPEN (pcb, err, name, node, tagl, clon])

pcb PTOP control block.

err 16-bit integer. Error return.

name Slave program name. An array of up to 14 words containing the
ASCII-coded slave program name and terminated by a blank or
non-ASCII character.

node 16-bit integer. The Router/1000 node address of the

node where the slave program resides and where it is to be
scheduled for execution. A value of -1 indicates the local node.

tag Tag field. A 20-word array.
(input/output)
clon Slave cloning parameter. Ignored when the slave is running in

an RTE-A system. (Can be used to clone a slave program if the
slave resides on an RTE-6/VM node with Session Monitor.
Refer to the DS/1000-1V User’s Manual for more information
on the use of this parameter.)

Program-to-Program Communication (PTOP) 12-1

HP 1000 to HP 3000 Calling Sequence

A POPEN call directed to a remote HP 3000 node causes the named slave PTOP program
at that node to be scheduled.

For PTOP communications between HP 1000 and HP 3000 nodes you must call the
subroutine HELLO to open communication before issuing the POPEN call. BYE must be
called after the last PTOP call to terminate communication.

POPEN (pcb, err, name, node, tag(, enam] [, pram] [, flagl [, bfsz])

pcb
err

name

node

tag
(input/output)

enam

pram

flag

bfsz

PTOP control block.
16-bit integer. Error return.

Slave program name. An array of up to 28 bytes containing the
ASCII-coded slave program name and terminated by a blank or
non-ASCII character.

16-bit integer. The negative value of the logical unit (LU)
number associated with the link to the HP 3000. For BISYNC
connections, the LU number of the BISYNC link. For X.25
connections, the LU number of the virtual circuit assigned to
the connection by DSN X.25/1000. Before using the POPEN
call, use the subroutine LU3K to obtain this LU number of the
virtual circuit.

Tag field. 20-word array.

HP 3000 program ASCII entry point name. Refer to the
DS/3000 HP 3000 to HP 1000 Reference Manual for HP 3000
Users for more information.

HP 3000 program control information. Refer to the DS/3000
HP 3000 to HP 1000 Reference Manual for HP 3000 Users for
more information.

HP 3000 program loading options. The fIag parameter passes
loading option information to the scheduled slave program at
the HP 3000 node. The loading options are declared by the
value of bits within the £1ag parameter word. These bit
settings and their defaults are described in the DS/3000

HP 3000 to HP 1000 Reference Manual for HP 3000 Users. 1f
the f1ag parameter is omitted, the default values are used.

16-bit integer. HP 3000 program communications buffer
size. Refer to the DS/3000 HP 3000 to HP 1000 Reference
Manual for HP 3000 Users for more information.

12-2 Program-to-Program Communication (PTOP)

PREAD

Called from a master program to read data from a slave program.
PREAD (pcb, err, buf, len, tag)

pcb PTOP control block.
(input/output)

err 16-bit integer. Error return.

buf Data buffer. An array of a size equal to or greater than the
value of the 1en parameter.

len 16-bit integer. Datalength in words. A positive decimal
value that declares the length of data available for the PREAD
request. This value is passed to the 1en parameter in the
slave’s GET call as an indication of the maximum amount of
data to send to the master. A maximum of 4096 words may be
transferred between an HP 1000 and another HP 1000, or
between an HP 1000 master program and an HP 3000 slave
program.

The maximum number of words transferred between an

HP 3000 master program and an HP 1000 slave program
depends on which size buffer module was appended to the
request and reply converts (RQCNV and RPCNV). Maximum is
4096 words.

The HP 3000 to HP 1000 buffer size defaults to the buffer size
specified when the HP 3000 to HP 1000 link was configured.
This default is overridden by supplying the optional buffer size
parameter in the POPEN call at the HP 3000.

Between the 1000 and the 3000, a negative length may be used
to indicate the length is in bytes. When an odd number of bytes
are to be transferred, an extra byte is appended to the end of
the data.

tag Tag field.
(input/output)

Program-to-Program Communication (PTOP) 12-3

PWRIT

Transfers data from a master program to a slave program.
PWRIT (pcb, err, buf, len, tag)

pcb PTOP control block.
(input/output)

err 16-bit integer. Error return.

buf Data buffer. An array of a size equal to or greater than the
value of the 1en parameter.

len 16-bit integer. Datalength in words. A positive decimal
value that declares the actual length of data being transferred to
the slave for the PWRIT request. This value is passed to the 11
parameter in the slave’s GET call as an indication of how much
data to expect from the master. A maximum of 4096 words may
be transferred between an HP 1000 and another HP 1000, or
between an HP 1000 master program and an HP 3000 slave
program.

The maximum number of words transferred between an

HP 3000 master program and an HP 1000 slave program
depends on which size buffer module was appended to the
request and reply converts (RQCNV and RPCNV). Maximum is
4096 words.

Between the 1000 and the 3000, a negative length may be used
to indicate the length is in bytes. When an odd number of bytes
are to be transferred, an extra byte is appended to the end of
the data.

tag Tag field.
(input/output)

PCONT

Provides for the exchange of a tag field between a master and a slave program.

PCONT (pcb, err, tag)

pcb PTOP control block.
(input/output)

err 16-bit integer. Error return.
tag Tag field.

(input/output)

PCLOS

Called from a master program to terminate a slave program. If the slave resides on an
HP 1000 node, logical communication is also terminated.

PCLOS (pcb, err)

pcb PTOP control block.
(input/output)
err 16-bit integer. Error return.

12-4 Program-to-Program Communication (PTOP)

PNRPY

Called from a master program to eliminate the need for the master to wait for a reply from
the slave (an ACEPT or REJCT) before continuing processing. This call is honored only
for PWRIT, PCONT, and PCLOS. POPEN and PREAD calls will be forced to wait for the
reply.

PTOP communication with no reply is available only between HP 1000s. No Message
Accounting is provided on PTOP calls with no reply.

PNRPY ([mode] [, tto])

mode 16-bit integer. Defines the scope of the call. The options
are:

0 No-reply only applies to the next PTOP call (default).

<0 No-reply applies to all PTOP calls that follow, until
explicitly turned off.

>0 Turns off the no-reply option.

tto 16-bit integer. Transaction Timeout override value. If
specified, it must be positive and less than 256. If not specified,
the transaction timeout value which is used for all other
requests for that node is used. Negative values or values
greater than 256 are truncated to the value of the lower eight
bits of the stated value. ttois specified in five second units.
For example, tto = 2 is the same as 10 seconds.

Slave PTOP Calls
GET

Called from a slave program to obtain the next outstanding master request.
GET (clas, err, func, tag, lenl[, bufr, bufr])

clas Slave PTOP class number. A value for clas is assigned to the
slave program as the first parameter in the runstring when the
slave program is scheduled. Every slave program should first
issue a call to RMPAR to obtain the value of c1as. Only one
value for clas is created by the initial POPEN call. All further
POPEN calls to the same slave are assigned the same clas
value. The value for clas must be saved and referenced in
each GET call. Be careful that you do not alter the content of

clas.
err 16-bit integer. Error return.
func 16-bit integer. Avalue isreturned to this parameter

upon completion of a call to GET. This value indicates the type
of master program request obtained via GET. Request types

are:

1 POPEN
2 PREAD
3 PWRIT
4 PCONT

Program-to-Program Communication (PTOP) 12-5

tag

len

bufr

bufz

Tag field received from master program.

16-bit integer. Avalue isreturned here at the completion
of the GET call when func = 2 or 3 (PREAD or PWRIT). Ien
indicates the actual number of words to be transferred if the
master request is accepted. (See the bufr parameter.)

Data buffer. An array greater than the value of the bufz
parameter. This parameter is only required when the master
request is a PWRIT. Data from the master is transferred to this
buffer (see the following table.) For POPEN, PREAD, and
PCONT requests, the buffer contents are unmodified. On
PWRIT requests, the data is copied to bufr up to the limit
specified in bufz. lencontains the actual size of the data
buffer as sent by the master. Among its other error checking,
the slave should check to see if the master sent too much data
by comparing the values in Ien and bufz.

16-bit integer. Defines buffer size of bufr.

The following tables show how buffers are affected when a GET call is issued after either a
PWRIT or a PREAD call. In the case of a PWRIT call, either the bufr or buf parameter
may be used. If bufr (GET call) is used, buf (ACEPT call) should not be used. For a
PREAD call, only bufr (ACEPT call) should be used.

Table 12-1. PWRIT Master Call

len (GET call)

bufr (GET call)

buf (ACEPT call)

bufz (GET call)

Actual number of
words transferred
here.

Data from slave is
transferred to this
buffer.

Data from master
may be optionally
transferred to this
buffer.

Size of bufrin GET
call. If len >
bufz, an error will
occeur.

Table 12-2. PREAD Master Call

len (GET call)

bufr (GET call)

buf (ACEPT call)

bufz (GET call)

Size of master
buffer specified in
master.

Not used.

Ilenwords from
this buffer are
transmitted to
master.

Not used.

ACEPT

Called from a slave program to accept and complete a master request obtained via a GET

call.

ACEPT (tag, err [, buf])

tag

err

buf
(input/output)

Tag field to be returned to master program. In a PREAD
request, the actual length of the buffer being transferred should
be passed in this parameter.

16-bit integer. Error return.

Data buffer containing the data to be transferred in a PREAD
request and optionally in a PWRIT request.

12-6 Program-to-Program Communication (PTOP)

REJCT
Called from a slave program to reject a master request obtained via a GET call.

REJCT (tag, err)

tag Tag field.
err 16-bit integer. Error return.
FINIS

Called from a slave program to terminate communication with a master program. Cannot
be used if the master program resides on an HP 3000.

FINIS

Error Codes

The following error codes are returned to the err parameter of PTOP master or PTOP
slave calls.

Table 12-3. PTOP Error Codes

Message Meaning

—40 Not enough parameters.

-4 Remote program not defined.

—42 No remote system room to initiate communication.

—44 Remote program not open correctly (PCB was destroyed).

—45 A PWRIT PREAD, or PCONT call has been issued to a slave program which is
dormant.

—46 Sequence error.

—47 May occur in PTOP slave subroutine calls when a communications line error,
system table validity check failure or request timeout error occurs.

—48 Abortive error: indicates something seriously wrong.

—49 A pCLOS terminated a shared slave program while one or more requests were
pending from other master programs.

-50 Local node not initialized or, for requests made to itself, local node is
quiescent (same as DS00).

—51 Communications line parity or other line error.

-52 Communications line timeout error.

-53 lllegal record size.

—-54 lllegal nodal address.

-55 Request timeout.

—56 lllegal request.

-57 System table error.

—58 Remote busy.

-59 lllegal or missing parameters.

—-103 lllegal PCB (PTOP)

Program-to-Program Communication (PTOP) 12-7

Remote 1I/O Mapping

13

Using IOMAP

Table of Contents

Initialize /OMapping
Establish a Map Using First Unused Mappable LU
Establishor ChangeaMap i

Disable Map . .

Return LU Mapping Information oo
Return Mapping Information for a Specific LU
ReturnError Values..........
Remote Interactive Sessions i
Establishingthe Map i e
Get the Remote System’s Attentionooiiiiuinna..

Logon....

Obtaining a CM or Breakmode Prompt

Error Messages

13-A

13-1
13-2
13-2
13-4
13-5
13-6
13-7
13-8
13-8
13-8
13-8
13-9
13-9
13-9

Remote I/O Mapping maps or redirects I/O requests destined for an LU on an HP 1000

node to an LU at a remote HP 1000 node. The node at which the mapped LU (or source
LU) resides is known as the source node; 1/0 requests to the source LU are redirected to
the destination LU at the destination node.

Using IOMAP

To set up a map to an LU at a destination node, you execute the program IOMAP at the
source node. You must initialize NS-ARPA/1000 between the source and destination node

before running IOMAP.

IOMAP can perform seven functions. These functions are summarized in Table 13-1,

along with the runstrings.

Table 13-1. Remote I/O Mapping Runstrings

Function

Runstring

Initialize 1/0 Mapping

[RU,] IOMAP ,mappableLU, -1

Establish a map using the
first unused mappable LU

[RU,] IOMAP, -1 ,destLU, destNode, securityCode

Establish/change a map

[RU,] IOMAP,sourceLU, destLU, destNode, securityCode

Disable map

[RU,] IOMAP,sourceLU, 0, ,securityCode

Obtain information on
specific map

[RU,] IOMAP,sourceLU, -1

Obtain error values

[RU,] IOMAP, -2

Obtain mapping [RU,] IOMAP,sourceLlU, -2
information
Caution There is no protection against re-assigning a map that is in use.

You should establish a map by allowing IOMAP to select the
first unused mappable LU. You should also clear maps after you
have used them.

Remote I/O Mapping 13-1

Initialize 1/0 Mapping

[RU,] IOMAP, mappableLU, -1

Parameters

mappableLU Mappable LU (system LU associated with a mappable DVT).

Return Parameters

First Parameter IOMAP returns the specified mappableLUif it is mappable,
otherwise, it returns the first mappable LU.

Establish a Map Using First Unused Mappable LU

[RU, 1 IOMAP, -1, destinationLU, destinationNode, securityCode

Parameters

destinationLU Destination system LU of map.
Options:

Set bit 15 to enable the header flag. Remote I/O Mapping will
write a message of the following form to the destination LU
preceding each record sent to that LU:

MESSAGE FROM NODE # nnnnn PRGM ppppp AT DAY dddd, hh :mm :ss

Where: nnnnnis the source node (node where the message
originated); ppppp is the name of the program sending the
message (or SYS 1I/0 if the I/O request is from the system or
class buffered); and ddddd hh mm ss is the day and time
that the request was made at the source node.

Set bit 14 to enable the prompt flag. Remote I/O Mapping will
write a prompt of the following form to the destination LU
preceding each read request mapped from the source LU:

(nnnnn)
Where: nnnnnis the source node.

Set bit 13 with bit 14 to change the read request timeout to 20
minutes but suppress the prompt flag.

destinationNode Destination node number of the map (the node of the
destination LU).

securityCode Network Management security code.

13-2 Remote I/0 Mapping

Return Parameters

First Parameter

Second Parameter
Third Parameter

Fourth Parameter

The source LU if the map was successfully established,
otherwise one of the following negative error codes:

—1(177777B) if securityCode was incorrect
—2 (177776B) if sourceLUis not a mappable LU

—3 (177775B) if Remote I/O Mapping is not set up
correctly or if Remote I/O Mapping has not been
initialized

—4 (177774B) if destinationLUis mappable

=5 (177773B) if destinationNode is not known to the
local node

—6 (177772B) if destinationLUis invalid or if
attempts to obtain information about the destination LU
failed

=7 (177771B) if LUMAP is not present and active
=8 (177770B) if LUQUE is not present and active

destinationLU

destinationNode

If IOMAP did not establish the map, it returns the specified
securityCode. If IOMAP successfully established the map,
it returns one of the following values:

0 (00000B) normal completion

—1(177777B) if destinationLUhas either an
associated infinite device timeout or a timeout larger than
the user requested master timeout

—2 (177776B) if destinationLUis associated with the
bit bucket

=3 (177775B) if destinationLUis not a unit-record
device

Remote I/O Mapping 13-3

Establish or Change a Map

[RU,] IOMAP, sourceLU, destinationLU, destinationNode, securityCode

Parameters

sourceLU Mappable LU on source system.

destinationLU Destination system LU of map. The destinationLUmust be
associated with a unit-record device (such as a terminal, printer,
or mag tape unit).

Options:

Set bit 15 to enable the header flag. Remote I/O Mapping will
write a message of the following form to the destination LU
preceding each record sent to that LU:

MESSAGE FROM NODE # nnnnn PRGM ppppp AT DAY dddd, hh :mm :ss

Where: nnnnnis the source node (node where the message
originated); ppppp is the name of the program sending the
message (or SYS 1I/0 if the I/O request is from the system or
class buffered); and ddddd hh mm ss is the day and time
that the request was made at the source node.

Set bit 14 to enable the prompt flag. Remote I/O Mapping will
write a prompt of the following form to the destination LU
preceding each read request mapped from the source LU:

(nnnnn)
Where: nnnnnis the source node.

Set bit 13 with bit 14 to change the read request timeout to 20
minutes but suppress the prompt flag.

destinationNode Destination node number of the map (the node of the
destination LU).

securityCode Network Management security code.

Return Parameters
First Parameter sourceLUif map was successfully established, otherwise one
of the following negative error codes:
e —1(177777B) if securityCode was incorrect
e —2(177776B) if sourceLUis not a mappable LU

e —3(177775B) if Remote I/O Mapping is not set up
correctly

e —4(177774B) if destinationLUis mappable

e —5(177773B) if destinationNode is not known to the
local node

13-4 Remote I/O Mapping

e —06(177772B) if destinationLUis invalid or if
attempts to obtain information about the destination LU
failed

e —7(177771B) if LUMAP is not present and active
e —8(177770B) if LUQUE is not present and active

Second Parameter destinationLU
Third Parameter destinationNode
Fourth Parameter If IOMAP did not establish the map, it returns the specified

securityCode. If IOMAP successfully established the map,
it returns one of the following values:

e 0 (000000B) normal completion

e —1(177777B) if destinationLUhas either an
associated infinite device timeout or a timeout larger than
the user requested master timeout

e —2(177776B) if destinationLUis associated with the
bit bucket

e —3(177775B) if destinationLUis not a unit-record
device

Disable Map

[RU,] IOMAP, sourceLU, 0, ,securityCode

Parameters
sourceLU System LU of map to be disabled.
securityCode Network Management security code.

Return Parameters
First Parameter sourceLUif map was successfully disabled, otherwise one of
the following negative error codes:
e —1(177777B) if securityCode was incorrect
e —2(177776B) if sourceLUis not a mappable LU

e —3(177775B) if Remote I/O Mapping is not set up
correctly

e —7(177771B) if LUMAP is not present and active
e —8(177770B) if LUQUE is not present and active

Second Parameter 0 (the destination LU is the bit bucket)
Third Parameter 0
Fourth Parameter specified securityCode

Remote I/O Mapping 13-5

Return LU Mapping Information

[RU,] IOMAP, sourceLU, -1

Parameters

sourceLU The mappable LU for which you want IOMAP to display
information. If you specify a non-mappable LU, IOMAP will
display map information for the first mappable LU greater than
sourceLU.

Return Parameters

First Parameter The sourceLU. If sourceLUis not mappable, this will be the
first mappable LU greater than sourceLU. Otherwise, it is
one of the following negative error codes:

e —2(177776B) if the sourceLUis not a “mappable” LU
and there are no mappable LUs greater than sourceLU

e —3(177775B) if Remote I/O Mapping is not set up

correctly
Second Parameter destination LU of map for the LU returned in the first
parameter.
Third Parameter destination node number of map for the LU returned in the
first parameter.
Fourth Parameter The type of remote operating system ($OPSYS value, as

documented in the RTE-A manual set).

13-6 Remote I/0 Mapping

Return Mapping Information for a Specific LU

[RU,] IOMAP, sourceLU, -2

Parameters

sourceLU The mappable LU for which you want IOMAP to display
information.

Return Parameters

First Parameter sourceLU, or the following negative error code:

e —3if I/O mapping is not initialized correctly.
Second Parameter destination node, or the following negative error code:
e —1(177777B) if sourceLUis not mappable

Third Parameter destination LU

If the first return parameter is not a mappable LU, IOMAP returns one of the following

negative error codes:
e —1if LU is an invalid LU number
e —2if LU is associated with the bit bucket

e negative of the LU’s timeout if not —1 or —2

Remote 1/0O Mapping

13-7

Return Error Values

[RU,] IOMAP, -2

Return Parameters

First Parameter first word (two characters) of the ASCII four-character error
code (for example, “DS” of DS04). For serious errors, this is a
numeric error code, and the second and third parameters
(below) are meaningless.

Second Parameter second word (two characters) of the ASCII four-character error
code.
Third Parameter number of node reporting the error.

Remote Interactive Sessions

Remote I/0O Mapping allows you to gain access to the remote command interpreters (CI or
FMGR). This “virtual terminal” capability allows you to establish a session at a remote
node and interact with the command interpreter as if the terminal were connected directly
to the remote node.

To set up a remote interactive session, you must perform the following tasks:
® Run IOMAP from REMAT to establish an LU map at the remote node.
® Run SYSAT to get the remote system’s attention and logon prompt.

® [ogon to the remote node.

These steps are described in the following subsections.

Establishing the Map

Use REMAT to switch to the node at which you want to establish an interactive session.
Then, run IOMAP at the remote node, mapping an LU at that node to your terminal’s LU
at your node.

Get the Remote System’s Attention

The next step is to get the remote system’s attention. You can use SYSAT to do this, or to
set the break bit of a program on a remote node. In gaining system attention on a
particular LU, SYSAT has the effect of someone striking a key on a terminal to get a logon
(or break mode) prompt.

RU, SYSAT, attentionLU, remoteNode
SYSAT causes the remote node to give its breakmode prompt or the logon prompt on the

attentionLU. The attentionLUon the remote node must be a mappable LU. At
least one map must have been set up at the specified node for this request to work.

13-8 Remote I/0 Mapping

To set the break flag of a program in a remote node, enter:

RU, SYSAT, programName, remoteNode

Logon

If you are running under a command interpreter at the local node, then you will want to
keep this command interpreter “out of the way” while interacting with the remote system.
One way to keep your local command interpreter from interfering with your remote
session is to suspend (SS) it. To restart CI, enter the system command GO. Refer to
RTE-A User’s Guide (92077-90002) for more information on these commands.

You must enter the password, if any, along with the account name (on the same line) in
response to the logon prompt.

Obtaining a CM or Breakmode Prompt

While logged on to a remote node, there may be times where you want the CM’s attention
(or breakmode prompt). Typically, the CM (or breakmode) prompt you obtain will be that
of the local system. To get the remote node’s CM, obtain the local node’s CM prompt and
run SYSAT, specifying the LU mapped to this node as the attention LU (or, if running a
program, you can also specify the program name). SYSAT will cause the remote node’s
CM (or breakmode) prompt to appear.

Error Messages

The following are “serious” Remote I/O Mapping error codes. When these errors occur,
they are returned to IOMAP in the first return parameter (the second and third
parameters will be meaningless). These error codes are obtained when IOMAP is run
with a —2 parameter.

Table 13-2. Remote I/0 Mapping Error Codes

Message Meaning

0 No error.

4 NS-ARPA quiescent resource number is corrupt.

5 Source node is not completely initialized.

6 Class number set up for LUMAP has been corrupted.
8 Program LUMAP is not present in system.

9 Destination node number is not in the NRV.

10 NS-ARPA not initialized.

11 Error on class number allocation.

12 No class numbers available.

Remote I/O Mapping 13-9

14

Maintenance Utilities

Table of Contents

NSINFE .« e 14-1
NSINFScheduling 14-1
NSINFOPErationuuuuuuiiuieeinnneeinininnnniinnnnnn. 14-1

Commands 14-2

NSINIT .« 14-3
SchedulingNSINIT 14-3

NS-ARPAMessage Tracingoo i 14-3

UsingMessage Tracing. 14-4
NSTRCSchedulingot 14-4
BRTRCSchedulingo 14-5
FMTRCSchedulingo 14-5

NS-ARPAEventLogging............. i 14-6
EVMONScheduling oo 14-6
EVMONOULPUL ..o 14-7

EVMONHeader 14-7
LogRecords 14-8
BREVLSchedulingo 14-8
LOGCHGScheduling 14-8

Nodal Registry List Utility (NRLIST) 14-9
NRLIST Scheduling oo oo 14-9
DS/1000-1V (RTE-MPE) Message Tracing Utilities 14-9
LOG3KScheduling 14-9
LOG3K OPperationuuuiiiiiiiiiiiiiiiniiiiiiinann. 14-9

Commands 14-10
e 14-10
EN,EX,/E,NO Lo oo 14-10
LU L 14-10
LY 14-11
U 14-11
TRC3KSchedulingot 14-11
TRC3KOPErationuuuuuiii e 14-11
Commands i 14-12
e 14-12
EXIT .o 14-12
FORMAT e 14-12
LIST 14-13
PRINT oo 14-13
SET . 14-14

DSMOD ..o 14-15
DSMODSchedulingo 14-15
DSMOD Operationeeiiiiiiiininniiiniiiiiiiiinnnn. 14-15

Commands i 14-16

HP 1000 UtlItiesot e 14-16
DLGNS 14-16
DLGOF .. 14-17

14-A

DS _GETNAME
DS GETNODE o

FCOPY

HELLO
BYE ...

PRCNM

14-B

14-17
14-18
14-18
14-19
14-19
14-20
14-20
14-21
14-22
14-22
14-22
14-22
14-23
14-24
14-24

NSINF

NSINF is the NS-ARPA/1000 information utility.

NSINF Scheduling

[RU, INSINF

NSINF Operation

NSINF is an interactive program. When you run NSINF, it will prompt you for a
command as follows:

NSInf>

Enter ? and NSINF will print its main menu with a list of valid commands. Table 14-1is a
summary of the NSINF commands.

To exit NSINE, enter E in response to the NSInf > prompt.

If NSINF has more than a screenful of information to print, it will print one screen and
then ask you if you want to print more information as follows:

-—-— More ---

The following replies are allowed:
e Enter[RETURN], a space, or a plus (+) to display the next screen of information.
® Enter A or Q to abort the display.

e Enter Z to suspend NSINE. Entering any character will then invoke the RTE system
prompt CM>. Enter GO at the RTE system prompt to continue the display.

® All other characters will have no affect on continuing the display.

Commands

Table 14-1 is a summary of the NSINF commands.

Maintenance Utilities 14-1

Table 14-1. NSINF Commands

Command Description

? Prints the NSINIF main menu.

A Prints the local node’s name, addresses, and Gateway Table (GT) as
configured via NSINIT. Used to check the gateway or routing configuration.

B Prints Buffer and Memory Manager statistics.

c Prints the configured resources for the NS and ARPA Services. Used to
check if there are enough resources available.

I Prints transmit LUs of NS-ARPA/1000 link interface cards generated in the
system. Used to verify the card configuration.

L Reads the NS-ARPA link interface card statistics and IFT extent word
information. NSINF will prompt you for a link interface card LU. Used to
verify the card configuration.

M Prints Message Accounting (MA) information for each node in the NRV with
MA enabled.

N Prints the Nodal Routing Vector (NRV).

P Prints socket record and protocol path record information for the sockets
owned by a program. NSINF will prompt you for a program name. Used to
troubleshoot a user program.

R Prints information about the local node’s Router/1000 links.

s Prints information about the open VC and CALL sockets.

T Prints the number entries in the Master Transaction Control Block (TCB) list,
Slave TCB list, and Process Number Lists (PNL).

U Prints information about the NS-ARPA message tracing utility (NSTRC) and
the NS-ARPA event logging monitor (EVMON). Used to check the status of
tracing and logging.

v Prints information about NS-ARPA/1000 resource numbers, information about
DS/1000-IV Compatible Services system resources and configuration values,
and LU table and links used for DS/1000-IV Compatible Services (RTE-MPE).

W Prints information about TELNET virtual terminal sessions, both initiated at
and remotely connected to the local node. Use to troubleshoot TELNET.

Display When more than one screenful of information needs to be displayed, NSINF

Commands | prompts you to continue or to end the display. Enter one of the following

commands.

+or or space—displays the next screen of information.
A or Q—aborts the display.

z—suspends NSINF display.

14-2 Maintenance Utilities

NSINIT

NSINIT uses a dialogue to prompt the user for initialization information. You can specify
an answer file that contains the responses to the dialogue or you can respond to the

dialogueinteractively.

Scheduling NSINIT

To initialize NS-ARPA, you can schedule NSINIT from the system WELCOME file.

[RU, INSINIT[, inputDevice] [, outputDevice] [, logDevice]

inputDevice

outputDevice

logDevice

Device (file or interactive device LU) that provides input for
NSINIT dialogue. The inputDevice canbe an answer file
previously created by running NSINIT. If inputDeviceisan
interactive device, NSINIT will also print prompts and error
messages to the device.

Default: local LU 1 (scheduling terminal).

Device (file name or device LU) to which NSINIT will write the
dialogue. If this is a file, it can later be used as an answer file.
If outputDevice and inputDevice are files, they cannot
be the same file. If you enter the name of an existing file,
NSINIT will ask you if you want to overwrite the file. If you
specify a device, HP recommends that the device be spooled. If
you enter LU 0, NSINIT does not create any output.

Default: 1f inputDeviceisinteractive, NSINIT will prompt
you for a file name. If inputDevice is not interactive, the
default is LU 0 (no output). During an interactive NSINIT
dialogue, NSINIT prompts you again for an output file name.

Device (file name or device LU) to which NSINIT will log any
eITOrS.
Default: local LU 1 (scheduling terminal).

NS-ARPA Message Tracing

There are three NS-ARPA message tracing utilities:

® NSTRC, which enables message tracing

® BRTRC, which terminates message tracing and allows you to format the trace file

® FMTRC, which formats the trace file and allows you to select trace records according
to nodes, Link Interfaces, and sockets

Maintenance Utilities 14-3

Using Message Tracing

The procedure for using message tracing is as follows:

1.
2.

Enable message tracing.

Run the user program or generate NS-ARPA activity (for example, use NFT or FTP to
copy a file). If you are debugging a user NetIPC program, use the NSINF P command
to get the program’s Global Socket Descriptor (GSDs).

When the program or activity terminates, halt tracing by running BRTRC.

Format and examine the trace file using FMTRC. If you are debugging a user NetIPC
program, examine the socket level trace records for the program’s GSDs. If you are
debugging a program that used DS/1000-IV Compatible Services, format RTR
messages.

If you suspect a link problem, run tracing at two nodes and examine the network trace
records at both ends of the link for symmetry.

NSTRC Scheduling

,N[ETWORK]
[XQ,INSTRC[, traceFilel [, errorLog] [, recordLengthl|,S [OCKET]
,B[OTH]

traceFile File to which you want NSTRC to write the trace records.

While NSTRC is executing, it writes the trace records to its
VMA partition. NSTRC writes to the partition in a circular
manner; if NSTRC has filled the partition, it overwrites the
earliest records. NSTRC uses approximately one-fourth of the
trace file for accounting. For each remaining page in the
partition, NSTRC can write 10 trace records. Therefore, if
NSTRC’s VMA partition is nn pages long, NSTRC can write
approximately (n * 3/4) * 10 trace records before it
must overwrite previous records. If you enter the name of an
existing file, NSTRC overwrites the existing file. If you use the
default traceFile and it already exists, NSTRC prints an
error message and terminates.

Default: NS _TRACE . TRC in the current working directory.

errorLog Device (file or device LU) to which you want NSTRC to report

run-time errors.
Default: local LU 1 (scheduling terminal).

recordLength The trace record length, in bytes. For network level tracing, the

trace record size is approximately the total size of all protocol
headers. If a message has more bytes than recordLength,
NSTRC truncates the message.

Range: 48 to 120 bytes.

Default: 60 bytes.

14-4 Maintenance Utilities

NETWORK

SOCKET

BOTH

(Default) Trace messages at the network level. NSTRC records
messages at the LI software level as they enter or leave the
node. In addition, NSTRC records any Probe, Socket Registry,
NFT, TCP, and IP control messages (control messages are
messages sent by the protocol modules as part of the protocol
and do not contain user data), and HDLC/Multidrop “Link Up”
messages. You can use FMTRC to format the IP or LI header
(OSIlayer 3s——IEEE 802.3/ETHERNET/LAN or
Router/1000). FMTRC does not format higher-level protocol
headers, such as TCP or PXP unless the nice format option is
used. Useful for analyzing network problems.

Trace messages at the socket level. NSTRC records messages as
they are sent and received on user sockets. (You can select
messages according to Global Socket Descriptors when you
format the trace file via FMTRC.) Useful for debugging user
applications.

Trace messages at both the network and socket level.
Default: NETWORK.

BRTRC Scheduling

[RU,] BRTRC

Caution

If you abort NSTRC instead of terminating it with BRTRC,

FMTRC will not be able to format the trace file.

FMTRC Scheduling

[RU,] FMTRC [, inputDevice] [, rawTraceFile] [, formattedDevicel
[, titleField] [, logDevice]

inputDevice

rawTraceFile

formattedDevice

Device (answer file name or interactive device LU) that
provides input for FMTRC dialogue.
Default: local LU 1 (scheduling terminal).

The raw trace file for FMTRC to format. This must be a disk
file; if NSTRC posted trace messages to a tape, you must
restore the tape’s contents to a disk file before formatting it.
NSTRC must not have the file open for tracing.

Default: NS _TRACE. TRC.

Device (file name or device LU) to which FMTRC outputs the
formatted trace file.

Default: 1f you specified a file for rawTraceFile, FMTRC
takes that file name, strips any existing type extension, and adds
the type extension FMT to form the name for the formatted
(output) file. If you did not specify a rawTraceFile, the
default is the file NS TRACE.FMT.

Maintenance Utilities 14-5

titleField

logDevice

An ASCII string of up to 72 characters to label the output file.
FMTRC prints titleFieldin aheading at the beginning of
the output file.

Device (file name or device LU) to which FMTRC logs any
eITOrS.

Default: local LU 1 (scheduling terminal) if you are running
FMTRC interactively, FMTRC . LOG if you specified an answer
file. If FMTRC. LOG already exists, FMTRC overwrites it.

NS-ARPA Event Logging

There are three NS-ARPA event logging utilities:

® EVMON, the event monitor. EVMON receives log records from NS-ARPA protocol
handlers and services, and writes the records to a log file or device.

e BREVL, which terminates EVMON, allowing you to purge the log file.
® LOGCHG, which allows you to change the event classes for EVMON to log.

EVMON Scheduling

[XQ,]1EVMON [, logDevicel [, logMask]

logDevice

logMask

The device (file or device LU) to which EVMON will log the
events. If JogDeviceis an existing file, EVMON will append
toit. EVMON opens the log file with shared read access and
writes logging records to a file until the LU that the file resides
on is full, or until you halt EVMON (via BREVL), or until you
shut down NS-ARPA/1000.

Default: The file /SYS/NS_EVENT . LOG.

The octal representation of the bits set in the following mask.
The 1ogMask must be octal; as an option, you may append a B
to the end of it.

Log Mask:

7 0
[o[z[o[s[w]w]e[x]

The bits set select the event classes as described in Table 14-2.
Default: the current value of TogMask. NSINIT initially sets
this value to 161 octal to log logging statistics, severe errors,
disasters, and resource depletion.

14-6 Maintenance Utilities

Table 14-2. Log Mask Event Classes

Bit | Position Logging Event Class

L 0 Logging Statistics (Class 0). Must be set. Event logging start and stop
times.

P 1 Protocol-specific information (Class 1). HP recommends that you do not

select this class unless your HP representative specifically asks that you do
so. This logging event class generates a multitude of log file entries.

M 2 Event messages (Class 2). HP recommends that you do not select this class
unless your HP representative specifically asks that you do so. This logging
event class generates a multitude of log file entries.

w 3 Warnings (Class 3), which indicate abnormal events, but do not necessarily
indicate subsystem problems. HP recommends that you do not select this
logging class.

E 4 Severe errors (Class 4), which indicate that NS-ARPA/1000 is not performing

as it should, but the subsystem was able to recover. HP recommends that
you select this logging class. NSINIT selects this logging class automatically.

D 5 Disasters (Class 5), which indicate that the NS-ARPA/1000 software detected
a severe and irrecoverable problem. HP recommends that you select this
logging class. NSINIT selects this class automatically.

R 6 Resource limit (Class 6), which indicates that a user-configurable resource
has been depleted. HP recommends that you select this logging class. The
network manager can use this information to adjust the node’s configuration.
NSINIT selects this logging class automatically.

- 7 Reserved. Must be zero.

EVMON Output

EVMON writes log records to a file or device. EVMON output consists of an EVMON
header and log records.

EVMON Header

Each time a user schedules EVMON, EVMON writes the following header to the log file
or device:

currentTime
Event Log at nodeName

where current Time is the system time at which EVMON was scheduled and nodeName
is the name of the node at which EVMON is running and current Time is the system
time at which EVMON was scheduled. For example:

Tue Apr 8 1986 10:13:50 pm
Event Log at ANNE.LAB.HP1000

Maintenance Utilities 14-7

Log Records

The log file contains logrecords. Log records consist of two parts:
® the first part is the log record header;

® the second part is the log message.

The log record header and log message are illustrated below:

currentTime
EventClass Entity Location XX Yy LogMask ProcessName/Session
LogMessage

The log record header may include the current Time, which is the current system time.

The currentTime is not printed if there is less than one second difference between it
and the last current Time printed.

BREVL Scheduling

[RU,] BREVL

LOGCHG Scheduling

logmask [B]
*

RESOURCELIM

DISASTER

[RU,] LOGCHG ERROR

A WARNING
EVENT
PROLOG
LOGSTATS

+ LOGCHG evaluates the runstring parameters as an expression
- and sets the log mask (1ogMask) to the new value. The

, parameters are delimited by a plus, minus, comma, or a blank
A space.

LOGCHG uses two operators when evaluating the expression:
+and -. The + represents logical addition (bit inclusion); the —
represents logical subtraction (bit exclusion). When two terms
have no operator between them, the + operator is used. For
example, LOGCHG DISASTER LOGSTAT is the same as
LOGCHG DISASTER+LOGSTAT.

When the expression begins with a + (or -), the value of the
expression is added to (or subtracted from) the current log
mask. For example, LOGCHG +WARNING is the same as
LOGCHG *+WARNING

Jlogmask [B] The octal representation of the bits set in the following mask.
The 1ogMask must be octal; as an option, you may append a B
toit.

14-8 Maintenance Utilities

Log Mask:

7 0
[o[z[o[s[w]w]e[x]

The bits set select the event classes as described in Table 14-2.

* The current value of IogMask.

RESOURCELIM The bit name for the resource limit event class (Class 6).

DISASTER The bit name for the disasters event class (Class 5).

ERROR The bit name for the severe errors event class (Class 4).

WARNING The bit name for the warnings event class (Class 3).

EVENT The bit name for the event messages event class (Class 2).

PROLOG The bit name for the protocol-specific information event class
(Class 1).

LOGSTAT The bit name for the logging statistics event class (Class 0).

You must always log this event class.

Nodal Registry List Utility (NRLIST)

NRLIST lists the contents of the Nodal Registry.

NRLIST Scheduling

[RU, INRLIST

DS/1000-IV (RTE-MPE) Message Tracing Utilities

LOG3K and TRC3K allow you to trace and format DS/1000-IV Compatible Services
(RTE-MPE) message records over Bisync and X.25 links.

LOG3K Scheduling

[RU,]1LOG3K [, consoleLU]

consoleLU Is the logical unit LOG3K uses for command input and output.
Default: Local LU 1 (scheduling terminal).

LOG3K Operation

LOG3K prompts you for commands by printing the following message:

CHANGES?

Maintenance Utilities 14-9

Commands

LOG3K commands are summarized in Table 14-3. You must enter LOG3K commands in
uppercase.

Table 14-3. LOG3K Commands

Command Function

?? Print a description of LOG3K commands and options.

EN Exit LOG3K.

EX

/E

NO

LU Enable tracing, disable tracing or specify LU of magnetic tape device to

which trace records will be logged.

TY Specify the type of tracing (header, appendage, and/or data).

UP Restart tracing if an error is encountered while writing to the magnetic tape.
7

Print a description of LOG3K commands and options.

??

EN, EX, /E, NO
Exit LOG3K when issued in response to the CHANGES ? prompt.

EN
EX
/E
NO

LU

Enable tracing, disable tracing, or specify LU of magnetic tape device to which trace
records will be written.

, magTapeLU

magTapeLU The LU of the magnetic tape device. QUEX/D3KMS will write
the DS/1000-IV Compatible Services (RTE-MPE) message
records to the tape mounted at that device. (Cannot be a CS/80
tape device.) By specifying an LU, you enable tracing.

0 Disables tracing.

14-10 Maintenance Utilities

TY

Specify the type of information that you want to trace.

AP

v | PA: numiWords
HE
NO

AP Trace message header and appendage.

DA : numWords Trace message header, appendage, and numWords words of
data. numWords must be an integer between 1 and 135.

HE Trace message header.

NO Trace nothing. QUEX/D3KMS will not write any records to the
trace file, but the file will still be open and tracing will still be
enabled.

UP

Restart tracing if an error has occurred while writing to the magnetic tape.

UP

TRC3K Scheduling

[RU,] TRC3K [, commandInput] [, loggingInput] [, outputDevice]

commandInput The LU or FMGR file to provide TRC3K commands.
Default: Local LU 1 (scheduling terminal).

loggingInput The LU of the magnetic tape device with the tape where the
traced records were logged. QUEX/D3KMS must not be
writing to this LU while TRC3K is reading from it. If you enter
anegative number, TRC3K will terminate. If not specified,
TRC3K prompts you for a magnetic tape LU.

outputDevice The LU or file to which TRC3K will print the formatted output.
If outputDeviceis afile, it must be an existing FMGR file.
Default: commandInput ifitis interactive, or local LU 1
(scheduling terminal).

TRC3K Operation

If you did not specify ToggingInput, TRC3K prompts you for the LU of the magnetic
tape device with the tape where the traced records were logged:

LOGGING INPUT:

Enter the magnetic tape device LU, as specified above.

Maintenance Utilities 14-11

Commands

TRC3K prompts you for commands by printing the following message:
/TRC3K:

TRC3K commands are summarized in Table 14-4.

Table 14-4. TRC3K Commands

Command Function
?? Print a description of TRC3K commands and options.
EXIT Exit TRC3K.
FORMAT Specify the items (header, appendage, and/or data) to format.
LIST Set the list (output) device or file.
PRINT Print the formatted message records to the output device.
SET Set the characteristics of the messages to be printed.
Note You must enter TRC3K commands in uppercase.
2?

Print a description of the TRC3K commands.

?7?

EXIT

Exit TRC3K.

E[XIT]

FORMAT

Specify which portion or portions of the message record to print when you enter the
PRINT command.

,H[EADER]
F [ORMAT]| , A [PPENDAGE]
,D[ATA]
HEADER Print the message header only.
APPENDAGE Print the header and an octal and ASCII representation of the
appendage.
DATA Print the header, and an octal and ASCII representation of the
appendage and data.

14-12 Maintenance Utilities

LIST

Set the list (output) device or file.
L[IST]=outputDevice

outputDevice The LU or file to which TRC3K will print the formatted output.
If outputDeviceis afile, it must be an existing FMGR file.
Default: the second parameter in the runstring
(outputDevice); if you did not specify outputDevice in
the runstring, the default is the scheduling terminal.

PRINT

Print the formatted records to the output device.

,A[LL]
P [RINT]|,F[IRST]
, N [EXT]

ALL Print all the message records that meet the characteristics
specified by the SET command.

FIRST Print the first message that meets the characteristics specified
by the SET command.

NEXT Print the next message that meets the characteristics specified
by the SET command. (Default.)

Maintenance Utilities 14-13

SET

Set the characteristics of the messages to be printed by the PRINT command.

S[ET]

CLASS

ENDREC

RTENO

STARTREC

STREAM

value

C[LASS] =value

E [NDREC] =value
R[TENO] =value
STA [RTREC] =value
STR [EAM] =value

Select only the message records that belong to the class
specified by value. For a list of message classes and the
corresponding messages, refer to the NS-ARPA/1000 Error
Message and Recovery Manual.

Select the records on the tape with record numbers less than or
equal to the number specified by value. The record numbers
are the tape’s sequential record numbers.

Default: the highest (last) record number in the file.

Select only the message records generated by the RTE process
number specified by value. The RTE process number is the
user’s terminal LU.

Select the records on the tape with record numbers greater than
or equal to the number specified by value. The record
numbers are the tape’s sequential record numbers.

Default: the first record number (number 1) in the file.

Select only the message records that belong to the stream type
specified by value. For a list of message streams and the
corresponding messages, refer to the NS Message Formats
Manual.

Integer value from x to y, or @ to clear the value. For STREAM,
this value is an octal number.

Clear all the values set.

14-14 Maintenance Utilities

DSMOD

DSMOD allows you to alter DS/1000-IV Compatible Services parameters set during
initialization, or change timing parameters not set through NSINIT questions.

DSMOD Scheduling

DSMOD | 11,1 [, errordevice]
,file

Iu The logical unit number of the device from which responses to
the DSMOD prompts will be entered. Default is the scheduling
terminal.

file The name of a command file that contains responses to the

DSMOD prompts. If the full file path is not specified, the
default directory is the current working directory.

errordevice The logical unit number of the device where errors will be
logged. Default is the scheduling terminal.

DSMOD Operation

‘When DSMOD is run with an interactive input device, you are prompted with the
following question:

/DSMOD: OPERATION?

You can respond to this prompt with any of the commands listed in Table 14-5.

When DSMOD is scheduled with a command file, it obtains the responses to its prompts
from the file. Running DSMOD with a command file can be useful if there are changes
that need to made on boot-up.

If NS-ARPA is shutdown while DSMOD is running, DSMOD may abort with a request
error (RN02).

Commands

The DSMOD commands are summarized in Table 14-5.

Maintenance Utilities 14-15

Table 14-5. DSMOD Commands

Command Description

?? Prints a list of the DSMOD commands.

/A Aborts DSMOD.

CN Changes the Nodal Routing Vector (NRV).

DI Disables a link. (You cannot use the DI command to disable LAN links.)

/E Exits DSMOD.

/I Changes local and remote ID sequences.

/L Enables a link. (You cannot use the /L command to enable LAN links or X.25
LUs. (You can use the DSMOD DI command to return X.25 LUs to the pool.)

/N Displays the Nodal Routing Vector (NRV).

/S Schedules monitors. (Only the following monitors can be scheduled with

DSMOD: CNSLM, DLIST, EXECM, EXECW, OPERM, PTOPM, PROGL, RFAM,
RDBAM, VCPMN.)

/T Adjusts network timing values that are used by the DS/1000-IV Compatible
Services.

HP 1000 Utilities

The utility subroutines described here are provided for use in conjunction with PTOP,
RFA, and DEXEC calls.

The following utility subroutines are part of the DS/1000-IV Compatible Services
(RTE-RTE).

DLGNS

Allows non-session access at remote DS/1000-IV nodes with Session Monitor.

DLGNS (err, node, acct, len|[, oride])

sess = DLGNS (err,node, acct, len[oride]

sess 16-bit integer. The session identifier of the remote
session created, or the negative of the session identifier of the
existing remote session that is being used.

err 16-bit integer. Avariable to which error codes are
returned.
node 16-bit integer. The positive Router/1000 node address,

or, if the remote DS/1000-IV node is a neighbor node, the
negative communication link LU number. An error is reported
if the local Router/1000 node address is entered here.

acct Integer array (FORTRAN); Packed character
array (PASCAL). The password for non-session access at
the target node. The password can be up to ten characters in
length and can optionally be preceded by a slash.

14-16 Maintenance Utilities

len 16-bit integer. The length of the password in positive
(+) words or negative (—) bytes including the optional leading
slash.

oride 16-bit integer. Aninteger specifying the degree to which
you want to override session sharing. Default is zero (no
override). (Refer to DLGON for more information about this
parameter.)

DLGOF

Releases the session at the specified remote DS/1000-IV node with Session Monitor.
DLGOF (err, node)

err 16-bit integer. A variable to which logoff error codes are
returned. Zero is returned if no errors occurred.

node 16-bit integer. The positive Router/1000 node address,
or, if the remote DS/1000-IV node is a neighbor node, the
negative communication link LU number. An error is returned
if the local node number is entered here.

DLGON

Provides non-interactive access to a specific remote account at a DS/1000-IV node with
Session Monitor.

DLGON (err, node, acct, len|, oride]

sess = DLGON (err,node, acct, len[oride]

sess 16-bit integer. The session identifier of the remote
session created, or the negative of the session identifier of the
existing remote session that is being used. DLGON is an integer
function.

err 16-bit integer. Avariable to which logon error codes are
returned. Zero is returned if there were no errors.

node 16-bit integer. The positive Router/1000 node address,
or, if the remote DS/1000-IV node is a neighbor node, the
negative communication link LU number. An error is reported
if the local node number is entered here.

acct Integer array (FORTRAN); Packed character
array (PASCAL). The name and optional password of the
remote account in the form user. group/password. The
user, group, and password can each be up to ten characters
in length.

len 16-bit integer. The length of the account name in
positive (+) words or negative (—) bytes.

oride 16-bit integer. Aninteger specifying the degree to which
you want to override session sharing. For most applications, the
default value (0) is sufficient. The oride values are:
2 Absolute session sharing override. Do not
try to share any existing session.

Maintenance Utilities 14-17

DMESG

1 Override session sharing with non-ancestors.

Share with ancestors. Request a new session
even if a non-ancestor program within the
calling program’s process group already owns
a session at the requested node.

0 (Default) No override. Share with ancestors
or other programs within the calling
program’s process group.

-1 Slave ability. No override. The logon request
is refused as above. However, slave back, if
possible.

Sends a message from a program at your local node to system LU 1 at a remote HP 1000

node.

DMESG (dest, msgad, msg)

dest

msgad

msgl

DMESS

16-bit integer. The Router/1000 node address of the
node where the message is to be sent.

Integer array (FORTRAN); Packed character
array (PASCAL). ASCII-coded message; less than or equal
to 72 characters.

16-bit integer. Message length. A positive value to
indicate the number of words, or a negative value to indicate
the number of characters in the message.

Transmits a system command to the message processor at a remote node.

DMESS (dest, bufr, bufl)

dest

bufr
(input/output)

bufl

16-bit integer. The Router/1000 node address of the
node where the message is to be sent.

Integer array (FORTRAN); Packed character
array (PASCAL). Message buffer. Less than or equal to 40
characters.

Many RTE-A system messages exceed the bufr size limit and
will be truncated.

16-bit integer. Message buffer length in bytes. A
positive value indicating the number of bytes in the buffer (40
bytes maximum).

Upon return to a program, A-register and B-register contain status information:

A=0
A<0

Indicates that there is no return message from the remote node.

Indicates the negative value of the byte count for a return
message from the remote node. The return message is
contained in the message buffer (bufr).

14-18 Maintenance Utilities

Indicates an error condition. In this case, the A-register
contains —4 and bufr contains a 4-character error message
(for example, DS03).

Caution

Issuing the system command OF, program name via DMESS,
where program name is the name of any NS-ARPA/1000 pro-
gram, may result in the failure of a requested transaction and/or
close files or terminate programs. DMESS is the remote proces-
sing version of the RTE subroutine, MESSS. Refer to the RTE-A
Programmer’s Reference Manual, part number 92077-90007, for
more information on MESSS.

DSERR

Returns expanded error information about a reported error in your program’s most recent
PTOP, RFA, or DEXEC request. Do not use DSERR if your PTOP master calls are made
to an HP 3000 slave program, if you are using HP 3000 RFA calls, or if you are calling the
utility subroutines HELLO, BYE, or PRCNM.

DSERR (erbf [, noder] [, 1glfr])

erbf

noder

lglfr

DS_GETNAME

Integer array (FORTRAN); Packed character

array (PASCAL). ASCII error message return buffer. Must

be an array of at least 24 words. The message is of the form DS

ERROR: xxxx(gg), REPORTING NODE nnnnnwhere:

XXXX May contain either the ASCII or numeric
(converted to ASCII) error code.

aq Is the error code qualifier.

nnnnn Is the node number reporting the error.

16-bit integer. A positive integer to which the reporting
node number is returned.

16-bit integer. A positive integer to which the qualifier
code is returned.

Obtains a node name from /system/nodenames given the node number.

Error = DS_GetName (Node, Nodename)

Error

16-bit integer. Anerror code is returned here indicating
whether a match was made with the node number in the
/system/nodenames file or a negative FMP error code.

FMP —302 indicates the node number was not found in the
/system/nodenanes file.
0 = no error.

Maintenance Utilities 14-19

Node

Nodename

DS_GETNODE

16-bit integer. The node number of the remote node for
which you want the node name. Use the node number from the
NRV. The node number is used to search /system/nodenames
to find a match and obtain the node name associated with it.

Integer array (FORTRAN); Packed character
array (PASCAL). An array that contains the node name as
foundin /system/nodenames. Length is 16 characters.

Obtains a node number from /system/nodenames given the node name.

Node

Node

Nodename

FCOPY

DS_GETNODE (Nodename)

16-bit integer. The node number obtained from
/system/nodenames as associated with the node name or a
negative FMP error code.

FMP —302 is equivalent to the “node name was not found in
/system/nodenames.”

Integer array (FORTRAN); Packed character
array (PASCAL). An array which contains the node name of
the remote node for which you wish to find the node number.
This should be a node name as found in /system/nodenames.
It should be left-justified and blank padded.

Copies FMGR files between HP 1000 nodes. Cannot copy non-FMGR files.

FCOPY(fill,crl,fil2,cr2,err(, secl [, typ2]l [, siz2] [, rec2] [, mode] [, sec2])

fill

crl

filz

cr2

err

Integer array (FORTRAN); Packed character
array (PASCAL). Origin file name. A 3-word array
containing the ASCII-coded name of the file to be copied.
Must be a FMGR file.

Array of 16-bit integers. A two-word array. Word
one is the cartridge identifier. Must be a positive or negative
integer value or zero. If positive, the file search is restricted to
the cartridge declared by the specified integer value. If
negative, the file search is restricted to the logical unit number
declared by the specified integer value. If zero, the file search is
not restricted to any particular cartridge. Word two indicates
the Router/1000 node address of the node where the origin file
resides.

Integer array (FORTRAN); Packed character
array (PASCAL). Destination file name. A 3-word array
containing the ASCII-coded name of the file copy. Must be a
FMGR file.

Array of 16-bit integers. A two-word array. Word 1
contains the destination file cartridge identifier. Word 2
contains the Router/1000 node address. (See cri1 for more
information.)

16-bit integer. Error return variable.

14-20 Maintenance Utilities

secl

typ2

siz2

recz2

mode

isec2

FLOAD

16-bit integer. Origin file security code. Specify one if a
security code exists for the origin file.

16-bit integer. Destination file type. Specify only if you
want the destination file type to differ from that of the origin
file.

16-bit integer. Destination file size in blocks. Specify
only if you want the destination file size to differ from that of
the origin file. If specified, this value must be greater than the
block size of the origin file. A negative value should not be
specified (it would cause all available remote disk space to be
allocated to the destination file if a line failure occurred before
the file was truncated and closed). If you attempt to specify a
negative value, error code —6 will result.

16-bit integer. Destination file record size in words for
Type 2 files only. Specify only if you want the record size of the
destination file to differ from that of the origin file. It may not
be a negative value.

16-bit integer. Transfer mode. Specify a non-zero value
in the parameter to cause both the origin file and the
destination file to be opened as Type 1. It is usually desirable to
enable this mode because variable record length files are then
transferred in blocks of 128 words which is faster than
record-by-record transfers.

16-bit integer. Destination file security code. Specify
only if a different security code is desired on the destination
file.

You may use this utility to download an absolute or memory-image program file into
memory-based RTE-A nodes.

FLOAD (name, cr,nodel,node2, err|, secu] [, prtn] [, psiz] [, erbf])

name

cr

nodel

node2

err
secu
prtn

psiz

Absolute program file name. A 3-word array containing the
ASCII-coded name of the program file to be downloaded. The
first five characters of the file name are used to fill in the ID
segment. Must be a FMGR file.

16-bit integer. Program file’s cartridge reference
number.

16-bit integer. The Router/1000 node address of the
node at which the file exists. Must be a non-negative node
address.

16-bit integer. The Router/1000 node address of the
node where the file is to be downloaded.

16-bit integer. Error return.
16-bit integer. Program file security code.
16-bit integer. Thisisa dummy parameter.

16-bit integer. Thisisa dummy parameter.

Maintenance Utilities 14-21

erbf Integer array (FORTRAN); Packed character
array (PASCAL). Error buffer. A 3-word array used for the
return of an ASCII-coded program name under certain error
conditions.

GNODE
Obtains your local Router/1000 node address.
GNODE (node)
node 16-bit integer. Your Router/1000 node address is
returned here. Returns -1 if NS-ARPA is not initialized.
SEGLD

Locates, loads and executes a program segment from a disk file at an HP 1000 node.
SEGLD (name, err(, p1] [, p2] [, p3] [, p4] [, p5]

name A 3-word array that contains the ASCII-coded name of the
program segment file to be loaded. Must be a FMGR file.

err 16-bit integer. Error return. A variable to which an
integer value representing an error code is returned if an error
condition is encountered during execution of this call.

ipl...1ip5 Up to five 16-bit values that may be passed from the calling
program to the called segment.

HP 3000 Utilities

The utility subroutines described here are provided for use in conjunction with PTOP,
REA, and DEXEC calls.

The following utility subroutines are part of the DS/1000-IV Compatible Services
(RTE-MPE).

HELLO

Establishes communication between your NS-ARPA/1000 system and an NS/3000 or
DS/3000 node. Creates a session at the remote HP 3000.

HELLO (err, 1dev, Istdv, nmsmp, logr, logrl [, lux.25]

err 16-bit integer. An error code is returned here if an error
condition is encountered. Upon successful completion of the
call to HELLO, the value of erris zero.

ldev 16-bit integer. The logical unit number of an HP 3000
(an integer less than 256) or an X.25 address (up to 15
ASCII-coded digits).

14-22 Maintenance Utilities

lstdv

nmsmp

logr

logrl

Jux.25

BYE

16-bit integer. The logical unit number of the desired list
device. The “logon” response generated at the HP 3000 as a
result of a successful HELLO operation is transmitted to this
device. Zero equals the scheduling terminal.

16-bit integer. The session (SMP) number is returned
here from the HP 3000.

Integer array (FORTRAN); Packed character
array (PASCAL). An array that contains the HELLO
command logon parameters in the form of a message. The first
six characters of this logon message must be the characters
HELLO followed with a blank. The entire message string must
also be followed (terminated) with a blank.

16-bit integer. The length (in characters) of the logon
message contained in the Iogr array.

16-bit integer. The LU associated with an X.25 network.
If this parameter is omitted and an X.25 address is passed in
ldev, HELLO passes zero in 1ux. 25. This zero is used by the
X.25 virtual circuit allocation routine which indicates that X.25
will use the first network in SAM (the last network entered
from XINIT).

Terminates logical communication between an HP 1000 program and an HP 3000
program. Also terminates the HP 3000 session in which the program is running.

BYE (err, 1dev, 1stdv, nmsmp)

err

ldev

lstdv

nmsmp

16-bit integer. An error code is returned here if an error
condition is encountered when issuing the BYE command.
Upon successful completion of the call to BYE, the value of err
is zero.

16-bit integer. The logical unit number (integer

< 256 >) of an HP 3000. (If the HP 3000 has an X.25 address
(up to 15 ASCII-coded digits), FORTRAN type is integer
array and Pascal type is packed character array.)

16-bit integer. The logical unit number of the desired
local list device. The “logoff” message generated by the

HP 3000 as a result of a successful BYE operation is transmitted
to this device. Zero equals the scheduling terminal.

16-bit integer. The session (SMP) number obtained via
this session’s corresponding HELLO command.

Maintenance Utilities 14-23

LU3K (for X.25 Links)

Obtains the LU number of a virtual circuit allocated for an HP 1000 to HP 3000 X.25
connection.

a3klu = LU3K([dumy])

a3klu 16-bit integer. The LU number of the X.25 virtual circuit
is returned here.

dumy Dummy parameter required for FTN4x (and earlier
FORTRAN compilers). Omit this parameter for Pascal and
programs written in later versions of FORTRAN (FTN77/7x).

PRCNM

Establishes communication between a son program and a session (SMP) created by a
father program at an HP 3000.

PRCNM (parm)
parm 16-bit integer. May be any non-zero value to establish
communication with the HP 3000 session. If your node is

memory-based, parmcan be set to zero to clear the
communication values set by a previous run of the program.

14-24 Maintenance Utilities

Index

This section is a master index for the NS-ARPA/1000 manual set. The following
codes identify the NS-ARPA/1000 manuals.

Code Manual Title

USR NS-ARPA/1000 User/Programmer Reference Manual, part
number 91790-90020.

GEN NS-ARPA/1000 Generation and Initialization Reference
Manual, part number 91790-90030.

MNT NS-ARPA/1000 Maintenance and Principles of Operation
Manual, part number 91790-90031.

DS NS-ARPA/1000 DS/1000-1V Compatible Services Reference
Manual, part number 91790-90050.

FSV File Server Reference Guide for NS-ARPA/1000 and
ARPA/1000, part number 91790-90054.

BSD BSD IPC Reference Manual for NS-ARPA/1000 and
ARPA/1000, part number 91790-90060.

MSG NS Message Formats Reference Manual, part number
5958-8523.

For example, GEN 4-35 means that the entry is on page 4-35 of the
NS-ARPA/1000 Generation and Initialization Reference Manual

Index-1

Symbols

..command, FTP: USR 3-19

! command, FTP: USR 3-17

? command
FTP: USR 3-18, 3-42
TELNET: USR 2-10

-g option, file name expansion, FTP:
USR 3-2

-1 option, interactive prompting,
FTP: USR 3-2

-1 option, log file, FTP: USR 3-2,
3-44

-n option, auto-logging, FTP: USR
-2

-q option, quiet mode for transfer
files, FTP: USR 3-2

-t option, command input file, FTP:
USR 3-2, 3-74

-u option, specify user and password,
FTP: USR 3-2

-v option, verbose output, FTP: USR
3-2,3-78

#DSAM: GEN 6-4

#GET: MNT 9-38

#GRPM: MNT 9-18

#MAST: MNT 9-17, 9-18, 9-23

#MSSM: MNT 9-41

#NAT: MNT 9-41

#NRVS: MNT 9-17

#RMSM: MNT 9-40

#SEND: GEN 4-18, 4-30, 6-7;
MNT 9-28

#SLAV: MNT 9-37

#XCOM: GEN 5-13

$BGCDS: GEN 5-14

$BIGLB: GEN 5-14

$CMNDO environment variable:
USR 3-14

$CMNDO_LINK environment vari-
able: USR 3-14

$CXL66: GEN 5-4

$D3N25: GEN 6-4

$FDSLB: GEN 6-6

$FNDLB: GEN 5-14, 6-6
NFT: GEN 5-14

$STDIN (READ/READX): MSG
8-14

$STDLIST (Print): MSG 8-12

$SYSTZ: FSV A-1

$UFMP library: FSV 2-7

%ADV00: GEN 5-5,5-9

%CXL66: GEN 5-5

%DSQ: GEN 5-3

%1D*66: GEN 5-5,5

%1D*67: GEN 5-5,5

%1DS00: GEN 5-5, 5-10

%RESA: GEN 5-13

/ command, FTP: USR 3-20

-7
-6

Index-2

[etc/exports: FSV'1-1,2-1, 4-2
Jetc/fsrv.mnt: FSV 4-2, 4-6
/etc/hosts: FSV 4-2, 4-4
/etc/hosts file: BSD 3-7, 5-8, 5-16,
5-49, B-1, B-2
/ETC/INETD.CONE GEN 6-1
/etc/networks file: BSD 5-9, 5-19,
5-21, 5-23, 5-50, B-1, B4
/etc/protocols file: BSD 5-10, 5-26,
5-28, 5-30, 5-51, B-1, B-6
/ETC/SERVICES: GEN 6-1
/etc/services file: BSD 2-3, 3-5, 5-11,
5-32,5-34, 5-36, 5-52, B-1, B-8
[etc/tztab: FSV 4-2,4-7
/etc/ux_groups: FSV'1-1,4-2, 4-6
/etc/ux_users: FSV'1-1,4-2, 4-5
/NS1000/CMD/
INSTALL_NS1000.CMD: GEN
6-1
/NS1000/CMD/
NSSTART EZ.CMD: GEN 6-1
/NS1000/EXAMPLES/#ANSNS:
GEN 6-1
/NS1000/EXAM-
PLES/A91790_EZ INSTAL.TX
T: GEN 6-1
/NS1000/EXAM-
PLES/A91790_INSTALL.TXT:
GEN 6-1
/NS1000/EXAMPLES/
NSSTART.CMD: GEN 6-1
<errno.h> file: BSD B-10, B-11
<fentl.h> file: BSD B-10, B-13
<in.h> file: BSD B-10, B-14
<netdb.h> file: BSD B-10, B-17
<socket.h> file: BSD B-10, B-18
<types.h> file: BSD B-10, B-22
~ EOF pointer posting: FSV'3-3

Numbers

12040D Serial, MUX card, TEL-
NET: GEN 1-2

802 LI: GEN 3-6, 3-8, 9-16
statistics: MNT 2-20

A

AABORT, NFT message: MSG 3-26
ABOR, FTP message: MSG 4-1
abort I/O

request: MSG 6-22

response: MSG 6-23
ABORT, NFT message: MSG 3-26
accept(): BSD 2-5, 3-1, 3-9, 4-3, 7-2
accepting connection request: BSD

access rights: FSV'1-1

accessing the file server: FSV'2-1
ACEPT: DS 6-28
ACEPT, processing: MNT 9-43
ADATA, NFT message: MSG 3-12
AddOpt: USR 5-73, 6-5
example: USR 6-20
RPM: USR 6-19, 6-20
RPM example: USR 6-34, 6-37
address: GEN 1-3
Ethernet: GEN 9-16
IEEE 802.3: GEN 9-17
IEEE 802.3 broadcast: GEN
3-24
IEEE 802.3 multicast: GEN
3-24,3-27,9-20
IEEE 802.3 station: GEN 3-23,
3-32; MNT 2-5
inbound list: GEN 3-27
IP: GEN 3-12, 3-32, 3-34, 3-35,
9-16, 9-18, 9-22, 11-3, 11-4;
MNT 2-5,2-18
IP (internet): BSD D-2
LAN: GEN 9-16
LAN station: GEN 11-3, 11-4
multicast: MNT 2-5
network: BSD D-6; GEN 3-18
node: BSD D-7; GEN 3-12, 3-19
probe: GEN 3-27
proxy: GEN 3-27, 3-28, 9-20
Router/1000: GEN 3-21, 3-35,
9-22; MNT 2-5, 2-18, 2-21
socket: BSD D-8
target: GEN 3-27, 3-28, 9-20
troubleshooting: MNT 1-6, 1-8
address binding: BSD 2-3
address resolution, configuration:
GEN 9-20
address resolution module, ARM:
GEN 1-13
address resolution protocol: GEN
1-13
address resolution provider, ARM:
GEN 1-13
address resolution requestor, ARM:
GEN 1-13
address variable: BSD 3-3
address variable type: BSD 3-2
AddressOf(): BSD 3-16
ADIRECTORY, NFT message:
MSG 3-40
AdrOf: USR 5-75
Advanced Research Projects Agency,
ARPA: USR1-3,2-1; DS 1-2
AEOD, NFT message: MSG 3-15
AF_INET: BSD 2-3, 3-3, 3-8
AINIT, NFT message: MSG 3-35
ALARM: GEN 4-16

AMARKER, NFT message: MSG
3-14
ANFT, NFT message: MSG 3-19
ANFTGEN, NFT message: MSG
3-23
ANH: MNT 9-5,9-9
answer file: GEN 5-1
AOFFERI, NFT message: MSG
3-32
AOFFERR, NFT message: MSG
AOFFERT, NFT message: MSG
3-29
APLDR: GEN 4-20, 4-23, 4-30,
4-31, 6-7; MNT 2-28; DS 2-22
CDS programs: GEN C-4
APLDX: DS 2-22
APPE, FTP message: MSG 4-2
APPEND command, FTP: USR
3-22
application layer: GEN 1-7, 1-§;
USR 1-2
Application Monitor: MSG 6-1
negotiation reply: MSG 6-10
negotiation request: MSG 6-7
appropriate next hop: MNT 9-5, 9-9
architecture: MNT 9-1
network: GEN 1-7
ARM: GEN 1-13
address resolution provider:
GEN 1-13
address resolution requestor:
GEN 1-13
resolver protocols: GEN 1-13
socket registry: GEN 1-13
ARP header: MSG 1-29
ARPA: USR1-3,2-1; DS 1-2
Ethernet: GEN 1-15
ASCII, DSCOPY option: USR 4-7
ASCII command, FTP: USR 3-23
assign partition, RPM: USR 6-24
asynchronous I/O: USR 5-14
IPCRecv: USR 5-56
IPCRecvCn: USR 5-61
IPCSend: USR 5-68
read and write thresholds: USR
5-14
ATACH, RPM: USR 6-5
AYT parameter, TELNET SEND
command: USR 2-22

BELL command, FTP: USR 3-24

Berkeley sockets: MNT 9-2; USR
1-4; DS 1-3

BIGNS: GEN 6-3

Index-3

BIGNS.LIB: GEN 5-14, 6-7
BIGNS_CDS: GEN 6-3
BIGNS_CDS.LIB: GEN 5-14, 6-7
BINARY, DSCOPY option: USR
4-7
BINARY command, FTP: USR 3-25
bind(): BSD 2-3, 2-5, 3-1, 3-2, 3-5,
3-8, 3-11, 4-6
binding address: BSD 3-8, 3-11
binding socket addresses: BSD 4-6
Bisync: GEN 3-8; MNT 9-48; USR
1-7; DS 1-6, 1-7
board statistics: MNT 2-13
CDS: DS 1-7
communication block size: GEN
12-7
connect timer: GEN 12-7
connection initialization: GEN
12-4
I/O requests: MNT 9-52
ID sequences: GEN 3-41, 9-25,
12-7; MNT 8-9
link: GEN 1-15, 3-11, 9-25
system generation: GEN 5-7
link troubleshooting: MNT 1-5,
1-17
message records: MNT 7-1
primary mode: GEN 12-8
protocol: MNT 9-50
retry count: GEN 12-7
secondary mode: GEN 12-8
software module: GEN 4-25
bitmask
clearing: BSD 6-2, 6-5
for socket descriptors: BSD 6-1
setting bits: BSD 6-4
testing bits on: BSD 6-3
blank common, system generation:
GEN 5-13
block mode TELNET: USR 2-5
BOOT command file: GEN 7-1
boundary, network: GEN 1-5, 3-8
BREAK parameter, TELNET
SEND command: USR 2-23
BREVL: GEN 4-12, 4-28, 6-7;
MNT 4-1
runstring: MNT 4-4
broadcast (IEEE 802.3) address:
GEN 3-24
broadcast networks: GEN 1-5
BRTRC: GEN 4-12, 4-28, 6-7;
MNT 5-1, 5-5
runstring: MNT 5-5
BSD IPC: GEN 1-8; MNT 9-2, 9-5;
USR1-3,1-4; DS 1-2,1-3
library: GEN 6-3
troubleshooting: MNT 1-10, 1-11
BSD IPC calls
accept(): BSD 4-3

Index-4

bind(): BSD 4-6
connect(): BSD 4-8
fentl(): BSD 4-11
flowchart: BSD 4-2
getsockopt(): BSD 4-13
listen(): BSD 4-16
recv(): BSD 4-18
recvirom(): BSD 4-21
recvmsg(): BSD 4-23
select(): BSD 4-27, 4-32
send(): BSD 4-31
sendmsg(): BSD 4-34
sendto(): BSD 4-38
setsockopt(): BSD 4-40
shutdown(): BSD 4-43
socket(): BSD 4-45
summary: BSD 4-1
BSD IPC concepts: BSD 2-1
BSD IPC errors returned by FSRV:
FSV'5-9
BSD IPC utilities: BSD 5-1
releasing dynamically allocated
memory: BSD 5-1
special considerations: BSD 5-1
BSD_CDS: GEN 6-3
BSD_CDS.LIB: GEN 6-7
buffer area: MNT 9-62
buffer size, NFT: MNT 2-9
BUILD: GEN C-4
memory-based system: GEN C-6
bus networks: GEN 1-5
BYE: DS 7-25,8-2
programmatic example: DS 7-28
subroutines: MNT 9-54
BYE command, FTP: USR 3-27,
3-36, 3-62
byte address pointers: BSD 3-16
byte addresses: USR 5-75
ByteAdrOf(): BSD 3-16

C

C header files: BSD B-10

caching: FSV'3-3

call socket descriptor: USR 5-3

CANCEL, NFT message: MSG 3-28

cancellation (MA) statistic: MNT
2-17

case reporting: FSV'2-2

casefolding: FSV'3-3

catalog files, INETD.C000: GEN
6-7

CD command, FTP: USR 3-28

CDS
DS/1000-1V services: GEN 6-3
libraries: GEN 6-3
memory-based system: GEN C-6
NS services: GEN 6-3
RPM: USR 6-24, 6-39

RPM programs: USR 6-3, 6-4,
6-14
CDS programs: BSD 1-1; USR 1-8
APLDR: GEN C-4
Bisync: DS 1-7
memory-based system: GEN C-4
X.25: DS 1-7
CDUBP, FTP message: MSG 4-2
chained TELNET sessions: USR
2-3,2-20
changing file ownership: FSV'3-3
char data type: BSD 3-17
checking the status of a connection:
USR 5-8
checksum: MNT 2-9
checksumming, cross-system: USR
5-28, 5-29, 5-31
child node, RPM: GEN C-8
child program: GEN 4-16
RPM: USR 6-4, 6-21
CI, memory-based system: GEN
C-6,C-7
CI programs, from FTP: USR 3-17
class I/O rethreads: MNT 9-19
class number: GEN 4-33; MNT
2-24,2-29
IFP: MNT 2-9
INPRO: MNT 2-9
OUTPRO: MNT 2-9
requirement: GEN 9-26
system generation: GEN 5-12
client, setup: BSD 3-10
client process: BSD 2-3
client request types: FSV'5-2
file system request: FSV'5-2
mount request: FSV'5-2
portmapper request: FSV'5-2
client-server model: BSD 2-3
clients, maximum number: USR
5-80
CLOSE command
FTP: USR 3-29
TELNET: USR 2-11
CM, memory-based system: GEN
C-7
CMNDO monitor: USR 3-14
CNSLM: GEN 4-25, 4-26, 4-32, 6-7,
9-11; MNT 9-60
code and data separated programs:
DS 1-7
command input file, FTP: USR 3-74
command stack, FTP, display with /
command: USR 3-20
command summary: BSD 3-1, 3-2
common
blank: GEN 5-13
labeled: GEN 5-13
system: GEN 5-13

communication block size (Bisync):
GEN 12-7

communication links: GEN 1-3,
1-14; USR1-1; DS 1-1
BISYNC: USR 1-7; DS 1-6, 1-7
data link: DS 1-6
Ethernet: USR 1-7; DS 1-6
HDLC: USR 1-7; DS 1-6, 1-7
1IEEE 802.3: USR 1-7; DS 1-6
LAN: USR 1-7; DS 1-6, 1-7
X.25: USR 1-7; DS 1-6, 1-7

COMPDATA, NFT message: MSG
3-16

COMPEOD, NFT message: MSG
3-16

compiling programs: GEN 6-3

COMPMARKER, NFT message:
MSG 3-17

computer network: USR 1-1; DS
1-1

configuration: GEN 3-1

configuration files: FSV 4-2

configured resources, statistics:
MNT 2-7

connect site path report: MNT 9-7
See also CSR

connect(): BSD 2-5, 3-1, 3-5, 3-7,
3-11,4-8,7-2

connection acceptance, server: BSD
3-9

connection establishment: BSD 2-5

connection requesting, client: BSD
3-11

connection requesting from client:
BSD 4-8

connection requests, acceptance:
BSD 3-9

connection shutdown: BSD 4-43

connection termination: BSD 2-10,
3-15

connections: USR 5-2

CONSM: GEN 4-15, 4-29, 6-7, 7-3;
MNT 9-72
memory-based system: GEN C-6

control buffer
messages: MSG 1-31
tracing: MNT 5-23, 5-26

control request, RPM: MSG 5-13

controlling programs, RPM: USR
6-9

copy descriptor: USR 4-6
COPY3K: GEN 12-10
cost matrix: GEN 9-24; MNT 9-26
create a session\ DLGON: DS 7-8
creating a call socket: USR 5-4
cross-system

checksumming: USR 5-28, 5-29,

5-31

Index-5

NetIPC: USR 5-25, 5-27, 5-28,
5-29, 5-31
HP 3000: USR 5-1, 5-25, 5-26,
5-27,5-29, 5-37, 5-41, 5-44,

5-59, 5-62, 5-68, 5-71

HP 9000: USR 5-1, 5-25, 5-26,
5-27,5-28, 5-37, 5-41, 5-44,
5-59, 5-62, 5-68, 5-71

PC: USR 5-1, 5-25, 5-26, 5-27,
5-31, 5-37, 5-41, 5-44, 5-59,
5-62, 5-68, 5-71
program examples: USR 5-80,
5-83
NetIPC calls: USR 5-26
send and receive sizes: USR 5-28,
5-29, 5-31
socket sharing: USR 5-28
TCP protocol address: USR 5-28,
5-29, 5-31
CSR: GEN 9-13; MNT 9-8
CSTBL.REL: GEN 5-4
CWD, FTP message: MSG 4-2
CXL66: MNT 9-51

D

D.RTR: GEN C-2
D3KMS: MNT 7-1, 9-56
DAPOS: MSG 7-60, 8-46; DS 4-5
DATA
NFT message: MSG 3-12
RPM: MSG 5-12, 5-13
data flow: MNT 9-12
data interpretation: USR 4-4
data link: DS 1-6
data link layer: GEN 1-7, 1-14; USR
1-2
data parameter: USR 5-17, 5-21
byte address manipulation: BSD
4-24,4-35; USR 5-22
data buffer: BSD 4-23, 4-35;
USR 5-23
obtaining byte address: USR 5-75
type coercion: USR 5-23
vectored data: BSD 4-24, 4-35;
USR 5-23
data partition
modify: USR 6-29
RPM: USR 6-29
data transfer: BSD 2-9, 3-12, 4-18,
4-21, 4-23,4-31, 4-34, 4-38
data types: BSD 3-17
data vector: BSD 4-23, 4-34; USR
5-21
DATA_WAIT: USR 5-56
DATA_WAIT flag: USR 5-53
database management: DS 7-3
DCB, RFAM: GEN 6-6

Index-6

DCLOS: MSG 7-62, 8-47; DS 4-8
DCN: GEN 1-5, 3-29, 3-32, 9-16
DCONT: MSG 7-58, 8-48; DS 4-10
DCRET: MSG 7-63, 8-49; DS 4-13
DD*60: GEN 5-10
DD*60.REL: GEN 5-5
DDCO00.REL: GEN 5-5
DDCO01.REL: GEN 5-5
DDXO00.REL: GEN 5-5
DEBUG command, FTP: USR 3-30
debugging: MNT 5-1, 5-2
default gateway: GEN 3-31, 3-34
delays, program priorities: GEN 6-2
DELE, FTP message: MSG 4-2
DELETE command, FTP: USR
3-31
deleting directories, FTP
with DELETE command: USR
3-31
with MDELETE command: USR
3-47
deleting files, FTP
with DELETE command: USR
3-31
with MDELETE command: USR
3-47
dependent child, RPM: USR 6-12
dependent RPM programs
remote process management:
USR 6-15
terminating: USR 6-15
descriptors: USR 5-3
releasing: USR 5-10
resources associated with: USR
5-10
destination IP network address,
000.000.000.000: GEN 9-18
destination network address,
000.000.000.000: GEN 3-31, 3-33
destination node: GEN 1-4
detecting connection requests: USR
5-65
device driver. See driver
device type: MNT 2-10
DEXEC: GEN 1-10, 9-10; MNT
9-45; USR 1-4; DS 1-2,1-3,5-1
calls
interactive write/read: DS 5-5
program scheduling: DS 5-11
remote I/O control: DS 5-8
remote I/O status: DS 5-15
remote partition status: DS
5-16
remote program status: DS
5-17
remote program termination:
DS 5-9
remote read: DS 5-4
remote time request: DS 5-13

remote timed program sched-
ule: DS 5-14
remote write: DS 5-7
programmatic examples: DS 5-19
RPM: USR 6-2
software modules: GEN 4-19,
4-27
syntax conventions: DS 5-2
troubleshooting: MNT 1-10
DEXEC1
interactive write/read: DS 5-5
DEXEC 1 (Remote Read): MSG
7-33; DS 5-4
DEXEC 2 (Remote Write): MSG
7-34; DS 5-7
DEXEC 3, remote I/O control: DS
5-8
DEXEC 4 (Remote I/O Control):
MSG 7-35
DEXEC 6 (Remote Program Ter-
mination): MSG 7-43; DS 5-9
DEXEC9 (Immediate Schedule,
Wait): MSG 7-45; DS 5-11
DEXEC 10 (Immediate Schedule,
No Wait): MSG 7-37; DS 5-11
DEXEC 11 (Remote Time Re-
quest): MSG 7-39; DS 5-13
DEXEC 12 (Remote Timed Pro-
gram Schedule): MSG 7-40; DS
5-14
DEXEC 13 (Remote I/O Status):
MSG 7-36; DS 5-15
DEXEC 23 (Queue Schedule, Wait):
MSG 7-47; DS 5-11
DEXEC 24 (Queue Schedule, No
Wait): MSG 7-49; DS 5-11
DEXEC 25 (Remote Partition Sta-
tus): MSG 7-41; DS 5-16
DEXEC 99 (Remote Program Sta-
tus): MSG 7-42; DS 5-17
DEXECEXECUTION TIME:
MSG 8-62
DEXECI/O CONTROL: MSG
8-63
DEXECI/O STATUS: MSG 8-64
DEXEC READ: MSG 8-65
DEXEC SCHEDULE: MSG 8-66
DEXEC TIME: MSG 8-67
DEXEC WRITE: MSG 8-60
DIR command, FTP: USR 3-32
directly connected network. See
DCN
directories
accessing parent directory in
FTP: USR 3-19
creating remote directories in
FTP: USR 3-51

current working directory in FTP:
USR 3-61
deleting in FTP: USR 3-31
multiple directories: USR
3-47
destination: GEN 6-2
listing directory in FTP: USR
3-45, 3-56
listing in FTP: USR 3-32, 3-34,
3-48, 3-52
removing in FTP: USR 3-67
renaming in FTP: USR 3-66
RTE-A: USR 1-10, 3-8
RTE-A relocatables: GEN 6-2
setting working directory in FTP:
USR 3-28, 3-43
DIRECTORY, NFT message: MSG
3-40
directory,\SCRATCH: GEN 5-3
directory cache timeout: FSV' 3-3
directory names: FSV' 2-4
Distributed EXEC. See DEXEC
distributed executive: USR 1-4; DS
1-3, 5-1
distributed LOGON/LOGOFF
(DLGON): MNT 9-40
Distributed System Available
Memory. See DSAM
DL command, FTP: USR 3-34
DLGNS: DS 7-4
session monitor nodes only: DS
7-4
non-session access: DS 7-4
DLGOF: DS 7-6
DLGON: DS 7-7; MNT 9-40
session monitor nodes only: DS
7-8
create a session: DS 7-8
DLGONS, use with FCOPY: DS
7-17
DLIST: GEN 4-20, 4-30, 6-7, 9-11;
MSG 7-22
DLOCF: MSG 7-59, 8-50; DS 4-15
DMESG: DS 7-10
DMESS: DS 7-11
operation to session monitor
nodes: DS 7-11
DNAME: MSG 7-57, 8-51; DS 4-17
domain, in node names: USR 1-8
domain field: GEN 3-5
DOPEN: MSG 7-52, 8-52; DS 4-18
exclusive open: DS 4-20
non-exclusive open: DS 4-20
type 1 access: DS 4-21
update open: DS 4-20
dot notation, internet: BSD D-1
down reference: MNT 2-20

Index-7

download
files: GEN 13-7
HDLC: GEN C-1
LAN: GEN C-1
memory-based system: GEN
13-1,13-2,13-7, C-1
program file into itself: DS 7-18
software modules: GEN 4-23
system: GEN 13-1, 13-7, 13-13
DPOSN: MSG 7-55,8-53; DS 4-22
DPURG: MSG 7-51, 8-54; DS 4-24
DREAD: MSG 7-54, 8-55; DS 4-25
driver
BISYNC: GEN 5-5
device: GEN 5-4
HDLC: GEN 5-5
IEEE 802.3: GEN 5-5
interface: GEN 5-4
partition phase: GEN 5-4
relocation phase: GEN 5-4
remote I/O mapping: GEN 5-5
TELNET pseudo terminal: GEN
5-5
X.25: GEN 5-5
DS file transparency
D.RTR: GEN C-2
DSRTR: GEN C-2
memory-based system: GEN C-2
TREFAS: GEN C-2
DS/1000 compatible user services:
USR 1-3
DS/1000-1V
compatible services communica-
tion (RTE-RTE): MNT 9-48
compatible services internals:
MNT 9-14
compatible services parameter
modification: MNT 8-1
compatible services statistics:
MNT 2-28
compatible services tracing:
MNT 5-20, 5-24
compatible services troubleshoot-
ing: MNT 1-11
local appendage: MNT 5-26
nodes: GEN 3-10, 3-19, 3-21
non-CDS: GEN 6-3
program files: GEN 6-8
software: MNT 1-8
worksheet examples: GEN 3-38,
DS/1000-IV compatible link (RTE-
MPE): GEN 9-25
DS/1000-1V compatible services
CDS: DS 1-7
configuration: GEN 9-10
DEXEC: DS 1-2
logging: GEN 5-6
LU assignments: GEN 5-5

Index-8

program-to-programcommunica-
tion: USR 1-4
PTOP: DS 1-2
REMAT: USR 1-4; DS 1-2
remote file access: USR 1-4; DS
1-2
RMOTE: USR 1-4; DS 1-2
RTE-MPE: USR 1-3; DS 1-2
RTE-RTE: USR1-3; DS 1-2
timeout values: GEN 9-10
transaction: GEN 4-8, 9-10
DS/1000-IV Compatible Services
(RTE-MPE): GEN 3-29, 9-11
Bisync initialization: GEN 12-4
link: GEN 3-11, 4-9, 9-25
LUs: GEN 4-9
remote users: GEN 4-8,9-11
RMOTE slave installation: GEN
12-10
DS/1000-IV Compatible Services
(RTE-RTE): GEN 1-10, 3-30,
9-11
messages: GEN 4-5
remote access: GEN 4-8
DS/1000-1V Compatible Transport:
GEN 1-12
DS/1000-IV Compatible User Ser-
vices: DS 1-2
DS/1000-1V Services messages:
MSG 7-14
table of: MSG 7-15
DS/3000
libraries: GEN 6-2
messages: MNT 9-49
users: GEN 9-11
X.25 access: GEN 6-2
DS3K: GEN 6-3
DSAM: GEN 4-3; MNT 9-61
buffer area: MNT 9-62
decreasing: GEN 4-4
global area: MNT 9-61
increasing: GEN 4-4
memory-based system: GEN C-3
partition: GEN 6-4
reserved partition: GEN 4-3, 7-2
size: GEN 4-3
table size: GEN 9-26
tables area: MNT 9-62
DSCOPY: GEN 4-15, 4-29, 6-7;
MNT 9-69; USR 4-5
breakmode commands: USR
4-12
abort: USR 4-12
cancel: USR 4-12
help: USR 4-12
status: USR 4-12
case sensitivity: USR 4-10
Cl return variable: USR 4-5
coding in Pascal: USR 4-28

commands: USR 4-15
copy descriptor: USR 4-6
examples: USR 4-13
file masks: USR 4-11
file names and logons: USR 4-11
interrupting: USR 4-12
line continuation: USR 4-10
logons and VC+: USR 4-10
memory-based system: GEN C-6
P-globals: USR 4-5
programmatic call: USR 4-28
protection mode and update
time: USR 4-10
RTE file names and logons: USR
4-10
used interactively: USR 4-5, 4-10
used programmatically: USR
4-27
DSCOPY commands
? (HELP): USR 4-26
+CLEAR: USR 4-16
+DEFAULT: USR 4-17
+ECHO command: USR 4-19
+EX: USR 4-20
+LL: USR 4-21
+RU: USR 4-22
+SHOW: USR 4-23
+TRANSFER: USR 4-24
+WD: USR 4-25
DSCOPY option
ASCII: USR 4-7
BINARY: USR 4-7
FIXED: USR 4-7
INTERCHANGE: USR 4-8
MOVE: USR 4-9
OVER: USR 4-9
QUIET: USR4-9
REPLACE: USR 4-9
RSIZE: USR 4-8
SILENT: USR 4-9
SIZE: USR 4-8
STRIP: USR 4-8
VARIABLE: USR 4-8
DSCOPY.HLP: GEN 4-29, 6-7
DSCOPYBUILD: USR 4-29
DSERR: DS 7-13
DS_GETNAME: DS 7-14
DS_GETNODE: DS 7-15
DSLIN: GEN 4-25, 4-32, 6-7, 12-4;
DS 3-4
dialogue: GEN 12-6
processing: MNT 9-47
runstring: GEN 12-5
DSMOD: GEN 4-14, 4-18, 4-29,
4-30, 6-7; MNT 8-1; DS 3-4
/A command: MNT 8-5
/E command: MNT 8-8
/I command: MNT 8-9
/L command: MNT 8-10

/N command: MNT 8-11
/S command: MNT 8-13
/T command: MNT 8-14
CN command: MNT 8-6
commands: MNT 8-2
DI command: MNT 8-7
runstring: MNT 8-1
DSQ: GEN 4-11, 5-3; MNT 9-19
DSRTR: GEN 4-13, 4-28, 6-7, 6-8,
C-2; MNT 1-8
DSTAT: MSG 7-61, 8-57; DS 4-27
DSTES: GEN 4-27,4-32, 6-7
DSTEST: MNT 1-18
DSVCP: GEN 1-11, 4-23, 4-24,
4-31, 6-7, 9-10
A-series register access: GEN
13-10
commands: GEN 13-5
DDL operation: GEN 13-11
dump routine: GEN 13-9
execution commands: GEN
13-11
runstring: GEN 13-4
scheduling: GEN 13-4
DTACH, RPM: USR 6-5
DVT: GEN 5-5
DWIND: MSG 7-56; DS 4-30
DWRIT: MSG 7-53, 8-58; DS 4-31
DXAPO: DS 4-5
DXCLO: DS 4-8
DXPOS: DS 4-22
DXREA: DS 4-25
DXWRI: DS 4-31
dynamic rerouting: GEN 1-4, 9-24,
B-4; MNT 9-26
processing: MNT 9-27
software module: GEN 4-18
update message: MSG 7-11

E

effect on existing RTE-A applica-
tions: FSV'2-8
end-to-end communication: USR
1-2
endhostent(): BSD 5-8, B-2
endnetent(): BSD 5-9, B-4
endprotoent(): BSD 5-10, B-6
endservent(): BSD 5-11, B-8
environment variable
$CMNDO: USR 3-14
$CMNDO_LINK: USR 3-14
EOD, NFT message: MSG 3-15
errno global variable: BSD C-1
errno.h file: BSD B-10, B-11
ERRNODEC.REL: GEN 6-7
error code
RPM: MSG 5-3, 5-6, 5-8, 5-10,
5-11

Index-9

error message files, memory-based
system: GEN C-5

error messages: BSD C-1

error messages, FSRV: FSV'5-7
BSD IPC errors returned by

FSRV: FSV'5-9

ESCAPE command, TELNET: USR
2-12

ESCAPE parameter, TELNET
SEND command: USR 2-22

establish a session at the HP 3000 :
DS 8-1

establishing a connection: USR 5-4,
5-53,5-55

Ethernet: GEN 1-15; USR 1-7; DS
1-6
address: GEN 9-16
ARP: GEN 1-13
broadcast addresses: MSG A-9
header: MSG 1-5
LI: GEN 3-8, 9-16
multicast addresses: MSG A-9
network boundaries: GEN 3-8
type field: MSG A-3

event logging: GEN 4-12,9-7; MNT
4-1

log mask: MNT 4-2,4-3, 4-5
memory-based system: GEN C-5
output: MNT 4-7
statistics: MNT 2-27
event message: MNT 9-4
EVMON: GEN 4-12, 4-28, 6-7, 9-7;
MNT 4-1
memory-based system: GEN C-5
output: MNT 4-7
runstring: MNT 4-2
statistics: MNT 2-27
example
load file
client: BSD A-34
server: BSD A-33
NRINIT: GEN 11-12
RPM: USR 6-40
example program
Cclient: BSD A-5
Cserver: BSD A-1
FORTRAN client: BSD A-27
FORTRAN server: BSD A-22
Pascal client: BSD A-15
Pascal server: BSD A-9
examples
DS/1000-1V worksheet: GEN
3-38, 3-39
IEEE 802.3 worksheet: GEN
3-38
remote process management:
USR 6-42

Index-10

Router/1000 worksheet: GEN
3-39

worksheet: GEN 3-38, 3-39
exception selecting: USR 5-65
EXEC, RPM: USR 6-2, 6-4, 6-33
EXECM: GEN 4-19, 4-20, 4-27,

4-30, 4-31, 4-32, 6-7, 9-11
EXECW: GEN 4-19, 4-20, 4-23,

4-27, 4-30, 4-31, 4-32, 6-7, 9-11

memory-based system: GEN C-5
EXIT command

FTP: USR 3-27, 3-36, 3-62

TELNET: USR 2-14
EXPORTS: GEN 6-7
EXTCALL.PASI file: BSD B-24

F

FCHECK: MSG 8-17
FCLOSE: MSG 8-18
fentl.h file: BSD B-10, B-13
fentl(): BSD 4-11
FCONTROL for
($STDIN/$STDLIST): MSG
8-13
FCONTROL: MSG 8-19
FCOPY: DS 7-16
session monitor nodes: DS 7-17
caution re file extents: DS 7-17
use with RTE BR: DS 7-17
FD_CLR(): BSD 6-1, 6-2
FD_ISSET(): BSD 6-1, 6-3
fd_set data type: BSD 3-17, 6-1
FD_SET(): BSD 6-1, 6-4
FD_ZERO(): BSD 6-1, 6-5
FGETINFO: MSG 8-20
file
control calls: DS 4-5
definition calls: DS 4-4
installation: GEN 6-1
file access
calls: DS 4-4
memory-based system: GEN C-8
file access mode: FSV'3-3
file copying formats
interchange format: USR 4-3
transparent format: USR 4-3
file descriptor parameters: USR
3-10
file extents
FCOPY caution: DS 7-17
file manager format: DS 1-8
file masks: USR 4-11
used to copy groups of files: USR
4-11

used to create target file names:
USR 4-11

file name globbing: USR 3-39
file naming restrictions: FSV/2-2
case reporting: FSV'2-2
character mapping: FSV'2-2
directory names: FSV' 2-4
file positioning calls: DS 4-5
file protection, single user system:
GEN C-6
file server
See also FSRV
access: FSV'2-1
and the RTE file system: FS}'2-1
benefits and uses: FSV'5
configuration & initialization
files: FSV4-2
/etc/exports: FSV 4-2
/etc/fsrv.mnt: FSV 4-2, 4-6
/etc/hosts: FSV 4-2, 4-4
[etc/tztab: FSV 4-2,4-7
/etc/ux_groups: FSV'4-2,4-6
/etc/ux_users: FSV 4-2, 4-5
defined: FSV'1-1
error messages: FSV'5-7
how it operates: FSV'1-1
installation: FSV'4-1
directory structure: FSV 4-1
installation checklist: F'SV'4-12
overview: FSV'1-1
requirements: FSV'4-1
restarting: FSV 4-10
runstring options: FSV 3-1
special considerations: FSV'3-3
starting: FSV'4-9
file system request: FSV'5-2
file transfer: GEN 4-17; USR 3-1
FTP
local to remote: USR 3-60,
3-69
multiple files: USR 3-54
remote to local: USR 3-38,
3-64
multiple files: USR 3-49
file transfer protocol: GEN 1-§;
USR 3-1
troubleshooting: MNT 1-12
file transparency. See TRFAS
file usage, memory-based system:
GEN C-5
files
deleting in FTP: USR 3-31
multiple files: USR 3-47
file name globbing: USR 3-39
from FMGR cartridge: USR
1-10, 3-11
NS-ARPA: GEN 3-6
record length specification: USR
3-10
renaming in FTP: USR 3-66

RTE-A: USR 1-10, 3-8
size specification: USR 3-10
transferring in FTP: USR 3-38,
3-60, 3-64, 3-69
multiple files: USR 3-49, 3-54
type specification: USR 3-9
FINIS: MSG 7-30; DS 6-30
processing: MNT 9-44
FIXED, DSCOPY option: USR 4-7
flags parameter: USR 5-17, 6-5
RPM: USR 6-5, 6-11, 6-16, 6-33
FLOAD: GEN 4-20; DS 7-18
array used to return information:
DS 7-18
downloading a program file into
itself: DS 7-18
memory-based system: GEN C-5
FLOCK: MSG 8-22
FMGR format; DS 1-8
LU syntax: DS 1-9
namr: USR 1-11; DS 1-9
namr syntax: USR 1-11; DS 1-9
FMP code growth considerations:
FSV2-7
FMTRC: GEN 4-12, 4-28, 6-7;
MNT 5-1, 5-6
dialogue: MNT 5-8
formatting: MNT 5-6
runstring: MNT 5-6
trace files: MNT 5-15
VMAsize: GEN 6-6; MNT 5-7
FOPEN: MSG 8-23
forced cold loads: GEN 13-1
programmatic: GEN 13-13
FORM command, FTP: USR 3-37
FORTRAN 77, NetIPC: USR 5-83
FORTRAN header file: BSD B-35
FPOINT: MSG 8-25
FREAD (Not Multirecord): MSG
8-26
FREADDIR (Not Multirecord):
MSG 8-28
FREADLABEL: MSG 8-33
FREADSEEK: MSG 8-30
FRELATE: MSG 8-31
FRENAME: MSG 8-32
FSETMODE: MSG 8-34
FSPACE: MSG 8-35
FSRV: GEN 4-17, 4-29, 6-7
See also file server
and /etc/exports: FSV'2-1
defined: FSV'1-1
performance: FSV'3-3
restarting: FSV 4-10
runstring options: FSV 3-1
special considerations: FSV'3-3

Index-11

~ EOF pointer posting: FSV
3-3

caching: FSV'3-3

casefolding: FSV'3-3

changing file ownership: FSV
3-3

directory cache timeout: FSV

file access mode: FSV'3-3

performance: FSV 3-3

RTE directory specification:
FSV'3-3

RTE file access: FSV 3-4

type 12 byte stream files: FSV
34

UNIX hard links: FSV 3-4
starting up: FSV'4-9
verifying startup: FSV'4-10
FTP: GEN 1-8, 4-29, 6-7; USR 1-3,
3-1; DS 1-2
..command: USR 3-19
! command: USR 3-17
? command: USR 3-18, 3-42
/command: USR 3-20
\SCRATCH: GEN 5-3
APPEND command: USR 3-22
ASCII command: USR 3-23
BELL command: USR 3-24
BINARY command: USR 3-25
BUILD: GEN C-6
BYE command: USR 3-27, 3-36,
3-62
CD command: USR 3-28
CLOSE command: USR 3-29
closing connection: USR 3-29,
3-62
command input file: USR 3-74
command stack, display with /
command: USR 3-20
commands: USR 3-1, 3-15
... USR 3-19
I: USR 3-17
?: USR 3-18, 3-42
/: USR 3-20
APPEND: USR 3-22
ASCII: USR 3-23
BELL: USR 3-24
BINARY: USR 3-25
BYE: USR 3-27, 3-36, 3-62
CD: USR 3-28
CLOSE: USR 3-29
DEBUG: USR 3-30
DELETE: USR 3-31
DIR: USR 3-32
DL: USR 3-34
EXIT: USR 3-27, 3-36, 3-62
FORM: USR 3-37
GET: USR 3-38, 3-64
GLOB: USR 3-39

Index-12

HASH: USR 3-41
HELP: USR 3-42
LCD: USR 3-43

LL: USR 3-44

LS: USR 3-45
MDELETE: USR 3-47
MDIR: USR 3-48
MGET: USR 3-49
MKDIR: USR 3-51
MLS: USR 3-52
MODE: USR 3-53
MPUT: USR 3-54
NLIST: USR 3-56
OPEN: USR 3-58
PROMPT: USR 3-59
PUT: USR 3-60, 3-69
PWD: USR 3-61
QUIT: USR 3-27, 3-36, 3-62
QUOTE: USR 3-63
RECV: USR 3-38, 3-64
REMOTEHELP: USR 3-65
RENAME: USR 3-66
RMDIR: USR 3-67
RTEBIN: USR 3-68
SEND: USR 3-60, 3-69
SITE: USR 3-70
STATUS: USR 3-71
STRUCT: USR 3-72
SYSTEM: USR 3-73
TR: USR 3-74

TYPE: USR 3-76
USER: USR 3-77
VERBOSE: USR 3-78

DEBUG command: USR 3-30
DELETE command: USR 3-31
DIR command: USR 3-32

DL command: USR 3-34

errors: MNT 1-6

EXIT command: USR 3-27, 3-36,

3-62

file transfer: GEN 4-17; USR

3-38

FORM command: USR 3-37
GET command: USR 3-38, 3-64
GLOB command: USR 3-39
HASH command: USR 3-41
HELP command: USR 3-42
help information: USR 3-8, 3-18,

3-42

internet network services dae-

mon: GEN 4-17

invoking: USR 3-2

LCD command: USR 3-43
LL command: USR 3-44
log file: USR 3-44

LS command: USR 3-45
FTP message

ABOR: MSG 4-1
APPE: MSG 4-2

CDUP: MSG 4-2

CWD: MSG 4-2

DELE: MSG 4-2

HELP: MSG 4-3

LIST: MSG 4-3

MKD: MSG 4-3

MODE: MSG 4-3

NLST: MSG 4-4

NOOP: MSG 4-4

PASS: MSG 4-4

PORT: MSG 4-4

PWD: MSG 4-5

QUIT: MSG 4-5

RETR: MSG 4-5

RMD: MSG 4-6

RNFR: MSG 4-6

RNTO: MSG 4-6

SITE: MSG 4-7

STOR: MSG 4-7

STRU: MSG 4-7

SYST: MSG 4-7

TYPE: MSG 4-8

USER: MSG 4-8
MDELETE command: USR 3-47
MDIR command: USR 3-48
memory-based system: GEN

C-2,C-6,C-8
MGET command: USR 3-49
MKDIR command: USR 3-51
MLS command: USR 3-52
MODE command: USR 3-53
MPUT command: USR 3-54
NLIST command: USR 3-56
OPEN command: USR 3-58
opening connection to remote

host: USR 3-58
operation: USR 3-5
PROMPT command: USR 3-59
PUT command: USR 3-60, 3-69
PWD command: USR 3-61
QUIT command: USR 3-27,

3-36, 3-62
QUOTE command: USR 3-63
RECV command: USR 3-38,

3-64
REMOTEHELP command:

USR 3-65
RENAME command: USR 3-66
reply codes: MSG 4-9
RMDIR command: USR 3-67
RTEBIN command: USR 3-68
sample session: USR 3-5
scratch directory: GEN C-5
SEND command: USR 3-60,

3-69
server program: GEN 4-17
SITE command: USR 3-70
STATUS command: USR 3-71
status information: USR 3-71

STRUCT command: USR 3-72
SYSTEM command: USR 3-73
terminating: USR 3-7, 3-27, 3-36
TR command: USR 3-74
transferring files: USR 3-11
troubleshooting: MNT 1-12
TYPE command: USR 3-76
USER command: USR 3-77
user program: GEN 4-17
VERBOSE command: USR 3-78
verbose output: USR 3-78

FTPHLP: GEN 6-7

FTPSV: GEN 4-29, 6-7, C-7
memory-based system: GEN C-6

FUNLOCK: MSG 8-36

FUPDATE (not multirecord): MSG
8-37

FWRITE (not multirecord): MSG

FWRITEDIR: MSG 8-40

FWRITELABEL: MSG 8-42

G

gateway: GEN 1-6, 3-9
LAN: GEN 3-9
gateway table: MNT 9-9
See also GT
default gateway: GEN 3-31, 3-34
gathered write: BSD 4-23, 4-34;
USR 5-21
generation. See system generation
GET: DS 6-26
GET command, FTP: USR 3-38,
3-64
GET processing: MNT 9-43
gethostbyaddr(): BSD 3-10, 5-12,
B-2

gethostbyname(): BSD 3-7, 5-14,
B-2

gethostent(): BSD 5-16, B-2
getlocalname(): BSD 5-18
getnetbyaddr(): BSD 5-19, B-4
getnetbyname(): BSD 5-21, B-4
getnetent(): BSD 5-23, B-4
getpeername(): BSD 5-25
getprotobyname(): BSD 5-26, B-6
getprotobynumber(): BSD 5-28, B-6
getprotoent(): BSD 5-30, B-6
getservbyname(): BSD 3-5, 5-32,
B-8

getservbyport(): BSD 5-34, B-8

getservent(): BSD 5-36, B-8

getsockname(): BSD 3-5, 5-38

getsockopt(): BSD 4-13

GLOB command, FTP: USR 3-39

global area: MNT 9-61

global socket descriptor: MNT 2-19,
5-19

Index-13

globbing, FTP: USR 3-3

GNODE: DS 7-20

GRPM: GEN 4-14, 4-17, 4-29, 4-30,
6-7; MNT 9-25

GSD: MNT 2-19, 5-19

GT: GEN 3-29, 3-33, 9-18; MNT
2-6,9-9

guardian node: GEN 3-21, 3-36,
9-23

H

hard links: FSV' 3-4
hardware
failures: MNT 1-13
requirements: GEN 1-2
troubleshooting: MNT 1-5
HASH command, FTP: USR 3-41
HDLC: GEN 1-13; USR 1-7; DS
1-6, 1-7
board statistics: MNT 2-11
link: GEN 1-15
system generation: GEN 5-7
link connect processing: MNT
9-45
link down processing: MNT 9-47
link failure: MNT 9-19, 9-20
link troubleshooting: MNT 1-5,
1-16
message processing: MNT 9-14,
9-20
read and write processing: MNT
9-47
retry processing: MNT 9-46
header: MNT 9-3
header file
for FORTRAN: BSD B-35
for Pascal: BSD B-24
header files: BSD B-1, B-10
HELLO: DS 7-23, 8-2
programmatic example: DS 7-28
subroutines: MNT 9-54
HELP, FTP message: MSG 4-3
HELP command
FTP: USR 3-42
TELNET: USR 2-15
help files, memory-based system:
GEN C-5
hierarchical topology: GEN B-2
high-speed data streaming: DS 1-7
high throughput: USR 5-67
hop count, modifying: MNT 8-14
Hops: GEN 3-34,9-19
host information: BSD 5-49
host name, gethostnamebyaddr():
BSD 3-10
host names: USR 1-8

Index-14

host order: BSD 5-39, 5-40, 5-47,
5-48
hostent structure: BSD 3-7
HP 1000 communication
file transfer: USR 3-1
FTP: USR 3-1
TELNET: USR 2-1
virtual terminal: USR 2-1
HP 1000 RFA calls: DS 4-1
HP 3000: GEN 2-1, 3-29; USR 5-25
communication
BYE call: DS 8-2
DSLIN: DS 3-4
DSMOD: DS 3-4
HELLO call: DS 8-2
PRCNM: DS 7-27
PRCNM: DS 8-2
programmatic example: DS
7-28
PTOP: DS 6-2
reenabling X.25: DS 3-4
reenabling a link: DS 3-4
RMOTE: DS 3-1
transferring files: DS 3-9
virtual terminal: DS 3-1
X.25 connections: DS 3-3,
7-26
DSLIN: MNT 9-47
file intrinsic condition codes: DS
8-3
ID sequences: MNT 8-9
LU: MNT 2-28
message classes: MNT 7-20
message streams: MNT 7-20
message tracing: MNT 7-1
NetIPC: USR 5-1, 5-25, 5-26,
5-27,5-29, 5-37, 5-41, 5-44,
5-59, 5-62, 5-68, 5-71
REFA calls: DS 8-1
condition codes: DS 8-3
requirements: DS 8-1
syntax conventions: DS 8-2
syntax conventions: DS 8-2
to HP 1000 messages: MSG 7-69
HP 9000: GEN 2-1; USR 5-25
NetIPC: USR 5-1, 5-25, 5-26,
5-27,5-28, 5-37, 5-41, 5-44,
5-59, 5-62, 5-68, 5-71
HP 9000 communication
file transfer: USR 3-1
FTP: USR 3-1
TELNET: USR 2-1
virtual terminal: USR 2-1
HP-IB and disk LU restrictions:
GEN 14-25
HPMDM, memory-based system:
GEN C-7

HPMDM_TABLE: GEN 5-1, 5-8,
5-13,12-2

htonl(): BSD 5-39

htons(): BSD 5-40

ICMP Header: MSG 1-10
ID segments: GEN 4-33
RPM: USR 6-23, 6-25
system generation: GEN 5-12
ID*66: MNT 9-20, 9-45, 9-48, 9-51
idle session, timeout: GEN 9-11
idle session timeout, modifying:
MNT 8-14
IDZ00.REL: GEN 5-5
IEEE 802.3: USR1-7; DS 1-6
address: GEN 9-17; MNT 2-6,
2-21
board statistics: MNT 2-15
broadcast address: GEN 3-24
header: MSG 1-2
LI: GEN 3-6, 3-8
link: GEN 1-14
message processing
(DS/1000-1V): MNT 9-15
multicast address: GEN 3-24,
9-20
network: GEN 1-13, 1-14
network boundaries: GEN 3-8
probe: GEN 1-13
software modules: GEN 4-14
station address: GEN 3-23
worksheet examples: GEN 3-38
IEEE 802.3 LAN, probe proxy serv-
er: GEN 3-26
IFP: GEN 1-12
class number: MNT 2-9
header: MSG 1-20
IFPM: GEN 4-17, 4-30, 6-7, 9-11;
MNT 9-15
IFT: GEN 5-5
IMAGE: DS 7-3
Image/1000
labeled system common: GEN
5-13
troubleshooting: MNT 1-8
Image/1000 remote access. See
RDBA
immediate schedule, no wait,
DS/1000-1V: MSG 7-37
immediate schedule, wait,
DS/1000-1V: MSG 7-45
in.h file: BSD B-10, B-14
in_addr structure: BSD 3-3
inbound address list: GEN 3-27
independent RPM programs

remote process management:
USR 6-15
terminating: USR 6-15
inet_addr(): BSD 5-41
inet_lnaof(): BSD 5-42
inet_makeaddr(): BSD 5-43
inet_netof(): BSD 5-44
inet_network(): BSD 5-45
inet_ntoa(): BSD 5-46
INETD: GEN 4-16, 4-29, 6-7, 10-1
BUILD: GEN C-6
configuration file: GEN 10-3
INETD.CONF file: GEN 6-7
memory-based system: GEN C-6
overview: GEN 10-1
reconfiguration: GEN 10-2
required for FTP: GEN 4-16
required for TELNET: GEN
4-16
runstring: GEN 10-2
security and logging restrictions:
GEN 10-5
service definitions: GEN 10-3
SERVICES file: GEN 6-7
services mapping file: GEN 10-6
starting a primary INETD: GEN
10-2
termination: GEN 10-2
INETD.c000: GEN 6-7
INETD.CONEF: GEN 6-7
INFO, NFT message: MSG 3-27
information utility: MNT 2-1
NSINF: USR 1-9
software module: GEN 4-13
initialization: GEN 2-1, 9-1
troubleshooting: MNT 1-4
initialization files: FSV'4-2
InitOpt: USR 5-77, 6-5
example: USR 6-20
RPM: USR 6-20
INPRO: GEN 4-11, 4-28, 6-7; MNT
9-1,9-15
class number: MNT 2-9
input file, FTP: USR 3-74
INSTALL_NS1000.CMD: GEN 6-1
installation: GEN 2-1, 6-1
installation checklist: FSV'4-12
installing the file server: FSV'4-1
int data type: BSD 3-17
interactive network file transfer:
USR 4-5
INTERCHANGE, DSCOPY option:
USR 4-8
interchange format: USR 4-3
RTE-A type 6 files: USR 4-3, 4-7,
4-8

interface: MSG 1-20

interface driver. See driver
interface protocol: GEN 1-12

Index-15

International Standards Organiza-
tion: USR 1-1
internet: GEN 1-5
internet address: BSD 2-3, 3-3, 3-7,
3-8,D-2
See also TP address
internet control message protocol:
MSG 1-10
internet dot notation: BSD D-1
internet layer: GEN 1-12
internet network services daemon.
See INETD
internet protocol
See also TP
addresses: GEN 1-13
protocol header: MSG 1-7
internetwork: GEN 1-5
interprocesscommunication
See also Network IPC
PTOP: USR5-1
INTERRUPT parameter, TELNET
SEND command: USR 2-22
INTERUPT command, TELNET:
USR 2-16
invoke break
request: MSG 6-29
break response: MSG 6-30
IOMAP: GEN 4-22, 4-31, 6-7, 14-5
#LMPE values: GEN 14-17
disable map: GEN 14-14
header flag: GEN 14-8, 14-11
initialization: GEN 14-7
mapped LU status: GEN 14-15
mapping information: GEN
14-16
parameter summary: GEN 14-6
prompt flag: GEN 14-10, 14-13
return error values: GEN 14-17
iovec structure: BSD 4-25
IP: GEN 1-6, 1-12; MNT 9-2, 9-5
address: GEN 3-12, 3-32, 3-34,
3-35, 9-16, 9-18, 9-22, 11-3,
11-4; MNT 1-6, 2-5, 2-18
DCN: GEN 3-32, 9-16
GT: GEN 3-33
header: MSG 1-7
internet protocol: USR 1-9
path records: GEN 9-19
routing: GEN 3-29
statistics: MNT 2-8, 2-20
IP address: BSD 2-3, 3-2, 3-3, 3-7,
3-8, 5-41, 5-42, 5-43, 5-44, 5-45,
5-46, D-2; MSG 5-5
assigning: BSD D-6
subnetting: BSD D-3; GEN 3-14
IP address classes: BSD D-2, D-3
IP address of remote host: BSD 3-7
IP addresses: USR 1-9

Index-16

IP parameter, TELNET SEND com-
mand: USR 2-23
IPC. See NetIPC; Network IPC
IPCConnect: MNT 9-10; USR 5-35
cross-system: USR 5-37
IPCControl: USR 5-38
IPCCreate: MNT 9-8; USR 5-40
cross-system: USR 5-41
IPCDest: USR 5-42
cross-system: USR 5-44
IPCGet: USR 5-45
IPCGive: USR 5-46
IPCLookUp: MNT 9-9; USR 5-48
race condition: USR 5-49
IPCName: MNT 9-8; USR 5-50
naming path report descriptors:
USR 5-51
randomly generated names: USR
5-50
IPCNamErase: USR 5-52
IPCRecv: USR 5-53
asynchronous I/O: USR 5-56
cross-system: USR 5-59
establishing a connection: USR
5-53,5-55
normal reading: USR 5-55
preview reading: USR 5-55
receiving data: USR 5-55
scattered reading: USR 5-55
synchronous I/O: USR 5-56
waiting for data: USR 5-53
IPCRecvCn: MNT 9-10; USR 5-60
cross-system: USR 5-62
synchronous vs. asynchronous
I/O: USR 5-61
IPCSelect: USR 5-63
called in FORTRAN program:
USR 5-66
called in Pascal program: USR
5-66
detecting connection requests:
USR 5-65
example: USR 5-81
exception selecting: USR 5-65
exceptional sockets: USR 5-64
performing a read select: USR
5-65
performing a write select: USR
5-65
readable sockets: USR 5-64
writeable sockets: USR 5-64
IPCSend: USR 5-67
cross-system: USR 5-68
high throughput: USR 5-67
synchronous vs. asynchronous
I/O: USR 5-68
IPCShutDown: USR 5-70
cross-system: USR 5-71

releasing a call socket: USR 5-70
releasing a path report descrip-
tor: USR 5-71
releasing a VC socket descriptor:
USR 5-71
ISO OSI model: USR 1-1

L

labeled common, system generation:
GEN 5-13
labeled system common
#XCOM: GEN 5-13
%RESA: GEN 5-13
HPMDM_TABLE: GEN 5-13
RDTB: GEN 5-13
LAN: USR1-7; DS 1-6,1-7
address: GEN 9-16
board statistics: MNT 2-15
link
receive (reader) LU: GEN
5-6
system generation: GEN 5-6
transmit (user) LU: GEN 5-6
link initialization: GEN 8-1
link troubleshooting: MNT 1-5,
1-14
message processing
(DS/1000-1V): MNT 9-15
network boundaries: GEN 3-8
probe proxy server: GEN 3-26
station address: GEN 11-3, 11-4;
MNT 1-6
statistics: MNT 2-21
trace records: MNT 5-21
LAN header: MSG 1-2, 1-5
LANLI: GEN 9-16
LAN links: GEN 2-1
LAN/1000
See also IEEE 802.3
node manager: GEN 6-8
layer: GEN 1-7
application: GEN 1-7, 1-8
data link: GEN 1-7, 1-14
network: GEN 1-7, 1-12
physical: GEN 1-7, 1-14
presentation: GEN 1-7, 1-11
session: GEN 1-7, 1-11
transport: GEN 1-7, 1-11
layers: USR 1-1
LCD command, FTP: USR 3-43
level
software: GEN 3-36, 9-23
upgrade: MNT 2-18, 2-28
levels: USR 1-1
LI: GEN 3-6; MNT 9-2
802: GEN 3-6, 3-8, 9-16
Ethernet: GEN 3-8, 9-16

LAN: GEN 9-16
RTR: GEN 3-6, 3-9, 3-32, 9-16
statistics: MNT 2-20
libraries: BSD 3-18
$BGCDS: GEN 5-14
$BIGLB: GEN 5-14
$D3N25: GEN 6-4
$FNDLB: GEN 5-14
BIGNS: GEN 6-3
BIGNS.LIB: GEN 5-14, 6-7
BIGNS_CDS: GEN 6-3
BIGNS_CDS.LIB: GEN 5-14,
6-7
BSD IPC: GEN 6-3
BSD_CDS: GEN 6-3
BSD_CDS.LIB: GEN 6-7
DS3K: GEN 6-3
ERRNODEC.REL: GEN 6-7
LINK: GEN 6-2
NSLIB: GEN 4-13, 4-22, 6-3
NSSYS: GEN 4-13, 4-22, 5-13
PASCAL.LIB: GEN 5-14
PASCAL_CDS.LIB: GEN 5-14
SEC1000CDS: GEN 5-14
user: GEN 6-2
line down count, modifying: MNT
8-14
linedown statistic: MNT 2-16
LINK
command editing: USR 3-14
libraries: GEN 6-2
link
Bisync: GEN 1-15
communication: GEN 1-3, 1-14
disable: MNT 8-7
DS/1000-IV Compatible Services
(RTE-MPE): GEN 3-11
enable: MNT 8-10
HDLC: GEN 1-15
IEEE 802.3: GEN 1-14
interface: GEN 3-6
LU: GEN 3-12
software modules: GEN 4-14,
4-25
troubleshooting: MNT 1-13
X.25: GEN 1-15
link initialization
LAN: GEN 8-1
X.25: GEN 8-1
link interface: MNT 9-2
See also LI
link vector: GEN 9-24; MNT 9-27
link-level address, probe: GEN 1-13
links: USR 1-1, 1-7; DS 1-1, 1-6, 1-7
LIST, FTP message: MSG 4-3
listen for connection request: BSD
4-16
listen queue: BSD 2-3, 3-9, 4-16
listen(): BSD 2-5, 3-1, 3-9, 4-16

Index-17

LL command, FTP: USR 3-44
LOAD module: GEN C-4
loading, RPM: USR 6-4
loading BSD IPC programs: BSD
3-18
loading programs: DS 2-22
APLDR: GEN C-4
FLOAD: DS 7-18
LOAD module: GEN C-4
memory-based system: GEN C-4
MEMRY module: GEN C-4
RAM disk: GEN C-4
RTE BUILD: GEN C-4
SEGLD: DS 7-21
loading segmented programs: DS
2-23,7-22
local appendage: MNT 5-26
Local Area Network. See IEEE
802.3
local area network: USR 1-7; DS
1-6, 1-7
local node: GEN 1-3, 9-5, 9-7, 9-13,
11-2, 11-3, 11-5
log file, FTP: USR 3-2, 3-44
log mask: MNT 2-27, 4-2, 4-3,4-5
LOG3K: GEN 4-25, 4-31, 6-7;
MNT 7-1
?? command: MNT 7-4
/E command: MNT 7-5
commands: MNT 7-3
EN command: MNT 7-5
EX command: MNT 7-5
LU command: MNT 7-6
NO command: MNT 7-5
runstring: MNT 7-2
TY command: MNT 7-7
UP command: MNT 7-8
LOGCHG: GEN 4-12, 4-28, 6-7;
MNT 4-1
runstring: MNT 4-5
logging: MNT 4-1
configuration: GEN 9-7
disk LU: GEN 5-6
output: MNT 4-7
statistics: MNT 2-27
login, RPM: USR 6-10
LOGOF request: MSG 7-66
LOGON
info message
request: MSG 6-16
response: MSG 6-17
memory-based system: GEN D-6
request: MSG 7-65
long data type: BSD 3-17
looking up a call socket name: USR

LS command, FTP: USR 3-45

Index-18

LU: GEN 3-12, 3-32, 3-36, 9-16,
9-22; MNT 2-5, 2-10, 2-11, 2-21,
2-22,2-28
1: GEN 5-6
assignment: GEN 5-5

LUMAP: GEN 4-22, 4-31, 6-7

LU3K: DS 7-26

LUQUE: GEN 4-22,4-31, 6-7

MA: GEN 9-22; MNT 9-17, 9-30
retry limit: GEN 9-22
software module: GEN 4-18
timeout: GEN 9-11, 9-22

MAC address vendor codes: MSG
A7

map, network: GEN 3-3, 3-30, A-8,
A-21

mappable LU: GEN 5-9

MARKER, NFT message: MSG
3-14

master
request: MNT 9-17
subroutines (to MPE): MNT

9-54
TCB: MNT 2-25
timeout: MNT 2-28
timeout value: GEN 9-10
master program session module:
MNT 9-41

master timeout, modifying: MNT
8-14

MATIC: GEN 4-18, 4-30, 6-7

Mbuf: MNT 9-62

MDELETE command, FTP: USR
3-47

MDIR command, FTP: USR 3-48

memory
APLDR: GEN C-4
RAM disk: GEN C-1

memory allocation, system genera-
tion: GEN 5-12

memory areas: GEN 4-2

memory buffer: MNT 9-62

memory manager: GEN 4-3; MNT
9-61

memory-based system: GEN C-1
APLDR: GEN C-4
CI: GEN C-6,C-7
CM: GEN C-7
download: GEN 13-1, 13-2, 13-7,

C-1
DS file transparency: GEN C-2
DSAM: GEN C-3
EVMON: GEN C-5
file protection: GEN C-6

file usage: GEN C-5
FTP: GEN C-2,C-6
HDLC: GEN C-1
HPMDM: GEN C-7
LAN: GEN C-1
loading programs: GEN C-4
LOGON: GEN C-6
LU: GEN C-5
MMINIT: GEN C-3
multiuser: GEN C-6
multiuser system: GEN C-2
NFT: GEN C-2,C-6
NRINIT: GEN C-5
NS-ARPA: GEN C-1, C-2
NSINIT: GEN C-3,C-5
PROMT: GEN C-6, C-7
pseudo terminal LU: GEN C-7
RAM disk: GEN C-1, C-4
RPM: GEN C-8
single user: GEN C-6
single user system: GEN C-2
TELNET: GEN C-2, C-6
VC+: GEN C-6
memory—based system: GEN C-6
MEMRY module: GEN C-4
message: MNT 9-3,9-12
DS/3000: MNT 9-49
message accounting: MNT 9-17,
9-30; DS 1-7
messages: MSG 7-12
See also MA
statistics: MNT 2-16
message files
BREVL: GEN 6-7
BRTRC: GEN 6-7
DSCOPY: GEN 6-7
DSCOPY.HLP: GEN 6-7
EVMON: GEN 6-7
EXPORTS: GEN 6-7
FMTRC: GEN 6-7
FSRV: GEN 6-7
FTP: GEN 6-7
FTPHLP: GEN 6-7
INETD: GEN 6-7
LOGCHG: GEN 6-7
NRLIST: GEN 6-7
NSERRS.MSG: GEN 6-7
NSINITMSG: GEN 6-7
NSTRC: GEN 6-7
PING: GEN 6-7
RDATE: GEN 6-7
TELNET: GEN 6-7
TELNETHLP: GEN 6-7
TZTAB: GEN 6-7
message header, Router/1000: MNT
9-41
message rerouting: DS 1-7
message size: MNT 9-13
message tracing: MNT 7-1

MGET command, FTP: USR 3-49
MIL-STD-1782: USR 1-3; DS 1-2
MKD, FTP message: MSG 4-3
MKDIR command, FTP: USR 3-51
MLS command, FTP: USR 3-52
MMINIT: GEN 4-11, 4-28, 6-7
memory-based system: GEN C-3
MODE, FTP message: MSG 4-3
MODE command
FTP: USR 3-53
TELNET: USR 2-18
modify code partition, RPM: USR
6-28
modify data partition, RPM: USR
6-29
modify VMA size: USR 6-27
module, protocol: MNT 9-1
monitor, scheduling: MNT 8-13,
monitors: GEN 9-11
mount command: FSV'2-1, 3-2
mount request: FSV'5-2
MOVE, DSCOPY option: USR 4-9
MPACK, effect on mounted directo-
ries: FSV4-9
MPE
get information
request: MSG 6-33
response: MSG 6-34
specific control response: MSG
6-32
specific request: MSG 6-31
MPE-RTE, RTE-MPE messages:
MSG 7-69
MPE TELL and WARN messages,
software module: GEN 4-26
MPE-V: USR 5-25
MPE-XL: USR 5-25
MPUT command, FTP: USR 3-54
msghdr structure: BSD 4-25
multi-vendor connectivities: BSD
1-1
multicast (IEEE 802.3) address:
GEN 3-24,3-27
multicast address: GEN 8-1, 9-20;
MNT 2-5
multiuser system: GEN C-2
memory-based system: GEN C-6
MUX card, TELNET: GEN 1-2
MVCP3: GEN 4-26, 4-32, 6-7, 12-10

N

name: GEN 1-3; MNT 9-10
node: GEN 3-5,9-7,11-3,11-4

name record: GEN 9-13

name records, statistics: MNT 2-8

naming a call socket: USR 5-5

namr: USR 1-10; DS 1-9

Index-19

syntax: USR 1-11; DS 1-9
neighbor node: GEN 3-37, 9-23
netdb.h file: BSD B-10, B-17
NetIPC: GEN 1-10; MNT 2-19, 9-2,

9-5; USR 1-4; MSG 5-9; DS 1-2

See also Network IPC

cross-system: USR 5-25, 5-27,

5-28, 5-29, 5-31

cross-system calls: USR 5-26

IPCControl: USR 5-38

RPM: USR 6-2, 6-5, 6-12

sockets: GEN 9-12

troubleshooting: MNT 1-10, 1-11

user record: GEN 9-12

VC connection establishment:

MNT 9-8
NetIPC calls

AddOpt: USR 5-73

AdrOf: USR 5-75

example of use: USR 5-80, 5-83,

5-122

InitOpt: USR 5-77

IPCCreate: USR 5-40

IPCDest: USR 5-42

IPCGet: USR 5-45

IPCGive: USR 5-46

IPCLookUp: USR 5-48

IPCName: USR 5-50

IPCNamErase: USR 5-52

IPCRecv: USR 5-53

IPCRecvCn: USR 5-60

IPCSelect: USR 5-63

IPCSend: USR 5-67

IPCShutDown: USR 5-70

ReadOpt: USR 5-79

RPM: USR 6-5

special: USR 5-72
NetIPC common parameters: USR

5-17
NetIPC syntax conventions: USR

5-34
network: GEN 1-3

broadcast: GEN 1-5

bus: GEN 1-5

directly connected: GEN 1-5

planning: GEN 2-2

point-to-point: GEN 1-4

remote: GEN 1-5

topology (point-to-point): GEN

B-1

network account table: MNT 9-41

network address: BSD D-6; GEN
3-18; USR 1-9

network architecture: GEN 1-7;
USR 1-1

network boundary: GEN 1-5, 3-8
Ethernet: GEN 3-8
IEEE 802.3: GEN 3-8
LAN: GEN 3-8

Index-20

Router/1000: GEN 3-8
Network File Transfer. See NFT
network file transfer: USR 1-3, 1-4,

4-1; DS 1-2

See also NFT

? (HELP) command: USR 4-26

+CLEAR: USR 4-16

+DEFAULT: USR 4-17

+ECHO: USR 4-19

+EX command: USR 4-20

+LL command: USR 4-21

+RU command: USR 4-22

+SHOW command: USR 4-23

+TRANSFER command: USR

4-24
+WD command: USR 4-25
copy descriptor: USR 4-6
DS/1000-1V files: USR 4-14
DSCOPY commands: USR 4-15
DSCOPYBUILD: USR 4-29
features: USR 4-1
file copying formats: USR 4-3
file names and logons: USR 4-11
interactive: USR 4-5
optimizing performance: USR
4-13

programmatic: USR 4-27

programmatic examples: USR
4-32

RTE-A type 6 files: USR 4-3, 4-7,
4-8

running DSCOPY: USR 4-5
three-node model: USR 4-2
troubleshooting: MNT 1-12
using file masks: USR 4-11
network information: BSD 5-50
Network Interprocess Communica-
tion. See NetIPC
network interprocess communica-
tion: USR 1-3; MSG 5-1; DS 1-2
Network IPC: DS 1-2; USR 1-4
asynchronous: USR 5-14
call socket descriptor: USR 5-3
call summary: USR 5-13
calls: USR 5-35
checking connection status: USR
5-8
client example: USR 5-82
common parameters: USR 5-17
connection dialogue: USR 5-4
connections: USR 5-2, 5-4
creating a call socket: USR 5-4
cross-system: USR 5-1, 5-25,
5-27,5-28, 5-29, 5-31, 5-37,
5-41, 5-44, 5-59, 5-62, 5-68,
5-71, 5-83
HP 3000: USR 5-27
HP 9000: USR 5-27
PC: USR 5-27

data parameter: USR 5-21

descriptors: USR 5-3

detecting connection requests:
USR 5-65

establishing a connection: USR
5-55

exception selecting: USR 5-65

flags parameter: USR 5-17

FORTRAN 77: USR 5-18, 5-83

high throughput: USR 5-67

HP 3000: USR 5-1, 5-25, 5-26,
5-29, 5-37, 5-41, 5-44, 5-59,
5-62, 5-68, 5-71

HP 9000: USR 5-1, 5-25, 5-26,
5-28, 5-37, 5-41, 5-44, 5-59,
5-62, 5-68, 5-71

IPCConnect: USR 5-35

looking up call socket name:
USR 5-6

maximum number of clients:
USR 5-80

maximum number of sockets:
USR 5-26

naming a call socket: USR 5-5

opt parameter: USR 5-19

Pascal: USR 5-18, 5-34, 5-83

path report descriptor: USR 5-3

path reports: USR 5-3

PC: USR 5-1, 5-25, 5-26, 5-31,
5-37, 5-41, 5-44, 5-59, 5-62,
5-68, 5-71

performing a read select: USR
5-65

performing a write select: USR
5-65

porting programs: USR 5-1, 5-25

program examples: USR 5-80,
5-83, 5-122

PTOP: USR 5-1

read and write thresholds: USR
5-14

receiving a connection request:
USR 5-7

receiving data: USR 5-55

requesting a connection: USR
5-6

result parameter: USR 5-23

scheduling remote process: USR
5-4

sending and receiving data: USR
5-10

server example: USR 5-80, 5-81

shutting down a connection: USR
5-10

socket names: USR 5-3

socket registry: USR 5-3

sockets: USR 5-2

stream mode: USR 5-16

synchronous: USR 5-14

syntax conventions: USR 5-34
telephone analogy: USR 5-2
timing and timeouts: USR 5-11
VC socket descriptor: USR 5-3
Network layer: USR 1-2
network layer: GEN 1-7, 1-12
network management services
data streaming: DS 1-7
message accounting: DS 1-7
message rerouting: DS 1-7
remote I/O mapping: DS 1-7
remote VCP: DS 1-7
remote system downloads: DS
1-7
store and forward: DS 1-7
network management services and
features: USR 1-7; DS 1-7
network map: GEN 3-3, 3-30, A-§,
A-21
network order: BSD 5-39, 5-40,
5-47, 5-48
network parameter modification,
software module: GEN 4-18
network processing: GEN 6-2
network security code: GEN 3-41
network segment size: GEN 3-32
network user’s security code: GEN
341
network worksheet: GEN A-2
DS/1000-IV compatible services:
GEN 3-6
network file transfer: GEN 3-6
NS-ARPA services: GEN 3-6
RPM: GEN 3-6
services section: GEN 3-6
TELNET: GEN 3-6
NEFS client, defined: FSV'1-1
NFT: GEN 1-10, 4-4,7-3; MNT
9-62; USR1-4; DS 1-2
See also network file transfer
$FNDLB: GEN 5-14
abort handling: MNT 9-73
buffer size: GEN 9-9; MNT 2-9
BUILD: GEN C-7
checksum: MNT 2-9
configuration: GEN 9-8
data structures: MNT 9-63
directories: MNT 9-71
error handling: MNT 9-73
file buffers: MNT 9-70
general flow: MNT 9-63; MSG
3-1
interchange format: MNT 9-71
memory-based system: GEN
C-2,C-6,C-8
message flow: MNT 9-67; MSG
3-5,6-3
messages: MSG 2-3; 3-42
summary of: MSG 3-10

Index-21

modules: MNT 9-62
monitor: GEN 6-6
session management: MNT 9-73
software modules: GEN 4-15
software requirements: GEN 1-2
termination handling: MNT 9-72
tracing: MNT 5-18
transport checksum: GEN 9-9
troubleshooting: MNT 1-12
XSAM usage: GEN 4-7
NFTMN: GEN 4-15, 4-29, 6-6, 6-7,
9-8; MNT 8-13, 9-69
memory-based system: GEN C-6
scheduling: MNT 8-13
NICE formatted records: MNT 5-17
examples: MNT 5-17
NICE mode: MNT 5-12
NICE option: MNT 5-4
NLIST command, FTP: USR 3-56
NLST, FTP message: MSG 4-4
nodal path report: MNT 6-2, 9-7,
9-10, 9-11
See also NPR
nodal registry: GEN 3-25, 9-7, 9-13;
MNT 9-11
configuration: GEN 3-25, 11-1
configuration example: GEN
A-34
list utility (NRLIST): MNT 6-1
local node: GEN 9-13, 11-2,
11-3, 11-5
local nodes: GEN 3-25, 3-26
nodal path reports: GEN 3-25
NRINIT: GEN 3-25
probe: GEN 3-25
software modules: GEN 4-12
nodal routing vector: MNT 2-18,
8-11, 9-27
modifying: MNT 8-6
node: GEN 1-3; USR 1-1; DS 1-1
address: GEN 3-12
destination: GEN 1-4
local: GEN 1-3
remote: GEN 1-3
source: GEN 1-4
node address: BSD D-7; GEN 3-19;
USR 1-9
node addresses, probe: GEN 1-13
node manager: GEN 6-8
node name: GEN 1-3, 3-5, 11-4;
MNT 2-5
configuration: GEN 9-7
node names: USR 1-8, 1-9
domain: USR 1-8
organization: USR 1-8
probe: GEN 1-13
syntax: USR 5-23

Index-22

node number. See Router/1000 ad-
dress
nodename
RPM: USR 6-7, 6-10
RPMK:ill: USR 6-41
nodename parameter: USR 5-17
RPM: USR 6-5
NOGROUP directory ownership,
and group permissions: FSV'5-3
non-CDS, libraries: GEN 6-3
non-rerouting table: GEN 9-24
non-session access: DS 2-39
DLGNS: DS 7-4
request: MSG 7-67
nonblocking I/O: BSD 4-11, 4-12,
7-2
NOOP, FTP message: MSG 4-4
NPR: GEN 9-13, 11-2; MNT 6-2,
9-7,9-11
configuration: GEN 3-26
duplicate: GEN 11-5
multiple address: GEN 11-4
probe proxy server: GEN 3-26
raw: GEN 11-2
single address: GEN 11-3
NRINIT: GEN 3-25, 4-12, 4-14,
4-28, 6-7,7-3, 11-5; MNT 6-2
comparison mode: GEN 11-9
error handling: GEN 11-7
example: GEN 11-12, A-34
input files: GEN 11-7
memory-based system: GEN C-5
menu: GEN 11-7
non-duplicate mode: GEN 11-9
permission mode: GEN 11-10
replace mode: GEN 11-11
runstring: GEN 11-5
verify mode: GEN 11-11
NRLIST: GEN 4-12, 4-28, 6-7, 11-1;
MNT 6-1
dump mode: MNT 6-3
raw mode: MNT 6-3
runstring: MNT 6-1
NRV: GEN 3-30, 3-35, 9-22; MNT
2-18, 8-6, 8-11, 9-27
NS Common Services: GEN 1-10,
4-4
remote process management:
USR 6-1
NS services
CDS: GEN 6-3
compiling programs: GEN 6-3
NS-ARPA, planning a memory-
based system: GEN C-1
NS-ARPA common services: USR
1-3; DS 1-2
BSD IPC: USR 1-3; DS 1-2

FTP: USR 1-3; DS 1-2
network file transfer: USR 1-3;
DS 1-2
network interprocess communica-
tion: USR 1-3; DS 1-2
remote process management:
USR1-3; DS 1-2
TELNET: USR 1-3; DS 1-2
NS-ARPA files: GEN 3-6
NS-ARPA program, statistics: MNT
2-7
NS-ARPA programs: GEN 9-12
NS-ARPA/1000, architecture: GEN
1-8
NS-ARPA/1000, remote process
management: MSG 5-1
NS-ARPA/1000 user services: USR
1-3; DS 1-2
NS/1000/CMD/OF_NS.CMD: GEN
6-1
NSABPREL: GEN 5-3
NSERR.MSG: MNT 1-6
NSERRS.MSG: GEN 4-15, 4-29,
6-7
NSINF: GEN 4-13, 4-28, 6-7; MNT
2-1; USR 19
? command: MNT 2-2
+ command: MNT 2-2
A command: MNT 2-2,2-5
abort display command: MNT
2-2

C command: MNT 2-7

command summary: MNT 2-3

continue display command: MNT

exit command: MNT 2-2

exiting: MNT 2-2

help command: MNT 2-2

I command: MNT 2-10

L command: MNT 2-11

M command: MNT 2-16

main menu: MNT 2-4

N command: MNT 2-18

P command: MNT 2-19

Q command: MNT 2-2

R command: MNT 2-22

runstring: MNT 2-2

S command: MNT 2-23

software modules: GEN 4-13

suspend command: MNT 2-2

T command: MNT 2-24

U command: MNT 2-27

V command: MNT 2-28

W command: MNT 2-30

Z command: MNT 2-2
NSINIT: GEN 2-4,2-7, 3-25, 3-29,

4-11, 4-28, 6-7, 7-3,9-1; MNT

1-4

dialogue syntax: GEN 9-4

editing answer files: GEN 9-29
error handling: GEN 9-3
example answer files: GEN A-8
input comments: GEN 9-5
local node: GEN 3-25, 11-2,
11-3, 11-5
local node definition: GEN 9-5
local nodes: GEN 3-26, 3-27
memory-based system: GEN
C-3,C-5
operation mode: GEN 9-6
parsing: GEN 9-5
runstring: GEN 9-3
shut down: GEN 9-28
start up: GEN 9-27
worksheet: GEN A-8
NSINIT example
answer: GEN A-17
answer file: GEN A-13, A-26,
A-30
two-node LAN network: GEN
A-8, A-9, A-13, A-17
two-node Router/1000 network:
GEN A-21, A-22, A-26, A-30
worksheet: GEN A-9
NSINITMSG: GEN 4-11, 4-28, 6-7
NSLIB: GEN 4-13, 4-22, 6-3
NSSYS: GEN 4-13, 4-22, 5-13
NSTRC: GEN 4-12, 4-28, 6-7, 9-8;
MNT 5-1
message posting: MNT 9-12,
9-13
runstring: MNT 5-3
statistics: MNT 2-27
VMA file: MNT 5-3
VMA size: GEN 6-6
ntohl(): BSD 5-47
ntohs(): BSD 5-48

(o)

O_NONBLOCK option: BSD 4-11
OFFERI, NFT message: MSG 3-32
OFFERR, NFT message: MSG 3-38
OFFERT, NFT message: MSG 3-29
OPEN command
FTP: USR 3-58
TELNET: USR 2-19
Open Systems Interconnection mod-
el: USR 1-1
operator commands, software mod-
ules: GEN 4-26
OPERM: GEN 4-20, 4-26, 4-30,
4-31, 4-32, 6-7, 9-11
opt array, RPM options: USR 6-13
opt parameter: USR 5-17, 5-19
adding an argument: USR 5-73
initialization: USR 5-77

Index-23

obtaining option code and data:
USR 5-79
OPTARGUMENTSsstructure:
USR 5-21
RPM: USR 6-5, 6-12
structure: USR 5-20
option groups, RPM: USR 6-18,
6-19
options
RPM: USR 6-13, 6-18
RPMCreate: USR 6-18
organization, in node names: USR
1-8
organization field: GEN 3-5
OSImodel: USR 1-1
Application layer: USR 1-2
Data Link layer: USR 1-2
Network layer: USR 1-2
Physical layer: USR 1-2
Presentation layer: USR 1-2
Session layer: USR 1-2
Transport layer: USR 1-2
OUTPRO: GEN 4-11, 4-28, 6-7;
MNT 9-1, 9-15
class number: MNT 2-9
OVER, DSCOPY option: USR 4-9
overview: BSD 1-1

P

packet exchange: MSG 1-18
packet exchange protocol. See PXP
parameter modification: MNT 8-1
parameters, RPM: USR 6-5
parent directory, accessing in FTP:
USR 3-19
parent node, RPM: GEN C-8
parent program: MSG 5-1
RPM: USR 6-4, 6-14
session-sharing: USR 6-16
partition
DSAM: GEN 6-4
reserved: USR 6-24
RPM: USR 6-24
Pascal, NetIPC: USR 5-83
Pascal header file: BSD B-24
PASCAL.LIB: GEN 5-14
PASCAL_CDS.LIB: GEN 5-14
PASS, FTP message: MSG 4-4
passing strings, RPM: USR 6-21
path: GEN 1-4; MNT 9-3, 9-6
path flow: MNT 9-1
path record: MNT 9-4
path records, IP: GEN 9-19
path report descriptor: USR 5-3
path reports: USR 5-3
PC: GEN 2-1; USR 5-25

Index-24

NetIPC: USR 5-1, 5-25, 5-26,
5-27,5-31, 5-37, 5-41, 5-44,
5-59, 5-62, 5-68, 5-71
PCB: MNT 9-5
PCLOS: MSG 7-29; DS 6-23
processing: MNT 9-43
PCLOSE: MSG 8-43
PCONT: MSG 7-28; DS 6-22
processing: MNT 9-42
PCONTROL: MSG 8-11
performance: MNT 5-1
performance degradation, SAM size:
GEN 4-7
performing a read select: USR 5-65
performing a write select: USR 5-65
physical layer: GEN 1-7, 1-14; USR
1-2
PING: GEN 4-13, 6-7; MNT 3-1,
3-2
simultaneous sessions: MNT 3-2
planning: GEN 3-1
PNL: GEN 4-8, 9-10; MNT 2-26
PNRPY: DS 6-24
processing: MNT 9-43
point-to-point networks: GEN 1-4
pointers: BSD 3-16
POOL: GEN 4-8,9-10
POPEN: DS 6-13, 6-16; MSG 7-24,
8-44
processing: MNT 9-42
PORT, FTP message: MSG 4-4
port number: BSD 2-3, 3-3, 3-5, 3-8,
D-7
porting NetIPC programs: USR 5-1,
5-25

portmapper request: FSV'5-2
ports, well-known UDP ports: MSG
A2
PRCNM: MNT 9-57; DS 7-27, 8-2
programmatic example: DS 7-28
PRDCI: GEN 4-15, 4-29, 6-7, 7-3;
MNT 9-71
memory-based system: GEN C-6
PREAD: MSG 7-26, 8-7; DS 6-20
PREAD processing: MNT 9-42
presentation layer: GEN 1-7, 1-11;
USR 1-2
primary program, memory-based
system: GEN C-7
priorities: GEN 6-2
probe: GEN 3-25, 8-2; MNT 9-10
address: GEN 3-27
nodal registry: GEN 3-25
PCB record: GEN 9-20
proxy nodal registry server: GEN
9-20

proxy server: GEN 3-25, 11-2
requests: GEN 3-25
retry interval: GEN 9-20

statistics: MNT 2-8
PROBE protocol messages: MSG
1-22
probe proxy server: GEN 3-26
NPR: GEN 3-26
process communication. See Net-
work IPC
process information: MNT 2-19
process number list: MNT 2-26
See also PNL
PRODC: GEN 4-15, 4-29, 6-7, 7-3;
MNT 9-70
memory-based system: GEN C-6
PROGL: GEN 4-23, 4-31, 6-7, 9-11,
13-7; MNT 2-28
program, installation: GEN 6-1
program descriptor, RPM: USR 6-7,
6-12, 6-14, 6-41; MSG 5-12, 5-7
program information: MNT 2-19
program name, RPM: USR 6-10
program priority: GEN 6-2; USR
1-8

RPM: USR 6-25
program scheduling, RPM: USR
6-33
Program-to-Program Communica-
tion. See PTOP
program-to-programcommunica-
tion: MNT 9-42; USR 1-4; DS
1-2,1-3,6-1
PROGRESS, NFT message: MSG
3-25
PROMPT command, FTP: USR
3-59
PROMT, memory-based system:
GEN C-6,C-7
protocol: BSD 3-8; GEN 1-4
ARM: GEN 1-13
FTP: USR 1-3; DS 1-2
modules: MNT 9-1
probe: GEN 1-13
sample master-slave for PTOP:
DS 6-2
TELNET: USR 1-3,2-1; DS 1-2
Time Server: GEN 4-17
protocol EMA: GEN 9-26
protocol information: BSD 5-26,
5-28, 5-30, 5-51
protocol stack: MNT 9-3
protocols: USR 1-1
transport layer: BSD 2-2
proxy address: GEN 3-27, 3-28, 9-20
proxy nodal registry server: GEN
9-20
proxy server: GEN 11-2
probe: GEN 3-25
pseudo LU: MNT 2-30, 2-31

pseudo terminal LU: GEN 12-2;
MNT 2-30, 2-31
memory-based system: GEN C-7
PSI, links: MNT 9-51
PTOP: GEN 1-10, 1-11, 9-10; USR
1-4; DS 1-3, 6-1
ACEPT: DS 6-28
calls
ACEPT: DS 6-28
FINIS: DS 6-30
GET: DS 6-26
PCLOS: DS 6-23
PCONT: DS 6-22
PNRPY: DS 6-24
POPEN: DS 6-13
POPEN: DS 6-16
PREAD: DS 6-20
PWRIT: DS 6-21
REJCT: DS 6-29
chain protocol: DS 6-8
common parameters: DS 6-11
DS/1000-IV compatibility: DS
6-1, 6-2
FINIS call: DS 6-30
GET call: DS 6-26
HP 1000 to HP 1000 protocols:
DS 6-4
HP 1000 to HP 3000 protocols:
DS 6-3
HP 3000 communication: DS 6-2
interprocesscommunication:
USR 5-1
link considerations: DS 6-1
many-to-one
multiple server protocol: DS
6-6
possible cloned protocol: DS
protocol: DS 6-5
master and slave programs: DS
6-1
one-to-one protocol: DS 6-4
one-to-one with cloning protocol:
DS 6-5
PCLOS call: DS 6-23
PCONT call: DS 6-22
PNRPY call: DS 6-24
POPEN call: DS 6-13, 6-16
PREAD call: DS 6-20
programmatic examples: DS 6-31
PWRIT call: DS 6-21
REJCT call: DS 6-29
RTE-A system utility: DS 6-2
RTE-6/VM type 6 call: DS 6-2
sample master-slave protocols:
DS 6-2

Index-25

session monitor restrictions: DS
6-2
software modules: GEN 4-19,
4-27
syntax conventions: DS 6-11
PTOPM: GEN 4-19, 4-27, 4-30,
4-32,6-7,9-11; MNT 9-42
PUT command, FTP: USR 3-60
PWD, FTP message: MSG 4-5
PWD command, FTP: USR 3-61
PWRIT: DS 6-21
processing: MNT 9-42
PWRITE: MSG 7-27, 8-9
PXP: GEN 1-12; MNT 9-2, 9-5
header: MSG 1-18
statistics: MNT 2-20

Q

QCLM: GEN 4-14, 4-17, 4-24, 4-29,
4-30, 4-31, 6-7

QUERY: DS 7-3

QUEUE: GEN 4-14, 4-24, 4-29,
4-31, 6-7, 7-2; MNT 9-36, 9-49

queue program scheduling, RPM:
USR 6-36

queue schedule
no wait, DS/1000-1V: MSG 7-49
wait, DS/1000-1V: MSG 7-47

QUEX: GEN 4-24,4-31, 6-7, 9-11;
MNT 7-1, 9-52

QUEZ: GEN 4-24, 4-31, 6-7, 9-11;
MNT 9-52

QUIET, DSCOPY option: USR 4-9

QUIT, FTP message: MSG 4-5

QUIT command
FTP: USR 3-27, 3-36, 3-62
TELNET: USR 2-14, 2-20

QUOTE command, FTP: USR 3-63

R

race condition: USR 5-11, 5-49
RAM disk: GEN C-1
RDATE: GEN 4-30, 6-7
See also remote process manage-
ment
RDATE utility: FSV'4-9, A-1
and $SYSTZ: FSV A-1
RDBA: GEN 1-10, 9-10
REQUEST: MSG 7-68
software modules: GEN 4-13
RDBAM: GEN 4-13, 4-22, 4-28,
4-30, 6-8, 9-11
RDTB: GEN 5-13
read and write thresholds: USR 5-14
ReadOpt: USR 5-79, 6-5

Index-26

receiving a connection request: USR
5-7
receiving data: BSD 2-9, 4-18, 4-21;
USR 5-55
datagram sockets: BSD 3-14
stream sockets: BSD 3-13
receiving vectored data: BSD 4-23
RECV command, FTP: USR 3-38,
3-64
recv(): BSD 2-9, 3-1, 3-13, 4-18, 7-2
recvfrom(): BSD 3-2, 4-21
recvmsg(): BSD 3-1, 4-23
redundant links: GEN B-1
REJCT: DS 6-29
processing: MNT 9-43
releasing dynamically allocated
memory: BSD 5-1
examples: BSD 5-2
REMAT: GEN 1-10, 4-20, 4-30, 6-7,
9-10; USR 1-4; DS 1-2,1-3,2-1
APLDR: DS 2-22
APLDX: DS 2-22
attach command: DS 2-7
broadcast command: DS 2-8
cartridge list command: DS 2-9
change list/log device command:
DS 2-21
commands
AT: DS 2-7
BC: DS 2-8
CL: DS 2-9
CR: DS 2-10
DE: DS 2-11
DL: DS 2-12
DU: DS 2-14
EX: DS 2-15
examples: DS 2-42
FL: DS 2-16
10: DS 2-18
LC: DS 2-19
LI: DS 2-20
LL: DS 2-21
LO: DS 2-22
PL: DS 2-24
PU: DS 2-25
QU: DS 2-26
QW: DS 2-27
RN: DS 2-28
RW: DS 2-29
SD: DS 2-31
SL: DS 2-32
SO: DS 2-33
ST: DS 2-34
summary: DS 2-4
SW: DS 2-36
TE: DS 2-40
TR: DS 2-41
create command: DS 2-10
detach command: DS 2-11

directory list command: DS 2-12
dump command: DS 2-14
exit command: DS 2-15
file restrictions: DS 2-1
flush command: DS 2-16
FMGR files: DS 2-1
I/O configuration command: DS
2-18
list command: DS 2-20
LO command: GEN 4-20
load command: DS 2-22
loading a file to RTE-A: DS 2-22
local node number command:
DS 2-19
memory-based system: GEN C-5
program list command: DS 2-24
purge command: DS 2-25
queue command: DS 2-26
queue with wait command: DS
2-27
rename command: DS 2-28
run with wait command: DS 2-29
scheduling: DS 2-3
session restrictions: DS 2-1
shut down command: DS 2-31
slave list command: DS 2-32
slave off command: DS 2-33
software modules: GEN 4-20
store command: DS 2-34
switch command: DS 2-36
tell command: DS 2-40
transfer command: DS 2-41
use with FCOPY: DS 7-17
remote, session: MNT 9-17, 9-40
remote busy retry: MNT 2-28
modifying: MNT 8-14
REMOTE BYE: MSG 8-16
REMOTE command: MSG 8-6
Remote Database Access
See also RDBA
software module: GEN 4-22
remote file access: USR 1-4; DS 1-2,
1-3
common parameters: DS 4-2
DAPOS call: DS 4-5
DCLOS: DS 4-8
DCONT: DS 4-10
DCRET call: DS 4-13
DLOCEF call: DS 4-15
DNAME: DS 4-17
DOPEN call: DS 4-18
DPOSN call: DS 4-22
DPURG: DS 4-24
DREAD: DS 4-25
DSTAT call: DS 4-27
DWIND call: DS 4-30
DWRIT call: DS 4-31
DXAPO call: DS 4-5

DXCLO: DS 4-8
DXPOS call: DS 4-22
DXREA: DS 4-25
DXWRI call: DS 4-31
file
access calls: DS 4-4
control calls: DS 4-5
definition calls: DS 4-4
positioning calls: DS 4-5
restrictions: DS 4-1
HP 1000 RFA calls: DS 4-1
HP 3000 RFA calls: DS 8-1
monitor: MNT 9-44
programmatic examples: DS 4-33
session monitor restrictions: DS
statistics: MNT 2-28
syntax conventions: DS 4-2
Remote File Access (FMGR). See
RFA
remote file access monitor: MNT
REMOTE HELLO: MSG 8-15
remote I/O control, DS/1000-1V:
MSG 7-35
remote I/O mapping: GEN 1-10,
9-10, 14-1; DS 1-7
#LMPE values: GEN 14-17
accessing the HP 3000: GEN
14-25
buffer limit: GEN 14-23
change a map: GEN 14-11
disable map: GEN 14-14
DVT: GEN 14-4
EDIT/1000: GEN 14-24
EQT: GEN 14-4
error processing: GEN 14-27
establish a map: GEN 14-11
example: GEN 14-2, 14-3
example logon interactions:
GEN 14-22
EXEC 13 (I/O status): GEN
14-25
first unused mapping LU: GEN
14-8
general considerations: GEN
14-4
header flag: GEN 14-8, 14-11
HP-IB and disk LU restrictions:
GEN 14-25
initialization: GEN 12-3
IOMAP parameter summary:
GEN 14-6
mappable LU: GEN 5-9
mapped LU status: GEN 14-15
mapping an LU: GEN 14-4
mapping information: GEN
14-16

Index-27

prompt flag: GEN 14-10, 14-13,
14-24

remote interactive session: GEN
14-1
remote interactive session access:
GEN 14-18
reserved DVT: GEN 14-25
reserved LU: GEN 14-25
resource sharing: GEN 14-1
restrictions on mapping to a ter-
minal: GEN 14-24
return error values: GEN 14-17
sharing devices: GEN 14-25
software modules: GEN 4-22
system generation: GEN 5-9
TELNET: GEN 12-3, 14-1,
14-26
timeout: GEN 14-23, 14-24
timeouts and EDIT/1000: GEN
14-24
uses: GEN 14-1
using IOMAP: GEN 14-5
remote I/O status, DS/1000-1V:
MSG 7-36
remote interactive session: GEN
14-1, 14-18
breakmode prompt: GEN 14-22
CM prompt: GEN 14-22
establishing the map: GEN 14-18
example logon interactions:
GEN 14-21
logging on: GEN 14-20
obtain logon prompt: GEN
14-20
sample configuration diagram:
GEN 14-19
scheduling SYSAT: GEN 14-20
SYSAT: GEN 14-20
remote network: GEN 1-5
remote node: GEN 1-3
REMOTE OPERATOR RE-
QUEST: MSG 7-64
remote partition status, DS/1000-IV:
MSG 7-41
Remote Process Management: GEN
4-29
remote process management: GEN
1-10, 4-16; USR 1-3, 1-4, 5-17,
6-1; DS 1-2,1-3
child program: GEN 4-16
dependent programs: USR 6-15
example: USR 6-42
flags parameter: USR 6-5
independent programs: USR
6-15
NS-ARPA/1000: MSG 5-1
parent program: MSG 5-1
RPM monitor: MSG 5-1

Index-28

remote program download, software
modules: GEN 4-23

remote program status, DS/1000-1V:
MSG 7-42

remote program termination,
DS/1000-1V: MSG 7-43

remote quiet wait: MNT 2-28
modifying: MNT 8-14

remote read, DS/1000-IV: MSG
7-33

Remote Session Monitor, RSM:
GEN 4-21

remote system download: GEN
1-11; DS 1-7
software module: GEN 4-23

remote time request, DS/1000-1V:
MSG 7-39

remote timed program schedule,
DS/1000-1V: MSG 7-40

remote VCP (DSVCP): GEN 13-1;
DS 1-7

Remote Virtual Control Panel. See
DSvVCP

remote write, DS/1000-1V: MSG
7-34

REMOTEHELP command, FTP:
USR 3-65

RENAME command, FTP: USR
3-66

REPLACE, DSCOPY option: USR
4-9

request code, RPM: USR 6-7; MSG
5-12

requesting a connection: USR 5-6

requirements
hardware: GEN 1-2
software: GEN 1-2

rerouting: GEN 1-4, 9-24, B-4;
MNT 9-19, 9-26
processing: MNT 9-27
update message: MSG 7-11

reserved partition, RFAM: GEN
4-22, 6-6

resolver protocols, ARM: GEN 1-13

resource, clean up: MNT 9-39, 9-60

resource numbers: GEN 4-34;
MNT 2-28
requirement: GEN 9-26
system generation: GEN 5-12

resource sharing: GEN 14-1; USR
1-1; DS 1-1

restarting FSRV: FS1'4-10

restore program: USR 6-23

result parameter: USR 5-17, 5-23
RPM: USR 6-5

RETR, FTP message: MSG 4-5

retry
limit: MNT 9-46

timeout: MNT 2-28
return code, RPM: MSG 5-13
RFA: GEN 1-10, 1-11,9-10; USR
1-4; DS 1-3,4-1, 8-1
calls
DAPOS: DS 4-5
DCLOS: DS 4-8
DCONT: DS 4-10
DCRET: DS 4-13
DLOCEF: DS 4-15
DNAME: DS 4-17
DOPEN: DS 4-18
DPOSN: DS 4-22
DPURG: DS 4-24
DREAD: DS 4-25
DSTAT: DS 4-27
DWIND: DS 4-30
DWRIT: DS 4-31
DXAPO: DS 4-5
DXCLO: DS 4-8
DXPOS: DS 4-22
DXREA: DS 4-25
DXWRI: DS 4-31
software module: GEN 4-22,
4-27
statistics: MNT 2-28
RFAM: GEN 4-20, 4-22, 4-23, 4-27,
4-30, 4-31, 4-32, 6-7,9-11; MNT
9-44
DCB: GEN 6-6
memory-based system: GEN C-5
reserved partition: GEN 4-22,
6-6
ring topology: GEN B-1
RINIT, NFT message: MSG 3-35
RMD, FTP message: MSG 4-6
RMDIR command, FTP: USR 3-67
RMOTE: GEN 1-11, 4-26, 4-32,
6-7,9-10; USR 1-4; DS 1-2, 1-3,
3-1
break and control Y: DS 3-3
commands: DS 3-5
EX: DS 3-6
examples: DS 3-16
LL: DS 3-7
MO: DS 3-9
ON: DS 3-11
RU: DS 3-11
RW: DS 3-12
SV: DS 3-13
SW: DS 3-14
TR: DS 3-15
RMOTE Commands: DS 3-5
EX command: DS 3-6
HP 3000 X.25 address: DS 3-3
LL command: DS 3-7
MO command: DS 3-9
MO slave: GEN 12-10
ON command: DS 3-11

operation: DS 3-3
reenabling a link: DS 3-4
RU command: DS 3-11
RW command: DS 3-12
scheduling: DS 3-2
software modules: GEN 4-26
SW command: DS 3-14
SV command: DS 3-13
TR command: DS 3-15
RNFR, FTP message: MSG 4-6
RNFT, NFT message: MSG 3-19
RNFTR, NFT message: MSG 3-18
RNTO, FTP message: MSG 4-6
route: GEN 1-4
Router/1000: GEN 1-4, 1-13
address: GEN 3-21, 3-35, 9-22;
MNT 2-5, 2-18, 2-21
header: MNT 5-25
headers, for DS/1000-1V Ser-
vices: MSG 7-14
LI: GEN 3-6,3-9
link: GEN 7-2, 9-24
message header: MNT 9-41
network boundaries: GEN 3-8
NRV: GEN 3-30, 3-35, 9-22
software modules: GEN 4-14
statistics: MNT 2-22
trace records: MNT 5-24
worksheet examples: GEN 3-39
routing: GEN 1-6, 3-29
IP: GEN 3-29
routing worksheet: GEN 3-4, A-6
rpcinfo: FSV4-10
RPCNV: GEN 4-25, 4-32, 6-7, 9-11;
MNT 9-49, 9-59
RPM: USR 1-4; MSG 5-1; DS 1-3
See also Remote Process Manage-
ment; remote process man-
agement
AddOpt: USR 6-5, 6-19, 6-20
AddOpt example: USR 6-34,
6-37, 6-40
assign partition: USR 6-24
ATACH: USR 6-5
CDS: USR 6-3, 6-4, 6-24, 6-39
CDS program: USR 6-14
child program: USR 6-1, 6-4,
6-21
control request: MSG 5-13
controlling programs: USR 6-9
data: MSG 5-12, 5-13
definition: USR 6-1
dependent child: USR 6-12
dependent child flag: MSG 5-5
DEXEC: USR 6-2
DTACH: USR 6-5
error code: MSG 5-3, 5-6, 5-8,
5-10, 5-11
EXEC: USR 6-2, 6-4, 6-33

Index-29

flags: MSG 5-5, 5-6

flags parameter: USR 6-5, 6-11,
6-16, 6-33

ID segment: USR 6-23, 6-25

InitOpt: USR 6-5, 6-20

IP address: MSG 5-5

login: USR 6-10

memory-based system: GEN C-8

message header: MSG 5-1

message length: MSG 5-1

modify code partition: USR 6-28

modify data partition: USR 6-29

monitor: MSG 5-1

NetIPC: USR 6-2, 6-5, 6-12;
MSG 5-9

NetIPC calls: USR 6-5

network worksheet: GEN 3-6

nodename: USR 6-7, 6-10

nodename parameter: USR 6-5

opt array: MSG 5-5

opt parameter: USR 6-12

option groups: USR 6-18, 6-19

options: USR 6-13, 6-23, 6-24

parameters: USR 6-5

parent program: USR 6-1, 6-4,
6-14

passing strings: USR 6-21

program descriptor: USR 6-7,
6-12, 6-14, 6-41; MSG 5-6,
5-7,5-12

program name: USR 6-10

RPMLength request message:
MSG 5-9
RPMSonComplete reply mes-
sage: MSG 5-11
RTE resources: USR 6-4
schedule with wait: USR 6-18
scheduling programs: USR 6-13
sending strings: USR 6-14
session: USR 6-13
session flag: MSG 5-5
session identifier: MSG 5-4, 5-5
session-sharing: USR 6-11, 6-16
stack size: USR 6-4
summary of calls: USR 6-3
syntax conventions: USR 6-5
terminate a program: USR 6-4,
6-14, 6-41
terminating programs: USR 6-14
time scheduling: USR 6-31
version number: MSG 5-5, 5-6
VMAsize: USR 6-27
wait for child: USR 6-11; MSG
5-5
RPMControl: USR 6-4
RPMCreate: USR 6-4, 6-10
options: USR 6-13
RPMCreate options: USR 6-18
RPMGetString: USR 6-21, 6-39
RPMK:ill: USR 6-4, 6-41
nodename: USR 6-41
RPMMN: GEN 4-16, 4-29, 6-7

program priority: USR 6-25 memory-based system: GEN C-8
program scheduling: USR 6-33 RPROGRESS, NFT message: MSG
queue program scheduling: USR 3-25

6-36 RQCNV: GEN 4-25, 4-32, 6-7, 9-11;

ReadOpt: USR 6-5

request code: USR 6-7; MSG
5-12

restore program: USR 6-23

result parameter: USR 6-5

return code: MSG 5-13

RPMControl: USR 6-3, 6-7
reply message: MSG 5-13
request message: MSG 5-9,

5-12

RPMCreate: USR 6-3, 6-22
reply message: MSG 5-6
request message: MSG 5-4,

5-9

RPMCreate options: USR 6-13

RPME-ror reply message: MSG
5-3

RPMGetString: USR 6-3, 6-21

RPMK:ill: USR 6-3, 6-41
reply message: MSG 5-8
request message: MSG 5-7

RPMLength reply message:
MSG 5-10

Index-30

MNT 9-49, 9-58, 9-59
RSIZE, DSCOPY option: USR 4-8
RSM, remote session monitor: GEN
4-21
RTE
to MPE master side communica-
tion: MNT 9-54
to MPE slave side communica-
tion: MNT 9-58
RTE BR, causes error with FCOPY:
DS 7-17
RTE directory specification: FSV
3-3
RTE file access: FSV 3-4
RTE in the file server environment:
FSV'5-5
accessibility of permission bits:
FSV'5-6
file ownership: FSV'5-6
MPACK: FSV 4-9
symbolic links: FSV'5-6
time stamps and root directories:
FESV'5-5

type 12 files
BOOTEX and: FSV'5-5
DS transparency and: FSV
FTP ASCII transfers and:
FSV'5-5
TF and: FSV'5-6
update of directory time stamps:
FSV'5-5
RTE resources, RPM: USR 6-4
RTE-A, relocatables: GEN 6-2
RTE-A type 6 files: USR 4-3, 4-7,
4-8

RTEBIN command, FTP: USR 3-68

RTR, link: GEN 9-24

RTR LI: GEN 3-6, 3-9, 3-32, 9-16
statistics: MNT 2-21

RUN command, TELNET: USR
2-21

S

SAM: GEN 4-6
allocation: GEN 4-6
performance degradation: GEN
SBUF: MNT 9-61
scattered read: BSD 4-23, 4-34;
USR 5-21
schedule with wait, RPM: USR 6-18
scheduling BSD IPC programs:
BSD 3-20
scheduling programs, RPM: USR
6-2, 6-13
scratch directory: GEN 5-3
FTP: GEN C-5
memory-based system: GEN C-5
SEC1000CDS: GEN 5-14
secondary program, memory-based
system: GEN C-7
security codes: GEN 3-41, 9-26
SEGLD: DS 7-21
segment size: MNT 9-13
network: GEN 3-32, 9-17
TCP: GEN 9-15; MNT 2-9
segmented programs: DS 7-21
select code: MNT 2-10
select(): BSD 4-27, 6-1
send and receive sizes, cross-system:
USR 5-28, 5-29, 5-31
SEND command
FTP: USR 3-60, 3-69
TELNET: USR 2-22
send(): BSD 2-9, 3-1, 3-12, 4-31, 7-3
sending and receiving data: USR
5-10
stream mode: USR 5-16
sending data: BSD 2-9, 4-31, 4-38

datagram sockets: BSD 3-14
stream sockets: BSD 3-12
sending vectored data: BSD 4-34
sendmsg(): BSD 3-1, 4-34
sendto(): BSD 3-2, 4-38
server
accepting a connection: BSD 3-9
setup: BSD 3-7
server process: BSD 2-3
service information: BSD 5-32, 5-34,
5-52
SERVICES: GEN 6-7
session
identifier: MSG 5-4, 5-5
remote: MNT 9-17, 9-40
RPM: USR 6-13
timeout: GEN 9-11
session layer: GEN 1-7, 1-11; USR
1-2
session monitor
copying files with FCOPY: DS
7-17
DLGNS: DS 7-4
DLGON: DS 7-8
DMESS: DS 7-11
restrictions, Remote File Access:
DS 4-2
session-sharing
parent program: USR 6-16
RPM: USR 6-11, 6-16
set break request: MSG 6-24
set break response: MSG 6-25
set driver control response: MSG
6-28
sethostent(): BSD 5-49, B-2
setnetent(): BSD 5-50, B-4
setprotoent(): BSD B-6
setservent(): BSD 5-52, B-8
setsockopt(): BSD 4-40
setting the local time: FSV A-1
setup
client: BSD 3-10
server: BSD 3-7
short data type: BSD 3-17
shut down, NSINIT: GEN 9-28
shutdown connection: BSD 4-43
shutdown(): BSD 2-10, 3-1, 3-2,
3-15, 4-43
shutting down a connection: USR
5-10
SIGNAL: GEN 4-16
SILENT, DSCOPY option: USR 4-9
single user system: GEN C-2
memory-based system: GEN
C-6,C-8
RPM: GEN C-8
RPMMN: GEN C-8
SITE, FTP message: MSG 4-7
SITE command, FTP: USR 3-70

Index-31

SIZE, DSCOPY option: USR 4-8
SL, processing: MNT 9-44
slave
TCB: MNT 2-25
timeout: GEN 9-11
slave list, processing: MNT 9-44
SLAVE LIST (REMAT): MSG 7-32
slave off, processing: MNT 9-44
SLAVE OFF (REMAT): MSG 7-31
slave programs
cloned: DS 6-15
effects of ICLON parameter: DS
6-15
renaming: DS 6-15
slave services, software modules:
GEN 4-25
slave timeout: MNT 2-28
modifying: MNT 8-14
SMB: GEN 4-8
requirement: GEN 9-26
system generation: GEN 5-12
snap file: GEN 6-2
SO, processing: MNT 9-44
SO_KEEPALIVE option: BSD
4-40, 7-1
SO_RCVBUF option: BSD 4-14,
4-41
SO_RECVBUF options: BSD 7-1
SO_REUSEADDR option: BSD
4-13, 4-40, 7-1
SO_SNDBUF option: BSD 4-14,
4-41,7-1
sockaddr_in structure: BSD 3-2, 3-3,
3-8
socket
creating: BSD 4-45
descriptors: BSD 2-1
local: BSD 5-38
peer: BSD 5-25
record: MNT 2-19
statistics: MNT 2-8
structures: BSD 2-1
trace records: MNT 5-19
type: BSD D-8
types: MNT 2-20
socket address: BSD 3-2, 3-3, D-8
setting up: BSD 3-8, 3-10
socket address family type: BSD 2-3,
3-3,D-1
socket buffer: MNT 9-61
socket descriptor bitmask: BSD 6-1
socket modes: USR 5-14
socket names: USR 5-3
syntax: USR 5-23
socket options: BSD 4-13, 4-40, 7-1
socket registry: GEN 1-10; MNT
9-11; USR5-3
ARM: GEN 1-13

Index-32

connect site path report: MSG
2-2
header: MSG 2-1
messages: MSG 2-1
tracing: MNT 5-19
socket sharing, cross-system: USR
5-28
SOCKETFTNI file: BSD B-35
socket.h file: BSD B-10, B-18
SOCKETPASI file: BSD B-24
socket(): BSD 2-5, 3-1, 3-2, 3-8, 4-45
socketname parameter: USR 5-17
sockets: BSD 2-1; GEN 9-8, 9-12
binding address: BSD 3-8, 3-11
call: USR 5-5
creating: BSD 3-8
description: USR 5-2
detecting connection requests:
USR 5-65
exception selecting: USR 5-65
exceptional: USR 5-64
maximum number: USR 5-26
naming: USR 5-5
performing a read select: USR
5-65
performing a write select: USR
5-65
readable: USR 5-64
root: GEN 9-12
shutting down a call socket: USR
5-70
shutting down a path report des-
criptor: USR 5-71
shutting down a VC socket: USR
5-71
synchronous and asynchronous:
USR 5-14
virtual circuit: USR 5-6
writeable: USR 5-64
software
DEXEC modules: GEN 4-27
troubleshooting: MNT 1-5
software level: GEN 3-36, 9-23
software manuals, PRDC1: GEN
4-29
software modules: GEN 4-10
#SEND: GEN 4-18, 4-30, 6-7
ALARM: GEN 4-16
APLDR: GEN 4-20, 4-23, 4-30,
4-31, 6-7

BREVL: GEN 4-12, 4-28, 67

BRTRC: GEN 4-12, 4-28, 67

CNSLM: GEN 4-25, 4-26, 4-32,
6-7

CONSM: GEN 4-15,4-29, 67,
7-3

DEXEC: GEN 4-19
DLIST: GEN 4-20, 4-30, 6-7

DSCOPY: GEN 4-15, 4-29, 6-7
DSCOPY.HLP: GEN 4-29
DSLIN: GEN 4-25, 4-32, 6-7
DSMOD: GEN 4-14, 4-18, 4-29,
4-30, 6-7
DSQ: GEN 4-11
DSRTR: GEN 4-13, 4-28, 6-7,
6-8
DSTES: GEN 4-27,4-32, 6-7
DSVCP: GEN 4-23, 4-24,4-31,
6-7
EVMON: GEN 4-12, 4-28, 6-7
EXECM: GEN 4-19, 4-20, 4-27,
4-30, 4-31, 4-32, 6-7
EXECW: GEN 4-19, 4-20, 4-
4-27, 4-30, 4-31, 4-3
FMTRC: GEN 4-12, 4-
FSRV: GEN 4-17, 4-29, 6
FTP: GEN 4-17, 4-29, 6-
FTPSV: GEN 4-17, 4-
GRPM: GEN 4-14, 4-
4-30, 6-7
IFPM: GEN4 17, 4-
INETD: GEN 4-16,
INPRO: GEN 4-11,
installation: GEN 6-
IOMAP: GEN 4-22, 4-31
LOG3K: GEN 4-25, 4-31
LOGCHG: GEN 4-12, 4- 2 X
31
31

20, 4-2
20, 4-23,

>

>

6-7
28, 6-7
7

29, 6-7
17, 4-29,
0, 6-7
29, 6-7
28, 6-7

3
4-
4-
1

’
’

LUMAP: GEN 4-22, 4-31,
LUQUE: GEN 4-22,4-31,
MATIC: GEN 4-18, 4-30, 6-7
MMINIT: GEN 4-11, 4-28, 6-7
MVCP3: GEN 4-26, 4-32, 6-
NFTMN: GEN 4-15, 4-29, 6-
NRINIT: GEN 4-12, 4-14, 4-28,
6-7
NRLIST: GEN 4-12, 4-28, 6-7
NSERRS.MSG: GEN 4-15, 4-29
NSINF: GEN 4-13, 4-28, 6-7
NSINIT: GEN 4-11, 4-28, 6-7
NSINITMSG: GEN 4-11, 4-28
NSTRC: GEN 4-12, 4-28, 6-7
OPERM: GEN 4-20, 4-26, 4-30,
4-31,4-32, 6-7
OUTPRO: GEN 4-11,4-28, 6-7
PING: GEN 4-13,6-7
PRDC1: GEN 4-15, 67, 7-3
PRODC: GEN 4-15, 4-29, 6-7,
7-3
PROGL: GEN 4-23,4-31, 6-7
PTOPM: GEN 4-19, 4-27, 4-30,
4-32,6-7
QCLM: GEN 4-14, 4-17, 4-24,
4-29, 4-30, 4-31, 6-7
QUEUE: GEN 4-14, 4-24, 4-29,
4-31,6-7,7-2
QUEX: GEN 4-24,4-31,6-7
QUEZ: GEN 4-24,4-31, 6

, 6-

RDATE: GEN 4-17, 4-30, 6-7
RDBAM: GEN 4-13, 4-22, 4-28,
4-30, 6-8
REMAT: GEN 4-20, 4-30, 6-7
RFAM: GEN 4-20, 4-22, 4-23,
4-27, 4-30, 4-31, 4-32, 6-7
RMOTE: GEN 4-26, 4-32, 6-7
RPCNV: GEN 4-25, 4-32, 6-7
RPMMN: GEN 4-16, 4-29, 6-7
RQCNV: GEN 4-25, 4-32, 6-7
SIGNAL: GEN 4-16
summary and guidelines: GEN
4-27
SYSAT: GEN 4-22, 4-31, 6-7
TELNET: GEN 4-29, 6-7
TNSRV: GEN 4-16, 4-29, 6-
TRC3K: GEN 4-25, 4-31, 6-
TREAS: GEN 4-13, 4-28, 6-
UPLIN: GEN 4-11, 4-28, 6-7
VCPMN: GEN 4-23, 4-24, 4-31,
6-7
XNET: GEN 4-29, 7-2
software requirements: GEN 1-2
software revisions, troubleshooting:
MNT 1-8
source node: GEN 1-4
special NetIPC calls: USR 5-72
stack size, RPM: USR 6-4
star topology: GEN B-2
start up: GEN 2-1, 9-1
starting up FSRV: FS1'4-9
from welcome file: FS1V 4-9
station address: MNT 2-5
ARP: GEN 1-13
station addresses, probe: GEN 1-13
STATUS command
FTP: USR 3-71
TELNET: USR 2-24
STOR, FTP message: MSG 4-7
store and forward: GEN 1-4; DS
1-7
store-and-forward traffic: MNT 9-25
stream mode: BSD 2-2; USR 5-16
stream sockets: BSD 2-2
string topology: GEN B-1
strings
passing: USR 6-39
RPM: USR 6-14, 6-39
STRIP, DSCOPY option: USR 4-8
STRU, FTP message: MSG 4-7
STRUCT command, FTP: USR 3-72
subnet mask: BSD D-4; GEN 3-16,
9-16; MNT 1-6
subnetting: BSD D-2; GEN 3-1,
3-12
IP address: BSD D-3; GEN 3-14
subnet mask: BSD D-4; GEN
3-16

6-8

Index-33

subnetwork: BSD D-3; GEN
3-14
subnetwork: BSD D-3; GEN 3-14,
9-17
subnetting: BSD D-3; GEN 3-14
summary of NetIPC calls: USR 5-13
supported connectivities: USR 1-5;
DS 1-4
synchronous and asynchronous sock-
et modes: USR 5-14
synchronous I/O: USR 5-14
IPCRecv: USR 5-56
synchronous socket I/O multiplex-
ing: BSD 4-27
synchronous timeout: USR 5-11
syntax, RPM: USR 6-5
SYSAT: GEN 4-22, 4-31, 6-7, 14-20
SYST, FTP message: MSG 4-7
System Available Memory. See SAM
SYSTEM command, FTP: USR 3-73
system common: GEN 1-2
system generation: GEN 5-13
system generation: GEN 5-1
driver partition phase: GEN 5-4
driver relocation phase: GEN 5-4
memory allocation: GEN 5-12
node statement: GEN 5-11
system relocation: GEN 5-3
table generation phase: GEN 5-5
system memory block. See SMB
system relocation: GEN 5-3
system resources, troubleshooting:
MNT 1-7

T

table generation phase: GEN 5-5

table sizes, troubleshooting: MNT
1-7

tables area: MNT 9-62

target address: GEN 3-27, 3-28,
9-20

TCB: GEN 4-8,9-10; MNT 2-24,
9-18
allocation: MNT 9-17

TCP: GEN 1-11; MNT 9-2, 9-5
See also transmission control pro-

tocol

configuration: GEN 9-15
header: MSG 1-15
retransmission values: GEN 9-15
SAPs: MSG A-1
segment size: GEN 9-15; MNT
statistics: MNT 2-20
troubleshooting: MNT 1-11

TCP (Transmission Control Proto-
col): BSD 2-2

Index-34

TCP protocol address, cross-system:
USR 5-28, 5-29, 5-31

TCP_MAXSEG option: BSD 4-14,
4-41

TCP_NODELAY option: BSD 4-14,
4-41

TELNET: GEN 1-8, 4-5, 4-29, 6-7,
14-26; USR 1-3,2-1; DS 1-2
? command: USR 2-10
ALARM: GEN 4-16
before you generate a system:

GEN 5-1
block mode: USR 2-5
BUILD: GEN C-7
CLOSE command: USR 2-11
commands: USR 2-9
connectivity considerations: USR
2-2

DSAM usage: GEN 4-5
errors: MNT 1-6
ESCAPE command: USR 2-12
EXIT command: USR 2-14
HELP command: USR 2-15
INTERUPT command: USR

2-16

labeled system common: GEN
5-13

memory-based system: GEN
C-2,C-6,C-7

MODE command: USR 2-18

network worksheet: GEN 3-6

number of server programs:
MNT 2-7, 2-9, 2-30, 2-31

number of user programs: MNT
2-7,2-9,2-30

OPEN command: USR 2-19

pseudo terminal: GEN 5-1

pseudo terminal LU: GEN 5-8;
MNT 2-30, 2-31

QUIT command: USR 2-14, 2-20

remote I/O mapping: GEN 12-3,
14-1, 14-26

RUN command: USR 2-21

SAM usage: GEN 4-5, 4-6

SEND command: USR 2-22

server: GEN 4-5

server program: GEN 4-16

SIGNAL: GEN 4-16

STATUS command: USR 2-24

terminals supported: GEN 1-2

troubleshooting: MNT 1-12

user program: GEN 4-5, 4-6,
4-16

using: USR 2-6

virtual terminal: GEN 4-16

XSAM usage: GEN 4-7

TELNET commands: USR 2-9
?: USR 2-10
CLOSE: USR 2-11

ESCAPE: USR 2-12
EXIT: USR 2-14
HELP: USR 2-15
INTERUPT: USR 2-16
MODE: USR 2-18
OPEN: USR 2-19
QUIT: USR 2-14, 2-20
RUN: USR 2-21
SEND: USR 2-22
STATUS: USR 2-24
TELNET operation: USR 2-8
TELNET protocol: USR 2-1
TELNET pseudo terminal LU:
GEN 12-2
TELNET SEND commands
AYT: USR2-22
BREAK: USR 2-22
ESCAPE: USR 2-22
INTERRUPT: USR 2-22
IP: USR 2-22
TELNETHLP: GEN 6-7
terminal driver control request:
MSG 6-26
terminal I/O reply: MSG 6-20
terminal I/O request: MSG 6-18
terminal monitor: MSG 6-1
negotiation reply: MSG 6-13
negotiation request: MSG 6-12
terminal settings: USR 2-2
DEC VAX computers: USR 2-3
terminal-less nodes: GEN 14-1
terminate a program
RPM: USR 6-4, 6-14, 6-41
RPMK:ill: USR 6-4, 6-14
terminate message request: MSG
6-14
terminating FTP, temporarily: USR
3-17
terminating programs, RPM: USR
6-14
terminating RPM programs
dependent programs: USR 6-15
independent programs: USR
6-15
termination reply: MSG 6-15
three-node model: USR 4-2
consumer: USR 4-2
initiator: USR 4-2
producer: USR 4-2
time scheduling, RPM: USR 6-31
Time Server Protocol: GEN 4-17,
4-30
timeout
MA: GEN 3-36
remote I/O mapping: GEN 14-24
retry limit: MNT 9-46
RTE-A: GEN 14-24
timeout (MA) statistic: MNT 2-17
timeout value: MNT 2-28

timeouts, troubleshooting: MNT
1-11
timing and timeouts: USR 5-11
timing values, modifying: MNT 8-14
TNSRV: GEN 4-16, 4-29, 6-7, C-7
memory-based system: GEN C-6
topology: GEN 3-1
point-to-point: GEN B-1
TR command, FTP: USR 3-74
transfer file: USR 3-75
trace file: MNT 5-15
header: MNT 5-15
tracing: GEN 9-8; MNT 5-1,7-1
control buffer: MNT 5-23, 5-26
disk LU: GEN 5-6
DS/1000-IV compatible services:
MNT 5-20
message posting: MNT 9-12,
9-13
NFT: MNT 5-18
NICE formatted records: MNT
5-17
Router/1000 trace records: MNT
socket registry: MNT 5-19
socket trace records: MNT 5-19
software modules: GEN 4-12
statistics: MNT 2-27
terminating: MNT 5-5
VMA size: GEN 6-6
transaction control block: MNT
2-24,9-18
See also TCB
allocation: MNT 9-17
Transaction Status Table. See TST
transfer file, FTP: USR 3-2, 3-74,
3-75
transmission control protocol: BSD
2-2; USR5-2,5-16; MSG 1-15
See also TCP
Transparent File Access. See TRFAS
transparent file access: GEN 3-5,
9-10
server: MSG 7-17
software modules: GEN 4-13,
6-8
transparent format: USR 4-3
transport: GEN 1-8; MNT 9-2
transport layer: GEN 1-7, 1-11;
USR 1-2
transport layer protocols: BSD 2-2
TRC3K: GEN 4-25, 4-31, 6-7; MNT
7-1,7-10
?7? command: MNT 7-12
commands: MNT 7-11
EXIT command: MNT 7-13
FORMAT command: MNT 7-14
LIST command: MNT 7-15
PRINT command: MNT 7-16

Index-35

runstring: MNT 7-10
sample output: MNT 7-18
SET command: MNT 7-17
TREAS: GEN 1-10, 4-13, 4-28, 6-7,
6-8, 9-10, 9-11, C-2; MNT 1-8;
MSG 7-17
troubleshooting
addresses: MNT 1-6, 1-8
BSD IPC: MNT 1-10, 1-11

DS/1000-IV compatible services:

MNT 1-11

guidelines: MNT 1-1

hardware: MNT 1-5

hardware failures: MNT 1-13

initialization: MNT 1-4

link: MNT 1-13

NetIPC: MNT 1-10, 1-11

RTE-A resources: MNT 1-7

software: MNT 1-5

software revisions: MNT 1-8

table sizes: MNT 1-7

TCP: MNT 1-11

tracing: MNT 5-1

user applications: MNT 1-10
troubleshooting FSRV: FSIV'5-1

guidelines: FSV'5-3

problem conditions experienced

by client: FSV'5-3,5-4

TST: GEN 4-8,9-11
TYPE, FTP message: MSG 4-8
type 12 byte stream files: FSV'3-4
TYPE command, FTP: USR 3-76
types.h file: BSD B-10, B-22
TZTAB: GEN 6-7

U

u_long data type: BSD 3-17

u_short data type: BSD 3-17

UDP header: MSG 1-19

UDP ports: MSG A-2

update message, rerouting: MSG
7-11

UDP: GEN 1-11, 1-12

UDP (User Datagram Protocol):
BSD 2-2

umount command: FSV 3-2

upgrade level: MNT 2-18, 2-28

UPLIN: GEN 4-11, 4-28, 6-7, 7-2,
9-10; MNT 9-18, 9-39, 9-60

USER, FTP message: MSG 4-8

user capability: FSV'1-1

USER command, FTP: USR 3-77

user datagram protocol (UDP):
BSD 2-2; MSG 1-19

user mappings: FSV'1-1

user record, NetIPC: GEN 9-12

user record ID: MNT 2-20

Index-36

user services
distributed executive: USR 1-4;
DS 1-3
FTP: USR1-3; DS 1-2
network file transfer: USR 1-4;
DS 1-2
network IPC: USR 1-4; DS 1-2
program-to-programcommunica-
tion: USR 1-4; DS 1-3
REMAT: USR 1-4; DS 1-3
remote file access: USR 1-4; DS
1-3
remote process management:
USR 1-4; DS 1-3
RMOTE: USR 1-4; DS 1-3
TELNET: USR 1-3; DS 1-2
utility subroutines: USR 1-4; DS
1-3,7-1
BYE: DS 7-25
database management: DS
7-3
DLGNS: DS 7-4
DLGOEF: DS 7-6
DLGON: DS 7-7
DMESG: DS 7-10
DMESS: DS 7-11
DSERR: DS 7-13
DS_GETNAME: DS 7-14
DS_GETNODE: DS 7-15
FCOPY: DS 7-16
FLOAD: DS 7-18
GNODE: DS 7-20
HELLO: DS 7-23
link considerations: DS 7-1
LU3K: DS 7-26
PRCNM: DS 7-27
SEGLD: DS 7-21
syntax conventions: DS 7-2
utilities, software modules: GEN
4-24
utility subroutines: GEN 1-10, 1-11;
USR 1-4

\'
VARIABLE, DSCOPY option: USR

VCsocket: USR 5-2, 5-6

VC socket descriptor: USR 5-3

VC+, memory-based system: GEN
C-6

VCPMN: GEN 4-23, 4-24, 4-31, 6-7,
9-11

vectored data: BSD 4-24, 4-35; USR

VERBOSE command, FTP: USR
3-78

verbose output, FTP: USR 3-78

verification: GEN 2-6

verifying client access: FSV4-10
verifying FSRV startup: FSV'4-10
verifying users: FSV'1-1
virtual circuit: USR 5-2
virtual circuit connection: USR 5-2,
5-6
status: USR 5-8
virtual circuit socket: USR 5-2
virtual circuit socket descriptor:
USR 5-3
virtual terminal: GEN 1-8, 4-16;
USR 1-3,2-1; DS 1-2, 3-1
access messages: MSG 6-1
abort I/O request: MSG 6-22
abort I/O response: MSG 6-23
negotiation reply: MSG 6-10
negotiation request: MSG 6-7
general flow: MSG 6-1
invoke break request: MSG 6-29
invoke break response: MSG
6-30
logon info message request:
MSG 6-16
logon info message response:
MSG 6-17
logon sequence: MSG 6-3
message header: MSG 6-5
message types: MSG 6-4
MPE
get information request:
MSG 6-33
get information response:
MSG 6-34
specific control request: MSG
6-31
specific control response:
MSG 6-32
primitives: MSG 6-4
set break request: MSG 6-24
set break response: MSG 6-25
set driver control response: MSG
6-28
TELNET: USR 1-3; DS 1-2
terminal driver control request:
MSG 6-26
terminal I/O reply: MSG 6-20
terminal I/O request: MSG 6-18
terminal monitor: MSG 6-1
negotiation reply: MSG 6-13
negotiation request: MSG
6-12
terminate message request: MSG
6-14
termination reply: MSG 6-15
VMA programs, RPM: USR 6-26

VMA size
RPM: USR 6-27
tracing: GEN 6-6
VT messages: MSG 6-1

w

wait for child, RPM: USR 6-11
WARN, NFT message: MSG 3-41
WELCOME, file: GEN 7-1, 7-3
well-known TCP SAPs: MSG A-1
wild cards, FTP: USR 3-39
word address pointers: BSD 3-16
working directory

FTP, setting with CD command:

USR 3-28

RPM: USR 6-22

RPMCreate option: USR 6-22
working set size

modify: USR 6-26

RPM: USR 6-26

tracing: GEN 6-6
worksheet: GEN 3-3, A-1

examples: GEN 3-38, 3-39

network: GEN 3-3, A-2

NSINIT example: GEN A-9,

A-22

routing: GEN 3-4, 3-30, A-6

write thresholds: USR 5-14

X

X.25: GEN 1-13, 3-8; MNT 2-28,
9-51; USR 1-7; DS 1-6, 1-7
DS/3000: GEN 6-2
labeled system common: GEN

5-13
libraries: GEN 6-2
link: GEN 1-15, 3-11, 7-2
system generation: GEN 5-10
link initialization: GEN 8-1
link troubleshooting: MNT 1-5
links: MNT 9-53
message processing: MNT 9-23
message records: MNT 7-1
MPE: MNT 9-48
non-CDS: GEN 6-3; DS 1-7
pool LU: GEN 9-25
user LU: GEN 5-10
virtual circuit: GEN 5-10

XNET: GEN 4-29, 7-2

XSAM
NFT: GEN 4-7
TELNET: GEN 4-7

Index-37

	Title page
	Preface
	Chapter 1 - TELNET
	Chapter 2 - FTP
	Chapter 3 - FSRV
	Chapter 4 - Berkeley Software Distribution Interprocess Communication
	Chapter 5 - Network File Transfer
	Chapter 6 - Network Interprocess Communication
	Chapter 7 - Remote Process Management
	Chapter 8 - REMAT
	Chapter 9 - RMOTE
	Chapter 10 - Remote File Access
	Chapter 11 - DEXEC
	Chapter 12 - Program-to-Program Communication (PTOP)
	Chapter 13 - Remote I/O Mapping
	Chapter 14 - Maintenance Utilities
	Index

